Активная реактивная полная мощность: Полная, активная, реактивная и неактивная мощность электрического тока

Содержание

Активная и реактивная мощность. За что платим и работа

Активная и реактивная мощность — потребители электрической энергии на то и потребители, чтобы эту энергию потреблять. Потребителя интересует та энергия, потребление которой идет ему на пользу, эту энергию можно назвать полезной, но в электротехнике ее принято называть активной. Это энергия, которая идет на нагрев помещений, готовку пищи, выработку холода, и превращаемая в механическую энергию (работа электродрелей, перфораторов, электронасосов и пр.).

Кроме активной электроэнергии существует еще и реактивная. Это та часть полной энергии, которая не расходуется на полезную работу. Как понятно из вышесказанного, полная мощность – это активная и реактивная мощность в целом.

Активная и реактивная мощность

В понятиях активная и реактивная мощность сталкиваются противоречивые интересы потребителей электрической энергии и ее поставщиков. Потребителю выгодно платить только за потребленную им полезную электроэнергию, поставщику выгодно получать оплату за сумму активной и реактивной электроэнергии. Можно ли совместить эти кажущиеся противоречивыми требования? Да, если свести количество реактивной электроэнергии к нулю.

Активная мощность

Существуют потребители электроэнергии, у которых полная и активная мощности совпадают. Это потребители, у которых нагрузка представлена активными сопротивлениями (резисторами). Среди бытовых электроприборов примерами подобной нагрузки являются лампы накаливания, электроплиты, жарочные шкафы и духовки, обогреватели, утюги, паяльники и пр.

Указанная у этих приборов в паспорте, одновременно является активная и реактивная мощность . Это тот случай, когда мощность нагрузки можно определить по известной из школьного курса физики формуле, перемножив ток нагрузки на напряжение в сети. Ток измеряется в амперах (А), напряжение в вольтах (В), мощность в ваттах (Вт). Конфорка электрической плиты в сети с напряжением 220 В при токе в 4,5 А потребляет мощность 4,5 х 220 = 990 (Вт).

Реактивная мощность

Иногда, проходя по улице, можно увидеть, что стекла балконов покрыты изнутри блестящей тонкой пленкой. Эта пленка изъята из бракованных электрических конденсаторов, устанавливаемых с определенными целями на питающих мощных потребителей электрической энергии распределительных подстанциях. Конденсатор – типичный потребитель реактивной мощности. В отличие от потребителей активной мощности, где главным элементом конструкции является некий проводящий электричество материал (вольфрамовый проводник в лампах накаливания, нихромовая спираль в электроплитке и т.п.). В конденсаторе главный элемент – не проводящий электрический ток диэлектрик (тонкая полимерная пленка или пропитанная маслом бумага).

Реактивная емкостная мощность

Красивые блестящие пленки, что вы видели на балконе – это обкладки конденсатора из токопроводящего тонкого материала. Конденсатор замечателен тем, что он может накапливать электрическую энергию, а затем отдавать ее – своеобразный такой аккумулятор. Если включить конденсатор в сеть постоянного тока, он зарядится кратковременным импульсом тока, а затем ток через него протекать не будет. Вернуть конденсатор в исходное состояние можно, отключив его от источника напряжения и подключив к его обкладкам нагрузку. Некоторое время через нагрузку будет течь электрический ток, и идеальный конденсатор отдает в нагрузку ровно столько электрической энергии, сколько он получил при зарядке. Подключенная к выводам конденсатора лампочка может на короткое время вспыхнуть, электрический резистор нагреется, а неосторожного человека может «тряхнуть» или даже убить при достаточном напряжении на выводах и запасенном количестве электричества.

Интересная картина получается при подключении конденсатора к источнику переменного электрического напряжения. Поскольку у источника переменного напряжения постоянно меняются полярность и мгновенное значение напряжения (в домашней электросети по закону, близкому к синусоидальному). Конденсатор будет непрерывно заряжаться и разряжаться, через него будет непрерывно протекать переменный ток. Но этот ток не будет совпадать по фазе с напряжением источника переменного напряжения, а будет опережать его на 90°, т.е. на четверть периода.

Это приведет к тому, что суммарно половину периода переменного напряжения конденсатор потребляет энергию из сети, а половину периода отдает, при этом суммарная потребляемая активная электрическая мощность равна нулю. Но, поскольку через конденсатор течет значительный ток, который может быть измерен амперметром, принято говорить, что конденсатор – потребитель реактивной электрической мощности.

Вычисляется реактивная мощность как произведение тока на напряжение, но единица измерения уже не ватт, а вольт-ампер реактивный (ВАр). Так, через подключенный к сети 220 В частотой 50 Гц электрический конденсатор емкостью 4 мкФ течет ток порядка 0,3 А. Это означает, что конденсатор потребляет 0,3 х 220 = 66 (ВАр) реактивной мощности – сравнимо с мощностью средней лампы накаливания, но конденсатор, в отличие от лампы, при этом не светится и не нагревается.

Реактивная индуктивная мощность

Если в конденсаторе ток опережает напряжение, то существуют ли потребители, где ток отстает от напряжения? Да, и такие потребители, в отличие от емкостных потребителей, называются индуктивными, оставаясь при этом потребителями реактивной энергии. Типичная индуктивная электрическая нагрузка – катушка с определенным количеством витков хорошо проводящего провода, намотанного на замкнутый сердечник из специального магнитного материала.

На практике хорошим приближением чисто индуктивной нагрузки является работающий без нагрузки трансформатор (или стабилизатор напряжения с автотрансформатором). Хорошо сконструированный трансформатор на холостом ходу потребляет очень мало активной мощности, потребляя мощность в основном реактивную.

Реальные потребители электрической энергии и полная электрическая мощность

Из рассмотрения особенностей емкостной и индуктивной нагрузки возникает интересный вопрос – что произойдет, если емкостную и индуктивную нагрузку включить одновременно и параллельно. Ввиду их противоположной реакции на приложенное напряжение, эти две реакции начнут компенсировать друг друга. Суммарная нагрузка окажется только емкостной или индуктивной, и в некотором идеальном случае удастся добиться полной компенсации. Выглядеть это будет парадоксально – подключенные амперметры зафиксируют значительные (и равные!) токи через конденсатор и катушку индуктивности, и полное отсутствие тока в объединяющих их общей цепи. Описанная картина несколько нарушается лишь тем, что не существует идеальных конденсаторов и катушек индуктивности, но подобная идеализация помогает понять суть происходящих процессов.

Вернемся к реальным потребителям электрической энергии. В быту мы пользуемся в основном потребителями чисто активной мощности (примеры приведены выше), и смешанной активно-индуктивной. Это электродрели, перфораторы, электродвигатели холодильников, стиральных машин и прочей бытовой техники. Также к ним относятся электрические трансформаторы источников питания бытовой радиоэлектронной аппаратуры и стабилизаторов напряжения. В случае подобной смешанной нагрузки, помимо активной (полезной) мощности, нагрузка потребляет еще и реактивную мощность, в итоге полная мощность отказывается больше активной мощности. Полная мощность измеряется в вольт-амперах (ВА), и всегда представляет собой произведение тока в нагрузке на напряжение на нагрузке.

Таинственный «косинус фи»

Отношение активной мощности к полной называется в электротехнике «косинусом фи». Обозначается cos φ. Это отношение называется также и коэффициентом мощности. Нетрудно видеть, что для случая чисто активной нагрузки, где полная мощность совпадает с активной, cos φ = 1. Для случаев чисто емкостной или индуктивной нагрузок, где нулю равна активная мощность, cos φ = 0.

В случае смешанной нагрузки значение коэффициента мощности заключается в пределах от 0 до 1. Для бытовой техники обычно в диапазоне 0,5-0,9. В среднем можно считать его равным 0,7, более точное значение указывается в паспорте электроприбора.

За что платим?

И, наконец, самый интересный вопрос – за какой вид энергии платит потребитель. Исходя из того, что реактивная составляющая суммарной энергии не приносит потребителю никакой пользы, при этом долю периода реактивная энергия потребляется, а долю отдается, платить за реактивную мощность незачем. Но бес, как известно, кроется в деталях. Поскольку смешанная нагрузка увеличивает ток в сети, возникают проблемы на электростанциях, где электроэнергия вырабатывается синхронными генераторами, а именно: индуктивная нагрузка «развозбуждает» генератор, и приведение его в прежнее состояние обходится в затраты уже реальной активной мощности на его «довозбуждение».

Таким образом, заставить потребителя платить за потребляемую реактивную индуктивную мощность вполне справедливо. Это побуждает потребителя компенсировать реактивную составляющую своей нагрузки, а, поскольку эта составляющая в основном индуктивная, компенсация заключается в подключении конденсаторов наперед рассчитанной емкости.

Потребитель находит возможность платить меньше

Если потребителем оплачивается отдельно потребляемая активная и реактивная мощность. Он готов идти на дополнительные затраты и устанавливать на своем предприятии батареи конденсаторов, включаемые строго по графику в зависимости от средней статистики потребления электроэнергии по часам суток.

Существует также возможность установки на предприятии специальных устройств (компенсаторов реактивной мощности), подключающих конденсаторы автоматически в зависимости от величины и характера потребляемой в данный момент мощности. Эти компенсаторы позволяют поднять значение коэффициента мощности с 0,6 до 0,97, т.е. практически до единицы.

Принято также, что если соотношение потребленной реактивной энергии и общей не превышает 0,15, то корпоративный потребитель от оплаты за реактивную энергию освобождается.

Что же касается индивидуальных потребителей, то, ввиду сравнительно невысокой потребляемой ими мощности, разделять счета на оплату потребляемой электроэнергии на активную и реактивную не принято. Бытовые однофазные счетчики электрической энергии учитывают лишь активную мощность электрической нагрузки, за нее и выставляется счет на оплату. Т.е. в настоящее время даже не существует технической возможности выставить индивидуальному потребителю счет за потребленную реактивную мощность.

Особых стимулов компенсировать индуктивную составляющую нагрузки у потребителя нет, да это и сложно осуществить технически. Постоянно подключенные конденсаторы при отключении индуктивной нагрузки будут бесполезно нагружать подводящую электропроводку. За электросчетчиком (перед счетчиком тоже, но за то потребитель не платит), что вызовет потребление активной мощности с соответствующим увеличением счета на оплату, а автоматические компенсаторы дороги и вряд ли оправдают затраты на их приобретение.

Другое дело, что производитель иногда устанавливает компенсационные конденсаторы на входе потребителей с индуктивной составляющей нагрузки. Эти конденсаторы, при правильном их подборе, несколько снизят потери энергии в подводящих проводах, при этом несколько повысив напряжение на подключенном электроприборе за счет уменьшения падения напряжения на подводящих проводах.

Но, что самое главное, компенсация реактивной энергии у каждого потребителя, от квартиры до огромного предприятия, снизит токи во всех линиях электропитания, от электростанции до квартирного щитка. За счет реактивной составляющей полного тока, что уменьшит потери энергии в линиях и повысит коэффициент полезного действия электросистем.

Похожие темы:

активная, реактивная, полная (P, Q, S), коэффициент мощности (PF)

Из письма клиента:
Подскажите, ради Бога, почему мощность ИБП указывается в Вольт-Амперах, а не в привычных для всех киловаттах. Это сильно напрягает. Ведь все уже давно привыкли к киловаттам. Да и мощность всех приборов в основном указана в кВт.
Алексей. 21 июнь 2007

 

 

В технических характеристиках любого ИБП указаны полная мощность [кВА] и активная мощность [кВт] – они характеризуют нагрузочную способность ИБП. Пример, см. фотографии ниже:

 

 

Мощность не всех приборов указана в Вт, например:

  • Мощность трансформаторов указывается в ВА:
    http://www.mstator.ru/products/sonstige/powertransf (трансформаторы ТП: см приложение)
    http://metz.by/download_files/catalog/transform/tsgl__tszgl__tszglf.pdf (трансформаторы ТСГЛ: см приложение)
  • Мощность конденсаторов указывается в Варах:
    http://www.elcod.spb.ru/catalog/k78-39.pdf (конденсаторы K78-39: см приложение)
    http://www.kvar.su/produkciya/25-nizkogo-napraygeniya-vbi (конденсаторы УК: см приложение)
  • Примеры других нагрузок — см. приложения ниже.

 

Мощностные характеристики нагрузки можно точно задать одним единственным параметром (активная мощность в Вт) только для случая постоянного тока, так как в цепи постоянного тока существует единственный тип сопротивления – активное сопротивление.

Мощностные характеристики нагрузки для случая переменного тока невозможно точно задать одним единственным параметром, так как в цепи переменного тока существует два разных типа сопротивления – активное и реактивное. Поэтому только два параметра: активная мощность и реактивная мощность точно характеризуют нагрузку.

Принцип действия активного и реактивного сопротивлений совершенно различный. Активное сопротивление – необратимо преобразует электрическую энергию в другие виды энергии (тепловую, световую и т.д.) – примеры: лампа накаливания, электронагреватель (параграф 39, Физика 11 класс В.А. Касьянов М.: Дрофа, 2007).

Реактивное сопротивление – попеременно накапливает энергию затем выдаёт её обратно в сеть – примеры: конденсатор, катушка индуктивности (параграф 40,41, Физика 11 класс В.А. Касьянов М.: Дрофа, 2007).

Дальше в любом учебнике по электротехнике Вы можете прочитать, что активная мощность (рассеиваемая на активном сопротивлении) измеряется в ваттах, а реактивная мощность (циркулирующая через реактивное сопротивление) измеряется в варах; так же для характеристики мощности нагрузки используют ещё два параметра: полную мощность и коэффициент мощности. Все эти 4 параметра:

  1. Активная мощность: обозначение P
    , единица измерения: Ватт
  2. Реактивная мощность: обозначение Q, единица измерения: ВАр (Вольт Ампер реактивный)
  3. Полная мощность: обозначение S, единица измерения: ВА (Вольт Ампер)
  4. Коэффициент мощности: обозначение k или cosФ, единица измерения: безразмерная величина

Эти параметры связаны соотношениями:  S*S=P*P+Q*Q,   cosФ=k=P/S

Также cosФ называется коэффициентом мощности (Power FactorPF)

Поэтому в электротехнике для характеристики мощности задаются любые два из этих параметров так как остальные могут быть найдены из этих двух.

Например, электромоторы, лампы (разрядные) — в тех. данных указаны P[кВт] и cosФ:
http://www.mez.by/dvigatel/air_table2.shtml (двигатели АИР: см. приложение)
http://www.mscom.ru/katalog.php?num=38 (лампы ДРЛ: см. приложение)

(примеры технических данных разных нагрузок см. приложение ниже)

То же самое и с источниками питания. Их мощность (нагрузочная способность) характеризуется одним параметром для источников питания постоянного тока – активная мощность (Вт), и двумя параметрами для ист. питания переменного тока. Обычно этими двумя параметрами являются полная мощность (ВА) и активная (Вт). См. например параметры ДГУ и ИБП.

Большинство офисной и бытовой техники, активные (реактивное сопротивление отсутствует или мало), поэтому их мощность указывается в Ваттах. В этом случае при расчёте нагрузки используется значение мощности ИБП в Ваттах. Если нагрузкой являются компьютеры с блоками питания (БП) без коррекции входного коэффициента мощности (APFC), лазерный принтер, холодильник, кондиционер, электромотор (например погружной насос или мотор в составе станка), люминисцентные балластные лампы и др.

– при расчёте используются все вых. данные ибп: кВА, кВт, перегрузочные характеристики и др.

 

См. учебники по электротехнике, например:

1. Евдокимов Ф. Е. Теоретические основы электротехники. — М.: Издательский центр «Академия», 2004.

2. Немцов М. В. Электротехника и электроника. — М.: Издательский центр «Академия», 2007.

3. Частоедов Л. А. Электротехника. — М.: Высшая школа, 1989.

Так же см. AC power, Power factor, Electrical resistance, Reactance http://en.wikipedia.org
(перевод: http://electron287.narod.ru/pages/page1.html)

 


Приложение

 

Пример 1: мощность трансформаторов и автотрансформаторов указывается в ВА (Вольт·Амперах)

Трансформаторы питания номинальной выходной мощностью 25-60 ВА
http://www.mstator.ru/products/sonstige/powertransf (трансформаторы ТП)

 

http://metz.by/download_files/catalog/transform/tsgl__tszgl__tszglf.pdf (трансформаторы ТСГЛ)

 


АОСН-2-220-82
Латр 1.25 АОСН-4-220-82
Латр 2.5 АОСН-8-220-82





АОСН-20-220



АОМН-40-220




http://www.gstransformers.com/products/voltage-regulators.html (ЛАТР / лабораторные автотрансформаторы TDGC2)

 

 

Пример 2: мощность конденсаторов указывается в Варах (Вольт·Амперах реактивных)

http://www. elcod.spb.ru/catalog/k78-39.pdf (конденсаторы K78-39)

 

http://www.kvar.su/produkciya/25-nizkogo-napraygeniya-vbi (конденсаторы УК)

 

 

Пример 3: технические данные электромоторов содержат активную мощность (кВт) и cosФ

Для таких нагрузок как электромоторы, лампы (разрядные), компьютерные блоки питания, комбинированные нагрузки и др. — в технических данных указаны P [кВт] и cosФ (активная мощность и коэффициент мощности) или S [кВА] и cosФ (полная мощность и коэффициент мощности).

http://www.mez.by/dvigatel/air_table2.shtml (двигатели АИР)

 

http://www.weiku.com/products/10359463/Stainless_Steel_cutting_machine.html
(комбинированная нагрузка – станок плазменной резки стали / Inverter Plasma cutter LGK160 (IGBT)

 

Технические данные разрядных ламп содержат активную мощность (кВт) и cosФ
http://www.mscom.ru/katalog.php?num=38 (лампы ДРЛ)

 

http://www.silverstonetek.com.tw/product.php?pid=365&area=en (блок питания ПК)

 

 

Дополнение 1

Если нагрузка имеет высокий коэффициент мощности (0.8 … 1.0), то её свойства приближаются к активной нагрузке. Такая нагрузка является идеальной как для сетевой линии, так и для источников электроэнергии, т.к. не порождает реактивных токов и мощностей в системе.

Если нагрузка имеет низкий коэффициент мощности (менее 0.8 … 1.0), то в линии питания циркулируют большие реактивные токи (и мощности). Это паразитное явление приводит к повышению потерь в проводах линии (нагрев и др.), нарушению режима работы источников (генераторов) и трансформаторов сети, а также др. проблемам.

Поэтому во многих странах приняты стандарты нормирующие коэффициент мощности оборудования.

 

Дополнение 2

Оборудование однонагрузочное (например, БП ПК) и многосоставное комбинированное (например, фрезерный промышленный станок, имеющий в составе несколько моторов, ПК, освещение и др.) имеют низкие коэффициенты мощности (менее 0.8) внутренних агрегатов (например, выпрямитель БП ПК или электромотор имеют коэффициент мощности 0.6 .. 0.8). Поэтому в настоящее время большинство оборудования имеет входной блок корректора коэффициента мощности. В этом случае входной коэффициент мощности равен 0.9 … 1.0, что соответствует нормативным стандартам.

 

Дополнение 3. Важное замечание относительно коэффициента мощности ИБП и стабилизаторов напряжения

Нагрузочная способность ИБП и ДГУ нормирована на стандартную промышленную нагрузку (коэффициент мощности 0.8 с индуктивным характером). Например, ИБП 100 кВА / 80 кВт. Это означает, что устройство может питать активную нагрузку максимальной мощности 80 кВт, или смешанную (активно-реактивную) нагрузку максимальной мощности 100 кВА с индуктивным коэффициентом мощности 0.8.

В стабилизаторах напряжения дело обстоит иначе. Для стабилизатора коэффициент мощности нагрузки безразличен. Например, стабилизатор напряжения 100 кВА. Это означает, что устройство может питать активную нагрузку максимальной мощности 100 кВт, или любую другую (чисто активную, чисто реактивную, смешанную) мощностью 100 кВА или 100 кВАр с любым коэффициентом мощности емкостного или индуктивного характера. Обратите внимание, что это справедливо для линейной нагрузки (без высших гармоник тока). При больших гармонических искажениях тока нагрузки (высокий КНИ) выходная мощность стабилизатора снижается.

 

Дополнение 4

Наглядные примеры чистой активной и чистой реактивных нагрузок:

  • К сети переменного тока 220 VAC подключена лампа накаливания 100 Вт – везде в цепи есть ток проводимости (через проводники проводов и вольфрамовый волосок лампы). Характеристики нагрузки (лампы): мощность S=P~=100 ВА=100 Вт, PF=1 => вся электрическая мощность активная, а значит она целиком поглащается в лампе и превращается в мощность тепла и света.
  • К сети переменного тока 220 VAC подключен неполярный конденсатор 7 мкФ – в цепи проводов есть ток проводимости, внутри конденсатора идёт ток смещения (через диэлектрик). Характеристики нагрузки (конденсатора): мощность S=Q~=100 ВА=100 ВАр, PF=0 => вся электрическая мощность реактивная, а значит она постоянно циркулирует от источника к нагрузке и обратно, опять к нагрузке и т.д.

 

Дополнение 5

Для обозначения преобладающего реактивного сопротивления (индуктивного либо ёмкостного) коэффициенту мощности приписывается знак:

+ (плюс) – если суммарное реактивное сопротивление является индуктивным (пример: PF=+0.5). Фаза тока отстаёт от фазы напряжения на угол Ф.

— (минус) – если суммарное реактивное сопротивление является ёмкостным (пример: PF=-0,5). Фаза тока опережает фазу напряжения на угол Ф.

 

Дополнение 6

В различных областях техники мощность может быть либо полезной, либо паразитной НЕЗАВИСИМО от того активная она или реактивная. Например, необходимо различать активную полезную мощность рассеиваемую на рабочей нагрузке и активную паразитную мощность рассеиваемую в линии электропередачи. Так, например, в электротехнике при расчете активной и реактивной мощностей наиболее часто активная мощность является полезной мощностью, передаваемой в нагрузку и является реальной (не мнимой) величиной. А в электронике при расчёте конденсаторов или расчёте самих линий передач активная мощность является паразитной мощностью, теряемой на разогрев конденсатора (или линии) и является мнимой величиной. Причём, деление на мнимые и немнимые величины производится только для удобства рассчётов. На самом деле, все физические величины конечно реальные.

 

 

Дополнительные вопросы

 

Вопрос 1:
Почему во всех учебниках электротехники при расчете цепей переменного тока используют мнимые числа / величины (например, реактивная мощность, реактивное сопротивление и др. ), которые не существуют в реальности?

Ответ:
Да, все отдельные величины в окружающем мире – действительные. В том числе температура, реактивное сопротивление, и т.д. Использование мнимых (комплексных) чисел – это только математический приём, облегчающий вычисления. В результате вычисления получается обязательно действительное число. Пример: реактивная мощность нагрузки (конденсатора) 20кВАр – это реальный поток энергии, то есть реальные Ватты, циркулирующие в цепи источник–нагрузка. Но что бы отличить эти Ватты от Ваттов, безвозвратно поглащаемых нагрузкой, эти «циркулирующие Ватты» решили называть Вольт·Амперами реактивными [6].

Замечание:
Раньше в физике использовались только одиночные величины и при расчете все математические величины соответствовали реальным величинам окружающего мира. Например, расстояние равно скорость умножить на время (S=v*t). Затем с развитием физики, то есть по мере изучения более сложных объектов (свет, волны, переменный электрический ток, атом, космос и др.) появилось такое большое количество физических величин, что рассчитывать каждую в отдельности стало невозможно. Это проблема не только ручного вычисления, но и проблема составления программ для ЭВМ. Для решения данное задачи близкие одиночные величины стали объединять в более сложные (включающие 2 и более одиночных величин), подчиняющиеся известным в математике законам преобразования. Так появились скалярные (одиночные) величины (температура и др.), векторные и комплексные сдвоенные (импеданс и др.), векторные строенные (вектор магнитного поля и др.), и более сложные величины – матрицы и тензоры (тензор диэлектрической проницаемости, тензор Риччи и др.). Для упрощения рассчетов в электротехнике используются следующие мнимые (комплексные) сдвоенные величины:

  1. Полное сопротивление (импеданс) Z=R+iX
  2. Полная мощность S=P+iQ
  3. Диэлектрическая проницаемость e=e’+ie»
  4. Магнитная проницаемость m=m’+im»
  5. и др.

 

 

Вопрос 2:

На странице http://en.wikipedia.org/wiki/Ac_power показаны S P Q Ф на комплексной, то есть мнимой / несуществующей плоскости. Какое отношение это все имеет к реальности?

 

 

Ответ:
Проводить расчеты с реальными синусоидами сложно, поэтому для упрощения вычислений используют векторное (комплексное) представление как на рис. выше. Но это не значит, что показанные на рисунке S P Q не имеют отношения к реальности. Реальные величины S P Q могут быть представлены в обычном виде, на основе измерений синусоидальных сигналов осциллографом. Величины S P Q Ф I U в цепи переменного тока «источник-нагрузка» зависят от нагрузки. Ниже показан пример [5] реальных синусоидальных сигналов S P Q и Ф для случая нагрузки состоящей из последовательно соединённых активного и реактивного (индуктивного) сопротивлений.

 

 

 

Вопрос 3:
Обычными токовыми клещами и мультиметром измерен ток нагрузки 10 A, и напряжение на нагрузке 225 В. Перемножаем и получаем мощность нагрузки в Вт: 10 A · 225В = 2250 Вт.

Ответ:
Вы получили (рассчитали) полную мощность нагрузки 2250 ВА. Поэтому ваш ответ будет справедлив только, если ваша нагрузка чисто активная, тогда действительно Вольт·Ампер равен Ватту. Для всех других типов нагрузок (например электромотор) – нет. Для измерения всех характеристик любой произвольной нагрузки необходимо использовать анализатор сети, например APPA137:

 

 

 


См. дополнительную литературу, например:

 

[1]. Евдокимов Ф. Е. Теоретические основы электротехники. — М.: Издательский центр «Академия», 2004.

[2]. Немцов М. В. Электротехника и электроника. МЗср отдается 2 раза от генератора в цепь и возвращается 2 раза. Другими словами, реактивная мощность характеризует обмен энергией между генератором и приемником. Полная (кажущаяся) мощность Ы =

Она измеряется в Вольт амперах, а сокращенно Вася. Существует связь между P, Q, S Р2 + К2 = = 52.(5.48)) Это отношение может быть графически представлено в виде прямоугольного треугольника (рис. 112), степенного треугольника с 1 ногой, равной P, другой ногой, равной Q, и гипотенузы S. Рисунок 112 Значение 5

Появляется на приборной панели источник электрической энергии переменного тока (генератор, трансформатор и др.).Если этот источник является потребителем, то cos <p = 1 (то есть он представляет собой чисто активный резистор).

Смотрите также:

Предмет электротехника тоэ

★ Активная реактивная и полная мощность | Информация

Активная, реактивная и полная мощность в цепи переменного тока. 6 янв 2014 Под активной мощностью понимают среднее значение мгновенной мощности р за период Т. где: и Umsin ωt φ i Imsinωt.. .. Мощность: активная, реактивная, полная P, Q, S, коэффициент. 26 июн 2016 нелинейных искажений не является активной включает в себя как реактивную, так и мощность прочих. .. Что такое активная, реактивная и полная мощность нагрузки. 1 май 2015 отличии от цепей постоянного в сетях переменного тока существует три вида мощности активная, реактивная и полная.. .. Активная, реактивная и полная мощности. Активная, реактивная и полная. Под активной мощностью понимают среднее значение мгновенной мощности р за период Т. 4.26.. .. Активная и реактивная электроэнергия. 15 июн 2014 Im X cos ωt реактивное напряжение U12 Мощность в цепи синусоидального тока. Активная, реактивная и полная мощности.. .. § 3.21. Активная, реактивная и полная мощности.. токи, напряжения, активная, реактивная и полная мощности, мощность измеряется во всех четырёх квадрантах. Основная функция DPM измерение. .. 11. Синусоидальный ток в последовательной r, l, c – цепи. Закон. Активная, реактивная и полная. Под активной мощностью Р понимают среднее значение мгновенной мощности. Если ток напряжение на. .. Дельта Электроникс Продукция Щитовые приборы DPM. 27 янв 2012 В технических характеристиках любого ИБП указаны полная мощность – они характеризуют. .. Активная, реактивная и полная мощность. Активная, реактивная и полная механические мощности решетного сепаратора Текст научной статьи по специальности Электротехника, электронная. .. Мощность: активная, реактивная, полная P, Q, S, коэффициент. Понятия активной и реактивной электроэнергии. Под понятием полная подразумевается вся та мощность, которая потребляется. АКТИВНАЯ РЕАКТИВНАЯ И ПОЛНАЯ МОЩНОСТИ Справочник. 16 апр 2015 Мощность переменного тока является также переменной величиной и на любом заданном участке цепи в любой момент. .. Активная, реактивная и полная мощность переменного тока. 13 фев 2018 Работа по теме: morozova t f uchebnoe posobie elektrotehnika i elektronika. Глава: 2.6 Активная, реактивная и полная мощности.. .. Мощность в электрических цепях.. 27 янв 2012 В технических характеристиках любого ИБП указаны полная мощность – они характеризуют. .. Активная, реактивная и полная механические мощности. Лекция №7 по ТОЭ Преобразование энергии в электрической цепи. Мгновенная, активная, реактивная и полная мощности синусоидального тока.. .. Активная, реактивная, неактивная и полная мощность. отличии от при постоянном токе, формулы для вычисления мощности цепях переменного тока достаточно сложны. В общем. .. Мощность. АКТИВНАЯ РЕАКТИВНАЯ И ПОЛНАЯ МОЩНОСТИ. На рис. 1а изображена электрическая цепь с параллельным соединением активного. .. Мощность трехфазной сети: активная, реактивная, полная. Значения активной общей реактивной трехфазной цепи равны соответственно суммам активных и реактивных мощностей для. .. 2.6 Активная, реактивная и полная мощности. 25 дек 2016 Наглядная аналогия, позволяющая понять, что такое активная, реактивная и полная мощность.. .. Активная, реактивная и полная мощность. Что это такое, на. 26 сен 2018 В цепях постоянного тока не разделяют мощность на разные составляющие, такие как активная и реактивная, поэтому используют. .. Активная, реактивная и полная мощность цепи переменного тока. Перед тем, как начать разбираться с понятием мощность, Активная, реактивная и полная мощности связаны соотношениями: S. P. 2..

Реактивная мощность

Применение переменного тока началось в конце XIX века. На замену небольшим и локальным системам постоянного тока пришла передача электрической энергии с использованием переменного тока, что потребовало расширения существующих локальных систем энергоснабжения. Кроме того, было необходимо и обеспечение передачи электроэнергии на дальние расстояния. Поэтому возникали различные проблемы с управлением напряжением и стабильностью, связанные в первую очередь с отсутствием баланса реактивной мощности в системах.

Для управления напряжениями стационарной системы применялись шунтирующие конденсаторы и шунтирующие реакторы. То есть применялась коммутируемая компенсация реактивной мощности. А динамическая компенсация реактивной мощности основывалась на вращающихся машинах, например синхронных компенсаторах.

Из истории мы знаем, что в середине 60-х годов 20 века появились первые статические компенсирующие устройства реактивной мощности, т.е. реакторы, управляемые постоянным током (ртутные вентили), и устройства, управляемые тиристорами (конденсаторы с тиристорным управлением, реакторы с тиристорным управлением). Они имели малое время отклика, низкие потери и практически не требовали технического обслуживания, что сняло многие ограничения, присущие вращающимся машинам и устройствам, управляемым постоянным током.

Так что же такое реактивная мощность? Обратимся к учебнику физики. Там написано совсем мало. Полная мощность делится на активную и реактивную. Активная составляющая мощности полезно используется, превращаясь в механическую, химическую, световую и другие энергии.

Реактивная же составляющая мощности не выполняет полезной работы, она служит лишь для создания магнитных полей в индуктивных приёмниках (электродвигатели, трансформаторы и т.п.), циркулируя всё время между источником и приёмником. Она может рассматриваться как характеристика скорости обмена энергией между генератором и магнитным полем приёмника электроэнергии.

Ну а физика процесса представляет собой следующее: переменный ток идёт по проводу в обе стороны, в идеале нагрузка должна полностью усвоить и переработать полученную энергию. При рассогласованиях между генератором и потребителем происходит одновременное протекание токов от генератора к нагрузке и от нагрузки к генератору (нагрузка возвращает запасённую ранее энергию). Такие условия возможны только для переменного тока при наличии в цепи любого реактивного элемента, имеющего собственную индуктивность или ёмкость. Индуктивный реактивный элемент стремится сохранить неизменным протекающий через него ток, а ёмкостной — напряжение. Через идеальные резистивные и индуктивные элементы протекает максимальный ток при нулевом напряжении на элементе и, наоборот, максимальное напряжение оказывается приложенным к элементам, имеющим ёмкостной характер, при токе, протекающем через них, близком к нулю.
 

 

Активная реактивная и полная мощность

Активная, реактивная и полная мощность напрямую связаны с током и напряжением в замкнутой электрической цепи, когда включены какие-либо потребители. Для проведения вычислений применяются различные формулы, среди которых основной является произведение напряжения и силы тока. Прежде всего это касается постоянного напряжения. Однако в цепях переменного тока мощность разделяется на несколько составляющих, отмеченных выше. Вычисление каждой из них осуществляется с помощью формул.

Формулы активной, реактивной и полной мощности

Основной составляющей считается активная мощность. Она представляет собой величину, характеризующую процесс преобразования электрической энергии в другие виды энергии. То есть по-другому является скоростью, с какой потребляется электроэнергия. Именно это значение отображается на электросчетчике и оплачивается потребителями. Вычисление активной мощности выполняется по формуле: P = U x I x cosф.

В отличие от активной, которая относится к той энергии, которая непосредственно потребляется электроприборами и преобразуется в другие виды энергии – тепловую, световую, механическую и т.д., реактивная мощность является своеобразным невидимым помощником. С ее участием создаются электромагнитные поля, потребляемые электродвигателями. Прежде всего она определяет характер нагрузки, и может не только генерироваться, но и потребляться. Расчеты реактивной мощности производятся по формуле: Q = U x I x sinф.

Полной мощностью является величина, состоящая из активной и реактивной составляющих. Именно она обеспечивает потребителям необходимое количество электроэнергии и поддерживает их в рабочем состоянии. Для ее расчетов применяется формула: S =

.

Как найти активную, реактивную и полную мощность

Активная мощность относится к энергии, которая необратимо расходуется источником за единицу времени для выполнения потребителем какой-либо полезной работы. В процессе потребления, как уже было отмечено, она преобразуется в другие виды энергии.

В цепи переменного тока значение активной мощности определяется, как средний показатель мгновенной мощности за установленный период времени. Следовательно, среднее значение за этот период будет зависеть от угла сдвига фаз между током и напряжением и не будет равной нулю, при условии присутствия на данном участке цепи активного сопротивления. Последний фактор и определяет название активной мощности. Именно через активное сопротивление электроэнергия необратимо преобразуется в другие виды энергии.

При выполнении расчетов электрических цепей широко используется понятие реактивной мощности. С ее участием происходят такие процессы, как обмен энергией между источниками и реактивными элементами цепи. Данный параметр численно будет равен амплитуде, которой обладает переменная составляющая мгновенной мощности цепи.

Существует определенная зависимость реактивной мощности от знака угла ф, отображенного на рисунке. В связи с этим, она будет иметь положительное или отрицательное значение. В отличие от активной мощности, измеряемой в ваттах, реактивная мощность измеряется в вар – вольт-амперах реактивных. Итоговое значение реактивной мощности в разветвленных электрических цепях представляет собой алгебраическую сумму таких же мощностей у каждого элемента цепи с учетом их индивидуальных характеристик.

Основной составляющей полной мощности является максимально возможная активная мощность при заранее известных токе и напряжении. При этом, cosф равен 1, когда отсутствует сдвиг фаз между током и напряжением. В состав полной мощности входит и реактивная составляющая, что хорошо видно из формулы, представленной выше. Единицей измерения данного параметра служит вольт-ампер (ВА).

Активная, реактивная и полная мощности пассивного двухполюсника

 

Разнообразие физических явлений, происходящих в элементах электрических цепей синусоидального тока, усложняет задачу формализации методов анализа этих цепей.

Рассмотрим режим работы источника напряжения, подключенного к пассивному двухполюснику. В общем случае пассивный двухполюсник можно представить эквивалентной схемой замещения в виде последовательного соединения двух элементов: с активным сопротивлением r и реактивным сопротивлением x. Элемент с активным сопротивлением — это резистивный элемент с сопротивлением r, а элемент с реактивным сопротивлением — это индуктивный элемент с индуктивным сопротивлением xL = wL, если x > 0, или емкостной элемент с емкостным сопротивлением xС = 1/wС, если x < 0.

Определим мгновенную мощность пассивного двухполюсника, равную мгновенной мощности источника ЭДС при напряжении и токе:

 

.

 

Мгновенная мощность равна:

 

 

Мгновенные значения тока, напряжения и мощности при индуктивном и емкостном характере комплексного сопротивления двухполюсника показаны на рисунках а) и б) соответственно:

 

 

Энергетический процесс в обоих случаях складывается из уже рассмотренных выше энергетических процессов для идеальных элементов. Часть электрической энергии источника поступает в двухполюсник и преобразуется в другие формы энергии. Другой частью энергии источник и двухполюсник периодически обмениваются.

Средняя мощность пассивного двухполюсника за период (равная средней мощности источника) определяется:

.

Угол сдвига фаз между напряжением и током зависит от параметров r и x. Последнее выражение определяет активную мощность двухполюсника и источника, которая зависит от действующих значений напряжения и тока, а также от cos j – коэффициента мощности.

Активная мощность двухполюсника измеряется ваттметром. У ваттметра две измерительные цепи, одна из которых включается последовательно с двухполюсником, то есть ток в этой цепи равен току I, протекающему через двухполюсник, а вторая – параллельно с двухполюсником (на его выводы), то есть напряжение в этой цепи равно напряжению U двухполюсника. Чтобы учесть знак угла сдвига фаз j между напряжением и током двухполюсника, измерительные цепи должны быть включены аналогично относительно положительных направлений тока и напряжения. Поэтому один из выводов каждой измерительной цепи имеет отличительное обозначение (как правило, *).

Из треугольников сопротивлений и треугольников напряжений пассивного двухполюсника следует, что коэффициент мощности равен:

.

Тогда можно получить другое выражение для активной мощности:

.

Произведение действующих значений напряжения между выводами источника U = E и тока источника I определяет полную мощность источника, равную полной мощности пассивного двухполюсника:

.

Размерности активной мощности и полной мощности совпадают, но для измерения полной мощности выбрана своя единица – вольт-ампер.

Для анализа энергетических процессов в цепи при неполном использовании энергетических возможностей источника вводится понятие о реактивной мощности источника:

.

Введение реактивной мощности позволяет правильно отобразить совокупность физических процессов, протекающих в реактивных цепях

Из треугольника сопротивлений пассивного двухполюсника следует, что

.

После замены sin j в формуле реактивной мощности получим другое выражение для расчета реактивной мощности:

.

Реактивная мощность пассивного двухполюсника может быть положительной и отрицательной в зависимости от знака угла j.

Нетрудно установить связь активной, реактивной и полной мощностей пассивного двухполюсника:

.

Это соотношение удобно интерпретировать геометрически на комплексной плоскости:

 

 

 

Такие треугольники называются треугольниками мощностей. Из подобия треугольников сопротивлений и мощностей следует, что

.

Стороны треугольника мощностей связаны между собой зависимостью:

,

где – комплексное сопряженное значение тока ,

S – комплексная мощность.


Узнать еще:

Разница между активной и реактивной мощностью (со сравнительной таблицей)

Наиболее существенная разница между активной и реактивной мощностью состоит в том, что активная мощность — это фактическая мощность, рассеиваемая в цепи. В то время как реактивная мощность — это бесполезная мощность, которая течет только между источником и нагрузкой. Другие различия между активной и реактивной мощностью поясняются ниже в сравнительной таблице.

Активная, полная и активная мощность индуцируется в цепи только тогда, когда их ток отстает от приложенного напряжения на угол Φ.Прямоугольный треугольник, показанный ниже, показывает соотношение между активной, реактивной и полной мощностью.

Где, S — полная мощность
Q — реактивная мощность
P — Активная мощность

Содержание: активная против реактивной мощности

  1. Сравнительная таблица
  2. Определение
  3. Ключевые отличия
  4. Заключение

Сравнительная таблица

Основа для сравнения Активная мощность Реактивная мощность
Определение Активная мощность — это реальная мощность, которая рассеивается в цепи. Мощность, которая движется назад и образует пену между нагрузкой и источником такого типа мощности, известна как реактивная мощность
Формула
Измерительный блок Вт VAR
Представлен P Q
Причины Вырабатывает тепло в нагревателе, светится в лампах и вызывает крутящий момент в двигателе. Измеряет коэффициент мощности цепи.
Измерительный прибор Ваттметр VAR-метр

Определение активной мощности

Мощность, которая рассеивается или выполняет полезную работу в цепи, известна как активная мощность. Он измеряется в ваттах или мегаваттах. Активная мощность обозначается заглавным алфавитом P. Среднее значение мощности в цепи дается выражением.

Активная мощность формирует цепь и нагрузку.

Определение реактивной мощности

Реактивная мощность перемещается между источником и нагрузкой цепи. Эта мощность не выполняет с нагрузкой никакой полезной работы. Q представляет собой реактивную мощность и измеряется в вар. Реактивная мощность сохраняется в цепи и разряжается асинхронным двигателем, трансформатором или соленоидами.


Ключевые различия между активной и реактивной мощностью

  1. Активная мощность — это реальная мощность, потребляемая нагрузкой.А реактивная мощность — это бесполезная мощность.
  2. Активная мощность — это произведение напряжения, тока и косинуса угла между ними. В то время как реактивная мощность — это произведение напряжения и тока и синуса угла между ними.
  3. Активная мощность — это активная мощность, измеряемая в ваттах. Пока реактивная мощность измеряется в ВАР.
  4. Буква P представляет активную мощность, а Q представляет реактивную мощность.
  5. Крутящий момент, развивающийся в двигателе, тепло, рассеиваемое нагревателем, и свет, излучаемый лампами, — все это из-за активной мощности.Реактивная мощность определяет коэффициент мощности цепи.
  6. Ваттметр измеряет активную мощность, а VAR-метр используется для измерения полной мощности.

Заключение

Активная мощность выполняет полезную работу в цепи. И реактивная мощность просто течет по цепи, не выполняя никакой полезной работы.

11.2: Истинная, реактивная и полная мощность

Реактивная мощность

Мы знаем, что реактивные нагрузки, такие как катушки индуктивности и конденсаторы, рассеивают нулевую мощность, но тот факт, что они понижают напряжение и потребляют ток, создает обманчивое впечатление, что они на самом деле рассеивают мощность. Эта «фантомная мощность» называется реактивной мощностью и измеряется в единицах, называемых вольт-ампер-реактивная мощность (ВАР), а не в ваттах. Математическим обозначением реактивной мощности является (к сожалению) заглавная буква Q.

.

Истинная сила

Фактическая мощность, используемая или рассеиваемая в цепи, называется истинной мощностью и измеряется в ваттах (как всегда, обозначается заглавной буквой P).

Полная мощность

Комбинация реактивной мощности и истинной мощности называется кажущейся мощностью и представляет собой произведение напряжения и тока цепи без учета фазового угла.Полная мощность измеряется в единицах Вольт-Ампер (ВА) и обозначается заглавной буквой S.

Расчет реактивной, истинной или полной мощности

Как правило, истинная мощность является функцией рассеивающих элементов схемы, обычно сопротивления (R). Реактивная мощность зависит от реактивного сопротивления цепи (X). Полная мощность — это функция полного сопротивления цепи (Z). Поскольку для расчета мощности мы имеем дело со скалярными величинами, любые комплексные начальные величины, такие как напряжение, ток и импеданс, должны быть представлены их полярными величинами , а не действительными или мнимыми прямоугольными составляющими.Например, если я вычисляю истинную мощность по току и сопротивлению, я должен использовать полярную величину для тока, а не просто «реальную» или «мнимую» часть тока. Если я рассчитываю полную мощность по напряжению и импедансу, обе эти ранее комплексные величины должны быть уменьшены до их полярных величин для скалярной арифметики.

Существует несколько уравнений мощности, связывающих три типа мощности с сопротивлением, реактивным сопротивлением и импедансом (все с использованием скалярных величин):

Обратите внимание, что существует два уравнения для расчета истинной и реактивной мощности.Для расчета полной мощности доступны три уравнения, P = IE используется для только для этой цели. Изучите следующие схемы и посмотрите, как эти три типа мощности взаимосвязаны: чисто резистивная нагрузка на рисунке ниже, чисто реактивная нагрузка на рисунке ниже и резистивная / реактивная нагрузка на рисунке ниже.

Только резистивная нагрузка

Истинная мощность, реактивная мощность и полная мощность для чисто резистивной нагрузки.

Только реактивная нагрузка

Истинная мощность, реактивная мощность и полная мощность для чисто реактивной нагрузки.

Активная / реактивная нагрузка

Истинная мощность, реактивная мощность и полная мощность для резистивной / реактивной нагрузки.

Треугольник власти

Эти три типа мощности — истинная, реактивная и полная — связаны друг с другом в тригонометрической форме. Мы называем это треугольником мощности : (рисунок ниже).


Треугольник мощности, связывающий кажущуюся мощность с реальной и реактивной мощностью.

Используя законы тригонометрии, мы можем найти длину любой стороны (количество любого типа мощности), учитывая длины двух других сторон или длину одной стороны и угол.

Обзор

  • Мощность, рассеиваемая нагрузкой, обозначается как истинная мощность . Истинная мощность обозначается буквой P и измеряется в ваттах (Вт).
  • Мощность, просто поглощаемая и возвращаемая нагрузкой из-за ее реактивных свойств, называется реактивной мощностью .Реактивная мощность обозначается буквой Q и измеряется в вольт-амперных реактивных единицах (ВАР).
  • Полная мощность в цепи переменного тока, как рассеиваемая, так и поглощенная / возвращаемая, обозначается как полная мощность . Полная мощность обозначается буквой S и измеряется в вольт-амперах (ВА).
  • Эти три типа мощности тригонометрически связаны друг с другом. В прямоугольном треугольнике P = смежная длина, Q = противоположная длина и S = ​​длина гипотенузы. Противоположный угол равен фазовому углу импеданса цепи (Z).

Активная, реактивная и полная мощность

Многие практические схемы содержат комбинацию резистивных, индуктивных и емкостных элементов. Эти элементы вызывают фазовый сдвиг между параметрами электропитания, такими как напряжение и ток.

Из-за поведения напряжения и тока, особенно при воздействии на эти компоненты, количество мощности может быть различным.

В цепях переменного тока амплитуды напряжения и тока будут непрерывно изменяться с течением времени. Поскольку мощность равна напряжению, умноженному на ток, она будет максимальна, когда токи и напряжения выровнены друг с другом.

Это означает, что нулевая и максимальная точки на осциллограммах тока и напряжения возникают одновременно. Это можно назвать полезной мощностью.

В случае элементов индуктивности или конденсатора существует фазовый сдвиг 90 0 между напряжением и током.Таким образом, мощность будет иметь нулевое значение каждый раз, когда напряжение или ток будут иметь нулевое значение.

Это нежелательное состояние, поскольку на нагрузке не выполняется никаких работ, даже если источник вырабатывает электроэнергию. Эта мощность называется реактивной мощностью. Давайте кратко обсудим эти формы мощности в электрических цепях переменного тока.

Питание в цепях переменного тока

Мощность в любой электрической цепи может быть получена путем умножения значений напряжения и тока в этой цепи.Это применимо как для цепей постоянного, так и для переменного тока.

т.е. мощность = (текущее значение) x (значение напряжения)

P = V x I

Мощность измеряется в ваттах. В цепях постоянного тока и цепях чистого переменного тока без каких-либо нелинейных компонентов формы сигналов тока и напряжения «синфазны».

Таким образом, мощность в любой момент времени в этой цепи получается путем умножения напряжения и тока. Однако в случае цепей переменного тока этого не будет (как уже упоминалось выше о существовании фазового сдвига).

Рассмотрим приведенную выше схему, в которой напряжение переменного тока подается на нагрузку. Напряжения и токи в цепи указаны как

.

v = Vm sin ωt ⇒ v = √2 V sin ωt

i = Im sin ωt ⇒ i = √2 I sin (ωt ± ϕ)

Где V (= Vm / √2) и I (= Im / √2) — среднеквадратичные значения приложенного напряжения и тока, протекающего по цепи, соответственно. Φ — это разность фаз между напряжением и током, для которой знак + указывает начальный фазовый угол, а отрицательный — отстающий фазовый угол.

Тогда мгновенная мощность, передаваемая на нагрузку от источника, равна,

p = vi = 2 VI sin wt sin (ωt ± ϕ)

= VI (cos ϕ — cos (2ωt ± ϕ)

p = VI cos ϕ (1 — cos 2wt) ± VI sin ϕ sin2wt

Приведенное выше уравнение мощности состоит из двух членов, а именно

  1. Член, пропорциональный VI cos ϕ, пульсирующий около среднего значения VI cos ϕ
  2. Член, пропорциональный VI sin ϕ, пульсирующий с удвоенной частотой питания, производя в среднем ноль за цикл.

Итак, в цепях переменного тока есть 3 вида мощности. Их

  1. Активная мощность или Истинная мощность или Действительная мощность
  2. Реактивная мощность
  3. Полная мощность

Активная мощность

Фактическое количество мощности, рассеиваемой или выполняющей полезную работу в цепи, называется активной, истинной или реальной мощностью. Он измеряется в ваттах, а в энергосистемах практически измеряется в кВт (киловаттах) и МВт (мегаваттах).

Обозначается буквой P (заглавная) и соответствует среднему значению p = VI cos ϕ.Это желаемый результат электрической системы, которая управляет цепью или нагрузкой.

P = VI cos ϕ

Реактивная мощность

Среднее значение второго члена в приведенном выше производном выражении равно нулю, поэтому мощность, вносимая этим членом, равна нулю. Составляющая, пропорциональная VI sin ϕ, называется реактивной мощностью и обозначается буквой Q.

Несмотря на то, что это мощность, но не измеряется в ваттах, поскольку это неактивная мощность, и, следовательно, она измеряется в вольт-ампер-реактивных (ВАР).Значение этой реактивной мощности может быть отрицательным или положительным в зависимости от коэффициента мощности нагрузки.

Это связано с тем, что индуктивная нагрузка потребляет реактивную мощность, а емкостная нагрузка генерирует реактивную мощность.

Q = VI sin ϕ

Значение реактивной мощности

Реактивная мощность — это одна из составляющих полной мощности, которые перемещаются вперед и назад в цепи или линии. Это можно назвать скоростью изменения энергии по отношению ко времени, которая продолжает течь от источника к реактивным компонентам в течение положительного полупериода и обратно к компонентам от источника во время отрицательного цикла.Следовательно, нагрузка никогда не расходуется.

В обычном смысле эта фиктивная мощность вовсе не мощность, а всего лишь подобная мощности мера реактивной составляющей тока. Если имеется избыточное количество реактивной мощности, коэффициент мощности значительно снижается. Такой низкий коэффициент мощности нежелателен с точки зрения эффективности работы и эксплуатационных затрат.

А также эта мощность заставляет потреблять дополнительный ток от источника питания, что приводит к дополнительным потерям и большей мощности оборудования.Вот почему эту мощность в шутливой форме называют холестерином линий электропередач.

Чтобы минимизировать потери и увеличить мощность имеющегося оборудования, коммунальные предприятия используют методы компенсации VAR или оборудование для коррекции коэффициента мощности. Как правило, эти методы компенсации реактивной мощности реализуются на стороне нагрузки.

Однако эта реактивная мощность полезна для создания необходимых магнитных полей для работы индуктивных устройств, таких как трансформаторы, двигатели переменного тока и т. Д.Это также помогает регулировать напряжение в тяжелых механизмах электропитания.

Полная мощность

Сложная комбинация истинной или активной мощности и реактивной мощности называется полной мощностью. Без учета фазового угла произведение напряжения и тока дает полную мощность. Полная мощность полезна для оценки силового оборудования.

Его также можно выразить как квадрат тока, умноженный на полное сопротивление цепи. Он обозначается буквой S и измеряется в вольт-амперах (ВА), практические единицы включают в себя кВА (киловольт-вольт-амперы) и МВА (мегавольт-амперы).

Полная мощность = действующее значение напряжения × действующее значение тока

Полная мощность, S = В × I

В сложной форме S = V I *

S = V ∠0 0 I ∠ ϕ (для запаздывающего тока нагрузки)

S = V I ∠ ϕ

S = V I cos ϕ + jV I sin ϕ

S = P + jQ

Или S = ​​I 2 Z

Треугольник силы

Связь между активной, реактивной и полной мощностью может быть выражена путем представления величин в виде векторов, что также называется методом треугольника мощности, как показано ниже.На этой векторной диаграмме напряжение рассматривается как опорный вектор. Векторная диаграмма напряжения и тока является основой для формирования треугольника мощности.

На рисунке (а) ток отстает от приложенного напряжения на угол ϕ. Горизонтальная составляющая тока равна I cos ϕ, а вертикальная составляющая тока — I sin ϕ. Если каждый вектор тока умножить на напряжение V, получится треугольник мощности, как показано на рисунке (b).

Активная мощность обеспечивается составляющей I cos ϕ по фазе с напряжением, в то время как реактивная мощность создается квадратурной составляющей.

Следовательно, полная мощность или гипотенуза треугольника получается путем векторного комбинирования активной и реактивной мощности.

Используя теорему Пифагора, сумма квадратов двух смежных сторон (активная мощность и реактивная мощность) равна квадрату диагонали (полная мощность). т.е.

(полная мощность) 2 = (действительная мощность) 2

S 2 = P 2 + Q 2

S = √ ((Q 2 + P 2 ))

Где

S = полная мощность, измеренная в киловольт-амперах, кВА

Q = реактивная мощность, измеренная в киловольт-амперах, реактивная, кВАр

P = активная мощность в киловаттах, кВт

С точки зрения резистивных, индуктивных и импедансных элементов, формы мощности могут быть выражены как

Активная мощность = P = I 2 R

Реактивная мощность = Q = I 2 X

Полная мощность = S = I 2 Z

Где

X — индуктивность

Z — импеданс.

Коэффициент мощности

Коэффициент мощности — это косинусоидальный угол между напряжением и током. Коэффициент мощности может быть выражен в терминах рассмотренных выше форм мощности. Рассмотрим треугольник мощности на рисунке выше, в котором коэффициент мощности представляет собой отношение активной мощности к полной мощности. Коэффициент мощности определяет эффективность схемы.

Коэффициент мощности (PF) = (Активная мощность в ваттах) / (Полная мощность в вольтах)

PF = VI cos ϕ / VI

PF = cos ϕ

Пример проблемы

Если источник питания переменного тока 100 В, 50 Гц подключен к нагрузке с сопротивлением 20 + j15 Ом.Затем рассчитайте ток, протекающий по цепи, активную мощность, полную мощность, реактивную мощность и коэффициент мощности.

При этом Z = R + jXL = 20 + j 15 Ом

Преобразуя импеданс в полярную форму, получаем

Z = 25 36,87 Ом

Ток, протекающий по цепи,

I = V / Z = 100∠0 0 / 25∠36,87

I = 4 ∠ – 36,87

Активная мощность, P = I 2 R = 42 × 20 = 320 Вт

Или P = VI cos ϕ = 100 × 4 × cos (36.87) = 320,04 ≈ 320 Вт

Полная мощность, S = VI = 100 × 4 = 400 ВА

Реактивная мощность, Q = √ (S 2 — P 2 )

= √ (400 2 — 320 2 ) = 240 VAr

Коэффициент мощности, PF = cos ϕ = cos 36,87 = 0,80 с запаздыванием.

Активная, реактивная и полная мощность | Самое простое объяснение


Инженер-электрик должен знать активную, реактивную и полную мощность. Но большую часть времени мы в конечном итоге запутались во всех этих силах.И, следовательно, если вы хотите получить кристально ясное объяснение активной, реактивной и полной мощности, я бы порекомендовал вам посмотреть это руководство.

В этом руководстве мы узнаем о
  1. Мгновенная мощность
  2. Активная мощность
  3. Реактивная мощность
  4. Различие между активной и реактивной мощностью
  5. Полная мощность
  6. Коэффициент мощности

В конце этого руководства мы также получим информацию о коэффициенте мощности, поэтому убедитесь, что вы дочитали до конца.Прежде чем мы начнем с объяснения, обратите внимание, что концепция активной, реактивной и полной мощности применима только для систем переменного тока . Концепция активной, реактивной и полной мощности не применима для систем постоянного тока.
Чтобы понять, что такое активная, реактивная и полная мощность, мы сначала должны знать, что такое мгновенная мощность.


Мгновенная мощность

Чтобы понять мгновенную мощность, рассмотрим следующий пример. Активная нагрузка подключена к источнику переменного тока 230 В.

Теперь предположим, что я хочу вычислить мощность в момент «t», и для этого мне нужно умножить напряжение и ток в момент «t». Это даст нам мощность в конкретный момент «t». Эта мощность называется мгновенной мощностью . Почему мгновенно? Потому что мы измерили его в конкретный момент.

Эта мгновенная мощность может быть положительной или отрицательной. Теперь вы можете спросить, что такое положительная сила или отрицательная сила? Итак, давайте разберемся с концепцией положительной силы и отрицательной силы.

Положительная мощность

Мощность называется положительной мощностью, когда она течет от источника к нагрузке. В приведенном выше примере мощность является положительной, если она течет от источника 230 В переменного тока к нагрузке.

Отрицательная мощность

Когда сила перетекает от лорда к источнику, эта сила называется отрицательной силой. В приведенном выше примере мощность отрицательная, если она течет от нагрузки к источнику питания 230 В переменного тока.

Теперь вопрос в том, как может передаваться мощность от нагрузки к источнику? И в каком случае это происходит? Мы увидим это через несколько минут.

Перейти к содержанию


Активная мощность (P)

Чтобы понять активную мощность, снова рассмотрим схему, показанную ниже. В приведенной ниже схеме мы подключили источник переменного тока 230 В к чисто резистивной нагрузке.

Как известно, в чисто резистивной цепи напряжение и ток совпадают по фазе. В фазе означает,

  • напряжение и ток одновременно достигают своего положительного пика
  • Они одновременно становятся нулевыми
  • Также они одновременно достигают своего отрицательного пика.

Если вы изобразите кривую напряжения и тока резистивной цепи, она будет выглядеть следующим образом.

Чтобы вычислить мощность в этой схеме, вы можете в любой момент умножить напряжение и ток, и вы обнаружите, что результирующая мощность — это только положительная мощность.

А такая мощность, которая всегда остается положительной, называется активной мощностью.

Характеристики активной мощности

  1. Всегда положительный
  2. Не меняет своего направления
  3. Поток мощности всегда от источника к нагрузке
  4. Обозначается буквой «P» и измеряется в Вт

Перейти к содержанию


Реактивная мощность (Q)

Чтобы понять, что такое реактивная мощность, в нашем примере мы заменим резистивную нагрузку чисто емкостной нагрузкой, как показано на рисунке ниже.

Если вы нарисуете форму напряжения и тока для этой схемы, она будет выглядеть следующим образом.

Как видите, ток имеет преимущество перед напряжением. Или просто ток опережает напряжение. Это указывает на то, что напряжение и ток в этой цепи не совпадают по фазе. Не в фазе означает,

  • Напряжение и ток не достигают своего положительного пика одновременно.
  • Они не достигают нулевого значения одновременно.
  • И они также не достигают своего отрицательного пика одновременно.

Итак, если вы рассчитываете мощность в момент, показанный на рисунке ниже, вы получите положительную мощность, потому что и напряжение, и ток положительны.

Если вы рассчитываете мощность в момент, показанный ниже, вы получите отрицательную мощность, потому что напряжение положительно, а ток отрицателен. Отрицательное умножение на положительное — Отрицательное .

На что указывает эта отрицательная сила? Это говорит нам о том, что от нагрузки к источнику течет мощность .
Если вы продолжите вычислять мощность в цепи, форма волны будет продолжаться.

Эта сила движется вперед и возвращается назад, как маятник, не выполняя никакой полезной работы в системе. И этот вид мощности называется реактивной мощностью.

Конденсатор, индуктор и любое устройство без лайнера может вводить / поглощать реактивную мощность в систему.

Почему мощность течет от нагрузки к источнику?

Когда питание положительное, конденсатор заряжается или накапливает в нем энергию.Когда мощность становится отрицательной, конденсатор разряжается или высвобождает накопленную энергию. И это причина того, почему мощность перетекает от нагрузки к источнику.

Свойства реактивной мощности

  1. Эта мощность может быть как положительной, так и отрицательной.
  2. Это только сила, которая движется вперед и назад, не выполняя никакой полезной работы.
  3. Обозначается буквой «Q» и измеряется в ВАР (Реактивный Вольт-Ампер).
  4. Конденсатор, катушка индуктивности и любое устройство без облицовки может вводить / поглощать реактивную мощность в систему

Различие между активной и реактивной мощностью

  1. Мы не можем преобразовать активную мощность в реактивную, а реактивную мощность в активную.
  2. Активная мощность — это отдельная величина, а реактивная мощность — это отдельная величина.
  3. Обе силы создают нагрузку на ЛЭП.
  4. Активная мощность производит тепло, механическую энергию, свет и т. Д.
  5. Реактивная мощность представляет собой только мощность, которая колеблется взад и вперед.

Вы также можете посмотреть подробное руководство по разнице между активной и реактивной мощностью.

Перейти к содержимому.


Полная мощность (S)

В системе у вас будут все типы нагрузок одновременно.У вас может быть резистивная нагрузка, вы также можете иметь индуктивную нагрузку или емкостную нагрузку или, возможно, комбинацию всех типов нагрузок. Рассмотрим приведенный ниже пример, в котором резистивная нагрузка и индуктивная нагрузка подключены к одному источнику.

Резистивная нагрузка потребляет активную мощность, а индуктивная нагрузка потребляет реактивную мощность. Теперь мы не можем сказать, что схема потребляет активную мощность или реактивную мощность, потому что она потребляет обе мощности. Следовательно, нам нужно другое название для комбинации активной и реактивной мощности.Таким образом, такое сочетание обеих мощностей называется кажущейся мощностью.

Комбинация активной мощности и реактивной мощности называется полной мощностью .

Мы можем рассчитать полную мощность по,

Полная мощность обозначается буквой « S » и измеряется в ВА / кВА / МВА. Трансформаторы указаны в ВА / кВА / МВА.

Перейти к содержимому.


Коэффициент мощности

Коэффициент мощности

очень тесно связан с активной, реактивной и полной мощностью, поэтому я кратко изложу его здесь.Если вы хотите подробно узнать о коэффициенте мощности, у меня есть отдельный плейлист, который вы можете посмотреть здесь.

Если вы попросите любого инженера-электрика определить коэффициент мощности, он / она скажет: «Коэффициент мощности — это угол между напряжением и током». Это может быть правильное определение, но это неправильный способ определения коэффициента мощности.
Правильное определение коэффициента мощности:

«Отношение активной мощности к полной мощности называется коэффициентом мощности».

Когда кто-то говорит, что коэффициент мощности системы равен 0.8, что это значит? Это просто означает, что при 100% мощности 80% — это активная мощность, а 20% — реактивная мощность.

Коэффициент мощности показывает, сколько активной мощности потребляет система / оборудование.

Перейти к содержимому.

Активная мощность, Реактивная мощность, Комплексная мощность и Полная мощность

Сегодня большинство электрических нагрузок работают от сети переменного тока. Каждая электрическая нагрузка обладает определенным сопротивлением. Некоторые нагрузки помимо сопротивления обладают емкостью или индуктивностью.Общий импеданс, обеспечиваемый нагрузкой току, определяет, сколько активной и реактивной мощности она будет потреблять. Понятия активной мощности, реактивной мощности и полной мощности могут быть немного сложными для понимания. Приведенный ниже контент может помочь вам понять их.

Схема потока мощности

Активная мощность или активная мощность

Активная мощность — это фактическая мощность, рассеиваемая или потребляемая электрической нагрузкой. Это зависит от полного сопротивления нагрузки. Активная мощность также известна как Истинная мощность и Реальная мощность .Измеряется в ваттах. Активная мощность обозначается буквой P.

.

Активная мощность не вызывает сдвига фаз между током и напряжением. Следовательно, ток и напряжение всегда в фазе для резистивной нагрузки.

Реактивная мощность

Реактивная мощность может быть определена как мнимая мощность в емкостной или индуктивной нагрузке. Оно измеряется в ВАР (реактивное сопротивление вольт-ампер) и обозначается буквой Q.

Реактивная мощность может немного сложно понять.Это происходит в системе, когда напряжение и ток в цепи переменного тока не совпадают по фазе. Пассивные устройства, такие как конденсаторы и катушки индуктивности, на самом деле не рассеивают мощность, а, в свою очередь, хранят ее в виде электрических зарядов или магнитного поля. Эту накопленную энергию можно будет восстановить в устройствах позже. Следовательно, это форма энергии, которая не теряется и не приобретается, но при этом не влияет на производительность системы. Несмотря на то, что емкостные и индуктивные нагрузки не рассеивают мощность, это вызывает нежелательные провалы напряжения и протекание тока в системе.

Скорость, с которой активная мощность и реактивная мощность потребляемая нагрузкой определяется коэффициентом мощности нагрузки.

Комплексная и полная мощность

Комплексная мощность — это комплексная сумма активной и реактивной мощностей. Полная мощность — абсолютное значение комплексной мощности. Это расчетное значение мощности, не зависящее от типа нагрузки. Оно измеряется в ВА (вольт-ампер) . Кажущаяся мощность обозначается буквой S.Это похоже на мощность в цепи постоянного тока, то есть арифметическое произведение напряжения и тока.

Расчет активной, реактивной, полной и комплексной мощности.

Рассмотрим простую схему с сопротивлением R, Реактивное сопротивление X и импеданс Z. Пусть V — приложенное напряжение, а I — ток. расход в контуре.

Активная мощность или Реальная мощность или Истинная мощность полностью зависит от сопротивления цепи в чисто резистивной нагрузке. Следовательно, активную мощность можно выразить следующим образом.

Активная мощность, P = (Ток) 2 x Сопротивление = I 2 R

Если цепь является чисто реактивной цепью (сопротивление = 0), активная мощность должна быть равна нулю. Реактивную мощность в чисто реактивной цепи можно рассчитать по следующей формуле:

Реактивная мощность, Q = (ток) 2 x Реактивное сопротивление = I 2 X

В чисто реактивной цепи ток опережает напряжение или отстает от него в зависимости от типа реактивного сопротивления (индуктивного или емкостного).В цепи переменного тока, имеющей как резистивные, так и реактивные компоненты, потребляемая мощность может быть рассчитана по следующей формуле:

Треугольник силы

Активная мощность, P = VI.Cos Φ

Реактивная мощность, Q = VI.Sin Φ

Комплексная мощность S = VI.CosΦ + j.VI.SinΦ

Полная мощность, | S | = VI = I 2 Z

Где Z — полное сопротивление, обеспечиваемое схемой протеканию тока, а Φ — фазовый сдвиг между током и напряжением.

Реальная, реактивная комплексная и полная мощность


Полная мощность — это векторная сумма реальной и реактивной мощности

Инженеры используют следующие термины для описания потока энергии в системе (и назначают каждому из них разные единицы, чтобы различать их):

  • Реальная мощность ( P ) [Единица: Вт]
  • Реактивная мощность ( Q ) [Единица: ВАР]
  • Комплексная мощность ( S )
  • Полная мощность (| S |) [Единица: ВА]: i.е. абсолютное значение комплексной мощности S .

P — активная мощность, Q — реактивная мощность (в данном случае отрицательная), S — комплексная мощность, а длина S — полная мощность.

Единица измерения для всех форм мощности — Вт (обозначение: Вт) . Однако этот блок обычно зарезервирован для компонента реальной мощности. Полная мощность обычно выражается в вольт-амперах (ВА), поскольку это простое произведение среднеквадратичного напряжения и действующего тока.Единице реактивной мощности присвоено специальное название «VAR» , что означает реактивная мощность вольт-ампер (поскольку поток реактивной мощности не передает полезную энергию нагрузке, ее иногда называют мощностью без мощности). Обратите внимание, что нет смысла назначать одну единицу комплексной мощности, потому что это комплексное число, и поэтому оно определяется как пара из двух единиц: Вт и VAR.

Понимание взаимосвязи между этими тремя величинами лежит в основе понимания энергетики.Математические отношения между ними могут быть представлены векторами или выражены с помощью комплексных чисел
(где j — мнимая единица).

Комплексное значение

S упоминается как комплексная мощность.

Рассмотрим идеальную цепь переменного тока, состоящую из источника и обобщенной нагрузки, в которой и ток, и напряжение синусоидальны. Если нагрузка является чисто резистивной, две величины меняют полярность одновременно, направление потока энергии не меняется, и течет только реальная мощность.Если нагрузка чисто реактивная, то напряжение и ток сдвинуты по фазе на 90 градусов и нет полезного потока мощности. Эта энергия, текущая вперед и назад, известна как реактивная мощность.

Если конденсатор и катушка индуктивности расположены параллельно, то токи, протекающие через катушку индуктивности и конденсатор, противоположны и имеют тенденцию компенсироваться, а не складываться. Обычно считается, что конденсаторы генерируют реактивную мощность, а катушки индуктивности — ее потребляют. Это основной механизм управления коэффициентом мощности при передаче электроэнергии; конденсаторы (или катушки индуктивности) вставляются в цепь для частичного гашения реактивной мощности нагрузки.Практическая нагрузка будет иметь резистивную, индуктивную и емкостную части, поэтому к нагрузке будет поступать как реальная, так и реактивная мощность.
Полная мощность — это произведение напряжения и тока. Полная мощность удобна для определения размеров оборудования или проводки. Однако сложение полной мощности для двух нагрузок не даст точной полной полной мощности, если они не имеют одинакового смещения между током и напряжением.

Коэффициент мощности:

Коэффициент мощности измеряет эффективность системы питания переменного тока.Коэффициент мощности — это реальная мощность на единицу полной мощности. (pf = Wh / VAh) Коэффициент мощности, равный единице, является идеальным, а 99% — хорошим. Если формы сигнала являются чисто синусоидальными, коэффициент мощности представляет собой косинус фазового угла (f) между формами синусоидальных сигналов тока и напряжения. По этой причине в технических паспортах оборудования и паспортных табличках коэффициент мощности часто сокращается до «cosf».
Коэффициент мощности равен 1, когда напряжение и ток совпадают по фазе, и равен нулю, когда ток опережает или отстает от напряжения на 90 градусов.Коэффициенты мощности обычно указываются как «опережающие» или «запаздывающие», чтобы показать знак фазового угла, где опережение указывает на отрицательный знак. Для двух систем, передающих одинаковое количество реальной мощности, система с более низким коэффициентом мощности будет иметь более высокие циркулирующие токи из-за энергии, которая возвращается к источнику из накопителя энергии в нагрузке. Эти более высокие токи в практической системе приведут к более высоким потерям и уменьшат общую эффективность передачи. Схема с более низким коэффициентом мощности будет иметь более высокую кажущуюся мощность и более высокие потери при том же количестве передаваемой активной мощности.
Чисто емкостные цепи вызывают реактивную мощность, при этом форма волны тока опережает волну напряжения на 90 градусов, в то время как чисто индуктивные цепи вызывают реактивную мощность, форма кривой тока отстает от формы волны напряжения на 90 градусов. В результате емкостные и индуктивные элементы схемы имеют тенденцию компенсировать друг друга.

Поток реактивной мощности:

При передаче и распределении энергии значительные усилия прилагаются для управления потоком реактивной мощности. Обычно это делается автоматически путем включения и выключения катушек индуктивности или конденсаторных батарей, регулировки возбуждения генератора и другими способами.Розничные продавцы электроэнергии могут использовать счетчики электроэнергии, которые измеряют реактивную мощность, для финансового наказания потребителей с нагрузками с низким коэффициентом мощности. Это особенно актуально для клиентов, работающих с высокоиндуктивными нагрузками, такими как двигатели на водонасосных станциях.

Интеллектуальная батарея:

Выходной ток зависит от состояния батареи. Интеллектуальное зарядное устройство может контролировать напряжение, температуру и / или время зарядки аккумулятора, чтобы определить оптимальный ток заряда в этот момент.Зарядка прекращается, когда комбинация напряжения, температуры и / или времени показывает, что аккумулятор полностью заряжен.

Для никель-кадмиевых и никель-металлгидридных аккумуляторов напряжение на аккумуляторе медленно увеличивается во время процесса зарядки, пока аккумулятор не будет полностью заряжен. После этого напряжение уменьшается до , что указывает интеллектуальному зарядному устройству, что аккумулятор полностью заряжен. Такие зарядные устройства часто обозначаются как зарядное устройство? V или «дельта-V», что указывает на то, что они контролируют изменение напряжения.

Типичное интеллектуальное зарядное устройство быстро заряжает аккумулятор примерно до 85% от его максимальной емкости менее чем за час, а затем переключается на непрерывную зарядку, которая занимает несколько часов, чтобы полностью зарядить аккумулятор.

Вольт-ампер:

Вольт-ампер в электрических терминах означает количество полной мощности в цепи переменного тока, равное току в один ампер при ЭДС одного вольт. Это эквивалент ватт для безреактивных цепей.
  • 10 кВ · A = мощность 10 000 ватт (где префикс SI k равен килограммам)
  • 10 MV · A = мощность 10 000 000 ватт (где M равно мега)

В то время как вольт-ампер и ватт эквивалентны по размерам могут найти продукты с разными номерами в ВА и ваттах.Это обычная практика для ИБП (источников бесперебойного питания). Номинальная мощность в ВА — это кажущаяся мощность, которую ИБП способен производить, а номинальная мощность в ваттах — это реальная мощность (или истинная мощность), которую он способен производить, в отличие от реактивной мощности. Реактивная мощность возникает из-за влияния емкости и индуктивности компонентов нагрузки, питаемой от цепи переменного тока. В чисто резистивной нагрузке (например, лампы накаливания) кажущаяся мощность равна истинной мощности, а количество используемых ВА и ватт будет эквивалентным.Однако в более сложных нагрузках, таких как компьютеры (для питания которых предназначены ИБП), полная потребляемая мощность (ВА) будет больше, чем истинная потребляемая мощность (Вт). Отношение этих двух величин называется коэффициентом мощности.

Активная, реактивная и полная мощность

Активная мощность:

Активная мощность — это реальная мощность, потребляемая в электрической цепи. Это полезная мощность, которая может быть преобразована в другую форму энергии, такую ​​как тепловая энергия в нагревателе, энергия света в лампочке и т. Д.Он также известен как истинная или реальная мощность и измеряется в ваттах, кВт (киловаттах) или мегаваттах (1 мегаватт = 10 6 ватт).

Значение:

Требуется для выполнения разного рода полезной работы. Для работы любого устройства или нагрузки требуется активная мощность, например, телевизор, двигатель, холодильник и т. Д.

Реактивная мощность:

Реактивная мощность не выполняет никакой реальной работы. Здесь настоящая работа означает, что эту мощность нельзя использовать для обогрева, освещения или других полезных целей.Он только пульсирует взад и вперед по контуру. Оно измеряется в кВАр (реактивное напряжение в киловольтах) или в мВАр (реактивное мегавольтное напряжение).

Значение:

Хотя реактивная мощность не выполняет никакой полезной работы, она все же необходима для удовлетворительной работы электрической машины. В воздушном зазоре машины необходимо создать магнитное поле, без которого активная мощность не может генерироваться генератором и потребляться двигателем.

Полная мощность:

Полная мощность — это вольт-ампер электрического прибора или машины.Если на машину подается напряжение V (среднеквадратичное значение), а через машину протекает ток I (среднеквадратичное значение), то это умножение среднеквадратичного напряжения и тока, т. Е. VI. Измеряется в кВА или МВА.

Полная мощность, S = VI

Значение:

Потери в электрической машине зависят только от напряжения и тока. Это не зависит от коэффициента мощности. Таким образом, полная мощность дает представление о потерях в машине.

Расчет активной и реактивной мощности:

Электрическая нагрузка может быть резистивной, индуктивной, емкостной или их комбинациями.Природа тока, протекающего через эти нагрузки при подключении к источнику напряжения, следующая:

  • Чисто резистивная нагрузка принимает ток в фазе с приложенным напряжением.
  • Чисто индуктивная нагрузка принимает ток, отстающий от приложенного напряжения на 90 градусов.
  • Чисто емкостная нагрузка принимает ток, опережающий приложенное напряжение на 90 градусов.

Таким образом, угол между напряжением и током для чисто резистивных, индуктивных и емкостных нагрузок составляет 0º, 90º и 90º градусов соответственно.Но когда нагрузка состоит из индуктивности и сопротивления, ток I через нагрузку будет отставать от напряжения V на некоторый угол Ø, как показано ниже.

Этот ток I теперь можно разделить на две составляющие:

  • По напряжению, т.е. Icos Ø
  • Перпендикулярно напряжению, т.е. Isin Ø
Активный ток:

Составляющая тока нагрузки вдоль напряжения называется активным током. Нагрузка потребляет активную мощность из-за этой составляющей тока.Следовательно, истинная или реальная мощность задается как

.

Реальная мощность = напряжение x (активный ток)

= VIcos Ø

Реактивный ток:

Составляющая тока нагрузки, перпендикулярная напряжению, называется реактивным током. Реактивная мощность в цепи возникает из-за этой составляющей тока. Следовательно,

Реактивная мощность, Q = напряжение x (реактивный ток)

= Висин Ø

Активная / активная мощность Реактивная мощность Полная мощность
VIcos Ø Висин Ø VI

Почему сопротивление потребляет только реальную мощность?

Как обсуждалось ранее в этом посте, угол Ø для чистого сопротивления составляет 0 °, а для катушки индуктивности и конденсатора — 90 °.Это означает, что чистое сопротивление будет потреблять только активную мощность, поскольку VIcos0 = VI, и не будет реактивной мощности, поскольку VIsin0 = 0.

Почему индуктор и конденсатор не потребляют реальной энергии?

Чистая катушка индуктивности и конденсатор потребляет только реактивную мощность, как VIsin90 = VI, и не активную мощность, как VIcos90 = 0. Это также можно понять по-другому. Какая бы мощность ни была получена от источника в одном полупериоде этими элементами схемы, такое же количество энергии возвращается к источнику в следующем полупериоде.Следовательно, средняя потребляемая мощность за полный цикл равна нулю. Следовательно, истинная мощность не потребляется.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *