Однофазный синхронный двигатель – Принцип действия синхронного двигателя

Содержание

Принцип действия синхронного двигателя

Содержание:
  1. Устройство синхронного двигателя
  2. Принцип работы
  3. Запуск двигателя и его регулировка
  4. Различия синхронных и асинхронных двигателей

Прежде чем рассматривать принцип действия синхронного двигателя, необходимо помнить, что это электрическая машина, работающая на переменном токе, у которой ротор вращается с частотой, которая равна частоте вращения магнитного поля в воздушной прослойке.

Синхронный двигатель состоит из основных частей – якоря и индуктора. Обычно, его исполнение сделано таким образом, что якорь расположен на статоре, а индуктор – на роторе, отделенном воздушной прослойкой. Данные агрегаты обладают высоким коэффициентом мощности. Существенным плюсом является возможность их использования в сетях с любым напряжением.


Устройство синхронного двигателя

Конструкция синхронного двигателя состоит из двух основных частей – статора и ротора. Статор является неподвижной частью агрегата, а ротор – подвижной. В состав якоря входят одна или несколько обмоток переменного тока. При работе двигателя токи, поступающие в якорь, приводят к вращению магнитного поля, пересекающегося с полем индуктора и преобразующего энергию. Поле якоря носит другое название – поле реакции якоря. В генераторе такое поле создается с помощью индуктора.

В состав индуктора входят электромагниты постоянного тока, называемые полюсами. Во всех синхронных электродвигателях индукторы бывают двух конструкций – явнополюсная и не явнополюсная, отличающиеся расположением полюсов. Конструкция статора включает в себя корпус и сердечник, в состав которого входят двух- и трехфазные обмотки. Сами обмотки могут быть распределенными и сосредоточенными.

Чтобы уменьшить магнитное сопротивление и улучшить прохождение магнитного потока, используются ферромагнитные сердечники, расположенные в роторе и статоре, для изготовления которых используется электротехническая сталь. Она обладает интересными свойствами, например, повышенным содержанием кремния, с целью повышения ее электрического сопротивления и уменьшения вихревых токов.

Каждый синхронный электродвигатель обладает важным параметром – электромагнитным моментом. Он возникает в том случае, когда магнитный поток ротора начинает взаимодействовать с вращающимся магнитным полем. Данное поле образуется под влиянием трехфазного тока, протекающего по обмотке якоря.

В режиме холостого хода происходит совпадение осей магнитных полей ротора и статора. Поэтому электромагнитные силы, возникающие между их полюсами, принимают радиальное направление и значение электромагнитного момента агрегата становится равным нулю. При переходе устройства в двигательный режим, на ротор начинает воздействовать внешние нагрузочный момент, приложенный к валу. В результате, происходит смещение ротора на величину определенного угла против направления вращения.

Подобное электромагнитное взаимодействие между ротором и статором приводит к созданию электромагнитных сил, направленных в сторону вращения. Таким образом, действие вращающегося электромагнитного момента стремится к преодолению действия внешнего момента. Максимальное значение электромагнитного момента образует угол 90 градусов, при расположении полюсов ротора между осями полюсов статора.

Если значение нагрузочного момента, приложенного к валу двигателя, превысит максимальный электромагнитный момент, в этом случае двигатель остановится под влиянием внешнего момента. Из-за этого в неподвижном двигателе по обмотке якоря будет проходить очень высокий ток. Данный режим является аварийным, он представляет собой выпадение из синхронизма и на практике не должен допускаться.


Как работает синхронный двигатель

Принцип действия синхронного двигателя основывается на взаимном влиянии магнитных полей якоря и полюсов индуктора. При обращенной конструкции агрегата расположение якоря и индуктора выполнено наоборот, то есть, первый расположен на роторе, а другой – на статоре. Такой вариант используют криогенные синхронные машины, у которых в состав обмоток возбуждения входят материалы со свойствами сверхпроводимости.

При запуске двигателя его разгоняют до частоты близкой к той, с которой в зазоре вращается магнитное поле. Только после этого он переходит в синхронный режим. В данной ситуации происходит пересечение магнитных полей якоря и индуктора. Этот момент получил название входа в синхронизацию.

При разгоне используется состояние асинхронного режима, когда происходит замыкание обмоток индуктора с помощью реостата или короткозамкнутым путем, подобно асинхронным машинам. Для того, чтобы осуществлять запуск в таком режиме, ротор оснащается короткозамкнутой обмоткой, которая одновременно является успокоительной обмоткой, способной устранить раскачивание ротора во время синхронизации. После того, как скорость становится близко к номинальной, в индуктор подается постоянный ток.

Таким образом, синхронный двигатель это не только двигатель, но и своеобразный генератор, поскольку у них одинаковое конструктивное исполнение. Схема работы двигателя будет следующей. Обмотка якоря подключается к трехфазному переменному току, а к обмотке возбуждения от постороннего источника подается постоянный ток. Вращающееся магнитное поле, созданное трехфазной обмоткой и поле, созданное обмоткой возбуждения, взаимодействуют между собой. Это вызывает появление электромагнитного момента, приводящего ротор во вращающееся состояние.

Для двигателей, где установлены постоянные магниты, применяются специальные внешние разгонные двигатели. В отличие от асинхронных устройств, разгон ротора в синхронном двигателе должен достигнуть частоты вращения магнитного поля. Это связано с подачей в обмотку ротора тока из постороннего источника, а не индуцируется в нем под действием магнитного поля статора, следовательно, на него не влияет частота вращения вала. В результате, синхронный двигатель переменного тока приобретает постоянную частоту вращения ротора вне зависимости от нагрузки. Специфический принцип работы этих устройств оказал влияние на их пуск и регулировку частоты вращения.


Схема запуска двигателя и его регулировка

У синхронных двигателей отсутствует начальный пусковой момент. При подключении якорной обмотки к источнику переменного тока, электромагнитный момент дважды изменить свое направление за один период изменения тока. Это происходит, когда ротор находится в неподвижном состоянии, а в обмотке возбуждения протекает постоянный ток.

Таким образом, величина среднего момента в течение одного периода будет иметь нулевое значение. Чтобы увидеть, как работает синхронный двигатель при пуске, нужно выполнить разгон его ротора под действием внешнего момента до вращения с частотой, приближенной к синхронной.

Сам запуск агрегата может производиться разными способами:

  • В первом случае используется схема асинхронного включения, основой которой служит глухо подключенный возбудитель. Данный способ применяется при статическом моменте нагрузки ниже 0,4, когда отсутствует падение напряжения. Сопротивление разряда замыкается в обмотке возбуждения, за счет чего исключаются перебои с возбуждением обмотки во время впуска, поскольку незначительная скорость вращения ротора приводит к перенапряжению. Когда скорость становится близкой к синхронной, контактор реагирует на это изменение, в результате происходит переключение обмотки возбуждения из разрядного сопротивления непосредственно на якорь возбудителя.
  • Во втором варианте пуска используется тиристорный возбудитель. Этот способ считается более надежным из-за высокого КПД. Управление возбуждением значительно облегчается. Подача возбуждение осуществляется автоматически с помощью электромагнитного реле.

Различия синхронных и асинхронных двигателей

Все электродвигатели переменного тока по принципу действия могут быть асинхронными и синхронными. В первом случае вращение ротора будет медленнее, по сравнению с магнитным полем, а во втором – вращение ротора и магнитного поля происходит с одинаковой скоростью.

В асинхронном двигателе вращающееся переменное магнитное поле создается обмотками, закрепленными на статоре. Концы этих обмоток выведены в общую клеммную коробку. Во избежание перегрева на валу двигателя устанавливается вентилятор. Ротор выполнен из металлических стержней, замкнутых с двух сторон между собой. Он представляет единое целое с валом и получил название короткозамкнутого ротора.

Вращение магнитного поля происходит под действием постоянной смены полюсов. Соответственно, в обмотках изменяется направление тока. На скорость вращения вала оказывает влияние количество полюсов магнитного поля.

Синхронный электродвигатель конструктивно отличается от асинхронных агрегатов. Здесь вращение ротора и магнитного поля происходит с одинаковой скоростью. Напряжение на ротор для зарядки обмоток подается с помощью щеток, а не индуцируется действием переменного магнитного поля. Направление тока в обмотках изменяется одновременно с направлением магнитного поля, поэтому вал синхронного двигателя всегда вращается в одну сторону.

electric-220.ru

Однофазный асинхронный электродвигатель

Дмитрий Левкин

Однофазный асинхронный электродвигатель — это асинхронный электродвигатель, который работает от электрической сети однофазного переменного тока без использования частотного преобразователя и который в основном режиме работы (после пуска) использует только одну обмотку (фазу) статора.

Конструкция однофазного двигателя с вспомогательной или пусковой обмоткой

Основными компонентами любого электродвигателя являются ротор и статор. Ротор - вращающаяся часть электродвигателя, статор - неподвижная часть электродвигателя, с помощью которого создается магнитное поле для вращения ротора. Конструкция однофазного двигателя

Основные части однофазного двигателя: ротор и статор

Статор имеет две обмотки, расположенные под углом 90° относительно друг друга. Основная обмотка называется главной (рабочей) и обычно занимает 2/3 пазов сердечника статора, другая обмотка называется вспомогательной (пусковой) и обычно занимает 1/3 пазов статора.

Двигатель фактически является двухфазным, но так как рабочей является только одна обмотка, электродвигатель называют однофазным.

Ротор обычно представляет из себя короткозамкнутую обмотку, также из-за схожести называемой "беличьей клеткой". Медные или алюминиевые стержни которого с торцов замкнуты кольцами, а пространство между стержнями чаще всего заливается сплавом алюминия. Так же ротор однофазного двигателя может быть выполнен в виде полого немагнитного или полого ферромагнитного цилиндра.

Обмотки однофазного двигателя

Однофазный двигатель с вспомогательной обмоткой имеет 2 обмотки расположенные перпендикулярно относительно друг друга

Принцип работы однофазного асинхронного двигателя

Для того чтобы лучше понять работу однофазного асинхронного двигателя, давайте рассмотрим его только с одним витком в главной и вспомогательной обмотки.

Обмотки асинхронного двигателя

Проанализируем случай с двумя обмотками имеющими по оному витку

Рассмотрим случай когда в вспомогательной обмотки не течет ток. При включении главной обмотки статора в сеть, переменный ток, проходя по обмотке, создает пульсирующее магнитное поле, неподвижное в пространстве, но изменяющееся от +Фmах до -Фmах.

Запустить

Магнитное поле витка

Остановить

Пульсирующее магнитное поле

Пульсирующее магнитное поле

Если поместить ротор, имеющий начальное вращение, в пульсирующее магнитное поле, то он будет продолжать вращаться в том же направлении.

Чтобы понять принцип действия однофазного асинхронного двигателя разложим пульсирующее магнитное поле на два одинаковых круговых поля, имеющих амплитуду равную Фmах/2 и вращающихся в противоположные стороны с одинаковой частотой:

n<sub>пp</sub> = n<sub>oбp</sub> = f<sub>1</sub>∙60/p = n<sub>1</sub>,

  • где nпр – частота вращения магнитного поля в прямом направлении, об/мин,
  • nобр – частота вращения магнитного поля в обратном направлении, об/мин,
  • f1 – частота тока статора, Гц,
  • p – количество пар полюсов,
  • n1 – скорость вращения магнитного потока, об/мин

Запустить

Разложение пульсирующего магнитного потока

Остановить

Разложение пульсирующего магнитного поля

Разложение пульсирующего магнитного потока на два вращающихся

Действие пульсирующего поля на вращающийся ротор

Рассмотрим случай когда ротор, находящийся в пульсирующем магнитном потоке, имеет начальное вращение. Например, мы вручную раскрутили вал однофазного двигателя, одна обмотка которого подключена к сети переменного тока. В этом случае при определенных условиях двигатель будет продолжать развивать вращающий момент, так как скольжение его ротора относительно прямого и обратного магнитного потока будет неодинаковым.

Будем считать, что прямой магнитный поток Фпр, вращается в направлении вращения ротора, а обратный магнитный поток Фобр - в противоположном направлении. Так как, частота вращения ротора n2 меньше частоты вращения магнитного потока n1, скольжение ротора относительно потока Фпр будет:

s<sub>пp</sub> = (n<sub>1</sub> - n<sub>2</sub>)/n<sub>1</sub> = s,

  • где sпр – скольжение ротора относительно прямого магнитного потока,
  • n2 – частота вращения ротора, об/мин,
  • s – скольжение асинхронного двигателя
Магнитное поле однофазного двигателя

Прямой и обратный вращающиеся магнитные потоки вместо пульсирующего магнитного потока

Магнитный поток Фобр вращается встречно ротору, частота вращения ротора n2 относительно этого потока отрицательна, а скольжение ротора относительно Фобр

Магнитное поле однофазного двигателя,

  • где sобр – скольжение ротора относительно обратного магнитного потока

Запустить

Магнитное поле пронизывающее ротор

Остановить

Вращающееся магнитное поле

Вращающееся магнитное поле пронизывающее ротор

Ток ротора асинхронного двигателя

Ток индуцируемый в роторе переменным магнитным полем

Согласно закону электромагнитной индукции прямой Фпр и обратный Фобр магнитные потоки, создаваемые обмоткой статора, наводят в обмотке ротора ЭДС, которые соответственно создают в короткозамкнутом роторе токи I2пр и I2обр. При этом частота тока в роторе пропорциональна скольжению, следовательно:

f2пр=f1sпр,

  • где f2пр – частота тока I2пр наводимого прямым магнитным потоком, Гц

f2обр=f1sобр,

  • где f2обр – частота тока I2обр наводимого обратным магнитным потоком, Гц

Таким образом, при вращающемся роторе, электрический ток I2обр, наводимый обратным магнитным полем в обмотке ротора, имеет частоту f2обр, намного превышающую частоту f2пр тока ротора I2пр, наведенного прямым полем.

Пример: для однофазного асинхронного двигателя, работающего от сети с частотой f1 = 50 Гц при n1 = 1500 и n2 = 1440 об/мин,

скольжение ротора относительно прямого магнитного потока sпр = 0,04;
частота тока наводимого прямым магнитным потоком f2пр = 2 Гц;
скольжение ротора относительно обратного магнитного потока sобр = 1,96;
частота тока наводимого обратным магнитным потоком f2обр = 98 Гц

Магнитный момент действующий на ротор

Согласно закону Ампера, в результате взаимодействия электрического тока I2пр с магнитным полем Фпр возникает вращающий момент

Мпр=,

  • где Mпр – магнитный момент создаваемый прямым магнитным потоком, Н∙м,
  • сM — постоянный коэффициент, определяемый конструкцией двигателя

Электрический ток I2обр, взаимодействуя с магнитным полем Фобр, создает тормозящий момент Мобр, направленный против вращения ротора, то есть встречно моменту Мпр:

Мобр=,

  • где Mобр – магнитный момент создаваемый обратным магнитным потоком, Н∙м

Результирующий вращающий момент, действующий на ротор однофазного асинхронного двигателя,

M = M<sub>пр</sub> - M<sub>обр</sub>,

Справка: В следствие того, что во вращающемся роторе прямым и обратным магнитным полем будет наводиться ток разной частоты, моменты сил действующие на ротор в разных направлениях будут не равны. Поэтому ротор будет продолжать вращаться в пульсирующем магнитном поле в том направлении в котором он имел начальное вращение.

Тормозящее действие обратного поля

При работе однофазного двигателя в пределах номинальной нагрузки, то есть при небольших значениях скольжения s = sпр, крутящий момент создается в основном за счет момента Мпр. Тормозящее действие момента обратного поля Мобр — незначительно. Это связано с тем, что частота f2обр много больше частоты f2пр, следовательно, индуктивное сопротивление рассеяния обмотки ротора х2обр = x2sобр току I2обр намного больше его активного сопротивления. Поэтому ток I2обр, имеющий большую индуктивную составляющую, оказывает сильное размагничивающее действие на обратный магнитный поток Фобр, значительно ослабляя его.

M = M<sub>пр</sub> - M<sub>обр</sub>,

  • где r2 - активное сопротивление стержней ротора, Ом,
  • x2обр - реактивное сопротивление стержней ротора, Ом.

Если учесть, что коэффициент мощности невелик, то станет, ясно, почему Мобр в режиме нагрузки двигателя не оказывает значительного тормозящего действия на ротор однофазного двигателя.

Моменты сил действующие на неподвижный ротор

С помощью одной фазы нельзя запустить ротор

Моменты сил действующие на вращающийся ротор

Ротор имеющий начальное вращение будет продолжать вращаться в поле создаваемом однофазным статором

Действие пульсирующего поля на неподвижный ротор

При неподвижном роторе (n2 = 0) скольжение sпр = sобр = 1 и Мпр = Мобр, поэтому начальный пусковой момент однофазного асинхронного двигателя Мп = 0. Для создания пускового момента необходимо привести ротор во вращение в ту или иную сторону. Тогда s ≠ 1, нарушается равенство моментов Мпр и Мобр и результирующий электромагнитный момент приобретает некоторое значение Моменты сил действующие на вращающийся ротор.

Пуск однофазного двигателя. Как создать начальное вращение?

Одним из способов создания пускового момента в однофазном асинхронном двигателе, является расположение вспомогательной (пусковой) обмотки B, смещенной в пространстве относительно главной (рабочей) обмотки A на угол 90 электрических градусов. Чтобы обмотки статора создавали вращающееся магнитное поле токи IA и IB в обмотках должны быть сдвинуты по фазе относительно друг друга. Для получения фазового сдвига между токами IA и IB в цепь вспомогательной (пусковой) обмотки В включают фазосмещающий элемент, в качестве которого используют активное сопротивление (резистор), индуктивность (дроссель) или емкость (конденсатор) [1].

После того как ротор двигателя разгонится до частоты вращения, близкой к установившейся, пусковую обмотку В отключают. Отключение вспомогательной обмотки происходит либо автоматически с помощью центробежного выключателя, реле времени, токового или дифференциального реле, или же вручную с помощью кнопки.

Таким образом, во время пуска двигатель работает как двухфазный, а по окончании пуска — как однофазный.

Подключение однофазного двигателя

С пусковым сопротивлением

Двигатель с расщепленной фазой - однофазный асинхронный двигатель, имеющий на статоре вспомогательную первичную обмотку, смещенную относительно основной, и короткозамкнутый ротор [2].

Однофазный асинхронный двигатель с пусковым сопротивлением - двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки отличается повышенным активным сопротивлением.

Схема однофазного двигателя с пусковым сопротивлением

Омический сдвиг фаз, биффилярный способ намотки пусковой обмотки

Однофазный двигатель с разным сопротивлением обмоток

Разное сопротивление и индуктивность обмоток

Для запуска однофазного двигателя можно использовать пусковой резистор, который последовательно подключается к пусковой обмотки. В этом случае можно добиться сдвига фаз в 30° между токами главной и вспомогательной обмотки, которого вполне достаточно для пуска двигателя. В двигателе с пусковым сопротивлением разность фаз объясняется разным комплексным сопротивлением цепей.

Также сдвиг фаз можно создать за счет использования пусковой обмотки с меньшей индуктивностью и более высоким сопротивлением. Для этого пусковая обмотка делается с меньшим количеством витков и с использованием более тонкого провода чем в главной обмотке.

Отечественной промышленностью изготавливается серия однофазных асинхронных электродвигателей с активным сопротивлением в качестве фазосдвигающего элемента серии АОЛБ мощностью от 18 до 600 Вт при синхронной частоте вращения 3000 и 1500 об/мин, предназначенных для включения в сеть напряжением 127, 220 или 380 В, частотой 50 Гц.

С конденсаторным пуском

Двигатель с конденсаторным пуском - двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки с конденсатором включается только на время пуска.

Схема однофазного двигателя с пусковым конденсатором

Ёмкостной сдвиг фаз с пусковым конденсатором

Чтобы достичь максимального пускового момента требуется создать круговое вращающееся магнитное поле, для этого требуется чтобы токи в главной и вспомогательной обмотках были сдвинуты друг относительно друга на 90°. Использование в качестве фазосдвигающего элемента резистора или дросселя не позволяет обеспечить требуемый сдвиг фаз. Лишь включение конденсатора определенной емкости позволяет обеспечить фазовый сдвиг 90°.

Среди фазосдвигающих элементов, только конденсатор позволяет добиться наилучших пусковых свойств однофазного асинхронного электродвигателя.

Двигатели в цепь которых постоянно включен конденсатор используют для работы две фазы и называются - конденсаторными. Принцип действия этих двигателей основан на использовании вращающегося магнитного поля.

Двигатель с экранированными полюсами - двигатель с расщепленной фазой, у которого вспомогательная обмотка короткозамкнута.

Статор однофазного асинхронного двигателя с экранированными полюсами обычно имеет явно выраженные полюса. На явно выраженных полюсах статора намотаны катушки однофазной обмотки возбуждения. Каждый полюс статора разделен на две неравные части аксиальным пазом. Меньшую часть полюса охватывает короткозамкнутый виток. Ротор однофазного двигателя с экранированными полюсами - короткозамкнутый в виде "беличьей" клетки.

При включении однофазной обмотки статора в сеть в магнитопроводе двигателя создается пульсирующий магнитный поток. Одна часть которого проходит по неэкранированной Ф', а другая Ф" - по экранированной части полюса. Поток Ф" наводит в короткозамкнутом витке ЭДС Ek, в результате чего возникает ток Ik отстающий от Ek по фазе из-за индуктивности витка. Ток Ik создает магнитный поток Фk, направленный встречно Ф", создавая результирующий поток в экранированной части полюса Фэ=Ф"+Фk. Таким образом, в двигателе потоки экранированной и неэкранированной частей полюса сдвинуты во времени на некоторый угол.

Пространственный и временной углы сдвига между потоками Фэ и Ф' создают условия для возникновения в двигателе вращающегося эллиптического магнитного поля, так как Фэ ≠ Ф'.

Пусковые и рабочие свойства рассматриваемого двигателя невысоки. КПД намного ниже, чем у конденсаторных двигателей такой же мощности, что связано со значительными электрическими потерями в короткозамкнутом витке.

Однофазный асинхронный двигатель с асимметричным магнитопроводом статора

Статор такого однофазного двигателя выполняется с ярко выраженными полюсами на не симметричном шихтованном сердечнике. Ротор - короткозамкнутый типа "беличья клетка".

Данный электродвигатель для работы не требует использования фазосдвигающих элементов. Недостатком данного двигателя является низкий КПД.


engineering-solutions.ru

принцип, теория работы и применение

Мы узнали о различных типах электродвигателей в нашей предыдущей статье. Теперь мы начнем узнавать об этих моторах индивидуально. В этой статье мы рассмотрим теорию работы синхронного двигателя и его строение, а так же подскажем где вы можете купить.

Принцип синхронного двигателя

Основной принцип такой же, как и для всех двигателей. Это взаимная индукция между обмоткой статора и ротора, которая делает любой двигатель работоспособным. Кроме того, когда 3-фазная обмотка питается от 3-фазного источника питания, то создается магнитный поток постоянной величины, но вращающийся с синхронной скоростью.

работа синхронного двигателя

Чтобы легко понять работу синхронного двигателя, давайте рассмотрим только два полюса в статоре и роторе. Как показано на рисунке, статор имеет два полюса Ns и S. Эти полюса, находясь под напряжением, создают вращающееся магнитное поле. Они вращаются с синхронной скоростью и позволяют считать направление вращения по часовой стрелке. Если полюса ротора находятся в положении, показанном на рисунке, то полюса отталкиваются друг от друга. Итак, северный полюс в статоре отталкивает северный полюс ротора. Также южный полюс статора отталкивает юг ротора. Это заставляет ротор вращаться в направлении против часовой стрелки. Таким образом, через полпериода полюса статора меняются местами, что приводит их в положение противоположенных полюсов, которые притягивают друг друга . Т.е. южный полюс статора и северный полюс ротора притягиваются и магнитно сцепляются.

работа синхронного двигателя

В этом положении полюсы Ns притягивают S, а полюсы Ss притягивают N. Эти противоположные полюса ротора и статора начинают вращаться в том же направлении, что и полюса статора. Это заставляет ротор вращаться в одном направлении и с синхронной скоростью, которая равна скорости вращения полюсов статора. Таким образом, поскольку положение полюсов статора продолжает изменяться с быстрой скоростью и реверсированием, полюса ротора также вращаются и поворачиваются так же, как и статор, таким образом вызывая вращение ротора с постоянной, синхронной скоростью и в том же направлении. Приобрести синхронный двигатель можно, перейдя по ссылке ниже:

работа синхронного двигателя

Теория работы

Когда на двигатель подается питание переменного тока, полюса статора находятся под напряжением. Это, в свою очередь, притягивает полюса ротора, таким образом, полюса статора и ротора магнитно блокируются. Именно эта блокировка заставляет ротор вращаться с одинаковой синхронной скоростью с полюсами статора. Синхронная скорость вращения задается выражением Ns = 120f / P.

Когда нагрузка на двигатель постепенно увеличивается, ротор, несмотря на то, что он вращается с одинаковой скоростью, имеет тенденцию постепенно снижаться по фазе на некоторый угол, «β», называемый Угол нагрузки или Угол сцепления. Этот угол нагрузки зависит от величины нагрузки, на которую рассчитан двигатель. Другими словами, мы можем интерпретировать, как развиваемый двигателем крутящий момент зависит от угла нагрузки «β».

передача мощности механическим валом

Электрическую работу синхронного двигателя можно сравнить с передачей мощности механическим валом. На рисунке показаны два шкива, «A» и «B». Предполагается, что шкив «A» и шкив «B» установлены на одном валу. «А» передает мощность от привода через вал, в свою очередь заставляя «В» вращаться, передавая мощность нагрузке.

легкая и тяжелая нагрузка

Два шкива, которые прикреплены к одному валу, можно сравнить с блокировкой между полюсами статора и ротора.

Если нагрузка увеличивается, шкив «B» передает увеличение нагрузки на вал, что проявляется в скручивании вала.

Таким образом, поворот вала можно сравнить с ротором, падающим по фазе со статором.

Угол кручения можно сравнить с углом нагрузки «β». Также, когда нагрузка увеличивается, сила скручивания и угол закручивания увеличиваются. Таким образом, угол нагрузки «β» также увеличивается.

Если нагрузка на шкив «B» увеличивается до такой степени, что он заставляет вал крутиться и ломаться, то передача мощности через вал прекращается, когда вал ломается. Это можно сравнить с ротором, выходящим из синхронизма с полюсами статора.

Таким образом, синхронные двигатели могут работать либо с синхронной скоростью, либо они останавливаются.

Процедура запуска двигателя

Все синхронные двигатели оснащены «обмоткой короткозамкнутого ротора», состоящей из медных прутков, закороченных на обоих концах. Эти обмотки также служат для самостоятельного запуска синхронного двигателя. Во время запуска он легко запускается и действует как асинхронный двигатель. Для запуска синхронного двигателя сетевое напряжение подается на клеммы статора, а ротор остается не возбужденным. Он запускается как асинхронный двигатель, и когда он достигает скорости около 95% от своей синхронной скорости, на ротор подается слабое постоянное возбуждение. В результате чего ротор выравнивается синхронно со статором. В этот момент статор и полюса ротора сцепляются друг с другом и приводят двигатель в синхронность.

Фазовые колебания

Раскачка фазы синхронного двигателя вызваны:

  1. Различными нагрузками
  2. Пульсирующими частотами питания.

Когда синхронный двигатель нагружен (например, компрессоры, насосы и т.д.). Когда нагрузка увеличивается, его ротор возвращается назад на угол соединения «β». При дальнейшем увеличении нагрузки этот угол «β» дополнительно увеличивается, чтобы справиться с возросшей нагрузкой. В этой ситуации, если нагрузка внезапно уменьшается, ротор перегружается, а затем оттягивается, чтобы приспособить новую нагрузку к двигателю. Таким образом, ротор начинает колебаться, как маятник, в своем новом положении, соответствующем его новой нагрузке, пытаясь восстановить равновесие. Если период времени этих колебаний совпадает с собственной частотой станка, то устанавливается резонанс, что может вывести машину из синхронизма. Для демпфирования таких колебаний используются «демпфирующие решетки», известные как «обмотки короткозамкнутых клеток».

Применение синхронных двигателей:

  • Эти двигатели используются как первичные двигатели (приводы) для центробежных насосов, поршневых компрессоров с ременным приводом, воздуходувок, бумажных фабрик, резиновых фабрик и т.д. Из-за их высокой эффективности и высоких скоростей (об / мин выше 600).
  • Низкоскоростные синхронные двигатели (об / мин ниже 600) широко используются для привода многих поршневых насосов. Таких как винтовые и шестеренные насосы, вакуумные насосы, дробилки, машины для прокатки алюминиевой фольги.
  • Эти моторы также широко используются на борту судов. Навигационное оборудование корабля, такое как гирокомпас, использует специальный тип синхронного двигателя. Они также используются в качестве первичных двигателей для Viscometer. Это устройства для измерения / регулирования вязкости мазута главного двигателя.
  • Большинство фабрик и производств используют бесконечное количество индуктивных нагрузок. Они могут варьироваться от ламповых ламп до мощных асинхронных двигателей. Таким образом, эти индуктивные нагрузки имеют значительный коэффициент мощности отставания. Синхронный двигатель с избыточным возбуждением (синхронный конденсатор), имеющий ведущий коэффициент мощности, используется для улучшения коэффициента мощности этих систем питания.
  • Эти двигатели также используются для регулирования напряжения, когда происходит сильное падение / повышение напряжения. Так же когда тяжелая индуктивная нагрузка включается / выключается в конце длинных линий электропередачи.
  • Синхронные двигатели могут работать на сверхнизких скоростях с помощью мощных электронных преобразователей, которые генерируют очень низкие частоты. Примерами этих двигателей являются диапазоны мощностью 10 МВт, используемые для привода дробилок, вращающихся печей и шаровых мельниц с регулируемой скоростью.

meanders.ru

Синхронный двигатель: принцип работы, устройство, назначение

Синхронные электродвигатели (СД) не так распространены, как асинхронные с короткозамкнутым ротором. Но используются там, где нужен большой крутящий момент и в процессе работы будут происходить частые перегрузки. Также такой тип двигателей используются там, где нужна большая мощность, чтобы приводить в движение механизмы, благодаря высокому коэффициенту мощности и возможности улучшать коэффициент мощности сети, что существенно снизит затраты на электроэнергию и нагрузку на линии. Что такое синхронный двигатель, где он используется и какие у него плюсы минусы мы рассмотрим в этой статье.

Определение и принцип действия

Если говорить простым языком, то синхронным называют электродвигатель, у которого скорость вращения ротора (вала) совпадает со скоростью вращения магнитного поля статора.

Кратко рассмотрим принцип действия такого электродвигателя — он основан на взаимодействии вращающегося магнитного поля статора, которое обычно создаётся трёхфазным переменным током и постоянного магнитного поля ротора.

Постоянное магнитное поле ротора создаётся за счет обмотки возбуждения или постоянных магнитов. Ток в обмотках статора создаёт вращающееся магнитное поле, тогда как ротор в рабочем режиме представляет собой постоянный магнит, его полюса устремляются к противоположным полюсам магнитного поля статора. В результате ротор вращается синхронно с полем статора, что и является его основной особенностью.

Напомним, что у асинхронного электродвигателя скорость вращения МП статора и скорость вращения ротора отличаются на величину скольжения, а его механическая характеристика «горбатая» с пиком при критическом скольжении (ниже его номинальной скорости вращения).

Скорость, с которой вращается магнитное поле статора, может быть вычислена по следующему уравнению:

N=60f/p

f – частота тока в обмотке, Гц, p – количество пар полюсов.

Соответственно по этой же формуле определяется скорость вращения вала синхронного двигателя.

Большинство электродвигателей переменного тока, используемых на производстве, выполнены без постоянных магнитов, а с обмоткой возбуждения, тогда как маломощные синхронные двигатели переменного тока выполняются с постоянными магнитами на роторе.

Ток к обмотке возбуждения подводится за счет колец и щеточного узла. В отличие от коллекторного электродвигателя, где для передачи тока вращающейся катушке используется коллектор (набор продольно расположенных пластин), на синхронном установлены кольца поперек одного из концов статора.

Источником постоянного тока возбуждения в настоящее время являются тиристорные возбудители, часто называемые «ВТЕ» (по названию одной из серий таких устройств отечественного производства). Ранее использовалась система возбуждения «генератор-двигатель», когда на одном валу с двигателем устанавливали генератор (он же возбудитель), который через резисторы подавал ток в обмотку возбуждения.

Ротор почти всех синхронных двигателей постоянного тока выполняется без обмотки возбуждения, а с постоянными магнитами, они хоть и похожи по принципу действия на СД переменного тока, но по способу подключения и управления ими очень сильно отличаются от классических трёхфазных машин.

Одной из основных характеристик электродвигателя является механическая характеристика. Она у синхронных электродвигателей приближена к прямой горизонтальной линии. Это значит, что нагрузка на валу не влияет на его обороты (пока не достигнет какой-то критической величины).

Механическая характеристика а) асинхронного и б) синхронного двигателя

Это достигается именно благодаря возбуждению постоянным током, поэтому синхронный электродвигатель отлично поддерживает постоянные обороты при изменяющихся нагрузках, перегрузках и при просадках напряжения (до определенного предела).

Ниже вы видите условное обозначение на схеме синхронной машины.

УГО синхронных машин

Конструкция ротора

Как и любой другой, синхронный электродвигатель состоит из двух основных частей:

  • Статор. В нём расположены обмотки. Его еще называют якорем.
  • Ротор. На нём устанавливают постоянные магниты или обмотку возбуждения. Его также называют индуктором, из-за его предназначения — создавать магнитное поле).

Для подачи тока в обмотку возбуждения на роторе устанавливают 2 кольца (так как возбуждение постоянным током, на одно из них подают «+», а на другое «—»). Щетки закреплены на щеткодержателе.

Конструкция синхронного двигателя

 

Роторы у синхронных электродвигателей переменного тока бывают двух типов, в зависимости от назначения:

  1. Явнополюсные. Четко видны полюса (катушки). Используют при малых скоростях и большом числе полюсов.
  2. Неявнополюсные – выглядит как круглая болванка, в прорези на которой уложены провода обмоток. Используют при больших скоростях вращения (3000, 1500 об/мин) и малом числе полюсов.

Конструкция ротора синхронных двигателей

Пуск синхронного двигателя

Особенностью этого вида электрических машин является то, что его нельзя просто подключить к сети и ожидать его запуска. Кроме того, что для работы СД нужен не только источник тока возбуждения, у него и достаточно сложная схема пуска.

Пусковая короткозамкнутая обмотка и схема пуска СД

Запуск происходит как у асинхронного двигателя, а для создания пускового момента кроме обмотки возбуждения на роторе размещают и дополнительную короткозамкнутую обмотку «беличью клетку». Её еще называют «демпфирующей» обмоткой, потому что она повышает устойчивость при резких перегрузках.

Ток возбуждения в обмотке ротора при пуске отсутствует, а когда он разгоняется до подсинхронной скорости (на 3-5% меньше синхронной), подаётся ток возбуждения, после чего он и ток статора совершает колебания, двигатель входит в синхронизм и выходит на рабочий режим.

Для ограничения пусковых токов мощных машин иногда уменьшают напряжение на зажимах обмоток статора, подключив последовательно автотрансформатор или резисторы.

Пока синхронная машина запускается в асинхронном режиме к обмотке возбуждения подключаются резисторы, сопротивление которых превышает сопротивление самой обмотки в 5 — 10 раз. Это нужно чтобы пульсирующий магнитный поток, возникающий под действием токов, наводимых в обмотке при пуске, не замедлял разгон, а также чтобы не повредить обмотки из-за индуцируемыми в ней ЭДС.

Виды

Видов таких машин очень много, выше была описана конструкция синхронного электродвигателя переменного тока с обмотками возбуждения, как самого распространенного на производстве. Есть и другие типы, такие как:

  • Синхронные двигатели с постоянными магнитами. Это различные электродвигатели, такие как PMSM – permanent magnet synchronous motor, BLDC – Brushless Direct Current и прочие. Отличия, между которыми, состоят в способе управления и форме тока (синусоидальная или трапецивиденая). Их еще называют бесколлекторными или бесщеточными двигателями. Используются в станках, радиоуправляемых моделях, электроинструменте и т.д. Они работают не напрямую от постоянного тока, а через специальный преобразователь.
  • Шаговые двигатели — синхронные бесщеточные двигатели, у которых ротор точно удерживает заданное положение, их используют для позиционирование рабочего инструмента в ЧПУ станках и для управления различными элементами автоматических систем (например, положение дроссельной заслонки в автомобиле). Состоят из статора, в этом случае на нём расположены обмотки возбуждения, и ротора, который выполнен из магнито-мягкого или магнито-твёрдого материала. Конструктивно очень похожи на предыдущие типы.
  • Реактивные.
  • Гистерезисные.
  • Реактивно-гистерезисные.

Последние три типа СД также не имеют щеток, они работают за счет особой конструкции ротора. У реактивных СД различают три их конструкции: поперечно-расслоенный ротор, ротор с явновыраженными полюсами и аксиально-расслоенный ротор. Объяснение принципа их работы достаточно сложно, и займет большой объём, поэтому мы опустим его. Такие электродвигатели на практике вы, скорее всего, встретите нечасто. В основном это маломощные машины, используемые в автоматике.

Конструкции ротора реактивного синхронного двигателя

Сфера применения

Синхронные двигатели стоят дороже чем асинхронные, к тому же требуют дополнительного источника постоянного тока возбуждения – это отчасти снижает ширину области применения этого вида электрических машин. Однако, синхронные электродвигатели используют для привода механизмов, где возможны перегрузки и требуется точное поддерживание стабильных оборотов.

Синхронный двигатель СТД-1000-2УХЛ4 мощностью 10 МВт

При этом чаще всего используются в области больших мощностей — сотен киловатт и единиц мегаватт, и, при этом, пуск и остановка происходят достаточно редко, то есть машины работают круглосуточно долгое время. Такое применение обусловлено тем, что синхронные машины работают с cosФи приближенном к 1, и могут выдавать реактивную мощность в сеть, в результате чего улучшается коэффициент мощности сети и снижается её потребление, что важно для предприятий.

Преимущества и недостатки

Если говорить простыми словами, то у любой электрической машины есть свои плюсы и минусы. У синхронного двигателя положительными сторонами является:

  1. Работа с cosФи=1, благодаря возбуждению постоянным током, соответственно они не потребляют реактивной мощности из сети.
  2. При работе, с перевозбуждением отдают реактивную мощность в сеть, улучшая коэффициент мощности сети, падение напряжения и потери в ней и повышается КМ генераторов электростанциях.
  3. Максимальный момент, развиваемый на валу СД, пропорционален U, а у АД — U² (квадратичная зависимость от напряжения). Это значит, что у СД хорошая нагрузочная способность и устойчивость работы, которые сохраняются при просадке напряжения в сети.
  4. В следствие всего этого скорость вращения стабильна при перегрузках и просадках, в пределах перегрузочной способности, особенно при повышении тока возбуждения.

Однако существенным недостатком синхронного двигателя является то, что его конструкция сложнее, чем у асинхронных с КЗ-ротором, нужен возбудитель, без которого он не сможет работать. Всё это приводит к большей стоимости по сравнению с асинхронными машинами и сложностями в обслуживании и эксплуатации.

Пожалуй, на этом достоинства и недостатки синхронных электродвигателей заканчиваются. В этой статье мы постарались кратко изложить общие сведения о синхронных электродвигателях. Если у вас есть чем дополнить материал – пишите в комментариях.

Материалы по теме:

samelectrik.ru

Двигатель Однофазный Переменного Тока: Принцип Работы

Простое и крайне надежное устройство

Простое и крайне надежное устройство

Любой электрический двигатель – это устройство, способное преобразовывать электрическую энергию в кинетическую, то есть энергию вращения, которая по цепям передается на ведомые устройства. Применяются электрические двигатели сегодня практически везде. Эти устройства, которые практически не изменились за последние 150 лет, можно встретить даже в зубных щетках.

Сегодня мы поговорим с вами про электродвигатели переменного тока однофазные, узнаем, как они устроены и за счет каких сил приводятся в движение.

Основная информация

Синхронный однофазный двигатель переменного тока работает от общественной сети

Синхронный однофазный двигатель переменного тока работает от общественной сети

Итак, особенностью однофазного двигателя является то, что он способен запитываться от стандартной электрической сети с частотой 50 Гц и напряжением 220 В.

  • Ставят такие электромоторы в основном в устройствах небольшой мощности, так как по эффективности они существенно уступают двухфазным и трехфазным аналогам.
  • Мощность данных агрегатов варьируется от 5 Вт до 10 кВт.
  • Однофазная схема подключения двигателя существенно влияет на его КПД, который приблизительно равен 70% от показателей такого же по мощности двигателя, но трехфазного. Также у них меньше пусковой момент, а перегрузочная способность выше.
Электрический двигатель в разрезе

Электрический двигатель в разрезе

  • На самом деле, если разобрать строение такого двигателя, то он будет иметь 2 фазы, но так как задействуется, фактически, лишь одна из них, то и называют его однофазным.
  • Строение мотор имеет самое что ни наесть классическое – подвижная часть (ротор или якорь) и неподвижная часть (статор).
  • Вращение подвижных частей двигателя происходит за счет взаимодействия магнитных полей – подробнее об этом чуть дальше.
  • Несомненным плюсом такого мотора можно считать простую и надежную конструкцию с короткозамкнутым ротором.
  • А главным минусом можно посчитать неспособность самостоятельно выработать магнитное поле, что не позволяет ему самостоятельно запускаться при подключении к сети питания.
  • Считается, что для того чтобы ротор пришел в движение требуется минимум 2 обмотки, а также смещение одной относительно второй на определенный градус.
Асинхронный двигатель переменного тока

Асинхронный двигатель переменного тока

  • Если сопоставить все эти моменты, то можно понять следующее.
  • На статоре однофазного электромотора располагается пусковая обмотка, которая смещена по отношению к рабочей, основной обмотке на 90 градусов.
  • В цепь, питающую обмотку, включаю фазосдвигающее устройство – конденсаторы, катушки индуктивности, резисторы активного типа.
  • То есть, фактически мы говорим про те же моторы двух- и трехфазного типа, только сдвиг фазы достигается не за счет подключения, а за счет схем согласования.

Принцип действия однофазного двигателя

Однофазный синхронный двигатель переменного тока

Однофазный синхронный двигатель переменного тока

Теперь давайте попробуем систематизировать то, что мы понаписали в предыдущей главе, чтобы принцип работы таких устройств стал понятен каждому.

Как работает асинхронный электродвигатель однофазный

Как работает асинхронный электродвигатель однофазный

  • Итак, при подключении питания, ток начинает бежать по обмоткам статора. Движение тока порождаем пульсирующее магнитное поле. Почему пульсирующее, да потому что ток в общественных сетях имеет частоту в 50 Гц, то есть за секунду 50 раз меняет направление своего движения. Соответственно меняются и параметры магнитного поля
  • Мы все знаем про такое явление, как электромагнитная индукция. Если кто-то не знает, то бегом читать – вкратце, это явление порождает электрический ток в проводнике, который перемещается поперек магнитного поля, причем нет никакой разницы, что будет двигаться – проводник или поле.
  • Если устройство не будет иметь пусковых механизмов, то ротор останется неподвижным, так как в нем до сих пор нет тока, а значит и магнитного поля, а магнитные поля от тока в статора равнозначны, и тянут, так сказать, в разных направлениях, как лебедь, рак и щука.
  • Но если ротору дать толчок в любую из сторон, в нем моментально начнет расти электродвижущая сила (ЭДС), которая начнет генерировать свое магнитное поле. В результате взаимодействия этих полей двигатель продолжит вращаться в туже сторону, несмотря на то, что основное магнитное поле постоянно меняет свое направление.
Однофазный коллекторный электродвигатель переменного тока – принцип работы

Однофазный коллекторный электродвигатель переменного тока – принцип работы

  • Заставляет сдвинуться с места ротор пусковая обмотка, которую мы уже упоминали. Точнее делает это результирующее магнитное поле от основной и пусковой обмоток.
  • Эта обмотка требует включения только при пуске мотора.

Интересно знать! В маломощных моторах пусковая обмотка является короткозамкнутой.

  • Момент включения пусковой обмотки связан с пусковой кнопкой – обычно ее необходимо удерживать на протяжении нескольких секунд, пока двигатель не начнет вращаться с нормальной скоростью.
  • Когда контакт на кнопке размыкается, двигатель переходит полностью в однофазный режим.
  • Важно помнить, что пусковая фаза не предназначается для долгой работы – обычно время ее активного состояния составляет около 3 секунд. Если попытаться превысить данное значение обмотка начнет перегреваться, что может привести к выходу элемента из строя.
  • Становится понятным, что ручной контроль за пуском двигателя неэффективен и малонадежен, поэтому данный процесс в современных устройствах автоматизирован. В них устанавливаются тепловые реле и центробежные выключатели.
  • Первый элемент контролирует нагрев обеих обмоток и отключает питание, если температура достигает критического значения.
  • Второй отключает питание пусковой фазы, как только ротор разгонится до нужных оборотов.

Подключение двигателя

Как подключается коллекторный однофазный электродвигатель переменного тока

Как подключается коллекторный однофазный электродвигатель переменного тока

Итак, мы уже поняли, что для работы такому мотору требуется всего одна фаза на 220 В, то есть включается он в обыкновенную розетку, что, собственно, и делает эти устройства такими популярными несмотря на низкий КПД и прочие недостатки.

Интересно знать! Практически все бытовые приборы оборудованы именно такими двигателями.

Различные варианты подключения

Различные варианты подключения

  • Однофазные двигатели переменного тока по подключению делят на три типа: вариант с пусковой обмоткой и рабочим конденсатором.
  • В первом пусковая обмотка запитана через конденсатор только во время старта – собственно, его мы описали в предыдущей главе.
  • Во втором она подключена через конденсатор постоянно.
  • В третьем вместо конденсатора используется сопротивление.
Коллекторный однофазный двигатель переменного тока от стиральной машины

Коллекторный однофазный двигатель переменного тока от стиральной машины

  • Для последнего типа подключения может использоваться пусковой резистор, который подключается к пусковой обмотке последовательно. За счет этого удается получить сдвиг фаз на 30 градусов, чего вполне хватает для раскрутки двигателя.
  • Также дополнительная обмотка может сама по себе иметь высокое активное сопротивление.
  • Сдвиг фаз также может быть получен за счет того, что пусковая фаза будет иметь высокое сопротивление и меньшую индуктивность.

Конденсаторный пуск имеет следующие особенности:

  • Чтобы достигнуть максимального значения пускового момента, достаточного для старта двигателя, нужно вращающееся круговое магнитное поле. Таковое возникает, когда обмотки сдвинуты относительно друг друга на 90 градусов – сразу становится понятно, что ни резистор, ни дроссель не смогут задать такое значение. А вот если правильно подобрать емкость конденсатора – ну вы поняли…
  • Конденсатор необходимо подбирать по потребляемому току.
Конденсатор и переменный ток

Конденсатор и переменный ток

Интересно знать! На нашем сайте есть очень познавательная статья про то, как конденсаторы ведут себя в цепи переменного тока. Если интересно, обязательно ознакомьтесь.

Кстати, если вы пытаетесь самостоятельно подключить такой двигатель в сеть, но не знаете, какие выводы к какой обмотке относятся, просто замерьте их сопротивление. Для основной оно составит где-то 12 Ом, а для пусковой – 30.

Строение асинхронного однофазного двигателя

Однофазный коллекторный двигатель переменного тока

Однофазный коллекторный двигатель переменного тока

Итак, мы  вами в первой части статьи разобрали общие понятия об однофазных двигателях, принципе их работы и подключении. Такой информации хватило бы для поверхностного изучения, но нас такой подход не совсем устраивает. Для любителей технических подробностей, давайте разберем теперь все детальнее.

Асинхронный двигатель

Электрические моторы бывают синхронными и асинхронными. Разница между ними состоит в том, что в синхронном, скорость вращения якоря совпадает с вращением магнитного поля, а в асинхронном ротор несколько отстает.

  • Последний вариант является самым распространенным, так как имеет более простую конструкцию и очень надежен. Синхронные применяются лишь в тех сферах, где очень важен контроль за оборотами двигателя.
  • Вы уже, наверное, обратили внимание на то, что словом фаза называются разные понятия – и количество питающих проводов, и обмотки на статоре и сдвиг по углам. И мы даже сказали, что однофазные двигатели, фактически имеют две фазы, но называются они таковыми именно по количеству питающих проводов.
  • Мы также писали, что мотор имеет подвижную и неподвижную части. Давайте разберем их строение подробнее.
Коллекторные электродвигатели переменного тока однофазные

Коллекторные электродвигатели переменного тока однофазные

  • Ротор агрегата представляет собой вал, который держится в корпусе двигателя при помощи подшипников вращения. За счет них же он свободно крутится вокруг своей оси. Строение этого элемента будет отличаться в зависимости от того является двигатель коллекторным или бесколлекторным. Давайте начнем со второго.
  • На валу бесколлекторного фазного ротора закреплен магнитопровод, который набирается из шихтованных стальных пластин.
  • Снаружи магнитопровода имеются пазы, в которых находятся стержни обмоток – обычно из меди.
Двигатель с ротором фазного типа

Двигатель с ротором фазного типа

  • С концов стержни соединяются с кольцами, которые накоротко их замыкают – их называют замыкающими кольцами.
Строение фазного ротора

Строение фазного ротора

  • Внутри данной обмотки будет течь ток, который индуктируется магнитным полем статора – никаких внешних подключений он не имеет.
  • Магнитопровод служит для лучшего прохождения магнитного поля, которое создается в роторе.
  • Для таких устройств характерна высокая надежность, так как они не имеют трущихся деталей. Управление скоростью вращения двигателя осуществляется только за счет тока на основной обмотке статора.
  • Коллекторный двигатель переменного тока однофазный по своему строению мало чем отличается от ротора двигателя постоянного тока. Собственно, такие двигатели являются универсальными и могут запитываться как переменным, так и постоянным током.
  • Фазы ротора подключаются к питающей сети через коллектор, который контактирует со щетками, которые в свою очередь уже соединяются с питающей цепью.
  • Строение таких двигателей более сложное, также их надежность будет ниже, но они являются более гибкими в управлении.
На фото – статор электродвигателя

На фото – статор электродвигателя

  • Статор является пассивной частью электромотора – он неподвижен и состоит из магнитопровода и обмотки.
  • Назначение этого элемента – генерирование неподвижного или вращающегося магнитного поля.
  • У однофазного двигателя от статора будет отходить четыре вывода – два для рабочей обмотки и два для пусковой. Как их отличить мы уже писали.

Помимо этих элементов двигатели имеют следующие составляющие:

  • Станина и корпус устройства, которые удерживают в себе все рабочие части и позволяют закрепить устройство на поверхности;
  • Внешняя электрическая цепь – кнопка включения, устройство регулировки оборотов, провода и устройства для шунтирования дополнительной обмотки;
  • Крыльчатка – активное охлаждение двигателя, располагается также на валу;
  • Подшипники вращения.

Что происходит в обмотках при включении

Чтобы лучше понять принцип взаимодействия магнитных полей, давайте представим, что у нашего двигателя обмотка имеет всего один виток. Провод при этом уложен в магнитопроводе так, что его части разведены на 180 градусов, то есть уложены друг напротив друга.

  • Подключаем питание, и по нашему проводу начинает течь синусоидальный или переменный ток.
Полный период синусоидального тока

Полный период синусоидального тока

  • Период синусоидального тока состоит из двух полупериодов, при которых ток двигается в разных направлениях. Именно это изображено на схеме выше.
  • Как вы можете видеть, изначально значение тока равно нулю, затем он растет, достигая пика, после чего падает до нулевой отметки и опять возрастает, но уже в другом направлении.
  • Давайте представим, что ток и магнитное поле от него замерли в какой-то точке. Представьте, что смотрите на виток сбоку – он будет похож на букву «С».
  • Ток протекает в верхней горизонтальной части обмотки влево, соответственно, в нижней – вправо. При этом ток одинаков и получается так, что создаваемое им магнитное поле противодействует друг другу. Почему ротор и находится в неподвижном состоянии.
  • Итак, ток течет, меняется его величина и направление, как и у магнитного поля, но они всегда остаются в противовесном состоянии, поэтому ротор так и продолжает стоять.

Как же создается сила, заставляющая ротор вращаться?

Инструкция по работе однофазного двигателя переменного тока

Инструкция по работе однофазного двигателя переменного тока

  • Как вариант можно толкнуть его рукой и этого будет достаточно, чтобы совершить пуск, но мы же говорим про техническое решение вопроса!
  • Ну ладно, мы уже знаем, что нам потребуется еще одна обмотка.
  • Обмотка сделана из более толстого провода, чтобы она смогла пропустить большие токи. Фаза тока в этой обмотке отстает от основной на 90 градусов, то есть когда ток в основной обмотке уже опустился до нуля, здесь он буден на пике (отстает на четверть периода). В итоге разница магнитных полей придает ротору первый вращающий импульс. Направление вращения зависит от полярности подключения концов пусковой обмотки.
  • Как только ротор начинает вращаться, в нем создается ЭДС.
  • Направление тока в стержнях будет противоположно направленным, так как на них воздействуют разные магнитные поля.
  • За счет возникновения вращающего момента двигатель моментально подхватит направление вращения и начнет раскручивать ротор до достижения им максимальных оборотов. Но почему не происходит торможения, когда ток в статоре меняет свое направление на обратное?
  • Дело в том, что, по сути ничего не меняется. Просто подталкивающая вращение сила будет переходить с верхней части обмотки на нижнюю и обратно. А так как двигатель уже получил смещение в одну из сторон, а противодействующая сила может лишь уравновесить, то коэффициент ускорения будет несколько сильнее торможения.

То есть, в роторе будут наводиться токи с разной частотой, которые будут создавать моменты сил с разными направлениями, именно поэтому якорь продолжит вращаться в том же направлении.

На этом закончим наш материал. Мы узнали, как устроены электродвигатели переменного тока однофазные, если тема вам интересно, то посмотрите следующее увлекательное видео.

elektrik-a.su

Синхронный электродвигатель: характеристики, устройство и принцип действия

Синхронный электродвигатель – это устройство, преобразующее электрическую энергию в механическую. Его также можно использовать в качестве генератора. Чаще всего он применяется в компрессорах, прокатных станках, поршневых насосах и другом подобном оборудовании. Рассмотрим принцип действия синхронного электродвигателя, его характеристики и свойства.

Устройство синхронного электродвигателя

Строение агрегата данного вида типично. Двигатель состоит из:

  • Неподвижной части (якорь или статор).
  • Подвижной части (ротор или индуктор).
  • Вентилятора.
  • Контактных колец.
  • Щеток.
  • Возбудителя.

Статор представляет собой сердечник, состоящий из обмоток, который заключен в корпус. Индуктор комплектуется электромагнитами постоянного тока (полюсами). Конструкция индуктора может быть двух видов – явнополюсная и неявнополюсная. В статоре и роторе расположены ферромагнитные сердечники, изготовленные из специальной электротехнической стали. Они необходимы для уменьшения магнитного сопротивления и улучшения прохождения магнитного потока.

Частота вращения ротора в синхронном двигателе равна частоте вращения магнитного поля. Независимо от подключаемой нагрузки частота ротора неизменна, так как число пар полюсов магнитного поля и ротора совпадают. Их взаимодействие обеспечивает постоянную угловую скорость, не зависящую от момента, приложенного к валу.

Принцип работы синхронного электродвигателя

Самые распространенные типы такого рода агрегатов – однофазный и трехфазный. Принцип работы синхронного электродвигателя в обоих случаях примерно одинаков. После подключения обмотки якоря к сети ротор остается неподвижным, в то время как постоянный ток поступает в обмотку возбуждения. Направление электромагнитного момента меняется дважды за время одного изменения напряжения. При значении среднего момента равном нулю, ротор под влиянием внешнего момента (механического воздействия) разгоняется до частоты, близкой по значению частоте вращения магнитного поля в зазоре, после чего двигатель переходит в синхронный режим.

В трехфазном устройстве проводники расположены под определенным углом относительно друг друга. В них возбуждается вращающееся с синхронной скоростью электромагнитное поле.

Разгон двигателя может осуществляться в двух режимах:

  • Асинхронный. Обмотки индуктора замыкаются с помощью реостата. Вращающееся магнитное поле, возникающее при включении напряжения, пересекает короткозамкнутую обмотку, установленную на роторе. В ней индуцируются токи, взаимодействующие с вращающимся полем статора. По достижении синхронной скорости крутящий момент начинает уменьшаться и сводится к нулю после замыкания магнитного поля.
  • С помощью вспомогательного двигателя. Для этого синхронный двигатель механически соединяется со вспомогательным (двигателем постоянного тока либо трехфазным индукционным двигателем). Постоянный ток подается только после того, как вращение двигателя достигает скорости, близкой к синхронной. Магнитное поле замыкается, и связь со вспомогательным двигателем прекращается.

Характеристики синхронного электродвигателя

Хотя асинхронные двигатели считаются более надежными и дешевыми, их синхронные «собратья» имеют некоторые преимущества и широко применяются в различных областях промышленности. К отличительным характеристикам синхронного электродвигателя можно отнести:

  • Работу при высоком значении коэффициента мощности.
  • Высокий КПД по сравнению с асинхронным устройством той же мощности.
  • Сохранение нагрузочной способности даже при снижении напряжения в сети.
  • Неизменность частоты вращения независимо от механической нагрузки на валу.
  • Экономичность.

Синхронным двигателям также присущи некоторые недостатки:

  • Достаточно сложная конструкция, делающая их производство дороже.
  • Необходимость источника постоянного тока (возбудителя или выпрямителя).
  • Сложность пуска.
  • Необходимость корректировать угловую частоту вращения путем изменения частоты питающего напряжения.

Однако в некоторых случаях использование синхронных двигателей предпочтительнее:

  • Для улучшения коэффициента мощности.
  • В длительных технологических процессах, где нет необходимости в частых запусках и остановках.

Таким образом, «плюсы» двигателей такого типа значительно превосходят «минусы», поэтому на данный момент они высоко востребованы.

Изучив синхронный двигатель, устройство и принцип его действия и учтя условия, в которых он будет эксплуатироваться, вы сможете быстро и с легкостью подобрать оптимально подходящий для ваших целей тип агрегата (защищенный, закрытый, открытый) и использовать его с максимальной эффективностью.



www.szemo.ru

Двигатель асинхронный однофазный - устройство, принцип работы и схема подключения

Никто глубоко не задумывался о том, как бы жили люди без такого изобретения, как электродвигатель асинхронный однофазный. Казалось бы, что такое умное слово никого не касается и витает где-то в заоблачной дали. Но этот большой помощник в быту встречается на каждом шагу.

Скажите, как можно обходиться без холодильника или пылесоса. А ведь не будь двигателя, всего этого не было бы сейчас. Предлагаем в статье узнать все подробности об этом устройстве, а дочитавшим до конца будет бонус в виде полезного справочника по асинхронным двигателям

Однофазный асинхронный двигатель

Так выглядит однофазный асинхронный двигатель.

История возникновения

Более 60 лет понадобилось многим ученым, пока однофазный асинхронный двигатель начал покорять просторы земного шара. Началось все с 1820-х годов, когда Джозеф Генри и Майкл Фарадей – открыли явления индукции и начали первые эксперименты.

Однофазные асинхронные двигатели на службе человечестваПринцип работы асинхронного двигателя (однофазного) основан на этих основных физических законах. В 80-х годах позапрошлого столетия многие умы разрабатывают трансформаторы и генераторы переменного тока. Год 1885 принес идею первого многофазного двигателя переменного тока от Галилео Феррариса, вскоре Никола Тесла уже представил свой многофазный мотор (1888 год).

В 1889-1891годах русский электротехник, поляк по происхождению, Михаил Осипович Доливо-Добровольский придумал ротор в виде “беличьей клетки”. К этому изобретению его подтолкнул доклад Феррариса «О вращающемся магнитном поле». С началом ХХ века пришло широкое внедрение электромеханических устройств.

Применение однофазных асинхронных двигателей

Известно, что однофазные двигатели уступают трехфазным по некоторым характеристикам. Однофазные моторы имеют в основном бытовое назначение:

  • пылесосы;
  • вентиляторы;
  • электронасосы;
  • холодильники;
  • машины для переработки сырья.

Для того, чтобы выполнить подключение асинхронного двигателя нужна однофазная сеть переменного тока. Такие двигатели работают при напряжении 220 Вольт и частоте 50 Гц. Прилагательное «асинхронный» указывает на то, что скорость вращения якоря отстает от магнитного поля статора.
Однофазные двигатели имеют две независимых цепи, но работают они в основном на одной, отсюда и название. Основные части двигателя:

  1. Статор (неподвижный элемент).
  2. Ротор (вращающаяся часть).
  3. Механическое соединение этих двух частей.
  4. Поворотные подшипники.

Соединение состоит из внутренних колец, установленных на закрепленных втулках вала ротора, наружных колец в защитных боковых крышках, прикрепленных к статору.

Для запуска однофазного асинхронного двигателя с пусковой обмоткой установлена ​​другая катушка. Обмотка стартера установлена ​​со смещением от рабочей катушки на 900 С. Для создания сдвига тока, в цепи однофазного двигателя имеется схема сдвига фаз. Сдвиг можно получить при помощи различных элементов. Это могут быть:

  1. Активное сопротивление.
  2. Емкостное.
  3. Индуктивное.

В видео, представленном ниже, показан принцип работы однофазных асинхронных двигателей.

Принцип действия

Обмотки статора при помощи переменного тока образуют магнитные поля. Они имеют одинаковую амплитуду и частоту, но действуют в разных направлениях, поэтому статический ротор начинает вращаться.

Если в двигателе отсутствует пусковой механизм, ротор останавливается, потому что результирующий крутящий момент равен нулю. В случае, когда ротор начинает вращаться в одном направлении, соответствующий крутящий момент становится выше, когда вал двигателя продолжает вращаться в заданном направлении.

Принцип работы Принцип работы однофазного асинхронного двигателя.

Момент запуска

Сигналом к запуску становится магнитное поле двух обмоток, вращающее подвижную часть двигателя. Оно создается 2 обмотками: главной и пусковой. Дополнительная обмотка меньшего размера является пусковой и подключается к основной схеме включения однофазного двигателя через ёмкостное или индуктивное сопротивление.

Однофазные асинхронные двигатели на службе человечества

Подключение происходит только в момент пуска. При удержании пусковой кнопки короткое время (порядка 2-3 секунд) происходит разгон ротора. В момент отпускания кнопки электрический мотор переходит в режим работы основной фазы.

Пусковая обмотка может работать кратковременно. Более длительное время нахождения под нагрузкой может вызвать перегревание и воспламенение изолирующих элементов, что приведет к выходу из строя.

Надежность повышается за счет встраивания в схему однофазного асинхронного двигателя таких элементов как тепловое реле и центробежный выключатель. Последний отключает пусковую фазу в тот момент, когда ротор разгоняется до номинальной скорости. Отключение происходит автоматически.

Работа реле происходит следующим образом: когда обмотки нагреваются до предельного значения, установленного на реле, механизм прерывает подачу питания на обе фазы, предотвращая отказ из-за перегрузки или по любой другой причине. Это защищает от возгорания.

Возможно, вам будет интересно также почитать все, что нужно знать о шаговых электродвигателях в другой нашей статье.

Варианты подключения

Для того, чтобы мотор заработал необходимо иметь одну 220-вольтовую фазу. Это значит, что подойдет любая стандартная розетка. Благодаря этой простоте двигатели завоевали популярность в быту. Любой прибор, начиная от стиральной машины и до соковыжималки, имеет подобные механизмы в своем составе.

Известны два типа однофазных двигателей в зависимости от способа подключения:

  1. Однофазный асинхронный двигатель с пусковой обмоткой.
  2. Однофазный двигатель с конденсатором.

Схема подключения однофазного асинхронного двигателя с помощью конденсаторов изображена на рисунке.

Схема подключения

Схема подключения однофазного асинхронного двигателя с помощью конденсаторов.

Схема содержит пусковую обмотку с конденсатором. После ускорения ротора происходит выключение катушки. Рабочий конденсатор не позволяет размыкаться пусковой цепи, и запускающая обмотка работает через конденсатор в постоянном режиме.

Одновременно с рабочей обмоткой пусковая катушка снабжена током через конденсатор. При использовании в режиме пуска у катушки более высокое активное сопротивление. Фазовый сдвиг при этом имеет достаточную величину, чтобы началось вращение.

Допускается брать пусковую обмотку, с меньшей индуктивностью и большим сопротивлением. Запуск конденсатора осуществляется при подключении его к пусковой обмотке и временному источнику питания.

Чтобы достичь максимального значения пускового момента требуется вращающееся магнитное поле. Для этого нужно добиться положения обмоток под углом 900. При правильно рассчитанной емкости конденсатора обмотки могут быть смещены на 900 градусов. Расчет однофазного асинхронного двигателя зависит от схем подключения, которые приведены ниже.

Схемы включения

Схемы включения однофазного асинхронного двигателя.

Различные варианты подключения:

  • временное включение электрического тока на стартовую обмотку через конденсатор;
  • подача на пусковое устройство через резистор, без конденсатора;
  • запуск через конденсатор на пусковую обмотку постоянно, одновременно с работой рабочей обмотки.

Расчет проводной принадлежности

Для расчета проводов, соединяющих рабочую и пусковую обмотки, понадобится омметр. Измеряется сопротивление обмоток. R рабочей обмотки должно быть ниже, чем у стартера. Например, если измерения составили 12 Ом для одной обмотки и 30 Ом для другой, то сработают обе. У рабочей обмотки поперечное сечение больше, чем у выходной.

Выбор емкости конденсатора

Чтобы определить емкость конденсатора, необходимо знать ток потребления электродвигателя. Если ток 1,4 А, то понадобится конденсатор емкостью 6 микрофарад. Также можно ориентироваться на таблицу расчета емкости конденсатора, приведенную ниже.

Таблица расчета емкости конденсатора

Таблица расчета емкости конденсаторов.

Проверка работоспособности

Тестирование начинается с визуального осмотра. Возможные неисправности:

  1. Если опорная часть на устройстве была сломана, это может привести к неисправностям.
  2. При потемнении корпуса в средней части идет перегрев. Бывает попадание в корпус различных посторонних предметов, это способствует перегреванию. При износе и загрязнении подшипников возможен перегрев.
  3. Когда однофазный электродвигатель на 220 вольт имеет в схеме подключения конденсатор увеличенного размера, он начинает перегреваться.
Однофазные асинхронные двигатели на службе человечества

Если есть подозрение на наличие такого элемента, его необходимо отсоединить от пусковой обмотки, включить двигатель в сети и вращать вал вручную.

Запустить двигатель минут на пятнадцать, а затем проверить, не прогрелся ли он. Если двигатель не греется, причиной являлась увеличенная емкость конденсатора. Необходимо установить конденсатор, имеющий меньшую емкость.

Для лучшего понимания механизма работы двигателей, рекомендуем также подробнее прочитать, что такое трехфазный двигатель и как он работает.

Достоинства и недостатки

Основными плюсами являются:

  • простота конструкции;
  • повсеместная доступность однофазных сетей переменного тока 220 В при частоте 50 Гц (практически во всех районах).

К минусам можно отнести следующие обстоятельства:

  • невысокий пусковой момент двигателя;
  • низкая эффективность.
Плюсы и минусы однофазных двигателей

Основные достоинства и недостатки однофазных асинхронных двигателей

Заключение

Маломощные однофазные электродвигатели выпускаются в разной модификации и для разного назначения. Перед приобретением необходимо точно знать некоторые характеристики. Подробно с устройством данного типа двигателей можно ознакомиться, скачав книгу Алиева И. И. Асинхронные двигатели в трехфазном и однофазном режимах.

Российские производители предлагают некоторые серии устройств, имеющие мощность от 18 до 600 Вт, частоту вращения 3000 и 1500 об/мин. Все они предназначены для подключения в сеть с напряжением 127, 220 или 380 Вольт и частотой 50 Гц.

electroinfo.net

Notice: Trying to access array offset on value of type null in /var/www/www-root/data/www/biysk-tv.ru/wp-content/plugins/wpdiscuz/class.WpdiscuzCore.php on line 942 Notice: Trying to access array offset on value of type null in /var/www/www-root/data/www/biysk-tv.ru/wp-content/plugins/wpdiscuz/class.WpdiscuzCore.php on line 975

Отправить ответ

avatar
  Подписаться  
Уведомление о