Схема подключения оин: характеристики, принцип работы, схема подключения

характеристики, принцип работы, схема подключения

Согласно требованиям п. 7.1.22 ПУЭ на все электроустановки с воздушным вводом должны устанавливаться ограничители импульсных напряжений. Их устанавливают в ВУ/ВРУ. Основная задача – это погасить всплески высокого напряжения и компенсировать энергию импульса. Компания «Энергомера» выпускает подобное устройство под названием ОИН-1. Характеристики, принцип работы и схема подключения данного ограничителя рассмотрены в этой статье.

Содержание

Назначение и принцип работы

Ограничитель импульсных напряжений ОИН-1 нужен для защиты электросетей напряжением 380/220В. Это стандартные напряжения для питания электросетей. Импульсные скачки напряжения могут возникнуть в результате ударов молнии. Из-за них же и возникает разность потенциалов в земле. Кроме них выделяют коммутационные всплески в сети. Они возникают при включении или отключении мощных электроприборов или групповом старте потребителей в электроустановке. Коммутационные импульсы могут возникать при пуске мощных электрических двигателей или групповом пуске насосных станций, а также при включении конденсаторных установок.

Импульсы на графике

Как работает ограничитель? Внутри ОИН-1 установлены варисторы. По принципу действия варисторы напоминают разрядники, которые использовались ранее. Поэтому ограничитель устанавливается параллельно защищаемой цепи. В случае, если напряжение в сети превысит допустимое (классификационное) напряжение варистора, он начинает замыкать провода, таким образом отводя опасность от подключенных после него электроприборов.

Область применения

Рассмотрим, где применяется на практике ОИН-1. Применение в реальной работе ограничителя импульсных напряжений достаточно широко. Его устанавливают во вводные щиты или щиты учёта потребителей. При этом его рекомендуется устанавливать до счётчика, чтобы защитить и его. О том, как правильно подключать ОИН-1 в щиток мы поговорим ниже.

ОИН-1 в щитке

Если вы собираетесь строить дом и подключаете участок к электроэнергии – в технических условиях на подключение будет указана необходимость установки устройства защиты от импульсных перенапряжений. Но такое требование вносится в большинстве случаев как прописано в ПУЭ – при воздушном вводе кабеля.

Официальная документация о применении ограничителя импульсных напряжений от компании «Энергомера» ссылается на то, что рекомендуется его применение в системах заземления TN-S, TN-C-S в однофазной и трёхфазной сети.

Технические характеристики

Ни одно описание устройств не обходится без информации о технических характеристиках. ОИН-1 имеет такие характеристики:

  1. Длительно выдерживает напряжение до 275В, при стандартной частоте в 50 Гц.
  2. Устанавливается на дин-рейку.
  3. Ширина 17,5мм, что совпадает с размерами однополюсного автомата.
  4. Во время работы потребляет ток 0,7 мА, при 275В.
  5. Соответствует ГОСТам и прошёл сертификацию, поэтому может выдерживать импульсы до 10 кВ, с Iкз=5000А.
  6. Есть версия ОИН-1С, оборудованная световым индикатором наличия напряжения в сети.
  7. Клеммники позволяют подключать токопроводящие жилы от 4 до 16 мм.

Как подключить ОИН-1 в щитке

У этого устройства есть ряд функциональных аналогов от всех популярных производителей электротехники, поэтому и схемы их подключения в принципе аналогичны. В официальной документации схема подключения не слишком очевидна, она представлена в двух вариантах и выглядит следующим образом:

Схема от производителя

Обратите внимание первый вариант – подключение параллельно защищаемой цепи, а второй – последовательно с разъединителем. То есть в результате срабатывания ограничителя импульсных напряжений разъединитель должен разорвать цепь питания, чтобы избежать возгорания изделия и протекания тока по электрической дуге.

Но приведенная схема совсем не наглядно и не понятно изображена, и сразу возникает вопрос о том, как правильно установить аппарат. Поэтому ознакомьтесь с несколькими примерами подключения УЗИП в электросеть.

На рисунке ниже изображена типовая схема из условий для подключения 3 фаз. Здесь более наглядно изображено подключение ограничителей напряжения до счётчика. В трёхфазной цепи с системой заземления TN-S или TN-C-S его подключают между фазами, нулём и землёй. Но подключение ОИН-1 после счетчика тоже допустимо как дополнительная ступень защиты.

Схема из ТУ

Монтажная схема на примере подключения в двухпроводной электросети:

Схема подключения ОИН

И напоследок рассмотрим схемы для четырёх разных схем электроснабжения (1 фаза, 3 фазы, объединённый и разъединённый защитные проводники), которые встречаются наиболее часто:

Схемы электроснабжения

Важное примечание

Мы рассмотрели для чего нужен ОИН-1 и как его установить. Но в обязательном порядке нужно добавить примечание из официальной документации:

Примечание из инструкции

Речь идёт о подключении автомата в разрыв питающего провода перед ограничителем. Это нужно для того, чтобы в случае короткого замыкания в ограничителе импульсов разорвать цепи и предотвратить негативные последствия случая.

Напоследок рекомендуем просмотреть видео, на котором доступно объясняется, как подключить ограничитель импульсных напряжений к сети:

На этом мы и заканчиваем описание характеристик и правил подключения ОИН-1. Надеемся, подготовленный обзор был для вас полезным и интересным!

Наверняка вы не знаете:

ОИН-1 ограничитель импульсных напряжений: схема подключения, принцип работы

На каждой установке с воздушных выводом должны быть ограничители, которые помогают справиться со скачками напряжения. В этой статье говорится о том, как подключить ограничитель, а также приведены несколько схем.

Предназначение и принцип действия ОИН-1

Устройство ограничителя импульсных напряжений необходимо для предохранения сети с показателем 380/220 В. Это классическое напряжение для работы электросетей. Резкие перепады напряжения могут образовываться из-за ударов молний. Из-за грозы также образуется контактная разность в почве.

Как выглядит устройство

Также напряжение может меняться из-за всплеска в электросети. Они образуются при подключении или выключении различных приборов в одну сеть. Резкие скачки могут образовываться при присоединении мощных электрических приборов или каких-нибудь систем.

Принцип действия прибора: изнутри ОИН-1 оснащен варистором. По принципу работы они похожи на разрядники, которые применялись раньше.

УЗИП в щитке

В таком случае устройство будет устанавливаться параллельно предохраняемой электроцепи.

Если же по каким-то причинам величина напряжения в сети станет больше разрешенной, прибор просто замкнет проводку, таким образом предупредив угрозу от включенных за ним бытовых приборов.

Чтобы понять, исправен прибор или нет, необходимо обратить внимание на цвет индикатора. Если он зеленый, то модуль будет в исправном состоянии, а если красный, то его необходимо поменять.

Сфера применения

Ограничитель типа ОИН-1 используется достаточно часто. Его подключают в вводные щитки или для учёта потребителей. Желательно подключать его до счетчика, чтобы обезопасить и его.

Маркировка от производителя

Если необходимо построить дом и подсоединить всю территорию усадьбы к источнику электрической энергии – в техническом плане для такого подключения уже прописана норма установки ОИН-1 для защиты от скачков напряжения. Но это указание выполняется в основном, как прописано в правилах устройства электроустановок – при воздушном вводе провода.

Технические параметры

Таблица основных характеристик ОИН-1:

Стандартное напряжение220 В
Номинальный разрядный ток6
Максимальный РТ13
Остаточное напряжение2200
Уровень защитыне ниже IР21
Температурный режимот -50 до +55
Параметры устройства (размеры)80 × 17,5 × 66,5
Вес0,12 кг
Срок службы3–3,5 года

Схемы подключения прибора

Подключение может быть однофазное и трехфазное. У прибора ОИН-1 есть ряд похожих устройств от различных производителей бытовых приборов, потому все схемы подключения почти похожи. Стандартная схема описана ниже. Ее можно применять под все типы устройств.

ОИН 1 схема подключения

В первом случае подключение выполнено параллельно к цепи, а во втором – последовательно с размыкателем. Проще говоря, в итоге включения ОИН-1 во время скачков напряжения размыкатель будет обрывать цепь питания, чтобы миновать риск возникновения пожара в системе и прохождения тока по электродуге.

Внимание!  Кроме грамотной установки нулевого и фазного проводников, достаточно важную роль играет длина самого кабеля.

От метки подключения в клемме прибора до заземляющей шины общая длина проводов должна быть не больше 50 см.

Что использовать перед УЗИП — автоматы или предохранители

Для постоянного снабжения помещения энергией рекомендуется подключать автоматический выключатель, который будет выключать УЗИП.

После попадания молнии

Подключение этого автомата определяется также тем, что в период отвода импульса образуется, как говорят, сопровождающий ток.

Но гораздо легче приобрести модульные предохранители. Рекомендуется выбирать устройство типа GG.

Они могут защищать весь диапазон сверхтоков. Даже если ток вырос несильно, то предохранитель такого типа все равно его выключит.

Возникновение ошибок при подключении

Одна из популярных ошибок – это подключение УЗИП в щит с неправильным контуром заземления. Смысла от этой защиты вообще не будет. И при первом попадании молнии щиток сгорит.

Вторая ошибка – это неверная установка, исходя из системы заземления. Необходимо следовать техдокументации УЗИП, а получить консультацию у профессионального мастера или просто вызвать электрика на дом.

Типы ограничителей

Третье заблуждение – применение УЗИП неподходящего типа. Существует всего три типа импульсных защитных приборов, и все они должны использоваться, подключаться в свои щитки.

Схему подключения ОИН-1 (ограничитель импульсных напряжений) можно найти на специализированных сайтах для электриков. Там же мастера могут дать полезный совет и рассказать о пошаговом подключении своими руками.

В заключение необходимо отметить, что ограничители импульсных напряжений должны быть в каждой электрической цепи. Это поможет предотвратить замыкания и риск возникновения пожаров. Если у человека нет опыта работа с проводкой, то желательно вызвать профессионального электрика.

Обзор ограничителя импульсных напряжений ОИН-1

Для чего нужен ограничитель импульсных напряжений ОИН-1 и как его правильно подключить. Характеристики и область применения устройства.


Согласно требованиям п. 7.1.22 ПУЭ на все электроустановки с воздушным вводом должны устанавливаться ограничители импульсных напряжений. Их устанавливают в ВУ/ВРУ. Основная задача – это погасить всплески высокого напряжения и компенсировать энергию импульса. Компания «Энергомера» выпускает подобное устройство под названием ОИН-1. Характеристики, принцип работы и схема подключения данного ограничителя рассмотрены в этой статье. Содержание:

Назначение и принцип работы

Ограничитель импульсных напряжений ОИН-1 нужен для защиты электросетей напряжением 380/220В. Это стандартные напряжения для питания электросетей. Импульсные скачки напряжения могут возникнуть в результате ударов молнии. Из-за них же и возникает разность потенциалов в земле. Кроме них выделяют коммутационные всплески в сети. Они возникают при включении или отключении мощных электроприборов или групповом старте потребителей в электроустановке. Коммутационные импульсы могут возникать при пуске мощных электрических двигателей или групповом пуске насосных станций, а также при включении конденсаторных установок.

Как работает ограничитель? Внутри ОИН-1 установлены варисторы. По принципу действия варисторы напоминают разрядники, которые использовались ранее. Поэтому ограничитель устанавливается параллельно защищаемой цепи. В случае, если напряжение в сети превысит допустимое (классификационное) напряжение варистора, он начинает замыкать провода, таким образом отводя опасность от подключенных после него электроприборов.

Область применения

Рассмотрим, где применяется на практике ОИН-1. Применение в реальной работе ограничителя импульсных напряжений достаточно широко. Его устанавливают во вводные щиты или щиты учёта потребителей. При этом его рекомендуется устанавливать до счётчика, чтобы защитить и его. О том, как правильно подключать ОИН-1 в щиток мы поговорим ниже.

Если вы собираетесь строить дом и подключаете участок к электроэнергии – в технических условиях на подключение будет указана необходимость установки устройства защиты от импульсных перенапряжений. Но такое требование вносится в большинстве случаев как прописано в ПУЭ – при воздушном вводе кабеля.

Официальная документация о применении ограничителя импульсных напряжений от компании «Энергомера» ссылается на то, что рекомендуется его применение в системах заземления TN-S, TN-C-S в однофазной и трёхфазной сети.

Технические характеристики

Ни одно описание устройств не обходится без информации о технических характеристиках. ОИН-1 имеет такие характеристики:

  1. Длительно выдерживает напряжение до 275В, при стандартной частоте в 50 Гц.
  2. Устанавливается на дин-рейку.
  3. Ширина 17,5мм, что совпадает с размерами однополюсного автомата.
  4. Во время работы потребляет ток 0,7 мА, при 275В.
  5. Соответствует ГОСТам и прошёл сертификацию, поэтому может выдерживать импульсы до 10 кВ, с Iкз=5000А.
  6. Есть версия ОИН-1С, оборудованная световым индикатором наличия напряжения в сети.
  7. Клеммники позволяют подключать токопроводящие жилы от 4 до 16 мм.

Как подключить ОИН-1 в щитке

У этого устройства есть ряд функциональных аналогов от всех популярных производителей электротехники, поэтому и схемы их подключения в принципе аналогичны. В официальной документации схема подключения не слишком очевидна, она представлена в двух вариантах и выглядит следующим образом:

Обратите внимание первый вариант – подключение параллельно защищаемой цепи, а второй – последовательно с разъединителем. То есть в результате срабатывания ограничителя импульсных напряжений разъединитель должен разорвать цепь питания, чтобы избежать возгорания изделия и протекания тока по электрической дуге.

Но приведенная схема совсем не наглядно и не понятно изображена, и сразу возникает вопрос о том, как правильно установить аппарат. Поэтому ознакомьтесь с несколькими примерами подключения УЗИП в электросеть.

На рисунке ниже изображена типовая схема из условий для подключения 3 фаз. Здесь более наглядно изображено подключение ограничителей напряжения до счётчика. В трёхфазной цепи с системой заземления TN-S или TN-C-S его подключают между фазами, нулём и землёй. Но подключение ОИН-1 после счетчика тоже допустимо как дополнительная ступень защиты.

Монтажная схема на примере подключения в двухпроводной электросети:

Обзор ограничителя импульсных напряжений ОИН-1

И напоследок рассмотрим схемы для четырёх разных схем электроснабжения (1 фаза, 3 фазы, объединённый и разъединённый защитные проводники), которые встречаются наиболее часто:

Обзор ограничителя импульсных напряжений ОИН-1

Важное примечание

Мы рассмотрели для чего нужен ОИН-1 и как его установить. Но в обязательном порядке нужно добавить примечание из официальной документации:

Обзор ограничителя импульсных напряжений ОИН-1

Речь идёт о подключении автомата в разрыв питающего провода перед ограничителем. Это нужно для того, чтобы в случае короткого замыкания в ограничителе импульсов разорвать цепи и предотвратить негативные последствия случая.

Напоследок рекомендуем просмотреть видео, на котором доступно объясняется, как подключить ограничитель импульсных напряжений к сети:

На этом мы и заканчиваем описание характеристик и правил подключения ОИН-1. Надеемся, подготовленный обзор был для вас полезным и интересным!

Наверняка вы не знаете:

  • Классификация устройств защиты от импульсных перенапряжений
  • Что такое ограничитель мощности
  • Как бороться с низким напряжением в сети


НравитсяОбзор ограничителя импульсных напряжений ОИН-10)Не нравитсяОбзор ограничителя импульсных напряжений ОИН-10)

Оин 1 принцип работы

Ограничитель перенапряжений. Ограничитель импульсных перенапряжений

Ограничитель импульсных перенапряжений - это один из наиболее широко известных высоковольтных приборов, использующийся для защиты сети.

Описание приспособления

Импульсные перенапряжения возникают в результате нарушений в атмосферном или коммутационном процессе. 

Данное устройство способно справиться с отводом сильного разряда, бьющего в объект.

Но оно не сможет помочь, если разряд попадет в сеть через воздушные линии. Полное отключение всех приборов во время грозы не всегда возможно. Именно с этой целью были созданы ограничители перенапряжений ОПН.

Устройство и принцип действия

Конструктивно ограничитель перенапряжения включает в себя полупроводниковый элемент с нелинейной величиной сопротивления. Как правило, в роли таких элементов выступают вилитовые диски, изготовленные на основе оксидов цинка с включением в из состав тех или иных  примесей. Снаружи диски закрываются защитной рубашкой, а на концах имеют электрические выводы, один из которых подводится к защищаемой электрической сети, а второй заземляется.

Пример частного варианта устройства ограничителя перенапряжения представлен на рисунке 1 ниже:

Рисунок 1: устройство ограничителя перенапряжения

Работа ОПН схожа с обычным варистором, отличительной особенностью ограничителя являются некоторые различия с характеристикой варистора в части проводимости и скорости нарастания. Принцип действия ограничителя перенапряжения заключается в его нелинейной вольт-амперной характеристике (ВАХ). Это означает, что при номинальном напряжении сопротивление варисторов достаточно большое и ток через них не протекает – его сопротивление изоляции соизмеримо с изоляцией кабелей, изоляторов и электрических приборов.

В рабочем режиме при возникновении грозовых разрядов или других высоковольтных импульсов сопротивление нелинейных резисторов внутри ограничителя резко снижается. Как правило, эта величина приближается к нулю или несоизмеримо меньше сопротивления сети и всех подключенных к ней приборов. Поэтому при коммутационных или грозовых перенапряжениях ток разряда протекает только через ограничитель перенапряжения на землю, чем и обеспечивается защита электрооборудования.

Пределы срабатывания ограничителя перенапряжений на разряды молний или другие импульсные перенапряжения определяются его ВАХ.

Рис. 2: вольтамперная характеристика ОПН

Как видите из рисунка 2, при работе ограничителя перенапряжения до 600В, протекающий через него ток будет равен нулю. Как только это значение пересечет отметку в 600В, сопротивление резко уменьшится и протекающий ток увеличится до сотен и тысяч ампер.

Здесь кривая характеристики представлена тремя участками:

  • 1 – область нулевых или сверхмалых токов;
  • 2 – область средних токовых нагрузок;
  • 3 – область максимального тока.

Применение

Ограничитель перенапряжения применяется для предотвращения нарастания перенапряжения на электрическом оборудовании с последующим переводом импульса разряда на землю.

Виды ОПН

  • Класс напряжения – рабочая величина, на которую рассчитан ограничитель, разделяется на устройства до 1кВ и выше, как правило, номинал напряжения соответствует стандартному значению электрических параметров сети (6, 10, 35 кВ).
  • Материал рубашки – определяет тип изоляции наружного слоя, наиболее часто используются фарфоровые или полимерные модели.
  • Класс защищенности – определяет возможность установки или на открытой части, или только внутри помещения.
  • Количеству элементов или фаз – число ограничителей перенапряжения зависит от числа защищаемых фаз и величины питающего их напряжения.

В зависимости от причин возникновения перенапряжения в сети устройство защиты должно выстраиваться в соответствии с требованиями стандартов:

  • ГОСТ Р 50571.18-2000 – от возможных перенапряжений в низковольтных сетях при замыканиях по высокой стороне.
  • ГОСТ Р 50571.19-2000 – от скачков, образованных воздействием молнии и возникающих в результате переключения электроустановок.
  • ГОСТ Р 50571.20-2000 – от перенапряжений генерируемых электромагнитными воздействиями.

Комбинация нескольких видов позволяет выстраивать многофункциональные или ступенчатые ограничители.

Технические характеристики

При выборе конкретной модели ограничителя перенапряжения обязательно учитываются такие  параметры устройства:

  • Время срабатывания – характеризует скорость открытия полупроводникового элемента ограничителя после нарастания напряжения.
  • Рабочее напряжение – определяет величину электрической энергии, которую ОПН может выдерживать без нарушения работоспособности в течении любого промежутка времени.
  • Номинальное повышенное напряжение – значение рабочей величины, которое ОПН способен выдерживать в течении 10 секунд, также нормируется совместно с остаточным напряжением, которое остается в сети.
  • Ток утечки – возникает как результат приложения напряжения к ограничителю перенапряжения и определяется его омическим сопротивлением или параметрами резисторов. В исправном состоянии этот параметр составляет сотые или тысячные доли ампер, перетекающие по рубашке и полупроводнику от источника к проводу заземления.
  • Разрядный ток – величина, образующаяся при импульсных скачках, в зависимости от источника перенапряжения разделяется на атмосферные, электромагнитные и коммутационные импульсы.
  • Устойчивость к току волны перенапряжения – определяет способность сохранять целостность всех элементов конструкции в аварийном режиме.

Обслуживание и диагностика ОПН

В процессе эксплуатации ограничители перенапряжения не являются одноразовым элементом. Поэтому могут многократно производить операции перевода импульсного разряда на заземляющую шину автоматически. Из-за особенностей протекания и величины перенапряжения ОПН может утрачивать заводские параметры, снижать эффективность работы до полного выхода со строя. Для предотвращения подобных ситуаций они подвергаются периодической проверке в процессе эксплуатации, которая регламентируется п.2.8.7 ПТЭЭП.  При этом проверяется:

  • Сопротивление – не менее раза в 6 лет, измеряется при помощи мегаомметра.
  • Ток проводимости – проверяется только при условии снижения предыдущего параметра.
  • Пробивное напряжение и герметичность проверяются только после заводского ремонта или при приемке в эксплуатацию на заводе. Самостоятельно электроснабжающими и эксплуатирующими организациями такие меры диагностики для ограничителей не производятся.
  • Тепловизионные измерения должны выполняться в соответствии с регламентом изготовителя или местными планово-предупредительными ремонтами.

Также в процессе эксплуатации может выполняться внешний осмотр устройства на наличие подгаров, сколов, загрязнения или других дефектов в изоляции.

Видео по теме статьи

//www.youtube.com/embed/2ZZwQRD6q4I?feature=oembed

Источники:

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

Ограничители импульсного перенапряжения: подключение УЗИП

Ограничители импульсного перенапряжения-01Ограничители импульсного перенапряжения-01

Установка УЗИП — ограничители импульсного перенапряжения, правильный монтаж и подключение

Ограничители импульсного перенапряжения — скачкообразное напряжение атмосферного происхождения является основной причиной выхода из строя электронного оборудования и простоев производства. Наиболее опасный тип перенапряжения вызван прямыми ударами молнии.

Фактически, молния создает пики тока, которые генерируют перенапряжения в сети электропередачи и передачи данных, последствия которых могут быть чрезвычайно нежелательными и опасными для систем, сооружений и людей. У разрядников для защиты от перенапряжений есть много применений, от защиты дома до коммунальной подстанции.

Они устанавливаются на автоматических выключателях внутри жилого дома, внутри вмонтированных трансформаторов, на полюсных трансформаторах, на столбовых стойках и подстанциях. В данной публикации мы расскажем как правильно подключать ограничители импульсного перенапряжения, и покажем схемы соединения. В частности здесь речь пойдет о конкретном устройстве ОИН-1.

Для чего нужен ОИН-1 и его функциональные возможности

Прибор ограничителя импульсных напряжений в первую очередь нужен для защиты электрической сети переменного тока 380/220v. Скачкообразные, импульсные напряжения, многократно превышающие штатные значения, могут возникать из-за грозовых разрядов.

Ограничители импульсного перенапряжения-1Ограничители импульсного перенапряжения-1

Кроме этого, действующее сетевое напряжение может изменяться в следствия бросков тока в электросети. Возникают они как правило во время подсоединения к сети либо отключения каких либо мощных электрических устройств.

В схему прибора ОИН-1 включен мощный варистор, выполняющий функции разрядника, которые применялись в устройствах более старшего поколения.

Ограничители импульсного перенапряжения-2Ограничители импульсного перенапряжения-2
Устройство защиты от импульсных перенапряжений в силовом щитке

В этом варианте прибор подключен к защищаемой электрической цепи по параллельной схеме.

В случае каких либо возникших аварийных ситуаций, когда штатное напряжение начинает периодически «прыгать» до критического уровня, тогда устройство защиты мгновенно сработает.

Принцип действия защиты заключается в следующем. Во время образования в силовой цепи внезапного подъема напряжения, например, от грозового разряда. При этом на варисторе снижается сопротивление, и как следствие возникает короткое замыкание, после чего срабатывает автомат и отключает электрическую цепь. Установленные в этом силовом тракте, после варистора, различные приборы не получат повреждений, благодаря тому, что вовремя сработали ограничители импульсного перенапряжения.

В процессе эксплуатации ОИН-1 он может получить повреждения, чтобы убедится в его исправности, нужно ориентироваться на показание встроенного индикатора. В случае, если индикатор отображается зеленым цветом, то прибор находится в рабочем состоянии, а если индикатор покраснел, тогда устройство защиты подлежит замене.

Область использования

Защитный ограничитель напряжения ОИН-1 очень востребован при монтаже электро сетей, его практически всегда устанавливают в распределительных щитках на входе в помещение. А подключается он в цепь непосредственно перед прибором учета электроэнергии, то есть и сам счетчик будет под защитой от перенапряжения.

Ограничители импульсного перенапряжения-3Ограничители импульсного перенапряжения-3

Кроме этого, данный прибор используется для защиты от перенапряжений, начиная от жилого дома до коммунальной подстанции. Они устанавливаются на автоматических выключателях внутри жилого помещения, внутри вмонтированных трансформаторов, на полюсных трансформаторах, на столбовых стойках и подстанциях.

Технические параметры

Таблица основных характеристик ОИН-1: Значение
1 Стандартное напряжение 220 В
2 Номинальный разрядный ток 6
3 Максимальный РТ 13
4 Остаточное напряжение 2200
5 Уровень защиты не ниже IР21
6 Температурный режим от -50 до +55
7 Параметры устройства (размеры) 80 × 17,5 × 66,5
8 Вес 0,12 кг
9 Срок службы 3–3,5 года

Ограничители импульсного перенапряжения — как подключить прибор

Существуют схемы подключения как по одной фазе, так и по трем фазам. Кроме описываемого здесь устройства ОИН-1 есть множество идентичных защитных ограничителей напряжения от разных брендов, потому принцип их подключения ничем не отличается друг от друга. Типовую схему, представленную ниже, практически можно использовать с любыми видами устройств.

УЗИП-4УЗИП-4

В первом варианте прибор подключен к цепи по схеме параллельного соединения, второй вариант показывает последовательное с разъединителем подключение. Из этого вытекает, что во время срабатывания ограничителя импульсного перенапряжения при резком повышении сетевого напряжения разъединитель разомкнет питающую цепь.

Внимание! Помимо правильного монтажа фазового и заземляющего кабеля, существенно большое значение имеет сечение и длина монтажного провода.

От точки подключения на клеммной колодке устройства до шины заземления длина монтажного провода не должна составлять более 500 мм.

Что нужно устанавливать перед устройством защиты — автоматический выключатель или предохранитель

Чтобы обеспечить гарантированную подачу электроэнергии в помещение, нужно устанавливать автомат-выключатель для корректного отключения УЗИП, а для надежности можно еще и предохранитель.

УЗИП-5УЗИП-5
Последствия удара молнии в распределительный щит

Из всего выше сказанного образуется такой вывод: ограничители импульсных перенапряжений желательно устанавливать как в сетях промышленного потребления, так и в домашних электро сетях. Такая защита поможет вам избежать воспламенения установленного оборудования, следовательно и пожара.

Ограничитель импульсных напряжений. Как грамотно подключить.

Ограничители импульсных напряжений (ОИН) ОИН1, ОИН2

Нормативно-правовое обеспечение

  • Отвечают требованиям ТР ТС 004/2011 «О безопасности низковольтного оборудования», других стандартов и ПУЭ».
  • Отвечает требованиям к защите от перенапряжений по ГОСТ Р 50571.19

Функциональные возможности

ОИН1 - ограничитель импульсных напряжений моноблок с варистором; по заказу световой индикатор наличия напряжения сети.
ОИН2 - ограничитель импульсных напряжений моноблок с варистором, световой индикатор рабочего состояния, световая индикация напряжения сети.

Конструктивные особенности

Ограничитель импульсных напряжений (ОИН) обеспечивает:

  • Максимальное длительное рабочее напряжение 275 В частотой 50 Гц
  • Рабочий потребляемый ток при напряжении 275 В не превышает 0,7 мА
  • Выполнен в виде унифицированного модуля шириной 17,5 мм для монтажа на рейке 35/7мм
  • Выдерживает воздействие импульсов комбинированной волны с напряжением разомкнутой цепи 10,0 кВ и с током короткозамкнутой цепи 5 кА
  • Обеспечивает защиту оборудования от импульсного перенапряжения категории II по ГОСТ Р 50571.19-2000 (уровень напряжения защиты 2,0 кВ)
  • Выдерживает без повреждений воздействие временного перенапряжения 380 В
  • Классификация по тепловой защите: ОИН1 и ОИН2 - без тепловой защиты.
  • Классификация по наличию индикатора состояния:
    ОИН1 - без индикатора;
    ОИН1С (по дополнительному заказу) - со световым индикатором наличия напряжения сети;
    ОИН2 - со световым индикатором рабочего состояния.
  • Классификация по ремонтопригодности: ОИН1 и ОИН2 - моноблочные (неремонтируемые в условиях эксплуатации).
  • Допускает присоединение проводников сечением от 4 до 16 мм
Наименование характеристики Значение параметров
Номинальное напряжение питающей сети, В 220
Номинальный разрядный ток, кА 5
Максимальный разрядный ток, кА 12,5
Остаточное напряжение при номинальном токе не выше, В 2000
Класс испытаний по ГОСТ Р 51992 II
Степень защиты, обеспечиваемая оболочками не ниже IP20
Температура окружающего воздуха, С от -45 до 55
Габаритные разметы, мм 80 x 17,5 x 65,5
Масса, не более, кг 0,12
Гарантийный срок эксплуатации, лет 3
назначение, принцип работы выбор по классу и установка по схеме

С началом грозы принято отключать дорогостоящие бытовые приборы из розетки, а ethernet кабели от компьютеров. Это нужно, чтобы защитить их от неожиданного удара молнии в ЛЭП и выхода из строя из-за перенапряжения. Но есть способ гораздо удобнее — установить на ввод в квартиру устройство защиты от импульсных перенапряжений.

Причины и последствия импульсных перенапряжений сети

Импульсные перенапряжения представляют угрозу для бытовых электроприборов. Причины данного явления делятся на 2 категории:

  1. Атмосферные перенапряжения (молнии). Разряд попадает в линию электропередач. Затем высокий потенциал следует до розеток потребителей и выводит домашнюю электронику из строя.
  2. Техногенные перенапряжения. Неисправность контура молниезащиты. Пробой изоляции между сетями высокого и низкого напряжения.

Импульсные перенапряжения могут быть вызваны атмосферными явлениямиИмпульсные перенапряжения могут быть вызваны атмосферными явлениями

Независимо от причины, в квартирных розетках формируется разность потенциалов в несколько тысяч вольт. Импульс длится доли секунды. Но этого достаточно чтобы повредить чувствительные электронные платы, микросхемы и процессоры.

к содержанию ↑

Для чего нужно УЗИП

Задача УЗИП состоит в защите электроприборов от перенапряжения. Устройство оберегает бытовую сеть от скачков тока в следующих случаях:

  • неполадки на трансформаторной подстанции и замыкания ВВ проводов на НВ линию;
  • прямое попадание грозового разряда в ЛЭП;
  • разряд молнии вблизи воздушных линий электроснабжения или жилых зданий.
УЗИП для частного домаУЗИП для частного домаУЗИП для частного дома к содержанию ↑

Строение и принцип работы УЗИП

Принцип работы УЗИП основан на зависимости его сопротивления от приложенного к контактам напряжения. Например, если вольтаж в сети равен типичным 220 В, то сопротивление устройства составляет порядка 1-100 Мом. Если напряжение возрастает до критического уровня, то УЗИП резко снижает сопротивление до единиц ом и шунтирует квартиру от чрезмерно высоких токов.

Внутри устройства имеется полупроводниковый элемент — варистор. Именно он за несколько микросекунд сбрасывает сопротивление до минимальных значений.

Принцип действия УЗИППринцип действия УЗИП

Дополнительная информация. Варистор — это круглая, светло-синяя или черная радиодеталь с двумя ножками. Ее диаметр составляет от 7 до 30 мм. Варистор часто встречается в бытовой технике. Он включается между фазным и нулевым проводами электроприбора или впаивается в его плату. В случае с домашней техникой варистор также служит для защиты от перенапряжения, только не всей квартиры, а конкретного бытового прибора, в котором он установлен.

к содержанию ↑

Виды УЗИП

Существующие УЗИП отличаются по быстроте срабатывания. Различия объясняются неодинаковыми конструкциями и принципами работы приборов. Поэтому принято выделять 3 вида устройств молниезащиты:

  1. Искровые промежутки (разрядники). Представляют собой воздушный зазор между электродами.
  2. Варисторные ограничители перенапряжения (ОПН). Полупроводниковые устройства. Резко снижают сопротивления при возрастании напряжения. Встречаются в УЗИП, устанавливаемых в квартирные щитки, на платах бытовой техники и на опорах ЛЭП.
  3. Комбинированные устройства. Сочетают в себе оба из перечисленных типов устройств.

к содержанию ↑

Искровые промежутки (разрядники)

Наиболее старый и простой тип защиты от перенапряжения. Как правило, разрядники используются в трансформаторных подстанциях и распределительных устройствах. На таких объектах возможны резкие скачки напряжения при коммутационных процессах.

Имеется 2 электрода. Один подключается к заземлению. Второй к защищаемой линии. Пока разность потенциалов между электродами находится в пределах нормы, разрядник обладает большим сопротивлением воздуха. Как только напряжение между электродами превышает заданный уровень, происходит пробой воздушного промежутка (пролетает искра). Разрядник на доли секунды сбрасывает сопротивление.

УЗИП на основе искровых разрядниковУЗИП на основе искровых разрядниковУЗИП на основе искровых разрядников

Напряжение срабатывания разрядника регулируется расстоянием между электродами. Чем оно больше, тем выше вольтаж, при котором произойдет пробой воздушного промежутка.

Важно! Если долго проходить в помещении в синтетической куртке, а потом прикоснуться к чему-то металлическому, то между пальцем и железным предметом пролетит искра. Произойдет пробой воздушного промежутка между заряженной от трения курткой и железным предметом. Разрядники работают по аналогичному принципу.

к содержанию ↑

Варисторные ограничители перенапряжения

Низковольтный вариант данного устройства применяется в квартирных электрощитах. Для этого на корпусе предусмотрено стандартное крепление под DIN-рейку. Прибор работает с напряжениями 220/380 В и предохраняет от перенапряжения отдельную квартиру или трехфазного потребителя.

Высоковольтный вариант устанавливается на линии 10 кВ и выше. Обладает сравнительно большими размерами и мощным керамическим корпусом белого или коричневого цвета. Данный ограничитель импульсных перенапряжений еще называют вентильным разрядником (не путать с искровым промежутком).

Ограничитель импульсных напряжений на варисторахОграничитель импульсных напряжений на варисторахОграничитель импульсных напряжений на варисторах к содержанию ↑

Комбинированные устройства

Комбинированные УЗИП сочетают достоинства от вышеперечисленных защитных устройств. Основные из них таковы:

  1. Низкое напряжение срабатывания варисторных ОПН. Как следствие, высокая чувствительность к самым незначительным превышениям напряжения.
  2. Большая рассеиваемая мощность искровых разрядников. Некоторые модели способны пропускать токи в десятки килоампер.

Комбинированный молниеразрядник Комбинированный молниеразрядник

к содержанию ↑

Классы УЗИП

Различные модели УЗИП отличаются по типу защищаемого потребителя, месту установки и техническим требованиям. Поэтому их принято разделять на 3 класса.

Класс УЗИП Назначение устройства Технические требования Предельный импульсный ток, кА
1-й (B) Защита от прямых ударов молнии, бросков напряжения при КЗ. Необходима защита от прямого прикосновения человека к частям устройства. Отсутствиериска возгорания УЗИП при его неисправности или КЗ в системе электроснабжения. От 0,5 до 50 кА при импульсном токе в течение 350 мкС.
2-й (C) Для защиты ЛЭП и подстанций от перенапряжений при переключениях. Как дополнительные мерызащиты при ударе молнии. Аналогичные1 классу. Защита от прямого прикосновения. Отсутствие риска возгорания при КЗв сети или неисправности защитного устройства. 5 кА при импульсе в 20 мкС.
3-й (D) Для гашения остаточных сетевых помех и скачков напряжения. Защита от низковольтного перенапряжения между фазой и нулем. От прямого прикосновения ивозгорания. До 1,5 кА при 20 мкС
к содержанию ↑

Маркировка защитного устройства

Для правильного выбора и установки устройства необходимо ознакомиться с его маркировкой. Она представлена в буквенно-цифровом виде и находится на корпусе УЗИП. Расшифровка обозначений приведена ниже.

  • L/N — винтовые клеммы для подключения кабелей защищаемой сети;
  • символ «земля» — клемма для подключения нулевого защитного проводника;
  • зеленый флажок на корпусе — указывает на исправность прибора;
  • Un — номинальное рабочее напряжение защищаемой сети;
  • Umax — предельное допустимое напряжение;
  • 50 Гц — частота тока;
  • In — номинал разрядного тока;
  • Imax — предельный разрядный ток, который способны выдержать устройство;
  • Uр — напряжение срабатывания УЗИП.

Ограничитель перенапряжения ОПС1-DОграничитель перенапряжения ОПС1-D

к содержанию ↑

Схемы подключения

Для подключения защитного устройства недостаточно ознакомления с его характеристиками. Дополнительно следует учесть и параметры питающей сети. В странах СНГ наиболее распространены такие ее виды:

  • однофазная, TN-S;
  • однофазная, TN-C;
  • трехфазная, TN-S;
  • трехфазная, TN-C;

УЗИП с однофазным питанием и системе TN-S

На картинке ниже представлена схема подключения. УЗИП включается после вводного автоматического выключателя. Как фазный, так и нулевой провод, на защитное устройство поступает с автомата. Заземляющий же проводник идет с PE клеммника.

Подключение однофазного УЗИП для TN-SПодключение однофазного УЗИП для TN-S

к содержанию ↑

УЗИП с однофазным питанием по системе TN-C

Применяется однополюсной прибор. Заземляющий проводник отсутствует. Поэтому устройство защиты от перенапряжений подключается между фазным и нулевым. При критическом скачке напряжения в L проводе лишний ток, минуя квартиру, потечет в N провод.

Подключение УЗИП по TN-CПодключение УЗИП по TN-C

к содержанию ↑

УЗИП с трехфазным питанием и по системе TN-S

Устройство защиты устанавливается после вводного автомата. Если поставить его после счетчика, то в случае удара молнии дорогой прибор учета выйдет из строя. Все 3 фазы поступают на УЗИП в соответствии с маркировкой его клемм. При таком подключении стабильность напряжения контролируется не только между фазой и землей, но и между отдельными фазами.

Трехфазное УЗИП по системе TN-SТрехфазное УЗИП по системе TN-S

к содержанию ↑

УЗИП с трехфазным питанием по системе TN-C

В трехфазной сети желательно использовать модульное устройство защиты на 3 полюса. Но при необходимости допустимо воспользоваться и 3 однофазными УЗИП. Независимо от комплектации уровень напряжения будет контролироваться между всеми фазными проводниками и нулем.

УЗИП для трехфазной сети TN-CУЗИП для трехфазной сети TN-C

к содержанию ↑

Автоматы или предохранители перед УЗИП

На вводе в любую квартиру в обязательном порядке монтируется устройство защиты от КЗ или перегрузки по току. Раньше применялись пробки (плавкие вставки). Сейчас в ходу автоматические выключатели.

УЗИП монтируется после этих устройств. При превышении напряжения оно замыкает свои контакты. Далее возникает огромный ток короткого замыкания. Если перед УЗИП стоит плавкая вставка, то она перегорит. Ее необходимо будет заменить новой. Если автоматический выключатель, то он сработает, и его достаточно будет просто включить.

УЗИП подключается после автоматов защитыУЗИП подключается после автоматов защиты

В контексте ОИН специалисты рекомендуют именно плавки вставки. Объясняется это простотой их устройства и меньшими рисками перекрытия высоким напряжениям. То есть если под превышенным потенциалом окажется автомат, то есть риск, что внутри него образуется дуга, и он не выполнит защитную функцию. С плавким предохранителем такая опасность минимальна. Однако они обладают меньшей быстротой действия чем автоматы.

Важно! Не следует ремонтировать пробки и изготавливать так называемые «жучки». Это быстро, дешево и просто, но периодически приводит к серьезным последствиям. В идеале лучше иметь пробки на запас или установить автоматические выключатели.

к содержанию ↑

Ошибки монтажа УЗИП

При правильной установке защитное устройство гарантирует безопасность бытовых электроприборов. Распространенные примеры ошибок при монтаже УЗИП следующие:

  1. Монтаж УЗИП в щиток с неисправным заземлением. Для работы устройство требует надежной земли. Поэтому перед установкой необходимо убедиться в исправности заземления.
  2. Неправильное подключение с нарушением схемы. Корректно подключить УЗИП может только человек, разбирающийся в электрике. В случае затруднений следует обратиться к типовым схемам в технической документации на устройство.
  3. Применение защитного аппарата, не подходящего по классу. При ударе молнии такое устройство в лучшем случае выйдет из строя. В худшем оно пропустит высокое напряжение в квартирную электрическую сеть.

В подавляющем большинстве случаев УЗИП защитит ваш дом от импульсных перенапряжений. Они возникают в результате ударов молнии вблизи ЛЭП или аварий на трансформаторных подстанциях. Подобные вещи невозможно предсказать заранее, поэтому защита от перенапряжений пойдет на пользу любому электрощиту.

Независимо от того, приобретается УЗИП для частного дома или квартиры, следует обратить внимание на его класс. Другие важные параметры — это минимальное напряжение срабатывания, предельный импульсный ток КЗ и количество защищаемых фаз. Не менее значимо правильно выбрать схему подключения прибора к сети.

Устройство защиты от импульсных перенапряжений (УЗИП): назначение, принцип работы выбор по классу и установка по схеме

Схемы электрических соединений
для легковых и грузовых автомобилей Загрузить с помощью практического руководства

Что такое схема электрических соединений:

Электрическая схема (также известная как принципиальная схема или электронная схема) является графическим представлением электрической цепи. Он показывает различные компоненты схемы в виде упрощенных и стандартных пиктограмм, а также соединения питания и сигналов (шины) между устройствами. Расположение компонентов и соединений на диаграмме обычно не соответствует их физическому расположению в готовом устройстве.

Электрические схемы автомобиля

включают электрические схемы для легковых автомобилей и электрические схемы для грузовых автомобилей.

Программное обеспечение схемы электромобиля:

Mercedes-Benz WIS / EPC:

http://www.obdii365.com/wholesale/2017-09-mb-star-sd-c4-hdd.html

W-I-S net 2017.04: Информационная система для мастерских

EPC.net 2017.04: Электронный каталог запчастей

Предоставьте полный вид электрической схемы автомобиля, схему расположения компонентов и способ технического обслуживания.Что вам нужно сделать, это ввести номер шасси, а затем вы получите подробную информацию о производителе, конфигурации двигателя и модели автомобиля.

Porsche PET 7.3 электронный каталог запчастей:

http://www.obdii365.com/wholesale/porsche-pet-73.html

Каталог запасных частей Porsche позволяет ввести VIN-номер машины и проводит фильтрацию, используя его, но при этом номер кузова не учитывается, то есть программа Porsche определит по VIN-модели и модельному году (используя первые 11 символов VIN), остальные следует выбирать самостоятельно.Это означает, что программа Porsche легко переваривает VIN-номера с придуманными последними цифрами, что может привести к ошибкам в идентификации единиц.

BMW ETK 3.1.30 Электронный каталог запчастей BMW:

http://www.obdii365.com/wholesale/bmw-electronic-parts-catalog-etk.html

BMW ETK содержит полный ассортимент запчастей, предлагаемых для продажи BMW Group, и предназначен для облегчения поиска необходимых запасных частей (автозапчастей и мотоциклов), расходных материалов и аксессуаров.Добавлено в прайс-лист в BMW ETK Local с ETK Admin.
Для этого в вашем распоряжении различные функции поиска, такие как поиск по названию, номеру детали и т. Д. Кроме того, система предлагает подробную информацию о конкретных деталях, а также возможность создавать так называемый список деталей. найденные детали.

Audi VW Skoda Seat Электронный сервисный центр ELSAWIN 5.2:

http://www.obdii365.com/wholesale/elsawin-52-electronic-service-information-for-audi-vw-skoda-seat.HTML

ELSAWIN 5.2 для Audi-VW-SKODA-SEAT имеет полную информацию по ремонту в основном на новых автомобилях 1986-2011, электрические схемы 1992-2009, в т.ч. подробное описание технологии ремонта, электрические схемы, кузовные работы, каталог запчастей для гарантийной замены, особенно. информация о новых и старых машинах

Land Rover электронный каталог:

http://www.obdii365.com/wholesale/land-rover-microcat-electronic-parts-selling-system.HTML

Microcat Электронная система продажи запчастей для Land Rover, новейшая версия 2013.07, поддерживает несколько автомобилей. Он включает в себя информацию для всех видов серии Land Rover и для разных лет.

электрические схемы для грузовиков:

Clark ForkLift (PartProPlus) Электронные каталоги запасных частей:

http://www.obdii365.com/wholesale/clark-forklift-partproplus-electronic-spare-parts-catalogs.HTML

Интерфейс программы запасных частей Clark Fork Lift очень простой и удобный, это поиск по модели, серийным номерам, список применимости детали, так как программа содержит сервисные бюллетени.

John Deere Каталог запчастей:

http://www.obdii365.com/wholesale/john-deere-power-systems-cd.html

Техническое руководство по компонентам John Deere, Руководства по эксплуатации и техническому обслуживанию John Deere, Руководства по ценам на обслуживание, Каталог запчастей John Deere, PowerTech John Deere.

Hitachi Каталог запчастей:

http://www.obdii365.com/wholesale/hitachi-parts-catalogue-2013.html


Каталог запчастей Hitachi 2013 предназначен для тяжелых строительных машин, каталог запчастей для техники Hitachi, типы оборудования, охватываемые Hitachi HOP 2013.

MAN тяжелый грузовик WIS / EPC:

http://www.obdii365.com/wholesale/man-mantis-2015-catalogue.html

(Mantis) 2015 Информационная система для мастерских Электронный каталог запчастей EPC V5.9.1.85

Каталог запчастей MAN MANTIS содержит полную информацию о запчастях для грузовых автомобилей, автобусов и различных шасси специального назначения, а также о двигателях MAN. В этом каталоге много картинок, иллюстраций с подробным описанием компонентов оборудования.

Caterpillar ET 2017A V1.0 Электронный техник:

http://www.obdii365.com/wholesale/caterpillar-et2017A-electronic-technician-diagnostic-software.HTML

Cat ET (Caterpillar ET) 2017A представляет собой обновленную версию программы уровня дилера для диагностики всего оборудования Caterpillar.

Эта программа работает с дилерским диагностическим сканером Caterpillar Communication Adapter, а также с другими адаптерами для диагностики, включая сканер Nexiq, программа предоставляет полную информацию при устранении неполадок. Приобретая программу Cat ET (Caterpillar ET) 2017A, вы сразу получаете подробные и четкие инструкции по ее активации.

Хорошо для вас:

Универсальные автомобильные электрические схемы :

VVDI Prog: http://www.obdii365.com/wholesale/vvdi-prog-programmer.html

Ktag: http://www.obdii365.com/wholesale/v2-23-ktag-ktm100-ecu-programming-tool.html

Kess v2: http://www.obdii365.com/wholesale/v5017-kess-v2-ecu-programmer-online-version.html

Бесплатные монтажные схемы скачать бесплатно:

https: // cardiagn.com / wiring /

Как читать автомобильные электрические схемы:

Электрические схемы и дорожные карты имеют много общего. Дорожные карты показывают, как добраться из пункта «А» в пункт «Б». Однако вместо подключения между штатами, автомагистралями и дорогами на электрической схеме показаны основные электрические системы, подсистемы и отдельные цепи, все они взаимосвязаны. Еще одна общая черта - слои деталей. Например, если вы посмотрите на дорожную карту Калифорнии, вы не сможете найти адрес улицы в Лос-Анджелесе.Вы можете найти город или населенный пункт, но не найдете конкретного адреса. Чтобы найти точное местоположение определенного места жительства или здания, вам потребуется подробная карта улиц или выход в Интернет и использование Google Maps или функции GPS на смартфоне.

Несмотря на то, что эта схема электропроводки для Ford Mustang 1979 года устарела, навыки, необходимые для ее использования для диагностики электрической проблемы, ничем не отличаются от просмотра онлайн-схемы автомобиля поздней модели.К сожалению, нет никаких инструкций относительно того, как на самом деле читать и / или интерпретировать большинство электрических схем, будь то в печатном виде, на DVD или в Интернете.

Электрические схемы и дорожные карты имеют много общего. Дорожные карты показывают, как добраться из пункта «А» в пункт «Б». Однако вместо подключения между штатами, автомагистралями и дорогами на электрической схеме показаны основные электрические системы, подсистемы и отдельные цепи, все они взаимосвязаны. Еще одна общая черта - слои деталей.Например, если вы посмотрите на дорожную карту Калифорнии, вы не сможете найти адрес улицы в Лос-Анджелесе. Вы можете найти город или населенный пункт, но не найдете конкретного адреса. Чтобы найти точное местоположение определенного места жительства или здания, вам потребуется подробная карта улиц или выход в Интернет и использование Google Maps или функции GPS на смартфоне.

То же самое относится (в меньшей степени) к электрическим схемам. Транспортные средства, изготовленные до 1970-х годов, обычно имели свои электрические схемы на одной или двух страницах в сервисном руководстве.К 1980-м годам сложность автомобильной, бортовой электроники изменилась, и в большинстве руководств для транспортных средств было несколько страниц электрических схем, чтобы показать всю электрическую систему автомобиля. В 1990-х годах печатные сервисные руководства начали исчезать, и теперь руководства и электрические схемы можно найти на цифровых носителях или в Интернете. Есть один аспект электрических схем, который, к сожалению, остается неизменным. У них нет указаний относительно того, как на самом деле их читать. Как и на карте, на электрических схемах будет легенда, в которой прописаны символы и соглашения об именах, но нет инструкций с практическими рекомендациями.

Хотя онлайновые руководства по техническому обслуживанию автомобилей написаны с учетом «профессионального» специалиста, каждый техник должен был научиться читать и интерпретировать схемы соединений в определенный момент своей карьеры. Конструкция и схема электрических соединений не рассчитаны на техников среднего уровня или начального уровня, начиная с простых в понимании схем, которые становятся все труднее читать и понимать. В этой статье будет использован другой подход, и начнем с простых схем и электрических схем, затем перейдем к диаграммам с большей сложностью.Этот пошаговый процесс не только делает обучение чтению электрической схемы менее болезненным, но и способствует лучшему пониманию работы электрических цепей. Чтобы стать более опытным в чем-либо, включая чтение монтажных схем, нужно практиковаться, и для этого есть несколько сложных вопросов.

Лампа, питаемая от батареи, иллюстрирует три вещи, которые должны работать во всех 12-вольтовых электрических цепях - питание, нагрузочное устройство и заземление.Хотя это может показаться очевидным, поиск 3-х элементов и всего, что управляет схемой, на схеме соединений, охватывающей много страниц, не является простым процессом.

3 вещи

Упрощенная схема подключения аккумулятора, лампочки и проводов легко понять. Однако, если бы эта же схема была более сложной и включала в себя несколько реле, несколько источников питания и компьютер, управляющий всей цепью, результирующая схема соединений была бы намного сложнее для чтения.Быстрый обзор основных электрических цепей облегчит понимание того, как они изображены на электрической схеме. Каждая электрическая цепь в автомобиле должна иметь три функции: 1) источник питания, 2) нагрузочное устройство и 3) заземление. Зарядная система и аккумулятор функционируют как источники питания и распространяются на весь автомобиль посредством многочисленных проводов. Устройства загрузки - это просто все, что выполняет электрические работы и может включать освещение, стартер, бортовые компьютеры, реле, электрические стеклоподъемники, вход без ключа и многие другие компоненты.Возврат заземления завершает электрический путь от положительной клеммы аккумулятора к нагрузочному устройству и обратно к отрицательной клемме аккумулятора. Если какая-либо из трех вещей отсутствует, схема не будет работать, и схемы соединений предоставляют «карту», ​​помогающую определить, какая из трех отсутствует.

В дополнение к трем вещам необходимо контролировать нагрузочные устройства. Некоторые нагрузочные устройства включаются или выключаются путем управления их источником питания, в то время как другие управляются путем включения или выключения заземления.Наиболее распространенным сценарием является использование электронного блока управления транспортного средства, или ЭБУ, для заземления реле, которые в свою очередь управляют нагрузочными устройствами. Процесс выяснения того, как управляется нагрузочное устройство и его источники питания и заземления, может быть определен с помощью схемы соединений. Чтобы изучить логический процесс чтения сложных схем соединений, мы начнем с простой схемы противотуманных фар.

Рисунок 1 не типичен для электрических схем, приведенных в руководстве по обслуживанию.Цепь противотуманных фар показана как во включенном, так и в выключенном состоянии и использует цветные линии для иллюстрации наличия питания. Зеленая пунктирная линия показывает, как электричество возвращается к отрицательному полюсу аккумулятора после подачи питания на противотуманные фары.

На рисунке 1 показана простая схема подключения, на которой показана схема противотуманного освещения. Схема состоит из аккумулятора, предохранителя на 20 А (используется для защиты цепи), переключателя (расположен на приборной панели) и двух противотуманных фар. Наземные возвращения показаны наземным символом вертикальной линии с тремя горизонтальными линиями.Не все электрические схемы показывают провода заземления, и предполагается, что символы заземления указывают провода, которые подключены к отрицательной клемме аккумулятора. Эта схема необычна тем, что наличие 12 вольт иллюстрируется схемой во включенном и выключенном состояниях. Красные линии указывают на наличие 12 вольт, а черные линии представляют сторону заземления цепи, которая подключается к отрицательной клемме аккумулятора. В части схемы «ВЫКЛ.» На схеме показано, что напряжение 12 В подается от батареи, через предохранитель и на размыкающий переключатель.Нижняя часть диаграммы показывает закрытый приборный переключатель, подключающий аккумулятор к лампам и включающий их. Это также иллюстрирует один аспект закона Киршоффа, согласно которому нагрузочное устройство (устройства) будет использовать всю мощность (12 вольт) в цепи, поскольку напряжение на отрицательной клемме аккумулятора и на стороне заземления противотуманных фар близко к 0,0. вольт. К сожалению, фактические электрические схемы не дают ни одного из этих преимуществ, и последние автомобильные схемы могут не изолировать цепи до такой степени - скорее всего, они будут частью общей системы освещения.Цвет, если он вообще используется в электрической схеме, предназначен для определения отдельных цветов проводов, а не для обозначения силовой и заземляющей сторон цепи. Кроме того, на электрических схемах всегда по умолчанию показано нагрузочное устройство в выключенном состоянии, и технические специалисты должны представить наличие электроэнергии во всей цепи при включенной и работающей нагрузке.

На рисунке 2 показано, что в цепь противотуманных фар было добавлено реле. Вместо использования переключателя, как показано на рисунке 1, реле теперь управляет высоким током тока, который требуется лампам для работы.Переключатель приборной панели используется для подачи питания на катушку управления реле, которая подключает питание от батареи к противотуманным фарам через контакты с высокой силой тока внутри реле.
Подобные реле используются во многих 12-вольтовых автомобильных цепях. Как правило, они управляются компьютером и обеспечивают питание различных нагрузочных устройств. Эти реле могут иметь 4 или 5 клемм. Пятая клемма указывает, что реле является переключающим типом, при этом пятая клемма нормально замкнута (подает питание), когда реле выключено.Четырехконтактные реле обеспечивают питание только при включении.

Существует принципиальная проблема с конструкцией цепи противотуманных фар, как показано на рисунке 1. Эти конкретные противотуманные фары требуют большой силы тока (8 ампер каждая или всего 16 ампер) от батареи для работы, и эта высокая электрическая нагрузка должна перемещаться через все провода и выключатель приборной панели, чтобы добраться до фонарей. Провода, и особенно выключатель, должны выдерживать большие нагрузки.Простым решением является добавление 12-вольтового реле, как показано на рисунке 2. Реле заменяет сверхмощный выключатель и обеспечивает соединение с высокой силой тока между противотуманными фарами и аккумулятором. Переключатель приборной панели по-прежнему является частью общей цепи, но теперь он должен только переключать катушку управления реле с малой силой тока (0,3 А) вместо противотуманных фар с высокой силой тока. Переключатель приборной панели и провода, соединяющие его с цепью, могут быть меньше, потому что реле подключает батарею к свету, а не к выключателю.

Катушка управления внутри реле представляет собой электромагнит, и когда клемма 4 реле подключается к заземлению с помощью переключателя на передней панели, катушка находится под напряжением и опускает контакты с высоким током внутри реле, соединяющего клеммы 1 и 2. Эта схема показывает схему в положении ВЫКЛ и более типична для реальной схемы подключения, так как техник должен визуализировать, где в цепи присутствует питание при включенном освещении.

Хотя рисунок 2 иллюстрирует базовую схему использования реле для работы цепи с высоким током, он имеет отношение к современной электронике, используемой в современных автомобилях.Многие автомобильные цепи управляются PCM (модулем управления мощностью) автомобиля, который не может напрямую управлять сильноточными нагрузками. Использование нескольких реле решает эту проблему, поскольку PCM должен только включать и выключать реле с низким током.

На рисунке 3 показана более сложная схема противотуманных фар, в которую добавлено второе реле. Конструкция этой цепи предотвращает включение противотуманных фар, если выключатель зажигания не находится в рабочем положении или в положении вспомогательного оборудования, независимо от того, включен ли выключатель приборной панели.

Электрическая схема, изображенная на рисунке 3, показывает, как добавление второго реле к цепи противотуманных фар улучшает его функциональность. Реле № 1 подает питание на реле № 2, то же самое реле, которое изображено на предыдущей схеме. Реле № 1 управляется выключателем зажигания и позволяет противотуманным фарам работать, только когда выключатель зажигания находится в положении вспомогательного оборудования или в рабочем положении. Если ключ зажигания находится в положении блокировки или выключения или полностью извлечен из замка зажигания, на реле № 2 не подается питание.Это предотвращает непреднамеренное включение противотуманных фар, даже если переключатель приборной панели оставлен включенным. Эта схема более типична для электрических схем, приведенных в руководстве по обслуживанию. Провода идентифицируются по их цвету, но нет цвета, указывающего, где присутствует сила; схема отображается в выключенном состоянии, а клеммы реле обозначены номерами.

Самый эффективный способ научиться читать и использовать электрические схемы - это практиковаться. Имея это в виду, следующие три практических вопроса проверят ваши знания и умение читать и интерпретировать электрические схемы.Мы рассмотрим первые два вопроса вместе и оставим третий, чтобы вы ответили.

A utomotive Схемы электрических соединений Вопросы

Вопрос 1. Этот вопрос относится к рис. 3. При выключенном зажигании в положении «Acc» и выключенной передней панели какие номера клемм на реле № 1 и № 2 будут иметь 12 вольт? Рисунок номер три типичен для электрических схем, приведенных в руководстве по обслуживанию. Реле и переключатели показаны в их «открытом» положении, а цвет не используется для обозначения наличия питания или заземления.При чтении любой электрической схемы, начните с того места, где находится известный источник питания (12 В), обычно на положительной клемме аккумулятора. Реле № 1, клемма 3, напрямую подключено к батарее через предохранитель на 20 А. Клемма 1 переходит в замок зажигания и в положении «Accy» также будет иметь напряжение 12 В (КРАСНЫЙ провод к переключателю зажигания и провод ORN между выключателем и реле). Клемма 2 является постоянным заземлением для катушки управления реле. Реле включено, и клеммы 3 подключены к 4 через контакты с высоким током.

Клеммы реле №2

с напряжением 12 вольт: 1 (красный / белый) и 3 (BRN), которые получают питание от клеммы 4 реле № 1. Клеммы 1 и 2 подключены через катушку управления реле малой силы тока, поэтому клемма 2 питается, потому что приборная панель разомкнута. Если бы приборная панель была замкнута, клемма 2 показала бы 0 вольт, потому что она подключена к земле, а реле было бы «включено». Клемма 4 не имеет питания, потому что реле выключено.

На этой электрической схеме показана схема охлаждающего вентилятора для автомобиля последней модели.Схема имеет три реле, управляемых модулем управления питанием автомобиля (PCM), которые работают с вентиляторами в режиме низкой или высокой скорости. Провода обозначены цветом провода. Клеммы реле вентилятора охлаждения также обозначены буквой и номером.

Вопрос 2. Проследите путь, по которому подается питание и заземление для каждого охлаждающего вентилятора в высокоскоростном режиме.

Вопрос 2 использует схему соединений, которая является более сложной, чем та, которая использовалась для первого вопроса.На рисунке 4 показана типичная автомобильная электрическая схема, на которой показана схема вентилятора охлаждения радиатора. Два предохранителя (40 и 10 ампер) питают цепь и напрямую подключены к аккумулятору автомобиля (всегда горячий). Есть три реле, которые подключают питание к охлаждающим вентиляторам и контролируют низкие и высокие скорости. Реле управляются модулем управления мощностью автомобиля или PCM. Диаграмма также содержит примечания, касающиеся маркировки компонентов, их физического расположения и информации о том, какие другие монтажные схемы являются частью общей схемы.Катушки управления реле выглядят немного иначе, чем на рисунке 3. Резистор показан (линия заграждения) и используется для предотвращения попадания скачков напряжения в РСМ при работе реле. В противном случае реле работают так же, как на рисунке 3.

ПРИМЕЧАНИЕ : Эта цепь работает от 12 вольт. Однако при работающем двигателе рабочее напряжение составляет 14 вольт, или зарядное напряжение подается от генератора.

Три реле вентилятора охлаждения определяют пути питания и заземления для вентиляторов охлаждения.Для запуска обоих охлаждающих вентиляторов в высокоскоростном режиме PCM заземляет обе клеммы 42 и 33 (органы управления реле вентилятора низкой и высокой скорости). С заземлением клеммы № 33 PCM провод DK BLU становится землей для управляющей катушки реле № 3 вентилятора охлаждения на клемме B4. Это включает реле, потому что на клемму C6 постоянно подается питание от предохранителя 10 часов утра. КРАСНЫЙ провод на клемме C4 реле подключен к предохранителю охлаждающего вентилятора на 40 А и с включенным реле подключается к клемме B6 внутри реле.Провод WHT от реле (клемма B6) подключен к правому охлаждающему вентилятору и обеспечивает питание. Правый охлаждающий вентилятор имеет постоянное заземление на провод BLK. При 14 В (двигатель работает) на проводе WHT и заземлении на проводе BLK правый вентилятор охлаждения работает на высокой скорости.

Левый охлаждающий вентилятор получает питание от предохранителя 40a на КРАСНОМ проводе на реле № 1 охлаждающего вентилятора (клемма B3). Управление реле низкоскоростного вентилятора охлаждения PCM (42) заземляется PCM, обеспечивая заземление на клемме B1 (DK GRN) провода реле 1 охлаждающего вентилятора.На том же реле клемма C3 получает питание от предохранителя 10a на проводе ORN. При подаче питания на C3 и заземлении A B1 реле работает и подключает клеммы реле B3 к C1, обеспечивая питание левого охлаждающего вентилятора на проводе LT BLU. СЕРЫЙ провод от левого охлаждающего вентилятора является заземлением, но только когда реле № 2 охлаждающего вентилятора включено заземлением высокоскоростного реле PCM на клемме реле C10 на проводе DK BLU. Реле № 2 соединяет СЕРЫЙ провод от левого охлаждающего вентилятора с проводом BLK (номер клеммы не указан).Провод BLK обеспечивает заземление для левого охлаждающего вентилятора, и он работает на высокой скорости.

Мы рассмотрели ответы и анализ вопросов 1 и 2. Найти ответ на вопрос 3 - решать вам.

Вопрос 3. Проследите путь, по которому подается питание на каждый охлаждающий вентилятор в режиме низкой скорости. Определите цвета проводов, реле и клеммы реле, которые питаются во время работы вентилятора. Проследите путь возврата заземления для реле и вентиляторов охлаждения - определите цвета проводов и клеммы реле, используемые на стороне заземления цепи.

Ответ на вопрос 3

Чтобы понять работу низкоскоростного вентилятора, поможет краткий обзор теории электричества. В параллельной цепи (наиболее распространенный тип, используемый в автомобилях) все нагрузочные устройства работают от напряжения системы. Например, когда охлаждающие вентиляторы работают в высокоскоростном режиме, каждый из них имеет 14 В от предохранителя 40а. Последовательная схема работает по-другому. С двумя последовательно подключенными нагрузочными устройствами они разделяют доступное напряжение между ними. В низкоскоростном режиме вентиляторы охлаждения подключены последовательно, и каждый вентилятор работает на 7 вольт - половина напряжения системы 14 вольт.

Во время работы низкоскоростного вентилятора управление низкоскоростным реле PCM заземляется включением реле охлаждающего вентилятора №1. С заземлением на клемме B1 реле (провод DK GRN) и питанием на C3 катушка управления реле соединяет контакты с высоким током (клеммы B3 и C1). Это подключает питание (14 В) от предохранителя 40a (красный провод) к проводу LT BLU, идущему к левому охлаждающему вентилятору. Серый провод от левого охлаждающего вентилятора идет к клемме C8 реле # 2. Реле № 2 охлаждающего вентилятора не запускается PCM в режиме низкой скорости, и соединение реле C8-B9 нормально замкнуто.Провод WHT на реле № 2 вентилятора охлаждения (B9) идет к правому вентилятору охлаждения, обеспечивая 7 вольт (одну половину 14 вольт) для питания вентилятора. Реле № 3 охлаждающего вентилятора не работает при работе вентилятора с низкой скоростью. Провод BLK от правого вентилятора обеспечивает заземление для обоих вентиляторов. Поскольку вентиляторы подключены последовательно, они делят напряжение системы (14 вольт) поровну между ними и работают на 7 вольт, заставляя их работать на низкой скорости.

(источник: http://www.searchautoparts.com/automechanika-chicago/commitment-training/how-read-automotive-wiring-diagrams)

,
Базовая проводка для управления двигателем - Руководство по техническим данным

Электрические схемы

Электрические схемы показывают соединения с контроллером. Электрические схемы, иногда называемые « main » или « construction » , схемы , показывают фактические точки подключения проводов к компонентам и клеммам контроллера.

Basic wiring for motor control - Technical data Базовая проводка для управления двигателем - Технические данные

Они показывают относительное расположение компонентов.Их можно использовать как руководство при подключении контроллера. Рисунок 1 - это типичная схема подключения трехфазного магнитного пускателя двигателя .

Typical Wiring Diagram Рисунок 1 - Типичная схема подключения

Линейные диаграммы показывают схемы работы контроллера

На линейных диаграммах , также называемых « схема » или « элементарная » диаграммы , показаны схемы, которые формируют основную работу контроллера. Они не указывают физические отношения различных компонентов в контроллере.Они являются идеальным средством для устранения неисправностей цепи.

На рисунке 2 показана типичная линия или принципиальная схема.

Typical Line or Schematic Diagram Рисунок 2 - Типичная линия или принципиальная схема

Стандартизированные символы облегчают чтение диаграмм

Как линейные, так и монтажные схемы являются языком рисунков. Нетрудно выучить основные символы. Как только вы это сделаете, вы сможете быстро читать диаграммы и часто сможете сразу понять схему. Чем больше вы работаете с линейными и электрическими схемами, тем лучше вы будете анализировать их.

Американская ассоциация стандартов ( ASA ) и Национальная ассоциация производителей электрооборудования ( NEMA ) являются агентствами, отвечающими за разработку и поддержание стандартов на символы.

Благодаря этим стандартам вы сможете читать все диаграммы, которые встречаются на вашем рабочем месте.

Basic Wiring for Motor Contol Базовая проводка для мотора Contol ,

Схема подключения Страница

Серия последовательных данных семейства
ДИАГРАММА rev Размер
SM4 ECU
SM4 стандартный ткацкий станок (также подходит для SM4 Marine и SM4 Dual Cal) 3,4 97KB
SM4 Dual Cal - Калибровка проводки переключателя выбора 1.2 39KB
SM3 ECU
SM3 STD проводка (с использованием станка SM4 STD. Также подходит для SM3 Marine) 1,1 106KB
SMC ECU
SMC std loom (rev C Loom: Поставляется в комплекте с 1996 года.Подходит для всех ЭБУ SMC) 005 343КБ
SMC ранний ткацкий станок (Ранний ткацкий станок: поставляется в наборе до 1996 года. Подходит только для ECU до 1996 года) 003 343КБ
SMC двухпроводное реле (работает для снижения напряжения аккумулятора. Лучше для нескольких топливных насосов. Подходит для всех ЭБУ SMC) 003 295КБ
SMC раннее двухпроводное реле (работает для снижения напряжения батареи.Лучше для нескольких топливных насосов.
Подходит только для ЭКЮ до 1996 года)
002 295КБ
500R DFCDI
500R DFCDI базовая проводка 1,2 44KB
500R DFCDI 2 БЛОК ЦИЛИНДРОВ 1, СОДЕРЖАЩАЯ КОЛОДОК 1.0 40KB
500R DFCDI 4 ЦИЛИНДРА 2 ВАТУЩАЯ СПАРКА 1,0 41KB
500R DFCDI 6 ЦИЛИНДРОВ 3 СПИРАЛЬНАЯ МАТКА, СПАРК 1,0 43KB
500R DFCDI 8 ЦИЛИНДРОВ 4 ВАТУЩИХ ИСКРА 1,0 44KB
500R DFCDI 4 ЦИЛИНДР 4 СПИРАЛЬНАЯ ВАТУШКА (Параллельные пары) 1.0 54KB
500R DFCDI 6 ЦИЛИНДР 6 ЗАТЕМЛЕННАЯ КОЛОДКА ИСКРА (Параллельные пары) 1,0 55KB
500R DFCDI 8 БЛОК ЦИЛИНДРОВ 8 ИСКЛЮЧЕННАЯ СПАРК (Параллельные пары) 1,0 56KB
500R DFCDI 4 ЦИЛИНДРА 4 СПИРАЛЬНАЯ ВАТУШКА (пары серии) 1,0 53KB
500R DFCDI 6 ЦИЛИНДР 6 СПИРАЛЬНАЯ ВАТУШКА (Пары серии) 1.0 54KB
500R DFCDI 8 БЛОК ЦИЛИНДРОВ 8 ИСКЛЮЧЕННАЯ СПАРК (серия пар) 1,0 54KB
500R DFCDI 2 ROTOR 4 COIL 1,3 49KB
500R DFCDI 2 ROTOR 3 COIL (впустую ведущая искра) 1,2 48KB
ИНДУКТИВНОЕ ЗАЖИГАНИЕ
ИНДУКТИВНОЕ ЗАЖИГАНИЕ 8 ЦИЛЛОВ 8 катушек впустую искра (2 модуля) 1.0 47KB
ИНДУКТИВНОЕ ЗАЖИГАНИЕ 8 ЦИКЛОВ 4 катушки Потерянная искра (2 модуля) 1,0 46KB
ИНДУКТИВНОЕ ЗАЖИГАНИЕ 8 ЦИЛЛОВ 4 КАТУШКИ Потраченная искра 1,0 44KB
ИНДУКТИВНОЕ ЗАЖИГАНИЕ 6 CYL 6 COIL Потерянная искра (2 модуля) 1,0 45KB
ИНДУКТИВНОЕ ЗАЖИГАНИЕ 6 ЦИЛЛОВ 3 катушки Потерянная искра 1.0 43KB
ИНДУКТИВНОЕ ЗАЖИГАНИЕ 4 ЦИЛЛА 2 КАТУШКИ Потраченная искра 1,0 41KB
ИНДУКТИВНОЕ ЗАЖИГАНИЕ 2 ЦИЛЛЯ 1 КАТУШКА Потраченная искра 1,0 36KB
ИНДУКТИВНОЕ ЗАЖИГАНИЕ 4 CYL 4 COIL DFI 1,0 44KB
ИНДУКТИВНОЕ ЗАЖИГАНИЕ 3 ЦИЛЛ 3 COIL DFI 1.0 41KB
ИНДУКТИВНОЕ ЗАЖИГАНИЕ 2 CYL 2 COIL DFI 1,0 44KB
ИНДУКТИВНОЕ ЗАЖИГАНИЕ 1 ЦИЛР 1 КАТУШКА DFI 1,0 35KB
ИНДУКТИВНОЕ ЗАЖИГАНИЕ, 4-Х ЦИЛЛЬНЫЙ ВТУЛКА (без разделения по времени) 1,0 45KB
ИНДУКТИВНОЕ ЗАЖИГАНИЕ, 4-ЦИЛЛОВЫЙ БЛОКИРОВКА (с разделением времени)
1.0 46KB
ИНДУКТИВНОЕ ЗАЖИГАНИЕ 2 РОТОРА 4 КАТУШКИ 1,0 42KB
ИНДУКТИВНОЕ ЗАЖИГАНИЕ 2 ROTOR 3 COIL (впустую ведущая искра) 1,0 43KB
SERIAL DATA LINK, ТЕЛЕМЕТРИЯ И УПРАВЛЕНИЕ РЕГИСТРАЦИЕЙ
RS232 последовательный кабель для передачи данных 2.0 39KB
Кабель последовательной передачи данных SM3 / SM4 MARINE RS232 1,0 15KB
ECU Опции контроля регистрации данных 1,1 34KB
SM3 / SM4 семейство Последовательный канал передачи данных (также подходит для Mitsubishi EVO IX и Subaru WRX / STI 2001 - 2005) 1,1 26KB
SM3 / SM4 семейство Телеметрический канал (также подходит для Mitsubishi EVO IX и Subaru WRX / STI 2001 - 2005) 1.0 48KB
SMC (также подходит для Mitsubishi EVO IV-VIII и Subaru WRX / STI 1999 - 2000) 1,1 46KB
SMC семейство телеметрических каналов (также подходит для Mitsubishi EVO IV-VIII и Subaru WRX / STI 1999 - 2000) 1,0 57KB
SMC контроль регистрации 002 345КБ
ДАТЧИК ИНТЕРФЕЙСА
Интерфейс Reluctor Interface 1 (двухканальный) 1.1 59KB
СЧЕТЧИК ВОЗДУХА / ТОПЛИВА
MAFM1 UEGO датчик проводки 002 391КБ
MAFM1 LSM11 Подключение провода датчика 001 183КБ
MAFM1 соединение (включает информацию для подключения к ЭБУ АВТОМАТИЧЕСКИМ) 002 56KB
LEGACY PRODUCTS
SM2 стандартный ткацкий станок 001 343КБ
SM2 Telemetry link 1.0 55KB
Снятая с производства продукция
MKII ГРУППА ПОЖАРНЫХ ИНСТРУКЦИЙ 2000KB
MKII GROUP-FIRE (без TPS) 134KB
MKII GROUP-FIRE (с TPS) 149КБ
Техническая поддержка

AutomationDirect - Схемы кабельных соединений


PLC Hardware

PDF Document D0-CBL Схема подключения экранированного кабеля от RJ12 к RJ12 к RJ12

PDF Document D2-250 - D2-240 коммуникационная проводка с использованием RS-232

PDF Document D2-250 - D2-250 коммуникационная проводка с использованием RS-232 или RS-422

PDF Document D2-250 для последовательной связи по модему с использованием RS-232

PDF Document D2-250 для последовательного принтера / терминала данных с использованием RS-232

PDF Document D3-350 для последовательного принтера / терминала данных с использованием RS-232

PDF Document Подключение энкодеры к D2-CTRINT

PDF Document D2-250 до D2-250 RS-485 с FA-ISONET

PDF Document D2-DSCBL-2 распиновка для использования удаленного ввода / вывода на ПЛК D2-250, D2-250-1 или D2-260

PDF Document FA-ISOCON для схемы подключения ПК

PDF Document DL-250 Кабель порта 2 (D2-DSCBL-2)

PDF Document D4-IOCBL-1 Цветовые коды кабелей

PDF Document Koyo PLC Кабели для программирования
Таблица для отображения коммуникационных кабелей для каждого ПЛК

Клеммные адаптеры последовательного порта:
  • ZL-RTB-RJ12 (для DL05, DL06, D2-240 (порт 2), D2-250 (-1), D2-260, P3K, Click, Do-More)
  • ZL-CMA15, ZL-CMA15L (для DL06, D2-250 (-1), D2-260)
  • ZL-RTB-DB25 (для D4-450)

Интерфейс оператора

Кабели связи и схемы подключения ПЛК C-more PDF Document

PDF Document C-more Micro PLC Кабели связи и электрические схемы

PDF Document DL05 Порт 2 для DV1000 или C-More Micro
Как построить кабель для использования порта 2 DL05 для связи C-More Micro / DV1000 / D2-HPP

Соединительные системы

ZipLink Информация о продукте

Датчики

PDF Document Электропроводка Схема для 4-х проводных датчиков NPN и PNP с D2-16ND3-2

PDF Document Электропроводка Схема для двухпроводных датчиков NPN и PNP с D2-16ND3-2

PDF Document Электропроводка Схема для трехпроводных датчиков NPN и PNP с D2-16ND3-2

PDF Document Электропроводка Диаграмма для индуктивных и фотоэлектрических датчиков переменного тока с D2-16NA

Диски

PDF Document GS-1 Communications

GS-1 терминальные адаптеры последовательного порта: ZL-RTB-RJ12, ZL-CDM-RJ12X4, ZL-CDM-RJ12X10

PDF Document GS-1 Hard Wiring

PDF Document GS-2 Communications

GS-2 терминальные адаптеры последовательного порта: ZL-RTB-RJ12, ZL-CDM-RJ12X4, ZL-CDM-RJ12X10

PDF Document GS-2 Hard Wiring

PDF Document DuraPulse Communications

Терминальные адаптеры последовательного порта DuraPulse: ZL-RTB-RJ12, ZL-CDM-RJ12X4, ZL-CDM-RJ12X10

PDF Document DuraPulse Hard Wiring


Устаревшие продукты

Интерфейс оператора

PDF Document DirectTouch RS422 проводные соединения с ПЛК Koyo (DirectLogic)

PDF Document DirectTouch RS422 проводные соединения с AB SLC 503 и 504

PDF Document Соединения DirectTouch RS422 с преобразователем F2-UNICON RS232 в RS422 / 485

PDF Document DirectTouch RS422 соединения с FA-ISONET RS232 в RS422 / 485 преобразователь

PDF Document Проводные соединения EZTouch / EZText RS422 / 485 с ПЛК Koyo (DirectLogic)

PDF Document EZTouch / EZText RS422 проводные соединения с AB SLC RS232 порт

PDF Document EZ Touch / EZ Текстовая распиновка кабеля для подключения к ПЛК Omron

PDF Document EZTouch / EZText соединения с FA-UNICON Преобразователь RS232 в RS422 / 485

PDF Document EZTouch / EZText соединения с FA-ISONET Преобразователь RS232 в RS422 / 485

PDF Document Панель DirectTouch к порту 05000, 105, 205, 450, 350 RJ-12

PDF Document Оптимальная панель для ПЛК Modicon Micro RJ-45

PDF Document Серия Optimate OP-400 для ПЛК AB Micrologix с 8-контактным мини-разъемом DIN

Приводы

PDF Document Схема контактов ICS-1 и ICS-3

Продукты связи

PDF Document CR-SEBX / SEHX Схема подключения кабеля удаленного радио

Back to top Вернуться к началу

,

Отправить ответ

avatar
  Подписаться  
Уведомление о