Внимание! Если Вы обнаружили ошибку на сайте, то выделите ее и нажмите Ctrl+Enter.
|
|
www.metotech.ru
Термопара: принцип действия, устройство
Существует множество разнообразных устройств и механизмов, позволяющих измерять температуру. Некоторые из них применяются в повседневной жизни, какие-то — для различных физических исследований, в производственных процессах и других отраслях.
Одним из таких устройств является термопара. Принцип действия и схему данного устройства мы рассмотрим в последующих разделах.
Физическая основа работы термопары
Принцип работы термопары основан на обычных физических процессах. Впервые эффект, на основе которого работает данное устройство, был исследован немецким ученым Томасом Зеебеком.
Суть явления, на котором держится принцип действия термопары, в следующем. В замкнутом электрическом контуре, состоящем из двух проводников различного вида, при воздействии определенной температуры окружающей среды возникает электричество.
Получаемый электрический поток и температура окружающей среды, воздействующая на проводники, находятся в линейной зависимости. То есть чем выше температура, тем больший электрический ток вырабатывается термопарой. На этом и основан принцип действия термопары и термометра сопротивления.
При этом один контакт термопары находится в точке, где необходимо измерять температуру, он именуется «горячим». Второй контакт, другими словами — «холодный», — в противоположном направлении. Применение для измерения термопар допускается лишь в том случае, когда температура воздуха в помещении меньше, чем в месте измерения.
Такова краткая схема работы термопары, принцип действия. Виды термопар мы рассмотрим в следующем разделе.
Виды термопар
В каждой отрасли промышленности, где необходимы измерения температуры, в основном применяется термопара. Устройство и принцип работы различных видов данного агрегата приведены ниже.
Хромель-алюминиевые термопары
Данные схемы термопар применяются в большинстве случаев для производства различных датчиков и щупов, позволяющих контролировать температуру в промышленном производстве.
Их отличительными особенностями можно назвать довольно низкую цену и огромный диапазон измеряемой температуры. Они позволяют зафиксировать температуру от -200 до +13000 градусов Цельсия.
Нецелесообразно применять термопары с подобными сплавами в цехах и на объектах с высоким содержанием серы в воздухе, так как этот химический элемент негативно влияет как на хром, так и на алюминий, вызывая нарушения в функционировании устройства.
Хромель-копелевые термопары
Принцип действия термопары, контактная группа которой состоит из этих сплавов, такой же. Но эти устройства работают в основном в жидкости либо газообразной среде, обладающей нейтральными, неагрессивными свойствами. Верхний температурный показатель не превышает +8000 градусов Цельсия.
Применяется подобная термопара, принцип действия которой позволяет использовать ее для установления степени нагрева каких-либо поверхностей, например, для определения температуры мартеновских печей либо иных подобных конструкций.
Железо-константановые термопары
Данное сочетание контактов в термопаре не настолько распространено, как первая из рассматриваемых разновидностей. Принцип работы термопары такой же, однако подобная комбинация хорошо показала себя в разреженной атмосфере. Максимальный уровень замеряемой температуры не должен превышать +12500 градусов Цельсия.
Однако, если температура начинает подниматься выше +7000 градусов, существует опасность нарушения точности измерений в связи с изменением физико-химических свойств железа. Имеют место даже случаи коррозии железного контакта термопары при наличии в окружающем воздухе водных паров.
Платинородий-платиновые термопары
Наиболее дорогая в изготовлении термопара. Принцип действия такой же, однако отличается она от своих собратьев очень стабильными и достоверными показаниями температуры. Имеет пониженную чувствительность.
Основная область применения данных устройств — измерение высоких температур.
Вольфрам-рениевые термопары
Также применяются для измерения сверхвысоких температур. Максимальный предел, который можно зафиксировать с помощью данной схемы, достигает 25 тысяч градусов по шкале Цельсия.
Их применение требует соблюдения некоторых условий. Так, в процессе измерения температуры нужно полностью устранить окружающую атмосферу, которая оказывает негативное воздействие на контакты в результате процесса окисления.
Для этого вольфрам-рениевые термопары обычно помещают в защитные кожухи, заполненные инертным газом, защищающим их элементы.
Выше была рассмотрена каждая существующая термопара, устройство, принцип работы ее в зависимости от применяемых сплавов. Теперь рассмотрим некоторые конструктивные особенности.
Конструкции термопар
Существует две основные разновидности конструкций термопар.
С применением изоляционного слоя. Данная конструкция термопары предусматривает изолирование рабочего слоя устройства от электрического тока. Подобная схема позволяет использовать термопару в технологическом процессе без изоляции входа от земли.
Без применения изоляционного слоя. Такие термопары могут подключаться лишь к измерительным схемам, входы которых не имеют контакта с землей. Если данное условие не соблюдается, в устройстве возникнет две независимых замкнутых схемы, в результате чего показания, полученные с помощью термопары, не будут соответствовать действительности.
Бегущая термопара и ее применение
Существует отдельная разновидность данного устройства, именуемая «бегущей». Принцип действия бегущей термопары мы сейчас рассмотрим более подробно.
Эта конструкция применяется в основном для определения температуры стальной заготовки при ее обработке на токарных, фрезерных и иных подобных станках.
Следует отметить, что в данном случае возможно использование и обычной термопары, однако, если процесс изготовления требует высокой точности температурного режима, бегущую термопару трудно переоценить.
При применении данного метода в заготовку заранее запаивают ее контактные элементы. Затем, в процессе обработки болванки, данные контакты постоянно подвергаются воздействию резца или иного рабочего инструмента станка, в результате чего спай (который является главным элементом при снятии температурных показателей) как бы «бежит» по контактам.
Этот эффект повсеместно применяется в металлообрабатывающей промышленности.
Технологические особенности конструкций термопар
При изготовлении рабочей схемы термопары производится спайка двух металлических контактов, которые, как известно, изготовлены из разных материалов. Место соединения носит название «спай».
Следует отметить, что делать данное соединение с помощью спайки необязательно. Достаточно просто скрутить вместе два контакта. Но такой способ производства не будет обладать достаточным уровнем надежности, а также может давать погрешности при снятии температурных показателей.
Если необходимо измерение высоких температур, спайка металлов заменяется на их сварку. Это связано с тем, что в большинстве случаев припой, применяемый при соединении, имеет низкую температуру плавления и разрушается при превышении ее уровня.
Схемы, при изготовлении которых была применена сварка, выдерживают более широкий диапазон температуры. Но и этот способ соединения имеет свои недостатки. Внутренняя структура металла при воздействии высокой температуры в процессе сваривания может измениться, что повлияет на качество получаемых данных.
Кроме того, следует контролировать состояние контактов термопары в процессе ее эксплуатации. Так, возможно изменение характеристик металлов в схеме вследствие воздействия агрессивной окружающей среды. Может произойти окисление либо взаимная диффузия материалов. В подобной ситуации следует заменить рабочую схему термопары.
Разновидности спаев термопар
Современная индустрия производит несколько конструкций, которые применяются при изготовлении термопар:
с открытым спаем;
с изолированным спаем;
с заземленным спаем.
Особенностью термопар с открытым спаем является плохая сопротивляемость внешнему воздействию.
Следующие два типа конструкции могут применяться при измерении температур в агрессивных средах, оказывающих разрушительное влияние на контактную пару.
Кроме того, в настоящее время промышленность осваивает схемы производства термопар по полупроводниковым технологиям.
Погрешность измерений
Правильность температурных показателей, получаемых с помощью термопары, зависит от материала контактной группы, а также внешних факторов. К последним можно отнести давление, радиационный фон либо иные причины, способные повлиять на физико-химические показатели металлов, из которых изготовлены контакты.
Погрешность измерений состоит из следующих составных частей:
случайная погрешность, вызванная особенностями изготовления термопары;
погрешность, вызванная нарушением температурного режима «холодного» контакта;
погрешность, причиной которой послужили внешние помехи;
погрешность контрольной аппаратуры.
Преимущества использования термопар
К преимуществам использования подобных устройств для контроля температуры, независимо от области применения, можно отнести:
большой промежуток показателей, которые способны быть зафиксированы с помощью термопары;
спайку термопары, которая непосредственно участвует в снятии показаний, можно расположить в непосредственном контакте с точкой измерения;
несложный процесс изготовления термопар, их прочность и долговечность эксплуатации.
Недостатки измерения температуры с помощью термопары
К недостаткам применения термопары следует отнести:
Необходимость в постоянном контроле температуры «холодного» контакта термопары. Это отличительная особенность конструкции измерительных приборов, в основе которых лежит термопара. Принцип действия данной схемы сужает область ее применения. Они могут быть использованы только в том случае, если температура окружающего воздуха ниже температуры в точке измерения.
Нарушение внутренней структуры металлов, применяемых при изготовлении термопары. Дело в том, что в результате воздействия внешней окружающей среды контакты теряют свою однородность, что вызывает погрешности в получаемых температурных показателях.
В процессе измерения контактная группа термопары обычно подвержена негативному влиянию окружающей среды, что вызывает нарушения в процессе работы. Это опять же требует герметизации контактов, что вызывает дополнительные затраты на обслуживание подобных датчиков.
Существует опасность воздействия электромагнитных волн на термопару, конструкция которой предусматривает длинную контактную группу. Это также может сказаться на результатах измерений.
В некоторых случаях встречается нарушение линейной зависимости между электрическим током, возникающим в термопаре, и температурой в месте измерения. Подобная ситуация требует калибровки контрольной аппаратуры.
Заключение
Несмотря на имеющиеся недостатки, метод измерения температуры с помощью термопар, который был впервые изобретен и опробован еще в 19 веке, нашел свое широкое применение во всех отраслях современной промышленности.
Кроме того, существуют такие области применения, где использование термопар является единственным способом получения температурных данных. А ознакомившись с данным материалом, вы достаточно полно разобрались в основных принципах их работы.
fb.ru
Внимание! Если Вы обнаружили ошибку на сайте, то выделите ее и нажмите Ctrl+Enter. Вам понравилась эта статья?! Добавьте ее в свои закладки.
|
|
www.metotech.ru
Внимание! Если Вы обнаружили ошибку на сайте, то выделите ее и нажмите Ctrl+Enter. Вам понравилась эта статья?! Добавьте ее в свои закладки.
|
|
www.metotech.ru
Принцип работы термопары в фото
Принцип работы термопары в фотографиях.На сегодняшний день практически во всех отопительных приборах используют специальные контроллеры. Они позволяют предохранить технику от перегрева. Термопары – это и есть специальные устройства для защиты отопительного оборудования от перегрева.
Особенности конструкции
Термопара – это специальное устройство, которое предназначается для измерения температуры. Конструкция будет состоять из двух разнородных проводников, которые в дальнейшем будут между собою контактировать в одной или нескольких точках. Когда на одном участков этих проводников измениться температура, тогда будет создаваться напряжение. Многие специалисты достаточно часто используют термопары для контроля температуры в разнообразной среде и для конвертации температуры в энергию.
Коммерческий преобразователь будет иметь доступную стоимость. Он будет иметь стандартные разъемы и позволяет измерять разнообразный спектр температуры. Основным отличием от других устройств для измерения температуры считается то, что они имеют автономное питание и не требуют внешнего фактора возбуждения. Основным ограничением во время работы с этим устройством считается его точность.
Существуют также и разные типы термопары. Многие приспособления считаются полностью стандартизированными. Многие производственные компании на сегодняшний день используют электронные методы холодного спая для корректировки изменения температуры на клеммах устройства. Благодаря этому им удалось значительно повысить точность.
Применение термопары считается достаточно широким. Их могут использовать в следующих областях:
Принцип действия термопары
Эти устройства работают согласно правилу Зеебека. Если определенный проводник будет подвергаться воздействию, тогда его сопротивление и напряжение будет изменяться. Чтобы измерить это напряжение необходимо подключить гибкий провод к «горячему» концу термопары. Этот гибкий провод может стать настоящим градиентом температуры и разработать собственное напряжение, которое в дальнейшем будет противостоять текущему напряжению.
Во время использования разнородных сплавов для замыкания цепи, создается новая цепь, в которой два конца смогут генерировать напряжение. В дальнейшем его можно будет измерить. Узнайте, как работает тензодатчик.
Напряжение будет генерироваться не на стыке двух металлов, а вдоль длины двух разнородных металлов. Обе длины термопары будут испытывать одинаковый температурный режим. Конечный результат можно считать результатом разности температур между термопарой и спаем. Если соединение будет выполнено некачественно, тогда соответственно в этом случае может образоваться погрешность. Особенно в высокой точности будет нуждаться мультиметр с термопарой и разнообразные производственные датчики.
Типы термопары
При определенных условиях создается термопара своими руками. Но перед изготовлением, потребуется изучить все виды термопары. Также вам необходимо знать, чем отличаются модели: ТХА, ТХК, ТПП, ТВР, ТЖК, ТПР, ТСП. Они могут распределяться как:
У нас вы также можете прочесть про правильное заземление.
Монтаж термопары
Импортные термопары необходимо устанавливать также, как и отечественные. Их установка и замена практически ничем не отличается. Для установки необходимо выполнить следующие этапы:
Контроллер плиты необходимо вмонтировать не слишком сильно.
Во время установки медная и стальная труба подачи и отвода топлива должна быть направлена вниз. В конструкции концевой выключатель будет располагаться под автоматом контроля безопасности на печи. Это устройство также способно отключать вентилятор, если температура понизится до определенного уровня. Если вентилятор работает постоянно, тогда выключатель нуждается в корректировке. Сначала вам необходимо проверить термостат. Если он будет включен, тогда его следует поставить в автоматический режим.
На сегодняшний день любая система контроля требуется корректировки. Если вы не можете выполнить корректировку самостоятельно, тогда лучше обратиться к специалистам. Изготовление термопары осуществляется на специализированных заводах. Именно поэтому выполнить ремонт можно будет только в специализированных дилерских центрах. Стоимость термопары в среднем составляет от 3 до 6 долларов. Конечно, цена будет зависеть от типа продукции, которую вы желаете приобрести.
Теперь вы точно знаете устройство и принцип работы термопары. Надеемся, что эта информация была полезной и интересной.
омические датчики.
Обзор Принцип работы термопары .yastroyu.ru
классификация, как работает, особенности применения
Термопа́ра — устройство основанное на преобразовании электрического сигнала в показатель температуры при изменении физических параметров веществ, из которых состоит прибор. Термопары широко распространены в промышленности, коммунальном хозяйстве, используются в массе бытовых приборов и автомобилях. От самых простых приборов (которые можно встретить в обычных утюгах) до сложных и дорогих (жаростойкие термопластины для измерения температуры на газовых турбинах) их можно встретить везде, где стоит задача измерения температуры.
Как работает термопара?
Термопара состоит из пары проводников из отличающихся материалов, соединенных между собой только с одной стороны.
Регистрирующие приборы (аналоговые, цифровые) измеряют разницу термо-ЭДС возникающих в местах спайки и на концах проводников.
Действие прибора построено на эффекте Зеебека(термоэлектрической эффект). Представьте две проволоки соединенные между собой двумя спайками. Если нагревать/охлаждать одну спайку, то по кольцу потечет ток. Его вызывает термо-ЭДС, которая возникает за счет разности потенциалов между спайками.
Интересное видео о термопарах от НИЯУ МИФИ смотрите ниже:
При одинаковой температуре спаек сума токов в цепи равна нулю – ток не течет. При отличающихся температурах возникает разность потенциалов между спайками. От интенсивности нагревания/охлаждения зависит и разность потенциалов.
Термо-ЭДС можно измерить. Она пропорциональна изменению разности температур на спайках. Самый простой способ измерения параметров тока в таких условиях – гальванометр (применяется для демонстрации эффекта Зеебека).
В современных сложных термопарах применяются электронные средства преобразования сигнала.
Особенности работы с термопарами для точных и высокоточных измерений
- Недостаток большинства термопар – это необходимость градуировки каждого прибора в отдельности.
Для точных измерений на предприятиях-изготовителях каждая термопара проходит отдельные испытания.
- Необходимо вносить поправку на температуру среды измерительных устройств.
- Термопара должна находиться в одинаковых условиях по всей длине измерительного участка.
- Для определения наиболее точного результата можно использовать рядом с основной термопарой контрольные термопары.
- Для точных измерений используют провода с экранами, для уменьшения наводок: токи, вызываемые термо-ЭДС, незначительны по своей величине.
Ещё одно интересное видео о термопарах смотрите ниже:
Классификация термопар, их свойства и сферы применения
В российском ГОСТе применяется трехбуквенное обозначение кириллицей групп термопар, в международной классификации (МЭК) приняты латинские однобуквенные обозначения.
В большинстве случаев группы термопар соответствуют обеим системам классификации.
В таблице даны обозначения по ГОСТу, в скобках приведены аналоги по МЭК:
Тип термопары | Материал | Свойства |
ТХА (К) | Вольфрам + родий | Для работы в нещелочных средах. Измеряет в пределах −250…+2500°С |
ТНН (N) | Никросил+ нисил | Диапазон температур — 0…1230°С, относится к группе универсальных термопар |
ТЖК (J) | Железо + константан | -200 до +750°С дешевый и надежный вариант для промышленности. |
ТМК (Т) | Медь + константан | -250…+ 400°Снедорогие термопары |
ТХК (L) | Хромель+ копель | наибольшая чувствительностью, но ограничены по диапазону измерений – до 600 °С и очень хрупкие. |
ТПП (R, S) | Платинородий + платина | Для работы в газовых средах, окисленных средах. Недостаток – чувствительны к примесям, нагарам, требуют стерильных условий производства. |
ТВР (А-1, А-2, А-3) | Вольфрам + рений | Диапазон измерений -22О0°С в нормальных средах. Сложны в производстве и эксплуатации. |
В таблице приведены наиболее часто встречаемые в сети интернет термопары.
Также существуют другие виды термопар для редких условий работы. Как правило, это штучные приборы, разрабатываемые только под заказ.
pue8.ru
Термопара — это… Что такое Термопара?
Схема термопары. При температуре спая нихрома и алюминий-никеля равной 300 °C термоэдс составляет 12,2 мВ. Фотография термопарыТермопа́ра (термоэлектрический преобразователь температуры) — термоэлемент, применяемый в измерительных и преобразовательных устройствах, а также в системах автоматизации.
Международный стандарт на термопары МЭК 60584 (п.2.2) дает следующее определение термопары: Термопара — пара проводников из различных материалов, соединенных на одном конце и формирующих часть устройства, использующего термоэлектрический эффект для измерения температуры.
Для измерения разности температур зон, ни в одной из которых не находится вторичный преобразователь (измеритель термо-ЭДС), удобно использовать дифференциальную термопару: две одинаковых термопары, соединенных навстречу друг другу. Каждая из них измеряет перепад температур между своим рабочим спаем и условным спаем, образованным концами термопар, подключёнными к клеммам вторичного преобразователя, но вторичный преобразователь измеряет разность их сигналов, таким образом, две термопары вместе измеряют перепад температур между своими рабочими спаями.
Принцип действия
Принцип действия основан на эффекте Зеебека или, иначе, термоэлектрическом эффекте. Между соединёнными проводниками имеется контактная разность потенциалов; если стыки связанных в кольцо проводников находятся при одинаковой температуре, сумма таких разностей потенциалов равна нулю. Когда же стыки находятся при разных температурах, разность потенциалов между ними зависит от разности температур. Коэффициент пропорциональности в этой зависимости называют коэффициентом термо-ЭДС. У разных металлов коэффициент термо-ЭДС разный и, соответственно, разность потенциалов, возникающая между концами разных проводников, будет различная. Помещая спай из металлов с отличными коэффициентами термо-ЭДС в среду с температурой Т1, мы получим напряжение между противоположными контактами, находящимися при другой температуре Т2, которое будет пропорционально разности температур Т1 и Т2.
Способы подключения
Наиболее распространены два способа подключения термопары к измерительным преобразователям: простой и дифференциальный. В первом случае измерительный преобразователь подключается напрямую к двум термоэлектродам. Во втором случае используютcя два проводника с разными коэффициентами термо-ЭДС, спаянные в двух концах, а измерительный преобразователь включается в разрыв одного из проводников.
Для дистанционного подключения термопар используются удлинительные или компенсационные провода. Удлинительные провода изготавливаются из того же материала, что и термоэлектроды, но могут иметь другой диаметр. Компенсационные провода используются в основном с термопарами из благородных металлов и имеют состав, отличный от состава термоэлектродов. Требования к проводам для подключения термопар установлены в стандарте МЭК 60584-3.
Следующие основные рекомендации позволяют повысить точность измерительной системы, включающей термопарный датчик [1]:
— Миниатюрную термопару из очень тонкой проволоки следует подключать только с использованием удлинительных проводов большего диаметра;
— Не допускать по возможности механических натяжений и вибраций термопарной проволоки;
— При использовании длинных удлинительных проводов, во избежании наводок, следует соединить экран провода с экраном вольтметра и тщательно перекручивать провода;
— По возможности избегать резких температурных градиентов по длине термопары;
— Материал защитного чехла не должен загрязнять электроды термопары во всем рабочем диапазоне температур и должен обеспечить надежную защиту термопарной проволоки при работе во вредных условиях;
— Использовать удлинительные провода в их рабочем диапазоне и при минимальных градиентах температур;
— Для дополнительного контроля и диагностики измерений температуры применяют специальные термопары с четырьмя термоэлектродами, которые позволяют проводить дополнительные измерения сопротивления цепи для контроля целостности и надежности термопар.
Применение термопар
В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 31 июля 2012. |
Для измерения температуры различных типов объектов и сред, а также в автоматизированных системах управления и контроля. Термопары из вольфрам-рениевого сплава являются самыми высокотемпературными контактными датчиками температуры. Такие термопары незаменимы в металлургии для контроля температуры расплавленных металлов.
В 1920х—30х годах термопары использовались для питания детекторных приемников и других слаботочных приборов. Вполне возможно использование термогенераторов для подзарядки АКБ современных слаботочных приборов (телефоны, камеры и т.п) с использованием открытого огня.
Преимущества термопар
- Высокая точность измерения значений температуры (вплоть до ±0,01 °С)
- Большой температурный диапазон измерения: от −200 °C до 2500 °C
- Простота
- Дешевизна
- Надежность
Недостатки
- Для получения высокой точности измерения температуры (до ±0,01 °С) требуется индивидуальная градуировка термопары.
- На показания влияет температура свободных концов, на которую необходимо вносить поправку. В современных конструкциях измерителей на основе термопар используется измерение температуры блока холодных спаев с помощью встроенного термистора или полупроводникового сенсора и автоматическое введение поправки к измеренной ТЭДС.
- Эффект Пельтье (в момент снятия показаний, необходимо исключить протекание тока через термопару, так как ток, протекающий через неё, охлаждает горячий спай и разогревает холодный).
- Зависимость ТЭДС от температуры существенно нелинейна. Это создает трудности при разработке вторичных преобразователей сигнала.
- Возникновение термоэлектрической неоднородности в результате резких перепадов температур, механических напряжений, коррозии и химических процессов в проводниках приводит к изменению градуировочной характеристики и погрешностям до 5 К.
- На большой длине термопарных и удлинительных проводов может возникать эффект «антенны» для существующих электромагнитных полей.
Типы термопар
Технические требования к термопарам определяются ГОСТ 6616-94.Стандартные таблицы для термоэлектрических термометров (НСХ), классы допуска и диапазоны измерений приведены в стандарте МЭК 60584-1,2 и в ГОСТ Р 8.585-2001.
Точный состав сплава термоэлектродов для термопар из неблагородных металлов в МЭК 60584-1 не приводится. НСХ для хромель-копелевых термопар ТХК и вольфрам-рениевых термопар определены только в ГОСТ Р 8.585-2001. В стандарте МЭК данные термопары отсутствуют. По этой причине характеристики импортных датчиков из этих металлов могут существенно отличаться от отечественных, например импортный Тип L и отечественный ТХК не взаимозаменяемы. При этом, как правило, импортное оборудование не рассчитано на отечественный стандарт.
В настоящее время стандарт МЭК 60584 пересматривается. Планируется введение в стандарт вольфрам-рениевых термопар типа А-1, НСХ для которых будет соответствовать российскому стандарту, и типа С по стандарту АСТМ [2].
В 2008 г. МЭК ввел два новых типа термопар: золото-платиновые и платино-палладиевые. Новый стандарт МЭК 62460 устанавливает стандартные таблицы для этих термопар из чистых металлов. Аналогичный Российский стандарт пока отсутствует.
Сравнение термопар
Таблица ниже описывает свойства нескольких различных типов термопары. В пределах колонок точности, T представляет температуру горячего спая, в градусах Цельсия. Например, термопара с точностью В±0.0025Г—T имела бы точность В±2.5 В°C в 1000 В°C.
Тип термопары МЭК | Температурный диапазон °C (длительно) | Температурный диапазон °C (кратковременно) | Класс точности 1 (°C) | Класс точности 2 (°C) | IEC Цветовая маркировка |
---|---|---|---|---|---|
K | 0 до +1100 | −180 до +1300 | ±1.5 от −40 °C до 375 °C ±0.004×T от 375 °C до 1000 °C | ±2.5 от −40 °C до 333 °C ±0.0075×T от 333 °C до 1200 °C | |
J | 0 до +700 | −180 to +800 | ±1.5 от −40 °C до 375 °C ±0.004×T от 375 °C до 750 °C | ±2.5 от −40 °C до 333 °C ±0.0075×T от 333 °C до 750 °C | |
N | 0 до +1100 | −270 to +1300 | ±1.5 от −40 °C до 375 °C ±0.004×T от 375 °C до 1000 °C | ±2.5 от −40 °C до 333 °C ±0.0075×T от 333 °C до 1200 °C | |
R | 0 до +1600 | −50 to +1700 | ±1.0 от 0 °C до 1100 °C ±[1 + 0.003×(T − 1100)] от 1100 °C до 1600 °C | ±1.5 от 0 °C до 600 °C ±0.0025×T от 600 °C до 1600 °C | |
S | 0 до 1600 | −50 до +1750 | ±1.0 от 0 °C до 1100 °C ±[1 + 0.003×(T − 1100)] от 1100 °C до 1600 °C | ±1.5 от 0 °C до 600 °C ±0.0025×T от 600 °C до 1600 °C | |
B | +200 до +1700 | 0 до +1820 | ±0.0025×T от 600 °C до 1700 °C | ||
T | −185 до +300 | −250 до +400 | ±0.5 от −40 °C до 125 °C ±0.004×T от 125 °C до 350 °C | ±1.0 от −40 °C до 133 °C ±0.0075×T от 133 °C до 350 °C | |
E | 0 до +800 | −40 до +900 | ±1.5 от −40 °C до 375 °C ±0.004×T от 375 °C до 800 °C | ±2.5 от −40 °C до 333 °C ±0.0075×T от 333 °C до 900 °C |
См. также
Примечания
Ссылки
dic.academic.ru