Диод на 2 ампера: Купите современное диод 2 амперметр переменного тока для своих нужд Free Sample Now

Содержание

Купите современное диод 2 амперметр переменного тока для своих нужд Free Sample Now

О продукте и поставщиках:

Выбрать. диод 2 амперметр переменного тока из огромной коллекции на Alibaba.com. Вы можете купить массив. диод 2 амперметр переменного тока включая, помимо прочего, светодиоды, микрофон, выпрямитель, лазер, стабилитрон, триггер, Шоттки, SMD, энергосберегающие диодные лампы. Вы можете выбрать. диод 2 амперметр переменного тока из широкого набора ключевых параметров, спецификаций и рейтингов для вашей цели.

диод 2 амперметр переменного тока на Alibaba.com удобны в установке и использовании. Используемый пластик более высокого качества обеспечивает изоляцию, снижающую нагрев. Они доступны в кремнии и германии. диод 2 амперметр переменного тока используются в различных отраслях промышленности для различных электрических функций и датчиков. Они используются в инверторах, светодиодах, автомобильной электронике, потребительских товарах, USB 2. 0 и USB 3.0, HDMI 1.3 и HDMI 1.4, SIM-карте, мобильной одежде, беспроводной связи, автомобильном генераторе и лазерной эпиляции. Они используются как выпрямитель, датчик света, излучатель света, для рассеивания нагрузки и т. Д. Различная физическая упаковка для. диод 2 амперметр переменного тока предлагаются для монтажа на печатной плате, теплоотвода, проводного и поверхностного монтажа.

Основные особенности. диод 2 амперметр переменного тока - это толстая медная опорная пластина, низкая утечка, высокий ток, низкое прямое падение напряжения, легирование золотом, низкое сопротивление инкрементным скачкам напряжения, отличная зажимная способность, быстрое время отклика и т. д. Технические характеристики, предлагаемые на. диод 2 амперметр переменного тока включают различные оптические и электрические характеристики, такие как максимальная мощность, напряжение, оптический выход, время обратного восстановления, рабочая температура и т. д. диод 2 амперметр переменного тока производятся в соответствии со стандартными процедурами для поддержания высочайшего качества. Они соответствуют требованиям RoHS и IEEE 1394.

Получите лучшее. диод 2 амперметр переменного тока предлагает на Alibaba.com от различных поставщиков и оптовиков. Получите высшее качество. диод 2 амперметр переменного тока в соответствии с требованиями вашего проекта.

Диоды Шоттки

Название

Описание

15TT100Диод Шотки 100 Вольт, 15 Ампер
16CTT100Сдвоенный диод Шотки 100 Вольт, 16 Ампер   (2 х 8А)
1N5817Ограничительный диод Шоттки, 1 Ампер
1N5818Ограничительный диод Шоттки, 1 Ампер
1N5819Ограничительный диод Шоттки, 1 Ампер
1N5820Ограничительный диод Шоттки, 3 Ампера
1N5821Ограничительный диод Шоттки, 3 Ампера
1N5822Ограничительный диод Шоттки, 3 Ампера
1PS70SB10Ограничительный диод Шоттки
1PS70SB14Сдвоенный ограничительный диод Шоттки
1PS70SB15Сдвоенный ограничительный диод Шоттки
1PS70SB16Сдвоенный ограничительный диод Шоттки
1PS70SB40Диоды Шоттки общего назначения
1PS70SB44
Диоды Шоттки общего назначения
1PS70SB45Сдвоенные диоды Шоттки с общим катодом
1PS70SB46Сдвоенные диоды Шоттки с общим анодом
1PS75SB45Сдвоенные диоды Шоттки с общим катодом
1PS76SB10Ограничительный диод Шоттки
1PS76SB21Ограничительный диод Шоттки в корпусе для   поверхностного монтажа
1PS76SB40Диоды Шоттки общего назначения
1PS76SB70
Диод Шоттки в корпусе для поверхностного   монтажа
1PS79SB10Ограничительный диод Шоттки
1PS79SB30Ограничительный диод Шоттки
1PS79SB31Ограничительный диод Шоттки
1PS79SB40Диоды Шоттки общего назначения
1PS79SB70Диод Шоттки в корпусе для поверхностного   монтажа
1PS88SB48Счетверенные диоды Шоттки с общим катодом
20TT100Диод Шотки 100 Вольт, 20 Ампер
21TT100Диод Шотки 100 Вольт, 20 Ампер
30CPT100Сдвоенный диод Шотки 100 Вольт, 30 Ампер   (2 х 15А)
30CTT045Сдвоенный диод Шотки 45 Вольт, 30 Ампер   (2 х 15А)
30CTT100Сдвоенный диод Шотки 100 Вольт, 30 Ампер   (2 х 15А)
30PT100Диод Шотки 100 Вольт, 30 Ампер
43CTT100Сдвоенный диод Шотки 100 Вольт, 40 Ампер   (2 х 20А)
60CPT045Сдвоенный диод Шотки 45 Вольт, 60 Ампер   (2 х 30А)
63CPT100Сдвоенный диод Шотки 100 Вольт, 60 Ампер   (2 х 30А)
8TT100Диод Шотки 100 Вольт, 8 Ампер
B0520LWОграничительный диод Шоттки, малое   падение входного напряжения, 410 мВт
B0520LWFОграничительный диод Шоттки, малое   падение входного напряжения
B0530WОграничительный диод Шоттки, малое   падение входного напряжения, 410 мВт
B0530WFОграничительный диод Шоттки, малое   падение входного напряжения
B0530WSОграничительный диод Шоттки, малое   падение входного напряжения, 200 мВт
B0540WОграничительный диод Шоттки, малое   падение входного напряжения, 410 мВт
B0540WFОграничительный диод Шоттки, малое   падение входного напряжения
B120Ограничительный диод Шотки в корпусе для   поверхностного монтажа
B130Ограничительный диод Шотки в корпусе для   поверхностного монтажа
B140Ограничительный диод Шотки в корпусе для   поверхностного монтажа
B150Ограничительный диод Шотки в корпусе для   поверхностного монтажа
B160Ограничительный диод Шотки в корпусе для   поверхностного монтажа
B230LAОграничительный диод Шотки в корпусе для   поверхностного монтажа

Какие диоды нужны для диодного моста.

Наиболее важные характеристики диода для выпрямителя тока.

Диодный мост используется там, где есть необходимость в получении постоянного  тока из переменного. То есть, если взять самый обычный трансформаторный блок питания, то в его основных элементах будет присутствовать – понижающий трансформатор (с железным магнитопроводом), диодный выпрямительный мост, фильтрующий конденсатор (электролит относительно большой емкости). Силовой трансформатор из более высокого сетевого напряжения, величиной 220 вольт, делает более низкое (стандартными напряжениями являются 3, 5, 6, 9, 12, 24 вольта). Но, с выхода этого трансформатора выходит (так же как и входит) переменный ток. И для того, чтобы из переменного тока сделать постоянный, то есть его выпрямить, и используется диодный мост. Но, на выходе моста мы получим постоянный ток, который будет иметь форму скачков напряжения. Эти скачки сглаживаются фильтрующим конденсатором электролитом.

В этой теме давайте с Вами рассмотрим, как именно правильно подобрать диодный мост, и на какие основные и важные параметры, характеристики в первую очередь обращать внимание. Как известно, диодный мост состоит из четырёх одинаковых диодов, спаянных определенным образом (схема диодного моста). Для примера возьмём такой популярный диод, как 1N4007.

1 » Максимальный долговременный прямой ток.

Максимальный долговременный прямой ток – это одна из наиболее важных характеристик диода. К примеру, у диода (1N4007) этот ток равен 1 ампер. Это значит, что при температуре не выше 75 °С данный диод спокойно может через себя пропускать силу тока до 1 ампера без ущерба для себя (не получая тепловой или электрический пробой). Ток выше 1 ампера уже грозит увеличением вероятности пробоя и последующего выхода из строя (либо при сгорании он станет диэлектриком, то есть его внутреннее сопротивление уже будет бесконечно большим, или же после сгорания он, наоборот, станет проводником, у которого сопротивление станет очень малым). При выборе диодов для мостов и готовых диодных сборок мостов нужно делать некий запас по току. Например, Ваш блок питания должен выдавать на выходе максимальный ток 0,5 ампера, и поставив диодный мост на 1 ампер мы получим 50% запас по току, что обеспечивает на дополнительную защиту от случайных токовых перегрузок до 1 ампера.

Это позволит обеспечить дополнительную надёжность работающего диодного моста в блоке питания.

2 » Максимальное обратное напряжение диодов в диодном мосте.

Максимальное обратное напряжение диодов – это та максимальная величина амплитудного напряжения, которое будет приложено к диоду при его обратном включении. Напомню, что обратное включение диода, это когда плюс источника питания подсоединяется к минусу (катоду) диода, а минус источника питания подсоединяется к плюсу диода (аноду). То есть, наоборот, плюс к минусу, а минус к плюсу. При этом подключении (обратном) диод находится в закрытом состоянии, его сопротивление бесконечно большое. Следовательно, максимальная амплитуда напряжения оседает на диоде. Максимальное обратное напряжение у нашего (к примеру взятого) диода 1N4007 равна 1000 вольтам (1кВ). Это значит, что диодный мост, собранный на таких диодах может выдерживать амплитудное переменное напряжение аж до 1000 вольт. Напряжение выше этого значения уже, как и в случае с током, увеличивает вероятность электрического пробоя диода, с последующим выходом его из строя.

При подборе диода по этой характеристики также делайте некий запас (от 25% до 100%, а то и более). Хотя 1000 вольт это и так достаточно много!

3 » Максимальная рабочая частота диода.

Максимальная рабочая частота диода – это наиболее высокая частота, на которой диод (диодный выпрямительный мост) может работать не теряя свои номинальные характеристики, функционировать (переходить из закрытого состояния в открытое и обратно) с максимальный быстродействием, сохраняя свою надёжность. Наш диод серии 1N4007 имеет максимальную рабочую частоту 1 мГц. Это достаточно высокая частота. Работая в схеме обычного блока питания (запитываемого от сети с частотой 50 Гц) этих диодов более чем будет достаточно, касательно этой характеристики. И даже они нормально будут работать в схемах импульсных БП, где обычно используется частота около 10-18 кГц.

4 » Интервал рабочих температур диода.

Интервал рабочих температур диода, что будет работать в схеме диодного моста – это температурная характеристика диода. Она говорит о том, что в определённом диапазоне температур диод будет нормально работать, и его другие параметры останутся в рамках допустимого (поскольку температура полупроводника влияет на электрические характеристики, например изменением внутреннего сопротивления диода). У диода 1N4007 интервал рабочих температур лежит в пределах -65…+175°С. При очень низких температура вряд ли в быту Вы будете использовать диодный мост, а вот высокая температура легко может образоваться при прохождении большой величины тока. Причем, как известно, большинство диодов, и мостов сделаны из кремния. Кремний имеет свою критическую температуру, после которой он начинает необратимо разрушаться. Эта температура около 150-180°С. Работа диода на предельных температурах, это также не совсем хорошо. Нормальной температурой для работы полупроводников можно считать от 0 до 60 °С.

5 » Падение напряжения на диоде.

Падение напряжения на диоде – это то напряжение, которое присутствует на диоде при его прямом включении. Как я ранее говорил о обратном напряжении диода, так вот прямое включение диода, это когда плюс диода (его анод) подключен к плюсу источника питания, а минус диода (его катод) подключен к минусу источника питания. При таком подключении диод находится в открытом состоянии, через него нормально проходит ток. Но даже в открытом состоянии диод имеет своё некоторое внутреннее сопротивление, которое и вызывает определенное падение напряжения на этом диоде. К примеру на нашем диоде 1N4007 при токе в 1 ампер падение напряжения составляет около 1,1 вольта. В общем это самое падение напряжения у диодов из кремния лежит в пределах от 0,6 до 1,2 вольта. На это падение напряжения влияет и сила тока, которая проходит через этот диод. А в целом, чем меньше это самое падение напряжения на полупроводнике, тем меньшая мощность на нём оседает, тем меньше он будет грется, тем лучше (для некоторых схем очень важно, чтобы было как можно меньшее падение напряжения на диоде).

6 » Максимальный импульсный ток.

Максимальный импульсный ток диода. Этот пункт логичнее было указать вторым, но я его опустил по причине упорядочивания по важности характеристик диода. Итак, первым пунктом у нас было максимальный долговременный ток, то есть ток, величина которого постоянна во времени. Импульсный ток уже характеризует амплитудное значение силы тока. Во времени это ток может меняться, и в некоторые моменты времени быть равен нулю. Поэтому общая мощность, которая будет оседать на диоде при прохождении через него импульсного тока будет меньше, чем та, которая была бы при долговременном токе. К примеру, для диода 1N4007 при длительности импульса 3.8 мс величина тока равна 30 ампер. И тут мы видим ощутимую разницу. Если при длительном токе диод может выдерживать до 1 ампера, то при импульсном это значение увеличилось аж в 30 раз.

Видео по этой теме:

P. S. Это и были основные характеристики диодов, которые будут работать в диодном мосте, на которые нужно обращать внимание при выборе. Хотя если свести к еще большей простоте, то для обычных трансформаторных блоков питания важны две характеристики, это максимальный длительный ток и обратное напряжение (первый и второй пункт в моей статье). Все остальные параметры обычно у современных диодов достаточно велики и их более чем достаточно для всех диодных мостов, которые могут быть использованы для простых блоков питания.

Диод Шоттки. Особенности и обозначение на схеме.

Обозначение, применение и параметры диодов Шоттки

К многочисленному семейству полупроводниковых диодов названных по фамилиям учёных, которые открыли необычный эффект, можно добавить ещё один. Это диод Шоттки.

Немецкий физик Вальтер Шоттка открыл и изучил так называемый барьерный эффект возникающий при определённой технологии создания перехода металл-полупроводник.

Основной «фишкой» диода Шоттки является то, что в отличие от обычных диодов на основе p-n перехода, здесь используется переход металл-полупроводник, который ещё называют барьером Шоттки. Этот барьер, так же, как и полупроводниковый p-n переход, обладает свойством односторонней электропроводимости и рядом отличительных свойств.

В качестве материала для изготовления диодов с барьером Шоттки преимущественно используется кремний (Si) и арсенид галлия (GaAs), а также такие металлы как золото, серебро, платина, палладий и вольфрам.

На принципиальных схемах диод Шоттки изображается вот так.

Как видим, его изображение несколько отличается от обозначения обычного полупроводникового диода.

Кроме такого обозначения на схемах можно встретить и изображение сдвоенного диода Шоттки (сборки).

Сдвоенный диод – это два диода смонтированных в одном общем корпусе. Выводы катодов или анодов у них объединены. Поэтому такая сборка, как правило, имеет три вывода. В импульсных блоках питания обычно применяются сборки с общим катодом.

Так как два диода размещены в одном корпусе и выполнены в едином технологическом процессе, то их параметры очень близки. Поскольку они размещены в едином корпусе, то и температурный режим их одинаков. Это увеличивает надёжность и срок службы элемента.

У диодов Шоттки есть два положительных качества: весьма малое прямое падение напряжения (0,2-0,4 вольта) на переходе и очень высокое быстродействие.

К сожалению, такое малое падение напряжения проявляется при приложенном напряжении не более 50-60 вольт. При дальнейшем его повышении диод Шоттки ведёт себя как обычный кремниевый выпрямительный диод. Максимальное обратное напряжение для Шоттки обычно не превышает 250 вольт, хотя в продаже можно встретить образцы, рассчитанные и на 1,2 киловольта (VS-10ETS12-M3).

Так, сдвоенный диод Шоттки (Schottky rectifier) 60CPQ150 рассчитан на максимальное обратное напряжение 150V, а каждый из диодов сборки способен пропустить в прямом включении 30 ампер!

Также можно встретить образцы, выпрямленный за полупериод ток которых может достигать 400А максимум! Примером может служит модель VS-400CNQ045.

Очень часто в принципиальных схемах сложное графическое изображение катода попросту опускают и изображают диод Шоттки как обычный диод. А тип применяемого элемента указывают в спецификации.

К недостаткам диодов с барьером Шоттки можно отнести то, что даже при кратковременном превышении обратного напряжения они мгновенно выходят из строя и главное необратимо. В то время как кремниевые силовые вентили после прекращения действия превышенного напряжения прекрасно самовосстанавливаются и продолжают работать. Кроме того обратный ток диодов очень сильно зависит от температуры перехода. На большом обратном токе возникает тепловой пробой.

К положительным качествам диодов Шоттки кроме высокого быстродействия, а, следовательно, малого времени восстановления можно отнести малую ёмкость перехода (барьера), что позволяет повысить рабочую частоту. Это позволяет использовать их в импульсных выпрямителях на частотах в сотни килогерц. Очень много диодов Шоттки находят своё применение в интегральной микроэлектронике. Выполненные по нано технологии диоды Шоттки входят в состав интегральных схем, где они шунтируют переходы транзисторов для повышения быстродействия.

В радиолюбительской практике прижились диоды Шоттки серии 1N581x (1N5817, 1N5818, 1N5819). Все они рассчитаны на максимальный прямой ток (IF(AV)) – 1 ампер и обратное напряжение (VRRM) от 20 до 40 вольт. Падение напряжения (VF) на переходе составляет от 0,45 до 0,55 вольт. Как уже говорилось, прямое падение напряжения (Forward voltage drop) у диодов с барьером Шоттки очень мало.

Также достаточно известным элементом является 1N5822. Он рассчитан на прямой ток в 3 ампера и выполнен в корпусе DO-201AD.

Также на печатных платах можно встретить диоды серии SK12 – SK16 для поверхностного монтажа. Они имеют довольно небольшие размеры. Несмотря на это SK12-SK16 выдерживают прямой ток до 1 ампера при обратном напряжении 20 – 60 вольт. Прямое падение напряжения составляет 0,55 вольт (для SK12, SK13, SK14) и 0,7 вольт (для SK15, SK16). Также на практике можно встретить диоды серии SK32 – SK310, например, SK36, который рассчитан на прямой ток 3 ампера.

Применение диодов Шоттки в источниках питания.

Диоды Шоттки активно применяются в блоках питания компьютеров и импульсных стабилизаторах напряжения. Среди низковольтных питающих напряжений самыми сильноточными (десятки ампер) являются напряжения +3,3 вольта и +5,0 вольт. Именно в этих вторичных источниках питания и используются диоды с барьером Шоттки. Чаще всего используются трёхвыводные сборки с общим катодом. Именно применение сборок может считаться признаком высококачественного и технологичного блока питания.

Выход из строя диодов Шоттки одна из наиболее часто встречающихся неисправностей в импульсных блоках питания. У него может быть два «дохлых» состояния: чистый электрический пробой и утечка. При наличии одного из этих состояний блок питания компьютера блокируется, так как срабатывает защита. Но это может происходить по-разному.

В первом случае все вторичные напряжения отсутствуют. Защита заблокировала блок питания. Во втором случае вентилятор «подёргивается» и на выходе источников питания периодически то появляются пульсации напряжения, то пропадают.

То есть схема защиты периодически срабатывает, но полной блокировки источника питания при этом не происходит. Диоды Шоттки гарантированно вышли из строя, если радиатор, на котором они установлены, разогрет очень сильно до появления неприятного запаха. И последний вариант диагностики связанный с утечкой: при увеличении нагрузки на центральный процессор в мультипрограммном режиме блок питания самопроизвольно отключается.

Следует иметь в виду, что при профессиональном ремонте блока питания после замены вторичных диодов, особенно с подозрением на утечку, следует проверить все силовые транзисторы выполняющие функцию ключей и наоборот: после замены ключевых транзисторов проверка вторичных диодов является обязательной процедурой. Всегда необходимо руководствоваться принципом: беда одна не приходит.

Проверка диодов Шоттки мультиметром.

Проверить диод Шоттки можно с помощью рядового мультиметра. Методика такая же, как и при проверке обычного полупроводникового диода с p-n переходом. Но и тут есть подводные камни. Особенно трудно проверить диод с утечкой. Прежде всего, элемент необходимо выпаять из схемы для более точной проверки. Достаточно легко определить полностью пробитый диод. На всех пределах измерения сопротивления неисправный элемент будет иметь бесконечно малое сопротивление, как в прямом, так и в обратном включении. Это равносильно короткому замыканию.

Сложнее проверить диод с подозрением на «утечку». Если проводить проверку мультиметром DT-830 в режиме «диод», то мы увидим совершенно исправный элемент. Можно попробовать измерить в режиме омметра его обратное сопротивление. На пределе «20кОм» обратное сопротивление определяется как бесконечно большое. Если же прибор показывает хоть какое-то сопротивление, допустим 3 кОм, то этот диод следует рассматривать как подозрительный и менять на заведомо исправный. Стопроцентную гарантию может дать полная замена диодов Шоттки по шинам питания +3,3V и +5,0V.

Где ещё в электронике используются диоды Шоттки? Их можно обнаружить в довольно экзотических приборах, таких как приёмники альфа и бета излучения, детекторах нейтронного излучения, а в последнее время на барьерных переходах Шоттки собирают панели солнечных батарей. Так, что они питают электроэнергией и космические аппараты.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Зачем соединяют диоды параллельно


Зачем соединяют диоды параллельно? Затем,чтобы увеличить один из главных параметров — прямой ток диода. Но! Существует множество диодов, которые рассчитаны на самые разные токи, от миллиампер до сотен и тысяч ампер. Поэтому соединять диоды параллельно для увеличения общего прямого тока не имеет большой актуальности.


Рис. 1

Диоды, включенные параллельно, можно видеть на рис. 1. Если каждый из них имеет прямой ток 1 А и максимальное обратное напряжение 100 В, то параметры всей цепочки будут соответственно 3 А и 100 В. Т.е. при параллельном включении пропорционально количеству возрастает прямой ток, а максимальное обратное напряжение не меняется.

В силу того, что характеристики отдельно взятых диодов всегда будут разниться, соединяя диоды параллельно необходимо всегда учитывать этот факт. При параллельном включении прямой ток будет неравномерно распределяться между диодами. Диод, обладающий наименьшим сопротивлением, будет брать на себя больший ток в прямом направлении. И в определённых обстоятельствах это превышение может оказаться критичным и произойдёт пробой диода. Чтобы этого не случилось, соединяя диоды параллельно, последовательно с каждым из них ставят резистор. См. рис. 2. Сопротивление этих резисторов выбирают из расчёта падения напряжения на них не более 1 В. Т.е. при токе в 1 А они должны быть около 1 Ома.


Рис. 2

Встречается и комбинированное — последовательно-параллельное включение диодов. Такое включение показано на рис. 3.


Рис. 3

Мы видим три цепи, соединённые параллельно, в каждой из которых последовательно включено по три диода. Если каждый из них имеет параметры, как указаны в первом примере, то общая характеристика всей «гирлянды» будет следующая: прямой ток — 3 А, максимальное обратное напряжение — 300 В. Можно предположить, что цена всей конструкции будет безусловно выше стоимости одного диода с похожими характеристиками.

Таким образом, если последовательное включение является вполне оправданным для повышения максимального обратного напряжения, то параллельное соединение диодов не является эффективным способом увеличения прямого тока из-за наличия дешёвых мощных диодов.


Страница не найдена — Время электроники

Кажется мы ничего не нашли. Может быть вам помогут ссылки ниже или поик?

Архивы
Архивы Выберите месяц Сентябрь 2021 Август 2021 Июль 2021 Июнь 2021 Май 2021 Апрель 2021 Март 2021 Февраль 2021 Январь 2021 Декабрь 2020 Ноябрь 2020 Октябрь 2020 Сентябрь 2020 Август 2020 Июль 2020 Июнь 2020 Май 2020 Апрель 2020 Март 2020 Февраль 2020 Январь 2020 Декабрь 2019 Ноябрь 2019 Октябрь 2019 Сентябрь 2019 Август 2019 Июль 2019 Июнь 2019 Май 2019 Апрель 2019 Март 2019 Февраль 2019 Январь 2019 Декабрь 2018 Ноябрь 2018 Октябрь 2018 Сентябрь 2018 Август 2018 Июль 2018 Июнь 2018 Май 2018 Апрель 2018 Март 2018 Февраль 2018 Январь 2018 Декабрь 2017 Ноябрь 2017 Октябрь 2017 Сентябрь 2017 Август 2017 Июль 2017 Июнь 2017 Май 2017 Апрель 2017 Март 2017 Февраль 2017 Январь 2017 Декабрь 2016 Ноябрь 2016 Октябрь 2016 Сентябрь 2016 Август 2016 Июль 2016 Июнь 2016 Май 2016 Апрель 2016 Март 2016 Февраль 2016 Январь 2016 Декабрь 2015 Ноябрь 2015 Октябрь 2015 Сентябрь 2015 Август 2015 Июль 2015 Июнь 2015 Май 2015 Апрель 2015 Март 2015 Февраль 2015 Январь 2015 Декабрь 2014 Ноябрь 2014 Октябрь 2014 Сентябрь 2014 Август 2014 Июль 2014 Июнь 2014 Май 2014 Апрель 2014 Март 2014 Февраль 2014 Январь 2014 Декабрь 2013 Ноябрь 2013 Октябрь 2013 Сентябрь 2013 Август 2013 Июль 2013 Июнь 2013 Май 2013 Апрель 2013 Март 2013 Февраль 2013 Январь 2013 Декабрь 2012 Ноябрь 2012 Октябрь 2012 Сентябрь 2012 Август 2012 Июль 2012 Июнь 2012 Май 2012 Апрель 2012 Март 2012 Февраль 2012 Январь 2012 Декабрь 2011 Ноябрь 2011 Октябрь 2011 Сентябрь 2011 Август 2011 Июль 2011 Июнь 2011 Май 2011 Апрель 2011 Март 2011 Февраль 2011 Январь 2011 Декабрь 2010 Ноябрь 2010 Октябрь 2010 Сентябрь 2010 Август 2010 Июль 2010 Июнь 2010 Май 2010 Апрель 2010 Март 2010 Февраль 2010 Январь 2010 Декабрь 2009 Ноябрь 2009 Октябрь 2009 Сентябрь 2009 Август 2009 Июль 2009 Июнь 2009 Май 2009 Апрель 2009 Март 2009 Февраль 2009 Январь 2009 Декабрь 2008 Ноябрь 2008 Апрель 2008 Март 2008 Февраль 2008 Январь 2008 Декабрь 2007 Ноябрь 2007 Октябрь 2007 Сентябрь 2007

Диоды шоттки как подключить

Обозначение, применение и параметры диодов Шоттки

К многочисленному семейству полупроводниковых диодов названных по фамилиям учёных, которые открыли необычный эффект, можно добавить ещё один. Это диод Шоттки.

Немецкий физик Вальтер Шоттка открыл и изучил так называемый барьерный эффект возникающий при определённой технологии создания перехода металл-полупроводник.

Основной «фишкой» диода Шоттки является то, что в отличие от обычных диодов на основе p-n перехода, здесь используется переход металл-полупроводник, который ещё называют барьером Шоттки. Этот барьер, так же, как и полупроводниковый p-n переход, обладает свойством односторонней электропроводимости и рядом отличительных свойств.

В качестве материала для изготовления диодов с барьером Шоттки преимущественно используется кремний (Si) и арсенид галлия (GaAs), а также такие металлы как золото, серебро, платина, палладий и вольфрам.

На принципиальных схемах диод Шоттки изображается вот так.

Как видим, его изображение несколько отличается от обозначения обычного полупроводникового диода.

Кроме такого обозначения на схемах можно встретить и изображение сдвоенного диода Шоттки (сборки).

Сдвоенный диод – это два диода смонтированных в одном общем корпусе. Выводы катодов или анодов у них объединены. Поэтому такая сборка, как правило, имеет три вывода. В импульсных блоках питания обычно применяются сборки с общим катодом.

Так как два диода размещены в одном корпусе и выполнены в едином технологическом процессе, то их параметры очень близки. Поскольку они размещены в едином корпусе, то и температурный режим их одинаков. Это увеличивает надёжность и срок службы элемента.

У диодов Шоттки есть два положительных качества: весьма малое прямое падение напряжения (0,2-0,4 вольта) на переходе и очень высокое быстродействие.

К сожалению, такое малое падение напряжения проявляется при приложенном напряжении не более 50-60 вольт. При дальнейшем его повышении диод Шоттки ведёт себя как обычный кремниевый выпрямительный диод. Максимальное обратное напряжение для Шоттки обычно не превышает 250 вольт, хотя в продаже можно встретить образцы, рассчитанные и на 1,2 киловольта (VS-10ETS12-M3).

Так, сдвоенный диод Шоттки (Schottky rectifier) 60CPQ150 рассчитан на максимальное обратное напряжение 150V, а каждый из диодов сборки способен пропустить в прямом включении 30 ампер!

Также можно встретить образцы, выпрямленный за полупериод ток которых может достигать 400А максимум! Примером может служит модель VS-400CNQ045.

Очень часто в принципиальных схемах сложное графическое изображение катода попросту опускают и изображают диод Шоттки как обычный диод. А тип применяемого элемента указывают в спецификации.

К недостаткам диодов с барьером Шоттки можно отнести то, что даже при кратковременном превышении обратного напряжения они мгновенно выходят из строя и главное необратимо. В то время как кремниевые силовые вентили после прекращения действия превышенного напряжения прекрасно самовосстанавливаются и продолжают работать. Кроме того обратный ток диодов очень сильно зависит от температуры перехода. На большом обратном токе возникает тепловой пробой.

К положительным качествам диодов Шоттки кроме высокого быстродействия, а, следовательно, малого времени восстановления можно отнести малую ёмкость перехода (барьера), что позволяет повысить рабочую частоту. Это позволяет использовать их в импульсных выпрямителях на частотах в сотни килогерц. Очень много диодов Шоттки находят своё применение в интегральной микроэлектронике. Выполненные по нано технологии диоды Шоттки входят в состав интегральных схем, где они шунтируют переходы транзисторов для повышения быстродействия.

В радиолюбительской практике прижились диоды Шоттки серии 1N581x (1N5817, 1N5818, 1N5819). Все они рассчитаны на максимальный прямой ток (IF(AV)) – 1 ампер и обратное напряжение (VRRM) от 20 до 40 вольт. Падение напряжения (VF) на переходе составляет от 0,45 до 0,55 вольт. Как уже говорилось, прямое падение напряжения (Forward voltage drop) у диодов с барьером Шоттки очень мало.

Также достаточно известным элементом является 1N5822. Он рассчитан на прямой ток в 3 ампера и выполнен в корпусе DO-201AD.

Также на печатных платах можно встретить диоды серии SK12 – SK16 для поверхностного монтажа. Они имеют довольно небольшие размеры. Несмотря на это SK12-SK16 выдерживают прямой ток до 1 ампера при обратном напряжении 20 – 60 вольт. Прямое падение напряжения составляет 0,55 вольт (для SK12, SK13, SK14) и 0,7 вольт (для SK15, SK16). Также на практике можно встретить диоды серии SK32 – SK310, например, SK36, который рассчитан на прямой ток 3 ампера.

Применение диодов Шоттки в источниках питания.

Диоды Шоттки активно применяются в блоках питания компьютеров и импульсных стабилизаторах напряжения. Среди низковольтных питающих напряжений самыми сильноточными (десятки ампер) являются напряжения +3,3 вольта и +5,0 вольт. Именно в этих вторичных источниках питания и используются диоды с барьером Шоттки. Чаще всего используются трёхвыводные сборки с общим катодом. Именно применение сборок может считаться признаком высококачественного и технологичного блока питания.

Выход из строя диодов Шоттки одна из наиболее часто встречающихся неисправностей в импульсных блоках питания. У него может быть два «дохлых» состояния: чистый электрический пробой и утечка. При наличии одного из этих состояний блок питания компьютера блокируется, так как срабатывает защита. Но это может происходить по-разному.

В первом случае все вторичные напряжения отсутствуют. Защита заблокировала блок питания. Во втором случае вентилятор «подёргивается» и на выходе источников питания периодически то появляются пульсации напряжения, то пропадают.

То есть схема защиты периодически срабатывает, но полной блокировки источника питания при этом не происходит. Диоды Шоттки гарантированно вышли из строя, если радиатор, на котором они установлены, разогрет очень сильно до появления неприятного запаха. И последний вариант диагностики связанный с утечкой: при увеличении нагрузки на центральный процессор в мультипрограммном режиме блок питания самопроизвольно отключается.

Следует иметь в виду, что при профессиональном ремонте блока питания после замены вторичных диодов, особенно с подозрением на утечку, следует проверить все силовые транзисторы выполняющие функцию ключей и наоборот: после замены ключевых транзисторов проверка вторичных диодов является обязательной процедурой. Всегда необходимо руководствоваться принципом: беда одна не приходит.

Проверка диодов Шоттки мультиметром.

Проверить диод Шоттки можно с помощью рядового мультиметра. Методика такая же, как и при проверке обычного полупроводникового диода с p-n переходом. Но и тут есть подводные камни. Особенно трудно проверить диод с утечкой. Прежде всего, элемент необходимо выпаять из схемы для более точной проверки. Достаточно легко определить полностью пробитый диод. На всех пределах измерения сопротивления неисправный элемент будет иметь бесконечно малое сопротивление, как в прямом, так и в обратном включении. Это равносильно короткому замыканию.

Сложнее проверить диод с подозрением на «утечку». Если проводить проверку мультиметром DT-830 в режиме «диод», то мы увидим совершенно исправный элемент. Можно попробовать измерить в режиме омметра его обратное сопротивление. На пределе «20кОм» обратное сопротивление определяется как бесконечно большое. Если же прибор показывает хоть какое-то сопротивление, допустим 3 кОм, то этот диод следует рассматривать как подозрительный и менять на заведомо исправный. Стопроцентную гарантию может дать полная замена диодов Шоттки по шинам питания +3,3V и +5,0V.

Где ещё в электронике используются диоды Шоттки? Их можно обнаружить в довольно экзотических приборах, таких как приёмники альфа и бета излучения, детекторах нейтронного излучения, а в последнее время на барьерных переходах Шоттки собирают панели солнечных батарей. Так, что они питают электроэнергией и космические аппараты.

Обозначение, применение и параметры диодов Шоттки

К многочисленному семейству полупроводниковых диодов названных по фамилиям учёных, которые открыли необычный эффект, можно добавить ещё один. Это диод Шоттки.

Немецкий физик Вальтер Шоттка открыл и изучил так называемый барьерный эффект возникающий при определённой технологии создания перехода металл-полупроводник.

Основной «фишкой» диода Шоттки является то, что в отличие от обычных диодов на основе p-n перехода, здесь используется переход металл-полупроводник, который ещё называют барьером Шоттки. Этот барьер, так же, как и полупроводниковый p-n переход, обладает свойством односторонней электропроводимости и рядом отличительных свойств.

В качестве материала для изготовления диодов с барьером Шоттки преимущественно используется кремний (Si) и арсенид галлия (GaAs), а также такие металлы как золото, серебро, платина, палладий и вольфрам.

На принципиальных схемах диод Шоттки изображается вот так.

Как видим, его изображение несколько отличается от обозначения обычного полупроводникового диода.

Кроме такого обозначения на схемах можно встретить и изображение сдвоенного диода Шоттки (сборки).

Сдвоенный диод – это два диода смонтированных в одном общем корпусе. Выводы катодов или анодов у них объединены. Поэтому такая сборка, как правило, имеет три вывода. В импульсных блоках питания обычно применяются сборки с общим катодом.

Так как два диода размещены в одном корпусе и выполнены в едином технологическом процессе, то их параметры очень близки. Поскольку они размещены в едином корпусе, то и температурный режим их одинаков. Это увеличивает надёжность и срок службы элемента.

У диодов Шоттки есть два положительных качества: весьма малое прямое падение напряжения (0,2-0,4 вольта) на переходе и очень высокое быстродействие.

К сожалению, такое малое падение напряжения проявляется при приложенном напряжении не более 50-60 вольт. При дальнейшем его повышении диод Шоттки ведёт себя как обычный кремниевый выпрямительный диод. Максимальное обратное напряжение для Шоттки обычно не превышает 250 вольт, хотя в продаже можно встретить образцы, рассчитанные и на 1,2 киловольта (VS-10ETS12-M3).

Так, сдвоенный диод Шоттки (Schottky rectifier) 60CPQ150 рассчитан на максимальное обратное напряжение 150V, а каждый из диодов сборки способен пропустить в прямом включении 30 ампер!

Также можно встретить образцы, выпрямленный за полупериод ток которых может достигать 400А максимум! Примером может служит модель VS-400CNQ045.

Очень часто в принципиальных схемах сложное графическое изображение катода попросту опускают и изображают диод Шоттки как обычный диод. А тип применяемого элемента указывают в спецификации.

К недостаткам диодов с барьером Шоттки можно отнести то, что даже при кратковременном превышении обратного напряжения они мгновенно выходят из строя и главное необратимо. В то время как кремниевые силовые вентили после прекращения действия превышенного напряжения прекрасно самовосстанавливаются и продолжают работать. Кроме того обратный ток диодов очень сильно зависит от температуры перехода. На большом обратном токе возникает тепловой пробой.

К положительным качествам диодов Шоттки кроме высокого быстродействия, а, следовательно, малого времени восстановления можно отнести малую ёмкость перехода (барьера), что позволяет повысить рабочую частоту. Это позволяет использовать их в импульсных выпрямителях на частотах в сотни килогерц. Очень много диодов Шоттки находят своё применение в интегральной микроэлектронике. Выполненные по нано технологии диоды Шоттки входят в состав интегральных схем, где они шунтируют переходы транзисторов для повышения быстродействия.

В радиолюбительской практике прижились диоды Шоттки серии 1N581x (1N5817, 1N5818, 1N5819). Все они рассчитаны на максимальный прямой ток (IF(AV)) – 1 ампер и обратное напряжение (VRRM) от 20 до 40 вольт. Падение напряжения (VF) на переходе составляет от 0,45 до 0,55 вольт. Как уже говорилось, прямое падение напряжения (Forward voltage drop) у диодов с барьером Шоттки очень мало.

Также достаточно известным элементом является 1N5822. Он рассчитан на прямой ток в 3 ампера и выполнен в корпусе DO-201AD.

Также на печатных платах можно встретить диоды серии SK12 – SK16 для поверхностного монтажа. Они имеют довольно небольшие размеры. Несмотря на это SK12-SK16 выдерживают прямой ток до 1 ампера при обратном напряжении 20 – 60 вольт. Прямое падение напряжения составляет 0,55 вольт (для SK12, SK13, SK14) и 0,7 вольт (для SK15, SK16). Также на практике можно встретить диоды серии SK32 – SK310, например, SK36, который рассчитан на прямой ток 3 ампера.

Применение диодов Шоттки в источниках питания.

Диоды Шоттки активно применяются в блоках питания компьютеров и импульсных стабилизаторах напряжения. Среди низковольтных питающих напряжений самыми сильноточными (десятки ампер) являются напряжения +3,3 вольта и +5,0 вольт. Именно в этих вторичных источниках питания и используются диоды с барьером Шоттки. Чаще всего используются трёхвыводные сборки с общим катодом. Именно применение сборок может считаться признаком высококачественного и технологичного блока питания.

Выход из строя диодов Шоттки одна из наиболее часто встречающихся неисправностей в импульсных блоках питания. У него может быть два «дохлых» состояния: чистый электрический пробой и утечка. При наличии одного из этих состояний блок питания компьютера блокируется, так как срабатывает защита. Но это может происходить по-разному.

В первом случае все вторичные напряжения отсутствуют. Защита заблокировала блок питания. Во втором случае вентилятор «подёргивается» и на выходе источников питания периодически то появляются пульсации напряжения, то пропадают.

То есть схема защиты периодически срабатывает, но полной блокировки источника питания при этом не происходит. Диоды Шоттки гарантированно вышли из строя, если радиатор, на котором они установлены, разогрет очень сильно до появления неприятного запаха. И последний вариант диагностики связанный с утечкой: при увеличении нагрузки на центральный процессор в мультипрограммном режиме блок питания самопроизвольно отключается.

Следует иметь в виду, что при профессиональном ремонте блока питания после замены вторичных диодов, особенно с подозрением на утечку, следует проверить все силовые транзисторы выполняющие функцию ключей и наоборот: после замены ключевых транзисторов проверка вторичных диодов является обязательной процедурой. Всегда необходимо руководствоваться принципом: беда одна не приходит.

Проверка диодов Шоттки мультиметром.

Проверить диод Шоттки можно с помощью рядового мультиметра. Методика такая же, как и при проверке обычного полупроводникового диода с p-n переходом. Но и тут есть подводные камни. Особенно трудно проверить диод с утечкой. Прежде всего, элемент необходимо выпаять из схемы для более точной проверки. Достаточно легко определить полностью пробитый диод. На всех пределах измерения сопротивления неисправный элемент будет иметь бесконечно малое сопротивление, как в прямом, так и в обратном включении. Это равносильно короткому замыканию.

Сложнее проверить диод с подозрением на «утечку». Если проводить проверку мультиметром DT-830 в режиме «диод», то мы увидим совершенно исправный элемент. Можно попробовать измерить в режиме омметра его обратное сопротивление. На пределе «20кОм» обратное сопротивление определяется как бесконечно большое. Если же прибор показывает хоть какое-то сопротивление, допустим 3 кОм, то этот диод следует рассматривать как подозрительный и менять на заведомо исправный. Стопроцентную гарантию может дать полная замена диодов Шоттки по шинам питания +3,3V и +5,0V.

Где ещё в электронике используются диоды Шоттки? Их можно обнаружить в довольно экзотических приборах, таких как приёмники альфа и бета излучения, детекторах нейтронного излучения, а в последнее время на барьерных переходах Шоттки собирают панели солнечных батарей. Так, что они питают электроэнергией и космические аппараты.

Развитие электроники требует все более высоких стандартов от радиодеталей. Для работы на высоких частотах используют диод Шоттки, который по своим параметрам превосходит кремниевые аналоги. Иногда можно встретить название диод с барьером Шоттки, что в принципе означает то же самое.

  • Конструкция
  • Миниатюризация
  • Использование на практике
  • Тестирование и взаимозаменяемость

Конструкция

Отличается диод Шоттки от обыкновенных диодов своей конструкцией, в которой используется металл-полупроводник, а не p-n переход. Понятно, что свойства здесь разные, а значит, и характеристики тоже должны отличаться.

Действительно, металл-полупроводник обладает такими параметрами:

  • Имеет большое значение тока утечки;
  • Невысокое падение напряжения на переходе при прямом включении;
  • Восстанавливает заряд очень быстро, так как имеет низкое его значение.

Диод Шоттки изготавливается из таких материалов, как арсенид галлия, кремний; намного реже, но также может использоваться – германий. Выбор материала зависит от свойств, которые нужно получить, однако в любом случае максимальное обратное напряжение, на которое могут изготавливаться данные полупроводники, не выше 1200 вольт – это самые высоковольтные выпрямители. На практике же намного чаще их используют при более низком напряжении – 3, 5, 10 вольт.

На принципиальной схеме диод Шоттки обозначается таким образом:

Но иногда можно увидеть и такое обозначение:

Это означает сдвоенный элемент: два диода в одном корпусе с общим анодом или катодом, поэтому элемент имеет три вывода. В блоках питания используют такие конструкции с общим катодом, их удобно использовать в схемах выпрямителей. Часто на схемах рисуется маркировка обычного диода, но в описании указывается, что это Шоттки, поэтому нужно быть внимательными.

Диодные сборки с барьером Шоттки выпускаются трех типов:

1 тип – с общим катодом;

2 тип – с общим анодом;

3 тип – по схеме удвоения.

Такое соединение помогает увеличить надежность элемента: ведь находясь в одном корпусе, они имеют одинаковый температурный режим, что важно, если нужны мощные выпрямители, например, на 10 ампер.

Но есть и минусы. Все дело в том, что малое падение напряжения (0,2–0,4 в) у таких диодов проявляется на небольших напряжениях, как правило – 50–60 вольт. При более высоком значении они ведут себя как обычные диоды. Зато по току эта схема показывает очень хорошие результаты, ведь часто бывает необходимо – особенно в силовых цепях, модулях питания – чтобы рабочий ток полупроводников был не ниже 10а.

Еще один главный недостаток: для этих приборов нельзя превышать обратный ток даже на мгновение. Они тут же выходят из строя, в то время как кремниевые диоды, если не была превышена их температура, восстанавливают свои свойства.

Но положительного все-таки больше. Кроме низкого падения напряжения, диод Шоттки имеет низкое значение емкости перехода. Как известно: ниже емкость – выше частота. Такой диод нашел применение в импульсных блоках питания, выпрямителях и других схемах, с частотами в несколько сотен килогерц.

Вольтамперная характеристика светодиода (ВАХ)

ВАХ такого диода имеет несимметричный вид. Когда приложено прямое напряжение, видно, что ток растет по экспоненте, а при обратном – ток от напряжения не зависит.

Все это объясняется, если знать, что принцип работы этого полупроводника основан на движении основных носителей – электронов. По этой же самой причине эти приборы и являются такими быстродействующими: у них отсутствуют рекомбинационные процессы, свойственные приборам с p-n переходами. Для всех приборов, имеющих барьерную структуру, свойственна несимметричность ВАХ, ведь именно количеством носителей электрического заряда обусловлена зависимость тока от напряжения.

Миниатюризация

С развитием микроэлектроники стали широко применяться специальные микросхемы, однокристальные микропроцессоры. Все это не исключает использования навесных элементов. Однако если для этой цели использовать радиоэлементы обычных размеров, то это сведет на нет всю идею миниатюризации в целом. Поэтому были разработаны бескорпусные элементы – smd компоненты, которые в 10 и более раз меньше обычных деталей. ВАХ таких компонентов ничем не отличается от ВАХ обычных приборов, а их уменьшенные размеры позволяют использовать такие запчасти в различных микросборках.

Компоненты smd имеют несколько типоразмеров. Для ручной пайки подходят smd размера 1206. Они имеют размер 3,2 на 1,6 мм, что позволяет их впаивать самостоятельно. Другие элементы smd более миниатюрные, собираются на заводе специальным оборудованием, и самому, в домашних условиях, их паять невозможно.

Принцип работы smd компонента также не отличается от его большого аналога, и если, к примеру, рассматривать ВАХ диода, то она в одинаковой степени будет подходить для полупроводников любого размера. По току изготавливаются от 1 до 10 ампер. Маркировка на корпусе часто состоит из цифрового кода, расшифровка которого приводится в специальных таблицах. Протестировать на пригодность их можно тестером, как и большие аналоги.

Использование на практике

Выпрямители Шоттки используется в импульсных блоках питания, стабилизаторах напряжения, импульсных выпрямителях. Самыми требовательными по току – 10а и более – это напряжения 3,3 и 5 вольт. Именно в таких цепях вторичного питания приборы Шоттки используют чаще всего. Для усиления значений по току их включают вместе по схеме с общим анодом или катодом. Если каждый из сдвоенных диодов будет на 10 ампер, то получится значительный запас прочности.

Одна из самых частых неисправностей импульсных модулей питания – выход из строя этих самых диодов. Как правило, они либо полностью пробиваются, либо дают утечку. В обоих случаях неисправный диод нужно заменить, после чего проверить мультиметром силовые транзисторы, а также замерить напряжения питания.

Тестирование и взаимозаменяемость

Проверить выпрямители Шоттки можно так же, как и обычные полупроводники, так как они имеют похожие характеристики. Мультиметром необходимо прозвонить его в обе стороны – он должен показать себя так же, как и обычный диод: анод-катод, при этом утечек быть не должно. Если он показывает даже незначительное сопротивление – 2–10 килоом, это уже повод для подозрений.

Проверка диода Шоттки мультиметром

Диод с общим анодом или катодом можно проверить как два обычных полупроводника, соединенных вместе. Например, если анод общий, то это будет одна ножка из трех. На анод ставим один щуп тестера, другие ножки – это разные диоды, на них ставится другой щуп.

Можно ли его заменить на другой тип? В некоторых случаях диоды Шоттки меняют на обычные германиевые. К примеру, Д305 при токе 10 ампер давал падение всего 0,3 вольта, а при токах 2–3 ампера их вообще можно ставить без радиаторов. Но главная цель установки Шоттки – это не малое падение, а низкая емкость, поэтому заменить получится не всегда.

Как видим, электроника не стоит на месте, и дальнейшие варианты применения быстродействующих приборов будет только увеличиваться, давая возможность разрабатывать новые, более сложные системы.

Диоды Шоттки или более точно — диоды с барьером Шоттки — это полупроводниковые приборы, выполненные на базе контакта металл-полупроводник, в то время как в обычных диодах используется полупроводниковый p-n-переход.

Диод Шоттки обязан своим названием и появлением в электронике немецкому физику изобретателю Вальтеру Шоттки, который в 1938 году, изучая только что открытый барьерный эффект, подтвердил выдвинутую ранее теорию, согласно которой хоть эмиссии электронов из металла и препятствует потенциальный барьер, но по мере увеличения прикладываемого внешнего электрического поля этот барьер будет снижаться. Вальтер Шоттки открыл этот эффект, который затем и назвали эффектом Шоттки, в честь ученого.

Исследуя контакт металла и полупроводника можно видеть, что если вблизи поверхности полупроводника имеется область обедненная основными носителями заряда, то в области контакта этого полупроводника с металлом со стороны полупроводника образуется область пространственного заряда ионизированных акцепторов и доноров, при этом реализуется блокирующий контакт — тот самый барьер Шоттки. В каких условиях возникает этот барьер? Ток термоэлектронной эмиссии с поверхности твердого тела определяет уравнение Ричардсона:

Создадим условия, когда при контакте полупроводника, например n-типа, с металлом термодинамическая работа выхода электронов из металла была бы больше, чем термодинамическая работа выхода электронов из полупроводника. В таких условиях, в соответствии с уравнением Ричардсона, ток термоэлектронной эмиссии с поверхности полупроводника окажется больше, чем ток термоэлектронной эмиссии с поверхности металла:

В начальный момент времени, при контакте названных материалов, ток от полупроводника в металл превысит обратный ток (из металла в полупроводник), в результате чего в приповерхностных областях как полупроводника, так и металла — станут накапливаться объемные заряды — положительные в полупроводнике и отрицательные — в металле. В контактной области возникнет электрическое поле, образованное этими зарядами, и будет иметь место изгиб энергетических зон.

Под действием поля термодинамическая работа выхода для полупроводника возрастет, и возрастание будет происходить до тех пор, пока в контактной области не уравняются термодинамические работы выхода, и соответствующие им токи термоэлектронной эмиссии применительно к поверхности.

Картина перехода к равновесному состоянию с формированием потенциального барьера для полупроводника p-типа и металла аналогична рассмотренному примеру с полупроводником n-типа и металла. Роль внешнего напряжения — регулировка высоты потенциального барьера и напряженности электрического поля в области пространственного заряда полупроводника.

На рисунке выше представлены зонные диаграммы различных этапов формирования барьера Шоттки. В условиях равновесия в области контакта токи термоэлектронной эмиссии выравнялись, вследствие эффекта поля возник потенциальный барьер, высота которого равна разности термодинамических работ выхода: φк = ФМе — Фп/п.

Очевидно, вольт-амперная характеристика для барьера Шоттки получается несимметричной. В прямом направлении ток растет по экспоненте вместе с ростом прикладываемого напряжения. В обратном направлении ток не зависит от напряжения. В обоих случаях ток обусловлен электронами в качестве основных носителей заряда.

Диоды Шоттки поэтому отличаются быстродействием, ведь в них исключены диффузные и рекомбинационные процессы, требующие дополнительного времени. С изменением числа носителей и связана зависимость тока от напряжения, ибо в процессе переноса заряда участвуют эти носители. Внешнее напряжение меняет число электронов, способных перейти с одной стороны барьера Шоттки на другую его сторону.

Вследствие технологии изготовления и на основе описанного принципа действия, — диоды Шоттки имеют малое падение напряжения в прямом направлении, значительно меньшее чем у традиционных p-n-диодов.

Здесь даже малый начальный ток через контактную область приводит к выделению тепла, которое затем способствует появлению дополнительных носителей тока. При этом отсутствует инжекция неосновных носителей заряда.

У диодов Шоттки поэтому отсутствует диффузная емкость, поскольку нет неосновных носителей, и как следствие — быстродействие достаточно высокое по сравнению с полупроводниковыми диодами. Получается подобие резкого несимметричного p-n-перехода.

Таким образом, прежде всего диоды Шоттки — это СВЧ-диоды различного назначения: детекторные, смесительные, лавинно-пролетные, параметрические, импульсные, умножительные. Диоды Шоттки можно применять в качестве приемников излучения, тензодатчиков, детекторов ядерного излучения, модуляторов света, и наконец — выпрямителей высокочастотного тока.

Обозначение диода Шоттки на схемах

Диоды Шоттки сегодня

На сегодняшний день диоды Шоттки распространены весьма широко в электронных устройствах. На схемах они изображаются по иному, чем обычные диоды. Часто можно встретить сдвоенные выпрямительные диоды Шоттки, выполненные в трехвыводном корпусе свойственном силовым ключам. Такие сдвоенные конструкции содержат внутри два диода Шоттки, объединенные катодами или анодами, чаще — катодами.

Диоды в сборке имеют очень близкие параметры, поскольку каждая такая сборка изготавливается единым технологическим циклом, и в итоге их рабочий температурный режим одинаков, соответственно выше и надежность. Прямое падение напряжения 0,2 — 0,4 вольта наряду с высоким быстродействием (единицы наносекунд) — несомненные преимущества диодов Шоттки перед p-n-собратьями.

Особенность барьера Шоттки в диодах, применительно к малому падению напряжения, проявляется при приложенных напряжениях до 60 вольт, хотя быстродействие остается непоколебимым. Сегодня диоды Шоттки типа 25CTQ045 (на напряжение до 45 вольт, на ток до 30 ампер для каждого из пары диодов в сборке) можно встретить во многих импульсных источниках питания, где они служат в качестве силовых выпрямителей для токов частотой до нескольких сотен килогерц.

Нельзя не затронуть тему недостатков диодов Шоттки, они конечно есть, и их два. Во-первых, кратковременное превышение критического напряжения мгновенно выведет диод из строя. Во-вторых, температура сильно влияет на максимальный обратный ток. При очень высокой температуре перехода диод просто пробьет даже при работе под номинальным напряжением.

Ни один радиолюбитель не обходится без диодов Шоттки в своей практике. Здесь можно отметить наиболее популярные диоды: 1N5817, 1N5818, 1N5819, 1N5822, SK12, SK13, SK14. Эти диоды есть как в выводном исполнении, так и в SMD. Главное, за что радиолюбители их так ценят — высокое быстродействие и малое падение напряжения на переходе — максимум 0,55 вольт — при невысокой цене данных компонентов.

Редкая печатная плата обходится без диодов Шоттки в том или ином назначении. Где-то диод Шоттки служит в качестве маломощного выпрямителя для цепи обратной связи, где-то — в качестве стабилизатора напряжения на уровне 0,3 — 0,4 вольт, а где-то является детектором.

В приведенной таблице вы можете видеть параметры наиболее распространенных сегодня маломощных диодов Шоттки.

Диод Шоттки, принцип работы которого мы опишем сегодня, является очень удачным изобретением немецкого ученого Вальтера Шоттки. В его честь устройство и было названо, а встретить его можно при изучении самых разных электрических схем. Для тех, кто еще только начинает знакомиться с электроникой, будет полезным узнать о том, зачем его используют и где он чаще всего применяется.

Что это такое

Это полупроводниковый диод с минимальным падением уровня напряжения во время прямого включения. Он имеет две главные составляющие: собственно, полупроводник и металл.
Как известно, допустимый уровень обратного напряжения в любых промышленных электронный устройствах составляет 250 В. Такое U находит практическое применение в любой низковольтной цепи, препятствуя обратному течению тока.

Структура самого устройства несложна и выглядит следующим образом:

  • полупроводник;
  • стеклянная пассивация;
  • металл;
  • защитное кольцо.

При прохождении электрического тока по цепи положительные и отрицательные заряды скапливаются по всему периметру устройства, включая защитное кольцо. Скопление частиц происходит в различных элементах диода. Это обеспечивает возникновение электрического поля с последующим выделением определенного количества тепла.

Отличие от других полупроводников

Главное его отличие от других полупроводников состоит в том, что преградой служит металлический элемент с односторонней проводимостью.

Такие элементы изготавливают из целого ряда ценных металлов:

  • арсенида галлия;
  • кремния;
  • золота;
  • вольфрама;
  • карбида кремния;
  • палладия;
  • платины.

От того, какой металл выбирается в качестве материала, зависят характеристики нужного показателя напряжения и качество работы электронного устройства в целом. Чаще всего применяют кремний — по причине его надежности, прочности и способности работать в условиях большой мощности. Также используется и арсенид галлия, соединенный с мышьяком, либо германий.

Плюсы и минусы

При работе с устройствами, включающими в себя диод Шоттки, следует учитывать их положительные и отрицательные стороны. Если подключить его в качестве элемента электрической цепи, он будет прекрасно удерживать ток, не допуская его больших потерь.

К тому же, металлический барьер обладает минимальной емкостью. Это значительно увеличивает износостойкость и срок службы самого диода. Падение напряжения при его использовании минимально, а действие происходит очень быстро — стоит только провести подключение.

Однако большой процент обратного тока является очевидным недостатком. Поскольку многие электроприборы обладают высокой чувствительностью, нередки случаи, когда небольшое превышение показателя, всего лишь на пару А, способно надолго вывести прибор из строя. Также, при небрежной проверке напряжения полупроводника, может произойти утечка самого диода.

Сфера применения

Диод Шоттки может включать в себя любой аккумулятор.

Он входит в устройство солнечной батареи. Солнечные панели, которые уже давно успешно работают в условиях космического пространства, собираются именно на основании барьерных переходов Шоттки. Такие гелиосистемы устанавливаются на космических аппаратах (спутниках и телескопах, проводящих работу в жестких условиях безвоздушного пространства).

Устройство незаменимо при работе компьютеров, бытовой техники, радиоприемников, блоков электропитания. При правильном использовании диод Шоттки увеличивает производительность любого устройства, предотвращает потери тока. Он способен принимать на себя альфа-, бета- и гамма-излучение. Именно поэтому он незаменим в условиях космоса.

С помощью такого устройства можно осуществить параллельное соединение диодов, используя их в качестве сдвоенных выпрямителей. Таким образом можно объединить межлу собой два параллельных источника питания. Один корпус включает в себя два полупроводника, а концы положительного и отрицательного зарядов связываются друг с другом. Есть и более простые схемы, где диоды Шоттки очень малы. Это характерно для очень мелких деталей в электронике.

Диод Шоттки является незаменимым элементом во многих электронных устройствах. Главное — понимать специфику его работы и использовать его корректно.

Купите ультрасовременный диод на 2 А для ваших нужд Бесплатный образец

О продуктах и ​​поставщиках:
 

Выберите. 2-амперный диод из огромной коллекции на Alibaba.com. Вы можете купить массив. 2-амперный диод включая, помимо прочего, светодиоды, микрофон, выпрямитель, лазер, стабилитрон, триггер, Шоттки, SMD, энергосберегающие диодные лампы. Вы можете выбрать. 2-амперный диод с широким выбором основных параметров, спецификаций и номиналов для ваших целей.Диод

2 ампера на Alibaba.com удобен в установке и использовании. Используемый пластик более высокого качества обеспечивает изоляцию, снижающую нагрев. Они доступны в кремнии и германии. Диод на 2 ампера используется в различных отраслях промышленности для различных электрических функций и датчиков. Они используются в инверторах, светодиодах, автомобильной электронике, потребительских товарах, USB 2.0 и USB 3.0, HDMI 1.3 и HDMI 1.4, SIM-карте, мобильной одежде, беспроводной связи, автомобильном генераторе и лазерной эпиляции.Они используются как выпрямитель, датчик света, излучатель света, для рассеивания нагрузки и т. Д. Различная физическая упаковка для. Диод на 2 А предлагается для монтажа на печатной плате, радиатора, проводного и поверхностного монтажа.

Основные особенности. 2-амперный диод - это толстая медная опорная пластина, низкая утечка, высокая сила тока, низкое прямое падение напряжения, легирование золотом, низкое сопротивление инкрементному скачку напряжения, отличная зажимная способность, быстрое время отклика и т. Д. Технические характеристики, предлагаемые на. 2-амперный диод имеет различные оптические и электрические характеристики, такие как максимальная мощность, напряжение, оптический выход, время обратного восстановления, рабочая температура и т. Д. 2-амперные диоды производятся в соответствии со стандартными процедурами для поддержания высочайшего качества. Они соответствуют требованиям RoHS и IEEE 1394.

Получите лучшее. 2-амперный диод предлагает на Alibaba.com различные поставщики и оптовики. Получите высшее качество. 2-амперный диод для требований вашего проекта.

1N5820, 1N5821, 1N5822 — Выпрямители с осевым выводом

% PDF-1.4 % 1 0 объект > эндобдж 5 0 obj > эндобдж 2 0 obj > эндобдж 3 0 obj > транслировать application / pdf

  • ON Semiconductor
  • 1N5820, 1N5821, 1N5822 — Выпрямители с осевым выводом
  • 2007-12-12T10: 56: 55-07: 00BroadVision, Inc.2020-08-11T14: 09: 13 + 02: 002020-08-11T14: 09: 13 + 02: 00 Acrobat Distiller 8.1.0 (Windows) uuid: 1a1ff9d3-4834-4ab0-a878-feb7fca15d3fuid: fbcbe52f-64e9-453a-9015-ff7b8990e508 конечный поток эндобдж 4 0 obj > эндобдж 6 0 obj > эндобдж 7 0 объект > эндобдж 8 0 объект > эндобдж 9 0 объект > эндобдж 10 0 obj > эндобдж 11 0 объект > эндобдж 12 0 объект > эндобдж 13 0 объект > эндобдж 14 0 объект > эндобдж 15 0 объект > эндобдж 16 0 объект > эндобдж 17 0 объект > эндобдж 18 0 объект > эндобдж 19 0 объект > транслировать HT6zWQ., .II $ [m4ȁ + 6SYR} ͥ0lY {3͈> d> o \ QR 賻 C, dEànb * Idá; CV5, SMW ~ gn3cN $ = dvmsV7) J} F (u 9nS’qggwkxxxNLeBTR W% HD (% * = 3’V «, OP 漒 pNPSVRh

    % PDF-1.4 % 604 0 объект > эндобдж xref 604 105 0000000016 00000 н. 0000002452 00000 н. 0000003116 00000 н. 0000003980 00000 н. 0000004075 00000 н. 0000004104 00000 п. 0000004208 00000 н. 0000004238 00000 п. 0000004261 00000 н. 0000005788 00000 н. 0000005811 00000 н. 0000007221 00000 н. 0000007244 00000 н. 0000008761 00000 н. 0000008784 00000 н. 0000010299 00000 п. 0000010322 00000 п. 0000011875 00000 п. 0000011898 00000 п. 0000013330 00000 п. 0000013437 00000 п. 0000013460 00000 п. 0000014919 00000 п. 0000014942 00000 п. 0000016587 00000 п. 0000016614 00000 п. 0000016641 00000 п. 0000016668 00000 п. 0000016689 00000 п. 0000016972 00000 п. 0000016995 00000 н. 0000018551 00000 п. 0000018574 00000 п. 0000020053 00000 п. 0000020076 00000 п. 0000021976 00000 п. 0000021999 00000 н. 0000023350 00000 п. 0000023372 00000 н. 0000024501 00000 п. 0000024524 00000 п. 0000026048 00000 н. 0000026071 00000 п. 0000029389 00000 п. 0000029412 00000 п. 0000035494 00000 п. 0000035517 00000 п. 0000039411 00000 п. 0000039434 00000 п. 0000041538 00000 п. 0000041561 00000 п. 0000047123 00000 п. 0000047146 00000 п. 0000052177 00000 п. 0000052200 00000 п. 0000057295 00000 п. 0000057318 00000 п. 0000062505 00000 п. 0000062528 00000 п. 0000065375 00000 п. 0000065398 00000 п. 0000070649 00000 п. 0000070672 00000 п. 0000075246 00000 п. 0000075269 00000 п. 0000079621 00000 п. 0000079644 00000 п. 0000082730 00000 н. 0000082753 00000 п. 0000088367 00000 п. 0000088390 00000 н. 0000093212 00000 п. 0000093235 00000 п. 0000096970 00000 п. 0000096993 00000 н. 0000101570 00000 н. 0000101593 00000 н. 0000105683 00000 п. 0000105706 00000 н. 0000110733 00000 н. 0000110756 00000 п. 0000116463 00000 н. 0000116486 00000 н. 0000120955 00000 н. 0000120978 00000 н. 0000122571 00000 н. 0000122592 00000 н. 0000122876 00000 н. 0000122897 00000 н. 0000123181 00000 н. 0000123202 00000 н. 0000123474 00000 н. 0000123501 00000 н. 0000123528 00000 н. 0000123555 00000 н. 0000123682 00000 н. 0000123809 00000 н. 0000123938 00000 н. 0000123965 00000 н. 0000124092 00000 н. 0000124119 00000 н. 0000124146 00000 н. 0000124173 00000 н. 0000002642 00000 н. 0000003094 00000 н. трейлер ] >> startxref 0 %% EOF 605 0 объект > / Метаданные 603 0 R / PageMode / UseThumbs >> эндобдж 707 0 объект > транслировать HDM (aƟygv2f m «崤 ‘GWM% 뀴 AqpENJi.E

    Логарифмический усилитель

    — обзор

    РАЗДЕЛ 2-8 Логарифмические усилители

    Термин «логарифмический усилитель» (обычно сокращенно обозначаемый как «логарифмический усилитель») является чем-то вроде неправильного употребления, а «логарифмический преобразователь» было бы более точным описанием. Преобразование сигнала в его эквивалентное логарифмическое значение включает в себя нелинейную операцию, последствия которой могут сбивать с толку, если не полностью поняты. Важно понимать, что многие из знакомых концепций линейных цепей не имеют отношения к логарифмическим усилителям.Например, приращение усиления идеального логарифмического усилителя приближается к бесконечности, когда вход приближается к нулю, а изменение смещения на выходе логарифмического усилителя эквивалентно изменению амплитуды на его входе, а не изменению смещения входа.

    Для простоты в наших начальных обсуждениях мы будем предполагать, что и вход, и выход логарифмического усилителя являются напряжениями, хотя нет особой причины, по которой нельзя было бы также спроектировать усилители логарифмического тока, трансимпеданса или крутизны.

    Если мы рассмотрим уравнение y = log (x), мы обнаружим, что каждый раз, когда x умножается на константу A, y увеличивается на другую константу A1. Таким образом, если log (K) = K1, то log (AK) = K1 + A1, log (A 2 K) = K1 + 2A1 и log (K / A) = K1 − A1. Это дает график, показанный на рис. 2-42, где y равен нулю, когда x равен единице, y приближается к минус бесконечности, когда x приближается к нулю, и где y не имеет значений, для которых x отрицателен.

    Рисунок 2-42 :. График Y = Log (X)

    В целом лог-амперы не ведут себя подобным образом.Помимо трудностей, связанных с установкой бесконечных отрицательных выходных напряжений, такое устройство на самом деле было бы не очень полезным. Логический усилитель должен удовлетворять передаточной функции вида:

    (2-14) VOUT = VYlog (VINVX)

    в некотором диапазоне входных значений, который может варьироваться от 100: 1 (40 дБ) до более 1000000: 1 ( 120 дБ).

    Когда входы очень близки к нулю, логарифмические характеристики перестают вести себя логарифмически, и большинство из них имеют линейный закон V IN / V OUT . Это поведение часто теряется из-за шума устройства.Шум часто ограничивает динамический диапазон логического усилителя. Константа V Y имеет размерность напряжения, потому что выход представляет собой напряжение. Вход, V IN , делится на напряжение V X , потому что аргумент логарифма должен быть простым безразмерным соотношением.

    График передаточной характеристики логарифмического усилителя показан на рисунке 2-43. Масштаб горизонтальной оси (вход) — логарифмический, а идеальная передаточная характеристика — прямая линия.Когда V IN = V X , логарифм равен нулю (log 1 = 0). Следовательно, V X известно как напряжение отсечки логарифмического усилителя, потому что график пересекает горизонтальную ось при этом значении V IN .

    Рисунок 2-43 :. Передаточная функция логарифмического усилителя

    Наклон линии пропорционален V Y . При настройке шкал чаще всего используются логарифмы с основанием 10, потому что это упрощает отношение к значениям в децибелах: когда V IN = 10 V X , логарифм имеет значение 1, поэтому выходное напряжение V Y .Когда V IN = 100 V X , на выходе будет 2 V Y и так далее. Следовательно, V Y можно рассматривать либо как «наклон напряжения», либо как «коэффициент вольт на декаду».

    Функция логарифма не определена для отрицательных значений x. Логические усилители могут реагировать на отрицательные входные сигналы тремя различными способами: (1) Они могут давать полномасштабный отрицательный выходной сигнал, как показано на Рисунке 2-44. (2) Они могут выдавать выходной сигнал, который пропорционален логарифму абсолютного значения входа и игнорирует его знак, как показано на рисунке 2-45.Логарифмический усилитель этого типа может рассматриваться как двухполупериодный детектор с логарифмической характеристикой и часто упоминается как , обнаруживающий логарифмический усилитель. (3) Они могут давать выход, который пропорционален логарифму абсолютного значения входа и имеет тот же знак, что и вход, как показано на рисунке 2-46. Этот тип логарифмического усилителя может рассматриваться как видеоусилитель с логарифмической характеристикой и может быть известен как усилитель логарифмического видеосигнала ( логарифм видео ) или, иногда, усилитель истинного логарифма (хотя этот тип усилителя log amp редко используется в приложениях, связанных с отображением видео).

    Рисунок 2-44 :. Базовый логарифмический усилитель (насыщение с отрицательными входами)

    Рисунок 2-45 :. Обнаружение логарифмического усилителя (полярность выхода не зависит от полярности входа)

    Рисунок 2-46 :. Логарифмическое видео или «истинный логарифмический усилитель» (симметричный отклик на положительные или отрицательные сигналы)

    Существует три основных архитектуры, которые могут использоваться для создания логарифмических усилителей: базовый диодный логарифмический усилитель , логарифмический усилитель последовательного обнаружения и true log amp , основанный на каскадных полуограничивающих усилителях.Усилитель логического сигнала последовательного обнаружения и усилитель истинного логарифма обсуждаются в разделе RF / IF.

    Напряжение на кремниевом диоде пропорционально логарифму проходящего через него тока. Если в тракте обратной связи инвертирующего операционного усилителя установить диод, выходное напряжение будет пропорционально логарифму входного тока, как показано на рисунке 2-47. На практике динамический диапазон этой конфигурации ограничен 40–60 дБ из-за неидеальной характеристики диода, но если диод заменить транзистором с диодным подключением, как показано на рисунке 2-48, динамический диапазон может быть расширен. до 120 дБ и более.Этот тип бревенчатого усилителя имеет три недостатка: (1) наклон и точка пересечения зависят от температуры; (2) он будет обрабатывать только униполярные сигналы; и (3) его полоса пропускания ограничена и зависит от амплитуды сигнала.

    Рисунок 2-47 :. Логический усилитель на диоде / операционном усилителе

    Рисунок 2-48 :. Логический усилитель на транзисторе / операционном усилителе

    Если несколько таких логарифмических усилителей используются на одной микросхеме для создания аналогового компьютера, который выполняет как логарифмические, так и антилогарифмические операции, изменение температуры в логарифмических операциях не имеет значения, поскольку оно компенсируется аналогичным изменением. в антилоггинге.Это делает возможным AD538 (рис. 2-49), монолитный аналоговый компьютер, который может умножать, делить и увеличивать мощность. Однако там, где требуется фактическая регистрация, AD538 и аналогичные схемы требуют температурной компенсации (Ссылка 7). Однако основным недостатком логарифмического усилителя этого типа для высокочастотных приложений является его ограниченная частотная характеристика, которую невозможно преодолеть. Как бы тщательно ни был спроектирован усилитель, всегда будет остаточная емкость обратной связи C C (часто известная как емкость Миллера) от выхода до входа, которая ограничивает высокочастотный отклик.

    Рисунок 2-49 :. Блок-схема AD538

    Что делает эту емкость Миллера особенно неприятной, так это то, что импеданс перехода эмиттер-база обратно пропорционален протекающему в нем току, так что если логарифмический усилитель имеет динамический диапазон 1000000: 1, то его полоса пропускания также будет отличаться на 1000000: 1. На практике отклонение меньше, потому что другие соображения ограничивают широкую полосу пропускания сигнала, но очень трудно сделать логарифмический усилитель этого типа с небольшой полосой пропускания сигнала, превышающей несколько сотен кГц.

    Мы также обсуждаем высокоскоростные логические усилители в разделе RF / IF (Раздел 4-4).

    МОСТОВЫЕ ВЫПРЯМИТЕЛИ — CEHCO

    CEHCO является производителем, перепродавцом и дистрибьютором продукции для выпрямления питания, такой как выпрямители постоянного тока, трансформаторные выпрямительные сборки и специальные источники питания с 1945 года.

    Наше подразделение L / C Magnetics Inc. (www.lcmagnetics.com) производит трансформаторы от 0,1 кВА до 100 МВА. Все трансформаторы CEHCO производятся L / C Magnetics Inc.

    CEHCO — это специалист по ремонту и замене устаревших и снятых с производства выпрямителей постоянного тока.

    Отправьте нам электронное письмо для получения бесплатного предложения.

    Наши инженеры ответят в течение часа.

    О МОСТОВЫХ ВЫПРЯМИТЕЛЯХ В СБОРЕ

    Мостовые выпрямительные сборки

    состоят из упаковки диодов и / или компонентов тринистора с выступами радиатора в мостовой схеме.

    CEHCO использует профили радиаторов M, T, N и W для изготовления выпрямительных узлов.

    Экструзия радиатора

    Базовая схема сборки четырехдиодного моста показана ниже. Пульсация составляет 50%.

    Базовая схема сборки шестидиодного моста показана ниже. Пульсация составляет 5%

    (Щелкните и просмотрите номера деталей, перечисленные ниже)

    Некоторые сборки мостового выпрямителя показаны ниже. Щелкните ссылки для получения дополнительной информации.

    Сборка четырехдиодного моста

    с использованием диодов на 45 А P / N 2TB356-45

    Сборка четырехдиодного моста

    с использованием диодов на 150 А P / N 6M-150A-1200 PIV-4D

    Сборка четырехдиодного моста

    с использованием диодов на 300 А P / N 6M-300A-600PIV-4D

    Шестидиодный мост в сборе, выходная мощность 1500 А

    С использованием диодов на 2000 А и 2 вентиляторов
    P / N 24N-1500A-1200PIV-6D-2F120

    Шестидиодный мост в сборе

    с использованием диодов на 2000 А и 6 вентиляторов
    P / N 6N (12) -2000A-1200PIV-6D-6F120

    Шестидиодный мост в сборе

    с использованием диодов на 45 А, номер по каталогу 2TZ456-45

    Шестидиодный мост в сборе

    с использованием диодов на 150 А, P / N 8M-150A-1200PIV-6D

    Шестидиодный мост в сборе

    с использованием диодов на 166 А, номер по каталогу 12W-166A-1200PIV-1F-120

    Шестидиодный мост в сборе

    с использованием диодов на 300 А, P / N 8M-300A-600PIV-6D

    Шестидиодный мост в сборе

    с использованием диодов на 500 А, номер по каталогу 14M-500A-1200PIV-6D-2F-120

    Шестидиодный мост в сборе

    с использованием диодов на 400 А, номер по каталогу 8M-400A-1200PIV-6D

    Восемнадцать диодных мостов в сборе

    с использованием диодов на 300 ампер и 6 вентиляторов
    (каждый диод представляет 3 диода, включенных параллельно)
    P / N 8M-300A-600PIV-18D-6F-120

    Двадцать четыре диодных моста в сборе

    с использованием диодов на 300 ампер и 6 вентиляторов
    (каждый диод представляет 4 диода, включенных параллельно)
    P / N 12M-300A-600PIV-24D-6F-120

    Шестидиодный мост в сборе, выходная мощность 2000 А

    С использованием диодов на 2000 А и 2 вентиляторов
    P / N 24N-2000A-1200PIV-6D-4F120

    Шестидиодный мост в сборе, выход 2000 А Выход

    100 В постоянного тока, максимум 250 А
    P / N 6091C

    Приведенные выше ссылки помогут вам определить, какой выпрямитель лучше всего подходит для вашего конкретного применения.Все материалы, из которых изготовлены выпрямительные сборки, находятся на складе. Это позволяет нам разрабатывать устройства в соответствии с конкретными требованиями заказчика и в короткие сроки поставки. Пожалуйста, свяжитесь с нами по телефону 714 624-4740 или отправьте нам письмо по адресу [email protected].

    (Соответствующие соответствия этой категории показаны ниже)

    Мостовой выпрямитель pdf

    Мостовой выпрямитель ic

    Вычислитель мостового выпрямителя

    Мостовой выпрямитель

    Полуволновой мостовой выпрямитель

    Двухполупериодный мостовой выпрямитель

    Схема подключения мостового выпрямителя

    Форма волны мостового выпрямителя

    Мостовой выпрямитель с фильтром

    Схема двухполупериодного выпрямителя

    Трудно найти мостовой выпрямитель

    Мостовой выпрямитель устаревший

    Запасной мостовой выпрямитель

    Специальный мостовой выпрямитель

    Мостовой выпрямитель снятого с производства

    Выпрямитель мостовой снятый с производства

    Пользовательский мостовой выпрямитель

    Производитель мостового выпрямителя

    Мостовой выпрямитель 10 А

    Мостовой выпрямитель на 20 А

    Мостовой выпрямитель на 50 А

    Мостовой выпрямитель на 100 А

    Мостовой выпрямитель на 200 А

    Мостовой выпрямитель на 300 А

    Мостовой выпрямитель на 400 А

    Мостовой выпрямитель на 500 А

    Мостовой выпрямитель на 600 А

    Мостовой выпрямитель на 700 А

    Мостовой выпрямитель на 800 А

    Мостовой выпрямитель на 900 А

    Мостовой выпрямитель на 1000 А

    Мостовой выпрямитель на 1200 А

    Мостовой выпрямитель на 1500 А

    2000 А, мостовой выпрямитель

    Мостовой выпрямитель на 3000 А

    4 диодных мостовых выпрямителя

    6 Диодные мостовые выпрямители

    18 Диодные мостовые выпрямители

    24 Диодные мостовые выпрямители

    4 мостовых выпрямителя SCR

    6 мостовых выпрямителей SCR

    Гибридные мостовые выпрямители

    SCR plus Выпрямители с диодным мостом

    Герметичные мостовые выпрямители

    Трехфазные мостовые выпрямители

    3-фазные мостовые выпрямители

    Однофазные мостовые выпрямители

    1-фазные мостовые выпрямители

    Модули мостовых выпрямителей

    Диодный мост

    Твердотельный мостовой выпрямитель

    Полупроводниковый мостовой выпрямитель

    Полный мостовой выпрямитель

    Мостовые выпрямительные модули

    Низковольтный мостовой выпрямитель

    Высоковольтный мостовой выпрямитель

    Слаботочный мостовой выпрямитель

    Сильноточный мостовой выпрямитель Схема полноволнового мостового выпрямителя

    Принципиальная электрическая схема одномостового выпрямителя

    Принципиальная схема двухполупериодного мостового выпрямителя

    Полноволновой выпрямитель с кремниевым мостом

    Выпрямление однофазной сети

    Схема простого мостового выпрямителя

    Как работает двухполупериодный мостовой выпрямитель?

    Однофазный выпрямитель

    Однофазный неуправляемый выпрямитель

    Цепь выпрямителя / фильтра

    Конденсаторный фильтр с полуволновыми и полноволновыми выпрямителями

    Источники питания, схемы выпрямителей и фильтры источников питания

    Анализ двухполупериодных выпрямителей с конденсаторными фильтрами

    Выпрямительные схемы | Диоды и выпрямители

    Двухполупериодный выпрямитель-мостовой выпрямитель

    Двухполупериодный выпрямитель с центральным отводом

    Детали мостовых выпрямителей

    Диоды — сигнальные, выпрямительные, мостовые, стабилитроны

    Мостовые выпрямительные диоды

    Как повысить энергоэффективность выпрямителя?

    Купить мостовые выпрямители

    Как выбрать конденсатор выпрямителя

    Мостовые выпрямители на 35 А

    400V 25A Мостовой выпрямитель

    Мостовые выпрямители для ремонта зарядного устройства

    2TB356-45

    6М-150А-1200ПИВ-4Д

    6М-300А-600ПИВ-4Д

    24N-1500A-1200PIV-6D-2F120

    6Н (12) -2000А-1200ПИВ-6Д-6Ф120

    2TZ456-45

    8М-150А-1200ПИВ-6Д

    12W-166A-1200PIV-1F-120

    8М-300А-600ПИВ-6Д

    8М-400А-1200ПИВ-6Д

    14M-500A-1200PIV-6D-2F-120

    8M-300A-600PIV-18D-6F-120

    14M-500A-1200PIV-6D-2F-120

    12M-300A-600PIV-24D-6F-120

    5513C

    5273C

    Замена устаревшего мостового выпрямителя

    Однофазные мостовые 50 A мостовые выпрямители

    50A 50 A 400V мостовой выпрямитель

    50 А, 50 А, 1000 В, мостовой выпрямитель

    Мостовой выпрямитель 100A 1600V полноволновой диод

    3-фазный мостовой выпрямитель 100A 1000V

    200A 1600V диодный модуль однофазный мостовой выпрямитель

    Однофазный диодный мостовой выпрямитель, 300 А, 1600 В

    Однофазный диодный мостовой выпрямитель 400A 1600V

    Однофазный диодный мост, усилитель 500 А, 1600 В

    Трехфазный двухполупериодный мостовой выпрямитель, 600 А

    Выпрямитель постоянного тока 12 В 2000 А

    Высоковольтные выпрямители стека

    Снято с производства 4 диодных мостовых выпрямителя

    Снято с производства 6 диодных мостовых выпрямителей

    Специалист по 4-х диодным мостовым выпрямителям

    Специалист по 6-ти диодным мостовым выпрямителям

    Снято с производства 4 мостовых выпрямителя SCR

    Снято с производства 6 мостовых выпрямителей DSCR

    Специалист по 4 мостовым выпрямителям SCR

    Специалист по 6 мостовых выпрямителей SCR

    Индивидуальный дизайн 4-х диодных мостовых выпрямителей

    Индивидуальный дизайн 6 диодных мостовых выпрямителей

    Специальная конструкция 4 мостовых выпрямителей SCR

    Индивидуальный дизайн 6 мостовых выпрямителей SCR

    Высоковольтные 4-диодные мостовые выпрямители

    Высоковольтные 6 диодных мостовых выпрямителей

    Высоковольтные мостовые выпрямители с 4 тиристорными тиристорами

    Высоковольтные 6-ти тиристорные мостовые выпрямители

    Сильноточные 4-диодные мостовые выпрямители

    Сильноточные 6-ти диодные мостовые выпрямители

    Сильноточные мостовые выпрямители с 4 тиристорными тиристорами

    Сильноточные мостовые выпрямители с 4 тиристорными тиристорами

    OEM-приложение 4 диодных мостовых выпрямителя

    OEM-приложение 6 диодных мостовых выпрямителей

    OEM-приложение 4 мостовых выпрямителя SCR

    OEM-приложение 4 мостовых выпрямителя SCR

    Made in U S A 4 Diode Bridge Rectifiers

    Made in U S A 6 Выпрямители с диодным мостом

    Made in U S A 4 Мостовые выпрямители с тиристором

    Made in U S A 6 Мостовые выпрямители SCR

    Недорогие 4-диодные мостовые выпрямители

    Недорогие 6 диодных мостовых выпрямителей

    Недорогие мостовые выпрямители с 4 тиристорными тиристорами

    Недорогие мостовые выпрямители с 6 тиристорными тиристорами

    Экономичный 4-х диодный мостовой выпрямитель

    Экономичные 6-ти диодные мостовые выпрямители

    Экономичные мостовые выпрямители с 4 тиристорными тиристорами

    Мостовые выпрямители Economical с 6 тиристорными тиристорами

    Выпрямители с 4 диодными мостами 30 лет работы

    6 диодных мостовых выпрямителей 30 лет работы

    4 мостовых выпрямителя SCR 30 лет работы

    6 мостовых выпрямителей SCR 30 лет работы

    4-диодные мостовые выпрямители, 400 Гц

    6-ти диодные мостовые выпрямители, 400 Гц

    Мостовые выпрямители с 4 тиристорными тиристорами, 400 Гц

    Мостиковые выпрямители с тиристором, 400 Гц

    Средневольтные 4-х диодные мостовые выпрямители

    6-ти диодные мостовые выпрямители среднего напряжения

    Мостовые выпрямители с 4 тиристорными тиристорами среднего напряжения

    Мостовые выпрямители с 6 тиристорными тиристорами среднего напряжения

    Запасной эквивалент 4-х диодных мостовых выпрямителей

    Запасной эквивалент 6 диодных мостовых выпрямителей

    Запасной эквивалент 4 мостовых выпрямителей SCR

    Запасной эквивалент 6 мостовых выпрямителей SCR

    Токоограничивающий реактор с сухим воздушным сердечником, 300 А

    Применение в печи Токоограничивающий реактор с воздушным сердечником

    Токоограничивающий реактор с сухим воздушным сердечником, нагревательный элемент

    Токоограничивающий реактор с сухим воздушным сердечником, 500 А

    Токоограничивающий реактор с сухим воздушным сердечником, 700 А

    Ремонт токоограничивающего реактора с сухим воздушным сердечником МВА

    Реконструкция токоограничивающего реактора с воздушным сердечником

    Токоограничивающий реактор с воздушным сердечником, внутренний корпус

    Промышленный токоограничивающий реактор с сухим воздушным сердечником сухого типа среднего напряжения Nema 1

    Промышленный реактор-ограничитель тока с сухим воздушным сердечником среднего напряжения

    Токоограничивающий реактор среднего напряжения с сухим воздушным сердечником, повышающий

    Трехфазный токоограничивающий реактор MVA / с сухим воздушным сердечником

    Токоограничивающий реактор с сухим воздушным сердечником, сухого типа, 400 Гц

    Токоограничивающий реактор с воздушным сердечником, монтаж на печатной плате

    Токоограничивающий реактор с воздушным сердечником, 10 кГц
    Свяжитесь с нами в чате,
    работает на LiveChat

    Номинал в амперах диодов | Форум электроники (схемы, проекты и микроконтроллеры)

    Привет, ребята,

    Вот пара замечаний о стандартных выпрямительных диодах в выпрямительных устройствах…

    Выпрямительные схемы — довольно необычные схемы, даже если они кажутся такими простыми. Причина в том, что поведение диодов под нагрузкой с различными видами постфильтрации довольно сложно. Мы имеем дело с устройствами с очень низким импедансом, поэтому могут возникнуть проблемы.

    Возьмите диод на 1 А и прокачайте через него уже выпрямленную синусоидальную волну, и вы получите нормальный нагрев мощности. Удвойте ток, но вдвое сократите время (полуволновое выпрямление), и в основной теории нагрева мощности вы можете использовать этот диод для удвоения номинального тока.Однако, если присмотреться, можно заметить, что напряжение на диоде несколько возрастает и вызывает больший нагрев, чем предполагала основная теория. Это означает, что нам придется снизить номинальные характеристики диода примерно на 20 процентов от удвоенного номинального тока (полуволны), что дает нам 1,6 А в этом полуволновом синусоидальном приложении, но это с фактическим полуволновым синусоидальным синусоидом или диодом. только в двухполупериодном мосте с резистивной нагрузкой.

    Проблемы возникают, когда мы добавляем емкостную фильтрацию. Внезапно ток диода больше не синусоидальный, иногда даже не близкий к синусу, а больше похож на короткий импульс тока.Имея лишь небольшое количество ESR конденсатора, мы могли бы получить в три раза больший нагрев этого диода даже в мостовой конфигурации. Это довольно удивительно, если вы спросите меня, но в большинство схем выпрямителя низкого напряжения встроено средство экономии: трансформатор. Трансформатор имеет первичное и вторичное сопротивление и даже некоторую индуктивность, что снижает пиковый ток через диод и, таким образом, предохраняет диод от перегрева.

    Точный пик тока очень сложно рассчитать, не зная подробностей о трансформаторе, но многие трансформаторы имеют значительное эквивалентное сопротивление и поэтому значительно снижают пиковый ток, по крайней мере, в большинстве низковольтных схем малой мощности.Однако в цепях с более высокой мощностью мы должны быть очень осторожны, потому что часто второстепенные сопротивления не такие большие, как в цепях с меньшей мощностью, потому что мы не хотим, чтобы чрезмерная неэффективность съедала слишком много доступной входной мощности. Тем не менее, мы хотим иметь возможность использовать диоды на полную мощность, а в выпрямительных схемах мы иногда можем использовать диоды при токе выше номинального. Это в основном зависит от импеданса внешней цепи.

    Итак, какое же здесь лучшее лекарство со всеми этими переменными?
    Похоже, что лучше всего провести пару измерений и посмотреть, что делают ваши диоды.Часто в мосте вам нужно измерить только один диод, чтобы увидеть, что делают другие. Хорошей идеей является измерение тока и напряжения на прицеле, а затем несколько простых расчетов для расчета мощности нагрева. По размеру упаковки вы сможете определить, есть ли у вас безопасная работоспособная конструкция или нет.

    Интересно, что если бы во многих наших цепях низкого напряжения, которые мы используем каждый день, не было бы трансформаторов с потерями (бородавки), мы, вероятно, регулярно сжигали бы диоды.

    RadioShack 1N4003 200V 1A Выпрямительные диоды (2- Pack)

    RadioShack.com Политика возврата в Интернете

    Из-за COVID-19 обработка возврата может занять больше времени, чем обычно. Пожалуйста, подождите от 14 до 21 дня, прежде чем связаться со службой поддержки клиентов относительно статуса вашего возврата. Спасибо за терпеливость.

    На RadioShack.com мы хотим, чтобы вы были полностью удовлетворены каждым приобретенным товаром. Если вы не удовлетворены своей покупкой на RadioShack.com, вы можете вернуть большинство товаров в течение 30 дней с полным возмещением покупной цены за вычетом доставки, обработки или других дополнительных расходов.См. Раздел «Исключения» для продуктов, на которые не распространяется наша политика возврата.

    ВАЖНО: За некоторыми исключениями, возврат осуществляется в форме кредита интернет-магазина, который можно погасить на RadioShack.com. RadioShack не возмещает стоимость доставки. За некоторыми исключениями, мы не предоставляем предоплаченные этикетки для возврата; Вы несете ответственность за покрытие любых транспортных расходов при возврате вашего товара (ов).

    Убедитесь, что вы отправили ваш товар (-ы) обратно в полном соответствии с нашей Политикой возврата через Интернет:

    • Товар (-ы) необходимо отправить обратно в течение 30 дней с даты доставки.
    • Товар (-ы) должны быть неиспользованными и в новом состоянии.
    • Все товары должны быть возвращены в оригинальной упаковке со всеми прилагаемыми аксессуарами и документами.
    • При возврате, отправленном обратно на наш склад без разрешения на возврат, созданного в нашем Центре возврата или связавшись с нашей службой поддержки клиентов, будет взиматься плата за ручную обработку в размере 10 долларов США.

    Исключения: RadioShack.com не может принимать возврат некоторых товаров. Товары, которые не подлежат возврату, указаны в Интернете.Невозвратные товары включают:

    • Продукты, которые были перепроданы или изменены (или помечены) для перепродажи, не принимаются.
    • Открытый софт или комплекты.
    • Неисправные электронные носители (например, флэш-накопители USB и карты памяти).
    • Средства личной гигиены (например, маски для лица, защитные маски).
    • Товары, перечисленные как окончательная продажа или невозвратные.
    • Продукты, приобретенные не на RadioShack.com.
    Возврат внутри страны (США)

    Для возврата или обмена товара:

    • Начните с посещения нашего центра возврата по адресу radioshack.com / returns и введите адрес электронной почты, который вы использовали при размещении заказа.
    • Ваш запрос на возврат вашего товара (ов) должен быть отправлен в течение 30 дней с даты доставки или иным образом в рамках нашей Политики возврата.
    • За некоторыми исключениями, мы не предоставляем предоплаченные этикетки для возврата; Вы несете ответственность за оплату обратной доставки. Стоимость обратной доставки будет вычтена из суммы возврата.
    • Вы получите электронное письмо с инструкциями по возврату. Выберите «Начать возврат» и выберите товары, которые хотите вернуть.Следуйте инструкциям, чтобы распечатать этикетку обратной доставки.
    • Пожалуйста, используйте выданную транспортную этикетку, чтобы обеспечить надлежащую обработку возврата. Сохраните номер отслеживания возврата из возвращаемой посылки, чтобы гарантировать, что посылка будет возвращена на наш склад.
    • Вы можете вернуть посылку в любое почтовое отделение США. Как только ваш возврат будет получен и обработан на нашем складе, вам будет отправлено электронное письмо с подтверждением.

    Международный возврат

    Если вы решите вернуть свой товар (-ы), RadioShack не предоставляет этикетки с предоплаченным возвратом, и вы несете ответственность за покрытие транспортных расходов.Кроме того, клиенты за пределами США не смогут использовать наш онлайн-центр возврата. Вместо этого следуйте приведенным ниже инструкциям для возврата в соответствии с нашей Политикой возврата через Интернет.

    Чтобы вернуть товар (-ы) по почте, свяжитесь с нашей службой поддержки клиентов по адресу [email protected] или позвоните нам по телефону 1-800-THE-SHACK (1-800-843-7422). Мы предоставим вам этикетку для возврата, которую вы можете передать любому из местных перевозчиков. Отправляйте возвращаемые товары в наш отдел возврата по адресу, указанному ниже:

    RadioShack возвращает
    900 Terminal Road # 244
    Fort Worth, TX 76106


    Поврежденный или дефектный товар (-ы)

    Если вы получили поврежденный или бракованный товар от RadioShack.com, немедленно свяжитесь с представителем службы поддержки клиентов.

    ● Сообщите представителю номер вашего заказа, номер позиции и номер отслеживания из исходного электронного письма с подтверждением. Представителю также понадобятся ваш адрес электронной почты и номер телефона.

    ● RadioShack.com сделает все возможное, чтобы помочь вам с возвращением.

    ● Неисправный элемент может быть заменен в течение 30 дней с даты покупки в соответствии с нашей Гарантийной политикой или в течение гарантийного срока производителя, в зависимости от того, что больше.Обратитесь за помощью к представителю службы поддержки клиентов.

    ● По возможности имейте при себе фотографии повреждения или дефекта, чтобы ускорить оказание помощи.

    ● Поврежденные или дефектные товары будут заменены, если они доступны, или будет предоставлен кредит магазина RadioShack.com.

    Пропавший в пути товар (-ы)

    Если ваш номер для отслеживания показывает, что заказ был доставлен, но вы так и не получили его от RadioShack.com, немедленно свяжитесь с представителем службы поддержки клиентов.

    ● Свяжитесь с перевозчиком и подайте претензию в отношении утерянных при транспортировке предметов.Сообщите представителю номер вашего заказа, номер позиции, номер для отслеживания из исходного электронного письма с подтверждением и номер претензии. Представителю также понадобятся ваш адрес электронной почты и номер телефона. ● RadioShack.com приложит все разумные усилия, чтобы помочь вам с заменой, если таковая имеется, или будет предоставлен кредит магазина.

    Отмена заказа

    Поскольку ваш заказ обрабатывается максимально быстро, для его отмены есть 15-минутное окно в наши обычные рабочие часы.Если вы разместили заказ по ошибке, немедленно позвоните в службу поддержки по телефону 1-800-843-7422. Если запрос на отмену поступает более чем через 15 минут после размещения заказа или в нерабочее время, заказ будет доставлен и должен быть обработан как возврат после доставки.

    Гарантия на продукцию

    Щелкните здесь , чтобы ознакомиться с положениями и условиями для всех штатов.

    Многие товары, которые продаются на RadioShack.com, поставляются с гарантией производителя.Применимую информацию о гарантии обычно можно найти внутри коробки или упаковки. За дополнительной информацией о гарантии производителя на конкретный продукт обращайтесь непосредственно к производителю.

    На наши продукты под собственной торговой маркой RadioShack предоставляется 90-дневная или 1-летняя гарантия, в зависимости от продукта. Вы можете прочитать условия этих ограниченных гарантий ниже.

    Условия гарантии

    За исключением Калифорнии, RadioShack не дает никаких дополнительных гарантий, явных или подразумеваемых, в отношении любого продукта, произведенного сторонней организацией, кроме RadioShack.

    , ЗА ИСКЛЮЧЕНИЕМ ЗАКОНОДАТЕЛЬСТВ, ПОДРАЗУМЕВАЕМЫЕ ГАРАНТИИ КОММЕРЧЕСКОЙ ЦЕННОСТИ И ПРИГОДНОСТИ ДЛЯ ОПРЕДЕЛЕННОЙ ЦЕЛИ ОСОБЕННО ОТКАЗЫВАЮТСЯ: (1) ДЛЯ ВСЕХ ПРОДАЖ «КАК ЕСТЬ»; И (2) ПОСЛЕ ПРОИЗВОДСТВА: [A] истечения срока действия ЛЮБЫХ ПРИМЕНИМЫХ ЯВНЫХ ГАРАНТИЙ, ИЛИ [B] 90 ДНЕЙ С ДАТЫ ПОКУПКИ.

    RadioShack не несет ответственности за любые убытки или ущерб (включая косвенные, особые, случайные или косвенные убытки), прямо или косвенно вызванные продуктами, перечисленными в этой квитанции.В некоторых штатах не допускаются ограничения подразумеваемых гарантий (например, гарантии товарной пригодности или пригодности для определенной цели) или исключение случайных или косвенных убытков, поэтому вышеуказанные ограничения или исключения могут не относиться к вам. Кроме того, у вас могут быть другие права, которые варьируются от штата к штату.

    Продукты, которые были подвергнуты неправильному использованию (включая статический разряд), небрежному обращению, аварии или модификации, или которые были спаяны или изменены во время сборки и не могут быть протестированы, исключаются из любой гарантии RadioShack.com.

    Продукты, которые мы продаем, не авторизованы для использования в качестве критических компонентов в устройствах, имплантируемых человеку, или устройствах или системах жизнеобеспечения. Критическим компонентом является любой компонент имплантируемого человеку устройства, устройства или системы жизнеобеспечения, отказ от работы которых, как можно разумно ожидать, вызовет отказ имплантата, устройства или системы жизнеобеспечения или повлияет на их безопасность или эффективность.

    На многие другие продукты, предлагаемые на этом веб-сайте, распространяется гарантия производителя.Копия конкретной гарантии, если она предлагается гарантом, будет доступна для проверки перед продажей по специальному запросу по нашему каталожному номеру.

    Мы поставляем множество продуктов, соответствующих военным спецификациям производителя. Мы не отслеживаем эти продукты; поэтому мы поставляем их только как коммерческие детали.

    Информация для международных клиентов или клиентов, путешествующих за границу: продуктов, приобретенных на RadioShack.com или через наши розничные точки в США не подлежат возврату для гарантийного обслуживания ни в одном из наших международных представительств.

    90-дневная ограниченная гарантия

    RadioShack Online OpCo LLC (далее «RadioShack») гарантирует отсутствие в этом продукте дефектов материалов и изготовления при нормальном использовании первоначальным покупателем в течение девяноста (90) дней с даты покупки в магазине RadioShack.com, принадлежащем RadioShack. , или авторизованный франчайзи или дилер RadioShack.RADIOSHACK НЕ ДАЕТ НИКАКИХ ДРУГИХ ЯВНЫХ ГАРАНТИЙ.

    Данная гарантия не распространяется на: (a) повреждение или отказ, вызванный или связанный с неправильным обращением, неправильным использованием, несоблюдением инструкций, неправильной установкой или обслуживанием, переделкой, аварией, стихийными бедствиями (такими как наводнения или молнии) или превышением напряжения или текущий; (б) ненадлежащим или неправильно выполненным ремонтом лицами, не авторизованными сервисным центром RadioShack; (c) расходные материалы, такие как предохранители или батареи; (d) обычный износ или косметическое повреждение; (e) расходы на транспортировку, доставку или страхование; (f) затраты на снятие, установку, настройку, настройку или переустановку продукта; и (g) претензии лиц, не являющихся первоначальным покупателем.

    В случае возникновения проблемы, на которую распространяется данная гарантия, доставьте продукт и товарный чек RadioShack в качестве доказательства даты покупки в место первоначальной покупки или посетите сайт www.radioshack.com/warranty. RadioShack по своему усмотрению, если иное не предусмотрено законом (а) заменит продукт таким же или сопоставимым продуктом, или (б) вернет покупную цену. Все замененные продукты и продукты, за которые производится возврат, становятся собственностью RadioShack.

    RADIOSHACK ЯВНО ОТКАЗЫВАЕТСЯ ОТ ВСЕХ ГАРАНТИЙ И УСЛОВИЙ, НЕ УКАЗАННЫХ В ДАННОЙ ОГРАНИЧЕННОЙ ГАРАНТИИ.ЛЮБЫЕ ПОДРАЗУМЕВАЕМЫЕ ГАРАНТИИ, КОТОРЫЕ МОГУТ БЫТЬ НАЛОЖЕННЫМ ЗАКОНОДАТЕЛЬСТВОМ, ВКЛЮЧАЯ ПОДРАЗУМЕВАЕМУЮ ГАРАНТИЮ КОММЕРЧЕСКОЙ ЦЕННОСТИ И, ЕСЛИ ПРИМЕНИМО, ПОДРАЗУМЕВАЕМУЮ ГАРАНТИЮ ПРИГОДНОСТИ ДЛЯ КОНКРЕТНОЙ ЦЕЛИ, ДЕЙСТВУЮТ ПО ДЕЙСТВУЮЩЕЙ ГАРАНТИИ.

    , ЗА ИСКЛЮЧЕНИЕМ УКАЗАННОГО ВЫШЕ, RADIOSHACK НЕ НЕСЕТ НИКАКОЙ ОТВЕТСТВЕННОСТИ ПЕРЕД ПОКУПАТЕЛЕМ ПРОДУКТА ИЛИ ЛЮБЫМ ЛИЦАМ ИЛИ ЛИЦОМ В ОТНОШЕНИИ ЛЮБОЙ ОТВЕТСТВЕННОСТИ, ПОТЕРЯ ИЛИ УЩЕРБ, ВЫЗВАННЫЕ НАПРЯМУЮ ИЛИ НЕПОСРЕДСТВЕННЫМ ИСПОЛЬЗОВАНИЕМ ПРОДУКТА. НАРУШЕНИЕ ДАННОЙ ГАРАНТИИ, ВКЛЮЧАЯ, НО НЕ ОГРАНИЧИВАЯСЬ, ЛЮБЫЕ УБЫТКИ, ВЫЗВАННЫЕ НЕУДОБСТВАМИ И ЛЮБЫМИ УБЫТКАМИ ВРЕМЕНИ, ДАННЫХ, ИМУЩЕСТВА, ДОХОДА ИЛИ ПРИБЫЛИ И ЛЮБЫЕ КОСВЕННЫЕ, СПЕЦИАЛЬНЫЕ, СЛУЧАЙНЫЕ ИЛИ КОСВЕННЫЕ УБЫТКИ, ДАЖЕ ЕСЛИ ВОЗМОЖНОСТЬ ТАКИХ УБЫТКОВ.

    В некоторых штатах не допускается ограничение срока действия подразумеваемой гарантии, а также исключение или ограничение случайных или косвенных убытков, поэтому указанные выше ограничения или исключения могут к вам не относиться. Эта гарантия дает вам определенные юридические права, и вы также можете иметь другие права, которые варьируются от штата к штату.

    Вы можете связаться с RadioShack по телефону:

    Служба поддержки клиентов RadioShack
    900 Terminal Rd # 244
    Fort Worth, TX 76106 USA
    www.radioshack.com
    1-800-THE-SHACK

    Обновлено 21.01.

    Ограниченная гарантия на 1 год

    RadioShack Online OpCo LLC (далее «RadioShack») гарантирует отсутствие в этом продукте дефектов материалов и изготовления при нормальном использовании первоначальным покупателем на один (1) год с даты покупки в магазине RadioShack.com, принадлежащем RadioShack. , или авторизованный франчайзи или дилер RadioShack. RADIOSHACK НЕ ДАЕТ НИКАКИХ ДРУГИХ ЯВНЫХ ГАРАНТИЙ.

    Данная гарантия не распространяется на: (a) повреждение или отказ, вызванный или связанный с неправильным обращением, неправильным использованием, несоблюдением инструкций, неправильной установкой или обслуживанием, переделкой, аварией, стихийными бедствиями (такими как наводнения или молнии) или превышением напряжения или текущий; (б) ненадлежащим или неправильно выполненным ремонтом лицами, не авторизованными сервисным центром RadioShack; (c) расходные материалы, такие как предохранители или батареи; (d) обычный износ или косметическое повреждение; (e) расходы на транспортировку, доставку или страхование; (f) затраты на снятие, установку, настройку, настройку или переустановку продукта; и (g) претензии лиц, не являющихся первоначальным покупателем.

    В случае возникновения проблемы, на которую распространяется данная гарантия, доставьте продукт и товарный чек RadioShack в качестве доказательства даты покупки в место первоначальной покупки или посетите сайт www.radioshack.com/warranty. RadioShack по своему усмотрению, если иное не предусмотрено законом (а) заменит продукт таким же или сопоставимым продуктом, или (б) вернет покупную цену. Все замененные продукты и продукты, за которые производится возврат, становятся собственностью RadioShack.

    RADIOSHACK ЯВНО ОТКАЗЫВАЕТСЯ ОТ ВСЕХ ГАРАНТИЙ И УСЛОВИЙ, НЕ УКАЗАННЫХ В ДАННОЙ ОГРАНИЧЕННОЙ ГАРАНТИИ.ЛЮБЫЕ ПОДРАЗУМЕВАЕМЫЕ ГАРАНТИИ, КОТОРЫЕ МОГУТ БЫТЬ НАЛОЖЕННЫМ ЗАКОНОДАТЕЛЬСТВОМ, ВКЛЮЧАЯ ПОДРАЗУМЕВАЕМУЮ ГАРАНТИЮ КОММЕРЧЕСКОЙ ЦЕННОСТИ И, ЕСЛИ ПРИМЕНИМО, ПОДРАЗУМЕВАЕМУЮ ГАРАНТИЮ ПРИГОДНОСТИ ДЛЯ КОНКРЕТНОЙ ЦЕЛИ, ДЕЙСТВУЮТ ПО ДЕЙСТВУЮЩЕЙ ГАРАНТИИ.

    , ЗА ИСКЛЮЧЕНИЕМ УКАЗАННОГО ВЫШЕ, RADIOSHACK НЕ НЕСЕТ НИКАКОЙ ОТВЕТСТВЕННОСТИ ПЕРЕД ПОКУПАТЕЛЕМ ПРОДУКТА ИЛИ ЛЮБЫМ ЛИЦАМ ИЛИ ЛИЦОМ В ОТНОШЕНИИ ЛЮБОЙ ОТВЕТСТВЕННОСТИ, ПОТЕРЯ ИЛИ УЩЕРБ, ВЫЗВАННЫЕ НАПРЯМУЮ ИЛИ НЕПОСРЕДСТВЕННЫМ ИСПОЛЬЗОВАНИЕМ ПРОДУКТА. НАРУШЕНИЕ ДАННОЙ ГАРАНТИИ, ВКЛЮЧАЯ, НО НЕ ОГРАНИЧИВАЯСЬ, ЛЮБЫЕ УБЫТКИ, ВЫЗВАННЫЕ НЕУДОБСТВАМИ И ЛЮБЫМИ УБЫТКАМИ ВРЕМЕНИ, ДАННЫХ, ИМУЩЕСТВА, ДОХОДА ИЛИ ПРИБЫЛИ И ЛЮБЫЕ КОСВЕННЫЕ, СПЕЦИАЛЬНЫЕ, СЛУЧАЙНЫЕ ИЛИ КОСВЕННЫЕ УБЫТКИ, ДАЖЕ ЕСЛИ ВОЗМОЖНОСТЬ ТАКИХ УБЫТКОВ.

    В некоторых штатах не допускается ограничение срока действия подразумеваемой гарантии, а также исключение или ограничение случайных или косвенных убытков, поэтому указанные выше ограничения или исключения могут к вам не относиться. Эта гарантия дает вам определенные юридические права, и вы также можете иметь другие права, которые варьируются от штата к штату.

    Вы можете связаться с RadioShack по телефону:

    Служба поддержки клиентов RadioShack
    900 Terminal Rd # 244
    Fort Worth, TX 76106 USA
    www.radioshack.com
    1-800-THE-SHACK

    Обновлено 21.01.

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *