Что такое автотрансформатор – устройство, принцип действия, схема, типы

Содержание

Что такое автотрансформатор?. Статьи. Поддержка. ТД ТРАНСФОРМАТОР – электрические трансформаторы

Трансформатор, в общем смысле, предназначается для преобразования входного тока одного напряжения в выходной ток другого напряжения. В случаях, когда возникает необходимость изменить напряжение в небольших пределах, проще и целесообразнее использовать для этих целей однообмоточный трансформатор – так называемый автотрансформатор, вместо двухобмоточного.

Итак, автотрансформатор – это один из вариантов электрического трансформатора, в котором первичная и вторичная обмотки соединены напрямую, благодаря чему, имеют и электромагнитную и гальваническую связь.

Объединенная обмотка автотрансформатора имеет минимум 3 вывода. Подключаясь к этим выводам, можно получать разные напряжения. При малых коэффициентах трансформации от 1 до 2, автотрансформаторы эффективнее, легче и дешевле, чем многообмоточные трансформаторы.

Главное преимущество автотрансформатора – это высокий коэффициент полезного действия (КПД), который достигает 99%. Это связано с тем, что преобразованию подвергается лишь часть мощности. В условиях, когда входное и выходное напряжение отличаются незначительно – это является существенным плюсом, поскольку потери на преобразовании минимальны.

Главный недостаток автотрансформаторов заключается в том, что здесь нет гальванического обособления первичной и вторичной электрических цепей при помощи изоляции, как в обычном трансформаторе. Т.е. здесь невозможно создание так называемой «гальванической развязки», поэтому при высоких коэффициентах преобразования велика вероятность возникновения короткого замыкания, или возникновения пробоя автотрансформатора.

Применение автотрансформаторов экономически оправдано при соединении эффективно заземленных сетей с напряжением более 110 кВ, а также коэффициентом трансформации менее 3-4, поскольку потери электроэнергии меньше чем у обычного электрического трансформатора. Ещё одним экономическим обоснованием для применения автотрансформатора является тот факт, что для его производства используется меньшее количество меди для обмоток и электротехнической стали для сердечника, поэтому вес и габариты автотрансформатора меньше, а его стоимость ниже.

Автотрансформаторы применяются в качестве преобразователей электрического напряжения в пусковых устройствах различных электродвигателей переменного тока, включая самые мощные, для плавной регулировки напряжения в схемах релейной защиты и др. Регулирующие автотрансформаторы, благодаря возможности механического перемещения точки отвода вторичного напряжения, позволяют сохранить вторичное напряжение постоянным при изменении первичного напряжения. При этом, один и тот же автотрансформатор может быть как повышающим, так и понижающим – все зависит от включения обмоток.

Лабораторные автотрансформаторы регулируемые (ЛАТРы)

В низковольтных сетях также используются автотрансформаторы, как лабораторные регуляторы напряжения небольшой мощности. В таких автотрансформаторах напряжение регулируется путем перемещения скользящего контакта по виткам обмотки.

ЛАТРы изготавливаются путем однослойной обмотки изолированным медным проводом кольцеобразного ферромагнитного магнитопровода. Такая обмотка имеет несколько постоянных ответвлений, что позволяет использовать ЛАТРы как понижающие или повышающие трансформаторы с определенным постоянным коэффициентом трансформации. Дополнительно, на поверхности медной обмотки, очищенной от изоляции, насечена узкая дорожка, по которой может перемещаться роликовый или щеточный контакт. Это сделано для того, чтобы получить плавность регулирования вторичного напряжения в пределах от 0 до 250В. Стоит отметить, что витковых замыканий, при замыкании соседних витков в лабораторном трансформаторе, не происходит, поскольку токи сети и нагрузки в совмещенной обмотке автотрансформатора близки относительно друг друга и направлены встречно. ЛАТРы изготавливаются номинальной мощностью от 0,5 до 7,5 кВА.

Применение автотрансформаторов помогает улучшить КПД различных энергосистем и обеспечить снижение стоимости передачи энергии, однако, приводит к повышению опасности возникновения короткого замыкания.

Преимущества автотрансформаторов по сравнению с обычными трансформаторами:

  • пониженный расход активных материалов, таких как медь и электротехническая сталь,
  • повышенный КПД энергосистемы (до 99,7%)
  • сниженные размер и вес
  • невысокая стоимость

Недостатки применения автотрансформаторов относительно обычных электрических трансформаторов:

  • Снижение эффективности при больших (больше 3-4) коэффициентах трансформации;
  • Из-за того, что первичная и вторичная обмотка соединены в одну обмотку автотрансформатора, и имеют электрическую связь, он не может быть использован как понижающий силовой трансформатор для сетей, напряжением, скажем, от 6 до 10 кВ. Это связано с тем, что, в случае возникновения аварии, все части автотрансформатора, и подключенных электроприборов окажутся связаны с высоковольтным оборудованием питающей сети. Это не допускается техникой безопасности обслуживания и из-за возможности пробоя изоляции токопроводящих частей присоединенного электрооборудования, с которым работают люди.

Автотрансформаторы успешно конкурируют за потребителя, наряду с двух- и даже трехобмоточными электрическими трансформаторами. Автотрансформаторы относительно не дороги, удобны, могут выполнять функции как повышения, так и понижения, и являются идеальным выбором для сетей с невысоким напряжением и коэффициентом трансформации.

www.tdtransformator.ru

что это такое, разновидности и применение

Трансформаторные устройства обеспечивают нормальное функционирование различной электротехники. Лабораторный автотрансформатор (ЛАТР) выполняет функции своеобразного блока питания для напряжения сети переменного типа. Что такое ЛАТР, каковы его особенности и основной принцип работы, будет рассмотрено далее.

Особенности

Рассматривая, что это такое ЛАТР, следует отметить, что это разновидность автотрансформаторов. Он характеризуется невысокой мощностью, ему не требуется госреестр. Принцип работы, которым обладает лабораторный регулировочный автотрансформатор, заключается в настройке напряжения переменного типа однофазной(слева на фото) или трехфазной сети(справа).

Схема ЛАТРа включает в себя стальной сердечник тороидального типа. На нем присутствует всего один контур. Двух отдельных обмоток у этого устройства нет. Контуры совмещены. Одна часть может быть отнесена к виткам первичного типа, а другая – к виткам вторичного типа. Регулировочный автотрансформатор ЛАТР имеет достаточно простую схему. Пользователь может самостоятельно настраивать количество витков вторичной обмотки. Это отличает представленную разновидность агрегатов от других трансформаторов. О том как собрать ЛАТР своими руками мы писали здесь.

Конструкция

Регулировать представленный агрегат становится возможным посредством наличия в конструкции поворотной ручки. С ее помощью задается количество витков вторичного контура. Ручка связывается с угольной щеткой. Регулируемые автотрансформаторы позволяют управлять обмотками после включения аппаратуры. При этом щетка, согласно инструкции, скользит вдоль контура, задавая показатель трансформации.

С угольной щеткой соединяется один из выходов вторичной обмотки. Другой ее конец подведен к входной стороне сети. Потребители подсоединяются к выходным клеммам, а они, в свою очередь, подключаются к электросети. Это делает применение оборудования эффективным и удобным.

На лицевой панели прибора устанавливается вольтметр. Он снимает показания вторичной цепи. Это позволяет оперативно реагировать на перегрузки. Вольтметр предоставляет возможность производить регулировку точно.

На корпусе есть вентиляционная решетка. Это обеспечивает естественное охлаждение магнитопривода.

Разновидности

Существует оборудование, рассчитанное на регулировку напряжения трехфазной или однофазной сети. Во втором варианте электронный ЛАТР имеет одну обмотку и один сердечник. Трехфазный агрегат включает в свою конструкцию три сердечника. На каждом из них есть по одной обмотке.

ЛАТРы могут как понижать, так и повышать напряжение. Это их основная особенность. Однофазные разновидности создают напряжение в сети от 0 до 250 В. ЛАТР трехфазный (380 В в сети) может регулировать диапазон от 0 до 450 В.

Следует отметить, что КПД обеих разновидностей приборов высокий. Он достигает 99%. При этом создается выходное напряжение синусоидной формы.

Применение

ЛАТРы применяют в исследовательских центрах, лабораториях для проведения тестирования оборудования переменного тока. Иногда подобные приборы необходимы для стабилизации сетевого напряжения. Например, в момент недостаточного его уровня в сети в данный момент.

Однако сфера его применения ограничена. Если в сети наблюдаются постоянные перепады, скачки, применение автотрансформатора будет бессмысленным. В этом случае потребуется установить стабилизатор. Главным предназначением ЛАТРа является точная настройка напряжения для выполнения различных исследовательских задач, тестов.

Подобное оборудование может потребоваться в процессе наладки приборов промышленного назначения, высокочувствительной аппаратуры, радиоэлектроники. Они обеспечивают правильное питание техники, работающей на низком напряжении. Также их применяют при выполнении зарядки аккумуляторов.

Рассмотрев основные особенности лабораторных автотрансформаторов, можно правильно применять агрегат в различных целях, повышая эффективность и удобство настройки различного оборудования.

protransformatory.ru

ЛАТР (Лабораторный автотрансформатор) | Виды, описание работы

Что такое ЛАТР

Помните, мы как-то с вами рассматривали блок питания и даже делали его сами. Блок питания выдавал нам постоянное напряжение от нуля и до какого-то значения, которое, конечно же, зависит от крутизны блока питания. Согласитесь, очень удобная штука. Но есть  один минус  –  он нам выдает только постоянное напряжение.

Но, раз есть блок питания на постоянное напряжение, то должен быть блок питания и на переменное напряжение. И называется такой блок питания лабораторный автотрансформатор или сокращенно ЛАТР. Что это за вещь и с чем ее едят?

ЛАТР – это тот же трансформатор. Он преобразовывает переменное напряжение одной величины в переменное напряжение другой величины. Но вся фишка в том, что мы можем  менять при необходимости напряжение на выходе ЛАТРа.

Виды ЛАТРов

ЛАТРы бывают:

однофазные

и трехфазные

Трехфазный ЛАТР – это три однофазных ЛАТРа, запиханные в один корпус.

Описание ЛАТРа РЕСАНТА

Давайте рассмотрим однофазный ЛАТР латвийского производства РЕСАНТА (читается по-русски) марки TDGC2-0.5 kVA.

Сверху наш ЛАТР выглядит вот так:

Мы видим крутилку, с помощью которой можем выставлять нужное нам напряжение.

На лицевой стороне видим какое-то подобие вольтметра переменного напряжения. На клеммы слева заводим напряжение из розетки 220 Вольт, ну а с клемм справа выводим нужное нам напряжение, покрутив крутилку в нужном направлении ;-).

Работа ЛАТРа на практике

Давайте проведем опыты с лампочкой накаливания в 95 Ватт 220 Вольт. Для этого цепляем ее к клеммам справа.

Интересно, при каком напряжении начнет светится спираль лампочки? Давайте узнаем! Крутим крутилку, пока не заметим слабое свечение лампочки.

Смотрим на шкалу крутилки. 35 Вольт!

А вы знаете, что в США  в розетке 110 Вольт? Интересно, как бы светилась наша лампочка в США? Выставляем 110 Вольт.

Светится, как говорится, в пол накала.

А вот теперь посмотрите, как она светится при 220 Вольтах

Дальше повышать напряжение нет смысла. Лампочку жалко.

Если хотите выставить напряжение с большой точностью, то конечно же, здесь не обойтись без мультиметра. Для этого ставим крутилку мультиметра  на положение измерения переменного напряжения

Цепляемся и меряем переменное напряжение. Заодно подгоняем с помощью крутилки ЛАТРа  нужное напряжение

Техника безопасности при работе с ЛАТРом

Хочется также добавить пару слов о технике безопасности. Есть ЛАТРы без гальванической развязки. Это означает, что фазный провод из сети идет прямо на выход ЛАТРа. Схема ЛАТРа без гальванической развязки выглядит вот так:

В этом случае на выходной клемме ЛАТРа может появиться напряжение сети 220 Вольт с вероятностью 50/50. Все зависит от того, как вы воткнете сетевую вилку ЛАТРа в розетку 220 Вольт.

Если присмотреться к схемотехническому изображению на самой лицевой панели ЛАТРа, то можно увидеть, что клемма “Х” и “х”  (те, которые два нижних) связаны между собой простым проводом:

То есть если на клемме “Х” фаза, то и на клемме “х” тоже будет фаза! Вы ведь не будете каждый раз замерять фазу в розетке, чтобы воткнуть правильно вилку? Поэтому БУДЬТЕ крайне ОСТОРОЖНЫ! Старайтесь не задевать голыми руками выходные клеммы ЛАТРа!

В принципе я задевал и ничего со мной такого не произошло. Дело оказалось в том, что у меня деревянный пол, который почти является диэлектриком. Замерял напряжение между мной и фазой – вышло около 40 Вольт. Поэтому я и не чувствовал эти 40 Вольт. Если бы я взялся одной рукой за батарею или встал бы голыми ногами на землю, а другой рукой взялся бы за выход “х” ЛАТРа, то меня тряхануло бы очень сильно, так как через меня прошли бы полноценные 220 Вольт.

Разделительный трансформатор и ЛАТР

Есть также более безопасные виды ЛАТРов. В своем составе они имеют развязывающий трансформатор. Схема такого ЛАТРа выглядит примерно вот так:

Как мы видим, фазный провод изолирован от выходных клемм такого ЛАТРа, благодаря трансформатору, принцип работы которого вы можете прочитать в этой статье. В этом случае нас может тряхануть, если мы на выходе  ЛАТРа с помощью крутилки выставим высокое напряжение и возьмемся сразу за два выходных провода ЛАТРа.

Заключение

ЛАТР – прибор очень полезный.  Я бы посоветовал начинающему электронщику ЛАТР на 500 ВА. Такие ЛАТРы очень компактные и удобные. Работает ЛАТР по принципу трансформатора. Чем меньше витков во вторичной обмотке, тем меньше напряжение  на выходе. Когда мы крутим крутилку, мы добавляем витки, а следовательно и напряжение. Принцип работы трансформатора подробно рассмотрен в этой статейке. Думаю, говорить про применение ЛАТРа нет смысла, так как он используется везде, где надо понизить переменное напряжения или даже чуточку его повысить.

Где купить ЛАТР

ЛАТР выгоднее всего купить либо в ближайшем радиомагазине, либо все-таки заказать в российском интернет-магазине, так как тяжелые товары из Китая обойдутся дороже. Можете присмотреть по этой ссылке.

www.ruselectronic.com

его теоретические основы и инструкция

Авто трансформатор – это специальная разновидность электрического трансформатора, в котором первичная и вторичная обмотка соединяются вместе. Как видите, автотрансформатор имеет достаточно простую конструкцию и разобраться в ней может каждый.

В этой статье мы расскажем о принципе работы этого устройства. Вы сможете узнать не только теоретические основы, но и практическое применение.

Автотрансформатор и его теоретические основы

В автотрансформаторе вы сможете найти единственную обмотку. Она будет использоваться не только в качестве первичной, но и в качестве вторичной обмотки. Схема автотрансформатора указана на фото ниже:

На этом фото вы сможете увидеть, что обмотка AB считается общим числом оборотов. N1 считается первичной обмоткой. Как видите, на фото эта обмотка будет выходить из точки C. В этом случае участок BC будет рассматриваться в качестве вторичной обмотки. Теперь мы можем предположить, что число витков между точками BC будут составлять N2.

Если напряжение в автотрансформаторе будет проходить через V1, тогда напряжение на отрезке первого витка будет составлять V1/N1. Таким образом на участке BC будет V1/N1*N2=V2, а это означает V2/V1=N2/N1=константа k.

Исходя из этих результатов можно сделать вывод о том, что константа будет являться отношением напряжения в автотрансформаторе. Когда нагрузка будет подаваться на участок между вторичными клеммами, тогда показатель тока составит I2. Показатель во вторичной обмотке будет составлять I1 и I2. Теперь мы рекомендуем вашему вниманию соответствующее видео:

Автотрансформатор и экономия потребления меди

Если вы планируете использовать авто трансформатор, тогда сможете значительно сэкономить потребление меди. Электрический силовой трансформатор может использовать значительно больше меди.

На данный момент практически каждый человек знает, что вес меди будет зависеть от ее сечения и длины. Длина проводника в обмотке будет пропорциональна числу его оборотов и типу сечения. Итак, из этого понятно, что вес меди в сечении, где проходит переменный ток пропорционален I1 и вес меди на участке BC также будет составлять I1.

(N1 — N2) I1 + N2 (I2 — I1) ⇒ N1I1 — N2I1 + N2I2 — N2I1 ⇒ N1I1 + N2I2 — 2N2I1 ⇒ 2N1I1 — 2N2I1 (поскольку N1I1 = N2I2) ⇒ 2 (N1I1 — N2I1).

Благодаря этой формуле можно доказать, что удельный вес меди в двух обмоточном трансформаторе будет пропорциональным N1I1 + N2I2⇒ 2N1I1 (поскольку в трансформаторе N1I1 = N2I2).

Теперь давайте представим, что Wa и WTW будут являться показателями веса меди в авто трансформаторе, а в двух обмоточном трансформаторе они будут означать:

Благодаря этой формуле можно сделать вывод, что экономия потребления меди в автотрансформаторе будет составлять ⇒ WTW — Wa = kWtw.

Однофазный трансформатор 400/220 киловольт

Автотрансорматор этого типа может иметь только одну обмотку. Именно поэтому во время его использования вы можете столкнуться с определенными преимуществами.

Для коэффициента трансформации размер авто трансформатора будет составлять 50%. Этот показатель был взят в сравнении с обычным трансформатором. Если говорить о стоимости, тогда можно сделать вывод о том, что она будет значительно меньше. Показатель стоимости будет низким, когда коэффициент трансформации будет являться не менее двух. Если вам будет интересно, тогда можете прочесть про измерительные трансформаторы.

Недостатки авто трансформатора

Как и любое другое устройство конструкция автотрансформатора может иметь определенные недостатки. К основным недостаткам можно отнести:

  1. Низковольтная схема в этом устройстве будет зависеть от высокого напряжения. Если вы планируете избежать, сбоя в сети, тогда вам необходимо разработать схему обеспечения низкого напряжения. Благодаря этому ваше устройство сможет выдержать высокие нагрузки.
  2. Поток рассеивания между обмотками считается небольшим. Это может означать, что, если система будет неисправной, тогда может возникнуть короткое замыкание.
  3. Соединения между первичной и вторичной обмоткой должны быть одинаковыми. Именно поэтому во время соединения у вас могут возникнуть определенные проблемы.
  4. Систему невозможно выполнить с заземляющей нетралью с одной стороны. Именно поэтому нейтраль должны иметь оба блока.
  5. В этой конструкции вам будет сложно сохранить в целостности электромагнитный баланс. Балансирование будет связано с увеличением корпуса этого устройства. Если диапазон будет большим, тогда преимущества первоначальной стоимости значительно растеряются.

Надеемся, что, благодаря нам вы разберетесь с устройством автотрансформатора. Мы постарались предоставить вашему вниманию детальную инструкцию о его применении. Также мы постарались дать полный ответ на вопрос, что такое автотрансформатор.

Читайте также: трансформатор тесла своими руками.

vse-elektrichestvo.ru

Что такое автотрансформатор?

Авто трансформатор – это специальная разновидность электрического трансформатора, в котором первичная и вторичная обмотка соединяются вместе. Как видите, автотрансформатор имеет достаточно простую конструкцию и разобраться в ней может каждый.

В этой статье мы расскажем о принципе работы этого устройства. Вы сможете узнать не только теоретические основы, но и практическое применение.

Автотрансформатор и его теоретические основы

В автотрансформаторе вы сможете найти единственную обмотку. Она будет использоваться не только в качестве первичной, но и в качестве вторичной обмотки. Схема автотрансформатора указана на фото ниже:

На этом фото вы сможете увидеть, что обмотка AB считается общим числом оборотов. N1 считается первичной обмоткой. Как видите, на фото эта обмотка будет выходить из точки C. В этом случае участок BC будет рассматриваться в качестве вторичной обмотки. Теперь мы можем предположить, что число витков между точками BC будут составлять N2.

Если напряжение в автотрансформаторе будет проходить через V1, тогда напряжение на отрезке первого витка будет составлять V1/N1. Таким образом на участке BC будет V1/N1*N2=V2, а это означает V2/V1=N2/N1=константа k.

Исходя из этих результатов можно сделать вывод о том, что константа будет являться отношением напряжения в автотрансформаторе. Когда нагрузка будет подаваться на участок между вторичными клеммами, тогда показатель тока составит I2. Показатель во вторичной обмотке будет составлять I1 и I2. Теперь мы рекомендуем вашему вниманию соответствующее видео:

Автотрансформатор и экономия потребления меди

Если вы планируете использовать авто трансформатор, тогда сможете значительно сэкономить потребление меди. Электрический силовой трансформатор может использовать значительно больше меди.

На данный момент практически каждый человек знает, что вес меди будет зависеть от ее сечения и длины. Длина проводника в обмотке будет пропорциональна числу его оборотов и типу сечения. Итак, из этого понятно, что вес меди в сечении, где проходит переменный ток пропорционален I1 и вес меди на участке BC также будет составлять I1.

(N1 — N2) I1 + N2 (I2 — I1) ⇒ N1I1 — N2I1 + N2I2 — N2I1 ⇒ N1I1 + N2I2 — 2N2I1 ⇒ 2N1I1 — 2N2I1 (поскольку N1I1 = N2I2) ⇒ 2 (N1I1 — N2I1).

Благодаря этой формуле можно доказать, что удельный вес меди в двух обмоточном трансформаторе будет пропорциональным N1I1 + N2I2⇒ 2N1I1 (поскольку в трансформаторе N1I1 = N2I2).

Теперь давайте представим, что Wa и WTW будут являться показателями веса меди в авто трансформаторе, а в двух обмоточном трансформаторе они будут означать:

Благодаря этой формуле можно сделать вывод, что экономия потребления меди в автотрансформаторе будет составлять ⇒ WTW — Wa = kWtw.

Однофазный трансформатор 400/220 киловольт

Автотрансорматор этого типа может иметь только одну обмотку. Именно поэтому во время его использования вы можете столкнуться с определенными преимуществами.

Для коэффициента трансформации размер авто трансформатора будет составлять 50%. Этот показатель был взят в сравнении с обычным трансформатором. Если говорить о стоимости, тогда можно сделать вывод о том, что она будет значительно меньше. Показатель стоимости будет низким, когда коэффициент трансформации будет являться не менее двух. Если вам будет интересно, тогда можете прочесть про измерительные трансформаторы.

Недостатки авто трансформатора

Как и любое другое устройство конструкция автотрансформатора может иметь определенные недостатки. К основным недостаткам можно отнести:

  1. Низковольтная схема в этом устройстве будет зависеть от высокого напряжения. Если вы планируете избежать, сбоя в сети, тогда вам необходимо разработать схему обеспечения низкого напряжения. Благодаря этому ваше устройство сможет выдержать высокие нагрузки.
  2. Поток рассеивания между обмотками считается небольшим. Это может означать, что, если система будет неисправной, тогда может возникнуть короткое замыкание.
  3. Соединения между первичной и вторичной обмоткой должны быть одинаковыми. Именно поэтому во время соединения у вас могут возникнуть определенные проблемы.
  4. Систему невозможно выполнить с заземляющей нетралью с одной стороны. Именно поэтому нейтраль должны иметь оба блока.
  5. В этой конструкции вам будет сложно сохранить в целостности электромагнитный баланс. Балансирование будет связано с увеличением корпуса этого устройства. Если диапазон будет большим, тогда преимущества первоначальной стоимости значительно растеряются.

Надеемся, что, благодаря нам вы разберетесь с устройством автотрансформатора. Мы постарались предоставить вашему вниманию детальную инструкцию о его применении. Также мы постарались дать полный ответ на вопрос, что такое автотрансформатор.

трансформатор тесла своими руками.

dekormyhome.ru

Особенности конструкции и режимы работы автотрансформаторов



В установках 110 кВ и выше широкое применение находят автотрансформаторы большой мощности. Объясняется это рядом преимуществ, которые они имеют по сравнению с трансформаторами.

Рис.1. Схема однофазного автотрансформатора

Однофазный автотрансформатор имеет электрически связанные обмотки ОВ и ОС (рис.1). Часть обмотки, заключенная между выводами В и С, называется последовательной, а между С и О — общей.

При работе автотрансформатора в режиме понижения напряжения в последовательной обмотке проходит ток Iв, который, создавая магнитный поток, наводит в общей обмотке ток Io. Ток нагрузки вторичной обмотки Ic складывается из тока Iв, проходящего благодаря гальванической (электрической) связи обмоток, и тока Io, созданного магнитной связью этих обмоток: Ic=Iв+Io, откуда Io=Ic-Iв.

Полная мощность, передаваемая автотрансформатором из первичной сети во вторичную, называется проходной.

Если пренебречь потерями в сопротивлениях обмоток автотрансформатора. можно записать следующее выражение:

Преобразуя правую часть выражения, получаем:

(3)

где (Uв — Uc)Iв=Sт — трансформаторная мощность, передаваемая магнитным путем из первичной обмотки во вторичную; UcIв=Sэ — электрическая мощность, передаваемая из первичной обмотки во вторичную за счет их гальванической связи, без трансформации.

Эта мощность не нагружает общей обмотки, потому что ток Iв из последовательной обмотки проходит на вывод С, минуя обмотку ОС.

В номинальном режиме проходная мощность является номинальной мощностью автотрансформатора S=Sном, а трансформаторная мощность — типовой мощностью Sт=Sтип.

Размеры магнитопровода, а следовательно, его масса определяются трансформаторной (типовой) мощностью, которая составляет лишь часть номинальной мощности:

(4)

где nBC = UBUC — коэффициент трансформации; kвыг коэффициент выгодности или коэффициент типовой мощности.

Из (4) следует, что чем ближе UB к UC, тем меньше kвыг и меньшую долю номинальной составляет типовая мощность. Это означает, что размеры автотрансформатора, его масса, расход активных материалов уменьшаются по сравнению с трансформатором одинаковой номинальной мощности.

Например, при UB=330кВ, UC=110кВ, kвыг=0,667, а при UB=550кВ, UC=330кВ, kвыг=0,34.

Наиболее целесообразно применение автотрансформаторов при сочетании напряжений 220/110; 330/150; 500/220; 750/330.

Из схемы (рис.1) видно, что мощность последовательной обмотки

Sп=(UB-UC)IB=Sтип;

мощность общей обмотки

Таким образом, еще раз можно подчеркнуть, что обмотки и магнитопровод автотрансформатора рассчитываются на типовую мощность, которую иногда называют расчетной мощностью. Какая бы мощность ни подводилась к зажимам В или С, последовательную и общую обмотки загружать больше чем на Sтип нельзя. Этот вывод особенно важен при рассмотрении комбинированных режимов работы автотрансформатора. Такие режимы возникают, если имеется третья обмотка, связанная с автотрансформаторными обмотками только магнитным путем.

Третья обмотка автотрансформатора (обмотка НН) используется для питания нагрузки, для присоединения источников активной или реактивной мощности (генераторов и синхронных компенсаторов), а в некоторых случаях служит лишь для компенсации токов третьих гармоник. Мощность обмотки НН SН не может быть больше Sтип, так как иначе размеры автотрансформатора будут определяться мощностью этой обмотки. Номинальная мощность обмотки НН указывается в паспортных данных автотрансформатора.

Рассмотрим режимы работы трехобмоточных автотрансформаторов с обмотками ВН, СН и НН (рис.2).

Рис.2. Распределение токов в обмотках автотрансформатора в различных режимах
а,б — автотрансформаторные режимы,
в,г — трансформаторные режимы,
д,е — комбинированные режимы

В автотрансформаторных режимах (рис.2,а,б) возможна передача номинальной мощности Sном из обмотки ВН в обмотку СН или наоборот. В обоих режимах в общей обмотке проходит разность токов IС-IВ=kтипIC, а поэтому последовательная и общая обмотки загружены типовой мощностью, что допустимо.

В трансформаторных режимах (рис.2,в,г) возможна передача мощности из обмотки НН в обмотку СН или ВН, причем обмотку НН можно загрузить не более чем на Sтип. Условие допустимости режима НН→ВН или НН→СН:

(5)

Если происходит трансформация Sтип из НН в СН, то общая обмотка загружена такой же мощностью и дополнительная передача мощности из ВН в СН невозможна, хотя последовательная обмотка не загружена.

В трансформаторном режиме передачи мощности Sтип из обмотки НН в ВН (рис.2,г) общая и последовательная обмотки загружены не полностью:

поэтому возможно дополнительно передать из обмотки СН в ВН некоторую мощность (см. пояснения к рис.2,е).

В комбинированном режиме передачи мощности автотрансформаторным путем ВН→СН и трансформаторным путем НН→СН (рис.2,д) ток в последовательной обмотке.

где РB QB — активная и реактивная мощности, передаваемые из ВН в СН.

Нагрузка последовательной обмотки

Отсюда видно, что даже при передаче номинальной мощности SB=Sном последовательная обмотка не будет перегружена.

В общей обмотке токи автотрансформаторного и трансформаторного режимов направлены одинаково:

Io=Io(a)+I(т).

Нагрузка общей обмотки

So=UC(Io(a)+I(т)).

Подставляя значения токов и производя преобразования, получаем:

(6)

где РH, QH — активная и реактивная мощности, передаваемые из обмотки НН в обмотку СН.

Таким образом, комбинированный режим НН→СН, ВН→СН ограничивается загрузкой общей обмотки и может быть допущен при условии

(7)

Если значения cosφ на стороне ВН и НН незначительно отличаются друг от друга, то кажущиеся мощности можно складывать алгебраически и (6) упрощается

(8)

В комбинированном режиме передачи мощности из обмоток НН и СН в обмотку ВН распределение токов показано на рис.2,е. В общей обмотке ток автотрансформаторного режима направлен встречно току трансформаторного режима, поэтому загрузка обмотки значительно меньше допустимой и в пределе может быть равна нулю. В последовательной обмотке токи складываются, что может вызвать ее перегрузку. Этот режим ограничивается загрузкой последовательной обмотки

(9)

где Рс, Qс — активная и реактивная мощности на стороне СН; Рн, Qн — то же на стороне НН.

Комбинированный режим НН→ВН, СН→ВН допустим, если

(10)

Если значения cosφ на стороне СН и НН незначительно отличаются друг от друга, то (9) упрощается

(11)

Возможны и другие комбинированные режимы: передача мощности из обмотки СН в обмотки НН и ВН или работа в понижающем режиме при передаче мощности из обмотки ВН в обмотки СН и НН. В этих случаях направления токов в обмотках изменяются на обратные по сравнению с рис.2,д,е, но приведенные рассуждения и расчетные формулы (6)-(11) останутся неизменными.

Рис.3. Схема включения трансформаторов тока
для контроля нагрузки автотрансформатора

Во всех случаях надо контролировать загрузку обмоток автотрансформатора. Ток в последовательной обмотке может контролироваться трансформатором тока ТА1, так как Iп=IB (рис.3). Трансформатор тока ТА2 контролирует ток на выводе обмотки СН, а для контроля тока в общей обмотке необходим трансформатор тока ТАО, встроенный непосредственно в эту обмотку. Допустимая нагрузка общей обмотки указывается в паспортных данных автотрансформатора.

Рис.4. Схема трехфазного трехобмоточного автотрансформатора

Выводы, сделанные для однофазного трансформатора [формулы (4)-(11)], справедливы и для трехфазного трансформатора, схема которого показана на рис.4. Обмотки ВН и СН соединяются в звезду с выведенной нулевой точкой, обмотки НН — в треугольник.

К особенностям конструкции автотрансформаторов следует отнести необходимость глухого заземления нейтрали, общей для обмоток ВН и СН. Объясняется это следующим. Если в системе с эффективно-заземленной нейтралью включить понижающий автотрансформатор с незаземленной нейтралью, то при замыкании на землю одной фазы в сети СН на последовательную обмотку этой фазы будет воздействовать полное напряжение UB/√З вместо (UB-UC)√3, напряжение выводов обмотки СН возрастет примерно до UB, резко увеличится напряжение, приложенное к обмоткам неповрежденных фаз. Аналогичная картина наблюдается в случае присоединения повышающего автотрансформатора с незаземленной нейтралью к системе с эффективно-заземленной нейтралью.

Такие перенапряжения недопустимы, поэтому нейтрали всех автотрансформаторов глухо заземляются. В этом случае заземления на линии со стороны ВН или СН не вызывают опасных перенапряжений, однако в системах ВН и СН возрастают токи однофазного КЗ.

Подводя итог всему сказанному, можно отметить следующие преимущества автотрансформаторов по сравнению с трансформаторами той же мощности:

  • меньший расход меди, стали, изоляционных материалов;
  • меньшая масса, а следовательно, меньшие габариты, что позволяет создавать автотрансформаторы больших номинальных мощностей, чем трансформаторы;
  • меньшие потери и больший КПД; более легкие условия охлаждения.

Недостатки автотрансформаторов:

  • необходимость глухого заземления нейтрали, что приводит к увеличению токов однофазного КЗ;
  • сложность регулирования напряжения;
  • опасность перехода атмосферных перенапряжений вследствие электрической связи обмоток ВН и СН.


www.gigavat.com

Что такое автотрансформатор. Что такое автотрансформатор? в фото


его теоретические основы и инструкция

Авто трансформатор – это специальная разновидность электрического трансформатора, в котором первичная и вторичная обмотка соединяются вместе. Как видите, автотрансформатор имеет достаточно простую конструкцию и разобраться в ней может каждый.

В этой статье мы расскажем о принципе работы этого устройства. Вы сможете узнать не только теоретические основы, но и практическое применение.

Автотрансформатор и его теоретические основы

В автотрансформаторе вы сможете найти единственную обмотку. Она будет использоваться не только в качестве первичной, но и в качестве вторичной обмотки. Схема автотрансформатора указана на фото ниже:

На этом фото вы сможете увидеть, что обмотка AB считается общим числом оборотов. N1 считается первичной обмоткой. Как видите, на фото эта обмотка будет выходить из точки C. В этом случае участок BC будет рассматриваться в качестве вторичной обмотки. Теперь мы можем предположить, что число витков между точками BC будут составлять N2.

Если напряжение в автотрансформаторе будет проходить через V1, тогда напряжение на отрезке первого витка будет составлять V1/N1. Таким образом на участке BC будет V1/N1*N2=V2, а это означает V2/V1=N2/N1=константа k.

Исходя из этих результатов можно сделать вывод о том, что константа будет являться отношением напряжения в автотрансформаторе. Когда нагрузка будет подаваться на участок между вторичными клеммами, тогда показатель тока составит I2. Показатель во вторичной обмотке будет составлять I1 и I2. Теперь мы рекомендуем вашему вниманию соответствующее видео:

Автотрансформатор и экономия потребления меди

Если вы планируете использовать авто трансформатор, тогда сможете значительно сэкономить потребление меди. Электрический силовой трансформатор может использовать значительно больше меди.

На данный момент практически каждый человек знает, что вес меди будет зависеть от ее сечения и длины. Длина проводника в обмотке будет пропорциональна числу его оборотов и типу сечения. Итак, из этого понятно, что вес меди в сечении, где проходит переменный ток пропорционален I1 и вес меди на участке BC также будет составлять I1.

(N1 — N2) I1 + N2 (I2 — I1) ⇒ N1I1 — N2I1 + N2I2 — N2I1 ⇒ N1I1 + N2I2 — 2N2I1 ⇒ 2N1I1 — 2N2I1 (поскольку N1I1 = N2I2) ⇒ 2 (N1I1 — N2I1).

Благодаря этой формуле можно доказать, что удельный вес меди в двух обмоточном трансформаторе будет пропорциональным N1I1 + N2I2⇒ 2N1I1 (поскольку в трансформаторе N1I1 = N2I2).

Теперь давайте представим, что Wa и WTW будут являться показателями веса меди в авто трансформаторе, а в двух обмоточном трансформаторе они будут означать:

Благодаря этой формуле можно сделать вывод, что экономия потребления меди в автотрансформаторе будет составлять ⇒ WTW — Wa = kWtw.

Однофазный трансформатор 400/220 киловольт

Автотрансорматор этого типа может иметь только одну обмотку. Именно поэтому во время его использования вы можете столкнуться с определенными преимуществами.

Для коэффициента трансформации размер авто трансформатора будет составлять 50%. Этот показатель был взят в сравнении с обычным трансформатором. Если говорить о стоимости, тогда можно сделать вывод о том, что она будет значительно меньше. Показатель стоимости будет низким, когда коэффициент трансформации будет являться не менее двух. Если вам будет интересно, тогда можете прочесть про измерительные трансформаторы.

Недостатки авто трансформатора

Как и любое другое устройство конструкция автотрансформатора может иметь определенные недостатки. К основным недостаткам можно отнести:

  1. Низковольтная схема в этом устройстве будет зависеть от высокого напряжения. Если вы планируете избежать, сбоя в сети, тогда вам необходимо разработать схему обеспечения низкого напряжения. Благодаря этому ваше устройство сможет выдержать высокие нагрузки.
  2. Поток рассеивания между обмотками считается небольшим. Это может означать, что, если система будет неисправной, тогда может возникнуть короткое замыкание.
  3. Соединения между первичной и вторичной обмоткой должны быть одинаковыми. Именно поэтому во время соединения у вас могут возникнуть определенные проблемы.
  4. Систему невозможно выполнить с заземляющей нетралью с одной стороны. Именно поэтому нейтраль должны иметь оба блока.
  5. В этой конструкции вам будет сложно сохранить в целостности электромагнитный баланс. Балансирование будет связано с увеличением корпуса этого устройства. Если диапазон будет большим, тогда преимущества первоначальной стоимости значительно растеряются.

Надеемся, что, благодаря нам вы разберетесь с устройством автотрансформатора. Мы постарались предоставить вашему внима

10i5.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *