Для чего нужен трансформатор тока нулевой последовательности – Токовая защита нулевой последовательности: принцип действия и применение

Содержание

Токовая защита нулевой последовательности: принцип действия и применение

В высоковольтных сетях из-за каких-либо повреждений может нарушаться нормальная работа электроустановок. Достаточно частое повреждение – замыкание на землю, при котором возникает угроза как человеческой жизни за счет растекания потенциала, так и оборудованию за счет нарушения симметрии в сети. Чтобы предотвратить возможные последствия от таких повреждений на подстанциях и в других устройствах применяют токовую защиту нулевой последовательности (ТЗНП).

Что такое нулевая последовательность?

Преимущественное большинство сетей получают  питание по трехфазной системе. Которая характеризуется тем, что напряжение каждой фазы смещено на 120º.

Рис. 1. Форма напряжения в трехфазной сети

Как видите из рисунка 1 на диаграмме б) показана работа сбалансированной симметричной системы. При этом если выполнить геометрическое сложение представленных векторов, то в нулевой точке результат сложения будет равен нулю. Это означает, что в системах 110, 10 и 6 кВ,  для которых характерно заземление нейтралей трансформаторов, при нормальных условиях работы, какой-либо ток в нейтрали будет отсутствовать.

Также следует отметить, что геометрически смена фаз может подразделяется на такие виды:

  • прямой последовательности, при которой их чередование выглядит как A – B – C;
  • обратной последовательности, при которой чередование будет C – B – A;
  • и вариант нулевой последовательности, соответствующий отсутствию угла сдвига.

Для первых двух вариантов угол сдвига будет составлять 120º.

Рис. 2. Прямая, обратная и нулевая последовательность

Посмотрите на рисунок 2, здесь нулевая последовательность, в отличии от двух других, показывает, что векторы имеют одно и то же направление, но их смещение в пространстве между собой равно 0º. Подобная ситуация происходит при однофазном кз, при этом токи двух оставшихся фаз устремляются в нулевую точку. Также эту ситуацию можно наблюдать и при междуфазных кз, когда две из них, помимо нахлеста, попадают еще и на землю, а в нуле будет протекать ток лишь одной фазы.

При возникновении трехфазных кз в нейтрали обмоток ток не будет протекать, несмотря на аварию. Потому что токи и напряжения нулевой последовательности по-прежнему будут отсутствовать. Несмотря на то, что фазные напряжения и токи в этой ситуации могут в разы возрасти, в сравнении с номинальными.

Принцип работы ТЗНП

Практически все релейные защиты, действие которых отстраивается от появления токов  нулевой последовательности, имеют схожий принцип. Рассмотрите вариант такой схемы, демонстрирующей действие защиты.

Принципиальная схема простейшей ТЗНП

Здесь представлен вариант включения  реле тока Т, которое подключается ко вторичным обмоткам трансформаторов тока (ТТ), собранных в звезду. В данной ситуации нулевой провод от звезды обмоток трансформаторов отфильтровывает составляющие нулевой последовательности, в случае их возникновения.  При условии, что система работает симметрично, обмотки реле Т будут обесточенными. А при условии, что в одной из фаз произойдет замыкание на землю, ТТ отреагирует на это, из-за чего по нулевому проводу потечет ток. Это и будет та самая составляющая нулевой последовательности, из-за которой произойдет возбуждение обмотки реле Т.

После чего происходит выдержка времени, определяемая параметрами реле В. При истечении установленного промежутка времени токовая защита посылает сигнал на соответствующую коммутационную установку У. Которая и производит отключение трехфазной сети. Более сложные варианты схемы могут включать и реле мощности, которое позволяет отлаживать работу защиты по направлению.

В случае междуфазных повреждений симметрия не нарушиться, а лишь измениться  величина токов. А ТТ будут продолжать компенсировать токи, стекающиеся в нулевой провод. Преимущество такой схемы заключается в том, что при максимальных рабочих токах, все равно не будет срабатывать защита, поскольку будет сохраняться симметрия.

Но при существенном отличии в магнитных параметрах измерительных трансформаторов, произойдет дисбаланс в системе, и по нулевому проводнику будет протекать ток небаланса. Что может обуславливать ложные срабатывания токовой защиты даже в тех сетях, где соблюдается номинальный режим питания.

Правила подборки трансформаторов тока.

С целью снижения небаланса, влияющего на правильность срабатывания токовой защиты, подбирают такие ТТ, у которых вторичные токи не создадут перетоков. Для чего они должны соответствовать таким требованиям:

  • Обладать идентичными кривыми гистерезиса;
  • Одинаковая нагрузка вторичных цепей;
  • Погрешность на границе участков сети не должна превышать 10%.

К их вторичным цепям запрещено подключать еще какую-либо нагрузку, приводящую к искажению кривой намагничивания хотя бы в одном ТТ. Поэтому на практике при возникновении токов срабатывания от симметричной системы рекомендуют подвергать замене не один и не два, а все три трансформатора одновременно.

Область применения

Токовая защита, способная отреагировать на появление нулевой последовательности, нашла достаточно широкое применение  в линиях с заземленной нейтралью. Так как в них  токи коротких замыканий достигают наибольших величин. А вот при изолированной нейтрали ее установка нецелесообразна, поэтому ТЗНП в них не используют. Сегодня установки ТЗНП находят широкое применение:

  • на шинах районных подстанций для защиты силового оборудования;
  • в распределительных устройствах трансформаторных, переключающих и комплектных подстанций;
  • в токовых цепях крупных промышленных объектов с трехфазным силовым оборудованием.

Выбор уставок для ТЗНП

Для обеспечения ступенчатого принципа вывода линии, токовая защита, контролирующая появление нулевой последовательности в цепях, должна соответствовать селективности срабатывания. Здесь под селективностью понимается последовательное отключение определенных участков цепи, в зависимости от их значимости, с целью определения места повреждения или выделения поврежденного промежутка. Для этого выбираются соответствующие уставки срабатывания по времени для защиты. Рассмотрите пример выбора уставок на такой схеме.

Пример выбора уставок

Как видите, ТЗНП в данном случае отстраивается по тому же принципу, что и максимальная токовая защита, но с меньшей величиной выдержки времени. В этом примере каждая последующая ступень защиты выдерживает временную задержку на промежуток Δt больше, чем предыдущая. То есть время срабатывания первой токовой отсечки, в сравнении со второй будет рассчитываться по формуле: t1 = t2+ Δt. А время срабатывания второй по отношению к третей будет составлять t2 = t3+ Δt. Таким образом каждое последующее реле выполняет функцию резервной защиты.

Если обмотки преобразовательных устройств включаются по системе звезда – треугольник, а также звезда – звезда, ТЗНП первичных и вторичных цепей не совпадают. Из-за того, что замыкание в линиях высокого напряжения не обязательно вызовет появление составляющих нулевой последовательности в низких обмотках и питаемой ими цепи. Так как селективность ТЗНП для каждой  из них должна выстраиваться независимо, на практике должна обеспечиваться их независимая работа.

Такая система ступенчатых защит позволяет минимизировать дальнейший переход повреждения на другие участки сети и силовое оборудование. А также помогает вывести из-под угрозы персонал, обслуживающий эти устройства. Главное требование к токовой защите – предотвращение ложных коммутаций по отношению к соответствующей зоне срабатывания.

Практическая реализация ТЗНП

Сегодня токовая защита, реагирующая на возникновение нулевой последовательности, может реализовываться микропроцессорными установками и посредством реле. В большинстве случаев устаревшие реле повсеместно заменяются на более новые версии токовой защиты. Но, помимо ТЗНП настраиваются в работу дистанционные, дифференциальные защиты и прочие устройства. Чья работа основывается как на симметричных составляющих, так и на других параметрах сети.

Помимо этого, в своем  классическом исполнении ТЗНП не имеет возможности определять место повреждения. То есть для нее не имеет значение, в каком месте произошел обрыв. Поэтому для определения направления, в котором ток протекает по направлению к земле, применяют направленную защиту. Такая система отстраивается не только на токах, а и на напряжении, возникающем от нулевой последовательности. Данные величины подаются с трансформаторов напряжения, включенных по системе разомкнутого треугольника.

Схема работы направленной защиты

При замыкании в зоне резервирования токовой защиты к одной из обмоток реле мощности поступает напряжение, а на вторую обмотку поступает ток нулевой последовательности, используемый для токовой защиты. При условии, что вектор мощности направлен в линию, реле мощности разблокирует срабатывание токовой защиты. В противном случае, когда направление мощности указывает, что неисправность произошла на другом участке, реле мощности продолжит блокировать срабатывание токовой защиты.

Сегодня практическая реализация такой защиты выполняется посредством микропроцессорных блоков REL650  или на реле ЭПЗ-1636. Каждый, из которых уже включает в себя и токовую отсечку, и дистанционную защиту, и  пусковое реле для возобновления питания.

Видео в дополнение к написанному

www.asutpp.ru

Токовая защита нулевой последовательности: принцип действия и назначение

Наиболее частой неисправностью в трёхфазной сети является замыкание на землю. Межфазные замыкания встречаются реже. В сетях 110 кВ от однофазных замыканий на землю используется токовая защита нулевой последовательности, сокращенно ТЗНП. В этой статье мы рассмотрим её устройство, принцип действия и назначение.

Что такое нулевая последовательность

Для того чтобы разобраться как работает ТЗНП, сначала нужно вспомнить что такое трехфазная сеть. Трехфазная сеть — это сеть переменного синусоидального тока. В трёхфазной цепи фазы сдвинуты друг относительно друга на 120 градусов. Вот так это выглядит на графике:

Интересно! Основные идеи и положения трехфазных сетей электроснабжения были разработаны Михаилом Осиповичем Доливо-Добровольским. Он разработал трёхфазный асинхронный двигатель с КЗ ротором типа беличья клетка, с фазным ротором и пусковым реостатом, искрогасительную решетку, фазометр, стрелочный частотомер.

Если изобразить это на векторной диаграмме, то изображение будет напоминать трехлучевую звезду. При условии равенства токов и напряжений между фазами такая система будет называться симметричной. Геометрическая сумма этих векторов равна нулю.

Важно! Различают прямую и обратную последовательность чередования фаз. Фазы обозначаются буквами A, B и C. Тогда последовательность A B C — прямая, C B A — обратная. При этом угол сдвига фаз в обоих случаях составляет 120 градусов. При нулевой последовательности вектора всех фаз направлены в одном направлении, соответственно результирующий вектор значительно превышает таковой (в 3 раза, по сравнению с нулевой последовательностью) в нормальном состоянии системы.

В случае межфазного замыкания токи во всех фазах возрастут, система все равно останется симметричной. А напряжения и токи нулевой последовательности равны нулю, как и в нормальном состоянии цепи.

В результате однофазного замыкания на землю система станет несимметричной и будут наблюдаться токи нулевой последовательности I0 и U0. Допустим замкнула фаза C, тогда токи фаз A и B устремятся к нулю, а в фазе C к трети от Iкз.

Тогда:

I0=1/3(Ik+0+0)

Отсюда Iк=I0*3. Эти токи возникают под воздействием напряжения КЗ или Uк0 между выводом обмотки трансформатора или генератора и точкой, в которой произошло замыкание.

Область применения на практике

Теоретическая часть без предварительной подготовки воспринимается достаточно сложно, поэтом перейдем к практике и ответим на вопрос, где применяется ТЗНП.

Как уже было сказано токовая защита нулевой последовательности используется в ВВ сетях напряжением 110 кВ с заземленной нейтралью. В сетях среднего напряжения 6, 10 кВ и больше с изолированной нейтралью не используется. Это связано с тем, что в сетях с заземленной нейтралью токи КЗ на землю очень большие.

Важно! Так как ТЗНП защищает от КЗ на землю, ее иногда называют земляной защитой (ЗЗ).

Как это работает

Принцип работы ТЗНП заключается в отключении коммутационной аппаратуры в случае однофазных замыканий с определенной выдержкой времени. Задержка времени нужна для организации селективности защит на разных трансформаторных подстанциях.

Пример схемы токовой защиты нулевой последовательности изображен на рисунке ниже:

В ней используется токовое реле КА и реле мощности KW. Для контроля тока по фазам в ТЗНП используются трансформаторы тока (ТТ). Это специальные измерительные трансформаторы надеваются на шину или провод. На его обмотках наводится ЭДС пропорциональное току, протекающему через жилу или шину.

Одним из главных условий корректной работы ТЗНП является то, чтобы у ТТ были одинаковые кривые намагничивания. Это значит, что они должны быть не просто одинаковы по входным и выходным характеристикам, но и быть одной марки. Кроме того, стоит отметить, что погрешности их выходных параметров не должны быть больше 10 процентов. Их вы видите на картинке ниже.

Чтобы получить токи выведенной из баланса системы сигнал пропускают через фильтр. В реальном применении соединяют обмотки трансформаторов между собой. Это называют фильтром токов нулевой последовательности.

В нормальном состоянии электросети токи нулевой последовательности равны нулю, соответственно Iвыходные фильтра ТЗНП тоже равны нулю. В аварийном режиме, при КЗ, выходной ток отличен от нуля. Остальные части ТЗПН настраиваются таким образом, чтобы исключить ложные срабатывания под определенный ток КЗ.

Если ранее токовая защита нулевой последовательности представляла собой релейные схемы, то в настоящее время выпускаются микропроцессорные терминалы для защитных цепей. То есть, современная ТЗНП может выполняться на микроконтроллерных схемах.

Рассмотренная система используется в качестве резервной защиты. Благодаря её свойствам можно достичь селективность срабатывания, где РЗиА каждой последующей ТП срабатывает быстрее, чем на предыдущей. Защита нужна чтобы минимизировать дальнейшие повреждения ЛЭП, трансформаторов, генераторов, а также, чтобы обезопасить окружающую среду и людей, которые могут попасть в опасную зону.

Напоследок рекомендуем просмотреть полезное видео по теме статьи:

Теперь вы знаете, что такое токовая защита нулевой последовательности, как она работает и для чего нужна. Если возникли вопросы, обязательно задавайте их в комментариях под статьей!

Материалы по теме:

samelectrik.ru

10 Контроль изоляции. Трансформатор тока нулевой последовательности

Контроль изоляции обязателен к применению в электрических сетях изолированных от земли, т.к. от электроустановок работающих в режиме изолированной нейтрали требуется повышенная надежность энергоснабжения и по условиям электропоражения они относятся к числу с повышенной опасностью. 

В сетях с изолированной нейтралью и с компенсацией емкостных токов возможна работа сети при наличии замыкания на землю. Однако длительная работа сети с повышенным напряжением на неповрежденных фазах увеличивает вероятность аварии, а обрыв и падение проводов на землю создает опасность для людей. Поэтому отыскание и устранение замыкания фазы на землю производятся как можно быстрее. Простые сигнальные устройства при замыкании на землю в сети не могут определить место замыкания фазы на землю, поскольку все участки сети электрически связаны между собой через шины подстанций.

Для определения электрической цепи с замыканием на землю применяются устройства избирательной сигнализации УСЗ. Эти устройства содержат, как правило, фильтр высших гармоник и стрелочный прибор.

Устройство сигнализации устанавливают на щите управления подстанции или в коридоре распределительного устройства б—10 кВ и подводят к нему цепи трансформаторов тока нулевой последовательности (ТТНП) кабельных линий.

Трансформатор нулевой последовательности был разработан с целью контроля тока утечки в результате разрушения изоляции электроустановки, а также для применения в устройствах защитного отключения. Принцип действия трансформаторов нулевой последовательности основан на обнаружении токов нулевой последовательности или небаланса в нейтрали. При замыкании одной из фаз фиксируется превышение допустимого значения суммы фазных токов, позволяя осуществить своевременное отключение.

При появлении в сети устойчивого замыкания на землю оперативный персонал подстанции измеряет последовательно по всем присоединениям токи высших гармоник и выделяет то присоединение, где ток наибольший.

После определения поврежденного присоединения принимаются меры по отысканию и устранению места замыкания на землю. Устройства УСЗ позволяют определять поврежденное присоединение вручную.

11 Принцип действия электромеханических реле, понятие коэффициента возврата

Электромеханические реле – наиболее распространенный вид электрических реле. К ним относятся электромагнитные, магнитоэлектрические, индукционные, электротепловые, пьезоэлектрические, электро- и ферродинамические, магнитострикционные, вибрационные, электретные реле и ряд других.

Простейшее электромагнитное реле с одним замыкающим контактным узлом:

1 — обмотка; 2 — ярмо; 3 — изоляционная планка; 4, 11 — упоры; 5, 6 — контактные пружины; 7,8 — контакт-детали; 9 — толкатель; 10 — якорь; 12 — сердечник

На рисунке реле изображено при нулевом значении входной величины X — тока Iвхв обмотке 1. Когда входной ток Iвхначинает увеличиваться, при определенном его значении якорь 10 отходит от упора 11 и притягивается к сердечнику 12. В процессе движения якоря его верхний конец, действуя через толкатель 9, выгибает плоскую контактную пружину 6 вверх до соприкосновения ее контакт-детали 8 с контакт-деталью 7 пружины 5, которая затем отходит вверх до упора 4. В результате по выходной цепи после окончания переходного процесса начинает протекать ток Iвых, представляющий собой выходную величину Y. При дальнейшем увеличении входного тока выходной ток практически не изменяется. Когда же входной ток начинает уменьшаться, при некотором его значении механическая сила изогнутых пружин преодолевает электромагнитную силу притяжения якоря к сердечнику. В результате контакт-детали размыкаются и выходная цепь обесточивается.

Возврат электрического реле – это переход реле в исходное состояние, в котором оно находилось до срабатывания.

Значение параметра срабатывания (возврата) электромеханического реле Хср(Хв) определяется значением входной воздействующей или характеристической величины, при котором реле соответственно срабатывает или возвращается при заданных условиях. Отношение значения параметра возврата к значению параметра срабатывания называется коэффициентом возврата. К1 — Для максимальных реле К1< 1; для минимальных К2 > 1. Чем ближе к единице значение коэффициента возврата, тем в более узких пределах реле будет осуществлять контроль входного параметра.

studfile.net

Напряжение нулевой последовательности (3Uo): схемы, применение, смысл

Система трехфазных напряжений в нормальном режиме работы является симметричной. Но, стоит произойти короткому замыканию, как симметрия нарушается. Для удобства распознавания видов КЗ и проведения расчетов применяется метод симметричных составляющих. Согласно ему любую трехфазную систему с момента КЗ можно, для удобства расчетов, представить в виде суммы напряжений трех симметричных систем:

  • прямой последовательности;
  • обратной последовательности;
  • нулевой последовательности.

Все они являются мнимыми величинами, не существующими на самом деле. Но с помощью некоторых ухищрений их можно сделать реально осязаемыми, и применить на практике.

Устройства, выделяющие из системы трехфазных напряжений напряжение нужной последовательности, называют фильтрами. Рассмотрим одно из таких устройств, применяемое на практике для фиксации замыканий на землю.

Назначение дополнительных обмоток ТН

Особенностью напряжения нулевой последовательности (3Uo) является тот факт, что оно не появляется в результате междуфазных замыканий, а является только следствием КЗ на землю. Причем, не важно, где происходит замыкание: в электроустановке с изолированной или глухозаземленной нейтралью.

Фильтром для выделения этой величины являются специальные обмотки трансформаторов напряжения (ТН).

Этот процесс происходит по-разному в зависимости от конструкции трансформаторов. Если используются три одинаковых ТН, у каждого из них имеется специальная обмотка, выводы которой обозначены буквами «Ад» и «Хд». Эти обмотки соединяются между собой последовательно, с обязательным соблюдением направления. Провод от вывода «Хд» фазы «А» идет на вывод «Ад» фазы «В» и так далее. Такая схема включения называется разомкнутым треугольником.

В итоге на оставшихся разомкнутыми выводах «Ад» первой фазы и «Хд» последней в любого случае повреждения в сети, связанного с замыканием на землю, появится 3Uo. Можно его измерить, а также использовать для работы сигнализации, подключив к обмотке реле напряжения. Можно использовать и для работы защит, но об этом – немного позднее.

В трансформаторах напряжения, объединяющих обмотки трех фаз в одном корпусе, не требуется выполнять внешние соединения для фильтра 3Uo. Все уже выполнено заранее, внутри корпуса трансформатора.

Если в предыдущем случае выделение 3Uo происходит путем последовательного сложения векторов напряжений за счет коммутации проводников, то внутри трехфазного ТН это происходит за счет сложения магнитных потоков в сердечнике. Поэтому, в зависимости от его формы, внутренняя схема соединений обмоток Ад-Хд может отличаться.

Но сути это не меняет: в итоге на корпусе рядом с выводами основных обмоток, использующихся для учета, измерения и защиты, появляется выводы от объединенной дополнительной обмотки 3Uo. Обозначается она точно так же, как и на однофазных ТН.

Интересное видео о ТЗНП смотрите ниже:

Сигнализация о замыкании на землю

В сетях 6-10 кВ, где нейтраль изолирована, работа с «землей» возможна некоторое время. Но замыкание нужно активно искать. И чем раньше начнется поиск, тем лучше.

Для контроля изоляции используются вольтметры, подключенные к обмоткам ТН на фазные напряжения.

В сети без повреждений все они показывают одинаковую величину. Стоит случиться однофазному замыканию, как показания вольтметра поврежденной фазы снизятся. Вольтметр покажет ноль при полном устойчивом КЗ. Так определяется фаза с повреждением.

Но, чтобы взглянуть на вольтметры, нужно сгенерировать предупредительный сигнал.

Для этого используется контроль величины 3Uo с помощью реле.

При его срабатывании зажигается табло, привлекающее к себе внимание.

Величину 3Uo принято регистрировать с помощью самопишущих приборов, а также она обязательно записывается аварийными осциллографами или микропроцессорными терминалами в момент любой аварии, даже не связанной с замыканиями на землю.

Еще один пример применения сигнализации, работающей от 3Uo, связан с эксплуатацией установок компенсации емкостных токов.

Отключать разъединитель дугогасящей катушки запрещено при наличии «земли» в сети. Для этого рядом с коммутационным устройством устанавливается индикаторная лампа, либо блок-замок рукоятки блокируется при наличии 3Uo системой автоматики.

Использование 3Uo в составе защит

В сетях с изолированной нейтралью совместное использование напряжений и токов нулевой последовательности позволяет определить направление на точку короткого замыкания. Но в настоящее время существуют более эффективные методы точного определения места повреждения в этих сетях.

Гораздо большую пользу подобная схема приносит в сетях в глухозаземленной нейтралью (ЛЭП-110 кВ и выше).

Подключение напряжения 3Uo (нулевой последовательности) и тока 3Io к обмоткам реле направления мощности позволяет определить, произошло ли однофазное КЗ в линии или вне ее. Так обеспечивается селективность работы защиты от однофазных замыканий на землю.

pue8.ru

Защита нулевой последовательности (ТЗНП): токи, принцип действия, схемы

Одним из устройств, применяемых для защиты ЛЭП с напряжением 110 кВ, является токовая направленная защита нулевой последовательности (сокращенно – ТНЗНП).

Эти линии электропередач выполняются с эффективно заземленной нейтралью. В отличие от сетей 6-35кВ, у которых нейтраль изолирована, токи замыкания на землю достаточно большие, что вызывает необходимость фиксировать их и отключать с минимально возможной выдержкой времени. Но для этого нужно не просто определить факт наличия в системе замыкания на землю, но и найти линию, на которой оно произошло. Для этого такие защиты и делаются направленными.

Токи нулевой последовательности

Систему трехфазных токов и напряжений можно представить в виде векторной диаграммы, где векторы этих токов (напряжений) в нормальном режиме сдвинуты друг относительно друга в пространстве на одинаковый угол, равный 120 градусов. При этом полученная диаграмма является еще и вращающейся относительно условного наблюдателя: сначала мимо него проходит вектора фазы «А», затем «В», потом «С». И так – по кругу. Эту диаграмму принято называть системой токов (напряжений) прямой последовательности.

Если поменять порядок прохождения векторов с А-В-С на С-В-А, получается обратная последовательность. В обоих случаях неизменным остается одно: между векторами разных фаз сохраняется угол в 120 градусов.

Ток или напряжение нулевой последовательности получается, если все эти векторы сложить между собой. Для этого, если вспомнить геометрию, нужно начало второго вектора совместить с концом первого, затем так же добавить к нему третий. Поскольку угол между ними остается равным 120 градусов, то получим равносторонний треугольник, система замкнется. Результирующий вектор, определяющий сумму всех слагаемых, будет равен нулю. Он должен быть проведен от начала первого суммируемого вектора к концу последнего.

Но так будет только при отсутствии в системе замыканий на землю. При междуфазных КЗ увеличиваются векторы токов одновременно в двух фазах, а то и во всех трех. Сложение их между собой даст все тот же ноль. Поэтому такие КЗ еще называют симметричными.

Интересное видео о работе ТЗНП смотрите ниже:

Защита на токах нулевой последовательности

Но при наличии замыкания на землю нулевая последовательность токов выходит из равновесия. Появляется результирующий ток, на который и реагирует релейная защита.

В системах с изолированной нейтралью для выделения этих токов используется специальный трансформатор, надеваемый на кабель.

На ЛЭП — 110 кВ это выполнить невозможно и токи замыкания на землю определяются по другому принципу. Для этого на обычных трансформаторах тока, использующихся для релейной защиты, выделяется отдельная обмотка на каждой фазе. Обмотки фаз соединяются между собой последовательно особым способом: начало следующей соединяется с концом предыдущей. В эту же цепь включаются и токовые обмотки реле.

Обычно защищаемый участок разделяется на участки (зоны), примерно, как у дистанционной защиты. Сама защита выполняется многоступенчатой. Ток срабатывания первой ступени максимальный, выдержка времени – минимальна или равна нулю. Следующая ступень срабатывает при меньшем токе, но с большей выдержкой по времени. И так далее.

На другом конце линии установлена такая же защита. А линий может быть много. Наличие ступеней позволяет обеспечить отключение именно участка с повреждением, а также – резервировать другие защиты в случае их отказа.

Напряжение нулевой последовательности

Имея в наличии только информацию о токах нулевой последовательности, невозможно определить, где произошло КЗ: в самой линии, или «за спиной». В противоположном от линии конце находится либо распределительное устройство с другими подключенными к нему ЛЭП, либо трансформаторы. У них есть своя собственная защита, которая лучше разберется в ситуации.

Для того, чтобы определить направление на замыкание на землю, потребуется информация о напряжении нулевой последовательности. Оно берется с особых обмоток трансформаторов напряжения, соединенных в разомкнутый треугольник.

Это тоже векторная сумма, но не токов, а фазных напряжений. Она равна нулю в нормальном режиме и при симметричных КЗ, но при однофазных КЗ имеет определенную величину.

Далее в дело вступает реле направления мощности. На одну его обмотку подается напряжение нулевой последовательности, а на другую – ток, использующийся для работы земляной защиты. Срабатывание происходит при таком угле между этими величинами, когда мощность КЗ направлена в линию. В других случаях, при КЗ «за спиной», отсутствие срабатывания этого реле блокирует работу защиты.

Токи небаланса

 Правильное сложение токов возможно только в случае полной идентичности характеристик трансформаторов тока. На этапе проектирования для защиты обязательно выбираются одинаковые обмотки трансформаторов с одинаковым классом точности, кратностью насыщения.

Кроме того, в цепи этих обмоток не должны быть включены другие устройства или приборы, нарушающие симметрию их нагрузки.

Но и этого может оказаться недостаточно. Если при всем при этом характеристики намагничивания оказываются разными, ток небаланса все-таки появляется. Если в нормальном режиме он не приводит к ложному срабатыванию защиты, то при симметричных КЗ, когда токи становятся в несколько раз большими, ток небаланса существенно возрастет.

Поэтому при замене трансформаторов тока, если не удается подобрать аналог для одного из них с полным соответствием вольт-амперных характеристик, то лучше сменить не один или два, а все три.

Реализация защит ТЗНП

Широко применялись еще с советских времен панели защит ЛЭП-110 кВ на базе электромеханических реле, например ЭПЗ-1636. В ее состав, кроме ТЗНП входит еще дистанционная защита и токовая отсечка.

Однако электромеханические реле эксплуатирующихся панелей давно выработали свой ресурс, а точечная их замена не всегда приводит к надежным результатам.

Поскольку со времен разработки данной релейной техники прогресс уже ушел далеко вперед, старое оборудование целиком меняется на панели или шкафы, включающие в себя микропроцессорные терминалы релейных защит.

pue8.ru

Схемы подключения ТТНП для параллельных кабелей

В данной статье речь пойдет о схемах подключения ТТНП для параллельных кабелей. Как оказалось, данный вопрос достаточно актуален, так как многие начинающие инженеры применяют для нескольких параллельно проложенных кабелей к одному потребителю один трансформатор тока нулевой последовательности (ТТНП).

На рис.1 показан один из примеров правильного и неправильного подключения ТТНП для параллельных кабелей.

Если защищаемая линия выполнена из нескольких параллельных ниток кабеля, на каждой из них устанавливается однокабельный ТТНП, вторичные обмотки которых соединяются параллельно или последовательно [Л1, с.54].

На рис.2 показаны схемы подключения вторичных обмоток ТТНП к терминалу защиты для параллельных кабелей.

Оптимальной является, как правило, схема соединения вторичных обмоток и реле тока (терминал защиты), обеспечивающая минимальный первичный ток срабатывания защиты Iс.з.мин. Значение Iс.з.мин. определяется техническими характеристиками реле тока и ТТНП и схемой соединения их вторичных обмоток. На практике же в основном отдается предпочтение параллельному соединению вторичных обмоток ТТНП.

Особенностью однокабельного ТТНП является небольшое значение тока небаланса в режимах без ОЗЗ. Это обусловлено практически симметричным расположением токоведущих жил кабеля по отношению ко вторичной обмотке ТТНП. Кроме того, при установке ТТНП на кабель с металлической оболочкой последняя выполняет функции выравнивающею экрана.

Поэтому основной причиной возникновения тока небаланса в однокабельном ТТНП является различие взаимоиндукции между фазными проводами, расположенными выше кабельной воронки, и вторичной обмоткой ТТНП [2]. Для уменьшения влияния электромагнитных полей фазных токов и соответственно тока небаланса ТТНП рекомендуется устанавливать на расстоянии не менее, чем 0,5 — 1 м от кабельной воронки [3]. Однако в серийных КРУ такое расположение ТТНП по отношению к кабельной воронке не всегда возможно.

При ОЗЗ в сети токи повреждения могут возвращаться как через землю, так и по проводящей оболочке и броне кабелей. Для предотвращения возможности ложных срабатываний защит на неповрежденных присоединениях от блуждающих токов в земле и снижения чувствительности защиты поврежденною присоединения при внутренних ОЗЗ защитное заземление оболочки и брони кабелей выполняется проводом, пропущенным через окно ТТНП и изолированным от заземленных конструкций на участке от кабельной воронки до трансформатора тока.

Учитывая, что во многих случаях (на ВЛ и КЛ небольшой протяженности) значения тока ОЗЗ могут составлять единицы и даже доли ампера, в токовых защитах нулевой последовательности, как правило, применяются реле тока с малыми значениями Iс.р.min например, электромагнитные реле типа РТ — 40/0,2, или специальные реле для защиты от ОЗЗ типа АЛ-4 или же используются отдельные токовые входа в микропроцессорном устройстве.

Литература:

  1. В.А.Шуин, А.В.Гусенков. Защиты от замыканий на землю в электрических сетях 6-10 кВ.
  2. Сирота И. М. Защита от замыканий на землю в электрических сетях. Киев: Изд-во АН УССР, 1955.
  3. Кискачи В. М. Защита от однофазных замыканий на землю ЗЗП-I (описание, наладка, эксплуатация). М.: Энерrия, 1972.

Поделиться в социальных сетях

raschet.info

Трансформатор тока нулевой последовательности

 

ОП ИСАНИНА

ИЗОБРЕТЕН ИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

Союз Советских

Социалистическнх

Республик ()748528 (61) Дополнительное к авт. свид-ву— (22) Заявлено 03.02.78 (21) 2579181/24-07 с присоединением заявки № —. (23) Приоритет— (51) М.-Кл 2

Н 01 F 40/10

Н 02 Н 3/16

Государственный комитет

СССР по делам иэобретеиий и открытий

Опубликовано 15.07.80. Бюллетень № 26

Дата опубликования описания 25.07.80 (53) УДК 621.314.

225 (088 8) (72) Автор изобретения

В. А. Гришин

Восточный научно-исследовательский институт по безопасности работ в горной промышленности (71) Заявитель (54) ТРАНСФОРМАТОР ТОКА НУЛЕВОЙ

ПОСЛЕДОВАТЕЛЬНОСТИ

— Щф »»» и» -»Й»»»» Ф»» »»»»» »»»

Изобретение относится к области электротехники, а конкретнее к трансформаторам тока и может быть использовано в устройствах защиты от утечек тока в разветвленных электрических сетях напряжением до

1000 В с изолированной или заземленной нейтралью трансформатора, например, на угольных шахтах, углеобогатительных фабриках и карьерах, а также в бытовых помещениях.

Известен трансформатор тока нулевой последовательности, первичной обмоткой которого являются провода трех фаз защищаемого присоединения. Принцип действия защиты, использующий токоизмерительный орган, заключается в том, что в нормальных условиях геометрическая сумма фазных токов должна быть равна 0 и по реле ток не протекает. При коротких замыканиях на землю или утечке тока на землю это условие нарушается и возникает ток нулевой последовательности, который вызывает появление магнитного потока в магнитопроводе ТТНП и ЭДС во вторичной цепи (1).

Однако в действительности, в нормальных условиях при полном равенстве первичных токов во вторичной цепи протекает ток небаланса, обусловленный несимметричным расположением фаз первичной цепи относительно вторичной обмотки ТТНП. Вследствии различия взаимных индуктивностей фаз первичной цепи со вторичной обмоткой

ТТНП чувствительность известных средств защиты к токам утечки не превышает 3 — 5 А и изменяется незначительно даже при применении специальных средств ее повышения.

Данная чувствительность достаточная для защиты от потоков к. з. и неприемлема для защиты от токов утечки, где требуется безопасная установка тока срабатывания до

25 мА.

Известен трансформатор тока нулевой последовательности, у которого для снижения небаланса проводники каждой фазы первичной обмотки ТТНП расщеплены на число проводников не менее двух и расщепленные проводники каждой из фаз расположены диаметрально противоположно в окне магнитопровода (2).

Указанный трансформатор имеет недостаток, заключающийся в том, что потоки рассеивания каждого проводника не сов.!

748528

Формула изобретения мещены и замыкаются по ферромагнитному сердечнику. Поэтому обязательным условием является: наличие замкнутого тороидального магнитопровода с равномерной вторичной обмоткой, что усложняет конструкцию. Применение магнитопровода, например, с прямоугольным окном и вторичной обмоткой, выполненной в виде отдельной катушки, неизбежно приведет к значительному увеличению небаланса; необходима весьма точная установка расщепленных проводников относительно оси тороидального магнитопровода и между собой. При большом количестве расщепленных проводников это требование практически трудно выполнимо; увеличение количества проводников резко снижает коэффициент их заполнения в окне магнитопровода, что влияет на характеристику ТТНП и ограничивает эффективность снижения небаланса.

Наиболее близким по технической сущности является трансформатор тока нулевой последовательности, имеющий первичную обмотку, выполненную в виде цилиндров, расположенных коаксиально друг относительно друга (3)..

В известном трансформаторе взаимоиндукция между разными фазами первичной цепи и вторичной обмоткой может быть равна, а небаланс тока отсутствовать лишь при идеальной осевой симметрии проводников.

Однако изготовление таких идеально симметричных трансформаторов тока нулевой последовательности представляет значительные трудности, а даже небольшое осевое смещение цилиндров неизбежно приведет к увеличению тока небаланса.

Цель изобретения — устранения указанных недостатков, а именно упрощения его выполнения и снижения тока небаланса.

Указанная цель достигается тем, что трансформатор тока нулевой последовательности, содержащий первичную цепь, выполненную в виде трех коаксиальных поверхностей, чередующихся по фазам, снабженных фазовыми выводами, разделенных диэлектриком и охваченных магнитопроводом, на котором расположена вторичная цейь, каждая из указанных поверхностей выполнена с направляющей в виде многовитковой спирали.

И кроме того, предложен вариант, в котором фазные выводы размещены равномерно по виткам первичной цепи.

На фиг. 1 показана схема устройства защиты от утечек тока, в котором использован предложенный трансформатор тока нулевой последовательности; на фиг. 2 — проводник в развернутом виде; на фиг. 3 — первичная цепь трансформатора тока нулевой последовательностл (вид с торца).

Устройство состоит из трансформатора тока нулевой последовательности ТТНП и исполнительного реле. ТТНП имеет магнитопровод I, первичную цепь 2, и вторичную

fo

1s

2S

З0

3S

so

I обмотку 3. Исполнительное реле 4 подключено к вторичной обмотке. Каждая фаза первичной цепи ТТНП выполнена из листового проводника 5, например, из тонкой медной фольги. Между проводниками помещена изоляция 6, например, из тонкой конденсаторной бумаги. Листовые проводники с изоляцией скручены в рулон и снабжены фазными выводами 7. Таким образом, первичная цепь ТТНП представляет собой многослойный рулон из чередующихся по фазам листовых проводников.

При полном равенстве токов, протекающих по первичной цепи ТТНП, магнитные потоки в магнитопроводе 1 отсутствуют, так как будет практически отсутствовать внешнее магнитное поле. Увеличение количества фазных выводов 7 у каждого проводника позволяет повысить равномерность распределения тока по всей поверхности проводника.

Результирующий поток рассеивания в окне магнитопровода ТТНП определяется суммой потоков рассеивания проводников

А, В, С.

Ф = Фд + Фн + Ф, где Ф„, Фв, Ф вЂ” потоки рассеивания, обусловленные протеканием тока в проводниках.

Так как пути магнитных потоков в рулоне совмещены, то при 1д+ 1в+ 1 = О магнитные потоки не замыкаются в магнитопроводе, взаимоиндукция отдельных проводников фаз и вторичной обмотки будет одинакова, а токи небаланса будут значительно снижены даже в случае неравномерно намотанной на магнитопровод вторичной обмотки, некоаксиально расположенных проводников и магнитопровода, произвольной формы магнитопровода и наличия в нем воздушных зазоров.

Применение указанного трансформатора тока нулевой Последовательности в защитах от утечек тока позволит повышать электробезопасность и исключить случаи электротравматизма в разветвленных электрических сетях за счет значительного снижения погрешности и упрощения изготовления трансформатора тока нулевой последовательности.

1. Трансформатор тока нулевой последовательности, содержащий первичную цепь, выполненную в виде трех коаксиальных поверхностей, чередующихся по фазам, снабженных фазовыми выводами, разделенных диэлектриком и охваченных магнитопроводом, на котором расположена вторичная цепь, отличающийся тем, что, с целью упрощения его выполнения и снижения небаланса тока, каждая из указанных поверхностей выполнена с направляющей в виде многовитковой спирали.

748528

2. Трансформатор тока нулевой последовательности по п. 1, отличающийся тем, что фазные выводы размещены равномерно по виткам первичной цепи.

Источники информации, принятые во внимание при экспертизе

1. Маврицын А. М. и др. Защита от однофазного замыкания на землю в карьерах.

М., «Недра», 1968: с. 31 — 33.

2. Авторское свидетельство СССР № 456335, кл. Н 02 Н 3/16, 1970.

3. Ж. «Электрические станции», 1975, № 7, с. 88 — 90.

748528

Редактор Г. Волкова

Заказ 4373/14

Составитель,Л. Васькова

Техред К. Шуфрич Корректор Г. Решетник

Тираж 844 Подписное

ЦНИИПИ Государственного комитета СССР по делам изобретений и открь.тий

I 13035, Москва, Ж вЂ” 35, Раушская наб., д. 4/5

Филиал ППП

    

findpatent.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *