Подсоединение трехфазного двигателя в однофазную сеть. Схемы подключения электродвигателя к электропитанию. Конденсаторный способ включения
При эксплуатации или изготовлении того или иного оборудования нередко возникает необходимость подключения асинхронного трехфазного двигателя к обычной сети 220 В. Сделать это вполне реально и даже не особо сложно, главное — найти выход из следующих возможных ситуаций, если нет подходящего однофазного мотора, а трехфазный лежит без дела, а также если имеется трехфазное оборудование, но в мастерской лишь однофазная сеть.
Для начала имеет смысл вспомнить схему подключения трехфазного двигателя к трехфазной сети.
Схема подключения трехфазного электродвигателя на 220 В по схеме «Звезда» и «Треугольник»
Для простоты восприятия магнитный пускатель и прочие узлы коммутации не изображены. Как видно из схемы, каждая обмотка мотора питается от своей фазы. В однофазной же сети, как следует из ее названия, «фаза» всего одна. Но и ее достаточно для питания трехфазного электромотора. Взглянем на асинхронный двигатель, подключенный на 220 В.
Как подключить трехфазный электродвигатель 380 В на 220 В через конденсатор по схеме «Звезда» и «Треугольник»: схема.
Здесь одна обмотка трехфазного электромотора напрямую включена в сеть, две остальные соединены последовательно, а на точку их соединения подается напряжение через фазосдвигающий конденсатор С1. С2 является пусковым и включается кнопкой В1 с самовозвратом только в момент пуска: как только двигатель запустится, ее нужно отпустить.
Сразу возникает несколько вопросов:
- Насколько такая схема эффективна?
- Как обеспечить реверс двигателя?
- Какие емкости должны иметь конденсаторы?
Для того чтобы заставить двигатель вращаться в другую сторону, достаточно «перевернуть» фазу, поступающую на точку соединения обмоток В и С (соединение «Треугольник») или на обмотку В (схема «Звезда»). Схема же, позволяющая изменять направление вращения ротора простым щелчком переключателя SB2, будет выглядеть следующим образом.
Реверсирование трехфазного двигателя на 380 В, работающего в однофазной сети
Здесь следует заметить, что практически любой трехфазный двигатель — реверсный, но выбирать направление вращения мотора нужно перед его пуском. Реверсировать электродвигатель во время его работы нельзя! Сначала нужно обесточить электродвигатель, дождаться его полной остановки, выбрать нужное направление вращение тумблером SВ1 и лишь затем подать на схему напряжение и кратковременно нажать на кнопку В1.
Емкости фазосдвигающего и пускового конденсаторов
Для подсчета емкости фазосдвигающего конденсатора нужно воспользоваться несложной формулой:
- С1 = 2800/(I/U) — для включения по схеме «Звезда»;
- С1 = 4800/(I/U) — для включения по схеме «Треугольник».
Здесь:
- С1 — емкость фазосдвигающего конденсатора, мкФ;
- I — номинальный ток одной обмотки двигателя, А;
- U — напряжение однофазной сети, В.
Но что делать, если номинальный ток обмоток неизвестен? Его можно легко рассчитать, зная мощность мотора, которая обычно нанесена на шильдик устройства. Для расчета воспользуемся формулой:
I = P/1,73*U*n*cosф, где:
- I — потребляемый ток, А;
- U — напряжение сети, В;
- n — КПД;
- cosф — коэффициент мощности.
Символом * обозначен знак умножения.
Емкость пускового конденсатора С2 выбирается в 1,5−2 раза больше емкости фазосдвигающего.
Рассчитывая фазосдвигающий конденсатор, нужно иметь в виду, что двигатель, работающий не в полную нагрузку, при расчетной емкости конденсатора может греться. В этом случае номинал его нужно уменьшить.
Эффективность работы
К сожалению, трехфазный двигатель при питании одной фазой развить свою номинальную мощность не сможет. Почему? В обычном режиме каждая из обмоток двигателя развивает мощность в 33,3%. При включении мотора, к примеру, «треугольником» лишь одна обмотка С работает в штатном режиме, а в точке соединения обмоток В и С при правильно подобранном конденсаторе напряжение будет в 2 раза ниже питающего, а значит, мощность этих обмоток упадет в 4 раза — т. е. всего 8,325% каждая. Произведем несложный подсчет и рассчитаем общую мощность:
33,3 + 8,325 + 8,325 = 49.95%.
Итак, даже теоретически трехфазный двигатель, включенный в однофазную сеть, развивает лишь половину своей паспортной мощности, а на практике эта цифра еще меньше.
Способ повысить развиваемую мотором мощность
Оказывается, повысить мощность мотора можно, и притом существенно. Для этого даже не придется усложнять конструкцию, а достаточно лишь подключить трехфазный двигатель по приведенной ниже схеме.
Асинхронный двигатель — подключение на 220 В по улучшенной схеме
Здесь уже обмотки A и B работают в номинальном режиме, и лишь обмотка C отдает четверть мощности:
33,3 + 33,3 + 8,325 = 74.92%.
Совсем неплохо, не правда ли? Единственное условие при таком включении — обмотки A и B должны быть включены противофазно (отмечено точками). Реверсирование же такой схемы производится обычным образом — переключением полярности цепи конденсатор-обмотка C.
И последнее замечание. На месте фазосдвигающего и пускового конденсатора могут работать лишь бумажные неполярные приборы, к примеру, МБГЧ, выдерживающие напряжение в полтора-два раза выше напряжения питающей сети.
Из всех видов электропривода наибольшее распространение получили . Они неприхотливы в обслуживании, нет щеточно-коллекторного узла. Если их не перегружать, не мочить и периодически обслуживать или менять подшипники, то он прослужит почти вечность. Но есть одна проблема — большинство асинхронных двигателей, которые вы можете купить на ближайшей барахолке, трёхфазные, так как предназначены для использования на производстве. Несмотря на тенденцию к переходу на трёхфазное электроснабжение в нашей стране, подавляющее большинство домов до сих пор с однофазным вводом. Поэтому давайте разбираться, как выполнить подключение трехфазного двигателя к однофазной и трехфазной сети.
Что такое звезда и треугольник у электродвигателя
Для начала давайте разберемся, какими бывают схемы подключения обмоток. Известно, что у односкоростного трёхфазного асинхронного электродвигателя есть три обмотки. Они соединяются двумя способами, по схемам:
- звезда;
- треугольник.
Такие способы соединения характерны для любых видов трёхфазной нагрузки, а не только для электродвигателей. Ниже изображено, как они выглядят на схеме:
Питающие провода подключаются к клеммной колодке, которая расположена в специальной коробке. Её называют брно или борно. В неё выведены провода от обмоток и закреплены на клеммниках. Сама коробка снимается с корпуса электродвигателя, как и клеммники, расположенные в ней.
В зависимости от конструкции двигателя в брно может быть 3 провода, а может быть и 6 проводов. Если там 3 провода — то обмотки уже соединены по схеме звезды или треугольника и, при необходимости, перекоммутировать их быстро не получится, для этого нужно вскрывать корпус, искать место соединения, разъединять его и делать отводы.
Если в брно 6 проводов, что встречается чаще, то вы можете в зависимости от характеристик двигателя и напряжения питающей сети (об этом читайте далее) соединить обмотки так, как посчитаете нужным.
Ниже вы видите брно и клеммники, которые в него устанавливаются. Для 3-проводного варианта в клеммнике будет 3 шпильки, а для 6-проводного — 6 шпилек.К шпилькам начала и концы обмоток подключаются не просто «как попало» или «как удобно», а в строго определенном порядке, таким образом, чтобы одним набором перемычек вы могли соединить и треугольник, и звезду. То есть начало первой обмотки над концом третьей, начало второй концом первой и начало третьей над концом второй.
Таким образом, если вы установите перемычки на нижние контакты клеммника в линию — получаете соединение обмоток звездой, а установив три перемычки вертикально параллельно друг другу — соединение треугольником. На двигателях «в заводской комплектации» в качестве перемычек используются медные шинки, что удобно использовать для подключения — не нужно гнуть проволочки.
Кстати, на крышках брна электродвигателя часто наносят соответствие расположения перемычек этим схемам.
Подключение к трёхфазной сети
Теперь, когда мы разобрались как подключаются обмотки, давайте разберемся как они подключаются к сети.
Двигатели с 6 проводами позволяют переключать обмотки для разных питающих напряжений. Так получили распространение электродвигатели с питающими напряжениями:
- 380/220;
- 660/380;
- 220/127.
Причем большее напряжение для схемы подключения звездой, а меньшее — для треугольника.
Дело в том, не всегда трёхфазная сеть имеет привычное напряжение в 380В. Например, на кораблях встречается сеть с изолированной нейтралью (без нуля) на 220В, да и в старых советских постройках первой половины прошлого века и сейчас иногда встречается сеть 127/220В. В то время как сеть с линейным напряжением 660В встречается редко, чаще на производстве.
Об отличиях фазного и линейного напряжения вы можете прочитать в соответствующей статье на нашем сайте: .
Итак, если вам нужно подключить трехфазный электродвигатель к сети 380/220В, осмотрите его шильдик и найдите питающее напряжение.
Электродвигатели на шильдике которых указано 380/220 можно подключить только звездой к нашим сетям. Если вместо 380/220 написано 660/380 — подключайте обмотки треугольником. Если вам не повезло и у вас старый двигатель 220/127 — здесь нужен либо понижающий трансформатор, либо однофазный с трёхфазным выходом (3х220). Иначе подключить его к трём фазам 380/220 не получится.
Самый худший вариант — это когда номинальное напряжение двигателя с тремя проводами с неизвестной схемой соединения обмоток. В этом случае нужно вскрывать корпус и искать точку их соединения и, если это возможно, и они соединены по схеме треугольника — переделывать в схему звезды.
С подключением обмоток разобрались, теперь поговорим о том какие бывают схемы подключения трехфазного электродвигателя к сети 380В. Схемы показаны для контакторов с катушками с номинальным напряжением 380В, если у вас катушки на 220В — подключайте их между фазой и нулем, то есть второй провод к нулю, а не к фазе «B».
Электродвигатели почти всегда подключаются через (или ). Схему подключения без реверса и самоподхвата вы видите ниже. Она работает таким образом, что двигатель будет вращаться только тогда, когда нажата кнопка на пульте управления. При этом кнопка выбирается без фиксации, т.е. замыкает или размыкает контакты пока удерживается в нажатом положении, как те, что используются в клавиатурах, мышках и дверных звонках.
Принцип работы этой схемы: при нажатии кнопки «ПУСК» начинает протекать ток через катушку контактора КМ-1, в результате якорь контактора притягивается и силовые контакты КМ-1 замыкаются, двигатель начинает работать. Когда вы отпустите кнопку «ПУСК» — двигатель остановится. QF-1 – это , который обесточивает и силовую цепь и цепь управления.
Если вам нужно чтобы вы нажали кнопку и вал начал вращаться — вместо кнопки ставьте тумблер или кнопку с фиксацией, то есть контакты которой после нажатия остаются замкнутыми или разомкнутыми до следующего нажатия.
Но так делают нечасто. Гораздо чаще электродвигатели пускают с пультов с кнопками без фиксации. Поэтому к предыдущей схеме добавляется еще один элемент — блок-контакт пускателя (или контактора), подключенный параллельно кнопке «ПУСК». Такая схема может использоваться для подключения электровентиляторов, вытяжек, станков и любого другого оборудования, механизмы которого вращаются только в одном направлении.
Принцип работы схемы:
Когда автоматический выключатель QF-1 переводят во включенное состояние на силовых контактах контактора и цепи управления появляется напряжение. Кнопка «СТОП» — нормально замкнутая, т.е. её контакты размыкаются, когда на неё нажимают. Через «СТОП» подаётся напряжение на нормально-разомкнутую кнопку «ПУСК», блок-контакт и в конечном итоге катушку, поэтому когда вы на неё нажмёте, то цепь управления катушкой обесточится и контактор отключится.
На практике в кнопочном посте каждая кнопка имеет нормально-разомкнутую и нормально-замкнутую пару контактов, клеммы которых расположены на разных сторонах кнопки (см. фото ниже).
Когда вы нажимаете кнопку «ПУСК», ток начинает протекать через катушку контактора или пускателя КМ-1 (на современных контакторах обозначается, как A1 и A2), в результате его якорь притягивается и замыкаются силовые контакты КМ-1. КМ-1.1 – это нормально-разомкнутый (NO) блок-контакт контактора, при подаче напряжения на катушку он замыкается одновременно с силовыми контактами и шунтирует кнопку «ПУСК».
После того как вы отпустите кнопку «ПУСК» — двигатель продолжит работать, так как ток на катушку контактора теперь подаётся через блок-контакт КМ-1.1.
Это и называется «самоподхват».
Основная сложность, которая возникает у новичков в понимании этой базовой схемы, состоит в том, что не сразу становится понятно, что кнопочный пост располагается в одном месте, а контакторы в другом. При этом КМ-1.1, который подключается параллельно кнопке «ПУСК», на самом деле может находится и за десяток метров.
Если вам нужно чтобы вал электродвигателя вращался в обе стороны, например, на лебедке или другом грузоподъёмном механизме, а также разных станках (токарный и пр.) — используйте схему подключения трехфазного двигателя с реверсом.
Кстати эту схему часто называют «реверсивная схема пускателя».
Реверсивная схема подключения – это две нереверсивных схемы с некоторыми доработками. КМ-1.2 и КМ-2.2 — то нормально-замкнутые (NC) блок-контакты контакторов. Они включены в цепь управления катушкой противоположного контактора, это так называемая «защита от дурака», она нужна чтобы не произошло в силовой цепи.
Между кнопкой «ВПЕРЁД» или «НАЗАД» (их назначение такое же, что в предыдущей схеме у «ПУСК») и катушкой первого контактора (КМ-1) подключается нормально-замкнутый (NC) блок-контакт второго контактора (КМ-2). Таким образом, когда включается КМ-2 — нормально-замкнутый контакт размыкается соответственно и КМ-1 уже не включится, даже если вы нажмёте «ВПЕРЁД».
И наоборот, NC от КМ-2 установлен в цепь управления КМ-1, чтобы предотвратить одновременное их включение.
Чтобы запустить двигатель в противоположном направлении, то есть включить второй контактор, нужно отключить действующий контактор. Для этого нажимаете на кнопку «СТОП», и цепь управления двумя контакторами обесточивается, и уже после этого нажимайте на кнопку запуска в противоположном направлении вращения.
Это нужно, чтобы не допустить короткого замыкания в силовой цепи. Обратите внимание на левую часть схемы, отличия подключения силовых контактов КМ-1 и КМ-2 состоят в порядке подключения фаз. Как известно для смены направления вращения асинхронного двигателя (реверса) нужно поменять местами 2 из 3 фаз (любые), здесь поменяли местами 1 и 3 фазу.
В остальном работа схемы аналогична предыдущей.
Кстати на советских пускателях и контакторах были совмещенные блок-контакты, т.е. один из них был замкнутым, а второй разомкнутым, в большинстве современных контакторов нужно устанавливать сверху приставку блок-контактов, в которой есть 2-4 пары дополнительных контактов как раз для этих целей.
Подключение к однофазной сети
Для подключения трёхфазного электродвигателя 380В к однофазной сети 220В чаще всего используется схема с фазосдвигающими конденсаторами (пусковыми и рабочими). Без конденсаторов двигатель может и запустится, но только без нагрузки, и придется при запуске крутануть его вал от руки.
Проблема состоит в том, что для работы АД нужно вращающееся магнитное поле, которое нельзя получить от однофазной сети без дополнительных элементов. Но подключив одну из обмоток через , можно сдвинуть фазу напряжения до -90˚ а с помощью на +90˚ относительно фазы в сети. Подробнее вопрос сдвига фаз мы рассматривали в статье: .
Чаще всего для сдвига фаз используют именно конденсаторы, а не дроссели. Таким образом получают не вращающееся, а эллиптическое. В результате вы теряете около половины мощности от номинала. Однофазные АД работают при таком включении лучше, за счет того, что у них обмотки изначально рассчитаны и расположены на статоре для такого подключения.
Типовые схемы подключения двигателя без реверса для схем звезды или треугольника вы видите ниже.
На схеме ниже нужен для разрядки конденсаторов, так как после отключения питания на его выводах останется напряжение и вас может ударить током.
Ёмкость конденсатора для подключения трёхфазного двигателя к однофазной сети вы можете выбрать исходя из таблицы ниже. Если вы наблюдаете сложный и затяжной запуск — зачастую нужно увеличить пусковую (а иногда и рабочую) ёмкость.
Если двигатель мощный или запускается под нагрузкой (например, в компрессоре) — нужно подключить и пусковой конденсатор.
Чтобы упростить включение вместо кнопки «РАЗГОН» используют «ПНВС». Это кнопка для запуска двигателей с пусковым конденсатором. У неё три контакта, на два из них подключается фаза и ноль, а через третий – пусковой конденсатор. На лицевой панели расположено две клавиши — «ПУСК» и «СТОП» (как на автоматах АП-50).
Когда вы включаете двигатель и нажимаете первую клавишу до упора, замыкаются три контакта, после того как двигатель раскрутился, и вы отпускаете «ПУСК», средний контакт размыкается, а два крайних остаются замкнутыми, из цепи выводится пусковой конденсатор. При нажатии кнопки «СТОП» все контакты разомкнуться. Схема подключения при этом почти аналогична.
Подробно о том, что такое и как правильно подключить ПНВС, вы можете посмотреть в следующем видео:
Схема подключения электродвигателя 380В к однофазной сети 220В с реверсом изображена ниже. За реверс отвечает переключатель SA1.
Обмотки двигателя 380/220 соединяют треугольником, а у двигателей 220/127 – звездой, так чтобы напряжение питания (220 вольт) соответствовало номинальному напряжению обмоток. Если всего три выхода, а не шесть, то вы не сможете изменять схемы подключения обмоток без вскрытия. Здесь есть два варианта:
- Номинальное напряжение 3х220В — вам повезло, и используйте приведенные выше схемы.
- Номинальное напряжение 3х380В — вам меньше повезло, так как двигатель может плохо запускать или вообще не запускаться если подключать его в сеть 220В, но стоит попробовать, возможно работать будет!
Но при подключении электродвигателя 380В на 1 фазу 220В через конденсаторы есть одна большая проблема — потери мощности. Они могут достигать 40-50%.
Главным и действенным способом подключения без потери мощности является использование частотника. Однофазные частотные преобразователи выдают на выходе 3 фазы с линейным напряжением 220В без нуля. Таким образом вы можете подключать двигатели до 5 кВт, для большей мощности просто очень редко встречаются преобразователи, способные работать с однофазным вводом. В этом случае вы не только получите полную мощность двигателя, но и сможете полноценно регулировать его обороты и реверсировать его.
Теперь вы знаете, как подключить трехфазный двигатель на 220 и 380 Вольт, а также что для этого нужно. Надеемся, предоставленная информация помогла вам разобраться в вопросе!
Материалы
В жизни бывают ситуации, когда нужно запустить 3-х фазный асинхронный электродвигатель от бытовой сети. Проблема в том, что в вашем распоряжении только одна фаза и «ноль».
Что делать в такой ситуации? Можно ли подключить мотор с тремя фазами к однофазной сети?
Если с умом подойти к работе, все реально. Главное — знать основные схемы и их особенности.
Конструктивные особенности
Перед тем как приступать к работе, разберитесь с конструкцией АД (асинхронный двигатель).
Устройство состоит из двух элементов — ротора (подвижная часть) и статора (неподвижный узел).
Статор имеет специальные пазы (углубления), в которые и укладывается обмотка, распределенная таким образом, чтобы угловое расстояние составляло 120 градусов.
Обмотки устройства создают одно или несколько пар полюсов, от числа которых зависит частота, с которой может вращаться ротор, а также другие параметры электродвигателя — КПД, мощность и другие параметры.
При включении асинхронного мотора в сеть с тремя фазами, по обмоткам в различные временные промежутки протекает ток.
Создается магнитное поле, взаимодействующее с роторной обмоткой и заставляющее его вращаться.
Другими словами, появляется усилие, прокручивающее ротор в различные временные промежутки.
Если подключить АД в сеть с одной фазой (без выполнения подготовительных работ), ток появится только в одной обмотке.
Создаваемого момента будет недостаточно, чтобы сместить ротор и поддерживать его вращение.
Вот почему в большинстве случаев требуется применение пусковых и рабочих конденсаторов, обеспечивающих работу трехфазного мотора. Но существуют и другие варианты.
Как подключить электродвигатель с 380 на 220В без конденсатора?
Как отмечалось выше, для пуска ЭД с короткозамкнутым ротором от сети с одной фазой чаще всего применяется конденсатор.
Именно он обеспечивает пуск устройства в первый момент времени после подачи однофазного тока. При этом емкость пускового устройства должна в три раза превышать этот же параметр для рабочей емкости.
Для АД, имеющих мощность до 3-х киловатт и применяемых в домашних условиях, цена на пусковые конденсаторы высока и порой соизмерима со стоимостью самого мотора.
Следовательно, многие все чаще избегают емкостей, применяемых только в момент пуска.
По-другому обстоит ситуация с рабочими конденсаторами, использование которых позволяет загрузить мотор на 80-85 процентов его мощности. В случае их отсутствия показатель мощности может упасть до 50 процентов.
Тем не менее, бесконденсаторный пуск 3-х фазного мотора от однофазной сети возможен, благодаря применению двунаправленных ключей, срабатывающих на короткие промежутки времени.
Требуемый момент вращения обеспечивается за счет смещения фазных токов в обмотках АД.
Сегодня популярны две схемы, подходящие для моторов с мощностью до 2,2 кВт.
Интересно, что время пуска АД от однофазной сети ненамного ниже, чем в привычном режиме.
Основные элементы схемы — симисторы и симметричный динистры. Первые управляются разнополярными импульсами, а второй — сигналами, поступающими от полупериода питающего напряжения.
Схема №1.
Подходит для электродвигателей на 380 Вольт, имеющих частоту вращения до 1 500 об/минуту с обмотками, подключенными по схеме треугольника.
В роли фазосдвигающего устройства выступает RC-цепь. Меняя сопротивление R2, удается добиться на емкости напряжения, смещенного на определенный угол (относительно напряжения бытовой сети).
Выполнение главной задачи берет на себя симметричный динистор VS2, который в определенный момент времени подключает заряженную емкость к симистору и активирует этот ключ.
Схема №2.
Подойдет для электродвигателей, имеющих частоту вращения до 3000 об/минуту и для АД, отличающихся повышенным сопротивлением в момент пуска.
Для таких моторов требуется больший пусковой ток, поэтому более актуальной является схема разомкнутой звезды.
Особенность — применение двух электронных ключей, замещающих фазосдвигающие конденсаторы. В процессе наладки важно обеспечить требуемый угол сдвига в фазных обмотках.
Делается это следующим образом:
- Напряжение на электродвигатель подается через ручной пускатель (его необходимо подключить заранее).
- После нажатия на кнопку требуется подобрать момент пуска с помощью резистора R
При реализации рассмотренных схем стоит учесть ряд особенностей:
- Для эксперимента применялись безрадиаторные симисторы (типы ТС-2-25 и ТС-2-10), которые отлично себя проявили. Если использовать симисторы на корпусе из пластмассы (импортного производства), без радиаторов не обойтись.
- Симметричный динистор типа DB3 может быть заменен на KP Несмотря на тот факт, что KP1125 сделан в России, он надежен и имеет меньше переключающее напряжение. Главный недостаток — дефицитность этого динистора.
Как подключить через конденсаторы
Для начала определитесь, какая схема собрана на ЭД. Для этого откройте крышку-барно, куда выводятся клеммы АД, и посмотрите, сколько проводов выходит из устройства (чаще всего их шесть).
Обозначения имеют следующий вид: С1-С3 — начала обмотки, а С4-С6 — ее концы. Если между собой объединяются начала или концы обмоток, это «звезда».
Сложнее всего обстоят дела, если с корпуса просто выходит шесть проводов. В таком случае нужно искать на них соответствующие обозначения (С1-С6).
Чтобы реализовать схему подключения трехфазного ЭД к однофазной сети, требуются конденсаторы двух видов — пусковые и рабочие.
Первые применяются для пуска электродвигателя в первый момент. Как только ротор раскручивается до нужного числа оборотов, пусковая емкость исключатся из схемы.
Если этого не происходит, возможные серьезные последствия вплоть до повреждения мотора.
Главную функцию берут на себя рабочие конденсаторы. Здесь стоит учесть следующие моменты:
- Рабочие конденсаторы подключаются параллельно;
- Номинальное напряжение должно быть не меньше 300 Вольт;
- Емкость рабочих емкостей подбирается с учетом 7 мкФ на 100 Вт;
- Желательно, чтобы тип рабочего и пускового конденсатора был идентичным. Популярные варианты — МБГП, МПГО, КБП и прочие.
Если учитывать эти правила, можно продлить работу конденсаторов и электродвигателя в целом.
Расчет емкости должен производиться с учетом номинальной мощности ЭД. Если мотор будет недогружен, неизбежен перегрев, и тогда емкость рабочего конденсатора придется уменьшать.
Если выбрать конденсатор с емкостью меньше допустимой, то КПД электромотора будет низким.
Помните, что даже после отключения схемы на конденсаторах сохраняется напряжение, поэтому перед началом работы стоит производить разрядку устройства.
Также учтите, что подключение электродвигателя мощностью от 3 кВт и более к обычной проводке запрещено, ведь это может привести к отключению или перегоранию пробок. Кроме того, высок риск оплавления изоляции.
Чтобы подключить ЭД 380 на 220В с помощью конденсаторов, действуйте следующим образом:
- Соедините емкости между собой (как упоминалось выше, соединение должно быть параллельным).
- Подключите детали двумя проводами к ЭД и источнику переменного однофазного напряжения.
- Включайте двигатель. Это делается для того, чтобы проверить направление вращения устройства. Если ротор движется в нужном направлении, каких-либо дополнительных манипуляций производить не нужно. В ином случае провода, подключенные к обмотке, стоит поменять местами.
С конденсатором дополнительная упрощенная — для схемы звезда.
С конденсатором дополнительная упрощенная — для схемы треугольник.
Как подключить с реверсом
В жизни бывают ситуации, когда требуется изменить направление вращения мотора. Это возможно и для трехфазных ЭД, применяемых в бытовой сети с одной фазой и нулем.
Для решения задачи требуется один вывод конденсатора подключать к отдельной обмотке без возможности разрыва, а второй — с возможностью переброса с «нулевой» на «фазную» обмотку.
Для реализации схемы можно использовать переключатель с двумя положениями.
К крайним выводам подпаиваются провода от «нуля» и «фазы», а к центральному — провод от конденсатора.
Как подключить по схеме «звезда-треугольник» (с тремя проводами)
В большей части в ЭД отечественного производства уже собрана схема звезды. Все, что требуется — пересобрать треугольник.
Главным достоинством соединения «звезда/треугольник» является тот факт, что двигатель выдает максимальную мощность.
Несмотря на это, в производстве такая схема применяется редко из-за сложности реализации.
Чтобы подключить мотор и сделать схему работоспособной, требуется три пускателя.
К первому (К1) подключается ток, а к другому — обмотка статора. Оставшиеся концы подключаются к пускателям К3 и К2.
Когда к фазе подключается пускатель К3, остальные концы укорачиваются, и схема преобразуется в «звезду».
Учтите, что одновременное включение К2 и К3 запрещено из-за риска короткого замыкания или выбиванию АВ, питающего ЭД.
Чтобы избежать проблем, предусмотрена специальная блокировка, подразумевающая отключение одного пускателя при включении другого.
Принцип работы схемы прост:
- При включении в сеть первого пускателя, запускается реле времени и подает напряжение на третий пускатель.
- Двигатель начинает работу по схеме «звезда» и начинает работать с большей мощностью.
- Через какое-то время реле размыкает контакты К3 и подключает К2. При этом электродвигатель работает по схеме «треугольник» со сниженной мощностью. Когда требуется отключить питание, включается К1.
Итоги
Как видно из статьи, подключить электродвигатель трехфазного тока в однофазную сеть без потери мощности реально. При этом для домашних условий наиболее простым и доступным является вариант с применением пускового конденсатора.
5 / 5 ( 1 vote )
1. Подключение трехфазного электродвигателя – общая схема
Когда электрик устраивается работать на любое промышленное предприятие, он должен понимать, что ему придётся иметь дело с большим количеством трехфазных электродвигателей. И любой уважающий себя электрик (я не говорю о тех, кто делает проводку в квартире) должен чётко знать схему подключения трёхфазного двигателя.
Сразу приношу извинения, что в данной статье я часто контактор называю пускателем, хотя подробно объяснял уже, что . Что поделать, приелось это название.
В статье пойдёт речь о схемах подключения наиболее распространенного асинхронного электродвигателя через магнитный пускатель. Но не только. Расскажу также от способах и принципах защиты двигателя от перегрева и перегрузки.
Будут рассмотрены различные схемы подключения электродвигателей , их плюсы и минусы. От простого к сложному. Схемы, которые могут быть использованы в реальной жизни, обозначены: ПРАКТИЧЕСКАЯ СХЕМА. Итак, начинаем.
Подключение трехфазного двигателя
Имеется ввиду асинхронный электродвигатель, соединение обмоток – звезда или треугольник, подключение к сети 380В.
Для работы двигателя рабочий нулевой проводник N (Neutral) не нужен, а вот защитный (PE, Protect Earth) в целях безопасности должен быть подключен обязательно.
В самом общем случае схема будет выглядеть таким образом, как показано в начале статьи. Действительно, почему бы двигатель не включить как обычную лампочку, только выключатель будет “трехклавишный”?
2. Подключение двигателя через рубильник или выключатель
Но даже лампочку никто не включает просто так, сеть освещения и вообще любая нагрузка всегда включается только через защитные автоматы.
Схема подключения трехфазного двигателя в сеть через автоматический выключатель
Поэтому более подробно общий случай будет выглядеть так:
3. Подключение двигателя через автоматический выключатель. ПРАКТИЧЕСКАЯ СХЕМА
На схеме 3 показан защитный автомат, который защищает двигатель от перегрузки по току (“прямоугольный” изгиб питающих линий) и от короткого замыкания (“круглые” изгибы). Под защитным автоматом я подразумеваю обычный трехполюсный автомат с тепловой характеристикой нагрузки С или D.
Напомню, чтобы ориентировочно выбрать (оценить) необходимый тепловой ток уставки тепловой защиты, надо номинальную мощность трехфазного двигателя (указана на шильдике) умножить на 2.
Защитный автомат для включения электродвигателя. Ток 10А, через такой можно включать двигатель мощностью 4 кВт. Не больше и не меньше.
Схема 3 имеет право на жизнь (по бедности или незнанию местных электриков).
Она прекрасно работает, так же, как по многу лет . И в один “прекрасный” день сгорит скрутка. Или сгорит двигатель.
Если уж использовать такую схему, надо тщательно подобрать ток автомата, чтобы он был на 10-20% больше рабочего тока двигателя. И характеристику теплового расцепителя выбирать D, чтобы при тяжелом пуске автомат не срабатывал.
Например, движок 1,5 кВт. Прикидываем максимальный рабочий ток – 3А (реальный рабочий может быть меньше, надо измерять). Значит, трехполюсный автомат надо ставить на 3 или 4А, в зависимости от пускового тока.
Плюс этой схемы подключения двигателя – цена и простота исполнения и обслуживания. Например, там, где один двигатель, и его включают вручную на всю смену. Минусы такой схемы с включением через автомат –
А что там свежего в группе ВК СамЭлектрик.ру ?
Подписывайся, и читай статью дальше:
- Невозможность регулировать тепловой ток срабатывания автомата. Для того, чтобы надежно защитить двигатель, ток отключения защитного автомата должен быть на 10-20% больше номинального рабочего тока двигателя. Ток двигателя надо периодически измерять клещами и при необходимости подстраивать ток срабатывания тепловой защиты. А возможности подстройки у обычного автомата нет(.
- Невозможность дистанционного и автоматического включения/выключения двигателя.
Эти недостатки можно устранить, в схемах ниже будет показано как.
Ручной пускатель, или мотор-автомат – более совершенное устройство. На нём есть кнопки “Пуск” и “Стоп”, либо ручка “Вкл-Выкл”. Его плюс – он специально разработан для пуска и защиты двигателя. Пуск по-прежнему ручной, а вот ток срабатывания можно регулировать в некоторых пределах.
4. Подключение двигателя через ручной пускатель. ПРАКТИЧЕСКАЯ СХЕМА
Поскольку у двигателей обычно , то у автоматов защиты двигателей (мотор-автоматов), как правило, характеристика тепловой защиты типа D. Т.е. он выдерживает кратковременные (пусковые) перегрузки примерно в 10 раз больше от номинала.
Вот что у него на боковой стенке:
Автомат защиты двигателя – характеристики на боковой стенке
Ток уставки (тепловой) – от 17 до 23 А, устанавливается вручную. Ток отсечки (срабатывание при КЗ) – 297 А.
В принципе, ручной пускатель и мотор-автомат – это одно и то же устройство. Но пускателем, показанным на фото, можно коммутировать питание двигателя. А мотор-автомат постоянно подает питание (три фазы) на контактор, который, в свою очередь, коммутирует питание двигателя. Короче, разница – в схеме подключения.
Плюс схемы – можно регулировать уставку теплового тока. Минус – тот же, что и в предыдущей схеме, нет дистанционного включения.
Схема подключения двигателя через магнитный пускатель
Этой схеме подключения трехфазного двигателя надо уделить самое пристальное внимание. Она наиболее распространена во всем промышленном оборудовании, выпускавшемся примерно до 2000-х годов. А в новых китайских простеньких станках используется и по сей день.
Электрик, который её не знает – как хирург, не умеющий отличить артерию от вены; как юрист, не знающий 1-ю статью Конституции РФ; так танцор, не отличающий вальс от тектоника.
Три фазы на двигатель идут в этой схеме не через автомат, а через пускатель. А включение/выключение пускателя осуществляется кнопками “Пуск ” и “Стоп ” , которые могут быть вынесены на пульт управления через 3 провода любой длины.
5. Схема подключения двигателя через пускатель с кнопками пуск стоп
Здесь питание цепи управления поступает с фазы L1 (провод 1 ) через нормально замкнутую (НЗ) кнопку “Стоп” (провод 2 ).
Если теперь нажать на кнопку “Пуск”, то цепь питания катушки электромагнитного пускателя КМ замкнется (провод 3 ), его контакты замкнутся, и три фазы поступят на двигатель. Но в таких схемах кроме трёх “силовых” контактов у пускателя есть ещё один дополнительный контакт. Его называют “блокировочным” или “контактом самоподхвата”.
Когда электромагнитный пускатель включается нажатием кнопки SB1 “Пуск”, замыкается и контакт самоподхвата. А если он замкнулся, то даже если кнопка “Пуск” будет отжата, цепь питания катушки пускателя всё равно останется замкнутой. И двигатель продолжит работать, пока не будет нажата кнопка “Стоп”.
Поскольку тема с магнитными пускателями очень обширная, она вынесена в отдельную статью . Статья существенно расширена и дополнена. Там рассмотрено всё – подключение различных нагрузок, защита (тепловая и от кз), реверсивные схемы, управление от разных точек, и т.д. Нумерация схем сохранена. Рекомендую.
Подключение трехфазного двигателя через электронные устройства
Все способы пуска двигателя, описанные выше, называются Пуск прямой подачей напряжения. Часто, в мощных приводах, такой пуск является тяжелым испытанием для оборудования – горят ремни, ломаются подшипники и крепления, и т.д.
Поэтому, статья была бы неполной, если бы я не упомянул современные тенденции. Теперь всё чаще для подключения трехфазного двигателя вместо электромагнитных пускателей применяют электронные силовые устройства. Под этим я подразумеваю:
- Твердотельные реле (solid state relay) – в них силовыми элементами являются тиристоры (симисторы), которые управляются входным сигналом с кнопки либо с контроллера. Бывают как однофазные, так и трехфазные. .
- Мягкие (плавные) пускатели (soft starter, устройства плавного пуска) – усовершенствованные твердотелки. Можно устанавливать ток защиты, время разгона/замедления, включать реверс, и др. И на эту тему . Практическое применение устройств плавного пуска – .
Старый специфический способ подключения двухскоростных двигателей описан в статье . Ключевые слова – Раритет, Ретро, СССР.
На этом заканчиваю, спасибо за внимание, всего охватить не удалось, пишите вопросы в комментариях!
1.1. Выбор трехфазного двигателя для подключения в однофазную сеть .Среди различных способов запуска трехфазных электродвигателей в однофазную сеть, наиболее простой базируется на подключении третьей обмотки через фазосдвигающий конденсатор. Полезная мощность развиваемая двигателем в этом случае составляет 50…60% от его мощности в трехфазном включении. Не все трехфазные электродвигатели, однако, хорошо работают при подключении к однофазной сети. Среди таких электродвигателей можно выделить, например, с двойной клеткой короткозамкнутого ротора серии МА. В связи с этим при выборе трехфазных электродвигателей для работы в однофазной сети следует отдать предпочтение двигателям серий А, АО, АО2, АПН, УАД и др.
Для нормальной работы электродвигателя с конденсаторным пуском необходимо, чтобы емкость используемого конденсатора менялась в зависимости от числа оборотов. На практике это условие выполнить довольно сложно, поэтому используют двухступенчатое управление двигателем. При пуске двигателя подключают два конденсатора, а после разгона один конденсатор отключают и оставляют только рабочий конденсатор.
1.2. Расчет параметров и элементов электродвигателя.Если, например, в паспорте электродвигателя указано напряжение его питания 220/380, то двигатель включают в однофазную сеть по схеме, представленной на рис. 1
После включения пакетного выключателя П1 замыкаются контакты П1.1 и П1.2, после этого необходимо сразу же нажать кнопку «Разгон». После набора оборотов кнопка отпускается. Реверсирование электродвигателя осуществляется путем переключения фазы на его обмотке тумблером SA1.
Емкость рабочего конденсатора Ср в случае соединения обмоток двигателя в «треугольник» определяется по формуле:
А в случае соединения обмоток двигателя в «звезду» определяется по формуле:
Потребляемый электродвигателем ток в выше приведенных формулах, при известной мощности электродвигателя, можно вычислить из следующего выражения:
Емкость пускового конденсатора Сп выбирают в 2..2,5 раза больше емкости рабочего конденсатора. Эти конденсаторы должны быть рассчитаны на напряжение в 1,5 раза больше напряжения сети. Для сети 220 В лучше использовать конденсаторы типа МБГО, МБПГ, МБГЧ с рабочим напряжением 500 В и выше. При условии кратковременного включения в качестве пусковых конденсаторов можно использовать и электролитические конденсаторы типа К50-3, ЭГЦ-М, КЭ-2 с рабочим напряжением не менее 450 В. Для большей надежности электролитические конденсаторы соединяют последовательно, соединяя между собой их минусовые выводы, и шунтируют диодами (рис. 2)
Общая емкость соединенных конденсаторов составит (С1+С2)/2.
На практике величину емкостей рабочих и пусковых конденсаторов выбирают в зависимости от мощности двигателя по табл. 1
Таблица 1. Значение емкостей рабочих и пусковых конденсаторов трехфазного электродвигателя в зависимости от его мощности при включении в сеть 220 В.
Следует отметить, что у электродвигателя с конденсаторным пуском в режиме холостого хода по обмотке, питаемой через конденсатор, протекает ток на 20…30 % превышающий номинальный. В связи с этим, если двигатель часто используется в недогруженном режиме или вхолостую, то в этом случае емкость конденсатора С р следует уменьшить. Может случиться, что во время перегрузки электродвигатель остановился, тогда для его запуска снова подключают пусковой конденсатор, сняв нагрузку вообще или снизив ее до минимума.
Емкость пускового конденсатора С п можно уменьшить при пуске электродвигателей на холостом ходу или с небольшой нагрузкой. Для включения, например, электродвигателя АО2 мощностью 2,2 кВт на 1420 об/мин можно использовать рабочий конденсатор емкостью 230 мкФ, а пусковой — 150 мкФ. В этом случае электродвигатель уверенно запускается при небольшой нагрузке на валу.
1.3. Переносной универсальный блок для пуска трехфазных электродвигателей мощностью около 0,5 кВт от сети 220 В .Для запуска электродвигателей различных серий, мощностью около 0,5 кВт, от однофазной сети без реверсирования, можно собрать переносной универсальный пусковой блок (рис. 3)
При нажатии на кнопку SB1 срабатывает магнитный пускатель КМ1 (тумблер SA1 замкнут) и своей контактной системой КМ 1.1, КМ 1.2 подключает электродвигатель М1 к сети 220 В. Одновременно с этим третья контактная группа КМ 1.3 замыкает кнопку SB1. После полного разгона двигателя тумблером SA1 отключают пусковой конденсатор С1. Остановка двигателя осуществляется нажатием на кнопку SB2.
1.3.1. Детали.В устройстве используется электродвигатель А471А4 (АО2-21-4) мощностью 0,55 кВт на 1420 об/мин и магнитный пускатель типа ПМЛ, рассчитанный на переменный ток напряжением 220 В. Кнопки SB1 и SB2 — спаренные типа ПКЕ612. В качестве переключателя SA1 используется тумблер Т2-1. В устройстве постоянный резистор R1 — проволочный, типа ПЭ-20, а резистор R2 типа МЛТ-2. Конденсаторы С1 и С2 типа МБГЧ на напряжение 400 В. Конденсатор С2 составлен из параллельно соединенных конденсаторов по 20 мкФ 400 В. Лампа HL1 типа КМ-24 и 100 мА.
Пусковое устройство смонтировано в металлическом корпусе размером 170х140х50 мм (рис. 4)
Рис. 4 Внешний вид пускового устройства и чертеж панели поз.7.
На верхней панели корпуса расположены кнопки «Пуск» и «Стоп» — сигнальная лампа и тумблер для отключения пускового конденсатора. На передней панели корпуса устройства находится разъем для подключения электродвигателя.
Для отключения пускового конденсатора можно использовать дополнительное реле К1, тогда надобность в тумблере SA1 отпадает, а конденсатор будет отключаться автоматически (рис.5)
При нажатии на кнопку SB1 срабатывает реле К1 и контактной парой К1.1 включает магнитный пускатель КМ1, а К1.2 — пусковой конденсатор С п. Магнитный пускатель КМ1 самоблокируется с помощью своей контактной пары КМ 1.1, а контакты КМ 1.2 и КМ 1.3 подсоединяют электродвигатель к сети. Кнопку «Пуск» держат нажатой до полного разгона двигателя, а после отпускают. Реле К1 обесточивается и отключает пусковой конденсатор, который разряжается через резистор R2. В это же время магнитный пускатель КМ 1 остается включенным и обеспечивает питание электродвигателя в рабочем режиме. Для остановки электродвигателя следует нажать кнопку «Стоп». В усовершенствованном пусковом устройстве по схеме рис.5, можно использовать реле типа МКУ-48 или ему подобное.
2. Использование электролитических конденсаторов в схемах запуска электродвигателей.
При включении трехфазных асинхронных электродвигателей в однофазную сеть, как правило, используют обычные бумажные конденсаторы. Практика показала, что вместо громоздких бумажных конденсаторов можно использовать оксидные (электролитические) конденсаторы, которые имеют меньшие габариты и более доступны в плане покупки. Схема эквивалентной замены обычного бумажного дана на рис. 6
Положительная полуволна переменного тока проходит через цепочку VD1, С2, а отрицательная VD2, С2. Исходя из этого можно использовать оксидные конденсаторы с допустимым напряжением в два раза меньшим, чем для обычных конденсаторов той же емкости. Например, если в схеме для однофазно сети напряжением 220 В используется бумажный конденсатор на напряжение 400 В, то при его замене, по вышеприведенной схеме, можно использовать электролитический конденсатор на напряжение 200 В. В приведенной схеме емкости обоих конденсаторов одинаковы и выбираются аналогично методике выбора бумажных конденсаторов для пускового устройства.
2.1. Включение трехфазного двигателя в однофазную сеть с использованием электролитических конденсаторов.Схема включения трехфазного двигателя в однофазную сеть с использованием электролитических конденсаторов приведена на рис.7.
В приведенной схеме, SA1 — переключатель направления вращения двигателя, SB1 — кнопка разгона двигателя, электролитические конденсаторы С1 и С3 используются для пуска двигателя, С2 и С4 — во время работы.
Подбор электролитических конденсаторов в схеме рис. 7 лучше производить с помощью токоизмерительных клещей. Измеряют токи в точках А, В, С и добивается равенства токов в этих точках путем ступенчатого подбора емкостей конденсаторов. Замеры проводят при нагруженном двигателе в том режиме, в котором предполагается его эксплуатация. Диоды VD1 и VD2 для сети 220 В выбираются с обратным максимально допустимым напряжением не менее 300 В. Максимальный прямой ток диода зависит от мощности двигателя. Для электродвигателей мощностью до 1 кВт подойдут диоды Д245, Д245А, Д246, Д246А, Д247 с прямым током 10 А. При большей мощности двигателя от 1 кВт до 2 кВт нужно взять более мощные диоды с соответствующим прямым током, или поставить несколько менее мощных диодов параллельно, установив их на радиаторы.
Следует обратить ВНИМАНИЕ на то, что при перегрузке диода может произойти его пробой и через электролитический конденсатор потечет переменный ток, что может привести к его нагреву и взрыву.
3. Включение мощных трехфазных двигателей в однофазную сеть.
Конденсаторная схема включения трехфазных двигателей в однофазную сеть позволяет получить от двигателя не более 60% от номинальной мощности, в то время как предел мощности эликтрифицированного устройства ограничивается 1,2 кВт. Этого явно недостаточно для работы электрорубанка или электропилы, которые должны иметь мощность 1,5…2 кВт. Проблема в данном случае может быть решена использованием электродвигателя большей мощности, например, с мощностью 3…4 кВт. Такого типа двигатели рассчитаны на напряжение 380 В, их обмотки соединены «звездой» и в клеммной коробке содержится всего 3 вывода. Включение такого двигателя в сеть 220 В приводит к снижению номинальной мощности двигателя в 3 раза и на 40 % при работе в однофазной сети. Такое снижение мощности делает двигатель непригодным для работы, но может быть использовано для раскрутки ротора вхолостую или с минимальной нагрузкой. Практика показывает, что большая часть электродвигателей уверенно разгоняется до номинальных оборотов, и в этом случае пусковые токи не превышают 20 А.
3.1. Доработка трехфазного двигателя.Наиболее просто можно осуществить перевод мощного трехфазного двигателя в рабочий режим, если переделать его на однофазный режим работы, получая при этом 50 % номинальной мощности. Переключение двигателя в однофазный режим требует небольшой его доработки. Вскрывают клеммную коробку и определяют, с какой стороны крышки корпуса двигателя подходят выводы обмоток. Отворачивают болты крепления крышки и вынимают ее из корпуса двигателя. Находят место соединения трех обмоток в общую точку и подпаивают к общей точке дополнительный проводник с сечением, соответствующим сечению провода обмотки. Скрутку с подпаянным проводником изолируют изолентой или поливинилхлоридной трубкой, а дополнительный вывод протягивают в клеммную коробку. После этого крышку корпуса устанавливают на место.
Схема коммутации электродвигателя в этом случае будет иметь вид, показанный на рис. 8.
Во время разгона двигателя используется соединение обмоток «звездой» с подключением фазосдвигающего конденсатора Сп. В рабочем режиме в сеть остается включенной только одна обмотка, и вращение ротора поддерживается пульсирующим магнитным полем. После переключения обмоток конденсатор Сп разряжается через резистор Rр. Работа представленной схемы была опробована с двигателем типа АИР-100S2Y3 (4 кВт, 2800 об/мин), установленном на самодельном деревообрабатывающем станке и показала свою эффективность.
3.1.1. Детали.В схеме коммутации обмоток электродвигателя, в качестве коммутационного устройства SA1 следует использовать пакетный переключатель на рабочий ток не менее 16 А, например, переключатель типа ПП2-25/Н3 (двухполюсный с нейтралью, на ток 25 А). Переключатель SA2 может быть любого типа, но на ток не менее 16 А. Если реверс двигателя не требуется, то этот переключатель SA2 можно исключить из схемы.
Недостатком предложенной схемы включения мощного трехфазного электродвигателя в однофазную сеть можно считать чувствительность двигателя к перегрузкам. Если нагрузка на валу достигнет половины мощности двигателя, то может произойти снижение скорости вращения вала вплоть до полной его остановки. В этом случае снимается нагрузка с вала двигателя. Переключатель переводится сначала в положение «Разгон», а потом в положение «Работа» и продолжают дальнейшую работу.
Для того, чтобы улучшить пусковые характеристики двигателей кроме пускового и рабочего конденсатора можно использовать еще и индуктивность, что улучшает равномерность загрузки фаз. Обо всем этом написано в статье Устройства запуска трехфазного электродвигателя с малыми потерями мощности
При написании статьи использовалась часть материалов из книги Пестрикова В.М. «Домашний электрик и не только…»
Всего хорошего, пишите to © 2005
Как выбрать конденсаторы для подключения однофазного и трехфазного электродвигателя в сеть 220 в
Как подобрать конденсатор
Конденсаторы для трехфазного двигателя нужны достаточно большой емкости — речь идет о десятках и сотнях микрофарад. Однако конденсаторы электролитические для этой цели не годятся. Они требуют подключения однополярного, то есть специально для них придется городить выпрямитель из диодов и сопротивлений. Кроме того, со временем в электролитических конденсаторах высыхает электролит и они теряют емкость. Поэтому если будете ставить такой на двигатель, необходимо делать на это скидку, а не верить тому, что на них написано. Ну и еще одно за ними числится: электролитические конденсаторы имеют свойство иногда взрываться.
Поэтому задачу, как выбрать конденсатор под трехфазный двигатель, часто решают в несколько этапов
Сначала подбираем приблизительно. Надо рассчитать емкость конденсатора по простейшему соотношению как 7 мкФ на каждые 100 ватт мощности. То есть 700 ватт дает нам 49 мкФ первоначально. Емкость выбираемого пускового конденсатора берется в диапазоне 1–3-кратного превышения емкости рабочего конденсатора. Выберите 2*50 = 100 мкФ — будет само то. Ну, для начала можно взять побольше, потом подобрать конденсаторы, ориентируясь на работу двигателя. От емкости конденсаторов зависит реальная мощность движка. Если ее мало, двигатель при тех же оборотах потеряет мощность (обороты не зависят от мощности, а только от частоты напряжения), так как ему будет не хватать тока. При чрезмерной емкости конденсаторов у него будет перегрев от избытка тока.
Нормальная работа двигателя, без шума и рывков — это неплохой критерий правильно выбранного конденсатора. Но для большей точности можно сделать расчет конденсаторов по формулам, а такую проверку оставить на потом в качестве окончательного подтверждения успешности результатов подбора конденсаторов.
Однако надо все-таки подключить конденсаторы.
Что такое конденсатор
Это устройство для накопления электрического заряда. Он состоит из пары проводящих пластин, находящихся на малом отстоянии друг от друга и разделенных слоем изолирующего материала.
Широко распространены следующие виды накопителей электрического заряда:
- Полярные. Работают в цепях с постоянным напряжением, подключаются в соответствии с указанной на них полярностью.
- Неполярные. Работают в цепях с переменным напряжение, подключать можно как угодно
- Электролитические. Пластины представляют собой тонкие оксидные пленки на листе фольги.
Неполярный конденсатор
Электролитические лучше других подходят на роль конденсатора для пуска электродвигателя.
Блиц-советы
Самой важное при «звездном» подключении определить путь обмотки, потому что если не угадали хоть одну пару обмоток и, допустим начало-конец, начало-конец, конец-начало, то работа будет плохой и это будет сразу же видно, есть также возможность спалить двигатель в этом случае.
Не во всех двигателях есть маркировка клемм, чаще всего помечена «масса», остальные нужно «прозванивать» с помощью мультиметра, либо же читать инструкцию, зачастую производители указывают данную информацию там.
Все зависит от напряжения сети в которую будет включен двигатель; если сеть 220 В, то нужно использовать схему – треугольник, а вот для 380 В в ходу будет – звезда.
При подключении к сети в 660 В некоторые используют метод комбинированного запуска. То есть запуск происходит на «треугольнике», а при достижении необходимой мощности идет переход на звезду
Но это все-таки рискованный случай, может произойти сгорание обмоток. Лучше использовать специализированные двигатели, которые работают при заданном напряжении.
Для того чтоб изменить направление вращения ротора в статоре нужно подсоединить конденсатор не к нулю, а к фазе. Это также является маячком при неправильном подключении.
Выбор пускового конденсатора для электродвигателя
Современный подход к данному вопросу предусматривает использование специальных калькуляторов в интернете, которые проводят быстрый и точный расчет.
Для проведения расчета следует знать и ввести нижеприведенные показатели:
- Тип соединения обмоток двигателя: треугольник или звезда. От типа соединения зависит также и емкость.
- Мощность двигателя является одним из определяющих факторов. Этот показатель измеряется в Ваттах.
- Напряжение сети учитывается при расчетах. Как правило, оно может быть 220 или 380 Вольт.
- Коэффициент мощности – постоянное значение, которое зачастую составляет 0,9. Однако, есть возможность изменить этот показатель при расчете.
- КПД электродвигателя также оказывает влияние на проводимые расчеты. Эту информацию, как и другую, можно узнать, изучив нанесенную информацию производителем. Если ее нет, следует ввести модель двигателя в интернете для поиска информации о том, какой КПД. Также, можно ввести приблизительное значение, которое свойственно для подобных моделей. Стоит помнить, что КПД может изменяться в зависимости от состояния электродвигателя.
Подобная информация вводится в соответствующие поля и проводится автоматический расчет. При этом, получаем емкость рабочего конденсата, а пусковой должен иметь показатель в 2,5 раза больше.
Провести подобный расчет можно самостоятельно.
Для этого можно воспользоваться следующими формулами:
- Для типа соединения обмоток «звезда», определение емкости проводится при использовании следующей формулы: Cр=2800*I/U. В случае соединения обмоток «треугольником», используется формула Cр=4800*I/U. Как видно из вышеприведенной информации, тип соединения является определяющим фактором.
- Вышеприведенные формулы определяют необходимость расчета величины тока, который проходит в системе. Для этого используется формула: I=P/1,73Uηcosφ. Для расчета понадобятся показатели работы двигателя.
- После вычисления тока можно найти показатель емкости рабочего конденсатора.
- Пусковой, как ранее было отмечено, в 2 или 3 раза должен превосходить по показателю емкости рабочий.
При выборе, стоит также учесть нижеприведенные нюансы:
- Интервал рабочей температуры.
- Возможное отклонение от расчетной емкости.
- Сопротивление изоляции.
- Тангенс угла потерь.
Обычно на вышеуказанные параметры не обращают особого внимания. Однако их можно учесть для создания идеальной системы питания электродвигателя.
Габаритные размеры также могут стать определяющим фактором. При этом, можно выделить следующую зависимость:
- Увеличение емкости приводит к увеличению диаметрального размера и расстояния выхода.
- Наиболее распространенный максимальный диаметр 50 миллиметров при емкости 400 мкФ. При этом, высота составляет 100 миллиметров.
Использование электролитических конденсаторов
Конденсаторы с диэлектриком из бумаги отличаются малой удельной емкостью и значительными габаритами. Для двигателя даже не самой большой мощности они будут занимать много места. Теоретически их можно заменить электролитическими, обладающими в несколько раз более высокой удельной емкостью.
Разновидности устройства электролитического конденсатора
Для этого электрическую схему придется дополнить несколькими элементами: диодами и резисторами. Такой вариант неплох для эпизодически работающего двигателя. Если же планируются продолжительные нагрузки, то от экономии места и веса лучше отказаться — при случайном выходе диода из строя он начнет пропускать на накопитель переменный ток, что приведет к его пробою и взрыву.
Выходом могут служить полипропиленовые конденсаторы с металлическим напылением серии СВВ, разработанные для использования в качестве пусковых.
Как подключить пусковой и рабочий конденсаторы
На рисунке указана простейшая схема подключения пускового и рабочего элементов. Первый из них устанавливается сверху, а второй – снизу. Одновременно к двигателю подключается кнопка включения и выключения. Самое главное – внимательно разобраться с проводами, чтобы не перепутать концы.
Данная схема позволяет выполнить предварительную проверку с неточной прикидкой. Она же используется и после окончательного выбора наиболее оптимального значения.
Такой подбор осуществляется экспериментальным путем с использованием нескольких конденсаторов разной емкости. При параллельном подключении их суммарная мощность будет увеличиваться. В это время нужно контролировать работу двигателя. Если работа устойчивая и ровная, в этом случае можно покупать конденсатор с емкостью, равной сумме емкостей проверочных элементов.
Читайте далее:
Как подключить трехфазный двигатель к однофазной сети
Как подключить трехфазный двигатель к сети 220 вольт
Как переделать трехфазный двигатель для подключения в однофазную сеть
Подключение трехфазного двигателя к однофазной сети
Подключение трехфазного двигателя к трехфазной сети
Онлайн расчет конденсатора для двигателя
Замена и подбор пускового/рабочего конденсатора
Если имеется оригинальный конденсатор, то понятно, что просто-напросто необходимо поставить его на место старого и всё. Полярность не имеет значения, то есть выводы конденсатора не имеют обозначений плюс «+» и минус «-» и их можно подключить как угодно.
Категорически нельзя применять электролитические конденсаторы (узнать их можно по меньшим размерам, при той же ёмкости, и обозначению плюс и минус на корпусе). Как следствие применения — термическое разрушение. Для этих целей производители специально выпускают неполярные конденсаторы для работы в цепи переменного тока, которые имеют удобное крепление и плоские клеммы, для быстрой установки.
Если нужного номинала нет, то его можно получить параллельным соединением конденсаторов. Общая ёмкость будет равна сумме двух конденсаторов:
То есть, если соединить два конденсатора по 35 мкФ, получим общую ёмкость 70 мкФ, напряжение при котором они смогут работать будет соответствовать их номинальному напряжению.
Такая замена абсолютно равноценна одному конденсатору большей ёмкости.
Если во время замены перепутались провода, то правильное подключение можно посмотреть по схеме на корпусе или здесь: Схема подключения конденсатора к компрессору
Типы конденсаторов
Для запуска мощных двигателей компрессоров применяют маслонаполненные неполярные конденсаторы.
Корпус внутри заполнен маслом для хорошей передачи тепла на поверхность корпуса. Корпус обычно металлический, аллюминиевый.
Самые доступные конденсаторы такого типа CBB65.
Для запуска менее мощной нагрузки, например двигателей вентиляторов, используют сухие конденсаторы, корпус которых, обычно, пластмассовый.
Наиболее распространённые конденсаторы этого типа CBB60, CBB61.
Клеммы для удобства соединения сдвоенные или счетверённые.
Пусковой конденсатор позволяет организовать начальный момент вращения вала ротора электромотора. Подключение электрических двигателей в сеть напряжением 220 вольт требует кратковременного присоединения пусковой обмотки через подобную электрическую ёмкость.
Схема подключения «Треугольник»
Само подключение является относительно легким, происходит присоединения токопроводящего провода к пусковому конденсатору и к клеммам двигателя (или мотора). То есть если более упрощенно взять есть мотор в нем находятся три токопроводящие клеммы. 1 – ноль, 2 – рабочая, 3 –фаза.
Провод питания заголяется и в нем есть два основных провода в синей и коричневой обмотке, коричневая присоединяется к 1 клемме, ней же присоединяется и один из проводов конденсатора, ко второй рабочей клемме происходит присоединение второго провода конденсатора, ну а к фазе подключается синий провод питания.
Если мощность двигателя является маленькой, до полтора кВт, о в принципе можно использовать только один конденсатор. Но при работе с нагрузками и с большими мощностями обязательное использование двух конденсаторов, они между собой последовательно соединены, но между ними установлен пусковой механизм, в народе называемый «тепловой», который отключает конденсатор при достижении необходимого объёма.
Небольшое напоминание, что конденсатор с меньшей мощностью, пусковой, будет включаться на небольшой промежуток времени для увеличения пускового момента. Кстати модно использовать механический выключатель, который пользователь сам будет включать на заданное время.
Нужно понять – сама обмотка двигателя уже имеет подключение по схеме «звезда», но электрики ее с помощью проводов превращают в «треугольник». Тут главное распределить провода, которые входят в распределительную коробку.
Схема подключения “Треугольник” и “Звезда”
Использование электролитических конденсаторов
Можно применять даже электролитические конденсаторы, но у них есть особенность – они должны работать на постоянном токе. Поэтому, чтобы установить их в конструкцию, потребуется использовать полупроводниковые диоды. Без них использовать электролитические конденсаторы нежелательно – они имеют свойство взрываться.
Но даже если вы установите диоды и сопротивления, это не сможет гарантировать полную безопасность. Если полупроводник пробивается, то на конденсаторы поступит переменный ток, в результате чего произойдет взрыв. Современная элементная база позволяет использовать качественные изделия, например конденсаторы полипропиленовые для работы на переменном токе с обозначением СВВ.
Например, обозначение элементов СВВ60 говорит о том, что конденсатор имеет исполнение в цилиндрическом корпусе. А вот СВВ61 имеет прямоугольной формы корпус. Эти элементы работают под напряжением 400… 450 В. Поэтому они могут без проблем использоваться в конструкции любого аппарата, где требуется подключение асинхронного трехфазного электродвигателя в бытовую сеть.
Виды пусковых конденсаторов
Небольшие электродвигатели, мощность которых не превышает 200-400 ватт, могут работать без пускового устройства. Для них вполне достаточно одного рабочего конденсатора. Однако при наличии значительных нагрузок на старте, обязательно используются дополнительные пусковые конденсаторы. Он подключается параллельно с рабочим конденсатором и в период разгона удерживается во включенном положении с помощью специальной кнопки или реле.
Для расчета емкости пускового элемента необходимо умножить емкость рабочего конденсатора на коэффициент, равный 2 или 2,5. В процессе разгона двигатель требует емкость все меньше и меньше. В связи с этим, не стоит держать пусковой конденсатор постоянно включенным. Высокая емкость при больших оборотах приведет к перегреву и выходу из строя агрегата.
В стандартную конструкцию конденсатора входят две пластины, расположенные напротив друг друга и разделенные слоем диэлектрика. При выборе того или иного элемента, необходимо учитывать его параметры и технические характеристики.
Все конденсаторы представлены тремя основными видами:
- Полярные. Не могут работать с электродвигателями, подключенными к переменному току. Разрушающийся слой диэлектрика может привести к нагреву агрегата и последующему короткому замыканию.
- Неполярные. Получили наибольшее распространение. Могут работать в любых вариантах включения за счет одинакового взаимодействия обкладок с диэлектриком и источником тока.
- Электролитические. В этом случае электроды представляют собой тонкую оксидную пленку. Они могут достигать максимально возможной емкости до 100 тыс. мкФ, идеально подходят к двигателям с низкой частотой.
Как рассчитать емкость рабочего конденсатора
Для двух соединений обмоток берутся несколько разные соотношения.
В формуле введен коэффициент соединения Кс, который для треугольника равен 4800, а для звезды — 2800.
Где значения Р (мощность), U (напряжение 220 В), η (КПД двигателя, в процентном значении деленном на 100) и cosϕ (коэффициент мощности) берутся с шильдика двигателя.
Вычислить значение можно с помощью обычного калькулятора или воспользовавшись чем-то вроде подобной вычислительной таблицы. В ней нужно подставить значения параметров двигателя (желтые поля), результат получается в зеленых полях в микрофарадах
Однако не всегда есть уверенность, что параметры работы двигателя соответствуют тому, что написано на шильдике. В этом случае нужно измерить реальный ток измерительными клещами и воспользоваться формулой Cр = Кс*I/U.
Как определить оптимальную величину емкости
Для этого потребуется несколько конденсаторов, соединяемых параллельно. По ходу соединений амперметром измеряется ток, потребляемый электромотором. Он будет уменьшаться по мере увеличения суммарной емкости. Но с определенной величины ее ток начнет увеличиваться. Минимальному значению величины силы тока соответствует оптимальное значение емкости рабочего конденсатора. Для нормальной работы движка применяются два конденсатора с возможностью параллельного соединения между собой. Схема подключения, содержащая пусковой и рабочий конденсатор, показана далее.
Схемы движков с пусковым и рабочим конденсаторами
При пуске они соединяются, образуя наилучшую по величине емкость для разгона движка. Зачем применять отдельный пусковой конденсатор такой же емкости, если установка получится неоправданно громоздкой. Поэтому выгодно использовать емкость, составленную из двух частей. Хотя в нее входит и рабочий конденсатор, он при пуске становится частью пускового виртуального конденсатора. А отключаемые так и называются — пусковые конденсаторы.
Расчет рабочей емкости
Экспериментальное определение емкости конденсаторов наиболее точное. Однако эксперименты эти занимают немалое время и довольно трудоемки. Поэтому на практике в основном используются оценочные методы. Для них потребуется значение мощности движка и коэффициенты. Они соответствуют схеме «звезда» (12,73) и «треугольник» (24). Величина мощности необходима для расчета силы тока. Для этого ее паспортное значение делится на 220 (величина действующего напряжения электросети). Мощность принимается в ваттах.
Полученное число умножается на соответствующий коэффициент и дает величину микрофарад.
Подбор пусковой емкости
Но упомянутым способом определяется емкость рабочего конденсатора. Если движок задействован в электроприводе, с ним он может не запуститься. Потребуется дополнительный пусковой конденсатор. Чтобы не утруждать себя, выполняя подбор, можно начать с такого же по величине емкости. Если двигатель так и не запускается из-за нагрузки со стороны привода, надо добавлять параллельно конденсаторы для запуска электродвигателя.
После каждого подсоединяемого экземпляра нужно подавать напряжение на движок для проверки запуска. После пуска движка последний из подсоединенных конденсаторов завершит формирование емкости, необходимой для двигателя в режиме запуска. Если по какой-либо причине после пребывания в подсоединенном состоянии к электросети конденсатор отсоединяется от нее, его надо обязательно разрядить.
Для этого следует использовать резистор номиналом в несколько килоом. Предварительно, перед тем как подключить, его выводы надо согнуть так, чтобы их концы получились на том же расстоянии, что и клеммы. Резистор берут за один из выводов пассатижами с изолированными рукоятками. Прижимая выводы резистора к клеммам на несколько секунд, разряжают конденсатор. После этого желательно удостовериться мультиметром-вольтметром, сколько вольт на нем. Желательно, чтобы напряжение либо обнулилось, либо осталось менее 36 В.
Расчет емкости
Емкость конденсатора для электродвигателя рассчитывается исходя из схемы соединения обмоток – звездой или треугольником.
В обоих случаях применяется общая расчетная формула: Сраб = к х Iф/Uсети, к которой все параметры имеют следующие обозначения:
- к – является специальным коэффициентом. Его значение составляет 2800 для схемы «звезда» и 4800 для схемы «треугольник».
- Iф – номинальный ток статора, указанный на информационной табличке. При невозможности прочтения, выполняются измерения с помощью специальных измерительных клещей.
- Uсети – напряжение питающей сети, величиной в 220 вольт.
Подставив все необходимые значения, можно легко рассчитать, какая емкость будет у рабочего конденсатора (мкФ). Во время расчетов необходимо учитывать ток, поступающий к фазной обмотке статора. Он не должен превышать номинальное значение, точно так же, как нагрузка двигателя с конденсатором должна быть не выше 60-80% номинальной мощности, обозначенной на информационной табличке.
Устройство и предназначение конденсаторов
Этот элемент электрической схемы состоит из двух пластин (обкладок). Обкладки расположены по отношению друг к другу так, что между ними оставлен зазор. При включении конденсатора в цепь электрического тока на обкладках накапливаются заряды. Из-за физического зазора между пластинами устройство обладает маленькой проводимостью.
Внимание! Этот зазор бывает воздушным или заполнен диэлектриком. В качестве диэлектрика применяются: бумага, электролит, оксидные плёнки
Главная особенность такого двухполюсника – способность накапливать энергию электрического поля и мгновенно отдавать её на нагрузку (заряд и разряд).
Устройство детали
Первым прототипом ёмкости стала Лейденская банка, созданная в 1745 году в городе Лейдене немцем фон Клейстом. Банку изнутри и снаружи выстилали медной фольгой. Так появилась идея создания обкладок.
Лейденские банки, соединённые параллельно
Графическое обозначение двухполюсника на схемах и чертежах – две вертикально расположенные черты (как обкладки) с зазором между ними.
Обозначение на схемах
Включение трехфазного электродвигателя в однофазную сеть питания
Обмотки электродвигателя соединяют двумя способами: звезда (Y) или треугольник (Δ).
При подключении трехфазного двигателя к однофазной сети предпочтительнее соединение типа треугольник. На шильдике двигателя об этом есть информация, и когда там обозначено Y — звезда, самым лучшим вариантом было бы открыть его кожух, найти концы обмоток и правильно переключить обмотки в треугольник. Иначе потери мощности будут слишком большими.
Включение двигателя на одну фазу питающей сети требует создания из нее и двух остальных. Это можно сделать по следующей схеме
При запуске двигателя в работу в самом начале требуется высокий стартовый ток, поэтому емкости рабочего конденсатора обычно не хватает. Чтобы «ему помочь», используют специальный стартовый конденсатор, который подключается к рабочему конденсатору параллельно. В самом простом случае (невысокая мощность двигателя) его выбирают точно таким же, как и рабочий. Но для этой цели выпускаются и специально стартовые конденсаторы, на которых так и написано: starting.
Стартовый конденсатор должен быть включен в работу только во время пуска и разгона двигателя до рабочей мощности. После этого его отключают. Используется кнопочный выключатель. Или двойной: одной клавишей включается сам двигатель и кнопка фиксируется во включенном положении, кнопка же, замыкающая цепь рабочего конденсатора, каждый раз размыкается.
Специфика схем с конденсаторами
Когда подбирают типы включения электромашин при помощи пусковых и рабочих двухполюсников к сети 220 вольт, то выделяют следующие:
- включение в «треугольник»;
- подсоединение в «звезду».
К сведению. Какие отличия между пусковыми и рабочими двухполюсниками? «Пусковыми» называются элементы, применяемые только для запуска, а «рабочими» – используемые в работе постоянно.
Схемы подсоединения к линии 380 В
В применении емкостных элементов, при подключении 3-х фазного мотора к сети 380 вольт, нет необходимости.
Включение мотора в трёхфазную сеть
Схемы включения в однофазную сеть
При монтаже однофазного мотора в однофазную линию его запуск осуществляют, используя дополнительную обмотку. Такой двигатель имеет три вывода:
- от рабочей катушки;
- от дополнительной;
- общий вывод для обеих обмоток.
Когда отсутствует маркировка, катушки «прозваниваются» тестером для определения правильности подсоединения.
Схема для запуска однофазного двигателя
Тип сборки «Треугольник»
Для присоединения асинхронной трёхфазной машины в однофазную линию возможно применение соединения «треугольник». Пусковая емкость включается согласно схеме.
Включение мотора по соединению «треугольник»
Тип сборки «Звезда»
Аналогичный принцип сборки цепи запуска 3-х фазного двигателя, обмотки которого соединены «звездой». Когда есть возможность самостоятельно выполнить такое соединение обмоток, то его осуществляют на клеммнике.
Подключение «звездой»
Как подключить трехфазный двигатель на одну фазу
Многие хозяева, особенно владельцы частных домов или дач, используют оборудование с двигателями на 380 В, работающими от трехфазной сети. Если к участку подведена соответствующая схема питания, то никаких сложностей с их подключением не возникает. Однако довольно часто возникает ситуация, когда питание участка осуществляется только одной фазой, то есть подведено лишь два провода – фазный и нулевой. В таких случаях приходится решать вопрос, как подключить трехфазный двигатель к сети 220 вольт. Это можно сделать различными способами, однако следует помнить, что подобное вмешательство и попытки изменить параметры, приведет к падению мощности и снижению общей эффективности работы электродвигателя.
Подключение 3х фазного двигателя на 220 без конденсаторов
Как правило, схемы без конденсаторов применяются для запуска в однофазной сети трехфазных двигателей малой мощности – от 0,5 до 2,2 киловатта. Времени на запуск тратится примерно столько же, как и при работе в трехфазном режиме.
В этих схемах применяются симисторы, под управлением импульсов с различной полярностью. Здесь же присутствуют симметричные динисторы, подающие сигналы управления в поток всех полупериодов, имеющихся в питающем напряжении.
Существует два варианта подключения и запуска. Первый вариант используется для электродвигателей, с частотой оборотов менее чем 1500 в минуту. Соединение обмоток выполнено треугольником. В качестве фазосдвигающего устройства используется специальная цепочка. Путем изменения сопротивления, на конденсаторе образуется напряжение, сдвинутое на определенный угол относительно основного напряжения. При достижении в конденсаторе уровня напряжения необходимого для переключения, происходит срабатывание динистора и симистора, вызывающее активацию силового двунаправленного ключа.
Второй вариант используется при запуске двигателей, частота вращения которых составляет 3000 об/мин. В эту же категорию входят устройства, установленные на механизмах, требующих большого момента сопротивления во время запуска. В этом случае необходимо обеспечение большого пускового момента. С этой целью в предыдущую схему были внесены изменения, и конденсаторы, необходимые для сдвига фаз, были заменены двумя электронными ключами. Первый ключ последовательно соединяется с фазной обмоткой, приводя к индуктивному сдвигу тока в ней. Подключение второго ключа – параллельное фазной обмотке, что способствует образованию в ней опережающего емкостного сдвига тока.
Данная схема подключения учитывает обмотки двигателя, смещенные в пространстве между собой на 120 0 С. При настройке определяется оптимальный угол сдвига тока в обмотках фаз, обеспечивающий надежный пуск устройства. При выполнении этого действия вполне возможно обойтись без каких-либо специальных приборов.
Подключение электродвигателя 380в на 220в через конденсатор
Для нормального подключения следует знать принцип действия трехфазного двигателя. При включении в трехфазную сеть, по его обмоткам в разные моменты времени поочередно начинает идти ток. То есть в определенный отрезок времени ток проходит через полюса каждой фазы, создавая так же поочередно магнитное поле вращения. Он оказывает влияние на обмотку ротора, вызывая вращение путем подталкивания в разных плоскостях в определенные моменты времени.
При включении такого двигателя в однофазную сеть, в создании вращающегося момента будет участвовать только одна обмотка и воздействие на ротор в этом случае происходит только в одной плоскости. Такого усилия совершенно недостаточно для сдвига и вращения ротора. Поэтому для того чтобы сдвинуть фазу полюсного тока, необходимо воспользоваться фазосдвигающими конденсаторами. Нормальная работа трехфазного электродвигателя во многом зависит от правильного выбора конденсатора.
Расчет конденсатора для трехфазного двигателя в однофазной сети:
- При мощности электродвигателя не более 1,5 кВт в схеме будет достаточно одного рабочего конденсатора.
- Если же мощность двигателя свыше 1,5 кВт или он испытывает большие нагрузки во время запуска, в этом случае выполняется установка сразу двух конденсаторов – рабочего и пускового. Их подключение осуществляется параллельно, причем пусковой конденсатор нужен только для запуска, после чего происходит его автоматическое отключение.
- Управление работой схемы производится кнопкой ПУСК и тумблером отключения питания. Для запуска двигателя нажимается пусковая кнопка и удерживается до тех пор, пока не произойдет полное включение.
В случае необходимости обеспечить вращение в разные стороны, выполняется установка дополнительного тумблера, переключающего направление вращения ротора. Первый основной выход тумблера подключается к конденсатору, второй – к нулевому, а третий – к фазному проводу. Если подобная схема способствует падению мощности или слабому набору оборотов, в этом случае может потребоваться установка дополнительного пускового конденсатора.
Подключение 3х фазного двигателя на 220 без потери мощности
Наиболее простым и эффективным способом считается подключение трехфазного двигателя в однофазную сеть путем подключения третьего контакта, соединенного с фазосдвигающим конденсатором.
Наибольшая выходная мощность, которую возможно получить в бытовых условиях, составляет до 70% от номинальной. Такие результаты получаются в случае использования схемы «треугольник». Два контакта в распределительной коробке напрямую соединяются с проводами однофазной сети. Соединение третьего контакта выполняется через рабочий конденсатор с любым из первых двух контактов или проводов сети.
При отсутствии нагрузок, трехфазный двигатель возможно запускать с помощью только рабочего конденсатора. Однако при наличии даже небольшой нагрузки, обороты будут набираться очень медленно, или двигатель вообще не запустится. В этом случае потребуется дополнительное подключение пускового конденсатора. Он включается буквально на 2-3 секунды, чтобы обороты двигателя могли достигнуть 70% от номинальных. После этого конденсатор сразу же отключается и разряжается.
Таким образом, при решении вопроса как подключить трехфазный двигатель к сети 220 вольт, необходимо учитывать все факторы. Особое внимание следует уделить конденсаторам, поскольку от их действия зависит работа всей системы.
Теоретический материал, изложенный в первой части темы, посвященной однофазному подключению трехфазного электродвигателя, предназначен для того, чтобы домашний мастер мог осознанно перевести промышленные устройства сети 380 вольт на бытовую электрическую проводку 220.
Рекомендуем внимательно ознакомиться с этой статьей здесь.
Благодаря ей вы не просто механически повторите наши рекомендации, а будете выполнять их осознанно.
Оптимальные схемы для подключений трехфазного двигателя к бытовой однофазной сети
Среди многочисленных способов подключения электродвигателя на практике широкое распространение получило всего два, именуемые коротко:
Название дано по методу соединения обмоток в электрической схеме внутри статора. Оба способы отличаются тем, что у них на каждую фазу двигателя прикладывается напряжение разной величины.
В схеме звезды линейное напряжение подводится сразу на две обмотки, соединенные последовательно. Их электрическое сопротивление складывается, осуществляет бо́льшее противодействие проходящему току.
У треугольника линейное напряжение подается на каждую обмотку индивидуально и поэтому ему оказывается меньшее сопротивление. Токи создаются выше по амплитуде.
Обращаем внимание на два этих отличия и делаем практические выводы для их использования:
- схема звезды обладает пониженными токами в обмотках, позволяет эксплуатировать электродвигатель длительно с минимальными нагрузками, обеспечивать небольшие крутящие моменты на валу;
- более высокие токи, создаваемые схемой треугольника, обеспечивают лучшую выходную мощность, позволяют использовать двигатель в экстремальных нагрузках, поэтому ему требуется надежное охлаждение для длительной работы.
Два этих отличия подробно объяснены на картинке. Внимательно посмотрите на нее. Красными стрелками для наглядности специально помечены приходящие напряжения с линии (линейные) и приложенные к обмоткам (фазные). У схемы треугольника они совпадают, а для звезды — снижены за счет подключения двух обмоток через нейтраль.
Эти способы следует проанализировать применительно к условиям работы вашего будущего механизма на этапе проектирования, до начала его создания. Иначе двигатель схемы звезды может не справляться с подключенными нагрузками и будет останавливаться, а у треугольника — перегреваться и в итоге сгорит. Нагрузку по току двигателя можно предусмотреть выбором схемы подключения.
Как узнать схему подключения обмоток статора у асинхронного двигателя
На каждом заводе принято на корпусе электротехнического оборудования помещать информационные таблички. Пример ее исполнения для трехфазного электродвигателя показан на фотографии.
Домашнему мастеру можно обращать внимание не на всю информацию, а только на:
- мощность потребления: по ее величине судят о работоспособности подключаемого привода;
- схему соединения обмоток — вопрос только что разобран;
- число оборотов, которое может потребовать подключения редуктора;
- токи в фазах — под них созданы обмотки;
- класс защиты от воздействий внешней среды — определяет условия эксплуатации, включая защиту от атмосферной влаги.
Сведениям завода обычно можно доверять, но они создавались для нового двигателя, поставляемого в продажу. Эта схема за все время эксплуатации может подвергаться реконструкции несколько раз, потеряв свой первозданный вид. Старый двигатель при неправильном хранении может потерять работоспособность.
Следует выполнить электрические измерения его схемы и проверить состояние изоляции.
Как определить схемы подключения обмоток статора
Для проведения электрических замеров необходимо иметь доступ к каждому окончанию всех трех обмоток. Обычно шесть их выводов подключены на свои болты внутри клеммной коробки.
Но, среди способов заводского монтажа встречается такой, когда специальные асинхронные модели изготовлены по схеме звезды так, что нейтральная точка собрана концами обмоток внутри корпуса, а на вводную коробку заведена одной жилой ее сборка. Этот неудачный для нас вариант потребует раскручивания на корпусе шпилек крепления крышек для снятия последних. Затем надо подобраться к месту соединения обмоток и разъединить их концы.
Электрическая проверка концов обмоток статора
Для работы нам потребуется омметр. Можно воспользоваться тестером в этом режиме или даже простой батарейкой с лампочкой. Любым из этих приборов необходимо проверить цепь каждой обмотки. Этот вопрос более подробно изложен отдельной статьей.
После нахождения обоих концов для одной обмотки их необходимо пометить собственной маркировкой для проведения последующих проверок и подключения.
Замеры полярности у обмоток статора
Поскольку обмотки навиты строго определённым образом, то нам необходимо точно найти у них начала и окончания. Для этого существует два простых электрических метода:
- кратковременная подача постоянного тока в одну обмотку для создания импульса;
- использование источника переменной ЭДС.
В обоих случаях работает принцип электромагнитной индукции. Ведь обмотки собраны внутри магнитопровода, хорошо обеспечивающего трансформацию электроэнергии.
Проверка импульсом от батарейки
Работа выполняется сразу на двух обмотках. Картинка показывает этот процесс для трех — так меньше рисовать.
Процесс состоит из двух этапов. Вначале определяются однополярные обмотки, а затем проводится контрольная проверка, позволяющая исключить возможную ошибку у выполненных измерений.
Для поиска однополярных зажимов на любую свободную обмотку подключается вольтметр постоянного тока, переключенный на предел чувствительной шкалы. По нему будем осуществлять проверку напряжения, появляющегося за счет трансформации импульса.
Минусовой вывод батарейки жестко соединяют с произвольным концом второй обмотки, а плюсом кратковременно дотрагиваются до ее второго окончания. Этот момент на картинке показан контактом кнопки Кн.
Наблюдают поведение стрелки вольтметра, реагирующей на подачу импульса в своей цепи. Она может двигаться к плюсу или минусу. Совпадение полярностей обеих обмоток будет показано положительным отклонением, а отличие — отрицательным.
При снятии импульса стрелка пойдет в обратную сторону. На это тоже обращают внимание. Затем маркируют концы.
После этого замер выполняют на третьей обмотке, а контрольную проверку осуществляют переключением батарейки на другую цепочку.
Проверка понижающим трансформатором
Источник ЭДС переменного тока на 24 вольта рекомендуется использовать в целях обеспечения электрической безопасности. Пренебрегать этим требованием не рекомендуется.
Вначале берут две произвольные обмотки, например, №2 и №3. Попарно соединяют вместе их вывода и к этим местам подключают вольтметр, но уже переменного тока. В оставшуюся обмотку №1 подают напряжение от понижающего трансформатора и наблюдают появление показаний от него на вольтметре.
Если вектора направлены одинаково, то они не будут влиять друг на друга и вольтметр покажет их общую величину — 24 вольта. Когда же полярность перепутана, то на вольтметре встречные вектора сложатся, дадут в сумме число 0, которое отобразится на шкале показанием стрелки. Сразу после замера тоже следует маркировать концы.
Затем необходимо проверить полярность для оставшейся пары и выполнить контрольный замер.
Такими простыми электрическими опытами можно надёжно определить принадлежность концов к обмоткам и их полярность. Это поможет их правильно собрать для схемы конденсаторного запуска.
Проверка сопротивления изоляции обмоток статора
Если двигатель при хранении находился в неотапливаемом помещении, то он контактировал с влажным воздухом, отсырел. Его изоляция нарушилась, способна создавать токи утечек. Поэтому ее качество надо оценивать электрическими измерениями.
Тестер в режиме омметра не всегда способен выявить такое нарушение. Он покажет только явный брак: слишком маленькая мощность его источника тока не обеспечивает точный результат замера. Для проверки состояния изоляции необходимо пользоваться мегаомметром — специальным прибором с мощным источником питания, обеспечивающим приложение к измерительной цепи повышенного напряжения 500 или 1000 вольт.
Оценка состояния изоляции должна проводиться до подачи рабочего напряжения на обмотки. Если выявлены токи утечек, то можно попытаться просушить двигатель в теплой, хорошо проветриваемой среде. Часто этот прием позволяет восстановить работоспособность электрической схемы, собранной внутри сердечника статора.
Запуск асинхронного двигателя по схеме звезды
Для этого способа концы всех обмоток К1, К2, К3 соединяются в точке нейтрали и изолируются, а на их начала подается линейное напряжение.
К одному началу жестко подключается рабочий ноль сети, а к двум другим — потенциал фазы следующим способом:
- первая любая обмотка соединяется жестко;
- вторая врезается через конденсаторную сборку.
Для стационарного подключения асинхронного двигателя необходимо предварительно определить фазу и рабочий ноль питающей сети.
Как подобрать конденсаторы
В схеме запуска электродвигателя используется две цепочки для подключения обмотки через конденсаторные сборки:
- рабочая — подключенная во всех режимах;
- пусковая — используемая только для интенсивной раскрутки ротора.
В момент запуска параллельно работают обе эти схемы, а при выводе на рабочий режим цепочка пуска отключается.
Емкость рабочих конденсаторов должна соответствовать потребляемой мощности электрического двигателя. Для ее вычисления используют эмпирическую формулу:
Входящие в нее величины номинального тока I и напряжения U как раз и вводят корректировку по электрической мощности двигателя.
Емкость пусковых конденсаторов обычно в 2÷3 крата превышает рабочую.
Правильность подбора конденсаторов влияет на образование токов в обмотках. Их необходимо проверять после запуска двигателя под нагрузкой. Для этого замеряют токи в каждой обмотке и сравнивают их по величине и углу. Хорошая эксплуатация осуществляется при минимально возможном перекосе. В противном случае двигатель работает нестабильно, а какая-то обмотка или две станут перегреваться.
Рекомендуемые выключатели
В пусковой схеме показан выключатель SA, который вводит в работу на короткое время запуска пусковой конденсатор. Существует много конструкций кнопок, позволяющих выполнять эту операцию.
Однако, хочется обратить внимание на специальное устройство, выпускаемое в советские времена промышленностью для стиральных машин с активатором — центрифугой.
В его закрытом корпусе спрятан механизм в составе:
- двух контактов, работающих на замыкание от нажатия на верхнюю кнопку «Пуск»;
- одного контакта, размыкающего всю цепь от кнопки «Стоп».
При нажатии на кнопку Пуск подается фаза схемы на двигатель через рабочие конденсаторы одной цепочкой и пусковые — другой. Когда же кнопку отпускают, то один контакт разрывается. Его подключают к пусковым конденсаторам.
Запуск асинхронного двигателя по схеме треугольник
Больших отличий этого способа от предыдущего практически нет. Пусковая и рабочая цепочки работают по тем же алгоритмам.
В этой схеме приходится учитывать повышенные токи, протекающие в обмотках и иные методы подбора для них конденсаторов.
Их расчет выполняется по похожей на предыдущую, но другой формуле:
Соотношения между пусковыми и рабочими конденсаторами не изменяются. Не забывайте оценивать их подбор контрольными замерами токов под номинальной нагрузкой.
Заключительные выводы
- Существующие технические способы позволяют подключать трехфазные асинхронные двигатели к однофазной сети 220 вольт. Многочисленные исследователи предлагают для этого свои экспериментальные схемы большим ассортиментом.
- Однако, этот метод не обеспечивает эффективное использование ресурса электрической мощности из-за больших потерь энергии, связанных с некачественным преобразованием напряжения для подключения к фазам статора. Поэтому двигатель работает с низким КПД, повышенными затратами.
- Длительная эксплуатация станков с подобными двигателями экономически не обоснована.
- Способ можно рекомендовать только для подключения неответственных механизмов на короткий участок времени.
- С целью эффективного использования асинхронного электродвигателя необходимо применять полноценное трехфазное подключение либо современный дорогой инверторный преобразователь соответствующей мощности.
- Однофазный электродвигатель с такой же мощностью в бытовой сети лучше справиться со всеми задачами, а его эксплуатация обойдется дешевле.
Таким образом, конструкции асинхронных двигателей, ранее массово подключаемые к домашней проводке, сейчас не пользуются популярностью, а способ их подключения морально устарел, используется редко.
Вариант подобного механизма показан фотографией наждака со снятым для наглядности защитным щитком и ограничительным упором. Даже при таком исполнении работать на нем затруднительно из-за потерь мощности.
Практические советы Александра Шенрок, изложенные в его видеоролике, наглядно дополняют материал статьи, позволяют лучше осмыслить эту тему. Рекомендую его к просмотру, но, критически отнеситесь к замеру сопротивления изоляции тестером.
Задавайте вопросы в комментариях, делитесь статьей с друзьями через кнопки социальных сетей.
Как известно, при включении трёхфазного асинхронного двигателя в однофазную сеть, по распространенным конденсаторным схемам: «треугольник», или «звезда», мощность двигателя используется только наполовину (в зависимости от применяемого двигателя).
Кроме того, затруднён запуск двигателя под нагрузкой.
В предлагаемой статье описан метод подключения двигателя без потери мощности.
В различных любительских электромеханических станках и приспособлениях чаще всего используются трехфазные асинхронные двигатели с короткозамкнутым ротором. К сожалению, трехфазная сеть в быту — явление крайне редкое, поэтому для их питания от обычной электрической сети любители применяют фазосдвигающий конденсатор, что не позволяет в полном объеме реализовать мощность и пусковые характеристики двигателя. Существующие же тринисторные «фазосдвигающие» устройства еще в большей степени снижают мощность на валу двигателей.
Вариант схемы устройства запуска трехфазного электродвигателя без потери мощности приведен на рис. 1.
Обмотки двигателя 220/380 В соединены треугольником, а конденсатор С1 включен, как обычно, параллельно одной из них. Конденсатору «помогает» дроссель L1, включенный параллельно другой обмотке. При определенном соотношении емкости конденсатора С1, индуктивности дросселя L1 и мощности нагрузки можно получить сдвиг фаз между напряжениями на трех ветвях нагрузки, равный точно 120°.
На рис. 2 приведена векторная диаграмма напряжений для устройства, представленного на рис. 1, при чисто активной нагрузке R в каждой ветви. Линейный ток Iл в векторном виде равен разности токов Iз и Ia, а по абсолютному значению соответствует величине Iф√3, где Iф=I1=I2=I3=Uл/R — фазный ток нагрузки, Uл=U1=U2=U3=220 В — линейное напряжение сети.
К конденсатору С1 приложено напряжение Uc1=U2, ток через него равен Ic1 и по фазе опережает напряжение на 90°.
Аналогично к дросселю L1 приложено напряжение UL1=U3, ток через него IL1 отстает от напряжения на 90°.
При равенстве абсолютных величин токов Ic1 и IL1 их векторная разность при правильном выборе емкости и индуктивности может быть равной Iл.
Сдвиг фаз между токами Ic1 и IL1 составляет 60°, поэтому треугольник из векторов Iл, Iс1 и IL1 — равносторонний, а их абсолютная величина составляет Iс1=IL1=Iл=Iф√3. В свою очередь, фазный ток нагрузки Iф=Р/ЗUL, где Р — суммарная мощность нагрузки.
Иными словами, если емкость конденсатора С1 и индуктивность дросселя L1 выбрать такими, чтобы при поступлении на них напряжения 220 В ток через них был бы равен Ic1=IL1=P/(√3⋅Uл)=P/380, показанная на рис. 1 цепь L1C1 обеспечит на нагрузке трехфазное напряжение с точным соблюдением сдвига фаз.
Таблица 1
P, Вт | IC1=IL1, A | C1, мкФ | L1, Гн |
---|---|---|---|
100 | 0.26 | 3.8 | 2.66 |
200 | 0.53 | 7.6 | 1.33 |
300 | 0.79 | 11.4 | 0.89 |
400 | 1.05 | 15.2 | 0.67 |
500 | 1.32 | 19.0 | 0.53 |
600 | 1.58 | 22.9 | 0.44 |
700 | 1.84 | 26.7 | 0.38 |
800 | 2.11 | 30.5 | 0.33 |
900 | 2.37 | 34.3 | 0.30 |
1000 | 2.63 | 38.1 | 0.27 |
1100 | 2.89 | 41.9 | 0.24 |
1200 | 3.16 | 45.7 | 0.22 |
1300 | 3.42 | 49.5 | 0.20 |
1400 | 3.68 | 53.3 | 0.19 |
1500 | 3.95 | 57.1 | 0.18 |
В табл. 1 приведены значения тока Ic1=IL1. емкости конденсатора С1 и индуктивности дросселя L1 для различных величин полной мощности чисто активной нагрузки.
Реальная нагрузка в виде электродвигателя имеет значительную индуктивную составляющую. В результате линейный ток отстает по фазе от тока активной нагрузки на некоторый угол ф порядка 20. 40°.
На шильдиках электродвигателей обычно указывают не угол, а его косинус — широко известный cosφ, равный отношению активной составляющей линейного тока к его полному значению.
Индуктивную составляющую тока, протекающего через нагрузку устройства, показанного на рис. 1, можно представить в виде токов, проходящих через некоторые катушки индуктивности Lн, подключенные параллельно активным сопротивлениям нагрузки (рис. 3,а), или, что эквивалентно, параллельно С1, L1 и сетевым проводам.
Из рис. 3,б видно, что поскольку ток через индуктивность противофазен току через емкость, катушки индуктивности LH уменьшают ток через емкостную ветвь фазосдвигающей цепи и увеличивают через индуктивную. Поэтому для сохранения фазы напряжения на выходе фазосдвигающей цепи ток через конденсатор С1 необходимо увеличить и через катушку уменьшить
Векторная диаграмма для нагрузки с индуктивной составляющей усложняется. Ее фрагмент, позволяющий произвести необходимые расчеты, приведен на рис. 4.
Полный линейный ток Iл разложен здесь на две составляющие: активную Iлcosφ и реактивную Iлsinφ.
В результате решения системы уравнений для определения необходимых значений токов через конденсатор С1 и катушку L1:
IC1sin30° + IL1sin30° = Iлcosφ, IC1cos30° – IL1cos30° = Iлsinφ,
получаем следующие значения этих токов:
IC1 = 2/√3⋅Iлsin(φ+60°), IL1 = 2/√3⋅Iлcos(φ+30°).
При чисто активной нагрузке (φ=0) формулы дают ранее полученный результат Ic1=IL1=Iл.
На рис. 5 приведены зависимости отношений токов Ic1 и IL1 к Iл от cosφ, рассчитанные по этим формулам Для (cosφ = √3/2 = 0,87) ток конденсатора С1 максимален и равен 2/√3Iл = 1.15Iл, а ток дросселя L1 вдвое меньше.
Этими же соотношениями с хорошей степенью точности можно пользоваться для типовых значений cosφ, равных 0,85. 0,9.
Таблица 2
P, Вт | IC1, A | IL1, A | C1, мкФ | L1, Гн |
---|---|---|---|---|
100 | 0.35 | 0.18 | 5.1 | 3.99 |
200 | 0.70 | 0.35 | 10.2 | 2.00 |
300 | 1.05 | 0.53 | 15.2 | 1.33 |
400 | 1.40 | 0.70 | 20.3 | 1.00 |
500 | 1.75 | 0.88 | 25.4 | 0.80 |
600 | 2.11 | 1.05 | 30.5 | 0.67 |
700 | 2.46 | 1.23 | 35.6 | 0.57 |
800 | 2.81 | 1.40 | 40.6 | 0.50 |
900 | 3.16 | 1.58 | 45.7 | 0.44 |
1000 | 3.51 | 1.75 | 50.8 | 0.40 |
1100 | 3.86 | 1.93 | 55.9 | 0.36 |
1200 | 4.21 | 2.11 | 61.0 | 0.33 |
1300 | 4.56 | 2.28 | 66.0 | 0.31 |
1400 | 4.91 | 2.46 | 71.1 | 0.29 |
1500 | 5.26 | 2.63 | 76.2 | 0.27 |
В табл. 2 приведены значения токов IC1, IL1, протекающих через конденсатор С1 и дроссель L1 при различных величинах полной мощности нагрузки, имеющей указанное выше значение cosφ = √3/2.
Для такой фазосдвигающей цепи используют конденсаторы МБГО, МБГП, МБГТ, К42-4 на рабочее напряжение не менее 600 В или МБГЧ, К42-19 на напряжение не менее 250 В.
Дроссель проще всего изготовить из трансформатора питания стержневой конструкции от старого лампового телевизора. Ток холостого хода первичной обмотки такого трансформатора при напряжении 220 В обычно не превышает 100 мА и имеет нелинейную зависимость от приложенного напряжения.
Если же в магнитопровод ввести зазор порядка 0,2. 1 мм, ток существенно возрастет, а зависимость его от напряжения станет линейной.
Сетевые обмотки трансформаторов ТС могут быть соединены так, что номинальное напряжение на них составит 220 В (перемычка между выводами 2 и 2′), 237 В (перемычка между выводами 2 и 3′) или 254 В (перемычка между выводами 3 и 3′). Сетевое напряжение чаще всего подают на выводы 1 и 1′. В зависимости от вида соединения меняются индуктивность и ток обмотки.
В табл. 3 приведены значения тока в первичной обмотке трансформатора ТС-200-2 при подаче на нее напряжения 220 В при различных зазорах в магнитопроводе и разном включении секций обмоток.
Сопоставление данных табл. 3 и 2 позволяет сделать вывод, что указанный трансформатор можно установить в фазосдвигающую цепь двигателя с мощностью примерно от 300 до 800 Вт и, подбирая зазор и схему включения обмоток, получить необходимую величину тока.
Индуктивность изменяется также в зависимости от синфазного или противофазного соединения сетевой и низковольтных (например, накальных) обмоток трансформатора.
Максимальный ток может несколько превышать номинальный ток в рабочем режиме. В этом случае для облегчения теплового режима целесообразно снять с трансформатора все вторичные обмотки, часть низковольтных обмоток можно использовать для питания цепей автоматики устройства, в котором работает электродвигатель.
Таблица 3
Зазор в магнитопроводе, мм | Ток в сетевой обмотке, A, при соединении выводов на напряжение, В | ||
---|---|---|---|
220 | 237 | 254 | |
0.2 | 0.63 | 0.54 | 0.46 |
0.5 | 1.26 | 1.06 | 0.93 |
1 | – | 2.05 | 1.75 |
В табл. 4 приведены номинальные величины токов первичных обмоток трансформаторов различных телевизоров и ориентировочные значения мощности двигателя, с которыми их целесообразно использовать фазосдвигающую LC-цепь следует рассчитывать для максимально возможной нагрузки электродвигателя.
Таблица 4
Трансформатор | Номинальный ток, A | Мощность двигателя, Вт |
---|---|---|
ТС-360М | 1.8 | 600. 1500 |
ТС-330К-1 | 1.6 | 500. 1350 |
СТ-320 | 1.6 | 500. 1350 |
СТ-310 | 1.5 | 470. 1250 |
ТСА-270-1, ТСА-270-2, ТСА-270-3 | 1.25 | 400. 1250 |
ТС-250, ТС-250-1, ТС-250-2, ТС-250-2М, ТС-250-2П | 1.1 | 350. 900 |
ТС-200К | 1 | 330. 850 |
ТС-200-2 | 0.95 | 300. 800 |
ТС-180, ТС-180-2, ТС-180-4, ТС-180-2В | 0.87 | 275. 700 |
При меньшей нагрузке необходимый сдвиг фаз уже не будет выдерживаться, но пусковые характеристики по сравнению с использованием одного конденсатора улучшатся.
Экспериментальная проверка проводилась как с чисто активной нагрузкой, так и с электродвигателем.
Функции активной нагрузки выполняли по две параллельно соединенных лампы накаливания мощностью 60 и 75 Вт, включенные в каждую нагрузочную цепь устройства (см рис. 1), что соответствовало общей мощности 400 Вт В соответствии с табл. 1 емкость конденсатора С1 составляла 15 мкф Зазор в магнитопроводе трансформатора ТС-200-2 (0,5 мм) и схема соединения обмоток (на 237 В) были выбраны из соображений обеспечения необходимого тока 1,05 А.
Измеренные на нагрузочных цепях напряжения U1, U2, U3 отличались друг от друга на 2. 3 В, что подтверждало высокую симметрию трехфазного напряжения.
Эксперименты проводились также с трехфазным асинхронным двигателем с короткозамкнутым ротором АОЛ22-43Ф мощностью 400 Вт. Он работал с конденсатором С1 емкостью 20 мкф (кстати, такой же, как и при работе двигателя только с одним фазосдвигающим конденсатором) и с трансформатором, зазор и соединение обмоток которого выбраны из условия получения тока 0,7 А.
В результате удалось быстро запустить двигатель без пускового конденсатора и заметно увеличить крутящий момент, ощущаемый при торможении шкива на валу двигателя.
К сожалению, провести более объективную проверку затруднительно, поскольку в любительских условиях практически невозможно обеспечить нормированную механическую нагрузку на двигатель.
Следует помнить, что фазосдвигающая цепь — это последовательный колебательный контур, настроенный на частоту 50 Гц (для варианта чисто активной нагрузки), и без нагрузки подключать к сети эту цепь нельзя.
Самый простой способ подключения трехфазного двигателя в однофазную сеть | Электроинформация
Подключение трехфазного двигателя на 380-400 вольт в однофазную сеть на 220 вольт может понадобиться, пожалуй, только в одном случае. Когда трехфазный двигатель есть в наличии и хочется его использовать. Потому как чего он будет без дела валяться? И даже сразу находится место, где его можно применить. Например, появляется чрезвычайная необходимость того, чтобы откатные ворота открывались автоматически. И разумеется эти работы необходимо выполнить своими руками и из подручных материалов. Не пугает даже поиск подходящего для этого дела редуктора.
Трехфазные электродвигателиТрехфазные электродвигатели
Также часто появляется насущная потребность соорудить циркулярную пилу. Желательно с фуганком. Или же просто идет изготовление очередного точильного станка. Несмотря на то, что есть два покупных разного размера. А уж на то, что однофазный электродвигатель в данном случае был бы более экономичным, просто не обращается внимание.
Разумеется существуют разные схемы подключения трёхфазного двигателя в однофазную сеть. Однако, приведенная схема, пожалуй, является наиболее простой. В этой схеме обмотки двигателя соединяются треугольником. В этом случае у двигателя получается наибольший крутящийся момент. То есть, наиболее полно используется мощность электродвигателя. А это немаловажно при подобном подключении. Потому как при подключении в однофазную сеть мощность трехфазного двигателя снижается.
К двум вершинам треугольника подключаем напряжение 220 вольт. А к третьей вершине треугольника подключаем один из сетевых контактов через конденсатор. Этот конденсатор называется рабочей ёмкостью. Потому что он включается на все время работы двигателя.
Схема подключения трехфазного электродвигателя в однофазную сетьСхема подключения трехфазного электродвигателя в однофазную сеть
Также параллельно рабочему конденсатору подключается пусковой конденсатор. Он подключается через кнопку включения, которая автоматически отключается после нажатия. Разумеется пусковой конденсатор включается только на время пуска. Если двигатель запускается без пускового конденсатора, то применять этот конденсатор не нужно.
При стандартных частоте 50 герц и напряжении 220-240 вольт ёмкость рабочего конденсатора C (раб.) находится по формуле:
C (раб.) = 66 × P (ном.)
где P (ном.) — номинальная мощность электродвигателя (кВт)
Ёмкость же пускового конденсатора находится по формуле
C (пуск.) = 2 × C (раб.) = 132 × P (ном.)
То есть, ёмкость пускового конденсатора должна быть минимум в два раза больше чем у рабочего.
Металлобумажные конденсаторыМеталлобумажные конденсаторы
Так как это простая схема, то для подключения лучше использовать обычные металлобумажные конденсаторы. Однако, в большинстве случаев они имеют малую ёмкость. А значит придётся соединять их в большие блоки. Подобрать нужные параметры часто проблематично. Потому можно также использовать специальные электролитические конденсаторы для работы с электродвигателями переменного тока. Они подключаются также как металлобумажные. А вот схема подключения полярных электролитических конденсаторов имеет более сложное устройство.
Обычно для того, чтобы подобрать нужную ёмкость приходится соединять несколько конденсаторов вместе. При параллельном подключении общая емкость конденсаторов суммируется. Общее напряжение параллельно соединенных конденсаторов равно наименьшему номиналу в цепи. При последовательном соединении конденсаторов общая емкость будет меньше самого маленького номинала в цепи. А общее напряжение конденсаторов при последовательном соединении суммируется.
Специальные электролитические конденсаторы для двигателей переменного токаСпециальные электролитические конденсаторы для двигателей переменного тока
Напряжение конденсаторов подбирается большей величины, чем напряжение сети. Амплитудное напряжение однофазной сети составляет около 310 вольт. Также необходимо взять запас на различные всплески и импульсы напряжения. Потому напряжение конденсаторов должно быть не менее 450 вольт.
При включении двигатель может начать вращаться не в ту сторону, которая нужна. Для изменения вращения нужно поменять местами два провода, подключенные к двум вершинам треугольника. После этого электродвигатель будет вращаться в другую сторону. Разумеется, подключение двигателя должно осуществляться под защитой автоматического выключателя номиналом, нужным для данной мощности двигателя. Если вы не уверены в правильности собранной схемы, то для проведения монтажных работ лучше пригласить специалиста.
Для вашего удобства подборка публикаций
Способы возбуждения машин постоянного тока
Что такое фаза, ноль и земля в электротехнике
Где в розетке плюс, а где минус?
Главная
Спасибо за посещение канала, чтение заметки, упоминание в социальных сетях и других интернет — ресурсах, а также подписку, лайки, дизлайки и комментарии (Лайки и дизлайки можно ставить не регистрируясь и не заходя в аккаунт)
ТРЁХФАЗНЫЙ ДВИГАТЕЛЬ В ОДНОФАЗНОЙ СЕТИ
При всем современном многообразии выбора бытового электроинструмента, по прежнему существует потребность в применении более мощных асинхронных электродвигателей. Предпосылок к этому немало — применяемые в качестве двигателей электроинструмента коллекторные машины не превосходят по мощности потолок в 1 — 1,5 кВт (дальнейшее увеличение по мощности приводит к увеличению по массагабаритным показателям), а ведь иногда требуется привод более мощный (самодельные циркулярные или ленточные пилы, электрофуганки с шириной прохода 50 и более сантиметров и т.д). Все эти инструменты приводятся в движение как правило при помощи трехфазных электродвигателей. К сожалению, трехфазная сеть в быту — явление крайне редкое, поэтому для их питания от обычной электрической сети самодельщики применяют: фазосдвигающий конденсатор; тринисторные фазосдвигающие устройства; другие емкостные и индукционно-емкостные фазосдвигающие схемы. Среди различных способов запуска асинхронных электродвигателей с короткозамкнутым ротором, наиболее простым является способ подключения одной из обмоток двигателя через фазосдвигающий конденсатор.
Для работы двигателя с конденсаторным пуском необходимо, чтобы емкость конденсатора менялась в зависимости от числа оборотов. На практике это условие практически невыполнимо, поэтому при пуске двигателя подключают два конденсатора (Ср — рабочий конденсатор; Сп — пусковой конденсатор).
Такую схему подключения выбирают только втом случае, если на маркировке двигателя указано напряжение питания 220/380v.
Работает схема так: после включения пакетного выключателя П1, необходимо сразу нажать пусковую кнопку »Разгон». После того как двигатель наберет обороты кнопку отпускают.
Реверсирование двигателя осуществляется путем переключения фаз на его обмотке посредством тумблера SA1. Для разряда конденсаторов используется сопротивление R1. Емкость рабочего конденсатора можно расчитать по следующим формулам. Для схемы подключения »треугольник»: Ср=4800*(I/U) где Ср — емкость конденсатора в микрофарадах, I — ток потребления электродвигателя в амперах, U — напряжение питающей сети. Для схемы подключения »звезда»: Ср=2800*(I/U) где Ср — емкость конденсатора в микрофарадах, I — ток потребления двигателя в амперах, U — напряжение питающей сети. Емкость пускового конденсатора Сп выбирают в 2-2,5 раза большей емкости рабочего конденсатора. Конденсаторы должны быть расчитаны на напряжение в 1,5 раза большее чем напряжение питающей сети. Для пуска двигателей применяют конденсаторы типа МБГО, МБГЧ, МБГП или специализированные пусковые (высокая цена).
Для подбора необходимых конденсаторов можно воспользоваться таблицей. Но как же поступить, если не удалось достать конденсаторов нужной емкости?
Не волнуйтесь, выход есть. Практика применения бумажных конденсаторов для подключения трехфазных двигателей показала, что вместо этих громоздких монстров можно применить и электролитические конденсаторы.
Посмотрите на эквивалентные схемы замены бумажных конденсаторов электролитами.
Диоды для сети переменного тока 220V выбираются с максимально допустимым обратным напряжением не ниже 300V. Максимальный прямой ток диода зависит от мощности двигателя. Для двигателя мощностью до 1 кВт подойдут диоды типа Д242 — Д247 с прямым током 10 А.
При большей мощности можно взять диоды типа ДЛ 200 или поставить несколько менее мощных параллельно и на радиаторах.
Принципиальную схему включения электродвигателя с применением электролитических конденсаторов смотрите на рисунке. Принцип действия данной схемы и все производимые при пуске манипуляции такие же как и для схемы описанной выше.
Но что если вам требуется подключить к сети двигатель мощностью 3 — 4 кВт? Двигатели такого типа расчитаны на применение только в сетяз 380V, их обмотки соединены »звездой» и в клеммной коробке имеется всего три вывода. Включение такого двигателя в сеть 220v приводит к снижению его номинальной мощности в з раза.
Как же устранить данный недостаток? Как заставить столь мощного монстра отдавать хотя бы 50 процентов мощности? Все очень просто, требуется лишь небольшая доработка. Вскрываем клеммную коробку и определяем, с какой стороны крышки корпуса двигателя выходят выводы обмоток. Отворачиваем крышку и вынимаем ее из корпуса. Находим место соединения обмоток в общую точку и подпаиваем к этой точке проводник, сечение которого равно сечению провода обмотки двигателя. Скрутку изолируем изолентой и термоусадочной трубкой, подпаянный проводник протягиваем в клеммную коробку и устанавливаем на место снятую крышку. Все — переделка завершена! Подключаем двигатель по приведенной схеме. После разгона двигателя с данной схемой включения, с сетью работает только одна его обмотка, и вращение ротора поддерживается пульсирующим магнитным полем. В следующей нашей стать мы поговорим о том, как преобразовать однофазную сеть 220v в трехфазную 380v для подключения двигателя. Автор: Электродыч.
Расчет емкости конденсатора для трехфазного двигателя
Многие любители и профессионалы применяют в работе электрооборудование различного предназначения. И во многих случаях электрооборудование приводится в движение трехфазными двигателями. Но трехфазная сеть зачастую недоступна в гаражных боксах и индивидуальных домовладениях. И тогда на помощь приходят схемы подключения трехфазного двигателя в однофазную сеть.
Для чего нужен конденсатор
Наиболее распространены и применяются в станках трехфазные асинхронные двигатели переменного тока с короткозамкнутым ротором. Их подключение к однофазной сети мы и будем рассматривать. При включении двигателя в трехфазную сеть по трем обмоткам, в разный момент времени протекает переменный ток. Этот ток создает вращающееся магнитное поле, которое начинает вращать ротор двигателя.
При подключении двигателя к однофазной сети, ток по обмоткам течет, но вращающегося магнитного поля нет, ротор не крутится. Выход из этой ситуации был найден. Самым простым и действенным способом оказалось параллельное подключение конденсатора к одной из обмоток двигателя. Конденсатор, импульсно получая и отдавая энергию создает смещение фазы, в обмотках двигателя получается вращающееся магнитное поле и он работает. Емкость постоянно находится под напряжением и называется рабочим конденсатором.
ВАЖНО! Правильно рассчитать и подобрать емкость рабочего конденсатора и его тип.
Подключение трехфазного двигателя к однофазной сети по схеме звезды
Начну с предупреждения: даже опытные электрики во время работы допускают ошибки, которые называются «человеческий фактор». Что уж говорить про домашних мастеров…
Поэтому рекомендую в обязательном порядке подачу напряжения на собранную схему выполнять только через отдельный автоматический выключатель SF, правильно подобранный по нагрузке. Он спасет жизнь и здоровье.
Схема подключения звезды показана на картинке.
Концы обмоток собраны в одну точку горизонтальными перемычками внутри клеммной коробки. На нее никакие внешние провода не подключены.
Фаза (через автоматический выключатель) и ноль бытовой проводки подаются на две разные клеммы начал обмоток. К свободной клемме (на рисунке Н2) подключена параллельная цепочка из двух конденсаторов: Cp — рабочий, Сп — пусковой.
Рабочий конденсатор соединен второй обкладкой жестко с фазным проводом, а пусковой — через дополнительный выключатель SA.
При запуске электродвигателя ротор необходимо раскрутить из состояния покоя. Он преодолевает усилия трения подшипников, противодействия среды. На этот период требуется повысить величину магнитного потока статора.
Делается это за счет увеличения тока через дополнительную цепочку пускового конденсатора. После выхода ротора на рабочий режим его нужно отключить. Иначе пусковой ток перегреет обмотку двигателя.
Выполнять отключение цепочки пуска простым переключателем не всегда удобно. Для автоматизации этого процесса используют схемы с реле или пускателями, работающими по времени.
Среди мастеров самодельщиков пользуется популярностью кнопка пуска от советских стиральных машин активаторного типа. У нее встроено два контакта, один из которых после включения отключается автоматически с задержкой: то, что надо в нашем случае.
Если приглядитесь внимательно на принцип подачи однофазного напряжения, то увидите, что 220 вольт приложены к двум последовательно подключенным обмоткам. Их общее электрическое сопротивление складывается, ослабляя величину протекающего тока.
Подключение трехфазного двигателя к однофазной сети по схеме звезды используется для маломощных устройств, отличается повышенными потерями энергии до 50% от трехфазной системы питания.
Как правильно подобрать конденсаторы
Теоретически предполагается осуществлять расчет необходимой емкости путем деления силы тока на напряжение и полученную величину умножить на коэффициент. Для разного типа соединений обмоток коэффициент составляет:
- звездой – 2800;
- треугольником — 4800.
Недостатком этого метода является то, что не всегда на электродвигателе сохранилась табличка с данными. Невозможно точно знать коэффициент мощности и мощность двигателя, а следовательно и силу тока. К тому же на силу тока могут действовать такие факторы как отклонения напряжения в сети и величина нагрузки на двигатель.
Мощность электродвигателя, кВт | 0,4 | 0,6 | 0,8 | 1,1 | 1,5 | 2,2 |
Ёмкость конденсатора C2 в номинальном режиме, мкФ | 40 | 60 | 80 | 100 | 150 | 230 |
Ёмкость конденсатора C2 в недогруженном режиме, мкФ | 25 | 40 | 60 | 80 | 130 | 200 |
Ёмкость пускового конденсатора C1 в номинальном режиме, мкФ | 80 | 120 | 160 | 200 | 250 | 300 |
Ёмкость конденсатора C1 в недогруженном режиме, мкФ | 20 | 35 | 45 | 60 | 80 | 100 |
Схема подключения трёхфазного двигателя через конденсатор
Здесь напряжение 220 вольт распределяется на 2 последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.
Максимальной мощности двигателя на 380 В в сети 220 В можно достичь используя соединение типа треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность.
Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 В. Поэтому если есть ввод на 380 В — обязательно подключайте к нему — это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети 380 В.
Полезное: Подрозетники: выбор и установка короба для розетки в стене
Как подключить с реверсом
Обеспечить вращение ротора в обратную сторону не представляет затруднения. В схему подключения двигателя необходимо добавить двухпозиционный переключатель. Средний контакт переключателя подсоединяется к одному из контактов конденсаторов, а крайние к выводам двигателя.
ВНИМАНИЕ! Сначала необходимо переключателем выбрать направление вращения, и только потом запустить двигатель. При работающем электродвигателе переключателем направления вращения пользоваться нельзя.
Рассмотренные варианты подключения промышленных двигателей в бытовую сеть не представляют большой сложности при их реализации. Важно только внимательно отнестись к некоторым нюансам и оборудование, хоть и с небольшой потерей мощности, прослужит долго и принесет пользу.
Схемы подключения однофазных асинхронных двигателей
С пусковой обмоткой
Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.
Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»
Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.
Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).
Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):
- один с рабочей обмотки — рабочий;
- с пусковой обмотки;
- общий.
С этими тремя проводами и работаем дальше — используем для подключения однофазного двигателя.
Со всеми этими
Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифилярного) через кнопку.
Конденсаторный
При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).
Схемы подключения однофазного конденсаторного двигателя
Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.
Схема с двумя конденсаторами
Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.
Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым
При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.
Подбор конденсаторов
Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:
- рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
- пусковой — в 2-3 раза больше.
Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 вольт берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, для пусковой цепи ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.
Выбор пускового конденсатора для электродвигателя
Современный подход к данному вопросу предусматривает использование специальных калькуляторов в интернете, которые проводят быстрый и точный расчет.
Для проведения расчета следует знать и ввести нижеприведенные показатели:
- Тип соединения обмоток двигателя: треугольник или звезда. От типа соединения зависит также и емкость.
- Мощность двигателя является одним из определяющих факторов. Этот показатель измеряется в Ваттах.
- Напряжение сети учитывается при расчетах. Как правило, оно может быть 220 или 380 Вольт.
- Коэффициент мощности – постоянное значение, которое зачастую составляет 0,9. Однако, есть возможность изменить этот показатель при расчете.
- КПД электродвигателя также оказывает влияние на проводимые расчеты. Эту информацию, как и другую, можно узнать, изучив нанесенную информацию производителем. Если ее нет, следует ввести модель двигателя в интернете для поиска информации о том, какой КПД. Также, можно ввести приблизительное значение, которое свойственно для подобных моделей. Стоит помнить, что КПД может изменяться в зависимости от состояния электродвигателя.
Подобная информация вводится в соответствующие поля и проводится автоматический расчет. При этом, получаем емкость рабочего конденсата, а пусковой должен иметь показатель в 2,5 раза больше.
Провести подобный расчет можно самостоятельно.
Для этого можно воспользоваться следующими формулами:
- Для типа соединения обмоток «звезда», определение емкости проводится при использовании следующей формулы: Cр=2800*I/U. В случае соединения обмоток «треугольником», используется формула Cр=4800*I/U. Как видно из вышеприведенной информации, тип соединения является определяющим фактором.
- Вышеприведенные формулы определяют необходимость расчета величины тока, который проходит в системе. Для этого используется формула: I=P/1,73Uηcosφ. Для расчета понадобятся показатели работы двигателя.
- После вычисления тока можно найти показатель емкости рабочего конденсатора.
- Пусковой, как ранее было отмечено, в 2 или 3 раза должен превосходить по показателю емкости рабочий.
При выборе, стоит также учесть нижеприведенные нюансы:
- Интервал рабочей температуры.
- Возможное отклонение от расчетной емкости.
- Сопротивление изоляции.
- Тангенс угла потерь.
Обычно на вышеуказанные параметры не обращают особого внимания. Однако их можно учесть для создания идеальной системы питания электродвигателя.
Габаритные размеры также могут стать определяющим фактором. При этом, можно выделить следующую зависимость:
- Увеличение емкости приводит к увеличению диаметрального размера и расстояния выхода.
- Наиболее распространенный максимальный диаметр 50 миллиметров при емкости 400 мкФ. При этом, высота составляет 100 миллиметров.
Кроме этого, стоит учитывать, что на рынке можно встретить модели от иностранных и отечественных производителей. Как правило, зарубежные имеют большую стоимость, но и надежнее. Российские варианты исполнения также часто используются при создании сети подключения электродвигателя.
Подключение двигателя 380 на 220
380в — это напряжение между фазами в трёхфазной цепи (линейное), а 220в — напряжение между фазой и нулём (фазное) в той же самой цепи. В обычной однофазной цепи: дома, на даче или в гараже есть только два провода — ноль и фаза; сейчас в новых постройках появился защитный ноль (заземление) — провод жёлто-зелёного цвета, он подходит к «рогам» розетки, его в расчёт не принимаем, о заземлении разговор совсем другой.
Возникает вопрос о том, где взять недостающие фазы. Применение фазорасщепителя или инвертора (устройство, преобразующее однофазный электрический ток в трёхфазный) рассматривать не будем, не стоит принимать во внимание и индукционный с помощью катушек индуктивности способ сдвига фаз. Пойдём другим путём, ёмкостным — подключение электродвигателя 380 В на 220 В через конденсатор. Этот метод является самым простым и оптимальным, легким в реализации.
То, что имеется сам трёхфазный электродвигатель, ясно по умолчанию, нужно только определить схему подключения его обмоток и как подключить двигатель 380 на 220. Для этого надо вскрыть клеммную коробку электродвигателя и если в ней только три клеммы, стало быть, обмотки статора соединены звездой и для переделки на треугольник, а когда на шильдике движка указано рабочее напряжение 380 В, то это нужно, придётся открывать заднюю крышку мотора, искать выводы обмоток, переключать их. Тут рекомендуется позвать опытного электрика.
В коробке шесть клемм, расположенных двумя рядами — по три штуки в каждом. Рассмотрим возможные варианты
- Три клеммы ОДНОГО ряда соединены между собой — звезда.
- МЕЖДУРЯДНОЕ соединение клемм попарно — треугольник.
Реверс
Для изменения направления вращения ротора нужно переключить ёмкостную цепь на другой провод или клемму коробки электродвигателя. На одну клемму подаётся фаза, на другую ноль, включение конденсаторной группы производим к третьей. Теперь при подключении второго провода конденсатора к фазе мотор крутится в одну сторону, к нулю — в другую.
Этого достаточно, чтобы разобраться в том как подключить трёхфазный двигатель на 220, но если всё получилось и вроде работает правильно крутит, не греется, не горит окончательно убедиться в правильности собранной схемы поможет нехитрая и в этом случае необязательная проверка. Во время работы с постоянной, одинаковой нагрузкой с помощью токоизмерительных клещей померьте токи в фазном, нулевом и конденсаторном проводах. В идеале они должны быть равны между собою, если и есть небольшие различия (процентов 30), то это не идеал, но всё-таки хорошо.
А исправляется различие токов просто — путём изменения ёмкости рабочего конденсатора. Нужно не делать резких движений и не сжечь обмотку, установив слишком большую ёмкость рабочего конденсатора.
Подключение трёхфазного двигателя к однофазной сети
Подключение трехфазного двигателя к однофазной сети
При эксплуатации или изготовлении того или иного оборудования нередко возникает необходимость подключения асинхронного трехфазного двигателя к обычной сети 220 В.
Сделать это вполне реально и даже не особо сложно, главное — найти выход из следующих возможных ситуаций, если нет подходящего однофазного мотора, а трехфазный лежит без дела, а также если имеется трехфазное оборудование, но в мастерской лишь однофазная сеть.
Схемы подключения к сети
Для начала имеет смысл вспомнить схему подключения трехфазного двигателя к трехфазной сети.
Схема подключения трехфазного электродвигателя на 220 В по схеме «Звезда» и «Треугольник»
Для простоты восприятия магнитный пускатель и прочие узлы коммутации не изображены. Как видно из схемы, каждая обмотка мотора питается от своей фазы. В однофазной же сети, как следует из ее названия, «фаза» всего одна. Но и ее достаточно для питания трехфазного электромотора. Взглянем на асинхронный двигатель, подключенный на 220 В.
Как подключить трехфазный электродвигатель 380 В на 220 В через конденсатор по схеме «Звезда» и «Треугольник»: схема.
Здесь одна обмотка трехфазного электромотора напрямую включена в сеть, две остальные соединены последовательно, а на точку их соединения подается напряжение через фазосдвигающий конденсатор С1. С2 является пусковым и включается кнопкой В1 с самовозвратом только в момент пуска: как только двигатель запустится, ее нужно отпустить.
Сразу возникает несколько вопросов:
- Насколько такая схема эффективна?
- Как обеспечить реверс двигателя?
- Какие емкости должны иметь конденсаторы?
Реверсирование двигателя
Для того чтобы заставить двигатель вращаться в другую сторону, достаточно «перевернуть» фазу, поступающую на точку соединения обмоток В и С (соединение «Треугольник») или на обмотку В (схема «Звезда»). Схема же, позволяющая изменять направление вращения ротора простым щелчком переключателя SB2, будет выглядеть следующим образом.
Реверсирование трехфазного двигателя на 380 В, работающего в однофазной сети
Здесь следует заметить, что практически любой трехфазный двигатель — реверсный, но выбирать направление вращения мотора нужно перед его пуском.
Реверсировать электродвигатель во время его работы нельзя! Сначала нужно обесточить электродвигатель, дождаться его полной остановки, выбрать нужное направление вращение тумблером SВ1 и лишь затем подать на схему напряжение и кратковременно нажать на кнопку В1.
Емкости фазосдвигающего и пускового конденсаторов
Для подсчета емкости фазосдвигающего конденсатора нужно воспользоваться несложной формулой:
- С1 = 2800/(I/U) — для включения по схеме «Звезда»;
- С1 = 4800/(I/U) — для включения по схеме «Треугольник».
Здесь:
- С1 — емкость фазосдвигающего конденсатора, мкФ;
- I — номинальный ток одной обмотки двигателя, А;
- U — напряжение однофазной сети, В.
Но что делать, если номинальный ток обмоток неизвестен? Его можно легко рассчитать, зная мощность мотора, которая обычно нанесена на шильдик устройства. Для расчета воспользуемся формулой:
I = P/1,73*U*n*cosф, где:
- I — потребляемый ток, А;
- U — напряжение сети, В;
- n — КПД;
- cosф — коэффициент мощности.
Символом * обозначен знак умножения.
Емкость пускового конденсатора С2 выбирается в 1,5−2 раза больше емкости фазосдвигающего.
Рассчитывая фазосдвигающий конденсатор, нужно иметь в виду, что двигатель, работающий не в полную нагрузку, при расчетной емкости конденсатора может греться. В этом случае номинал его нужно уменьшить.
Эффективность работы
К сожалению, трехфазный двигатель при питании одной фазой развить свою номинальную мощность не сможет. Почему? В обычном режиме каждая из обмоток двигателя развивает мощность в 33,3%.
При включении мотора, к примеру, «треугольником» лишь одна обмотка С работает в штатном режиме, а в точке соединения обмоток В и С при правильно подобранном конденсаторе напряжение будет в 2 раза ниже питающего, а значит, мощность этих обмоток упадет в 4 раза — т. е.
всего 8,325% каждая. Произведем несложный подсчет и рассчитаем общую мощность:
Обратите внимание
33,3 + 8,325 + 8,325 = 49.95%.
Итак, даже теоретически трехфазный двигатель, включенный в однофазную сеть, развивает лишь половину своей паспортной мощности, а на практике эта цифра еще меньше.
Способ повысить развиваемую мотором мощность
Оказывается, повысить мощность мотора можно, и притом существенно. Для этого даже не придется усложнять конструкцию, а достаточно лишь подключить трехфазный двигатель по приведенной ниже схеме.
Асинхронный двигатель — подключение на 220 В по улучшенной схеме
Здесь уже обмотки A и B работают в номинальном режиме, и лишь обмотка C отдает четверть мощности:
33,3 + 33,3 + 8,325 = 74.92%.
Совсем неплохо, не правда ли? Единственное условие при таком включении — обмотки A и B должны быть включены противофазно (отмечено точками). Реверсирование же такой схемы производится обычным образом — переключением полярности цепи конденсатор-обмотка C.
И последнее замечание. На месте фазосдвигающего и пускового конденсатора могут работать лишь бумажные неполярные приборы, к примеру, МБГЧ, выдерживающие напряжение в полтора-два раза выше напряжения питающей сети.
Источник: https://ObInstrumentah.info/podklyuchenie-trehfaznogo-dvigatelya-k-odnofaznoj-seti/
Как подключить 3 фазный электродвигатель к сети 220 вольт через конденсатор
Многие любители и профессионалы применяют в работе электрооборудование различного предназначения. И во многих случаях электрооборудование приводится в движение трехфазными двигателями. Но трехфазная сеть зачастую недоступна в гаражных боксах и индивидуальных домовладениях. И тогда на помощь приходят схемы подключения трехфазного двигателя в однофазную сеть.
Для чего нужен конденсатор
Наиболее распространены и применяются в станках трехфазные асинхронные двигатели переменного тока с короткозамкнутым ротором. Их подключение к однофазной сети мы и будем рассматривать. При включении двигателя в трехфазную сеть по трем обмоткам, в разный момент времени протекает переменный ток. Этот ток создает вращающееся магнитное поле, которое начинает вращать ротор двигателя.
При подключении двигателя к однофазной сети, ток по обмоткам течет, но вращающегося магнитного поля нет, ротор не крутится. Выход из этой ситуации был найден.
Самым простым и действенным способом оказалось параллельное подключение конденсатора к одной из обмоток двигателя.
Конденсатор, импульсно получая и отдавая энергию создает смещение фазы, в обмотках двигателя получается вращающееся магнитное поле и он работает. Емкость постоянно находится под напряжением и называется рабочим конденсатором.
ВАЖНО! Правильно рассчитать и подобрать емкость рабочего конденсатора и его тип.
Как правильно подобрать конденсаторы
Теоретически предполагается осуществлять расчет необходимой емкости путем деления силы тока на напряжение и полученную величину умножить на коэффициент. Для разного типа соединений обмоток коэффициент составляет:
- звездой – 2800;
- треугольником – 4800.
Недостатком этого метода является то, что не всегда на электродвигателе сохранилась табличка с данными. Невозможно точно знать коэффициент мощности и мощность двигателя, а следовательно и силу тока. К тому же на силу тока могут действовать такие факторы как отклонения напряжения в сети и величина нагрузки на двигатель.
Поэтому следует применять упрощенный расчет емкости рабочих конденсаторов. Просто учесть, что на каждые 100 ватт мощности необходимо 7 микрофарад емкости.
Удобнее использовать несколько параллельно соединенных конденсаторов малой, желательно одинаковой емкости, чем один большой.
Важно
Просто суммируя емкость собранных конденсаторов, можно легко определить и подобрать оптимальное значение. Для начала лучше процентов на десять занизить суммарную емкость.
Если двигатель легко запускается и мощности его достаточно для работы, то все подобрано правильно. Если нет – нужно еще подсоединять конденсаторы, пока двигатель не достигнет оптимальной мощности.
СПРАВКА. При подключении трехфазного асинхронного двигателя с короткозамкнутым ротором в однофазную сеть теряется не менее трети его мощности.
Следует помнить, что много не всегда хорошо, и при превышении оптимальной емкости рабочих конденсаторов двигатель будет перегреваться. Перегрев может привести к сгоранию обмоток и выходу электродвигателя из строя.
ВАЖНО! Конденсаторы следует соединять между собой параллельно.
Желательно выбирать конденсаторы с рабочим напряжением не менее 450 вольт. Самыми распространенными являются так называемые бумажные конденсаторы, с буквой Б в наименовании. В настоящее время выпускаются и специализированные, так называемые моторные конденсаторы, например К78-98.
ВНИМАНИЕ! Желательно выбирать конденсаторы для переменного тока. Использование иных тоже возможно, но связано с усложнением схемы и возможными нежелательными последствиями.
В случае, если запуск двигателя осуществляется под нагрузкой и происходит тяжело, необходим еще и пусковой конденсатор. Он включается параллельно рабочему на непродолжительное время пуска электродвигателя. Его емкость должна быть равной или не более чем в два раза превышать емкость рабочего.
Схема подключения электродвигателя 380 на 220 вольт с конденсатором
Подключить трехфазный двигатель в однофазную сеть несложно и с этим справится даже электромонтер-любитель. Если возникают затруднения, следует обратиться к друзьям или знакомым. Рядом всегда найдется грамотный электрик.
Обмотки трехфазных двигателей с рабочим напряжением 380 на 220 для работы в сети на триста восемьдесят вольт соединены по схеме звезда. Это значит, что концы обмоток соединены между собой, а начала подсоединяются в сеть.
Для возможности работы электродвигателя в однофазной сети 220 вольт необходимо для начала его обмотки переключить на схему треугольник. Т.е.
Совет
конец первой соединить с началом второй, конец второй с началом третьей и конец третьей с началом первой.
Источник: https://odinelectric.ru/equipment/kak-podklyuchit-3-faznyj-elektrodvigatel-k-seti-220-volt-cherez-kondensator
Подключение трехфазного двигателя к однофазной сети
Здравствуйте, дорогие читатели и гости сайта «Заметки электрика».
Частенько у каждого из нас возникает необходимость в гараже или на даче подключить трехфазный асинхронный двигатель, например, для наждачного или сверлильного станка, бетономешалки и т.п.
А в наличии имеется только источник однофазного напряжения.
Как быть в данной ситуации?
Все просто. Необходимо трехфазный асинхронный двигатель включить как конденсаторный по следующим классическим схемам.
Еще раз напоминаю, что это самые распространенные схемы подключения трехфазного двигателя к однофазной сети. Существует еще несколько способов включения, но о них в данной статье мы говорить не будем.
Как видно из схем, это осуществляется с помощью рабочего и пускового конденсаторов. Их еще называют фазосдвигающими.
Кстати, со схемой соединения звездой и треугольником обмоток асинхронного двигателя я Вас знакомил в прошлой статье.
Выбор емкости конденсаторов
1. Выбор емкости рабочего конденсатора
Величина емкости рабочего конденсатора (Сраб.) рассчитывается по формуле:
Полученное значение емкости рабочего конденсатора получается в (мкФ).
Вышеприведенная формула может показаться Вам сложной, поэтому Вашему вниманию предлагаю более легкий вариант расчета емкости рабочего конденсатора для подключения трехфазного двигателя к однофазной сети. Для этого Вам необходимо лишь знать мощность (кВт) асинхронного двигателя.
Если сказать еще более проще, то на каждые 100 (Вт) мощности трехфазного двигателя необходимо порядка 7 (мкФ) емкости рабочего конденсатора.
При выборе емкости рабочего конденсатора необходимо контролировать ток в фазных обмотках статора в установившемся режиме. Этот ток не должен превышать номинального значения.
2. Выбор емкости пускового конденсатора
Обратите внимание
Если же у Вас пуск электродвигателя происходит при значительной нагрузке на валу, то параллельно рабочему конденсатору необходимо включать пусковой конденсатор. Включается он только на время пуска двигателя (примерно 2-3 секунды) с помощью ключа SA до набора номинальной частоты вращения ротора, а затем отключается.
Что случится, если забыть отключить пусковые конденсаторы?
Если забыть отключить пусковые конденсаторы, то возникнет сильный перекос по токам в фазах и двигатель может перегреться.
Величина емкости пускового конденсатора выбирается в 2,5-3 раза больше емкости рабочего конденсатора.
В таком случае пусковой момент двигателя становится номинальным и двигатель запустится без проблем.
Необходимая емкость набирается с помощью параллельного и последовательного соединения конденсаторов. Об этом я напишу отдельную статью в разделе «Электротехника«. Следите за обновлениями на сайте. Подписывайтесь на новые статьи.
Трехфазные двигатели мощностью до 1 (кВт) можно включать в однофазную сеть только с рабочим конденсатором. Пусковой конденсатор можно не применять.
Выбор типа конденсаторов
Как выбрать емкость рабочих и пусковых конденсаторов Вы уже знаете. Теперь необходимо разобраться, какой тип конденсаторов можно применять в представленных схемах.
Желательно использовать один и тот же тип конденсаторов, как для рабочих, так и для пусковых конденсаторов.
Чаще всего, для подключения трехфазного двигателя в однофазную сеть, применяют бумажные конденсаторы в металлическом герметичном корпусе типа МПГО, МБГП, КБП или МБГО.
Кое-что я нашел у себя в запасе.
Практически все они имеют прямоугольную форму.
На самом корпусе можно увидеть их параметры:
- емкость (мкФ)
- рабочее напряжение (В)
Но у бумажных конденсаторов есть один недостаток — они выпускаются слишком громоздкие и при этом имеют небольшую емкость. Поэтому при включении трехфазного двигателя небольшой мощности в однофазную сеть, батарея набранных конденсаторов получается «солидная».
Также вместо бумажных конденсаторов можно применять и электролитические, но схема их подключения совершенно другая и содержит в себе дополнительные элементы в виде диодов и резисторов.
Применять Вам электролитические конденсаторы я Вам настоятельно не рекомендую!!!
У них есть недостаток в виде того, что при пробое диода через конденсатор пойдет переменный ток, что вызовет его нагрев и взрыв (выход его из строя).
Важно
Тем более, что в современной электронике вышли в свет новые металлизированные полипропиленовые конденсаторы переменного тока типа СВВ.
Вот например, СВВ60 в круглом корпусе.
Или СВВ61 в прямоугольном корпусе.
В основном, они выпускаются на напряжение 400-450 (В). Вот на них то и стоит обратить внимание — очень хорошо себя зарекомендовали. Нареканий к ним нет. Кстати, такой же конденсатор у меня стоит на сверлильном станке в мастерской.
Выбор напряжения конденсаторов
Также при выборе конденсаторов для трехфазного двигателя в однофазной сети важно правильно учитывать их рабочее напряжение.
Если выбрать конденсатор с большим запасом по напряжению, то это будет не целесообразно и приведет к дополнительным затратам и увеличению габаритных размеров нашей установки.
Если же выбрать конденсатор с рабочим напряжением меньше, чем напряжение сети, то это приведет к преждевременному выходу из строя конденсаторов (даже возможен взрыв).
Принято выбирать рабочее напряжение конденсаторов для схем, указанных в данной статье, равное 1,15 напряжению сети, а еще лучше не менее 300 (В).
Вроде бы все ясно и понятно. Но не стоит забывать, что при использовании бумажных конденсаторов в сети переменного напряжения следует разделить их рабочее напряжение примерно в 1,5-2 раза.
Например, если на бумажном конденсаторе указано напряжение 180 (В), то его рабочее напряжение при переменном токе следует принять 90-120 (В).
Пример подключения трехфазного двигателя к однофазной сети
Чтобы закрепить теорию на практике, рассмотрим пример выбора конденсаторов для подключения трехфазного двигателя АОЛ 22-4 мощностью 400 (Вт) в однофазную сеть. Кстати я уже описывал устройство этого двигателя в предыдущих статьях. Прочитать про него можете здесь.
Цель нашего эксперимента — запустить этот двигатель от однофазной сети 220 (В).
Данные двигателя АОЛ 22-4:
Т.к. мощность этого двигателя небольшая (до 1 кВт), то для его запуска в однофазной сети достаточно будет применить только рабочий конденсатор.
Определим емкость рабочего конденсатора:
Исходя из формул, принимаем среднее значение емкости рабочего конденсатора равной 25 (мкФ).
Совет
Для эксперимента я буду использовать емкость 10 (мкФ). Заодно и посмотрим, можно ли использовать емкость чуть ниже расчетной.
Далее идем в кладовку и ищем подходящие конденсаторы. Нашлись конденсаторы типа МБГО.
Теперь нам необходимо, применив навыки электротехники , собрать из этих конденсаторов необходимую нам емкость.
Емкость одного конденсатора составляет 10 (мкФ).
При параллельном соединении 2 конденсаторов мы получим емкость, равную 20 (мкФ). Но рабочее напряжение у них составляет всего 160 (В). Поэтому для увеличения рабочего напряжения до 320 (В), эти 2 конденсатора соединим последовательно с 2 такими же конденсаторами, соединенных параллельно. Общая их емкость получится 10 (мкФ). Вот как это получилось.
Подключаем полученную батарею рабочих конденсаторов согласно схемы, представленной в начале данной статьи и пробуем запустить трехфазный двигатель в однофазной сети.
Дальнейшие итоги нашего эксперимента смотрите на видео.
Эксперимент завершился УДАЧНО!!!
И вообще мне показалось, что запуск двигателя от однофазной сети с помощью конденсаторов произошел легче и быстрее, чем от трехфазной сети…Выслушаю и Ваше мнение по этому поводу!!!
При включении трехфазного асинхронного двигателя в однофазную сеть его полезная мощность не превысит 70-80% номинальной мощности, а частота вращения ротора практически равна номинальной.
Примечание 1: если у Вас двигатель 380/220 (В), то подключать его в сеть 220 (В) необходимо только треугольником.
Примечание 2: если на бирке указана только схема звезды с напряжением 380 (В), то подключить такой двигатель в однофазную сеть 220 (В) получится только при одном условии. Нужно «распотрошить» общую точку звезды и вывести в клеммник 6 концов. Общая точка чаще всего находится в лобовой части двигателя.
Я думаю Вам будет интересно продолжение этой статьи о том, как осуществить реверс трехфазного двигателя, подключенного к однофазной сети.
Обратите внимание
P.S. Задавайте вопросы по данной теме в комментариях, я с удовольствием отвечу Вам. А также подписывайтесь на новые статьи. Дальше будет интереснее.
Если статья была Вам полезна, то поделитесь ей со своими друзьями:
Источник: http://zametkielectrika.ru/podklyuchenie-trexfaznogo-dvigatelya-k-odnofaznoj-seti/
Подключение трехфазного двигателя к однофазной сети без потери мощности
Как известно, при включении трёхфазного асинхронного двигателя в однофазную сеть, по распространенным конденсаторным схемам: «треугольник», или «звезда», мощность двигателя используется только наполовину (в зависимости от применяемого двигателя).
Кроме того, затруднён запуск двигателя под нагрузкой.
В предлагаемой статье описан метод подключения двигателя без потери мощности.
В различных любительских электромеханических станках и приспособлениях чаще всего используются трехфазные асинхронные двигатели с короткозамкнутым ротором.
К сожалению, трехфазная сеть в быту — явление крайне редкое, поэтому для их питания от обычной электрической сети любители применяют фазосдвигающий конденсатор, что не позволяет в полном объеме реализовать мощность и пусковые характеристики двигателя.
Существующие же тринисторные «фазосдвигающие» устройства еще в большей степени снижают мощность на валу двигателей.
Вариант схемы устройства запуска трехфазного электродвигателя без потери мощности приведен на рис. 1.
Обмотки двигателя 220/380 В соединены треугольником, а конденсатор С1 включен, как обычно, параллельно одной из них. Конденсатору «помогает» дроссель L1, включенный параллельно другой обмотке. При определенном соотношении емкости конденсатора С1, индуктивности дросселя L1 и мощности нагрузки можно получить сдвиг фаз между напряжениями на трех ветвях нагрузки, равный точно 120°.
На рис. 2 приведена векторная диаграмма напряжений для устройства, представленного на рис. 1, при чисто активной нагрузке R в каждой ветви. Линейный ток Iл в векторном виде равен разности токов Iз и Ia, а по абсолютному значению соответствует величине Iф√3, где Iф=I1=I2=I3=Uл/R — фазный ток нагрузки, Uл=U1=U2=U3=220 В — линейное напряжение сети.
Важно
К конденсатору С1 приложено напряжение Uc1=U2, ток через него равен Ic1 и по фазе опережает напряжение на 90°.
Аналогично к дросселю L1 приложено напряжение UL1=U3, ток через него IL1 отстает от напряжения на 90°.
При равенстве абсолютных величин токов Ic1 и IL1 их векторная разность при правильном выборе емкости и индуктивности может быть равной Iл.
Сдвиг фаз между токами Ic1 и IL1 составляет 60°, поэтому треугольник из векторов Iл, Iс1 и IL1 — равносторонний, а их абсолютная величина составляет Iс1=IL1=Iл=Iф√3. В свою очередь, фазный ток нагрузки Iф=Р/ЗUL, где Р — суммарная мощность нагрузки.
Иными словами, если емкость конденсатора С1 и индуктивность дросселя L1 выбрать такими, чтобы при поступлении на них напряжения 220 В ток через них был бы равен Ic1=IL1=P/(√3⋅Uл)=P/380, показанная на рис. 1 цепь L1C1 обеспечит на нагрузке трехфазное напряжение с точным соблюдением сдвига фаз.
Таблица 1
100 | 0.26 | 3.8 | 2.66 |
200 | 0.53 | 7.6 | 1.33 |
300 | 0.79 | 11.4 | 0.89 |
400 | 1.05 | 15.2 | 0.67 |
500 | 1.32 | 19.0 | 0.53 |
600 | 1.58 | 22.9 | 0.44 |
700 | 1.84 | 26.7 | 0.38 |
800 | 2.11 | 30.5 | 0.33 |
900 | 2.37 | 34.3 | 0.30 |
1000 | 2.63 | 38.1 | 0.27 |
1100 | 2.89 | 41.9 | 0.24 |
1200 | 3.16 | 45.7 | 0.22 |
1300 | 3.42 | 49.5 | 0.20 |
1400 | 3.68 | 53.3 | 0.19 |
1500 | 3.95 | 57.1 | 0.18 |
В табл. 1 приведены значения тока Ic1=IL1.
емкости конденсатора С1 и индуктивности дросселя L1 для различных величин полной мощности чисто активной нагрузки.
Реальная нагрузка в виде электродвигателя имеет значительную индуктивную составляющую. В результате линейный ток отстает по фазе от тока активной нагрузки на некоторый угол ф порядка 20…40°.
На шильдиках электродвигателей обычно указывают не угол, а его косинус — широко известный cosφ, равный отношению активной составляющей линейного тока к его полному значению.
Совет
Индуктивную составляющую тока, протекающего через нагрузку устройства, показанного на рис. 1, можно представить в виде токов, проходящих через некоторые катушки индуктивности Lн, подключенные параллельно активным сопротивлениям нагрузки (рис. 3,а), или, что эквивалентно, параллельно С1, L1 и сетевым проводам.
Из рис. 3,б видно, что поскольку ток через индуктивность противофазен току через емкость, катушки индуктивности LH уменьшают ток через емкостную ветвь фазосдвигающей цепи и увеличивают через индуктивную. Поэтому для сохранения фазы напряжения на выходе фазосдвигающей цепи ток через конденсатор С1 необходимо увеличить и через катушку уменьшить
Векторная диаграмма для нагрузки с индуктивной составляющей усложняется. Ее фрагмент, позволяющий произвести необходимые расчеты, приведен на рис. 4.
Полный линейный ток Iл разложен здесь на две составляющие: активную Iлcosφ и реактивную Iлsinφ.
В результате решения системы уравнений для определения необходимых значений токов через конденсатор С1 и катушку L1:
IC1sin30° + IL1sin30° = Iлcosφ, IC1cos30° — IL1cos30° = Iлsinφ,
получаем следующие значения этих токов:
IC1 = 2/√3⋅Iлsin(φ+60°), IL1 = 2/√3⋅Iлcos(φ+30°).
При чисто активной нагрузке (φ=0) формулы дают ранее полученный результат Ic1=IL1=Iл.
На рис. 5 приведены зависимости отношений токов Ic1 и IL1 к Iл от cosφ, рассчитанные по этим формулам Для (cosφ = √3/2 = 0,87) ток конденсатора С1 максимален и равен 2/√3Iл = 1.15Iл, а ток дросселя L1 вдвое меньше.
Этими же соотношениями с хорошей степенью точности можно пользоваться для типовых значений cosφ, равных 0,85…0,9.
Таблица 2
100 | 0.35 | 0.18 | 5.1 | 3.99 |
200 | 0.70 | 0.35 | 10.2 | 2.00 |
300 | 1.05 | 0.53 | 15.2 | 1.33 |
400 | 1.40 | 0.70 | 20.3 | 1.00 |
500 | 1.75 | 0.88 | 25.4 | 0.80 |
600 | 2.11 | 1.05 | 30.5 | 0.67 |
700 | 2.46 | 1.23 | 35.6 | 0.57 |
800 | 2.81 | 1.40 | 40.6 | 0.50 |
900 | 3.16 | 1.58 | 45.7 | 0.44 |
1000 | 3.51 | 1.75 | 50.8 | 0.40 |
1100 | 3.86 | 1.93 | 55.9 | 0.36 |
1200 | 4.21 | 2.11 | 61.0 | 0.33 |
1300 | 4.56 | 2.28 | 66.0 | 0.31 |
1400 | 4.91 | 2.46 | 71.1 | 0.29 |
1500 | 5.26 | 2.63 | 76.2 | 0.27 |
В табл.
2 приведены значения токов IC1, IL1, протекающих через конденсатор С1 и дроссель L1 при различных величинах полной мощности нагрузки, имеющей указанное выше значение cosφ = √3/2.
Для такой фазосдвигающей цепи используют конденсаторы МБГО, МБГП, МБГТ, К42-4 на рабочее напряжение не менее 600 В или МБГЧ, К42-19 на напряжение не менее 250 В.
Дроссель проще всего изготовить из трансформатора питания стержневой конструкции от старого лампового телевизора. Ток холостого хода первичной обмотки такого трансформатора при напряжении 220 В обычно не превышает 100 мА и имеет нелинейную зависимость от приложенного напряжения.
Обратите внимание
Если же в магнитопровод ввести зазор порядка 0,2…1 мм, ток существенно возрастет, а зависимость его от напряжения станет линейной.
Сетевые обмотки трансформаторов ТС могут быть соединены так, что номинальное напряжение на них составит 220 В (перемычка между выводами 2 и 2′), 237 В (перемычка между выводами 2 и 3′) или 254 В (перемычка между выводами 3 и 3′). Сетевое напряжение чаще всего подают на выводы 1 и 1′. В зависимости от вида соединения меняются индуктивность и ток обмотки.
В табл. 3 приведены значения тока в первичной обмотке трансформатора ТС-200-2 при подаче на нее напряжения 220 В при различных зазорах в магнитопроводе и разном включении секций обмоток.
Сопоставление данных табл. 3 и 2 позволяет сделать вывод, что указанный трансформатор можно установить в фазосдвигающую цепь двигателя с мощностью примерно от 300 до 800 Вт и, подбирая зазор и схему включения обмоток, получить необходимую величину тока.
Индуктивность изменяется также в зависимости от синфазного или противофазного соединения сетевой и низковольтных (например, накальных) обмоток трансформатора.
Максимальный ток может несколько превышать номинальный ток в рабочем режиме. В этом случае для облегчения теплового режима целесообразно снять с трансформатора все вторичные обмотки, часть низковольтных обмоток можно использовать для питания цепей автоматики устройства, в котором работает электродвигатель.
Таблица 3
0.2 | 0.63 | 0.54 | 0.46 |
0.5 | 1.26 | 1.06 | 0.93 |
1 | — | 2.05 | 1.75 |
В табл. 4 приведены номинальные величины токов первичных обмоток трансформаторов различных телевизоров и ориентировочные значения мощности двигателя, с которыми их целесообразно использовать фазосдвигающую LC-цепь следует рассчитывать для максимально возможной нагрузки электродвигателя.
Таблица 4
ТС-360М | 1.8 | 600…1500 |
ТС-330К-1 | 1.6 | 500…1350 |
СТ-320 | 1.6 | 500…1350 |
СТ-310 | 1.5 | 470…1250 |
ТСА-270-1, ТСА-270-2,ТСА-270-3 | 1.25 | 400…1250 |
ТС-250, ТС-250-1, ТС-250-2, ТС-250-2М,ТС-250-2П | 1.1 | 350…900 |
ТС-200К | 1 | 330…850 |
ТС-200-2 | 0.95 | 300…800 |
ТС-180, ТС-180-2, ТС-180-4,ТС-180-2В | 0.87 | 275…700 |
При меньшей нагрузке необходимый сдвиг фаз уже не будет выдерживаться, но пусковые характеристики по сравнению с использованием одного конденсатора улучшатся.
Экспериментальная проверка проводилась как с чисто активной нагрузкой, так и с электродвигателем.
Функции активной нагрузки выполняли по две параллельно соединенных лампы накаливания мощностью 60 и 75 Вт, включенные в каждую нагрузочную цепь устройства (см рис.
Важно
1), что соответствовало общей мощности 400 Вт В соответствии с табл.
1 емкость конденсатора С1 составляла 15 мкф Зазор в магнитопроводе трансформатора ТС-200-2 (0,5 мм) и схема соединения обмоток (на 237 В) были выбраны из соображений обеспечения необходимого тока 1,05 А.
Измеренные на нагрузочных цепях напряжения U1, U2, U3 отличались друг от друга на 2…3 В, что подтверждало высокую симметрию трехфазного напряжения.
Эксперименты проводились также с трехфазным асинхронным двигателем с короткозамкнутым ротором АОЛ22-43Ф мощностью 400 Вт. Он работал с конденсатором С1 емкостью 20 мкф (кстати, такой же, как и при работе двигателя только с одним фазосдвигающим конденсатором) и с трансформатором, зазор и соединение обмоток которого выбраны из условия получения тока 0,7 А.
В результате удалось быстро запустить двигатель без пускового конденсатора и заметно увеличить крутящий момент, ощущаемый при торможении шкива на валу двигателя.
К сожалению, провести более объективную проверку затруднительно, поскольку в любительских условиях практически невозможно обеспечить нормированную механическую нагрузку на двигатель.
Следует помнить, что фазосдвигающая цепь — это последовательный колебательный контур, настроенный на частоту 50 Гц (для варианта чисто активной нагрузки), и без нагрузки подключать к сети эту цепь нельзя.
Источник: http://electro-shema.ru/energetika/podklyuchenie-trexfaznogo-dvigatelya-k-odnofaznoj-seti-bez-poteri-moshhnosti.html
Как подключить 3ех фазного двигатель к однофазной сети
Бывают ситуации, когда нужно подключить электроприбор не так, как записано в его паспорте.
К примеру, часто требуется подключение трехфазного двигателя к однофазной сети, что, хотя и снижает его мощность, иногда бывает вполне оправданным.
Существуют основные схемы включения таких электродвигателей, которые широко и успешно применяются на практике. Также есть и некоторые нюансы, помогающие решать неожиданные трудности, связанные с отсутствием тех или иных материалов.
ОГЛАВЛЕНИЕ
- Работа такого двигателя в однофазной сети
- Расчет конденсаторов
- Модели конденсаторов
- Данные двигателя
Работа такого двигателя в однофазной сети
Для правильного понимания поставленной задачи нужно четко представлять, по какому принципу работают трехфазные электродвигатели.
Имея три обмотки, смещенные на 120°, они находятся в идеальных условиях: магнитное поле равномерно вращается по окружности, создавая движущую силу без каких-либо рывков и пульсаций.
После подачи в схему напряжения, появляется пусковой момент, и ротор начинает раскручиваться до рабочих оборотов.
Работа трехфазного двигателя
Трехфазный ток можно представить как три однофазные схемы, также смещенные друг относительно друга на 120°. Понятно, почему двигатель будет работать без рывков: при повороте ротора на каждую треть, он «подхватывается» следующей фазой, которая «провожает» его еще на треть оборота. И как результат получается полный оборот.
Но вот возникла необходимость включения такого аппарата на одной фазе. Если просто взять, и на любые две обмотки подать такое напряжение, то ничего не произойдет.
В одной из катушек статора будет пульсирующее магнитное поле, никак не влияющее ни на что больше. Пускового момента нет, крутящего тоже – двигатель будет только нагреваться. Но теперь, зная принцип работы таких машин, несложно понять, что нужно.
Необходимо задействовать все три обмотки, при этом должно быть смещение по фазам.
Совет
Подключение такого типа двигателя к однофазной сети производится по самой распространенной схеме – с пусковым конденсатором. Такой метод позволяет задействовать все три обмотки, а также создать необходимый сдвиг по фазам.
Обмотки электродвигателя можно включить по двум основным схемам: звезда и треугольник. В зависимости от этого различается и подключение конденсатора.
Можно было бы обойтись и одним конденсатором, но чаще всего электродвигатели имеют какую-то нагрузку, а значит, чтобы их запустить, нужна будет дополнительная емкость. Поэтому в цепь нужно кратковременно включить дополнительный емкостной элемент – пусковой конденсатор.
Расчет конденсаторов
Понятно, что к цепи запуска нельзя подключать первый попавшийся конденсатор. Если емкость будет больше чем нужно, электродвигатель будет греться, если меньше – не будет устойчиво работать. Существуют специальные расчеты для нахождения нужных значений.
Пример расчетов для конденсатора
I – фазный ток статора. Его лучше всего измерить клещами, либо, если нет такой возможности, можно взять значения, указанные на шильде – бирке на станине двигателя.
Емкость пускового конденсатора берется из расчета 2–3 Сраб.
Источник: http://ElectricVDele.ru/elektrooborudovanie/elektrodvigateli/podklyuchenie-trehfaznogo-dvigatelya-k-odnofaznoj-seti.html
Подключение трехфазного двигателя к однофазной сети: схемы соединения обмоток и конденсаторы, емкость, реверс
Подключение трёхфазного двигателя к однофазной цепи может потребоваться просто потому, что другого нет под рукой, или нужно сэкономить, или просто захотелось смастерить что-то своими руками из старых запасов.
Тем более асинхронники (это практически все 3-фазные электромоторы, могущие встретиться на жизненном пути Самоделкина) имеют одно очень важное конструкционное преимущество: у них нет электрических щёток — лишней расходной детали.
380в — это напряжение между фазами в трёхфазной цепи (линейное), а 220в — напряжение между фазой и нулём (фазное) в той же самой цепи.
В обычной однофазной цепи: дома, на даче или в гараже есть только два провода — ноль и фаза; сейчас в новых постройках появился защитный ноль (заземление) — провод жёлто-зелёного цвета, он подходит к «рогам» розетки, его в расчёт не принимаем, о заземлении разговор совсем другой.
Возникает вопрос о том, где взять недостающие фазы.
Применение фазорасщепителя или инвертора (устройство, преобразующее однофазный электрический ток в трёхфазный) рассматривать не будем, не стоит принимать во внимание и индукционный с помощью катушек индуктивности способ сдвига фаз. Пойдём другим путём, ёмкостным — подключение электродвигателя 380 В на 220 В через конденсатор. Этот метод является самым простым и оптимальным, легким в реализации.
То, что имеется сам трёхфазный электродвигатель, ясно по умолчанию, нужно только определить схему подключения его обмоток и как подключить двигатель 380 на 220.
Для этого надо вскрыть клеммную коробку электродвигателя и если в ней только три клеммы, стало быть, обмотки статора соединены звездой и для переделки на треугольник, а когда на шильдике движка указано рабочее напряжение 380 В, то это нужно, придётся открывать заднюю крышку мотора, искать выводы обмоток, переключать их. Тут рекомендуется позвать опытного электрика.
В коробке шесть клемм, расположенных двумя рядами — по три штуки в каждом. Рассмотрим возможные варианты
- Три клеммы ОДНОГО ряда соединены между собой — звезда.
- МЕЖДУРЯДНОЕ соединение клемм попарно — треугольник.
Какую схему соединения обмоток выбрать
Читаем информацию о рабочем напряжении на табличке:
- 380В — только треугольник.
- 380В/220В — треугольник или звезда.
- 220/127 — только звезда. Очень редкий вариант.
Нужно иметь в виду, что при соединении треугольником на обмотку попадает напряжение в 1,7 раза больше, чем при соединении звездой, а значит и реализуемая мощность будет выше, но звезда обеспечивает плавный пуск.
Подбираем конденсатор
В цепи переменного тока — а это как раз наш случай — не стоит пользоваться полярными, имеющими плюсовой и минусовой контакты (анод и катод) конденсаторами.
Но при необходимости эту проблему обойти можно путём использования диодного моста или двух полярных конденсаторов, объединённых в один соединением одноимённых контактов, но тут опять лучше позвать опытного электрика.
Существует формула потребной ёмкости рабочего конденсатора, но рассчитав по ней, равно потребуется проверять работу устройства на практике. Если есть какие-то конденсаторы лучше сразу перейти к методу вдумчивого подбора, но именно вдумчивого, а не совсем бездумного. Конденсаторы должны быть неполярными, обладать одинаковым рабочим напряжением никак не менее 300 В, но лучше 400 В и выше.
- Рабочее напряжение конденсаторов должно быть ОДИНАКОВЫМ, иначе тот, где оно меньше, выйдет из строя.
Начните со значения 30 микрофарад (μF) на 1 киловатт паспортной мощности мотора при соединении обмоток статора звездой, при треугольнике можно пробовать с 50−70 μF.
Электродвигатель на холостом ходу (без нагрузки) должен запуститься и набрать обороты не особо нагреваясь, продолжительная работа на холостом ходу нежелательна, двигатель может сгореть.
Если холостой запуск происходит нормально, без перегрева и запаха гари, то рабочий конденсатор подобран, на нём и будет работать, подключайте нагрузку и продолжайте испытания уже в рабочем состоянии.
Обратите внимание
А если подключение электродвигателя 380 В на 220 В через конденсатор происходит сразу под серьёзной нагрузкой? Тут потребуется стартовый конденсатор, его ёмкость нужно начинать подбирать со значений в полтора раза больше, чем рабочий.
Пример: рабочий 60 μF, тогда стартовый первоначально ставим на 90 μFи, если нормального запуска нет, то добавляем ёмкость пусковой цепи конденсаторов (примерная ёмкость пусковой цепи составляет до трёх рабочей, в нашем примере до 180 μF). После выхода на рабочие обороты пусковые конденсаторы выключаются, остаётся только рабочий.
Цепи рабочего и пускового конденсаторов параллельны, в каждую можно поставить отдельный выключатель.
В бытовой сети не нужно использовать устройства мощностью более 3 квт — сработает защита или сгорит проводка.
Подсчет итоговой ёмкости
При параллельном соединении конденсаторов их ёмкости складываются, а вот при последовательном — наоборот, суммарная ёмкость будет меньше, тут равна сумма обратных значений.
Когда два одинаковых конденсатора соединяются параллельно суммарная ёмкость удваивается, а если последовательно, то уменьшается в два раза. То есть сумма ёмкости двух конденсаторов по 100 микрофарад может быть и 200 μF, и 50 μF.
Всё зависит от типа их соединения между собой.
Другой пример: суммарная ёмкость конденсаторов 60 μF и 90 μF при параллельном соединении будет 150 μF, при последовательном — 36 μF. Это можно творчески использовать при подборе из того, что есть, или при покупке подешевле.
Реверс
Для изменения направления вращения ротора нужно переключить ёмкостную цепь на другой провод или клемму коробки электродвигателя. На одну клемму подаётся фаза, на другую ноль, включение конденсаторной группы производим к третьей. Теперь при подключении второго провода конденсатора к фазе мотор крутится в одну сторону, к нулю — в другую.
Этого достаточно, чтобы разобраться в том как подключить трёхфазный двигатель на 220, но если всё получилось и вроде работает правильно крутит, не греется, не горит окончательно убедиться в правильности собранной схемы поможет нехитрая и в этом случае необязательная проверка. Во время работы с постоянной, одинаковой нагрузкой с помощью токоизмерительных клещей померьте токи в фазном, нулевом и конденсаторном проводах. В идеале они должны быть равны между собою, если и есть небольшие различия (процентов 30), то это не идеал, но всё-таки хорошо.
А исправляется различие токов просто — путём изменения ёмкости рабочего конденсатора. Нужно не делать резких движений и не сжечь обмотку, установив слишком большую ёмкость рабочего конденсатора.
Источник: https://tokar.guru/stanki-i-oborudovanie/dvigateli/shema-podklyucheniya-trehfaznogo-dvigatelya-k-odnofaznoy-seti.html
Подключение трехфазного двигателя к сети
За счет простой конструкции и легкости обслуживания асинхронные электрические двигатели находят широкое применение практически в любой сфере от промышленных предприятий до бытовой техники. Из-за особенности рабочего принципа они по-разному подключаются к трехфазным и однофазным электросетям.
Содержание:
Принцип работы
Асинхронный трехфазный электродвигатель представляет собой конструкцию из двух основных компонентов: статора – большого неподвижного элемента, служащего одновременно и корпусом двигателя, и ротора – подвижной детали, передающей механическую энергию на вал. Читайте более подробно о принципе работы асинхронного двигателя в отдельной статье. Очень рекомендуем сделать это, т.к. информация там может быть полезна в работе!
Коротко, статор представляет собой корпус, внутри которого находится сердечник или магнитопровод.
Внешне он похож на беличье колесо и собирается из электротехнической стали, изолированный с помощью нанесения специального лака.
Такая конструкция снижает количество вихревых токов, появляющихся при воздействии с круговым магнитным полем двигателя. В пазах сердечника располагаются три обмотки, на которые подается питание.
Ротор представляет собой шихтованный сердечник и вал. Стальные листы, используемые в роторном сердечнике, не обрабатываются лаком-изолятором. Обмотка ротора – короткозамкнутая.
https://www.youtube.com/watch?v=ukl8nctMpTI
Рассмотрим принцип действия этой конструкции. После подачи энергии на асинхронный двигатель с короткозамкнутым ротором на фиксированных обмотках статора создается магнитное поле.
При подключении к сети с синусоидальным переменным током, характер поля будет изменяться с изменением показателей сети.
Поскольку обмотки статора смещены относительно друг друга не только в пространстве, но и во времени, возникают три магнитных потока со смещением, в результате взаимодействия которых возникает вращающееся результирующее поле, проводящее ротор в движение.
Важно
Несмотря на то, что фактически ротор неподвижен, вращение магнитных полей на обмотках статора создает относительно вращение, что и приводит его в движение.
Результирующее поле, «собранное» потоками обмоток, в процессе вращения наводит электродвижущую силу в проводники ротора.
Согласно правилу Ленца, основное поле буквально пытается догнать поток на обмотках с целью сокращения относительной скорости.
Асинхронные двигателя относятся к электрическим машинам и, следовательно, могут использоваться не только в качестве моторов, но и как генераторы. Для этого необходимо, чтобы вращение ротора осуществлялось через некий внешний источник энергии, например, через другой двигатель или воздушную турбину.
При наблюдении остаточного магнетизма на роторе, то в обмотках статора также будет генерироваться переменный поток, что приведет к получению напряжения на них за счет принципа индукции.
Такие генераторы называют индукционными, они находят в бытовой и хозяйственной сфере для обеспечения бесперебойной работы непостоянных сетей переменного тока.
Подключение к однофазной сети через конденсатор
Подключение трехфазного двигателя к однофазной сети невозможно в чистом виде, без изменения схемы питания. Дело в том, что для создания вращающегося магнитного потока необходимо наличие как минимум двух обмоток со сдвигом по фазе, за счет которого и создает относительное движение статора.
Если мотор подключить к бытовой однофазной сети напрямую, подав питание на одну из обмоток статора, он не будет работать. Это связано с тем, что одна работающая фаза создает пульсирующее поле, которое может обеспечивать движение вращающегося ротора, но не способно запустить его.
Для решения этой проблемы в двигателе размещается дополнительная обмотка под углом в 90˚ относительно основной, в цепь которой последовательно включен фазосмещающий элемент.
В этом качестве могут выступать резисторы, индукционные катушки и другие устройства, однако лучшую эффективность показало применение конденсаторов.
Совет
Дополнительная обмотка, создаваемая с помощью конденсаторов, чаще всего выступает в роли пускателя двигателя, поэтому её называют пусковой. По достижении определенной температуры и скорости вращения вала срабатывает переключатель, размыкающий цепь. После этого работа двигателя обеспечивает взаимодействием между ротором и пульсирующим полем рабочей обмотки, как уже было описано выше.
Для обеспечения максимальной эффективности работы необходимо использование конденсаторов, чья ёмкость подходит под сетевые показатели. Кроме того, нередко в таких двигателях используется магнитный пускатель или реле тока для автоматического управления рабочим процессом. В видео ниже, будет и про магнитный пускатель.
Функциональные особенности подключения асинхронного двигателя с одним конденсатором отличаются хорошими пусковыми характеристиками, но сравнительно небольшой мощностью.
Поскольку частота бытовой сети с напряжением 220 В составляет 50 Гц, такие моторы не могут вращаться со скоростью более 3000 об/мин.
Это сокращает сферу их использования до бытовых приборов: пылесосов, холодильников, триммеров, блендеров и т.д.
Очень настоятельно рекомендуем посмотреть два видео ролика в этом разделе (одно сверху, другое снизу), т.к. наглядное пособие, может быть крайне полезным.
Подключение без конденсатора
Для подключения асинхронного двигателя в однофазную сеть без использования конденсаторов существуют две популярные схемы. Для обеспечения работы двигателя берутся синисторы с разнополярными импульсами управления и симметричный динистор.
Первая схема предназначена для электродвигателей с величиной номинального вращения от 1500 об/мин. В качестве фазосмещающего элемента выступает специальная цепочка. Схема соединения обмоток статора – треугольник.
Необходимо создать сдвинутое напряжение на конденсаторе путем изменения сопротивления. После того, как напряжение конденсатора достигнет нужного уровня, динистор переключится и включит заряженный конденсатор в схему запуска.
Обратите внимание
Вторая схема подходит для электродвигателей с большим пусковым сопротивлением или номинальной скоростью вращения от 3000 об/мин.
Очевидно, в данной ситуации необходимо создать сильный пусковой момент. Именно по этой причине в машинах этого типа для подключения статорных обмоток используется треугольник.
Вместо фазосдвигающих конденсаторов в этой схеме применяются электронные ключи. Первый из них последовательно включается в цепь рабочей фазы, а второй – параллельно. В результате этой хитрости создается опережающий сдвиг тока.
Однако данный способ эффективен только для двигателей 120˚ электрическим смещением.
Трехфазный электромотор можно подключить с помощью тиристорного ключа. Это, пожалуй, самый простой и эффективный способ подключения асинхронного двигателя в однофазную сеть без конденсаторов.
Принцип его действия таков: ключ остается закрытым во время максимального сопротивления. Благодаря этому создается наибольший фазовый сдвиг и, соответственно, пусковой момент.
По мере ускорения вала сопротивление снижается до оптимального уровня, сохраняющего сдвиг по фазе в пределах значения, обеспечивающего работу двигателя.
При наличии тиристорного ключа можно и вовсе отказаться от конденсаторов – он демонстрирует лучшие рабочие и пусковые характеристики даже для двигателей мощностью более 2 кВт.
Реверс электродвигателя в однофазной сети
При подключении асинхронного двигателя в сеть с однофазным током управлять реверсом (обратным вращением) ротора можно с помощью третьей обмотки. Для этого необходим тумблер или аналогичный двухпозиционный переключатель.
Сначала с ним через конденсатор соединяется третья обмотка. Два контакта тумблера подключаются к двум другим обмоткам. Такая простая схема позволит управлять направлением вращения, переводя переключатель в нужное положение.
Подключение к трехфазной сети двигателя с короткозамкнутым ротором
Самыми эффективными и часто используемыми способами подключения асинхронного двигателя к трехфазной сети являются так называемые звезда и треугольник.
В конструкции двигателя с короткозамкнутым ротором есть всего шесть контактов обмоток – по три на каждой. Для того чтобы подключить асинхронный двигатель звездой необходимо соединить концы обмоток в одном месте, подобно лучам звезды.
Примечательно, что в такой схеме напряжение у начал обмоток составляет 380 В, а на участке цепи, пролегающем между их соединением и местом подключения фаз – 220 В.
Важно
Возможность включения двигателя данным методом указывается на его бирке символом Y.
Главное достоинство этой схемы в том, что она предотвращает возникновение перегрузок по току на электродвигателе при условии использования четырехполюсного автомата. Машина запускает плавно, без рывков. Недостаток схемы в том, что пониженное напряжение на каждой из обмоток не дает двигателю развивать максимальную мощность.
Если электродвигатель с короткозамкнутым ротором был подключен по схеме звезда, это можно заметить по общей перемычке на концах обмоток.
Асинхронный двигатель, звезда в сборе
Для обеспечения предельной рабочей мощности трехфазного электродвигателя его подключают к сети треугольником. В этой схеме обмотки статора соединяются друг с другом по принципу конец-начало.
При питании от трехфазной сети нет необходимости в соединении с рабочим нулем. Напряжение на участках цепи между выводами будет равняться 380 В. На табличке двигателя, подходящего для подключения треугольников, изображается символ ∆.
Иногда производитель даже указывает номинальную мощность при использовании той или иной схемы.
схема подключения «треугольник»
Главный недостаток треугольника – пусковые токи слишком большой величины, которые иногда перегружают проводку и выводят её из строя. В качестве оптимального решения изредка создают комбинированную схему, в которой запуск и набор скорости происходит при «звезде», а затем обмотки переключают на «треугольник».
Подключение с фазным ротором
Асинхронные электродвигатели с фазным ротором имеют высокие пусковые и регулировочные характеристики, благодаря чему применяются в высокомощных машинах и приборах малой мощности. Конструктивно этот асинхронный двигатель отличается от обычного трехфазного тем, что на роторе есть своя трехфазная обмотка со сдвинутыми катушками.
Для подключения электродвигателей с фазным ротором применяются описанные выше схемы звезда и треугольник (для 380 В и 220 В сетей соответственно). Стоит заметить, что для того или иного двигателя может быть использована только одна схема, указанная в паспорте. Пренебрежение этим требованием может привести к сгоранию мотора.
Соединение обмоток в клеммной коробке производится так же, как на схемах из предыдущего способа. Изменение рабочих характеристик так же закономерно: треугольник выдает практически в полтора раза большую мощность, а звезда, в свою очередь, мягче функционирует и управляется.
Совет
В отличие от моделей с короткозамкнутым ротором, асинхронный двигатель с трехфазным ротором имеет более сложную конструкцию, но это позволяет получать улучшенные пусковые характеристики и обеспечивать плавную регулировку вращения. Используются такие машины в оборудовании, требуемом регулировки частоты вращения и запускаемом под нагрузкой, к примеру, в крановых механизмах.
Это может быть интересно:
Источник: http://TokIdet.ru/elektrooborudovanie/elektrodvigateli/podkljuchenie-trehfaznogo-dvigatelja.html
Напряжение— Как мне успешно подключить трехфазный двигатель с однофазным напряжением 220 В? Напряжение
— Как мне успешно подключить трехфазный двигатель с однофазным напряжением 220 В? — Обмен электротехнического стекаСеть обмена стеков
Сеть Stack Exchange состоит из 176 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.
Посетить Stack Exchange- 0
- +0
- Авторизоваться Зарегистрироваться
Electrical Engineering Stack Exchange — это сайт вопросов и ответов для профессионалов в области электроники и электротехники, студентов и энтузиастов.Регистрация займет всего минуту.
Зарегистрируйтесь, чтобы присоединиться к этому сообществуКто угодно может задать вопрос
Кто угодно может ответить
Лучшие ответы голосуются и поднимаются наверх
Спросил
Просмотрено 956 раз
\ $ \ begingroup \ $У меня есть дробилка для пластика с трехфазным двигателем, и я хотел бы использовать ее с однофазным напряжением 220 В.
Может ли кто-нибудь помочь мне с инструкциями по подключению?
Также я хочу знать, буду ли я использовать два конденсатора? (пусковой конденсатор и рабочий конденсатор)
Могу ли я узнать точное значение конденсатора (ей), которое мне потребуется?
Я приложил изображение этикетки двигателя, изображение контактора двигателя и изображение проводки двигателя.
Заранее спасибо.
Дэниел К67922 серебряных знака1111 бронзовых знаков
Создан 05 июл.
Ммади1111 бронзовый знак
\ $ \ endgroup \ $ 1 \ $ \ begingroup \ $Если ваш бюджет позволяет, вам следует приобрести VFD (частотно-регулируемый привод).Он может создавать трехфазные сигналы с разными фазовыми сдвигами и частотами, что дает вам возможность контролировать скорость, направление, мощность и т. Д. Вашего двигателя. Их можно найти на eBay по умеренным ценам, чем они мощнее, тем дороже. Вероятно, есть и другие варианты, но, учитывая, что три фазы имеют решающее значение для работы двигателя, я не думаю, что вы можете просто подключить его к одной фазе без какого-либо контроллера двигателя.
Винни7,335 золотых знаков3232 серебряных знака4545 бронзовых знаков
Создан 05 июл.
\ $ \ endgroup \ $ \ $ \ begingroup \ $Существует три основных подхода к работе трехфазного двигателя от однофазного источника питания.Ни один из них не так удобен, как покупка однофазного двигателя в первую очередь.
- Преобразователь статической фазы. Это включает в себя индивидуальное расположение конденсаторов для сдвига фазы. Вот коммерческий поставщик. Он не дает полного крутящего момента и имеет относительно низкую эффективность , поэтому я думаю, что он не подходит для дробилки с высокими пиковыми нагрузками. Есть много самостоятельных подходов, которые вы можете использовать в Google, если хотите повозиться. Будет два ограничения пробега плюс стартовый предел.Изображение ниже взято с этого веб-сайта, на котором есть подробная информация о том, как рассчитать номиналы конденсаторов.
Поворотный фазовый преобразователь. Это включает в себя запуск (часто более крупного) трехфазного холостого двигателя в качестве генератора от однофазного источника питания. Вот коммерческий поставщик. Это не так безумно, как кажется, поскольку (бывшие в употреблении) трехфазные двигатели часто можно купить по цене, близкой к цене лома. Опять же, есть много самостоятельных подходов, которые вы можете использовать в Google — раньше это был популярный способ привести в действие промышленный фрезерный станок Bridgeport в гараже любителя.Иногда двигатель оснащен подходящим стартером, иногда используется веревка на валу двигателя (в противном случае не нагруженном) (для меня это звучит немного опасно). Схема аналогична статическому фазовому преобразователю, за исключением того, что параллельно двигателю имеется холостой двигатель и обычно пускатель контактора и таймер.
VFD (частотно-регулируемый привод). Это блок, который преобразует входящую мощность (одно- или трехфазную, в зависимости от конструкции) в постоянный ток, а затем использует IGBT или MOSFET для преобразования постоянного тока обратно в трехфазный переменный ток с переменной частотой.Это имеет то преимущество, что позволяет изменять число оборотов двигателя. Их количество упало совсем немного за последние годы, и очень недорогие доступны из Азии. Выше относительно низкого диапазона мощности им обычно требуется трехфазная входная мощность для получения постоянного тока. Ваш двигатель составляет около 7,5 л.с., поэтому, если вы пойдете по этому пути, убедитесь, что вы указали , который обеспечивает однофазную входную мощность . Некоторые из них допускают однофазную или трехфазную входную мощность, но значительно снижают максимальную мощность при использовании одной фазы.Электроника слишком сложна (а коммерческие продукты относительно дешевы), чтобы подходы «сделай сам» были практичными. Схема — это только включение и выключение питания плюс заземление.
Создан 05 июл.
Спехро Пефани291k1212 золотых знаков240240 серебряных знаков607607 бронзовых знаков
\ $ \ endgroup \ $ 5 \ $ \ begingroup \ $Старомодной альтернативой современному ЧРП, как упоминалось в другом ответе, был бы «роторный инвертор».Роторный инвертор — это просто электродвигатель, приводящий в действие генератор переменного тока. Использование однофазного двигателя и трехфазного генератора переменного тока даст требуемый результат.
Создан 05 июля ’19 в 14: 342019-07-05 14:34
Саймон Б.Симон Б.11.3k11 золотых знаков1717 серебряных знаков3232 бронзовых знака
\ $ \ endgroup \ $ \ $ \ begingroup \ $Двигатель уже подключен в треугольник, поэтому, если на заводской табличке указано 380 В, теперь это 220 В.Подключите конденсатор, как показано. Значение зависит от протянутого тока. Ток через конденсатор будет меньше (примерно 1/2) при запуске, а не больше, поэтому, если вы запускаете его под нагрузкой, вам понадобится конденсатор большего размера при запуске (возможно, до 10x). Характеристики крутящего момента не будут такими хорошими, как у трехфазного. Используйте номинальный ток 220 В, указанный на паспортной табличке, в качестве ориентира для расчета емкости конденсатора, затем вы можете отрегулировать значение, чтобы ток был равен току других фаз. Используйте конденсатор, рассчитанный на работу двигателя, или конденсатор (ы) коррекции коэффициента мощности.Я не знаю, какое сочетание рейтингов у этого мотора. Даже производитель не знает. Двигатель с частотой 50 Гц не работает со скоростью 1680 об / мин, а двигатель с частотой 60 Гц обычно не рассчитан на 220 В (если только он не из Южной Америки). Кроме того, у двигателя такого размера не так много пробуксовки. На 60 Гц он будет работать со скоростью около 1750 об / мин.
Создан 27 окт.
\ $ \ endgroup \ $ \ $ \ begingroup \ $Из-за стоимости подходящего колпачка из полиуретановой пластмассовой сетки. Сопротивление импедансу двигателя больше, чем у частотно-регулируемого привода, поэтому ищите только наиболее подходящий для ваших нужд по току в решении с частотно-регулируемым приводом.Затраты в вашем диапазоне составляют ~ <10 долларов США в год для трехфазных частотно-регулируемых приводов. До 25 долларов за штуку. например https://www.ato.com/single-phase-to-three-phase-vfd. Это не значит, что это предпочтительный источник, а просто пример хорошего.
Два человека проголосовали против этого правильного ответа. -2 неверны и молчат. Предупреждаем читателей.
Статические емкостные преобразователи фазыНЕ РЕКОМЕНДУЮТСЯ для ТЯЖЕЛЫХ ПРИМЕНЕНИЙ, таких как ДРОБИЛКА ДЛЯ ПЛАСТИКА. Причина в том, что ВЫ ПОЛУЧАЕТЕ ТОЛЬКО <50% НАИМЕНОВАННОЙ ЛОШАДИ.Поэтому ответы, предлагающие СТАТИЧЕСКИЕ ПРЕОБРАЗОВАТЕЛИ примерно по той же цене, что и хороший ЧРП, НЕ РЕКОМЕНДУЮТСЯ.
Создан 05 июля ’19 в 14: 592019-07-05 14:59
Тони Стюарт EE75 Тони Стюарт EE75111k33 золотых знака4141 серебряный знак149149 бронзовых знаков
\ $ \ endgroup \ $ 1 Электротехнический стек Exchange лучше всего работает с включенным JavaScriptВаша конфиденциальность
Нажимая «Принять все файлы cookie», вы соглашаетесь, что Stack Exchange может хранить файлы cookie на вашем устройстве и раскрывать информацию в соответствии с нашей Политикой в отношении файлов cookie.
Принимать все файлы cookie Настроить параметры
Привод однофазных асинхронных двигателей на трехфазном инверторе
Я поэкспериментировал на эту тему с мотором потолочного вентилятора (крылья отсоединены) с номинальной мощностью 80 Вт, указанной на устройстве.Двигатель представляет собой двигатель с постоянным разделением конденсаторов, рассчитанный на 230 В / 50 Гц. Мой цифровой мультиметр показывал именно это напряжение для подключения к сети. Напряжение, измеренное на вспомогательной обмотке, составило 226 В при нормальной работе двигателя в исходной форме. Приводом был Siemens Micromaster 410 мощностью 0,37 кВт.
Я измерил температуру вращающегося барабана двигателя с исходной установкой (с помощью ИК-метра). Температура варьировалась от примерно 50 градусов на внешнем крае вращающегося внешнего барабана до примерно 55 градусов возле оси после работы двигателя более часа
Затем я удалил конденсатор и подключил основную обмотку и вспомогательную обмотку одним концом к двум выходным разъемам привода, а общую точку обмоток — к третьему разъему, чтобы направление вращения не изменилось
Я измерил температуру после повторной работы двигателя более часа с использованием трехфазного безконденсаторного привода; измеренные температуры остались прежними, по крайней мере, не выше, чем на исходной установке
.
Другие наблюдения:
температура с установкой на основе трехфазного привода была самой высокой с максимальной проверенной скоростью вращения и частотой (50 Гц)
шум с трехфазной установкой на основе привода был выше, но в основном из-за шума от частоты переключения (в данном случае 2 кГц)
пусковой крутящий момент был значительно выше при установке на основе трехфазного привода, чем при первоначальной установке с однофазным разделением конденсаторов; разница крутящего момента была еще больше на самых низких протестированных частотах (20 Гц)
В целом идея кажется правдоподобной для дальнейших испытаний с диапазоном мощности типичных вентиляторов, используемых в частных жилых домах.Самая серьезная проблема, которая может возникнуть, — это шум переключения ШИМ. Кроме того, в зависимости от двигателя может потребоваться рассмотрение напряжения, вызванного острым сигналом ШИМ. Испытанная установка решит проблему очень низкого пускового момента, связанную с однофазным асинхронным двигателем с постоянными разделенными конденсаторами, работающим на пониженной частоте с помощью инверторного привода. Идеальный привод для этой цели позволил бы регулировать эффективное напряжение между как минимум двумя парами выходных клемм и разность фазового угла между теми же двумя, что стандартные приводы не поддерживают.
Обновление(21 декабря 2020 г.):
Я тестировал ту же установку (трехфазный инверторный привод для однофазного конденсаторного двигателя потолочного вентилятора) с модификацией для истинной двухфазной цепи на 90 градусов. Последняя схема состояла из двух одинаковых изолирующих трансформаторов 400/230 В. Первичные обмотки были подключены зеркально симметрично между разъемами, питающими основную обмотку, и общим 3-м разъемом привода. Вторичные обмотки были соединены последовательно. Поскольку привод выдает эффективное напряжение 230 В, сердечники трансформатора имеют больший запас по магнитному насыщению, чем при указанном первичном напряжении (что не обязательно, но может предоставить дополнительные возможности для выбора частоты привода по сравнению скривые напряжения для улучшенного управления крутящим моментом на низких оборотах). Таким образом, результирующее напряжение для пусковой обмотки также составляет около 230 В при номинальной частоте (50 Гц).
Я провел те же измерения температуры, что и выше. На этот раз температура корпуса двигателя остается ниже 45 градусов по Цельсию. Это самый низкий из трех протестированных случаев, что неудивительно, поскольку теперь двигатель приводится в движение идеальным двухфазным переменным напряжением 230 В плюс минус что-то с разделением фаз 90 градусов на любой частоте, создаваемой инверторным приводом ( истинные действующие напряжения будут соответствовать частоте, как обычно).
Итак, я решил использовать эту схему для приведения в действие вентиляторов моего дома с синхронизированной, но переменной скоростью. Теперь это настоящая двухфазная система. Раньше у меня был привод для подачи однофазного напряжения с переменной частотой на электродвигатели вентиляторов с разделенной фазой рабочего конденсатора, но я был недоволен этим подходом, поскольку пусковой момент был очень низким, особенно при пониженных оборотах и конденсаторах. имеет тенденцию к ухудшению в течение нескольких лет, что приводит к еще худшему поведению. Теперь я могу удалить конденсаторы двигателей вентиляторов и напрямую запитать вспомогательную катушку этим сдвинутым по фазе напряжением.Настоящие трехфазные двигатели трудно достать для таких относительно небольших домашних вентиляторов. Я предпочитаю асинхронные двигатели вентиляторов ЕС-двигателям из-за меньшего количества проблем с тональным шумом, вызванным износом, и более низкой стоимости, хотя энергопотребление несколько выше.
Как запустить трехфазный двигатель от однофазного источника питания
Как запустить трехфазный двигатель от однофазного источника питания:
В настоящее время количество электродвигателей увеличивается, как и все.Основная причина в том, что, кроме электроэнергии, вся энергия является гораздо более дорогостоящим примером: дизельное топливо. Для всей нашей сельскохозяйственной линейки мы используем трехфазное питание. В Индии для нужд сельского хозяйства правительство предлагает 12-часовую бесплатную подачу электроэнергии.
Оставшиеся 12 часов электрическая панель отключила подачу питания, а это значит, что они отключили одну фазу через GOS (Gang operating выключатели). В то же время, 12 часов недостаточно, чтобы залить водой наши сельскохозяйственные угодья.
Итак, нам нужно запустить один и тот же трехфазный двигатель на двух доступных фазах.В этой статье мы увидим, как запустить трехфазный двигатель на однофазном. Давай начнем.
Стартер погружного насоса для сельского хозяйстваКак правило, это действие может быть выполнено путем установки статических преобразователей фазы. Преобразователи статической фазы — это пусковое устройство для трехфазных двигателей от однофазного питания. Статический фазовый преобразователь фактически не вырабатывает трехфазную мощность непрерывно.
Вместо этого он генерирует фазовый сдвиг через конденсатор, который позволяет смещать напряжение во времени от его родительского напряжения.В результате получается напряжение, отличное от двух однофазных линий. Если конденсатор вырабатывает достаточный электрический ток, двигатель будет работать.
Выходное напряжение конденсатораПосле запуска трехфазного двигателя схема статического фазового преобразователя отключается. Единственным фактом здесь является то, что двигатель непрерывно работает от одной фазы с двумя обмотками, получающими активную мощность, так что полезная мощность двигателя обычно снижается на 2/3 или от его номинальной мощности.
Пример: если вы планируете использовать трехфазный двигатель мощностью 5 л.с. в однофазном режиме, то общая выходная мощность двигателя будет снижена до 3,3 л.с. Если вы приложите дополнительные нагрузки к тому же двигателю, обмотка двигателя будет потреблять большой ток. Чтобы избежать этого, вы можете выбрать двигатель с диапазоном на одну ступень выше.
См. Также:
Конденсатор для трехфазного двигателя от однофазного источника питания:
Как свойство асинхронного двигателя, который потребляет высокий пусковой ток (почему?) (В 4-6 раз превышающий его ток полной нагрузки), поэтому нам нужен конденсатор высокой мощности на несколько секунд для быстрого запуска двигателя.Статический преобразователь фазы состоит из двух конденсаторов. Один из них — пусковой конденсатор, а другой — рабочие конденсаторы.
Пусковой конденсатор требуется только для запуска двигателя, и рабочий конденсатор будет стоять в цепи. Более того, регулировка этих конденсаторов для выравнивания токов, измеренных в трех фазах, позволяет получить наиболее эффективную машину.
Пусковой конденсатор должен быть в 4–5 раз больше, чем рабочий конденсатор, чтобы соответствовать высокому пусковому току асинхронного двигателя.
Пусковой конденсатор = 50-100 мкФ / л.с. Рабочие конденсаторы = 12-16 мкФ / л.
Здесь Конденсатор подает синтетическую фазу примерно на полпути на 90 градусов между выводами однофазного источника питания на 180 градусов для запуска. Во время работы двигатель генерирует приблизительно стандартные 3-φ, как показано на рисунке ниже.
Примечание. Двигатель следует подключать по схеме треугольник, так как одна обмотка двигателя получает полное напряжение. Поэтому, если вы планируете использовать трехфазный двигатель на одной фазе, рекомендуется подключение по схеме треугольника.
Ограничение статических фазовых преобразователей:
- Выходная мощность ограничена 2/3 -го проектной мощности
- Не подходит для двигателя, работающего постоянно, может использоваться временно
- Это сокращает срок службы двигателя из-за постоянной нагрузки двух обмоток на одну фазу.
Трехфазный двигатель работает от однофазного источника питания:
См. Также:
Что делает конденсатор?
Для электродвигателя переменного тока с постоянным разделением конденсаторов (также известного как электродвигатели переменного тока с конденсаторным пуском и запуском) для правильной работы требуется конденсатор.Выпейте чашечку кофе, мы объясним, почему.
Простой эксперимент …
Чтобы показать, насколько важен конденсатор, мы можем начать с простого эксперимента. Используйте однофазный двигатель переменного тока с постоянным разделенным конденсатором и подключите его подводящие провода непосредственно к однофазному источнику питания (без конденсатора). Скорее всего, двигатель не будет работать с нагрузкой, если вал не будет вращаться под действием внешней силы (это намного проще с двигателем с выключенным круглым валом).Это потому, что нам нужны как минимум две фазы для создания вращающегося магнитного поля в статоре. Здесь и вступает в силу конденсатор.
Что делает конденсатор?
Первоначально называемый «конденсатором», конденсатор представляет собой пассивный электронный компонент, который содержит по крайней мере два проводника (пластины), разделенные изолятором (диэлектриком). Проводники могут быть тонкими пленками из металла, алюминиевой фольги или дисков. Изолятор может быть стеклянным, керамическим, полиэтиленовым, воздушным или бумажным.При подключении к источнику напряжения конденсатор сохраняет электрический заряд в виде электростатического поля между своими проводниками. |
По сравнению с батареей, батарея использует химические вещества для хранения электрического заряда и медленно разряжает его через цепь. На это могут уйти годы. Конденсатор выделяет свою энергию гораздо быстрее — за секунды или меньше. Типичный пример применения — вспышка вашей камеры. |
ВНИМАНИЕ: Поскольку конденсатор держит электрический заряд, никогда не прикасайтесь к контактам конденсатора.Если по какой-то причине это необходимо, убедитесь, что электрический заряд полностью разряжен. |
Для чего нужен конденсатор для двигателей?
Конденсатор предназначен для создания многофазного источника питания от однофазного источника питания. При многофазном питании двигатель может:
1. Установите направление вращения.
2. Обеспечьте пусковой момент двигателя и увеличьте крутящий момент во время работы.
Oriental Motor представляют собой двигатели с постоянным разделением конденсаторов (конденсаторный пуск и работа). Эти двигатели содержат основную обмотку и вторичную вспомогательную обмотку. Конденсатор включен последовательно со вспомогательной обмоткой, и это приводит к тому, что ток во вспомогательной обмотке отстает по фазе с током в основной обмотке на 90 электрических градусов (четверть всего цикла). Теперь мы создали многофазный блок питания от однофазного блока питания.
Без конденсатора | С конденсатором |
Какой конденсатор используется в двигателе Oriental Motor?
ВOriental Motor используются конденсаторы с электродами для осаждения из паровой фазы, признанные UL. В конденсаторах этого типа в качестве элемента используется металлизированная бумага или пластиковая пленка. Этот конденсатор также известен как «самовосстанавливающийся (SH) конденсатор». Хотя в большинстве предыдущих конденсаторов использовались бумажные элементы, в последние годы пластиковый пленочный конденсатор стал широко распространенным благодаря своей компактной конструкции.
Номинальное время проводимости
Номинальное время проводимости — это минимальный расчетный срок службы конденсатора при работе при номинальной нагрузке, номинальном напряжении, номинальной температуре и номинальной частоте. Стандартный срок службы — 40 000 часов. Конденсатор, который ломается в конце срока службы, может задымиться или загореться. Мы рекомендуем заменять конденсатор по истечении расчетного времени проводимости, чтобы избежать потенциальных проблем.
Функция безопасности конденсатора
Некоторые конденсаторы оснащены функцией безопасности, которая позволяет безопасно и полностью удалить конденсатор из цепей для предотвращения дыма и / или возгорания в случае пробоя диэлектрика.В продукции Oriental Motor используются конденсаторы с признанными UL функциями безопасности, которые прошли проверку на ток короткого замыкания UL 810 по стандарту UL 810.
Как оцениваются конденсаторы и почему это важно?
Конденсаторыимеют номинальную емкость, рабочее напряжение, допуск, ток утечки, рабочую температуру, эквивалентное последовательное сопротивление и т. Д. Для согласования двигателя двумя наиболее важными характеристиками являются емкость и рабочее напряжение. Номинальное напряжение обычно примерно в два раза превышает значение номинального входного напряжения двигателя в вольтах (на самом деле есть формула для определения емкости двигателя, но мы сохраним ее на потом).Для наших компактных двигателей переменного тока единицей измерения емкости является «микрофарада» или мкФ. Эти характеристики указаны как на этикетке двигателя, так и на этикетке конденсатора.
Табличка двигателя с рекомендованным конденсатором | Этикетка конденсатора |
Использование конденсатора с другой емкостью может увеличить вибрацию двигателя, тепловыделение, потребление энергии, изменение крутящего момента и нестабильную работу.Если емкость слишком велика, крутящий момент двигателя увеличится, но может возникнуть перегрев и чрезмерная вибрация. Если емкость слишком мала, крутящий момент упадет. Использование конденсатора, напряжение которого превышает номинальное, может привести к повреждению, а конденсатор может задымиться или воспламениться.
Нужен ли мне правильный конденсатор для двигателей переменного тока Oriental Motor?
Нет. Каждый однофазный двигатель переменного тока от Oriental Motor включает в себя специальный конденсатор, размер которого рассчитан на работу двигателя с максимальной эффективностью и производительностью.Подбор конденсаторов не требуется.
Что произойдет, если я использую другой конденсатор?
Чтобы двигатель работал с максимальной эффективностью, всегда используйте специальный конденсатор, входящий в комплект поставки двигателя. Выделенный конденсатор создает электрический фазовый сдвиг на 90 от вспомогательной (конденсаторной) фазы к основной фазе. Использование неподходящего конденсатора может сместить его с 90 градусов, и в результате неэффективность может привести к перегреву двигателя с непостоянными характеристиками крутящего момента или скорости.
Размер специального конденсатора рассчитан таким образом, чтобы двигатель создавал идеальную кривую крутящего момента / скорости. Обратите внимание на «Номинальная скорость» и «Номинальный крутящий момент». В этой рабочей точке (где эти две точки пересекаются на кривой) достигается наибольшая эффективность. Каждый двигатель рассчитан на номинальную нагрузку. Вот почему увеличение номинала — не лучший способ подобрать двигатели переменного тока.
Разница в емкости конденсатора повлияет как на номинальную скорость, так и на номинальный крутящий момент, поскольку рабочая точка смещается от максимальной эффективности.Если вы используете два одинаковых двигателя с совершенно разными конденсаторами, вы получите совершенно разные результаты.
При потере максимальной эффективности увеличивается тепловыделение двигателя. Избыточный нагрев может привести к ухудшению качества смазки подшипников и сокращению срока службы двигателя. Однако полезно знать, что если температура обмотки достигает 130 ° F, схема тепловой защиты внутри двигателя срабатывает и отключает двигатель до тех пор, пока он не остынет.
Как подключить конденсатор?
Для 3-проводного двигателя переменного тока подключите красный и белый провода к противоположным клеммам конденсатора.Подключите черный провод к стороне N (нейтраль) источника питания. Для однонаправленной работы просто подключите L (под напряжением) сторону источника питания к клеммной коробке либо к красному проводнику (по часовой стрелке), либо к белому проводу (против часовой стрелки), чтобы начать вращение. УКАЗАНИЕ: 2 ближайших терминала соединены внутри. Для двунаправленной работы используйте однополюсный двухпозиционный переключатель (SPDT) между проводом под напряжением и клеммами конденсатора для переключения направления.
Однако для переключения направления асинхронного двигателя необходимо дождаться полной остановки двигателя.Для реверсивных двигателей направление может быть переключено мгновенно.
Теперь, когда вы знаете важность конденсаторов, не упускайте их. В этом случае используйте этикетку двигателя, чтобы определить подходящий конденсатор. Следите за новостями, чтобы получить больше советов по устранению неполадок.
|
|
|
|
Коррекция коэффициента мощности асинхронных двигателей
Подключение конденсаторной батареи и уставки защиты
Индивидуальная компенсация двигателя рекомендуется, если мощность двигателя (кВА) больше заявленной мощности установки.
Общие меры предосторожности
Из-за небольшого потребления кВт коэффициент мощности двигателя очень низкий на холостом ходу или при небольшой нагрузке.Реактивный ток двигателя остается практически постоянным при всех нагрузках, так что ряд ненагруженных двигателей составляет потребление реактивной мощности, которое, как правило, является вредным для установки по причинам, объясненным в предыдущих разделах.
Таким образом, два хороших общих правила заключаются в том, что ненагруженные двигатели должны быть выключены, а двигатели не должны быть слишком большого размера (поскольку в этом случае они будут слегка нагружены).
Соединение
Конденсаторная батарея должна подключаться непосредственно к клеммам двигателя.
Двигатели специальные
Не рекомендуется использовать специальные двигатели (шаговые, импульсные, толчковые, реверсивные и т. Д.).
Влияние на настройки защиты
После применения компенсации к двигателю, ток в комбинации двигатель-конденсатор будет ниже, чем раньше, при тех же условиях нагрузки двигателя. Это связано с тем, что значительная часть реактивной составляющей тока двигателя подается через конденсатор, как показано на рис. , фиг. L24.
Если устройства максимальной токовой защиты двигателя расположены перед подключением конденсатора двигателя (а это всегда будет иметь место для конденсаторов, подключенных к клеммам), уставки реле максимального тока должны быть уменьшены в соотношении:
cos ϕ до компенсации / cos ϕ после компенсации
Для двигателей, компенсированных в соответствии со значениями квар, указанными в Рисунок L25 (максимальные значения, рекомендуемые для предотвращения самовозбуждения стандартных асинхронных двигателей, как описано в разделе «Как избежать самовозбуждения асинхронного двигателя»), выше упомянутое соотношение будет иметь значение, аналогичное значению, указанному для соответствующей скорости двигателя на фиг. , фиг. L26.
Рис. L24 — Перед компенсацией трансформатор выдает всю реактивную мощность; после компенсации конденсатор выдает большую часть реактивной мощности
Рис. L25 — Максимальная квар коррекция коэффициента мощности, применимая к клеммам двигателя без риска самовозбуждения
Трехфазные двигатели 230/400 В | |||||
---|---|---|---|---|---|
Номинальная мощность | квар к установке | ||||
Скорость вращения (об / мин) | |||||
кВт | лс | 3000 | 1500 | 1000 | 750 |
22 | 30 | 6 | 8 | 9 | 10 |
30 | 40 | 7.5 | 10 | 11 | 12,5 |
37 | 50 | 9 | 11 | 12,5 | 16 |
45 | 60 | 11 | 13 | 14 | 17 |
55 | 75 | 13 | 17 | 18 | 21 |
75 | 100 | 17 | 22 | 25 | 28 |
90 | 125 | 20 | 25 | 27 | 30 |
110 | 150 | 24 | 29 | 33 | 37 |
132 | 180 | 31 | 36 | 38 | 43 |
160 | 218 | 35 | 41 | 44 | 52 |
200 | 274 | 43 | 47 | 53 | 61 |
250 | 340 | 52 | 57 | 63 | 71 |
280 | 380 | 57 | 63 | 70 | 79 |
355 | 482 | 67 | 76 | 86 | 98 |
400 | 544 | 78 | 82 | 97 | 106 |
450 | 610 | 87 | 93 | 107 | 117 |
Фиг.L26 — Понижающий коэффициент для максимальной токовой защиты после компенсации
Скорость в об / мин | Коэффициент уменьшения |
---|---|
750 | 0,88 |
1000 | 0,90 |
1500 | 0,91 |
3000 | 0,93 |
Как избежать самовозбуждения асинхронного двигателя
Когда конденсаторная батарея подключена к клеммам асинхронного двигателя, важно убедиться, что размер батареи меньше того, при котором может происходить самовозбуждение.
Когда двигатель приводит в движение высокоинерционную нагрузку, двигатель будет продолжать вращаться (если не будет специально заторможен) после отключения питания двигателя.
«Магнитная инерция» цепи ротора означает, что ЭДС будет генерироваться в обмотках статора в течение короткого периода после выключения и обычно снижается до нуля после 1 или 2 циклов в случае двигателя без компенсации.
Компенсационные конденсаторы представляют собой трехфазную реактивную нагрузку для этой затухающей ЭДС, которая вызывает протекание емкостных токов через обмотки статора. Эти токи статора будут создавать вращающееся магнитное поле в роторе, которое действует точно вдоль той же оси и в том же направлении, что и затухающее магнитное поле.
Следовательно, поток ротора увеличивается; увеличиваются токи статора; и напряжение на выводах мотора увеличивается; иногда до опасно высокого уровня. Это явление известно как самовозбуждение и является одной из причин, по которой генераторы переменного тока обычно не работают с ведущими факторами мощности, то есть существует тенденция к самовозбуждению (и неконтролируемому) самовозбуждению.
Примечания:
1. Характеристики двигателя, приводимого в действие инерцией нагрузки, не полностью идентичны его характеристикам без нагрузки.Однако это предположение достаточно точно для практических целей.
2. Когда двигатель действует как генератор, циркулирующие токи в значительной степени являются реактивными, так что эффект торможения (замедления) на двигатель в основном обусловлен только нагрузкой, представленной охлаждающим вентилятором в двигателе.
3. Ток (запаздывание почти на 90 °), получаемый от источника питания в нормальных условиях ненагруженным двигателем, и ток (запаздывание почти на 90 °), подаваемый на конденсаторы двигателем, действующим как генератор, оба имеют одинаковое соотношение фаз с напряжением на клеммах.По этой причине две характеристики могут быть наложены на график.
Чтобы избежать самовозбуждения, как описано выше, номинальная мощность квар конденсаторной батареи должна быть ограничена следующим максимальным значением:
Qc≤0,9 × lo × Un × 3 {\ displaystyle Qc \ leq 0,9 \ times lo \ times Un \ times {\ sqrt {3}}}
, где Io = ток холостого хода двигателя, а Un = номинальное межфазное напряжение двигателя в кВ. На рисунке L25 приведены соответствующие значения Qc, соответствующие этому критерию.
Пример
Трехфазный двигатель 75 кВт, 3000 об / мин, 400 В может иметь батарею конденсаторов не более 17 квар в соответствии с рисунком L25. Табличные значения, как правило, слишком малы для адекватной компенсации двигателя до обычно требуемого уровня cos ϕ. Однако дополнительная компенсация может применяться к системе, например к общему банку, установленному для глобальной компенсации ряда более мелких устройств.
Высокоинерционные двигатели и / или нагрузки
В любой установке, где существуют нагрузки с высокоинерционным приводом от электродвигателя, автоматические выключатели или контакторы, управляющие такими двигателями, должны в случае полной потери питания быстро отключаться.
Если эта мера предосторожности не будет принята, то, вероятно, произойдет самовозбуждение до очень высоких напряжений, поскольку все другие батареи конденсаторов в установке будут эффективно подключены параллельно с батареями высокоинерционных двигателей.
Таким образом, схема защиты этих двигателей должна включать в себя реле отключения по перенапряжению вместе с контактами проверки обратной мощности (двигатель будет подавать питание на остальную часть установки до тех пор, пока накопленная инерционная энергия не рассеется).
Если батарея конденсаторов, связанная с высокоинерционным двигателем, больше, чем рекомендованная в , рис. L25, то она должна управляться отдельно с помощью автоматического выключателя или контактора, который срабатывает одновременно с главным автоматическим выключателем, управляющим двигателем, или контактор, как показано в Рисунок L27.
Замыкание главного контактора обычно связано с предварительным замкнутым контактором конденсатора.
Рис. L27 — Подключение конденсаторной батареи к двигателю
(PDF) Расчет конденсаторов для пуска трехфазного асинхронного двигателя с однофазным питанием
Расчет конденсаторов для пуска трехфазного асинхронного двигателя
с однофазным питанием
питание
Василий Маляр, Орест Хамола, Владимир Мадай
Институт энергетики и систем управления
Львовский политехнический национальный университет
Львов, Украина
вмаляр @ и.ua, [email protected]
Аннотация — В статье представлена методика определения емкости
, необходимой для пуска трехфазного асинхронного двигателя
, питаемого от однофазного источника питания. . Метод
и алгоритм расчета основаны на высоко адекватной
математической модели асинхронного двигателя, которая
учитывает насыщение магнитопровода и текущее смещение
в стержнях ротора.Задача решается как краевая
задача для системы дифференциальных уравнений, описывающих
процессов в двигателе в осях фазовых координат.
Ключевые слова: математическая модель; трехфазный асинхронный двигатель
; однофазное питание; пусковой конденсатор; краевая задача;
статическая характеристика.
I. ВВЕДЕНИЕ
Рассмотрим трехфазный асинхронный двигатель (AM),
, питаемый от однофазной сети, когда обмотки статора соединены звездой-
и одна из фаз содержит подключенный конденсатор
последовательно (рис.1). Исследование трехфазного асинхронного двигателя
с питанием одной фазы от последовательно включенного конденсатора
в основном проводится на основе приближенных эмпирических зависимостей
, которые не всегда подтверждаются на практике. Очевидно, что емкость конденсатора
может быть рассчитана только на основе хорошо разработанной математической модели
, которая адекватно учитывает в
все основные факторы, влияющие на процессы в двигателе.
Известно [2], что насыщение магнитной системы и (что особенно важно для пусковых режимов
) скин-эффект
в стержнях короткозамкнутого ротора, возникающий в пусковом режиме
, являются такими факторы.
Рис. 1. Электрическая схема АД с конденсатором, включенным в одну фазу
II. ПОЯСНЕНИЕ ПРОБЛЕМЫ
На практике важно исследовать влияние емкости C
на поведение двигателя в режиме запуска
[3].В частности, важным вопросом является выбор значений емкости конденсаторов
, которые обеспечивают электромагнитный момент
, необходимый для успешного запуска. Известные методы
расчета значений емкости являются приблизительными
[4] и, следовательно, требуют экспериментальной
проверки или расчета переходных процессов с использованием математической модели
АМ, что обеспечивает достоверность результатов математического эксперимента
.
Целью статьи является разработка математической модели для расчета
режимов запуска АД с конденсаторами, подключенными в серию
.
III. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ
Исследование процессов, происходящих в АД, требует
достаточно точного определения параметров двигателя, а именно
сопротивлений, а также собственных и взаимных индуктивностей электрических цепей
. Эти параметры могут быть получены только на основе высокоадекватных математических моделей
, так как они зависят от магнитного насыщения
и тока смещения в стержнях клетки
белка.
Одним из важных вопросов является выбор осей координат,
, которые необходимы для описания электромагнитной связи.