Блок питания на одном транзисторе схема: Блок питания на стабилитроне и транзисторе своими руками

Блок питания на стабилитроне и транзисторе своими руками
Рассмотренный далее стабилизированный блок питания является одним из первых устройств, которые собираются начинающими радиолюбителями. Это очень простой, но весьма полезный прибор. Для его сборки не нужны дорогостоящие компоненты, которые достаточно легко подобрать новичку в зависимости от требуемых характеристик блока питания.
Материал будет также полезен тем, кто желает более детально разобраться в назначении и расчете простейших радиодеталей. В том числе, вы подробно узнаете о таких компонентах блока питания, как:
  • силовой трансформатор;
  • диодный мост;
  • сглаживающий конденсатор;
  • стабилитрон;
  • резистор для стабилитрона;
  • транзистор;
  • нагрузочный резистор;
  • светодиод и резистор для него.

Также в статье детально рассказано, как подобрать радиодетали для своего блока питания и что делать, если нет нужного номинала. Наглядно будет показана разработка печатной платы и раскрыты нюансы этой операции. Несколько слов сказано конкретно о проверке радиодеталей перед пайкой, а также о сборке устройства и его тестировании.

Содержание

Типовая схема стабилизированного блока питания


Всевозможных схем блоков питания со стабилизацией напряжения существует сегодня очень много. Но одна из самых простых конфигураций, с которой и стоит начинать новичку, построена всего на двух ключевых компонентах – стабилитроне и мощном транзисторе. Естественно, в схеме присутствуют и другие детали, но они вспомогательные.
Блок питания на стабилитроне и транзисторе
Схемы в радиоэлектронике принято разбирать в том направлении, в котором по ним протекает ток. В блоке питания со стабилизацией напряжения все начинается с трансформатора (TR1). Он выполняет сразу несколько функций. Во-первых, трансформатор понижает сетевое напряжение. Во-вторых, обеспечивает работу схемы. В-третьих, питает то устройство, которое подключено к блоку.
Диодный мост (BR1) – предназначен для выпрямления пониженного сетевого напряжения. Если говорить другими словами, то в него заходит переменное напряжение, а на выходе получается уже постоянное. Без диодного моста не будет работать ни сам блок питания, ни устройства, которые будут к нему подключаться.
Сглаживающий электролитический конденсатор (C1) нужен для того, чтобы убирать пульсации, присутствующие в бытовой сети. На практике они создают помехи, которые отрицательно сказываются на работе электроприборов. Если для примера взять усилитель звука, запитанный от блока питания без сглаживающего конденсатора, то эти самые пульсации будут отчетливо слышны в колонках в виде постороннего шума. В других приборах помехи могут привести к некорректной работе, сбоям и прочим проблемам.
Стабилитрон (D1) – это компонент блока питания, который стабилизирует уровень напряжения. Дело в том, что трансформатор будет выдавать желаемые 12 В (например) только тогда, когда в сетевой розетке будет ровно 230 В. Однако на практике таких условий не бывает. Напряжение может как просаживаться, так и повышаться. То же самое трансформатор будет давать и на выходе. Благодаря своим свойствам стабилитрон выравнивает пониженное напряжение независимо от скачков в сети. Для корректной работы этого компонента нужен токоограничивающий резистор (R1). О нем более детально сказано ниже.
Транзистор (Q1) – нужен для усиления тока. Дело в том, что стабилитрон не способен пропускать через себя весь потребляемый прибором ток. Более того, корректно он будет работать только в определенном диапазоне, например, от 5 до 20 мА. Для питания каких-либо приборов этого откровенно мало. С данной проблемой и справляется мощный транзистор, открывание и закрывание которого управляется стабилитроном.
Сглаживающий конденсатор (C2) – предназначен для того же, что и вышеописанный C1. В типовых схемах стабилизированных блоков питания присутствует также нагрузочный резистор (R2). Он нужен для того, чтобы схема сохраняла работоспособность тогда, когда к выходным клеммам ничего не подключено.
В подобных схемах могут присутствовать и другие компоненты. Это и предохранитель, который ставится перед трансформатором, и светодиод, сигнализирующий о включении блока, и дополнительные сглаживающие конденсаторы, и еще один усиливающий транзистор, и выключатель. Все они усложняют схему, однако, повышают функциональность устройства.

Расчет и подбор радиокомпонентов для простейшего блока питания


Трансформатор подбирается по двум основным критериям – напряжению вторичной обмотки и по мощности. Есть и другие параметры, но в рамках материала они не особо важны. Если вам нужен блок питания, скажем, на 12 В, то трансформатор нужно подбирать такой, чтобы с его вторичной обмотки можно было снять чуть больше. С мощностью все то же самое – берем с небольшим запасом.
Основной параметр диодного моста – это максимальный ток, который он способен пропускать. На эту характеристику и стоит ориентироваться в первую очередь. Рассмотрим примеры. Блок будет использоваться для питания прибора, потребляющего ток 1 А. Это значит, что диодный мост нужно брать примерно на 1,5 А. Допустим, вы планируете питать какой-либо 12-вольтовый прибор мощностью 30 Вт. Это значит, что потребляемый ток будет около 2,5 А. Соответственно, диодный мост должен быть, как минимум, на 3 А. Другими его характеристиками (максимальное напряжение и прочее) в рамках такой простой схемы можно пренебрегать.
Блок питания на стабилитроне и транзисторе
Дополнительно стоит сказать, что диодный мост можно не брать уже готовый, а собрать его из четырех диодов. В таком случае каждый из них должен быть рассчитан на ток, проходящий по схеме.
Для расчета емкости сглаживающего конденсатора применяются достаточно сложные формулы, которые в данном случае ни к чему. Обычно берется емкость 1000-2200 мкФ, и этого для простого блока питания будет вполне достаточно. Можно взять конденсатор и побольше, но это существенно удорожит изделие. Другой важный параметр – максимальное напряжение. По нему конденсатор подбирается в зависимости от того, какое напряжение будет присутствовать в схеме.
Здесь стоит учитывать, что на отрезке между диодным мостом и стабилитроном после включения сглаживающего конденсатора напряжение будет примерно на 30% выше, чем на выводах трансформатора. То есть, если вы делаете блок питания на 12 В, а трансформатор выдает с запасом 15 В, то на данном участке из-за работы сглаживающего конденсатора будет примерно 19,5 В. Соответственно, он должен быть рассчитан на это напряжение (ближайший стандартный номинал 25 В).
Второй сглаживающий конденсатор в схеме (C2) обычно берется небольшой емкости – от 100 до 470 мкФ. Напряжение на этом участке схемы будет уже стабилизированным, например, до уровня 12 В. Соответственно, конденсатор должен быть рассчитан на это (ближайший стандартный номинал 16 В).
А что делать, если конденсаторов нужных номиналов нет в наличии, и в магазин идти неохота (или банально нет желания их покупать)? В таком случае вполне возможно воспользоваться параллельным подключением нескольких конденсаторов меньшей емкости. При этом стоит учесть, что максимальное рабочее напряжение при таком подсоединении суммироваться не будет!
Стабилитрон подбирается в зависимости от того, какое напряжение нам нужно получить на выходе блока питания. Если подходящего номинала нет, то можно соединить несколько штук последовательно. Стабилизируемое напряжение, при этом, будет суммироваться. Для примера возьмем ситуацию, когда нам надо получить 12 В, а в наличии есть только два стабилитрона на 6 В. Соединив их последовательно мы и получим желаемое напряжение. Стоит отметить, что для получения усредненного номинала параллельное подключение двух стабилитронов не сработает.
Максимально точно подобрать токоограничивающий резистор для стабилитрона можно только экспериментально. Для этого в уже рабочую схему (например, на макетной плате) включается резистор номиналом примерно 1 кОм, а между ним и стабилитроном в разрыв цепи ставится амперметр и переменный резистор. После включения схемы нужно вращать ручку переменного резистора до тех пор, пока через участок цепи не потечет требуемый номинальный ток стабилизации (указывается в характеристиках стабилитрона).
Усиливающий транзистор подбирается по двум основным критериям. Во-первых, для рассматриваемой схемы он обязательно должен быть n-p-n структуры. Во-вторых, в характеристиках имеющегося транзистора нужно посмотреть на максимальный ток коллектора. Он должен быть немного больше, чем максимальный ток, на который будет рассчитан собираемый блок питания.
Нагрузочный резистор в типовых схемах берется номиналом от 1 кОм до 10 кОм. Меньшее сопротивление брать не стоит, так как в случае, когда блок питания не будет нагружен, через этот резистор потечет слишком большой ток, и он сгорит.

Разработка и изготовление печатной платы


Теперь вкратце рассмотрим наглядный пример разработки и сборки стабилизированного блока питания своими руками. В первую очередь, необходимо найти все присутствующие в схеме компоненты. Если нет конденсаторов, резисторов или стабилитронов нужных номиналов – выходим из ситуации вышеописанными путями.
Блок питания на стабилитроне и транзисторе
Далее нужно будет спроектировать и изготовить печатную плату для нашего прибора. Начинающим лучше всего использовать для этого простое и, самое главное, бесплатное программное обеспечение, например, Sprint Layout.
Размещаем на виртуальной плате все компоненты согласно выбранной схемы. Оптимизируем их расположение, корректируем в зависимости от того, какие конкретно детали есть в наличии. На этом этапе рекомендуется перепроверять реальные размеры компонентов и сравнивать их с добавляемыми в разрабатываемую схему. Особое внимание обратите на полярность электролитических конденсаторов, расположение выводов транзистора, стабилитрона и диодного моста.
Если вы заходите добавить в блок питания сигнальный светодиод, то его можно будет включить в схему как до стабилитрона, так и после (предпочтительнее). Чтобы подобрать для него токоограничивающий резистор, необходимо выполнить следующий расчет. Из напряжения участка цепи вычитаем падение напряжения на светодиоде и делим результат на номинальный ток его питания. Пример. На участке, к которому мы планируем подключать сигнальный светодиод, имеется стабилизированные 12 В. Падение напряжения у стандартных светодиодов около 3 В, а номинальный ток питания 20 мА (0,02 А). Получаем, что сопротивление токоограничивающего резистора R=450 Ом.

Проверка компонентов и сборка блока питания


После разработки платы в программе переносим ее на стеклотекстолит, травим, лудим дорожки и удаляем излишки флюса.
Блок питания на стабилитроне и транзисторе
Блок питания на стабилитроне и транзисторе
Блок питания на стабилитроне и транзисторе
Блок питания на стабилитроне и транзисторе
Блок питания на стабилитроне и транзисторе

Блок питания на стабилитроне и транзисторе
После этого выполняем установку радиокомпонентов. Здесь стоит сказать, что не лишним будет сразу же перепроверить их работоспособность, особенно, если они не новые. Как и что проверять?
Обмотки трансформатора проверяются омметром. Где сопротивление больше – там первичная обмотка. Далее его нужно включить в сеть и убедиться, что он выдает требуемое пониженное напряжение. При его измерении соблюдайте предельную осторожность. Также учтите, что напряжение на выходе переменное, потому на вольтметре включается соответствующий режим.
Резисторы проверяются омметром. Стабилитрон должен «звониться» только в одном направлении. Диодный мост проверяем по схеме. Встроенные в него диоды должны проводить ток только в одном направлении. Для проверки конденсаторов потребуется специальный прибор для измерения электрической емкости. В транзисторе n-p-n структуры ток должен протекать от базы к эмиттеру и к коллектору. В остальных направлениях он протекать не должен.
Начинать сборку лучше всего с мелких деталей – резисторов, стабилитрона, светодиода. Затем впаиваются конденсаторы, диодный мост.
Особое внимание обращайте на процесс установки мощного транзистора. Если перепутать его выводы – схема не заработает. Кроме того, этот компонент будет достаточно сильно греется под нагрузкой, потому его необходимо устанавливать на радиатор.
Последним устанавливается самая большая деталь – трансформатор. Далее к выводам его первичной обмотки припаивается сетевая вилка с проводом. На выходе блока питания тоже предусматриваются провода.
Блок питания на стабилитроне и транзисторе
Осталось только хорошенько перепроверить правильность установки всех компонентов, смыть остатки флюса и включить блок питания в сеть. Если все сделано правильно, то светодиод будет светиться, а на выходе мультиметр покажет желаемое напряжение.

Блок питания «Проще не бывает». Часть вторая

РадиоКот >Обучалка >Аналоговая техника >Собираем первые устройства >

Блок питания «Проще не бывает». Часть вторая

Ага, все-таки зашел? Что, любопытство замучило? Но я очень рад. Нет, правда. Располагайся поудобнее, сейчас мы вместе произведем некоторые нехитрые расчеты, которые нужны, чтобы сварганить тот блок питания, который мы уже сделали в первой части статьи. Хотя надо сказать, что эти расчеты могут пригодиться и в более сложных схемах.

Итак, наш блок питания состоит из двух основных узлов — это выпрямитель, состоящий из трансформатора, выпрямительных диодов и конденсатора и стабилизатор, состоящий из всего остального. Как настоящие индейцы, начнем, пожалуй, с конца и рассчитаем сначала стабилизатор.

Схема стабилизатора показана на рисунке.

Это, так называемый параметрический стабилизатор. Состоит он из двух частей:
1 — сам стабилизатор на стабилитроне D с балластным резистором Rб
2 — эмиттерный повторитель на транзисторе VT.

Непосредственно за тем, чтобы напряжение оставалось тем каким нам надо, следит стабилизатор, а эмиттерный повторитель позволяет подключать мощную нагрузку к стабилизатору. Он играет роль как бы усилителя или если угодно — умощителя.

Два основных параметра нашего блока питания — напряжение на выходе и максимальный ток нагрузки. Назовем их:
Uвых — это напряжение
и
Imax — это ток.

Для блока питания, который мы отгрохали в прошлой части, Uвых = 14 Вольт, а Imax = 1 Ампер.

Сначала нам необходимо определить какое напряжение Uвх мы должны подать на стабилизатор, чтобы на выходе получить необходимое Uвых.
Это напряжение определяется по формуле:

Uвх = Uвых + 3

Откуда взялась цифра 3? Это падение напряжения на переходе коллектор-эмиттер транзистора VT. Таким образом, для работы нашего стабилизатора на его вход мы должны подать не менее 17 вольт.

Едем дальше.

Определим, какой нам нужен транзистор VT. Для этого нам надо определить, какую мощность он будет рассеивать.

Считаем:

Pmax=1.3(Uвх-Uвых)Imax

Тут надо учесть один момент. Для расчета мы взяли максимальное выходное напряжение блока питания. Однако, в данном расчете, надо наоборот брать минимальное напряжение, которое выдает БП. А оно, в нашем случае, составляет 1,5 вольта. Если этого не сделать, то транзистор может накрыться медным тазом, поскольку максимальная мощность будет рассчитана неверно.

Смотри сам:

Если мы берем Uвых=14 вольтам, то получаем Pmax=1.3*(17-14)*1=3.9 Вт.
А если мы примем Uвых=1.5 вольта, то Pmax=1.3*(17-1.5)*1=20,15 Вт

То есть, если бы не учли этого, то получилось бы, что расчетная мощность в ПЯТЬ раз меньше реальной. Разумеется, транзистору это сильно не понравилось бы.

Ну вот, теперь лезем в справочник и выбираем себе транзистор.
Помимо только что полученной мощности, надо учесть, что предельное напряжение между эмиттером и коллектором должно быть больше Uвх, а максимальный ток коллектора должен быть больше Imax. Я выбрал КТ817 — вполне приличный транзистор…

Фу, ну вроде с этим справились. Пошли дальше.

Сначала определим максимальный ток базы свежевыбранного транзистора ( а ты как думал? в нашем жестоком мире потребляют все — даже базы транзисторов).

Iб max=Imax / h31Э min

h31Э min — это минимальный коэффициент передачи тока транзистора и берется он из справочника Если там указаны пределы этого параметра — что то типа 30…40, то берется самый маленький. Ну, у меня в справочнике написано только одно число — 25, с ним и будем считать, а что еще остается?

Iб max=1/25=0.04 А (или 40 мА). Не мало.

Ну давайте будем теперь искать стабилитрон.
Искать его надо по двум параметрам — напряжению стабилизации и току стабилизации.

Напряжение стабилизации должно быть равно максимальному выходному напряжению блока питания, то есть 14 вольтам, а ток — не менее 40 мА, то есть тому, что мы посчитали.

Полезли опять в справочник…

По напряжению нам страшно подходит стабилитрон Д814Д, к тому же он у меня был под рукой. Но вот ток стабилизации… 5 мА нам никак не годится. Чего делать будем? Будем уменьшать ток базы выходного транзистора. А для этого добавим в схему еще один транзистор. Смотрим на рисунок. Мы добавили в схему транзистор VT2. Сия операция позволяет нам снизить нагрузку на стабилитрон в h31Э раз. h31Э, разумеется, того транзистора, который мы только что добавили в схему. Особо не думая, я взял из кучи железок КТ315. Его минимальный h31Э равен 30, то есть мы можем уменьшить ток до 40/30=1.33 мА, что нам вполне подходит.

Теперь посчитаем сопротивление и мощность балластного резистора Rб.

Rб=(Uвх-Uст)/(Iб max+Iст min)

где Uст — напряжение стабилизации стабилитрона,
Iст min — ток стабилизации стабилитрона.

Rб = (17-14)/((1.33+5)/1000) = 470 Ом.

Теперь определим мощность этого резистора

Prб=(Uвх-Uст)2/Rб.

То есть

Prб=(17-14)2/470=0,02 Вт.

Собственно и все. Таким образом, из исходных данных — выходного напряжения и тока, мы получили все элементы схемы и входное напряжение, которое должно быть подано на стабилизатор.

Однако не расслабляемся — нас еще ждет выпрямитель. Уж считать так считать, я так считаю (каламбур однако).

Итак, смотрим на схему выпрямителя.

Ну, тут все проще и почти на пальцах. Учитывая то, что мы знаем, какое напряжение нам надо подать на стабилизатор — 17 вольт, вычислим напряжение на вторичной обмотке трансформатора. Для этого пойдем, как и в начале — с хвоста. Итак, после конденсатора фильтра мы должны иметь напряжение 17 вольт.

Учитывая то, что конденсатор фильтра увеличивает выпрямленное напряжение в 1,41 раза, получаем, что после выпрямительного моста у нас должно получиться 17/1,41=12 вольт.
Теперь учтем, что на выпрямительном мосту мы теряем порядка 1,5-2 вольт, следовательно, напряжение на вторичной обмотке должно быть 12+2=14 вольт. Вполне может случится так, что такого трансформатора не найдется, не страшно — в данном случае можно применить трансформатор с напряжением на вторичной обмотке от 13 до 16 вольт.

Едем дальше. Определим емкость конденсатора фильтра.

Cф=3200Iн/UнKн

где Iн — максимальный ток нагрузки,
Uн — напряжение на нагрузке,
Kн — коэффициент пульсаций.

В нашем случае
Iн = 1 Ампер,
Uн=17 вольтам,
Kн=0,01.

Cф=3200*1/14*0,01=18823.

Однако, поскольку за выпрямителем идет еще стабилизатор напряжения, мы можем уменьшить расчетную емкость в 5…10 раз. То есть 2000 мкФ будет вполне достаточно.

Осталось выбрать выпрямительные диоды или диодный мост.

Для этого нам надо знать два основных параметра — максимальный ток, текущий через один диод и максимальное обратное напряжение, так же через один диод.

Необходимое максимальное обратное напряжение считается так

Uобр max=2Uн, то есть Uобр max=2*17=34 Вольта.

А максимальный ток, для одного диода должен быть больше или равен току нагрузки блока питания. Ну а для диодных сборок в справочниках указывают общий максимальный ток, который может протекать через эту сборку.

Ну вот вроде бы и все про выпрямители и параметрические стабилизаторы.
Впереди у нас стабилизатор для самых ленивых — на интегральной микросхеме и стабилизатор для самых трудолюбивых — компенсационный стабилизатор.

<<—Часть 1—-Часть 3—>>


Как вам эта статья?

Заработало ли это устройство у вас?

РЕГУЛЯТОР НАПРЯЖЕНИЯ НА ОДНОМ ТРАНЗИСТОРЕ

   Всем привет 🙂 В этой статье хочу показать, как сделать регулятор напряжения на одном транзисторе, что пригодится для изготовления простого блока питания или универсального адаптера к радиоустройствам, на различные напряжения. Создать такую схему может даже самый начинающий радиолюбитель. Из компонентов нам понадобится:

 1. Транзистор КТ817Г, его можно заменить на КТ815Г.
 2. Переменный резистор на 10 кОм.
 3. Резистор обычный 0.125 ватт на 1ком.

детали регулятора на транзисторе

   В виде чертежа решил сделать полную картинку, дабы новичку было легче усвоить работу и представить схему.

РЕГУЛЯТОР НАПРЯЖЕНИЯ НА ОДНОМ ТРАНЗИСТОРЕ - схема

   Начнем сборку. Для начала распечатываем данный чертеж, и ножницами ровно срезаем его без картинок, прикладываем чертеж к текстолиту, и начинанаем сначало сверлить отверстия, т.к потом будет легче нарисовать.

распечатываем данный чертеж регулятора

   Далее дырки по чертежу просто соединяем перманентым маркером, или лаком.

по чертежу просто соединяем перманентым маркером

   Обрезаем остатки тестолита и приступим к пайке компонентов. Сначала припаивываем транзистор, только будьте внимательны — не перепутайте ножки на транзисторе местами (эмиттер и базу).

Сначала припаивываем транзистор

   Дальше устанавливаем резистор на 1ком, затем впаиваем проводами переменный резистор на 10ком. Можно поставить и другой резистор, сразу припаять резистор без этих соплей, но мой резистор не позволил этого, и пришлось повесить на провода… Остается припаять 4 вывода к питанию, и к выходам.

вращая регулятор наглядно смотрим на изменение напряжения

   Готово! Подключаем питание, на выход — светодиод, мотор, лампу, в моем случае это был светодиод и вращая регулятор наглядно смотрим на изменение напряжения. Демонстрацию работы данной конструкции, а так-же подробное объяснение подключения, можете посмотреть в видеоролике ниже.
Стоит отметить, что мощность и ток нагрузки не должен превышать предельных значений для указанного транзистора — это примерно пол Ампера. Для подключения к регулируемому стабилизатору более мощных устройств, придётся заменить транзистор на КТ805, КТ819. С вами был [PC]Boil-:D

   Форум по источникам питания

   Обсудить статью РЕГУЛЯТОР НАПРЯЖЕНИЯ НА ОДНОМ ТРАНЗИСТОРЕ


Самый простой регулятор для зарядного устройства

Привет, сегодня соберём простую схему регулятора для зарядного устройства, который состоит всего из двух деталей.

Основой схемы будет транзистор П210, он выдерживает 10 ампер, его конечно надо обязательно на радиатор ставить. У меня под рукой не было радиатора, я пока соберу без него, но в конечном итоге надо обязательно ставить на радиатор.

Самый простой регулятор для зарядного устройства

Детали всего 2, нарисовано три — потому что добавлен конденсатор, то есть, если вы питаетесь от трансформаторного зарядное устройство, где стоит просто диодный мост тогда надо обязательно конденсатор ставить, если уже от готового блока питания, например от такого

Самый простой регулятор для зарядного устройства

то конденсатор ставить не обязательно. По сути, если конденсатор не брать в расчёт, у нас только транзистор и на один килоом переменный резистор. Я взял вот такой, просто он у меня был под рукой,

  • Самый простой регулятор для зарядного устройства
  • Самый простой регулятор для зарядного устройства

как видите он проволочный, но можете любой брать на ваше усмотрение.

Само подключение резистора, хорошо видно на схеме, на транзисторе цоколёвку привёл то есть, вот так вот

Самый простой регулятор для зарядного устройства, схема

у нас корпус это коллектор, база средний и эмиттер это нижняя нога.

На коллектор приходит минус от источника, с эмиттера минус выходит уже на аккумулятор и база на средний движок переменного резистора.

Сейчас это всё соберу и покажу вам, как это будет выглядеть в собранном виде, еще раз напоминаю радиатор для транзистора обязателен.

Самый простой регулятор для зарядного устройства

В общем что у нас получилось, конечно я собирал всё навесным монтажом, потому что делать на какой либо плате нет смысла. Ведь переменный резистор обычно выводят на переднюю панель ЗУ, а транзистор надо будет поставить туда, где будет для него место вместе с радиатором.

Введите электронную почту и получайте письма с новыми поделками.

Теперь я возьму блок питания от ноутбука, заявлено 18,5 вольта, подключаем плюс к плюсу, минус к минусу, нагрузкой пока послужит лампочка.

Самый простой регулятор для зарядного устройства

Подсоединил, попробовал, всё шикарно регулируется, кстати вначале я сказал, что регулировка тока, но это не совсем точно, тут скорее регулировка напряжения, но уменьшая напряжение мы уменьшим и ток, в принципе и то, и то верно, но точнее будет говорить всё же, что регулировка напряжения.

Регулируется кстати довольно плавно и практически от нуля, такой приставкой можно заряжать не только автомобильные АКБ, без проблем можно и мотоциклетные аккумуляторы как 6 вольтовые, так и 12.

Транзистор без радиатора греется, поэтому нужно обязательно ставить на теплоотвод.

Кстати сразу напишу, что ток которым будете заряжать аккумуляторы, напрямую зависит от источника, то есть, если это трансформатор, значит зависит от трансформатора, диодного моста. Если импульсный блок питания, то от его мощности на сколько ампер он рассчитан.

Вот такой простейший регулятор для зарядного устройства всего на 2-х деталях, собирается буквально за пару минут, чуть ли не на коленке, не спеша попивая кофе. Рекомендую к повторению, кто-то скажет сейчас такие транзисторы не найдёшь, ребята я показываю, как можно собрать с учётом того, что может у кого-то, где-то завалялось. Конечно можно и кремниевые, современные использовать, но П210 всё таки он не дефицит и я думаю у каждого найдётся, где нибудь в закромах.


Регулируемый блок питания на транзисторах

Простой регулируемый блок питания радиолюбительских устройств на двух транзисторах.

Одним из основных приборов мастерской радиолюбителя является лабораторный блок питания. Собирая какую-либо схему, радиолюбителю для ее отладки, проверки необходим источник питания. В этой статье, на сайте Радиолюбитель, мы рассмотрим следующую радиолюбительскую схему: простой в сборке, не имеющий дефицитных деталей источник питания для радиолюбительских устройств.

Данный блок питания, в зависимости от примененных деталей, позволяет получить на выходе регулируемое напряжение 0-12V, при силе тока до 1,5 А.

Рассмотрим электрическую схему.

Трансформатор Tr1 понижает сетевое напряжение 220V до напряжения 15-18V которое поступает на выпрямитель VDS1 собранный по мостовой схеме из четырех диодов. Конденсатор С1 сглаживает пульсации выпрямленного напряжения. Далее напряжение поступает на стабилизатор напряжения выполненный на стабилитроне VD1 и составном эмиттерном повторители на транзисторах VT1 и VT2. С помощью переменного резистора R6 регулируется напряжение на выходе блока питания.

Применяемые детали:

Трансформатор – любой, со вторичной обмоткой рассчитанной на выходное напряжение 15-18 вольт и силу тока  -2 – 3 ампера (т.е. мощность трансформатора должна быть около 40 ватт). Можно использовать трансформатор от старых советских телевизоров ТВК-110Л, но при этом ток нагрузки должен быть менее 1 ампера.
Стабилитрон — Д814Г. В принципе можно использовать любой стабилитрон из этой серии, что может повлиять только на максимальное выходное напряжение. Ниже приводится таблица с характеристиками стабилитронов серии Д814:

Внешний вид стабилитрона:

Транзистор VT1 – любой из серии КТ315 (А-Е). Ниже приводятся характеристики транзисторов этой серии:

Внешний вид транзистора:

Транзистор VT2 – КТ815. Для получения большего выходного тока можно применить транзисторы из  серии КТ817. Транзистор обязательно должен располагаться на радиаторе не менее 10-15 кв.см. Ниже приведены характеристики транзисторов:

Внешний вид тразистора:

 Диодный мост собран на диодах Д226:

Внешний вид диода:

Если в схеме будет использован более мощный транзистор VT2, то диоды можно заменить на КД202: Внешний вид диода:

 Конденсатор С1 – электролитический емкостью не менее 2200 микрофарад и рабочее напряжение не менее 25 вольт. Можно использовать конденсаторы меньшей емкостью соединив их параллельно.

Данная схема не нуждается в налаживании, но надо иметь ввиду, что в схеме нет защиты от перегрузки и чтобы не спалить детали не подключайте к блоку питания схемы с током нагрузки более 1,5 ампера. Монтаж схемы можно выполнить навесным способом.



Блок питания своими руками ⋆ diodov.net

Программирование микроконтроллеров Курсы

Простой и надежный блок питания своими руками при нынешнем уровне развития элементной базы радиоэлектронных компонентов можно сделать очень быстро и легко. При этом не потребуются знания электроники и электротехники на высоком уровне. Вскоре вы в этом убедитесь.

Изготовление своего первого источника питания довольно интересное и запоминающееся событие. Поэтому важным критерием здесь является простота схемы, чтобы после сборки она сразу заработала без каких-либо дополнительных настроек и подстроек.

Следует заметить, что практически каждое электронное, электрическое устройство или прибор нуждаются в питании. Отличие состоит лишь в основных параметрах – величина напряжения и тока, произведение которых дают мощность.

Изготовить блок питания своими руками – это очень хороший первый опыт для начинающих электронщиков, поскольку позволяет прочувствовать (не на себе) различные величины токов, протекающих в устройствах.

Современный рынок источников питания разделен на две категории: трансформаторные и безтрансформаторные. Первые достаточно просты в изготовлении для начинающих радиолюбителей. Второе неоспоримое преимущество – это сравнительно низкий уровень электромагнитных излучений, а соответственно и помех. Существенным недостатком по современным меркам является значительная масса и габариты, вызванные наличием трансформатором – самого тяжелого и громоздкого элемента в схеме.

Безтрансформаторные блоки питания лишены последнего недостатка ввиду отсутствия трансформатора. Вернее он там есть, но не в классическом представлении, а работает с напряжением высокой частоты, что позволяет снизить число витков и размеры магнитопровода. В результате снижаются вцелом габариты трансформатора. Высокая частота формируется полупроводниковыми ключами, в процессе из включения и выключения по заданному алгоритму. Вследствие этого возникают сильные электромагнитные помехи, поэтому такие источник подлежат обязательному экранированию.

Мы будем собирать трансформаторный блок питания, который никогда не утратит своей актуальности, поскольку и поныне используется в аудиотехнике высокого класса, благодаря минимальному уровню создаваемых помех, что очень важно для получения качественного звука.

Устройство и принцип работы блока питания

Стремление получить как можно компактнее готовое устройство примело к появлению различных микросхем, внутри которых находятся сотни, тысячи и миллионы отдельных электронных элементов. Поэтому практически любой электронный прибор содержит микросхему, стандартная величина питания которой 3,3 В или 5 В. Вспомогательные элементы могут питаться от 9 В до 12 В постоянного тока. Однако мы хорошо знаем, что розетке переменное напряжение 220 В частотою 50 Гц. Если его подать непосредственно на микросхему или какой-либо другой низковольтный элемент, то они мгновенно выйдут из строя.

Блок питания своими руками

Отсюда становится понятным, что главная задача сетевого блока питания (БП) состоит в снижении величины напряжения до приемлемого уровня, а также преобразование (выпрямление) его из переменного в постоянное. Кроме того, его уровень должен оставаться постоянным независимо от колебаний входного (в розетке). Иначе устройство будет работать нестабильно. Следовательно, еще одна важнейшая функция БП – это стабилизация уровня напряжения.

В целом структура блока питания состоит из трансформатора, выпрямителя, фильтра и стабилизатора.

Функциональная схема блока питания

Помимо основных узлов еще используется ряд вспомогательных, например, индикаторные светодиоды, которые сигнализируют о наличие подведенного напряжения. А если в БП предусмотрена его регулировка, то естественно там будет вольтметр, а возможно еще и амперметр.

Трансформатор

В данной схеме трансформатор применяется для снижения напряжения в розетке 220 В до необходимого уровня, чаще всего 5 В, 9 В, 12 В или 15 В. При этом еще осуществляется гальваническая развязка высоковольтных с низковольтными цепями. Поэтому при любых внештатных ситуациях напряжение на электронном устройстве не превысит значение величины вторичной обмотки. Также гальваническая развязка повышает безопасность обслуживающего персонала. В случае прикосновения к прибору, человек не попадет под высокий потенциал 220 В.

Конструкция трансформатора довольно проста. Он состоит из сердечника, выполняющего функцию магнитопровода, который изготовляется из тонких, хорошо проводящих магнитный поток, пластин, разделенных диэлектриком, в качестве которого служит нетокопроводящий лак.

На стержень сердечника намотаны минимум две обмотки. Одна первичная (еще ее называют сетевая) – на нее подается 220 В, а вторая – вторичная – с нее снимается пониженное напряжение.

Принцип работы трансформатора

Принцип работы трансформатора заключается в следующем. Если к сетевой обмотке приложить напряжение, то, поскольку она замкнута, в ней начнет протекать переменный ток. Вокруг этого тока возникает переменное магнитное поле, которое собирается в сердечнике и протекает по нему в виде магнитного потока. Поскольку на сердечнике расположена еще одна обмотка – вторичная, то поде действием переменного магнитного потока в ней навидится электродвижущая сила (ЭДС). При замыкании этой обмотки на нагрузку, через нее будет протекать переменный ток.

Радиолюбители в своей практике чаще всего применяют два вида трансформаторов, которые главным образом отличатся типом сердечника – броневой и тороидальный. Последний удобнее в применении тем, что на него достаточно просто можно домотать нужное количество витков, тем самым получить необходимое вторичное напряжение, которое прямопропорционально зависит от количества витков.

Трансформатор тороидальный

Основными для нас являются два параметра трансформатора – напряжение и ток вторичной обмотки. Величину тока примем равной 1 А, поскольку на такое же значение мы возьмем стабилитроны. О чем немного далее.

Диодный мост

Продолжаем собирать блок питания своими руками. И следующим порядковым элементом в схеме установлен диодный мост, он же полупроводниковый или диодный выпрямитель. Предназначен он для преобразования переменного напряжения вторичной обмотки трансформатора в постоянное, а точнее говоря, в выпрямленное пульсирующее. Отсюда и происходит название «выпрямитель».

Существуют различные схемы выпрямления, однако наибольшее применение получила мостовая схема. Принцип работы ее заключается в следующем. В первый полупериод переменного напряжения ток протекает по пути через диод VD1, резистор R1 и светодиод VD5. Далее ток возвращается к обмотке через открытый VD2.

Принцип работы мостового выпрямителя

К диодам VD3 и VD4 в этот момент приложено обратное напряжение, поэтому они заперты и ток через них не протекает (на самом деле протекает только в момент коммутации, но этим можно пренебречь).

В следующий полупериод, когда ток во вторичной обмотке изменит свое направление, произойдет все наоборот: VD1 и VD2 закроются, а VD3 и VD4 откроются. При этом направление протекания тока через резистор R1 и светодиод VD5 останется прежним.

Мостовой выпрямитель

Диодный мост можно спаять из четырех диодов, соединенных согласно схемы, приведенной выше. А можно купить готовый. Они бывают горизонтального и вертикального исполнения в разных корпусах. Но в любом случае имеют четыре вывода. На два вывода подается переменное напряжение, они обозначаются знаком «~», оба одинаковой длины и самые короткие.

Диодный мост

С двух других выводов снимается выпрямленное напряжение. Обозначаются они «+» и «-». Вывод «+» имеет наибольшую длину среди остальных. А на некоторых корпусах возле него делается скос.

Конденсаторный фильтр

После диодного моста напряжение имеет пульсирующий характер и еще непригодно для питания микросхем и тем более микроконтроллеров, которые очень чувствительны к различного рода перепадам напряжения. Поэтому его необходимо сгладить. Для этого можно применяется дроссель либо конденсатор. В рассматриваемой схеме достаточно использовать конденсатор. Однако он должен иметь большую емкость, поэтому следует применять электролитический конденсатор. Такие конденсаторы зачастую имеют полярность, поэтому ее необходимо соблюдать при подключении в схему.

Схема сглаживания выпрямленного напряжения

Отрицательный вывод короче положительного и на корпусе возле первого наносится знак «-».

Конденсатор электролитический

Стабилизатор напряжения LM7805, LM7809, LM7812

Вы наверное замечали, что величина напряжения в розетке не равна 220 В, а изменяется в некоторых пределах. Особенно это ощутимо при подключении мощной нагрузки. Если не применять специальных мер, то оно и на выходе блока питания будет изменяться в пропорциональном диапазоне. Однако такие колебания крайне не желательны, а иногда и недопустимы для многих электронных элементов. Поэтому напряжение после конденсаторного фильтра подлежит обязательной стабилизации. В зависимости от параметров питаемого устройства применяются два варианта стабилизации. В первом случае используются стабилитрон, а во втором – интегральный стабилизатор напряжения. Рассмотрим применение последнего.

В радиолюбительской практике широкое применение получили стабилизаторы напряжения серии LM78xx и LM79xx. Две буквы указывают на производителя. Поэтому вместо LM могут быть и другие буквы, например CM. Маркировка состоит из четырех цифр. Первые две – 78 или 79 означают соответственно положительно или отрицательное напряжение. Две последние цифры, в данном случае вместо них два икса: хх, обозначают величину выходного U. Например, если на позиции двух иксов будет 12, то данный стабилизатор выдает 12 В; 08 – 8 В и т.д.

Для примера расшифруем следующие маркировки:

LM7805 → 5 В, положительное напряжение

LM7912 → 12 В, отрицательное U

Стабилизатор напряжения LM7805

Интегральные стабилизаторы имеют три вывода: вход, общий и выход; рассчитаны на ток 1А.

LM7805 обозначение выводов

Если выходное U значительно превышает входное и при этом потребляется предельный ток 1 А, то стабилизатор сильно нагревается, поэтому его следует устанавливать на радиатор. Конструкция корпуса предусматривает такую возможность.

Если ток нагрузки гораздо ниже предельного, то можно и не устанавливать радиатор.

Схема блока питания

Схема блока питания в классическом исполнении включает: сетевой трансформатор, диодный мост, конденсаторный фильтр, стабилизатор и светодиод. Последний выполняет роль индикатора и подключается через токоограничивающий резистор.

Схема блока питания

Поскольку в данной схеме лимитирующим по тока элементов является стабилизатор LM7805 (допустимое значение 1 А), то все остальные компоненты должны быть рассчитаны на ток не менее 1 А. Поэтому и вторичная обмотка трансформатора выбирается на ток от одного ампера. Напряжение ее должно быть не ниже стабилизированного значения. А по хорошему его следует выбирать из таких соображений, что после выпрямления и сглаживания U должно быть на 2 – 3 В выше, чем стабилизированное, т.е. на вход стабилизатора следует подавать на пару вольт больше его выходного значения. Иначе он будет работать некорректно. Например, для LM7805 входное U = 7 – 8 В; для LM7805 → 15 В. Однако следует учитывать, что при слишком завышенном значении U, микросхема будет сильно нагреваться, поскольку «лишнее» напряжение гасится на ее внутреннем сопротивлении.

Диодный мост можно сделать из диодов типа 1N4007, или взять готовый на ток не менее 1 А.

Сглаживающий конденсатор C1 должен иметь большую емкость 100 – 1000 мкФ и U = 16 В.

Конденсаторы C2 и C3 предназначены для сглаживания высокочастотных пульсаций, которые возникают при работе LM7805. Они устанавливаются для большей надежности и носят рекомендательный характер от производителей стабилизаторов подобных типов. Без таких конденсаторов схема также нормально работает, но поскольку они практически ничего не стоят, то лучше их поставить.

Блок питания своими руками на 78L05, 78L12, 79L05, 79L08

Часто необходимо питать только одну или пару микросхем или маломощных транзисторов. В таком случае применять мощный блок питания не рационально. Поэтому лучшим вариантом будет применение стабилизаторов серии 78L05, 78L12, 79L05, 79L08 и т.п. Они рассчитаны на максимальный ток 100 мА = 0,1 А, но при этом очень компактные и по размерам не больше обычного транзистора, а также не требует установки на радиатор.

78L05 обозначение выводов

Маркировка и схема подключения аналогичны, рассмотренной выше серии LM, только отличается расположением выводов.

LM7805

Для примера изображена схема подключения стабилизатора 78L05. Она же подходит и для LM7805.

LM7805

Схема включения стабилизаторов отрицательно напряжения приведена ниже. На вход подается -8 В, а на выходе получается -5 В.

Блок питания с отрицательным напряжением

Как видно, сделать блок питания своими руками очень просто. Любое напряжение можно получить путем установки соответствующего стабилизатора. Следует также помнить о параметрах трансформатора. Далее мы рассмотри, как сделать блок питания с регулировкой напряжения.

Электроника для начинающих

Еще статьи по данной теме

Простой блок питания с регулировкой напряжения и тока. — Радиомастер инфо

Довольно распространенная схема такого блока питания выполнена на двух транзисторах, силовом p-n-p КТ818 и усилителе КТ815. Схема для начинающих и они часто задают вопрос, можно ли выполнить эту схему на более распространенном силовом n-p-n транзисторе. Сделать можно, результаты даже лучше, чем на КТ818. О том, как это сделать рассказано в этой статье.

Для начала приведу, базовую, назовем ее так, схему простого блока питания на силовом p-n-p транзисторе КТ818.

Схема простого блока питания состоит из понижающего трансформатора Tr1, двухполупериодного выпрямителя на четырех диодах 1N4007, конденсатора фильтра С1, резистора R1, ограничивающего ток стабилитрона VD1, регулятора напряжения R4, усилителя на Т2, силового транзистора Т1, цепи регулировки тока R5 с ограничителем R2, диода развязки тока базы Т2 и резистора, повышающего стабильность работы схемы при разных токах нагрузки R3.

Максимальное выходное напряжение определяется напряжением вторичной обмотки трансформатора, рабочим напряжением стабилитрона VD1, допустимым напряжением транзисторов Т1 и Т2.

Максимальный ток нагрузки определяется мощностью трансформатора Tr1, соответственно диаметром провода вторичной обмотки, током диодов выпрямителя, максимальным током К-Э транзистора Т1, его коэффициентом усиления и как следствие, его током базы и параметрами транзистора Т2, который должен увеличить малый ток от стабилитрона до необходимого значения тока базы силового транзистора Т1, иначе Т1 полностью не откроется и на выходе не будет увеличения напряжения и тока при повороте соответствующих регуляторов (R4, R5).

Учитывая изложенный выше принцип работы схемы, был изготовлен вариант на силовом транзисторе n-p-n по следующей схеме.

В качестве транзисторов были опробованы несколько вариантов:

Т1 – КТ819, КТ805, КТ829, КТ8109, КТ8101

Т2 – КТ814, КТ816, КТ973

Сочетания транзисторов использовались разные. Наилучшие результаты получены на транзисторах Т1 КТ805БМ и Т2 КТ814В1.

Вот как выглядят детали, примененные в этой схеме:

Диапазон регулировки напряжения и тока самый широкий, падение напряжения на силовом транзисторе Т1 самое низкое и соответственно его нагрев меньше.

Что еще важно учитывать при изготовлении этой, и других подобных схем линейных стабилизаторов.

  1. Так как все лишнее напряжение падает на силовом транзисторе Т1, он греется. Больше всего он греется при больших тока и низких напряжениях на выходе. Например, при входном напряжении 16В, выходном 5В и токе 2А на транзисторе Т1 будет падать напряжение 11В. При токе 2А мощность, рассеиваемая на этом транзисторе будет равна 2А х 11В = 22Вт. При приблизительной оценке площади радиатора для Т1 получаем значение более 400 см кв. Это пластина 20х20 см или ребристый радиатор с такой же площадью охлаждения.

  1. Это понижает КПД устройства и делает его применение невыгодным при больших мощностях. Самый простой выход для повышения КПД, подобрать трансформатор с отводами на вторичной обмотке и поставить переключатель. В таком случае при нужном напряжении на выходе 5В на входе можно установить 7В. В этом случае, при том же токе 2А, на транзисторе Т1 будет рассеиваться мощность 4Вт. Это более чем в 4 раза меньше, чем в предыдущем случае.
  2. Схема простого блока питания не имеет эффективной защиты от короткого замыкания в нагрузке и при неблагоприятных ситуациях (большом токе и нагретом Т1) силовой транзистор Т1 может выйти из строя.
  3. Вывод. Данная схема удобна при использовании для токов в нагрузке до 1А. Наиболее рациональным в этом случае является изготовление металлического корпуса для блока питания и использования его в качестве радиатора для транзистора Т1. Главное достоинство – простота, отсутствие дефицитных деталей, а также плавная регулировка напряжения и тока делает схему привлекательной.

Материал статьи продублирован на видео:

Схема цепи

бестрансформаторного источника питания

Генерация постоянного тока низкого напряжения от сети переменного тока 220 В или 110 В очень полезна и необходима в области электроники. Низкое напряжение постоянного тока, например, 5 В, 6 В, 9 В, 12 В, используется в электронных схемах, светодиодных лампах, игрушках и многих других бытовых электронных приборах. Обычно для их питания используются батареи, но их необходимо время от времени заменять, что неэффективно с точки зрения затрат, а также требует нашего времени и энергии. Таким образом, альтернатива состоит в том, чтобы генерировать постоянный ток из сети переменного тока, для которого доступно много адаптеров переменного тока, но какие схемы они используют внутри?

Простой и понятный подход заключается в использовании понижающего трансформатора для снижения переменного тока, но недостатки использования трансформатора заключаются в том, что они дороги по стоимости, тяжелы по весу и имеют большие размеры.Мы уже рассмотрели этот тип преобразования переменного тока в постоянный, используя Transformer в этой статье. И да, мы также можем преобразовать высокое напряжение переменного тока в низкое напряжение постоянного тока, без использования трансформатора, это называется Бестрансформаторный источник питания . Основным компонентом схемы бестрансформаторного источника питания является конденсатор с понижением напряжения или конденсатор с номинальным напряжением X , которые специально разработаны для сети переменного тока. Этот конденсатор с номинальным значением X подключен последовательно к фазной линии переменного тока для снижения напряжения.Этот тип трансформаторного блока питания называется Capacitor Power Supply .

X-Rated Capacitor

Как уже упоминалось, они соединены последовательно с фазовой линией переменного тока для понижения напряжения, они доступны в 230 В, 400 В, 600 В переменного тока или выше.

x rated capacitors

Ниже приведена таблица для выходного тока и выходного напряжения (без нагрузки), различных значений конденсаторов с номинальной характеристикой X:

Код конденсатора

Значение конденсатора

Напряжение

Текущий

104k

0.1 мкФ

4 в

8 мА

334k

0,33 мкФ

10 В

22 мА

474k

0,47 мкФ

12 В

25 мА

684k

0,68 мкФ

18 v

100 мА

105к

1 мкФ

24 В

40 мА

225k

2.2 мкФ

24 В

100 мА

Выбор конденсатора падения напряжения важен, он основан на реактивном сопротивлении конденсатора и величине тока, который необходимо отвести. Реактивное сопротивление конденсатора определяется по формуле:

X = 1 / 2¶fC

X = Реактивное сопротивление конденсатора

f = частота переменного тока

C = Емкость X номинального конденсатора

Мы использовали 474k означает 0.Конденсатор на 47 мкФ и частота AV-сети составляют 50 Гц, поэтому Reactance X составляет:

X = 1/2 * 3,14 * 50 * 0,47 * 10 -6 = 6776 Ом (приблизительно)

Теперь мы можем рассчитать ток (I) в цепи:

I = V / X = 230/6775 = 34 мА

Так вот как рассчитывается реактивное сопротивление и ток.

Описание схемы

Цепь проста, конденсатор сброса напряжения 0,47 мкФ подключен последовательно с фазной линией переменного тока, это неполяризованные конденсаторы, поэтому он может быть подключен с любой стороны.Резистор на 470 кОм подключен параллельно конденсатору, чтобы разрядить накопленный ток в конденсаторе, когда цепь отключена, что предотвращает поражение электрическим током. Это сопротивление называется Сопротивление Bleeder .

Дополнительный мостовой выпрямитель (комбинация из 4 диодов) был использован для удаления отрицательной половины компонента переменного тока. Этот процесс называется Исправление . И конденсатор 1000 мкФ / 50 В был использован для фильтрации , означает удаление пульсаций в полученной волне.И, наконец, стабилитрон 6,2 В / 1 Вт используется в качестве регулятора напряжения. Как мы знаем, эта схема обеспечивает ок. Выход 12 В (см. Таблицу выше), поэтому этот стабилитрон регулирует его до прибл. Напряжение 6,2 В и обратный ток. Также можно использовать другое значение стабилитрона для требуемого напряжения, например, 5,1 В, 8 В и т. Д. Светодиод подключен для индикации и тестирования. R3 (100 Ом) используется в качестве ограничителя тока.

Используйте номинальный резистор мощностью 1 Вт или выше (5 Вт), особенно резистор R4.В противном случае он сгорит через некоторое время. Они обычно толще обычного резистора. Ниже приведена схема для резисторов разного типа:

Преимущества этого бестрансформаторного источника питания по сравнению с трансформаторным источником питания заключаются в следующем: он экономичен, легче и меньше.

Примечания

  • Сделайте это на свой страх и риск, крайне опасно работать с сетью переменного тока без надлежащего опыта и мер предосторожности.Будьте предельно осторожны при построении этой схемы.
  • Не заменяйте конденсатор X-Rated обычным, иначе он разорвется.
  • Если требуется большее выходное напряжение и выходной ток, используйте другое значение конденсатора X-Rated в соответствии с таблицей.
  • Используйте только номинальный резистор мощностью 1 Вт или выше (5 Вт) и стабилитрон.
  • Предохранитель на 1 ампер также можно использовать перед конденсатором с номинальным напряжением Х, последовательно с фазовой линией, в целях безопасности.
  • Регулятор напряжения
  • IC также может использоваться вместо стабилитрона для регулирования напряжения.
.

Однотранзистная светодиодная сигнальная цепь

Возможно, это самая маленькая светодиодная сигнализатор на 12 В на сегодняшний день, которая способна бесконечно мигать светодиодом ВКЛ / ВЫКЛ, используя один транзистор, резистор и конденсатор.

Можете ли вы представить себе великолепную светодиодную вспышку или мигалку с одним транзистором и несколькими другими пассивными частями? Это именно то, что мы узнаем в этом посте! Это, пожалуй, самый простой и крошечный светодиодный мигалка в мире!

Как это работает

Я столкнулся с этим явлением около восьми лет назад (2006), случайно, пытаясь сделать наименьшую возможную проблесковую индикацию на стороне мотоцикла, и был удивлен явлением.

Однако тогда я понял, что это явление уже было обнаружено г-ном Диком Кэппелсом, когда японский исследователь г-н Реона Эсаки (Aka Leo) исследовал теорию отрицательного сопротивления в BJT. Дипломная работа Реоны Эсаки в соответствующей области и на туннельных диодах в конечном итоге принесла ему Нобелевскую премию в 1972 году.

Это выглядит слишком хорошо, чтобы быть правдой, однако следующая диаграмма просто докажет, что действительно возможно создать работающую схему светодиодного флешера, используя только один транзистор общего назначения в качестве основного компонента.

Тогда я понятия не имел, что это происходит из-за отрицательных характеристик сопротивления транзистора.

Схема фактически использует отрицательный коэффициент сопротивления в транзисторах для создания эффекта мигания.

Я скоро напишу об этом обширную статью, и мы увидим, как концепция может быть изменена многими различными способами.

Перечень запасных частей для предлагаемой однотранзисторной светодиодной сигнальной цепи

  • R1 = 2K7,
  • R2 = 100 Ом,
  • T1 = BC 547,
  • C1 = от 100 мкФ до 470 мкФ
  • LED = любой тип, любой цвет

Частоту мигания можно варьировать, изменяя значение R1 или C1 или оба вместе.Но напряжение питания не должно быть меньше 9 В, иначе схема может работать неправильно.

Принципиальная схема

Подключение внешнего транзистора для более высоких нагрузок

Видеоклип:

Проектирование печатной платы

О Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и учебными пособиями.
Если у вас есть какие-либо вопросы, связанные со схемой, вы можете общаться через комментарии, я буду очень рад помочь!

Схема однотранзисторного радиоприемника

Это, пожалуй, самая простая схема радиоприемника, которую можно себе представить. Схема настолько проста, что ее можно собрать за несколько минут, и вы уже слушаете любимые программы.

Введение

Каковы основные критерии, связанные с радиоприемом? Ступенька антенны, ступень выбора полосы, ступень демодулятора и приемный элемент. Когда все это объединяется, радиоприем становится простым, как кусок пирога.

Показанная здесь схема одного транзисторного радиоустройства выглядит довольно обыденно, но включает в себя все вышеперечисленные этапы и становится просто подходящей для приема соседних радиостанций.

Однако простота всегда будет включать в себя и некоторые недостатки, здесь настоящая конструкция будет способна принимать только сильные станции, а также избирательность может быть не очень приятной, как правило, если есть несколько сильных станций, смешивающихся вокруг полосы.

Схема работы

На рисунке ниже показано, как можно создать одно транзисторную радиостанцию. Мы можем ясно видеть, что в качестве основного активного компонента используется только один транзистор.Обычный тип MW антенной катушки использовался для сбора или определения MW-приемов.

Катушка настраивается с использованием конденсатора GANG или переменного конденсатора, который подключен параллельно к катушке антенны. Катушка и GANG вместе образуют резонансный контур резервуара, который фиксируется на принимаемой или резонансной частоте при определенной настройке. ,

Сконцентрированный, но очень слабый по мощности сигнал от вышеупомянутой настроенной ступени LC подается на базу транзистора, который выполняет функцию демодулятора, а также ступени усилителя.

Конденсатор связи на базе транзистора обеспечивает передачу только радиоинформации на транзистор, а компонент постоянного тока от источника питания надлежащим образом заблокирован.

Наушники
становятся нагрузкой и коммутатором

Наушники 64 Ом становятся нагрузкой коллектора транзистора, на который подается демодулированный и усиленный сигнал.

При подключении принимаемые сигналы могут быть отчетливо слышны через наушники с этим небольшим «звуковым чудом». Подключение наушников запускает схему, и схема начинает работать со своими функциями, а сама выключается, когда наушники отсоединяются от цепи. ,

Это исключает необходимость подключения внешнего переключателя к цепи, что делает устройство очень компактным.

Для работы схемы требуется всего 1,5 В, что может быть реализовано с использованием типа ячейки с одной кнопкой.

Вы также хотели бы построить эту ОДНУ ТРАНЗИСТОР FM-РАДИО ЦЕПЬ

Обратная связь от одного из заядлых читателей этого блога, г-н С.А. Genoff

Не могли бы вы взглянуть на мой первый дизайн одного транзисторного радио ? Приложено фото моей работы.Я не изучал электронику экстенсивно, только некоторые студенты по физике и математике. Я знаю закон Ома и знаком с уравнениями Максвелла, но не в разговорной речи.

Большое спасибо за вашу работу и веб-страницы, Стивен A Genoff

Мой ответ:

Почему есть два положительных? Возможно, батарею следует заменить на катушку. Вы пробовали это на практике, как это отреагировало? Часть управления громкостью также может быть неправильным по мне!

О Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель.Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и учебными пособиями.
Если у вас есть запрос, связанный со схемой, вы можете взаимодействовать через комментарии, я буду очень рад помочь!

однолинейная схема системы электроснабжения — объяснение и преимущества присоединения генерирующих станций

Электрическая энергия вырабатывается на генерирующих станциях, а через сеть передачи она передается потребителям. Между генерирующими станциями и распределительными станциями используются три различных уровня напряжения (уровень передачи, дополнительная передача и уровень распределения).

Высокое напряжение требуется для передачи на большие расстояния, а низкое напряжение — для коммунальных нужд.Уровень напряжения снижается от системы передачи к распределительной системе. Электрическая энергия генерируется трехфазным синхронным генератором (генераторами переменного тока), как показано на рисунке ниже. Напряжение генерации обычно составляет 11 кВ и 33 кВ.

power-supply-system Это напряжение слишком низкое для передачи на большие расстояния. Следовательно, он повышается до 132, 220, 400 кВ или более с помощью повышающих трансформаторов. При этом напряжении электрическая энергия передается на основную подстанцию, где энергия подается от нескольких подстанций.

Напряжение на этих подстанциях снижается до 66 кВ и подается в систему субпередачи для последующей передачи на распределительные подстанции. Эти подстанции расположены в районе центров нагрузки.

Напряжение снижается до 33 кВ и 11 кВ. Крупные промышленные потребители снабжаются на уровне первичного распределения 33 кВ, в то время как мелкие промышленные потребители поставляются на 11 кВ.

Напряжение снижается дополнительно с помощью распределительного трансформатора, расположенного в жилом и коммерческом районе, где оно подается этим потребителям на вторичном распределительном уровне 400 В, трехфазного и 230 В, однофазного.

Преимущество объединения генерирующих станций

Энергетическая система состоит из двух или более генерирующих станций, которые соединены связующими линиями. Объединение генерирующих станций имеет следующие важные преимущества.

  1. Это позволяет экономически взаимно передавать энергию из избыточной зоны в зону дефицита.
  2. Меньшая общая установленная мощность для удовлетворения пикового спроса.
  3. Требуются малые резервные резервные генерирующие мощности.
  4. Это позволяет генерировать энергию на самой эффективной и дешевой станции в любое время.
  5. Это снижает капитальные затраты, эксплуатационные расходы и стоимость произведенной энергии.
  6. Если произошла серьезная поломка генерирующего системного блока во взаимосвязанной системе, то перебои в подаче электроэнергии не происходят.

Взаимосвязь обеспечивает наилучшее использование энергоресурсов и большую надежность поставок. Это обеспечивает общую экономическую генерацию за счет оптимального использования мощной экономичной генераторной установкиСоединение между сетями осуществляется либо по линиям HVAC (переменного тока высокого напряжения), либо по линиям HVDC (постоянного тока высокого напряжения).

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *