Делитель тока на резисторах: 3. Делители тока | 5. Схемы делителей и законы Кирхгофа | Часть1

Содержание

3. Делители тока | 5. Схемы делителей и законы Кирхгофа | Часть1

3. Делители тока

Делители тока

Давайте проанализируем простую параллельную цепь и определим силу тока на каждом из ее резисторов:

 

 

Как вы уже знаете, напряжение на всех компонентах параллельной цепи одинаково. Исходя из этого можно заполнить верхнюю строчку рассмотренной ранее таблицы:

 

Теперь, используя закон Ома (I = U/R), мы можем рассчитать силу тока на каждом резисторе (в каждой ветви):

 

 

Один из принципов параллельных цепей гласит, что общая сила тока в таких цепях равна сумме отдельных токов. Поэтому, суммируя 6 мА, 2мА и 3мА, мы можем заполнить ячейку общей силы тока в нашей таблице:

 

 

И наконец, вычислим общее сопротивление нашей цепи. Сделать это можно при помощи закона Ома (R = U/I), или при помощи формулы параллельного соединения резисторов. В обоих случаях мы получим одинаковый ответ:

 

 

Из данной таблицы видно, что сила тока через каждый резистор связана с его сопротивлением (учитывая равенство напряжений на всех резисторах). Причем взаимосвязь эта обратнопропорциональна. К примеру, сила тока через резистор R1 вдвое больше, чем через резистор R3, хотя сопротивление последнего в два раза превышает сопротивление первого.

Если мы изменим напряжение питания этой схемы, то обнаружим, что пропорциональность соотношений не изменится:

 

 

Несмотря на то, что напряжение источника питания изменилось, ток через резистор R

1 по-прежнему в два раза превышает ток через резистор R3. Таким образом, пропорциональность между токами различных ветвей цепи является исключительно функцией сопротивления.

Кроме того, токи отдельных ветвей цепи составляют фиксированные пропорции от ее общей силы тока. Несмотря на четырехкратное увеличение напряжения источника питания, соотношение между током любой ветви и общим током осталось неизменным:

 

 

Благодаря способности делить общий ток на пропорц

1. Делители напряжения | 5. Схемы делителей и законы Кирхгофа | Часть1

1. Делители напряжения

Делители напряжения

 

Давайте проанализируем простую последовательную цепь и определим напряжения на каждом из ее резисторов:

 

 

Зная сопротивления каждого из резисторов, мы можем вычислить общее сопротивление цепи (которое для последовательной цепи будет равно сумме отдельных сопротивлений):

 

 

Теперь, используя закон Ома (I = U/R), определяем общую силу тока, которая будет одинакова на всех компонентах нашей последовательной цепи:

 

 

И наконец, зная общую силу тока (2 миллиампера), давайте рассчитаем напряжение на каждом из резисторов:

 

 

Из этой таблицы видно, что напряжения на резисторах пропорциональны их сопротивлениям (учитывая, что сила тока через все резисторы одинакова). Заметьте, напряжение на резисторе R

2 в два раза больше напряжения на резисторе R1, так же как и сопротивление R2 в два раза больше сопротивления R1.

Если мы изменим общее напряжение цепи, то увидим, что эта пропорциональность сохранится:

 

 

Несмотря на увеличение напряжение источника питания, напряжение на резисторе R2 по прежнему в два раза больше напряжения на резисторе R1.

Произведя несколько подобных наблюдений становится очевидным, что напряжение на каждом из резисторов составляет фиксированную пропорцию от общего напряжения. Например, при напряжении батареи 45 вольт, напряжение на резисторе R1 составляло 10 вольт. Когда напряжение батареи было увеличено до 180 вольт (в 4 раза), напряжение на резисторе R1 так же увеличилось в 4 раза (с 10 до 40 вольт). Как видите, соотношение между напряжением на резисторе R

1 и общим напряжением не изменилось:

 

 

Соотношения других напряжений с увеличением напряжения питания так же не изменятся:

Резистивный делитель тока. Формула для расчета делителя тока на сопротивлениях.

Делитель тока на резисторах — электротехническое устройство, позволяющее разделять ток и использовать только часть от подаваемого в цепь тока посредством элементов электрической цепи, состоящей из резисторов.

При проектировании электрических цепей возникают случаи, когда в цепи протекает ток одного номинала, а номинально-допустимый ток нагрузки должен быть меньше. Для этих целей используют делители тока. Делители тока основаны на первом законе Кирхгофа. 

Самая простая схема резистивного делителя тока — это два параллельно подключенных сопротивления и источник напряжения или тока.

На приведенной ниже схеме ток I при достижении узла разделяется на два тока I2 и I3. Согласно первому закону Кирхгофа ток I равен сумме токов I2 и I3.

 

Напряжение на сопротивлениях UR2 и UR3 одинаковое, т.к. они соединены параллельно.

 

Если к сопротивлениям R2 и R3 приложено напряжение U, то ток через сопротивления, согласно закону Ома:

     

Подключаем нагрузку последовательно к R1 или к R2. Выбираем то сопротивление, через которое протекает нужный ток. В результате через нагрузку будет протекать ток IR3=I3.

Примеры применения делителя тока 

  1. Как делитель тока. Представьте, что у Вас есть светодиод, номинальный ток через который 17 мА (миллиампер) и есть схема, через которую протекает ток 30 мА. При маленьком токе светодиод будет гореть тускло, при большем — выйдет из строя.  Для того, чтобы светодиод работала в номинальном режиме (ток 17 мА) необходимо ток 30 мА разделить на 17 и 13 миллиампер. Данную задачу выполняют простейшие делители тока на резисторах.
  2. Датчик параметр — ток. Сопротивление резистивных элементов зависит от многих параметров, например растяжение и сжатие. Начинаем выполнять механические воздействия над одним из сопротивлений. В результате изменяется его сопротивление. Согласно закону Ома ток через это сопротивление будет изменяться. Согласно первому закону Кирхгофа общий ток так же будет изменяться.
  3. Измерение больших токов. Через первое сопротивление пропускается почти весь ток, через второй малая часть (миллиамперы или микроамперы). Измерение производится миллиамперов.

Ограничения при использовании резистивных делителей тока

Номинал сопротивления нагрузки должен быть на несколько порядков меньше, чем величина сопротивлений делителя тока. В противном случае нагрузка будет влиять на протекающий через цепь ток. В результате делитель напряжения будет работать неверно.

Резистивный делитель тока уменьшает КПД электрической цепи за счет потребления активной мощности сопротивлениями.

Необходимо использовать высокоточные прецизионные сопротивления.

Резистивный делитель напряжения. Расчет делителя напряжения на резисторах

При проектировании электрических цепей возникают случаи, когда необходимо уменьшить величину напряжения (разделить его на несколько частей) и только часть подавать на нагрузку. Для этих целей используют делители напряжения. Они основаны на втором законе Кирхгофа.

Самая простая схема — резистивный делитель напряжения. Последовательно с источником напряжения подключаются два сопротивления R1 и R2.

 

При последовательном подключении сопротивлений через них протекает одинаковый ток I.

 

В результате, согласно закону Ома, напряжения на резисторах делится пропорционально их номиналу.

    

Подключаем нагрузку параллельно к R1 или к R2. В результате на нагрузке будет напряжение равное U

R2.

Примеры применения делителя напряжения 

  1. Как делитель напряжения. Представьте, что у Вас есть лампочка, которая может работать только от 6 вольт и есть батарейка на 9 вольт. В этом случае при подключении лампочки к батарейке, лампочка сгорит. Для того, чтобы лампочка работала в номинальном режиме, напряжение 9 В необходимо разделить на 6 и 3 вольта. Данную задачу выполняют простейшие делители напряжения на резисторах.
  2. Датчик параметр — напряжение. Сопротивление резистивных элементов зависит от многих параметров, например температура. Помещаем одно из сопротивлений в среду с изменяющейся температурой. В результате при изменении температуры будет изменяться сопротивление одного из делителей напряжения. Изменяется ток через делитель. Согласно закону Ома входное напряжение перераспределяется между двумя сопротивлениями.
  3. Усилитель напряжения. Делитель напряжения может использоваться для усиления входного напряжения. Это возможно, если динамическое сопротивление одного из элементов делителя отрицательное, например на участке вольт-амперной характеристики туннельного диода.

Ограничения при использовании резистивных делителей напряжения

  • Номинал сопротивлений делителя напряжения на резисторах должен быть в 100 — 1000 раз меньше, чем номинальное сопротивление нагрузки, подключаемой к делителю. В противном случае сопротивление нагрузки уменьшит величину разделенного делителем напряжения.
  • Малые значения сопротивлений, являющихся делителем напряжения, приводят к большим потерям активной мощности. Через делитель протекают большие токи. Необходимо подбирать сопротивления, чтобы они не перегорали и могли рассеять такую величину отдаваемой энергии в окружающую среду.
  • Резистивный делитель напряжения нельзя использовать для подключения мощных электрических приборов: электрические машины, нагревательные элементы, индукционные печи.
  • Снижение КПД схемы за счет потерь на активных элементах делителя напряжения.
  • Для получения точных результатов в делителе напряжения необходимо использовать прецизионные (высокоточные) сопротивления.

Делитель тока — Студопедия

Студопедия Категории Авто Автоматизация Архитектура Астрономия Аудит Биология Бухгалтерия Военное дело Генетика География Геология Государство Дом Журналистика и СМИ Изобретательство Иностранные языки Информатика Искусство История Компьютеры Кулинария Культура Лексикология Литература Логика Маркетинг Математика Машиностроение Медицина Менеджмент Металлы и Сварка Механика Музыка Население Образование Охрана безопасности жизни Охрана Труда Педагогика Политика Право Программирование Производство Промышленность Психология Радио Регилия Связь Социология Спорт Стандартизация Строительство Технологии Торговля Туризм Физика Физиология Философия Финансы Химия Хозяйство Черчение Экология Эконометрика Экономика Электроника Юриспунденкция Предметы Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений
электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и
прикладные исследования
в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС

Делитель тока и делитель напряжения — Студопедия

Студопедия Категории Авто Автоматизация Архитектура Астрономия Аудит Биология Бухгалтерия Военное дело Генетика География Геология Государство Дом Журналистика и СМИ Изобретательство Иностранные языки Информатика Искусство История Компьютеры Кулинария Культура Лексикология Литература Логика Маркетинг Математика Машиностроение Медицина Менеджмент Металлы и Сварка Механика Музыка Население Образование Охрана безопасности жизни Охрана Труда Педагогика Политика Право Программирование Производство Промышленность Психология Радио Регилия Связь Социология Спорт Стандартизация Строительство Технологии Торговля Туризм Физика Физиология Философия Финансы Химия Хозяйство Черчение Экология Эконометрика Экономика Электроника Юриспунденкция Предметы Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений
электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и
прикладные исследования
в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие Расчет, примеры и применение

В электронике правило делителя напряжения — это простая и наиболее важная электронная схема, которая используется для преобразования большого напряжения в малое. Используя только напряжение i / p и два последовательных резистора, мы можем получить напряжение o / p. Здесь выходное напряжение составляет часть напряжения i / p. Лучший пример делителя напряжения — два последовательно соединенных резистора. Когда напряжение i / p приложено к паре резисторов, напряжение o / p появится из соединения между ними.Как правило, эти разделители используются для уменьшения величины напряжения или для создания опорного напряжения, а также используются на низких частотах в качестве сигнала аттенюатора. Для постоянного тока и относительно низких частот делитель напряжения может быть подходящим вариантом, если он состоит только из резисторов; где частотная характеристика требуется в широком диапазоне.

Что такое правило делителя напряжения?

Определение: В области электроники делитель напряжения представляет собой базовую схему, используемую для генерации части входного напряжения, например выходного.Эта схема может быть сконструирована с двумя резисторами или любыми пассивными компонентами вместе с источником напряжения. Резисторы в цепи могут быть подключены последовательно, в то время как источник напряжения подключен к этим резисторам. Эту схему еще называют делителем потенциала. Входное напряжение может передаваться между двумя резисторами в цепи, так что происходит разделение напряжения.


Когда использовать правило делителя напряжения?

Правило делителя напряжения используется для решения схем, чтобы упростить решение.Применение этого правила также может полностью решить простые схемы. Основная идея этого правила делителя напряжения заключается в том, что «напряжение делится между двумя резисторами, которые соединены последовательно, прямо пропорционально их сопротивлению. Делитель напряжения состоит из двух важных частей: схемы и уравнения.

Различные схемы делителя напряжения

Делитель напряжения включает в себя источник напряжения, подключенный к серии из двух резисторов. Вы можете увидеть различные схемы напряжения, нарисованные по-разному, как показано ниже.Но эти разные схемы всегда должны быть одинаковыми. Схема делителя напряжения

В приведенных выше схемах делителя напряжения резистор R1 находится ближе всего к входному напряжению Vin, а резистор R2 находится ближе всего к клемме заземления. Падение напряжения на резисторе R2 называется Vout, которое представляет собой разделенное напряжение цепи.

Расчет делителя напряжения

Рассмотрим следующую схему, подключенную с помощью двух резисторов R1 и R2. Где переменный резистор включен между источником напряжения.В приведенной ниже схеме R1 — это сопротивление между скользящим контактом переменной и отрицательной клеммой. R2 — сопротивление между положительной клеммой и скользящим контактом. Это означает, что два резистора R1 и R2 включены последовательно.


Правило делителя напряжения с использованием двух резисторов

Закон Ома гласит, что V = IR

Из приведенного выше уравнения мы можем получить следующие уравнения

V1 (t) = R1i (t) …………… (I)

V2 (t) = R2i (t) …………… (II)

Применение закона Кирхгофа

KVL утверждает, что когда алгебраическая сумма напряжений вокруг замкнутого контура в цепи равна нулю.

-V (t) + v1 (t) + v2 (t) = 0

V (t) = V1 (t) + v2 (t)

Следовательно,

V (t) = R1i (t) + R2i (t) = i (t) (R1 + R2)

Следовательно,

i (t) = v (t) / R1 + R2 ……………. (III)

Подставляя III в уравнения I и II

V1 (t) = R1 (v (t) / R1 + R2)

V (t) (R1 / R1 + R2)

V2 (t) = R2 (v (t) / R1 + R2)

V (t) (R2 / R1 + R2)

На приведенной выше схеме показан делитель напряжения между двумя резисторами, который прямо пропорционален их сопротивлению.Это правило делителя напряжения можно распространить на схемы, в которых используется более двух резисторов.

Правило делителя напряжения с использованием трех резисторов

Правило деления напряжения для цепи с двумя резисторами

V1 (t) = V (t) R1 / R1 + R2 + R3 + R4

V2 (t) = V (t) R2 / R1 + R2 + R3 + R4

V3 (t) = V (t) R3 / R1 + R2 + R3 + R4

V4 (t) = V (t) R4 / R1 + R2 + R3 + R4

Делитель напряжения Уравнение

Уравнение правила делителя напряжения принимает, когда вы знаете три значения в приведенной выше схеме, это входное напряжение и два значения резистора.Используя следующее уравнение, мы можем найти выходное напряжение.

Vout = Vin. R2 / R1 + R2

В приведенном выше уравнении указано, что Vout (напряжение o / p) прямо пропорционально Vin (входное напряжение) и соотношению двух резисторов R1 и R2.

Резистивный делитель напряжения

Это очень легкая и простая схема для разработки и понимания. Основной тип схемы пассивного делителя напряжения может состоять из двух последовательно соединенных резисторов.Эта схема использует правило делителя напряжения для измерения падения напряжения на каждом последовательном резисторе. Схема резистивного делителя напряжения показана ниже.

В схеме резистивного делителя два резистора, такие как R1 и R2, соединены последовательно. Таким образом, ток в этих резисторах будет одинаковым. Следовательно, он обеспечивает падение напряжения (I * R) на каждом резисторе.

Резистивный тип

С помощью источника напряжения на эту цепь подается напряжение. Применяя KVL

Что такое делитель напряжения: Пример

текст.перейти к содержанию text.skipToNavigation

переключить

  • Услуги
    • Конфигурируемые
      • Конфигурируемые
      • Датчик термопары
        • Зонд термопары
      • Датчики RTD
        • Датчики RTD
      • Датчики давления
        • Датчики давления
      • Термисторы
        • Термисторы
    • Калибровка
      • Калибровка
      • Инфракрасная температура
        • Инфракрасная температура
      • Относительная влажность
        • Относительная влажность
      • Давление
        • Давление
      • Сила / деформация
        • Сила / деформация
      • Расход
        • Поток
      • Температура
        • Температура
    • Обслуживание клиентов
      • Служба поддержки клиентов
    • Индивидуальное проектирование
      • Заказное проектирование
    • Заказ по номеру детали
      • Для заказа по номеру детали
  • Ресурсы
Чат Чат

Тележка

    • Услуги
      • Услуги
      • Конфигурируемые
        • Конфигурируемые
        • Зонд термопары
        • Датчики RTD
        • Датчики давления
        • Термисторы
      • Калибровка
        • Калибровка
        • Инфракрасная температура
        • Относительная влажность
        • Давление
        • Сила / деформация
        • Поток
        • Температура
      • Обслуживание клиентов
        • Служба поддержки клиентов
      • Индивидуальное проектирование
        • Заказное проектирование
      • Заказ по номеру детали
        • Для заказа по номеру детали
    • Ресурсы
      • Ресурсы
    • Справка
      • Справка
    • Измерение температуры
      • Измерение температуры
      • Датчики температуры
        • Температурные датчики
        • Зонды датчика воздуха
        • Ручные зонды
        • Зонды с промышленными головками
        • Зонды со встроенными разъемами
        • Зонды с выводами
        • Профильные зонды
        • Санитарные зонды
        • Вакуумные фланцевые зонды
        • Реле температуры
      • Калибраторы температуры
        • Калибраторы температуры
        • Калибраторы Blackbody
        • Калибраторы сухих блоков и ванн
        • Ручные калибраторы
        • Калибраторы точки льда
        • Тестеры точки плавления
      • Инструменты для измерения температуры и кабеля
        • Инструменты для измерения температуры и кабеля
        • Обжимные инструменты
        • Сварщики
        • Инструмент для зачистки проводов
      • Термометры с циферблатом и стержнем
        • Термометры с циферблатом и стержнем
        • Термометры циферблатные
        • Цифровые термометры
        • Жидкостные стеклянные термометры
      • Температура провода и кабеля
        • Температура провода и кабеля
        • Удлинительные провода и кабели
        • Монтажные провода
        • Кабель с минеральной изоляцией
        • Провода для термопар
        • Нагревательный провод и кабели
      • Бесконтактное измерение температуры
        • Бесконтактное измерение температуры
        • Фиксированные инфракрасные датчики температуры
        • Портативные инфракрасные промышленные термометры
        • Измерение температуры человека
        • Тепловизор
      • Этикетки, лаки и маркеры температуры
        • Этикетки, лаки и маркеры температуры
        • Необратимые температурные этикетки
        • Реверсивные температурные этикетки
        • Температурные маркеры и лаки
      • Защитные гильзы, защитные трубки и головки
        • Защитные гильзы, защитные трубки и головки
        • Защитные головки и трубки
        • Защитные гильзы
      • Чувствительные элементы температуры
        • Температурные датчики
      • Датчики температуры поверхности
        • Датчики температуры поверхности
      • Проволочные датчики температуры
        • Проволочные датчики температуры
      • Температурные соединители, панели и блоки в сборе
        • Температурные соединители, панели и блоки в сборе
        • Проходы
        • Панельные соединители и узлы
        • Разъемы температуры
        • Клеммные колодки и наконечники
      • Регистраторы данных температуры и влажности
        • Регистраторы данных температуры и влажности
      • Измерители температуры, влажности и точки росы
        • Измерители температуры, влажности и точки росы
    • Контроль и мониторинг
      • Контроль и мониторинг
      • Движение и положение
        • Движение и положение
        • Двигатели переменного и постоянного тока
        • Акселерометры
        • Датчики смещения
        • Захваты
        • Датчики приближения
        • Поворотные смещения и энкодеры
        • Регуляторы скорости
        • Датчики скорости
        • Шаговые приводы
        • Шаговые двигатели
      • Сигнализация
        • Сигнализация
      • Счетчики
        • Метров
        • Счетчики и измерители скорости
        • Многоканальные счетчики
        • Счетчики процесса
        • Счетчики специального назначения
        • Тензометры
        • Измерители температуры
        • Таймеры
        • Универсальные измерители входа
      • Переключатели процесса
        • Переключатели процесса
        • Реле потока
        • Реле уровня
        • Ручные выключатели
        • Реле давления
        • Реле температуры
      • Контроллеры
        • Контроллеры
        • Контроллеры влажности и влажности
        • Контроллеры уровня
        • Контроллеры пределов
        • Многоконтурные контроллеры
        • ПИД-регуляторы
        • ПЛК
        • Регуляторы давления
        • Термостаты
      • Дополнительные платы
        • Дополнительные платы
      • Реле
        • Реле
        • Программируемые реле
        • Модули твердотельного ввода-вывода
        • Твердотельные реле
      • Воздух, почва, жидкость и газ
        • Воздух, почва, жидкость и газ
        • Преобразователи воздуха и газа
        • Контроллеры качества воды
        • Датчики качества воды
        • Датчики качества воды
      • Клапаны
        • Клапаны
        • Поршневые клапаны с угловым корпусом
        • Сливные клапаны
        • Блокирующие предохранительные клапаны
        • Игольчатые клапаны
        • Пропорциональные клапаны
        • Электромагнитные клапаны
    • Испытания и осмотр
      • Тест и проверка
      • Бороскопы
        • Бороскопы
      • Портативные счетчики
        • Портативные счетчики
        • Токоизмерительные клещи
        • Децибел-метры
        • Газоанализаторы
        • Детекторы утечки газа
        • Метры Гаусса
        • Твердость
        • Светомеры
        • Мультиметры
        • Скорость
        • Измерители температуры, влажности и точки росы
        • Измерители вибрации
        • Анемометры
        • Манометры
      • Аэродинамические трубы
        • Аэродинамические трубы
      • Весы и весы
        • Весы и весы
      • Тепловидение
        • Тепловизор
      • Воздух, почва, жидкость и газ
        • Воздух, почва, жидкость и газ
        • Газоанализаторы
        • Решения для калибровки
        • Анализаторы хлора
        • Бумага для измерения pH
        • pH-метры
        • Измерители вязкости
        • Счетчики качества воды
        • Наборы для проверки воды
    • Сбор данных
      • Сбор данных
      • Модули сбора данных
        • Модули сбора данных
      • Преобразователи данных и переключатели
        • Преобразователи данных и переключатели
        • Преобразователи данных
        • Коммутаторы Ethernet
      • Формирователи сигналов
        • Формирователи сигналов
        • Формирователи сигналов для DIN-рейки
        • Формирователи сигналов для монтажа на голове
        • Специальные кондиционеры
        • Датчики температуры и влажности
        • Универсальные программируемые передатчики
      • Регистраторы данных
        • Регистраторы данных
        • Регистрация данных по Ethernet и беспроводной сети
        • Многоканальные программируемые и универсальные регистраторы входных данных
        • Регистраторы данных давления, деформации и удара
        • Регистраторы данных напряжения и тока процесса
        • Специальные регистраторы данных
        • Регистраторы данных состояния, событий и импульсов
        • Регистраторы данных температуры и влажности
      • Регистраторы
        • Регистраторы
        • Гибридные бумажные регистраторы
        • Безбумажные регистраторы
      • Программное обеспечение
        • Программное обеспечение
      • Интернет вещей и беспроводные системы
        • Интернет вещей и беспроводные системы
    • Измерение давления
      • Измерение давления
      • Манометры
        • Манометры
        • Аналоговые манометры
        • Цифровые манометры
      • Манометры
        • Манометры
      • Принадлежности для измерения давления
        • Принадлежности для измерения давления
        • Давление охлаждения Элементы
        • Кабели и соединители давления-силы
        • Воздушные фильтры
        • Лубрикаторы воздушной линии
        • Трубопроводная арматура
        • Демпферы давления
        • Тубус по длине
      • Датчики давления
        • Датчики давления
      • Калибраторы давления
        • Калибраторы давления
      • Регуляторы давления
        • Регуляторы давления
      • Реле давления
        • Реле давления
    • Измерение силы и деформации
      • Измерение силы и деформации
      • Весы и весы
        • Весы и весы
      • Тензодатчики
        • Тензодатчики
        • Мембранные тензодатчики
        • Двойные параллельные тензодатчики
        • Тензодатчики линейные
        • Тензодатчики Rosette
        • Принадлежности для тензодатчиков
        • Тензодатчики кручения и сдвига
        • Тензодатчики с Т-образной розеткой
      • Манометры
        • Манометры
      • Принадлежности для измерения силы и деформации
        • Принадлежности для измерения силы и деформации
        • Оборудование для тензодатчиков
        • Кабели и соединители давления-силы
      • Тензодатчики
        • Тензодатчики
      • Весы для резервуаров
        • Весы для резервуаров
      • Датчики крутящего момента
        • Датчики крутящего момента
    • Измерение уровня
      • Измерение уровня
      • Контактные датчики уровня
        • Контактные датчики уровня
        • Датчики емкости
        • Датчики поплавка
        • Волноводные радарные датчики
      • Бесконтактные датчики уровня
        • Бесконтактные датчики уровня
        • Импульсные радарные датчики
        • Ультразвуковые датчики
      • Реле уровня
        • Реле уровня
    • Приборы для измерения расхода
      • Инструменты потока
      • Принадлежности для измерения расхода
        • Принадлежности для измерения расхода
        • Воздушные фильтры
        • Лубрикаторы воздушной линии
        • Аксессуары для потока
        • Монтажная арматура датчика потока
        • Трубопроводная арматура
        • Демпферы давления
        • Тубус по длине
      • Анемометры
        • Анемометры
      • Расходомеры
        • Расходомеры
        • Электромагнитные расходомеры
        • Измерители массового расхода
        • Расходомеры с крыльчатым колесом
        • Расходомеры прямого вытеснения
        • Турбинные расходомеры
        • Ультразвуковые расходомеры
        • Расходомеры с переменным сечением
        • Вихревые расходомеры
      • Реле потока
        • Реле потока
      • Клапаны
        • Клапаны
        • Поршневые клапаны с угловым корпусом
        • Сливные клапаны
        • Блокирующие предохранительные клапаны
        • Игольчатые клапаны
        • Пропорциональные клапаны
        • Электромагнитные клапаны
    • Промышленные обогреватели
      • Промышленные обогреватели
      • Поверхностные нагреватели
        • Поверхностные нагреватели
        • Ленточные нагреватели
        • Барабанные нагреватели
        • Гибкие нагреватели
        • Тепловые пушки
        • Ленточные и тросовые нагреватели
      • Патронные нагреватели
        • Патронные нагреватели
      • Лучистые обогреватели
        • Лучистые обогреватели
        • Керамические лучистые обогреватели
        • Инфракрасные обогреватели
      • Циркуляционные нагреватели
        • Циркуляционные нагреватели
      • Нагреватели каналов и корпусов
        • Обогреватели воздуховодов и корпусов
        • Канальные обогреватели
        • Обогреватели корпуса
      • Нагревательный провод и кабели
        • Нагревательный провод и кабели
      • Погружные нагреватели
        • Погружные нагреватели
      • Ленточные нагреватели
        • Ленточные нагреватели
      • Монтажные провода
        • Монтажные провода
    • Интернет вещей и беспроводные системы
      • Интернет вещей и беспроводные системы
      • Интерфейсы
        • Интерфейсы
      • Умные шлюзы
        • Умные шлюзы
      • Смарт-зонды
        • Смарт-зонды
      • Интеллектуальные беспроводные датчики
        • Интеллектуальные беспроводные датчики
      • Беспроводные актуаторы
        • Беспроводные актуаторы
      • Беспроводные приемники
        • Беспроводные приемники
      • Беспроводные передатчики
        • Беспроводные передатчики
      • Слой N
        • Слой N

Ток и напряжение

  • Изучив этот раздел, вы должны уметь:
  • Описать распределение электрических потенциалов (напряжений) и токов в электрических цепях.
  • • Последовательные резистивные цепи.
  • • Параллельные резистивные цепи.
  • Рассчитайте распределение напряжений в резистивном делителе потенциала.

Ток и напряжение в резисторных цепях

В поисках неизвестного

Помимо определения сопротивления, закон Ома можно использовать для расчета напряжений и токов в резисторных цепях. Прежде чем пробовать это, было бы неплохо взглянуть на некоторые основные факты о сетях резисторов.

Рис.4.0.1 Простая последовательная схема

Рис.4.0.2 Простая параллельная схема

В простой ЦЕПИ СЕРИИ , показанной на рис. 4.0.1, одинаковый ток течет через все компоненты. Однако каждый компонент будет иметь разное НАПРЯЖЕНИЕ (p.d.) на нем. Сумма этих отдельных напряжений (V R1 + V R2 + V R3 и т. Д.) В последовательной цепи равна напряжению питания (ЭДС).

Однако в простой схеме ПАРАЛЛЕЛЬНАЯ ЦЕПЬ , показанной на рис. 4.0.2, одинаковое напряжение присутствует на всех компонентах, но через каждый компонент может протекать другой ТОК. Сумма токов отдельных компонентов в параллельной цепи равна току питания. (I S = I R1 + I R2 + I R3 и т. Д.)

Правило делителя потенциала

Рис. 4.0.3 Делитель потенциала

Если два или более резистора соединены последовательно через потенциал (например,г. Напряжение питания), напряжение на каждом резисторе будет пропорционально сопротивлению этого резистора. V R1 ∝ R 1 ​​ и V R2 ∝ R 2 и т. Д.

Чтобы рассчитать напряжение на любом резисторе в делителе потенциала, умножьте напряжение питания (E) на пропорцию этого резистора к общему сопротивлению всех резисторов.

Например, если R 2 вдвое больше, чем R 1 ​​, то напряжение на R 2 будет вдвое больше, чем на R 1 ​​.Отсюда следует, что напряжение на R 1 ​​ будет составлять одну треть напряжения питания (E), а напряжение на R 2 будет составлять две трети напряжения питания (E). Итак, если напряжение питания и значения резистора известны, то напряжение на каждом резисторе может быть вычислено с помощью ПРОПОРЦИИ, и, как только напряжение на каждом резисторе известно, можно рассчитать напряжение в любой точке цепи.

Используя эти несколько фактов, можно получить огромное количество информации о токах и напряжениях в цепи, если известны значения сопротивлений цепи.Попробуйте сами с помощью нашей викторины на странице «Сетевые расчеты модуля 4.6» Резисторы и схемы.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *