В статье мы расскажем про мощность в цепи переменного и постоянного тока, а также мгновенную, активную, реактивную и полную мощность, а также что такое коэффициент мощности. Всех их формулы и примеры на нахождение мощности.
Мощность, генерируемая потоком через проводник тока I с напряжением U на его концах, выражается следующей формулой:
Используя закон Ома, можно определить формулу для мощности с известными сопротивлением и напряжением:
Аналогично, формула мощности может быть определена в зависимости от сопротивления и тока:
Задачи на нахождение мощности
Задача 1
Напряжение 5 В было измерено на концах резистора 10 Ом. Какая будет мощность?
Решение:
Применить второе уравнение: Р = 5 2 /10 = 25/10 = 2,5 Вт
Задача 2
Держатель лампы, несущий опорной мощности P = 21Вт при напряжении U = 12 В для подачи питания накала питания может быть использован со следующим параметры: U = 12В I max= 1А. Какой ток протекает при нормальной работе лампы?
Решение:
Давайте посчитаем, какой ток протекает при нормальной работе лампы:
P = U * I
I = P / U
I = 21 Вт / 12 В
I = 1,75 A
Это означает, что источник питания с заданными параметрами не подходит для питания этой лампы.
Мощность в цепи переменного тока
Мощность в цепи переменного тока в физики и обычной жизни одно из базовых понятий, которое нужно понимать перед началом работы с электроприборами. Далее вы увидите основные формулы мощности и их применение в задачах.
Мгновенная мощность
При рассмотрении энергетических процессов в цепях переменного тока удобно использовать разные типы энергии. Мгновенная мощность равна произведению мгновенных значений тока и напряжения на части цепи:
где: U и I — эффективные значения напряжения и тока, а φ и ω — соответственно разность фаз между током и напряжением и угловой частотой (пульсация).
Активная мощность
Активная мощность характеризуется текущими потерями энергии в течение 1 секунды в активных компонентах цепи (для нагрева, излучения или механических работ). Он измеряется в ваттах и определяется мгновенным значением мощности за период:
Реактивная мощность
Реактивная мощность связана с реактивными сопротивлениями, которые периодически накапливают энергию, а затем возвращают ее источнику, но сами не поглощают энергию. Единица реактивной мощности вар. Реактивная мощность может быть определена по формуле:
Реактивная мощность положительна при токе, задержанном по отношению к напряжению (φ>0), и отрицательна при токе, который обгоняет напряжение (φ<0).
Если ток действующего значения I протекает через индуктивность L, то: Q = ω*L*I2
Если к конденсатору С приложено напряжение действующего значения U, то: Q = -ω*C*U2
Полная мощность
Полная мощность (кажущаяся) определяется произведением эффективных значений напряжения и тока в сечении провода:
S = I*U
Кажущаяся силовая установка называется ВА (вольтампер). Отношение активной мощности к полной мощности P/S = cosφ называется коэффициентом мощности.
Активная, реактивная и полная мощность связаны друг с другом следующими отношениями:
Задача 3. Рассчитайте угол сдвига фаз цепи, в которой активная мощность составляет 1 кВт, а реактивная мощность — 0,2 кВар.
Решение.
Так мы добрались до конца второго, наверное, самого сложного для понимания руководства по электротехнике. Я не знаю, как это будет принято читателями. Написав это, я должен был решить серьезную дилемму: на самом деле ничего не объясняло простоту и поверхностные вопросы или серьезную трактовку темы. Проблема в том, что последнее возможно только на основе понятий из высшей математики, о которых большинство читателей, вероятно, не имеют ни малейшего понятия. Тем не менее, я должен был быть последовательным. В первой части я использовал элементы высшей математики, поэтому мне пришлось сделать это во второй, хотя я «простил» символический метод описания синусоидальных переменных, но я надеюсь, что те, кто интересуется электротехникой, хотя бы слышали об интегралах, дифференциалах и производных функций. Как я уже писал во введении: вы можете изучать электротехнику только самостоятельно! Это требует прочной основы в области математики, желание и трудолюбие. Однако это не простая задача, это совсем другая проблема.
Видеоурок по мощности тока
Ниже мы покажем вам простое объяснение по мощности, в котором подведем итоги по данной статье!
Мощность переменного тока: измерение, формула
Мощность — то, что характеризует скорость передачи с преобразованием электроэнергии. Какие есть нормы мощности в сети переменного тока и виды, что такое активная и реактивная мощность? Об этом и другом далее.
Нормы мощности в сети переменного тока
Напряжение и мощность — то, что нужно знать каждому человеку, живущему в квартире или частном доме. Стандартное напряжение сети переменного тока в квартире и частном доме выражается в количестве 220 и 380 ватт. Что касается определения количественной меры силы электрической энергии, необходимо сложить электрический ток с напряжением или же измерить необходимый показатель ваттметром. При этом чтобы сделать измерения последним аппаратом, нужно использовать щупы и специальные программы.
Мощность переменного тока определяется соотношением величины тока со временем, которая производит работу за определенное время. Обычный пользователь использует мощностный показатель, передаваемый ему поставщиком электрической энергии. Как правило, он равен 5-12 киловатт. Этих цифр хватает, чтобы обеспечить работоспособность необходимого бытового электрооборудования.
Этот показатель зависит от того, какие внешние условия поступления энергии в дом, какие поставлены ограничительные токовые устройства (автоматы или полуавтоматы), регулирующие момент поступления мощностных емкостей к потребительскому источнику. Это совершается на разных уровнях, от бытового электрощита до центрального устройства электрического распределения.
Мощностные нормы в сети переменного токаХарактеристики
Переменный ток течет по цепи и меняет свое направление с величиной. Создает магнитное поле. Поэтому его нередко называют периодическим синусоидальным переменным электротоком. Согласно закону кривой линии, величина его меняется через конкретный промежуток времени. Поэтому он называется синусоидным. Имеет свои параметры. Из важных стоит указать период с частотой, амплитудой и мгновенным значением.
Период — это то время, на протяжении которого происходит изменение электротока, а затем оно повторяется вновь. Частота — период течение за секунду. Измеряется в герцах, килогерцах и миллигерцах.
Амплитуда — токовое максимальное значение с напряжением и эффективностью протекания на протяжении полного периода. Мгновенное значение — переменный ток или напряжение, возникающее за конкретное время.
Виды мощностей
Мощностью называется измеряемая физическая величина, которая равна скорости изменения с преобразованием, передачей или потреблением системной энергии. Согласно более узкому понятию, это показатель, который равен отношению затраченного времени на работы к самому периоду, который тратится на работу. Обозначается в механике символом N. В электротехнической науке используется буква P. Нередко можно увидеть также символ W, от слова ватт.
Мощность переменного тока -это произведение силы тока с напряжением и косинусом сдвига фаз. При этом беспрепятственно можно посчитать только активную и реактивную разновидность. Узнать полное мощностное значение можно через векторную зависимость этих показателей и площади.
Основные мощностные разновидностиАктивная мощность
Активной называется полезная сила, определяющая процесс прямого преобразования электроэнергии в необходимый вид силы. В каждом электроприборе преобразовывается она по-своему. К примеру, в лампочке получается свет с теплом, в утюге — тепло, а в электрическом двигателе — механическая энергия. Соответственно, показывает КПД устройства.
Активная разновидностьРеактивная мощность
Реактивной называется та, которая определяется при помощи электромагнитного поля. Образуется при работе электроприборов. Обратите внимание! Это вредная и паразитная мощностная характеристика, которая определяется тем, каков характер нагрузки. Для лампочки она равняется нулю, а для электродвигателя она может быть равна большим значением.
Разница между величинами в том, что активно действующая мощностная характеристика показывает КПД устройств, а реактивная является передачей этого КПД. Разница также наблюдается в определении, символе, формуле и значимости.
Обратите внимание! Что касается значения, то вторая нужна лишь для того, чтобы управлять создавшимся напряжением от первой величины и преодолевать мощностные колебания. Обе измеряются в ваттах и имеют большое значение в электромагнитном излучении, механической форме генератора или акустической волне. Активно применяются в промышленности.
Реактивная разновидностьПолная мощность
Полная — это сумма активной с реактивной мощностью. Равна сетевому мощностному показателю. Это произведение напряжения с током в момент игнорирования фазы угла между ними. Вся рассеиваемая с поглощаемой и возвращаемой энергией — это полная энергия.
Это произведение напряжения и тока, единица измерения которого это ватт, перемноженный на ампер. При активности цепи, полная равняется активной. Если речь идет об индуктивной или емкостной схеме, то полная больше, чем активная.
Полная разновидностьКомплексная мощность
Это сумма всех мощностных показателей фаз источника электроэнергии. Это комплексный показатель, модуль которого равняется полному мощностному показателю электроцепи. Аргументом является фазовый сдвиг между электротоком с сетевым напряжением. Может быть выражена уравнением, где суммарный мощностный показатель, который генерируют источники электроэнергии, равен суммарному мощностному показателю, который потребляется в электроцепи.
Обратите внимание! Вычисляется посредством использования соответствующей формулы. Так, необходимо комплексное напряжение перемножить на комплексны ток или же удвоенное значение комплексного тока перемножить на импеданс. Также можно удвоенное значение комплексного напряжения поделить на удвоенное значение импеданса.
Как узнать какая мощность в цепи переменного тока
Стоит указать, что это величина, которая прямо связывается с иными показателями. К примеру, она находится в прямой зависимости от времени, силы, скорости, вектора силы и скорости, модуля силы и скорости, момента силы и частоты вращения. Часто в формулах во время вычисления электромощности используется также число Пи с показателем сопротивления, мгновенным током, напряжением на конкретном участке электрической сети, активной, полной и реактивной силой. Непосредственно участник вычисления это амплитуда, угловая скорость и начальная сила тока с напряжением.
Формула мощности в цепи переменного токаВ однофазной цепи
Понять, какой мощностный показатель есть в однофазной цепи переменного тока, можно при помощи применения трансформатора тока. Для этого необходимо воспользоваться ваттметром, который включен через токовый трансформатор. Показания следует перемножить на трансформаторный коэффициент тока. В момент измерения мощности в высоком напряжении трансформатор тока необходим, чтобы заизолировать ваттметр и обеспечить безопасность пользователя. Параллельна цепь включается не непосредственным способом, а благодаря трансформатору напряжения. Вторичные обмотки с корпусами измерительных трансформаторных установок необходимо заземлять во избежание случайного изоляционного повреждения и попадания высокого напряжения на приборы.
Обратите внимание! Для определения параметров в сети необходимо амперметр перемножить на трансформаторный коэффициент тока, а цифры, полученные вольтметром, перемножить на трансформаторный коэффициент напряжения.
В трехфазной цепи
В цепи переменного тока мощностный показатель в трехфазной цепи определить можно, перемножив ток на напряжение. Поскольку это непостоянный электроток, он зависит от времени и других параметров, поэтому необходимо использовать другие проверенные схемы. Так, можно использовать ваттметр.
Измерение должно быть проведено только в одной фазе и по формуле умножено на три. Этот способ экономит приборы и уменьшает габариты измерения. Применяется для высокой точности измерения каждой фазы. В случае несимметричной нагрузки, нужно использовать соответствующую схему подключения ваттметра. Это более точный способ, но требует наличие трех ваттметров.
Обратите внимание! Если цепь не предусматривает наличие нулевого проводника, нужна также соответствующая схема.
Стоит указать, что сегодня измерить можно необходимые показатели не только аналоговым, но и цифровым прибором. Отличие второго в уменьшенных размерах и легкости. Кроме того, цифровые агрегаты способы осуществлять фиксацию тока с напряжением, косинусом сети и другим. Это позволяет на дистанции осуществлять отслеживание различных величин и передавать предупреждения, если есть отклонение. Это удобно, поскольку не нужно измерять ток с напряжением, а потом, используя формулы, все досконально просчитывать.
В трехфазной цепиВ целом, мощность — это величина, основное предназначение которой показывать силу работы конкретного прибора и во многих случаях скорость деятельности, взаимодействуя с ним. Она бывает механической, электрической, гидравлической и для постоянного с переменным током. Измеряется по международной системе в ваттах и киловаттах.
формулы, составляющие и особенности применения
В быту, как правило, применяются такие словосочетания, как потребляемая мощность или просто электрическая мощность. Всегда актуален вопрос о том, как много электроэнергии потребляет тот или другой прибор. Но в физике понятие мощности переменного тока трактуется несколько шире.
Особенности переменного тока
Формула мощности для тока, который меняется во времени по силе, напряжению и направлению, не совпадает с простой формулой для постоянного электротока. Она может примяться исключительно для вычисления мгновенного значения этой физической величины, но на практике для нахождения мощности меняющегося тока бесполезна. Рассчитывая её усреднённую величину напрямую, применяют интегрирование по такому параметру, как время. То есть интегрируется мгновенное значение на протяжении определённого периода.
Такой подход применяется для тех электрических цепей, в которых напряжение и сила электротока меняются циклически. В основном рассчитывается мощность в цепях с изменениями электрического напряжения и силы электротока по синусоиде.
В электродинамике различают связанные друг с другом понятия реактивной, активной и полной мощности.
Активная величина Real Power
Активная мощность Р измеряется в ваттах. Сокращённые варианты единицы измерения: Вт (русское обозначение) или W (международное). Само понятие этой мощностной величины означает среднее значение мгновенных показателей этой характеристики за промежуток времени Т (период). Общая формула в этом случае выглядит следующим образом:
Для электрических цепей с одной фазой изменяющегося по синусоиде тока формула выглядит так:
.
В этом выражении Ι и U являются значениями силы электротока и напряжения в среднеквадратичном представлении. А угол φ показывает, на сколько сдвинуты фазы между этими физическими величинами.
Активная мощность указывает, как быстро превращается электрическая энергия в другие типы: тепловую или электромагнитную.
Она может выражаться как через силу тока и активное сопротивление цепи r, так и через напряжение и проводимость g по формуле:
.
В любых электрических цепях этот вид мощности равняется сумме значений на отдельных элементах. В трёхфазном варианте суммируются показатели для каждой отдельной фазы.
Реактивная характеристика
Реактивная мощность Q охарактеризовывает нагрузки, создаваемые в электроустройствах периодическими изменениями энергии электромагнитного поля в цепи с переменным током, который меняется во времени по синусоидальному принципу.
Численно она равняется умножению среднеквадратичных U (напряжения), I (силы) и синуса φ (угла сдвига фаз):
.
Измеряется в вольт-амперах реактивных (русское сокращение: вар, а международное — var).
Реактивная Q даёт характеристику энергии, передающейся от источника питания к реактивным элементам и возвращающуюся обратно за временной промежуток, численно равный одному периоду колебаний. К элементам реактивного типа относят катушки индуктивности, конденсаторы, обмотки. Этот вид мощностной характеристики тока принимает:
- отрицательное значение, если нагрузка активно-ёмкостная;
- положительное — в случае активно-индуктивного характера нагрузочных элементов.
Принято считать, что устройства с положительной Q потребляют энергию, а с отрицательной, наоборот, производят. Но это условные обозначения. Реактивная мощность по факту не принимает участия в работе электротока. Синхронные генераторы, которые функционируют на электростанциях, в зависимости от численного значения тока возбуждения в обмотке могут и вырабатывать, и потреблять эту реактивную характеристику тока.
Такую особенность синхронных электрических машин используют для регулирования определённого значения напряжения сети. Чтобы устранять перегрузки либо увеличение мощностного коэффициента, осуществляют компенсацию реактивной составляющей.
Полная мощность
Полная мощность S представляется в единицах измерения с названием вольт-амперы и вычисляется через умножение действующих значений I в цепи и напряжения U на её окончаниях:
.
Этот вид электрической характеристики на практике описывает нагрузки, которые по факту налагаются потребителем на части электросети, обеспечивающей подвод электроэнергии (кабели разных видов, трансформирующие устройства и линии для передачи электрической энергии на большие расстояния).
Данные нагрузки находятся в зависимости исключительно от потребляемого тока, а не от энергии, которую по факту использует потребитель. Этот момент является причиной того, что полная мощность устройств, обеспечивающих трансформацию электрической энергии, а также распределительных щитов, измеряют в вольт-амперах, а не в ваттах.
Все виды мощностных характеристик переменного тока связываются между собой следующими математическими выражениями:
Эти формулы позволяют производить расчёты для цепей переменного тока любой конфигурации:
- Полная, выраженная через активную и реактивную.
- Активная — через полную и угол сдвига фаз.
- Реактивная — через полную и активную.
Знания этих нюансов важны при подборе оборудования и построения систем энергообеспечения различных объектов. Учёт электрических параметров устройств даёт возможность сделать правильный выбор электрических устройств и построить экономически оптимальную схему энергетического обеспечения.
Активная, реактивная и полная мощность
В отличии от сетей постоянного тока, где мощность имеет выражение и не изменяется во времени, в сетях переменного тока это не так.
Мощность в цепи переменного тока также есть переменной величиной. На любом участке цепи в любой момент времени t она определяется как произведение мгновенных значений напряжения и тока.
Рассмотрим, что представляет активная мощность
В цепи с чисто активным сопротивлением она равна:
Если принять и тогда выйдет:
Где
Исходя из выражений выше — активная энергия состоит из двух частей — постоянной и переменной , которая меняется с двойной частотой. Среднее ее значение
График Р(ωt)Отличие реактивной мощности от активной
В цепи, где есть реактивное сопротивление (возьмем для примера индуктивное) значение мгновенной мощности равно:
Соответственно и в итоге получим:
Данное выражение показывает, что реактивная энергия содержит только переменную часть, которая изменяется с двойной частотой, а ее среднее значение равно нулю
График q(ωt)Если ток и напряжение имеют синусоидальную форму и сеть содержит элементы типа R-L или R-C, то в таких сетях кроме преобразования энергии в активном элементе R вдобавок еще и изменяется энергия электрического и магнитного полей в реактивных элементах L и C.
В таком случае полная мощность сети будет равна сумме:
Что такое полная мощность на примере простой R-L цепи
Графики изменения мгновенных значений u,i:
Графики изменения мгновенных значений u,i:φ — фазовый сдвиг между током и напряжением
Уравнение для S примет следующий вид
Подставим вместо и заменим амплитудные значения на действующие:
Значение S рассматривается как сумма двух величин , где
и — мгновенные активные и реактивные мощности на участках R-L.
Графики p,q,s:Как видим из графика, наличие индуктивной составляющей повлекло за собой появление отрицательной части в полной мощности (заштрихованная часть графика), что снижает ее среднее значение. Это происходит из-за фазового сдвига, в какой-то момент времени ток и напряжение находятся в противофазе, поэтому появляется отрицательное значение S.
Итоговые выражения для действующих значений:
Активная составляющая сети выражается в ваттах (Вт), а реактивная в вольт-амперах реактивных (вар).
Полная мощность сети S, обусловлена номинальными данными генератора. Для генератора она обусловлена выражением:
Для нормальной работы генератора ток в обмотках и напряжение на зажимах не должны превышать номинальные значения Iн, Uн. Для генератора значения P и S одинаковы, однако все-таки на практике условились S выражать в вольт-амперах (ВА).
Также энергию сети можно выразить через каждую составляющую отдельно:
Где S, P, Q – соответственно активное, реактивное и полное сопротивление сети. Они образуют треугольник мощностей:
Треугольник мощностей с преобладающей индуктивной нагрузкойЕсли вспомнить теорему Пифагора, то из прямоугольного треугольника можно получить такое выражение:
Реактивная составляющая в треугольнике является положительной (QL), когда ток отстает от напряжения, и отрицательной (QC), когда опережает:
Треугольник мощностей с преобладающей емкостной нагрузкойДля реактивной составляющей сети справедливо алгебраическое выражение:
Из чего следует что индуктивная и емкостная энергия взаимозаменяемы. То есть если вы хотите уменьшить влияние индуктивной части цепи, вам необходимо добавить емкость, и наоборот. Ниже пример данной схемы :
Схема компенсации реактивной составляющейВекторная диаграмма показывает влияние конденсатора на cosφ. Как видно, что при включении конденсатора cosφ2> cosφ1 и Iл<I.
Векторная диаграммаСвязь между полной и реактивной энергии выражается:
Отсюда:
сosφ – это коэффициент мощности. он показывает какую долю от полной энергии составляет активная энергия. Чем ближе он к 1, тем больше полезной энергии потребляется из сети.
Выводы о трех составляющих цепи переменного тока
В отличии от цепей постоянного тока, цепи переменного напряжения имеют три вида мощности – активная, реактивная, полная. Активная энергия, как и в цепях постоянного тока, выполняет полезную работу. Реактивная – не выполняет ничего полезного, а только снижает КПД сети, греет провода, грузит генератор. Полная – сумма активной и реактивной, она равна мощности сети. Индуктивная составляющая реактивной энергии может быть скомпенсирована емкостной. На практике в промышленности это реализовано в виде конденсаторных установок.
Общее понятие
Электрическое напряжение определяется как отношение работы поля по переброске пробного заряда из одной заданной точки в другую к размеру потенциала. При дислокации единичного резерва выполняется работа, которая равняется напряжению на искомом участке. Общая мощность получают умножением работы электрического поля для единичного заряда на число потенциалов за определенную единицу времени.
В переменной электрической цепи выделяется 3 вида мощности:
- активный P;
- реактивный Q;
- полного типа S.
В цепи переменного электричества формула для расчета постоянного тока применяется только для вычисления мгновенной мощности. Этот показатель претерпевает изменения во времени и почти не имеет практического смысла для всех остальных расчетов. Среднезначимый показатель мощности требует временной интеграции. Мгновенная мощность объединяется в течение определенного промежутка для расчета величины в магистрали с периодическим изменением силы переменного потока и синусоидального напряжения.
Применяется концепция комплексных чисел для связывания всех трех видов мощности. Это понятие обозначает, что в переменной цепи нагрузка выражается подобным числом так, что активная разновидность представляется действительной составляющей. Реактивный показатель выступает мнимым показателем, а полная мощность показывается в форме модуля. В этих расчетах принимает участие угол сдвига фаз φ, который является аргументом баланса мощностей в цепи переменного тока.
Активная мощность
Активная скорость преобразования выражается также через взаимное отношение силы потока, напряжения к значению активной составляющей сопротивления. В магистрали синусоидального и несинусоидального движения электронов активная нагрузка приравнивается к сумме аналогичных значений на отдельных участках.
Для определения среднего периодического размера используется активная мощность переменного тока, формула расчета P = U . I . cos φ (косинус), где:
- U — мощность.
- I — сила потока.
- φ — угол смещения фаз.
Средний показатель мгновенной скорости преобразования в однофазной цепи берется в виде среднеквадратичного значения тока и напряжения с определенным углом сдвига. В цепях несинусоидального электричества мощность приравнивается к сумме соответствующих показателей отдельных перемещений. С помощью активной мощности характеризуется интенсивность необратимого видоизменения электроэнергии в другие разновидности, например, электромагнитную или тепловую.
Проходящая мощность используется в качестве активной в концепции длинных магистралей для анализа электромагнитных течений, протяженность которых сопоставляется с размерностью волны. Искомое значение рассчитывается как разница между понижающейся и отражающейся мощностями. От свойств коэффициента углового смещения зависят полученные показатели отрицательной или положительной нагрузки активного типа.
Реактивная характеристика
Для обозначения применяется дополнительно единица вольт-ампер реактивный (вар). В русских аналогах используется вар, а международные специалисты применяют var. В РФ единица допускается для электротехнических расчетов в форме внесистемного значения.
Нахождение производится по формуле P = U . I . sin φ (синус), где:
- U — среднеквадратичная мощность.
- I — среднеквадратичная сила потока.
- φ — угол фазного смещения, значения синуса, определяются по таблицам.
При диапазоне показателя от 0 до 90º (ток отстает от напряжения, а нагрузка носит активно-индуктивный вид) синус φ будет иметь положительное значение. При угловом сдвиге от 0 до -90º (поток электронов опережает нагрузку, мощность отличается активно-емкостным свойством) константа всегда показывает отрицательный знак. Реактивная мощность характеризует напряженность, которая возникает в электромеханических приборах и цепях при изменении энергетических волн поля в магистрали переменного синусоидального потока.
В физическом смысле реактивная нагрузка показывает энергию, которая перекачивается от источника тока на конденсаторы, индукторы, двигательные обмотки, а впоследствии возвращается к источнику за один колебательный период. Реактивная мощность не принимает участия в работе электротока. В случае положительной характеристики устройство потребляет, а нагрузка с отрицательным знаком говорит о производстве энергии.
Это обстоятельство рассматривается в условном контексте, т. к. почти все энергопотребляющие приборы, например, двигатели асинхронной работы, а также полезная нагрузка, подаваемая через трансформатор, относятся к активно-индуктивным видам. Синхронные двигатели электростанций одновременно производят и потребляют энергию в зависимости от максимальной величины электротока возбуждения в роторных обмотках. Эта особенность применяется для координации уровня нагрузки в магистрали в электротехнике.
С помощью современных преобразователей производится компенсация реактивной нагрузки во избежание перегрузок и для увеличения коэффициента мощности электроустановок. Приборы более точно оценивают размер энергии, которая поступает в обратном направлении от индуктора к источнику переменного тока.
Полная нагрузка
Показатель используется в физике для описания потребляемой мощности, которая прилагается к подводящим агрегатам электросети с использованием резисторов. Суммируются параметры ЭДС распределительных щитков, кабелей, проводов, ЛЭП, трансформаторов.
Полную нагрузку можно рассчитать по формуле S = U . I, где:
- S — параметр полной нагрузки (В/а).
- U — расчетная нагрузка в генераторе.
- I — комплексный показатель силы тока в сочетании с обмоточным значением.
Параметр темпа преобразований зависит от характеристик применяемого тока, а не от свойств фактически использованной нагрузки. По этой причине полная мощность распределительных электрощитов и трансформаторных агрегатов измеряется в вольт-амперах, а значение ватт к ней не применяется.
Работа в различных условиях
Модуль комплексного показателя интенсивности передвижения равняется показателю полной нагрузки. Действительная составляющая часть приравнивается к активной силе, а мнимая считается реактивным видом. Имеет место положительный или отрицательный знак, что зависит от интенсивности загруженности цепи. Комплексная мощность должна соответствовать сопряженному электрическому сопротивлению. Положительная нагрузка характеризуется соотношением Р > 0, а знак минус проявляется в случае Р < 0.
Измерение мощностных характеристик переменного потока электронов проводится при пропускании равного по значению тока по фазным проводникам. Показатели силы течения заряженных частиц с применением нулевого проводника имеют ничтожную размерность. Равномерная или симметричная фазовая нагрузка в трехфазной магистрали зависит от величины протекающих токов. Неравномерная или несимметричная нагрузка зависит от прохождения потока по нейтральным или нулевым кабелям. Общий мощностной уровень находится суммированием.
Если присутствует фазовый сдвиг между напряжением и силой тока, то он совпадает с углом смещения между векторными радиусами показателей электротока. В условиях переменного напряжения совпадение векторных радиусов тока и вольтажа отмечается только при отсутствии в цепи конденсаторов и катушек индукции. Установка индукторов не мешает совпадению фазных значений. При этом происходит векторное вращение равной интенсивности. График смещения внутреннего угла остается постоянным.
Если в магистрали происходит сдвиг напряжения и переменного тока, то мощностные показатели представляются значением с отрицательным знаком, так как калькулятор перемножает положительные и отрицательные величины. Продолжительность периодов зависит от уровня смещения фаз. При этом длительность отрицательных нагрузок определяет характеристики сдвига. При расчетах используются показатели сопротивления, которые знакомы из физического закона Ома.
Коэффициент скорости преобразования
Мощностной коэффициент является показателем потребления тока при присутствии реактивного компонента и искажающей нагрузки. Значение коэффициента отличается от понятия косинуса сдвигаемого угла. Второе понятие характеризуется смещением протекающего переменного тока, напряжения и используется только при синусоидальном токе и силе равного значения.
Коэффициент равняется отношению расходуемой нагрузки к ее полному значению. При этом работа совершается за счет активного вида преобразования. При синусоидальном токе и вольтаже полная нагрузка находится в виде суммы реактивной и активной форм. Активная нагрузка приравнивается к усредненному произведению силы тока и напряжения и не может быть выше произведения аналогичных среднеквадратических размерностей. Мощностной коэффициент показывается в диапазоне от 0 до 1 или ставится в процентах от 0 до 100.
При математическом расчете числовой множитель интерпретируется в качестве косинуса угла между токовыми векторами и направлением приложения вольтажа. Поэтому при синусоидальных характеристиках размерность коэффициента может совпадать с косинусом угла. Если применяется только синусоидальный вольтаж, а ток используется несинусоидальный с нагрузкой без реактивного компонента, то числовой переходник равняется части нагрузки при первых искажениях потребительского тока.
Если реактивный элемент присутствует в нагрузке, то, помимо мощностного коэффициента, указывается характер работы (емкостно-активный или индуктивно-активный). Коэффициент в этих случаях отличается и является отстающим или опережающим значением.
Практическое применение и коррекция
Если к розетке с синусоидальным напряжением 50 Гц и 230 В подсоединить нагрузку с опережением или отставанием тока от напряжения на какую-то угловую величину, то на активной внутренней катушке будет создаваться увеличенная мощность. Это значит, что при работе в таких условиях выделяется много тепла, и электростанция отводит его в увеличенном количестве, по сравнению с применением активной нагрузки.
Коэффициенты полезного действия и мощности отличаются друг от друга. Мощностной показатель не влияет на потребление приемника, подключенного к сети, но изменяет энергетические потери в подводных проводах и местах выработки энергии или ее преобразования. В доме электросчетчик не реагирует на проявление мощности, так как оплачивается только та энергия, за счет которой работают приборы.
КПД влияет на потребляемую активную нагрузку. Например, энергосберегающая лампа потребляет в полтора раза больше электричества, чем аналогичный прибор накаливания. Это говорит о высоком коэффициенте полезного действия у первой лампы. Но показатель нагрузки может быть низким и высоким в обоих вариантах.
Коррекция заключается в приведении потребления прибора с низким мощностным коэффициентом к стандартным показателям при питании от силовой цепи переменного тока. Технически это осуществляется применением действенной схемы на входном устройстве, которая помогает равномерно использовать фазную мощность и исключает перегрузку нулевого провода. При этом снижаются всплески потребительского тока на верхушке синусоиды питающего вольтажа.
Реактивная нагрузка корректируется при включении в магистраль элемента с обратным действием. Например, в двигателе переменного тока для компенсации действия ставится конденсатор параллельно питающей линии. Применяется система активного или пассивного корректора при изменении используемого тока во время колебательного периода подпитывающего напряжения для преобразования коэффициента. Простым примером является последовательное подключение дросселя. При этом конечные приборы потребляют ток непропорционально гармоничным искажениям. Катушка сглаживает волновые импульсы.
Из письма клиента:
Подскажите, ради Бога, почему мощность ИБП указывается в Вольт-Амперах, а не в привычных для всех киловаттах. Это сильно напрягает. Ведь все уже давно привыкли к киловаттам. Да и мощность всех приборов в основном указана в кВт.
Алексей. 21 июнь 2007
В технических характеристиках любого ИБП указаны полная мощность [кВА] и активная мощность [кВт] – они характеризуют нагрузочную способность ИБП. Пример, см. фотографии ниже:
Мощность не всех приборов указана в Вт, например:
- Мощность трансформаторов указывается в ВА:
http://www.mstator.ru/products/sonstige/powertransf (трансформаторы ТП: см приложение)
http://metz.by/download_files/catalog/transform/tsgl__tszgl__tszglf.pdf (трансформаторы ТСГЛ: см приложение) - Мощность конденсаторов указывается в Варах:
http://www.elcod.spb.ru/catalog/k78-39.pdf (конденсаторы K78-39: см приложение)
http://www.kvar.su/produkciya/25-nizkogo-napraygeniya-vbi (конденсаторы УК: см приложение) - Примеры других нагрузок — см. приложения ниже.
Мощностные характеристики нагрузки можно точно задать одним единственным параметром (активная мощность в Вт) только для случая постоянного тока, так как в цепи постоянного тока существует единственный тип сопротивления – активное сопротивление.
Мощностные характеристики нагрузки для случая переменного тока невозможно точно задать одним единственным параметром, так как в цепи переменного тока существует два разных типа сопротивления – активное и реактивное. Поэтому только два параметра: активная мощность и реактивная мощность точно характеризуют нагрузку.
Принцип действия активного и реактивного сопротивлений совершенно различный. Активное сопротивление – необратимо преобразует электрическую энергию в другие виды энергии (тепловую, световую и т.д.) – примеры: лампа накаливания, электронагреватель (параграф 39, Физика 11 класс В.А. Касьянов М.: Дрофа, 2007).
Реактивное сопротивление – попеременно накапливает энергию затем выдаёт её обратно в сеть – примеры: конденсатор, катушка индуктивности (параграф 40,41, Физика 11 класс В.А. Касьянов М.: Дрофа, 2007).
Дальше в любом учебнике по электротехнике Вы можете прочитать, что активная мощность (рассеиваемая на активном сопротивлении) измеряется в ваттах, а реактивная мощность (циркулирующая через реактивное сопротивление) измеряется в варах; так же для характеристики мощности нагрузки используют ещё два параметра: полную мощность и коэффициент мощности. Все эти 4 параметра:
- Активная мощность: обозначение P, единица измерения: Ватт
- Реактивная мощность: обозначение Q, единица измерения: ВАр (Вольт Ампер реактивный)
- Полная мощность: обозначение S, единица измерения: ВА (Вольт Ампер)
- Коэффициент мощности: обозначение k или cosФ, единица измерения: безразмерная величина
Эти параметры связаны соотношениями: S*S=P*P+Q*Q, cosФ=k=P/S
Также cosФ называется коэффициентом мощности (Power Factor – PF)
Поэтому в электротехнике для характеристики мощности задаются любые два из этих параметров так как остальные могут быть найдены из этих двух.
Например, электромоторы, лампы (разрядные) — в тех. данных указаны P[кВт] и cosФ:
http://www.mez.by/dvigatel/air_table2.shtml (двигатели АИР: см. приложение)
http://www.mscom.ru/katalog.php?num=38 (лампы ДРЛ: см. приложение)
(примеры технических данных разных нагрузок см. приложение ниже)
То же самое и с источниками питания. Их мощность (нагрузочная способность) характеризуется одним параметром для источников питания постоянного тока – активная мощность (Вт), и двумя параметрами для ист. питания переменного тока. Обычно этими двумя параметрами являются полная мощность (ВА) и активная (Вт). См. например параметры ДГУ и ИБП.
Большинство офисной и бытовой техники, активные (реактивное сопротивление отсутствует или мало), поэтому их мощность указывается в Ваттах. В этом случае при расчёте нагрузки используется значение мощности ИБП в Ваттах. Если нагрузкой являются компьютеры с блоками питания (БП) без коррекции входного коэффициента мощности (APFC), лазерный принтер, холодильник, кондиционер, электромотор (например погружной насос или мотор в составе станка), люминисцентные балластные лампы и др. – при расчёте используются все вых. данные ибп: кВА, кВт, перегрузочные характеристики и др.
См. учебники по электротехнике, например:
1. Евдокимов Ф. Е. Теоретические основы электротехники. — М.: Издательский центр «Академия», 2004.
2. Немцов М. В. Электротехника и электроника. — М.: Издательский центр «Академия», 2007.
3. Частоедов Л. А. Электротехника. — М.: Высшая школа, 1989.
Так же см. AC power, Power factor, Electrical resistance, Reactance http://en.wikipedia.org
(перевод: http://electron287.narod.ru/pages/page1.html)
Приложение
Пример 1: мощность трансформаторов и автотрансформаторов указывается в ВА (Вольт·Амперах)
Трансформаторы питания номинальной выходной мощностью 25-60 ВА
http://www.mstator.ru/products/sonstige/powertransf (трансформаторы ТП)
http://metz.by/download_files/catalog/transform/tsgl__tszgl__tszglf.pdf (трансформаторы ТСГЛ)
Однофазные автотрансформаторы | |||
TDGC2-0.5 kVa, 2A | АОСН-2-220-82 | ||
TDGC2-1.0 kVa, 4A | Латр 1.25 | АОСН-4-220-82 | |
TDGC2-2.0 kVa, 8A | Латр 2.5 | АОСН-8-220-82 | |
TDGC2-3.0 kVa, 12A | |||
TDGC2-4.0 kVa, 16A | |||
TDGC2-5.0 kVa, 20A | АОСН-20-220 | ||
TDGC2-7.0 kVa, 28A | |||
TDGC2-10 kVa, 40A | АОМН-40-220 | ||
TDGC2-15 kVa, 60A | |||
TDGC2-20 kVa, 80A |
http://www.gstransformers.com/products/voltage-regulators.html (ЛАТР / лабораторные автотрансформаторы TDGC2)
Пример 2: мощность конденсаторов указывается в Варах (Вольт·Амперах реактивных)
http://www.elcod.spb.ru/catalog/k78-39.pdf (конденсаторы K78-39)
http://www.kvar.su/produkciya/25-nizkogo-napraygeniya-vbi (конденсаторы УК)
Пример 3: технические данные электромоторов содержат активную мощность (кВт) и cosФ
Для таких нагрузок как электромоторы, лампы (разрядные), компьютерные блоки питания, комбинированные нагрузки и др. — в технических данных указаны P [кВт] и cosФ (активная мощность и коэффициент мощности) или S [кВА] и cosФ (полная мощность и коэффициент мощности).
http://www.mez.by/dvigatel/air_table2.shtml (двигатели АИР)
http://www.weiku.com/products/10359463/Stainless_Steel_cutting_machine.html
(комбинированная нагрузка – станок плазменной резки стали / Inverter Plasma cutter LGK160 (IGBT)
Технические данные разрядных ламп содержат активную мощность (кВт) и cosФ
http://www.mscom.ru/katalog.php?num=38 (лампы ДРЛ)
http://www.silverstonetek.com.tw/product.php?pid=365&area=en (блок питания ПК)
Дополнение 1
Если нагрузка имеет высокий коэффициент мощности (0.8 … 1.0), то её свойства приближаются к активной нагрузке. Такая нагрузка является идеальной как для сетевой линии, так и для источников электроэнергии, т.к. не порождает реактивных токов и мощностей в системе.
Если нагрузка имеет низкий коэффициент мощности (менее 0.8 … 1.0), то в линии питания циркулируют большие реактивные токи (и мощности). Это паразитное явление приводит к повышению потерь в проводах линии (нагрев и др.), нарушению режима работы источников (генераторов) и трансформаторов сети, а также др. проблемам.
Поэтому во многих странах приняты стандарты нормирующие коэффициент мощности оборудования.
Дополнение 2
Оборудование однонагрузочное (например, БП ПК) и многосоставное комбинированное (например, фрезерный промышленный станок, имеющий в составе несколько моторов, ПК, освещение и др.) имеют низкие коэффициенты мощности (менее 0.8) внутренних агрегатов (например, выпрямитель БП ПК или электромотор имеют коэффициент мощности 0.6 .. 0.8). Поэтому в настоящее время большинство оборудования имеет входной блок корректора коэффициента мощности. В этом случае входной коэффициент мощности равен 0.9 … 1.0, что соответствует нормативным стандартам.
Дополнение 3. Важное замечание относительно коэффициента мощности ИБП и стабилизаторов напряжения
Нагрузочная способность ИБП и ДГУ нормирована на стандартную промышленную нагрузку (коэффициент мощности 0.8 с индуктивным характером). Например, ИБП 100 кВА / 80 кВт. Это означает, что устройство может питать активную нагрузку максимальной мощности 80 кВт, или смешанную (активно-реактивную) нагрузку максимальной мощности 100 кВА с индуктивным коэффициентом мощности 0.8.
В стабилизаторах напряжения дело обстоит иначе. Для стабилизатора коэффициент мощности нагрузки безразличен. Например, стабилизатор напряжения 100 кВА. Это означает, что устройство может питать активную нагрузку максимальной мощности 100 кВт, или любую другую (чисто активную, чисто реактивную, смешанную) мощностью 100 кВА или 100 кВАр с любым коэффициентом мощности емкостного или индуктивного характера. Обратите внимание, что это справедливо для линейной нагрузки (без высших гармоник тока). При больших гармонических искажениях тока нагрузки (высокий КНИ) выходная мощность стабилизатора снижается.
Дополнение 4
Наглядные примеры чистой активной и чистой реактивных нагрузок:
- К сети переменного тока 220 VAC подключена лампа накаливания 100 Вт – везде в цепи есть ток проводимости (через проводники проводов и вольфрамовый волосок лампы). Характеристики нагрузки (лампы): мощность S=P~=100 ВА=100 Вт, PF=1 => вся электрическая мощность активная, а значит она целиком поглащается в лампе и превращается в мощность тепла и света.
- К сети переменного тока 220 VAC подключен неполярный конденсатор 7 мкФ – в цепи проводов есть ток проводимости, внутри конденсатора идёт ток смещения (через диэлектрик). Характеристики нагрузки (конденсатора): мощность S=Q~=100 ВА=100 ВАр, PF=0 => вся электрическая мощность реактивная, а значит она постоянно циркулирует от источника к нагрузке и обратно, опять к нагрузке и т.д.
Дополнение 5
Для обозначения преобладающего реактивного сопротивления (индуктивного либо ёмкостного) коэффициенту мощности приписывается знак:
+ (плюс) – если суммарное реактивное сопротивление является индуктивным (пример: PF=+0.5). Фаза тока отстаёт от фазы напряжения на угол Ф.
— (минус) – если суммарное реактивное сопротивление является ёмкостным (пример: PF=-0,5). Фаза тока опережает фазу напряжения на угол Ф.
Дополнение 6
В различных областях техники мощность может быть либо полезной, либо паразитной НЕЗАВИСИМО от того активная она или реактивная. Например, необходимо различать активную полезную мощность рассеиваемую на рабочей нагрузке и активную паразитную мощность рассеиваемую в линии электропередачи. Так, например, в электротехнике при расчете активной и реактивной мощностей наиболее часто активная мощность является полезной мощностью, передаваемой в нагрузку и является реальной (не мнимой) величиной. А в электронике при расчёте конденсаторов или расчёте самих линий передач активная мощность является паразитной мощностью, теряемой на разогрев конденсатора (или линии) и является мнимой величиной. Причём, деление на мнимые и немнимые величины производится только для удобства рассчётов. На самом деле, все физические величины конечно реальные.
Дополнительные вопросы
Вопрос 1:
Почему во всех учебниках электротехники при расчете цепей переменного тока используют мнимые числа / величины (например, реактивная мощность, реактивное сопротивление и др.), которые не существуют в реальности?
Ответ:
Да, все отдельные величины в окружающем мире – действительные. В том числе температура, реактивное сопротивление, и т.д. Использование мнимых (комплексных) чисел – это только математический приём, облегчающий вычисления. В результате вычисления получается обязательно действительное число. Пример: реактивная мощность нагрузки (конденсатора) 20кВАр – это реальный поток энергии, то есть реальные Ватты, циркулирующие в цепи источник–нагрузка. Но что бы отличить эти Ватты от Ваттов, безвозвратно поглащаемых нагрузкой, эти «циркулирующие Ватты» решили называть Вольт·Амперами реактивными [6].
Замечание:
Раньше в физике использовались только одиночные величины и при расчете все математические величины соответствовали реальным величинам окружающего мира. Например, расстояние равно скорость умножить на время (S=v*t). Затем с развитием физики, то есть по мере изучения более сложных объектов (свет, волны, переменный электрический ток, атом, космос и др.) появилось такое большое количество физических величин, что рассчитывать каждую в отдельности стало невозможно. Это проблема не только ручного вычисления, но и проблема составления программ для ЭВМ. Для решения данное задачи близкие одиночные величины стали объединять в более сложные (включающие 2 и более одиночных величин), подчиняющиеся известным в математике законам преобразования. Так появились скалярные (одиночные) величины (температура и др.), векторные и комплексные сдвоенные (импеданс и др.), векторные строенные (вектор магнитного поля и др.), и более сложные величины – матрицы и тензоры (тензор диэлектрической проницаемости, тензор Риччи и др.). Для упрощения рассчетов в электротехнике используются следующие мнимые (комплексные) сдвоенные величины:
- Полное сопротивление (импеданс) Z=R+iX
- Полная мощность S=P+iQ
- Диэлектрическая проницаемость e=e’+ie»
- Магнитная проницаемость m=m’+im»
- и др.
Вопрос 2:
На странице http://en.wikipedia.org/wiki/Ac_power показаны S P Q Ф на комплексной, то есть мнимой / несуществующей плоскости. Какое отношение это все имеет к реальности?
Ответ:
Проводить расчеты с реальными синусоидами сложно, поэтому для упрощения вычислений используют векторное (комплексное) представление как на рис. выше. Но это не значит, что показанные на рисунке S P Q не имеют отношения к реальности. Реальные величины S P Q могут быть представлены в обычном виде, на основе измерений синусоидальных сигналов осциллографом. Величины S P Q Ф I U в цепи переменного тока «источник-нагрузка» зависят от нагрузки. Ниже показан пример [5] реальных синусоидальных сигналов S P Q и Ф для случая нагрузки состоящей из последовательно соединённых активного и реактивного (индуктивного) сопротивлений.
Вопрос 3:
Обычными токовыми клещами и мультиметром измерен ток нагрузки 10 A, и напряжение на нагрузке 225 В. Перемножаем и получаем мощность нагрузки в Вт: 10 A · 225В = 2250 Вт.
Ответ:
Вы получили (рассчитали) полную мощность нагрузки 2250 ВА. Поэтому ваш ответ будет справедлив только, если ваша нагрузка чисто активная, тогда действительно Вольт·Ампер равен Ватту. Для всех других типов нагрузок (например электромотор) – нет. Для измерения всех характеристик любой произвольной нагрузки необходимо использовать анализатор сети, например APPA137:
См. дополнительную литературу, например:
[1]. Евдокимов Ф. Е. Теоретические основы электротехники. — М.: Издательский центр «Академия», 2004.
[2]. Немцов М. В. Электротехника и электроника. — М.: Издательский центр «Академия», 2007.
[3]. Частоедов Л. А. Электротехника. — М.: Высшая школа, 1989.
[4]. AC power, Power factor, Electrical resistance, Reactance
http://en.wikipedia.org (перевод: http://electron287.narod.ru/pages/page1.html)
[5]. Теория и расчёт трансформаторов малой мощности Ю.Н.Стародубцев / РадиоСофт Москва 2005 г. / rev d25d5r4feb2013
[6]. Международная система единиц, СИ, см напр. ГОСТ 8.417-2002. ЕДИНИЦЫ ВЕЛИЧИН
В отличии от вычисления мощности при постоянном токе, формулы для вычисления мощности в цепях переменного тока достаточно сложны. В общем случае электрическая мощность в этом случае имеет интегральные зависимости.
Для определения полной мощности нагрузки необходимо вычислить активную и реактивную мощность. Полная мощность определяется как векторное сложение этих величин.
Активная мощность — это полезная часть мощности, та часть, которая определяет прямое преобразования электрической энергии в другие необходимые виды энергии. Для каждого электрического прибора вид преобразования энергии свой: в электрической лампочке электроэнергия преобразуется в свет и тепло, в утюге электроэнергия преобразуется в тепло, в электродвигателе электроэнергия преобразуется в механическую энергию. Фактически, активная мощность определяет скорость полезного потребления энергии.
Реактивная мощность — мощность определяемая электромагнитными полями, образующимися в процессе работы приборов. Реактивная мощность, как правило, является «вредной» или «паразитной». Реактивная мощность определяется характером нагрузки. Для такого прибора как лампочка она равна нулю, в процессе горения лампы электромагнитные поля практически не образуются. В процессе работы электродвигателя реактивная мощность может достигать больших значений. Понятие реактивной мощности тесно связано с понятием «пусковые токи».
При выборе стабилизатора напряжения необходимо определять полную мощность потребителей. Самый точный способ — найти значение полной мощности прибора в его паспорте. Если такой возможности нет, то для определения полной мощности приборов с большими «пусковыми токами» принято использовать повышающий коэффициент «4».
Следует также учитывать, что номинальная мощность стабилизатора напряжения может указываться разными производителями стабилизаторов и ИБП в различных диапазонах входных параметров тока. Китайские производители часто завышают реальную мощность устройства в два и более раз.
Особое внимание при выборе подходящего стабилизатора напряжения или источника бесперебойного питания следует обратить на возможность использования стабилизатора при реактивной нагрузке. Часто производители указывают, что номинальная мощность стабилизатора или ИБП указана без учета реактивной нагрузки. В паспортных данных стабилизаторов и источников питания можно найти фразу «устройство не может использоваться для реактивной нагрузки».
Для работы с приборами, имеющими большую реактивную мощность мы рекомендуем использовать специальные стабилизаторы напряжения и ИБП компании «Бастион». Эти приборы характеризуются большой перегрузочной мощностью и хорошей защитой от помех в сети по нагрузке.
Подробные ответы вы можете найти в следующих статьях:
Сравнение реальных мощностей стабилизаторов напряжения разных марок
Сравнение стабилизаторов напряжения Ресанта, APC, Voltron, Калибри, Teplocom
Стабилизаторы напряжения для котлов отопления
Преимущества релейных стабилизаторов напряжения «Бастион»
Стабилизатор напряжения для холодильника
Стабилизаторы напряжения для насосов
Стабилизатор напряжения для кондиционера и сплит-системы
Активная мощность
Определение: Мощность, которая фактически потребляется или используется в цепи переменного тока, называется Истинная мощность или Активная мощность или Реальная мощность . Измеряется в киловаттах (кВт) или МВт. Это фактические результаты электрической системы, которая управляет электрическими цепями или нагрузкой.
Реактивная мощность
Определение: Мощность, которая течет вперед и назад, что означает, что она движется в обоих направлениях в цепи или реагирует на себя, называется Реактивная мощность .Реактивная мощность измеряется в киловольт-ампер реактивных (кВАР) или MVAR.
Кажущаяся сила
Определение: Произведение среднеквадратичного (среднеквадратичного) значения напряжения и тока известно как Кажущаяся мощность . Эта мощность измеряется в кВА или МВА.
Было видно, что мощность потребляется только в сопротивлении. Чистый индуктор и чистый конденсатор не потребляют никакой энергии, так как в полупериоде, независимо от того, какую мощность получают от источника эти компоненты, одинаковая мощность возвращается источнику.Эта мощность, которая возвращается и течет в обоих направлениях в цепи, называется реактивной мощностью. Эта реактивная мощность не выполняет никакой полезной работы в цепи.
В чисто резистивной цепи ток находится в фазе с приложенным напряжением, в то время как в чисто индуктивной и емкостной цепи ток не совпадает по фазе на 90 градусов, т. Е. Если индуктивная нагрузка подключена в цепи, ток отстает от напряжения на 90 градусов, и если емкостная нагрузка подключена, ток опережает напряжение на 90 градусов.
Следовательно, из всего вышеприведенного обсуждения делается вывод, что ток в фазе с напряжением производит истинную или активную мощность , тогда как ток на 90 градусов в противофазе с напряжением вносит вклад в реактивную мощность в цепи.
Следовательно,
- Истинная мощность = напряжение х ток в фазе с напряжением
- Реактивная мощность = напряжение х ток не в фазе с напряжением
Фазовая диаграмма для индуктивной цепи показана ниже:
Взяв напряжение V в качестве эталона, ток I отстает от напряжения V на угол ϕ.Ток I делится на две составляющие:
- I Cos ϕ в фазе с напряжением V
- I Sin ϕ, который на 90 градусов не в фазе с напряжением V
Следовательно, следующее выражение, показанное ниже, дает активную, реактивную и полную мощность соответственно.
- Активная мощность P = V x I cosϕ = V I cosϕ
- Реактивная мощность P r или Q = V x I sinϕ = V I sinϕ
- Кажущаяся мощность P a или S = V x I = VI
Активный компонент текущего
Компонент тока, который находится в фазе с напряжением цепи и вносит вклад в активную или истинную мощность цепи, называется активным компонентом или компонентом с полной ваттой или синфазным компонентом тока.
Реактивная составляющая тока
Компонент тока, который находится в квадратуре или на 90 градусов не в фазе относительно напряжения цепи и вносит вклад в реактивную мощность цепи, называется реактивной составляющей тока.
,iFi AC iPurifier — Active Power Cleanser
К настоящему времени вы должны знать, что EMI / RFI вредны для звука, и что качество питания очень важно. Рад, что мы убрали это с дороги.
Сегодня на рынке существует множество «вилок» для кондиционирования воздуха. Некоторые из них заполнены магнитами, некоторые — резонаторами, а некоторые — гномами, поедающими шум. Насколько мне известно, iFi AC iPurifier является первым на рынке активным штекером шумоподавления .
Вот одна из двух плат.В iPurifier AC есть 109 деталей.
Я не уверен в науке, которая стоит за таким продуктом, но вот что iFi должен был сказать:
Сетевой источник питания — это «бензин», который питает аудиосистему. И, является ли это чистым или загрязненным, это оказывает существенное влияние на качество / удовольствие от воспроизведения.
AC iPurifier — это новейший продукт iFi из «силовых изделий», устойчивый к чистке шумных источников питания.
Это не обычный продукт для очистки сети. Технологически продвинутый, он является активным, а не пассивным продуктом, поэтому он выходит за рамки и выходит за рамки и устраняет гораздо больший шум во всем диапазоне частот, чем другие пассивные устройства.
Эффективная разница в подавлении шума отличается как ночью, так и днем.
i. НАМНОГО лучше при -40дБ и
ii. Эффективен во всем диапазоне частот. Пассивный очиститель фильтрует только в самом верхнем диапазоне частот.
- Активное шумоподавление (ANC)
- «Военная технология» — самые передовые из доступных шумоподавлений … не могут помочь, но немного посмеиваются.
- Гладкий белый цилиндрический штекер с двумя зелеными светодиодами
- Светодиод полярности — Обнаружение ошибки полярности
- Светодиод заземления — Обнаружение отсутствия защитного заземления
- Порт заземления
- Опциональный кабель позволяет заземлять схема предотвращения петель
- Защита от перенапряжения
- Предположительно отключит и прекратит прохождение электричества через вашу систему.Я видел некоторые из этих типов продуктов, но на самом деле не знаю, как / если они работают…
Для получения более подробной информации, пожалуйста, обратитесь к их подробной странице продукта.
Цифровая секция SR PowerCell UEF 12 SE
Некоторые люди отмечали лучшее качество изображения и более глубокий черный цвет при использовании этих типов штекеров. Я измерил уровни черного с некоторыми из этих штекеров и не увидел никакой разницы. Я считаю, что эти различия, которые видят люди, могут быть реальными только из-за количества шума, который мы окружаем.Но в отличие от звука качество изображения не так субъективно. Это то, что можно точно измерить с помощью спектрофотометра и колориметра. Глубокий темно-красный — это по определению определенное цифровое значение с определенной длиной волны. В любом случае, если это изменит вашу картину в лучшую сторону, замечательно.
Тем не менее, ничто не сравнится с правильной калибровкой, особенно с цветовой коробкой 3D LUT, которая отображает правильные цвета еще до того, как она попадет на ваш телевизор.
Можно ожидать, что функция активного шумоподавления AC iPurifier окажет заметное влияние на вашу аудиосистему.Вы были бы правы. Попробовав AC iPurifier в самых разных сетях, в том числе в общественных кафе, я каждый раз слышал разницу. Они не были тонкими. Даже случайный парень, потягивая капучино рядом со мной, услышал разницу (и предпочел иметь iPurifier AC на стене).
iFi предлагает разместить первый разъем в аналоговой секции, второй — в цифровом, а третий — в сети. Имейте в виду, что даже если iPurifer был подключен к отдельной цепи в том же здании, вы услышите, как работает iPurifier.Я перепробовал как можно больше перестановок с двумя отправленными мне контрольными блоками.
Аналоговая секция…
В каждой установке, которую я пробовал с помощью iPurifier, со звуком происходит одна особенность. Это гладко.
В моей настройке ближнего поля подключение iPurifier к блоку питания High-Fidelity Cables MC-6 создавало фарфоровый звук. Подключите второй к моей розетке Synergistic Research Black Duplex, и этот эффект еще более усиливается. IPurifier по сути меняет текстуры и воздух для более плавного и полного звучания.
В своей системе домашнего кинотеатра я подключил один к своему Furman Elite 15-PFi, чтобы услышать, что он делает для 13 динамиков.Еще раз, намного более гладкий, более расслабленный звук. Некоторая динамика, текстуры и атмосфера были заменены на более расслабленный, плавный и шелковистый звук. Я нашел это менее привлекательным для боевиков, но легче для ушей для RomComs и тому подобное. При тестировании с группой друзей у нас было примерно 50/50 того, понравился ли нам подключенный iPurifier.
AC iPurifier работает своим волшебством … даже в другой цепи в том же доме.
Теперь с кондиционером с цифровыми / аналоговыми секциями.Использование iPurifier в Synergistic Research PowerCell UEF 12 SE дало интересные результаты.
- На цифровом участке и в сети
- Большая звуковая сцена, более тихий фон и большая четкость / разрешение. Один раз, когда iFi на самом деле не был более гладким, но более утонченным.
- На аналоговой секции и в сети
- Гладко, тепло, чисто и очень согласованно. Это звучало великолепно.
- Аналоговый и цифровой
- Смесь текстуры и уплотнения.Акустические отражения принимают удар, но никаких признаков цифрового зерна. Я понимаю, почему iFi предлагает разместить их в этой последовательности.
Что интересно в этих результатах, так это то, что энергетическая инфраструктура в этой системе является первоклассной с самого начала. Становится все более очевидным, что AC iPurifier может сильно зависеть от слушателя и системы. Некоторые будут наслаждаться более плавным и плотным звучанием в некоторых установках, в то время как другие предпочитают сохранять текстурные нюансы с сопровождающим их зерном.
Сравнения
Существует несколько других «штепсельных вилок», направленных на улучшение звука, и те, которые я пробовал, все пассивны.
- Высококачественные кабели MC-0.5
- Настоятельно рекомендуется настроить, чтобы усилить и очистить звук. Его преимущества более непосредственные и очевидные. Конечно, это в три раза дороже AC iPurifier.
- Nordost QRT Гармонизатор линии переменного тока Qv2 и усилитель переменного тока Qk1
- Я слышал об этом на выставке и был впечатлен тем, насколько глубоки и четки они демонстрируют.Их рекомендуется использовать парами. Они работали невероятно хорошо на электростанции PS Audio P10 (они улучшили глубину примерно на 3-4 фута). Однако использование Qv2 на моих кабелях высокой четкости MC-6 сглаживает / чрезмерно сглаживает звук. Все, что я слышал, было искажение и неточный тембр. Qk1 отображал больше деталей, звуковую сцену, тишину и «срочность» в звуке. Неплохо, но все же немного искусственное звучание. Мой вывод — для достижения наилучших результатов используйте эти заглушки вместе с Nordost Qx2 / 4 и QBASE-Mark II, чтобы получить наилучшие результаты.
iFi AC iPurifier отлично справляется с работой, сглаживая любой слышимый шум. Если вы слышите шипение, резкие зерна или тональные несоответствия в вашей системе, я уверен, что iPurifier поможет разогнать звук. Как видно из обзора, звучание iPurifier зависит от местоположения и количества. Как параллель компьютерной графике, я чувствую, что iFi AC iPurifier по сути выполняет «сглаживание» в вашей аудиосистеме. Он представляет собой очень насыщенное, сливочное и аналоговое звучание.
iFi AC iPurifier — это недорогая настройка с низким уровнем риска всего за 99 долларов. Специально для тех, у кого минимальное энергопотребление, определенно стоит послушать.
.Power Triangle — это представление прямоугольного треугольника, показывающее соотношение между активной мощностью, реактивной мощностью и полной мощностью.
Когда каждый компонент тока, который является активным компонентом (Icosϕ) или реактивным компонентом (Isinϕ), умножается на напряжение V, получается треугольник мощности, показанный на рисунке ниже:
Мощность, которая фактически потребляется или используется в цепи переменного тока, называется Истинная мощность или Активная мощность или реальная мощность.Измеряется в киловаттах (кВт) или МВт.
Мощность, которая течет вперед и назад, что означает, что она движется в обоих направлениях цепи или реагирует на нее, называется Реактивная мощность . Реактивная мощность измеряется в киловольт-амперных реактивных (кВАР) или MVAR.
Произведение среднеквадратичного (среднеквадратичного) значения напряжения и тока известно как Кажущаяся мощность . Эта мощность измеряется в кВА или МВА.
Следующая точка показывает взаимосвязь между следующими величинами и объясняется графическим представлением, называемым силовым треугольником, показанным выше.
- Когда активная составляющая тока умножается на напряжение V цепи, это приводит к активной мощности. Это та мощность, которая создает крутящий момент в двигателе, тепло в нагревателе и т. Д. Эта мощность измеряется ваттметром.
- Когда реактивная составляющая тока умножается на напряжение цепи, это дает реактивную мощность. Эта мощность определяет коэффициент мощности, и она течет вперед и назад в цепи.
- Когда ток цепи умножается на напряжение цепи, это приводит к полной мощности.
- Из треугольника мощности, показанного над мощностью, коэффициент можно определить, взяв отношение истинной мощности к полной мощности.
Как мы знаем, мощность означает произведение напряжения и тока, но в цепи переменного тока, за исключением чисто резистивной цепи, обычно существует разность фаз между напряжением и током, и, следовательно, VI не дает реальной или истинной мощности в цепи.
Активный фильтр гармоник (мощность) — DELTA
Принцип APFAPF Delta серии PQC подключается параллельно с нелинейными нагрузками и использует один набор трансформаторов тока (ТТ) для определения тока нагрузки. Он вычисляет гармонический ток каждого порядка с помощью алгоритмов БПФ в своих микросхемах DSP, а затем генерирует компенсационный ток с той же амплитудой, но противоположными фазовыми углами по отношению к обнаруженному гармоническому току, который компенсирует исходные гармоники нагрузки.
APF серии PQC не только устраняет гармонический ток со стороны нагрузки, но и смягчает гармоническое напряжение, вызванное гармоническими токами.Система APF также может улучшить коэффициент мощности (PF) и исправить дисбаланс нагрузки в системе питания.
APF Структура
Delta PQC серии APF имеет модульную конструкцию. Обычно система фильтра активной мощности Delta состоит из одного или нескольких модулей APF и дополнительной жидкокристаллической панели мониторинга и контроля (LCM). Каждый модуль APF представляет собой независимую систему фильтрации гармоник, и пользователи могут изменять рейтинг системы фильтрации гармоник, добавляя или удаляя модули APF.
В зависимости от типа монтажа APF Delta серии PQC можно разделить на модульные APF и настенные APF.
Модульная APF
МодулиAPF и панель LCM могут быть встроены в стандартный шкаф Delta APF или специальный шкаф. В шкафу APF имеются автоматические выключатели, кабельные клеммы и устройство защиты от перенапряжений (SPD).
В зависимости от типа кабельного терминала, модульная APF может быть разделена на два типа:
- ТИП модульная APF (с возможностью горячей замены)
- Фиксированный модульный APF (без горячей замены)
Настенный APF
Настенная APF Delta может быть установлена на стене, которая подходит для приложений с низким рейтингом, и дополнительный LCM
панель может быть закреплена на полностью смонтированном APF в соответствии с требованиями заказчика.