Генератор из электродвигателя – Как самостоятельно сделать генератор из асинхронного двигателя?

Содержание

Как самостоятельно сделать генератор из асинхронного двигателя?

Генератор асинхронного или индукционного типа представляет собой особую разновидность устройств, использующую переменный ток и имеющую способность воспроизведения электроэнергии. Главной особенностью является совершение довольно быстрых поворотов, которые делает ротор, по скорости вращения этого элемента он в значительной степени превосходит синхронную разновидность.

Одним из главных преимуществ является возможность использования данного устройства без существенных преобразований схемы или длительного настраивания.

Однофазную разновидность индукционного генератора можно подключить путем подачи на него необходимого напряжения, для этого потребуется подсоединение его к источнику питания. Однако, ряд моделей производит самовозбуждение, эта способность позволяет им функционировать в режиме, независимом от каких-либо внешних источников.

Осуществляется это благодаря последовательному приведению конденсаторов в рабочее состояние.

Схема генератора из асинхронного двигателя

схема генератора на базе асинхронного двигателя

В фактически любой машине электрического типа, сконструированной по типу генератора, имеются 2 разные активные обмотки, без которых невозможно функционирование устройства:

  1. Обмотка возбуждения, которая находится на специальном якоре.
  2. Статорная обмотка, которая отвечает за образование электрического тока, данный процесс происходит внутри нее.

Для того, чтобы наглядно представить и точнее понять все процессы, происходящие во время функционирования генератора, наиболее оптимальным вариантом будет подробнее рассмотреть схему его работы:

  1. Напряжение, которое подается от аккумулятора или любого иного источника, создает магнитное поле в якорной обмотке.
  2. Вращение элементов устройства вместе с магнитным полем можно реализовать разными способами, в том числе и вручную.
  3. Магнитное поле, вращающееся с определенной скоростью, порождает электромагнитную индукцию, благодаря чему в обмотке появляется электрический ток.
  4. Подавляющее большинство используемых на сегодняшний день схем не имеет возможностей для обеспечения якорной обмотки напряжением, это связано с наличием в конструкции короткозамкнутого ротора. Поэтому, вне зависимости от скорости и времени вращения вала, питающие клеммы устройства все равно будут обесточены.

При переделывании двигателя в генератор, самостоятельное создание движущегося магнитного поля является одним из основных и обязательных условий.

Устройство генератора

Перед тем, как предпринимать какие-либо действия по переделыванию асинхронного двигателя в генератор, необходимо понять устройство данной машины, которое выглядит следующим образом:

  1. Статор, который оснащен сетевой обмоткой с 3 фазами, размещенной по его рабочей поверхности.
  2. Обмотка организована таким образом, что напоминает по своей форме звезду: 3 начальных элемента соединяются между собой, а 3 противоположных стороны соединены с контактными кольцами, которые не имеют никаких точек соприкосновений между собой.
  3. Контактные кольца имеют надежный крепеж к валу ротора.
  4. В конструкции имеются специальные щетки, которые не совершают никаких самостоятельных движений, но способствуют включению реостата с тремя фазами. Это позволяет осуществлять изменение параметров сопротивления обмотки, находящейся на роторе.
  5. Нередко, во внутреннем устройстве присутствует такой элемент, как автоматический короткозамыкатель, необходимый для того, чтобы закоротить обмотку и остановить реостат, находящийся в рабочем состоянии.
  6. Еще одним дополнительным элементом устройства генератора может являться специальное приспособление, которое разводит щетки и контактные кольца в тот момент, когда они проходят стадию замыкания. Подобная мера способствует значительному уменьшению потерь, отводимых на трение.

Изготовление генератора из двигателя

Фактически, любой асинхронный электродвигатель можно собственными руками переделать в устройство, функционирующее по типу генератора, который затем допускается использовать в быту. Для этой цели может подойти даже двигатель, взятый из стиральной машинки старого образца или любого иного бытового оборудования.

Чтобы данный процесс был благополучно реализован, рекомендуется придерживаться следующего алгоритма действий:

  1. Снять слой сердечника двигателя, благодаря чему будет образовано углубление в его структуре. Осуществить это можно на токарном станке, рекомендуется снять 2 мм. по всему сердечнику и проделать дополнительные отверстия с глубиной около 5 мм.
  2. Снять размеры с полученного ротора, после чего из жестяного материала изготовить шаблон в виде полосы, который будет соответствовать габаритам устройства.
  3. Установить в образовавшемся свободном пространстве неодимовые магниты, которые необходимо заранее приобрести. На каждый полюс потребуется не менее 8 магнитных элементов.
  4. Фиксацию магнитов можно осуществить при помощи универсального суперклея, но необходимо учитывать, что при приближении к поверхности ротора они будут менять свое положение, поэтому их необходимо крепко удерживать руками пока каждый элемент не приклеится. Дополнительно рекомендуется использовать во время этого процесса защитные очки, чтобы избежать попадания брызг клея в глаза.
  5. Обернуть ротор обычной бумагой и скотчем, который потребуется для ее фиксации.
  6. Торцовую часть ротора залепить пластилином, что обеспечит герметизацию устройства.
  7. После совершенных действий необходимо произвести обработку свободных полостей, между магнитными элементами. Для этого оставшееся между магнитами свободное пространство необходимо залить эпоксидной смолой. Удобнее всего будет прорезать специальное отверстие в оболочке, преобразовать его в горлышко и залепить границы при помощи пластилина. Внутрь можно заливать смолу.
  8. Дождаться полного застывания залитой смолы, после чего защитную бумажную оболочку можно устранить.
  9. Ротор необходимо зафиксировать при помощи станка или тисков, чтобы можно было провести его обработку, которая заключается в шлифовании поверхности. Для этих целей можно использовать наждачную бумагу со средним параметром зернистости.
  10. Определить состояние и предназначение проводов, выходящих из двигателя. Двое должны вести к рабочей обмотке, остальные можно обрезать, чтобы не запутаться в дальнейшем.
  11. Иногда процесс вращения осуществляется довольно плохо, чаще всего причиной являются старые износившиеся и тугие подшипники, в таком случае их можно заменить новыми.
  12. Выпрямитель для генератора можно собрать из специальных кремниевых диодов, которые предназначены именно для этих целей. Такж,е потребуется контроллер для зарядки, подходят фактически все современные модели.

После совершения всех названных действий, процесс можно считать завершенным, асинхронный двигатель был преобразован в генератор такого же типа.

Оценка уровня эффективности – выгодно ли это?

Генерация электрического тока электродвигателем вполне реальна и реализуема на практике, основной вопрос заключается в том, насколько это выгодно?

Сравнение осуществляется в первую очередь с синхронной разновидностью аналогичного устройства, в котором отсутствует электрическая цепь возбуждения, но несмотря на этот факт, его устройство и конструкция не являются более простыми.

Обуславливается это наличием конденсаторной батареи, являющейся крайне сложным в техническом плане элементом, который отсутствует у асинхронного генератора.

Основное преимущество асинхронного устройства заключается в том, что имеющиеся в наличии конденсаторы не требуют какого-либо обслуживания, поскольку вся энергия передается от магнитного поля ротора и тока, который вырабатывается в ходе функционирования генератора.

Создаваемый во время работы электрический ток фактически не имеет высших гармоник, что является еще одним значимым преимуществом.

Иных плюсов, кроме названных, асинхронные устройства не имеют, но зато обладают рядом существенных недостатков:

  1. В ходе их функционирования отсутствует возможность по обеспечению номинальных промышленных параметров электрического тока, который вырабатывается генератором.
  2. Высокая степень чувствительности даже к малейшим перепадам параметров рабочих нагрузок.
  3. При превышении параметров допустимых нагрузок на генератор, будет зафиксирована нехватка электричества, после чего подзарядка станет невозможной и процесс генерации будет остановлен. Для устранения этого недостатка, часто используют батареи со значительной емкостью, которые имеют особенность изменять свой объем в зависимости от величины оказываемых нагрузок.

Электрический ток, который вырабатывается асинхронным генератором, подвержен частым изменениям, природа которых неизвестна, она носит случайный характер и никак не объясняется научными доводами.

Невозможность учета и соответствующей компенсации таких изменений объясняет то факт, что подобные устройства не обрели популярность и не получили особого распространения в наиболее серьезных отраслях промышленности или бытовых делах.

Функционирование асинхронного двигателя как генератора

В соответствии с принципами, по которым функционируют все подобные машины, работа асинхронного двигателя после преобразования в генератор происходит следующим образом:

  1. После подключения конденсаторов к зажимам, на обмотке статоров происходит ряд процессов. В частности, в обмотке начинается движение опережающего тока, который создает эффект намагничивания.
  2. Только при соответствии конденсаторов параметрам необходимой емкости, происходит самовозбуждение устройства. Это способствует возникновению симметричной системы напряжения с 3 фазами на статорной обмотке.
  3. Значение итогового напряжения будет зависеть от технических возможностей используемой машины, а также от возможностей используемых конденсаторов.

Благодаря описанным действиям происходит процесс преобразования асинхронного двигателя короткозамкнутого типа в генератор с подобными характеристиками.

Применение

В быту и на производстве такие генераторы широко применяются в различных сферах и областях, но наиболее востребованы они для выполнения следующих функций:

  1. Использование в качестве двигателей для ветряных электростанций, это одна из наиболее популярных функций. Многие люди самостоятельно изготавливают асинхронные генераторы для задействования их в этих целях.
  2. Работа в качестве ГЭС с небольшой выработкой.
  3. Обеспечение питанием и электроэнергией городской квартиры, частного загородного дома или отдельного бытового оборудования.
  4. Выполнение основных функций сварочного генератора.
  5. Бесперебойное оснащение переменным током отдельных потребителей.

Советы по изготовлению и эксплуатации

Необходимо обладать определенными навыками и знаниями не только по изготовлению, но и по эксплуатации подобных машин, помочь в этом могут следующие советы:

  1. Любая разновидность асинхронных генераторов вне зависимости от сферы, в которой они применяются, является опасным устройством, по этой причине рекомендуется провести его изоляцию.
  2. В процессе изготовления устройства необходимо продумать монтаж измерительных приборов, поскольку потребуется получение данных о его функционировании и рабочих параметрах.
  3. Наличие специальных кнопок, с помощью которых можно управлять устройством, в значительной степени облегчает процесс эксплуатации.
  4. Заземление является обязательным требованием, которое необходимо реализовать до момента эксплуатации генератора.
  5. Во время работы, КПД асинхронного устройства может периодически снижаться на 30-50%, побороть возникновение этой проблемы не представляется возможным, поскольку этот процесс является неотъемлемой частью преобразования энергии.

slarkenergy.ru

Генератор своими руками из асинхронного двигателя

Как превратить любой Асинхронный Двигатель в генератор – Дом без фундамента

Почему мы используем Асинхронный Электрогенератор

Асинхронный генератор — это работающая в генераторном режиме асинхронная электрическая машина (ел.двигатель). При помощи приводного двигателя (в нашем случае ватродвигателя) ротор асинхронного электрогенератора вращается в одном направлении с магнитным полем. Скольжение ротора при этом становится отрицательным, на валу асинхронной машины появляется тормозящий момент, и генератор передает энергию в сеть.

Для возбуждения электродвижущей силы в его выходной цепи используют остаточную намагниченность ротора. Для этого применяются конденсаторы.

Асинхронные генераторы не восприимчивы к коротким замыканиям.

Асинхронный генератор устроен проще синхронного (например автомобильного генератора): если у последнего на роторе помещаются катушки индуктивности, то ротор асинхронного генератора похож на обычный маховик. Такой генератор лучше защищен от попадания грязи и влаги, более устойчив к короткому замыканию и перегрузкам, а выходное напряжение асинхронного электрогенератора отличается меньшей степенью нелинейных искажений. Это позволяет использовать асинхронные генераторы не только для питания промышленных устройств, которые не критичны к форме входного напряжения, но подключать электронную технику.

Именно асинхронный электрогенератор является идеальным источником тока для приборов, имеющих активную (омическую) нагрузку: электронагревателей, сварочных преобразователей, ламп накаливания, электронных устройств, компьютерную и радиотехнику.

Преимущества асинхронного генератора

К таким преимуществам относят низкий клирфактор (коэффициент гармоник), характеризующий количественное наличие в выходном напряжении генератора высших гармоник. Высшие гармоники вызывают неравномерность вращения и бесполезный нагрев электромоторов. У синхронных генераторов может наблюдаться величина клирфактора до 15%, а клирфактор асинхронного электрогенератора не превышает 2%. Таким образом, асинхронный электрогенератор вырабатывает практически только полезную энергию.

Еще одним преимуществом асинхронного электрогенератора является то, что в нем полностью отсутствуют вращающиеся обмотки и электронные детали, которые чувствительны к внешним воздействиям и довольно часто подвержены повреждениям. Поэтому асинхронный генератор мало подвержен износу и может служить очень долго.

На выходе наших генераторов идет сразу 220/380В переменного тока, который можно использовать напрямую к бытовым приборам (например обогреватели), для зарядки аккумуляторов, для подключения к пилораме, а также для параллельной работы с традиционной сетью. В этом случае Вы будете оплачивать разницу потребленной из сети и сгенерированной ветряком. Т.к. напряжение идет сразу промышленных параметров, то Вам не понадобятся различные преобразователи (инверторы) при прямом включении ветрогенератора к Вашей нагрузке. Например Вы можете напрямую подключить к пилораме и при наличии ветра – работать так, как если бы Вы просто подключились к сети 380В.

Если ротор асинхронной машины, включенной в сеть с напряжением U1, вращать посредством первичного двигателя в направлении вращающегося поля статора, но со скоростью n2>n1, то движение ротора относительно поля статора изменится (по сравнению с двигательным режимом этой машины), так как ротор будет обгонять поле статора.

При этом скольжение станет отрицательным, а направление э.д.с. Е1, наведенной в обмотке статора, а следовательно, и направление тока I1 изменятся на противоположное. В результате электромагнитный момент на роторе также изменит направление и из вращающего (в двигательном режиме) превратится в противодействующий (по отношению к вращающему моменту первичного двигателя). В этих условиях асинхронная машина из двигательного перейдет в генераторный режим, преобразуя механическую энергию первичного двигателя в электрическую. При генераторном режиме асинхронной машины скольжение может изменяться в диапазоне

при этом частота э.д.с. асинхронного генератора остается неизменной, так как она определяется скоростью вращения поля статора, т.е. остается такой же, что и частота тока в сети, на которую включен асинхронный генератор.

Ввиду того, что в генераторном режиме асинхронной машины условия создания вращающегося поля статора такие же, что и в двигательном режиме (и в том и в другом режимах обмотка статора включена в сеть с напряжением U1), и потребляет из сети намагничивающий ток I0, то асинхронная машина в генераторном режиме обладает особыми свойствами: она потребляет реактивную энергию из сети, необходимую для создания вращающегося поля статора, но отдает в сеть активную энергию, получаемую в результате преобразования механической энергии первичного двигателя.

В отличие от синхронных асинхронные генераторы не подвержены опасностям выпадения из синхронизма. Однако асинхронные генераторы не получили широкого распространения, что объясняется рядом их недостатков по сравнению с синхронными генераторами.

Асинхронный генератор может работать и в автономных условиях, т.е. без включения в общую сеть. Но в этом случае для получения реактивной мощности, необходимой для намагничивания генератора, используется батарея конденсаторов, включенн

avtonomny-dom.ru

Генератор из асинхронного двигателя своими руками

Желание разработать автономный источник по производству электроэнергии позволил соорудить генератор из обычного асинхронного мотора. Разработка отличается надежность и относительной простотой.

Виды и описание асинхронного двигателя

Существует два вида моторов:      

  1. Короткозамкнутый ротор. Он включает в себя статор (недвижимый элемент) и ротор (вращающийся элемент), движущийся за счет работы подшипников, прикрепленных к двум щиткам мотора. Сердечники изготовлены из стали, а также они изолированы друг от друга. По пазам статорного сердечника расположен изолированный провод, а по пазам роторного устанавливается стержневая обмотка либо льется растопленный алюминий. Специальные кольца-перемычки играют роль замыкающего элемента роторной обмотки. Самостоятельные разработки преобразовывают механические движения мотора и создают электроэнергию переменного напряжения. Их преимущество – нет в наличии коллекторно-щелочного механизма, что делает их более надежными и долговечными.
  2. Фазный ротор – дорогой прибор, требующий специализированного сервиса. Состав такой же, как и у ротора с коротким замыканием. Единственное исключение роторная и статорная обмотка сердечника выполнена из заизолированного провода, а ее концы подсоединяют к кольцам, прикрепленным к валу. По ним проходят специальные щетки, которые объединяют провода с регулировочным либо пусковым реостатом. Из-за низкого уровня надежности его используют лишь для тех отраслей производства, для которых он предназначен.

Область применения

Устройство используется в разных отраслях:

  1. Как обычный двигатель для электростанций, работающих от ветра.
  2. Для собственного независимого питания квартиры либо дома.
  3. Как небольшие ГЭС-станции.
  4. Как альтернативный инверторный тип генератора (сварочный).
  5. Для создания бесперебойной системы питания от переменного тока.

Преимущества и недостатки генератора

К положительным качествам разработки принадлежат:

  1. Простая и быстрая сборка с возможностью избежать разборки электродвигателя и перемотки обмотки.
  2. Способность осуществлять вращение электротока с помощью ветряной либо гидротурбины.
  3. Применение устройства в системах мотор-генератор, чтобы преобразовать однофазную сеть (220В) на трехфазную (380 В).
  4. Способность использовать разработку в местах отсутствия электричества, применяя для раскрутки двигатель внутреннего сгорания.

Минусы:

  1. Проблематичность расчета емкости конденсата, который присоединяется к обмоткам.
  2. Сложно достичь максимальной отметки мощности, на которую способна самостоятельная разработка.

Самодельный генератор из асинхронного двигателя

Принцип работы

Генератор вырабатывает электрическую энергию при условии, что количество оборотов ротора несколько выше синхронной скорости. Самый простой тип вырабатывает порядка 1800 об/мин., учитывая, что уровень его синхронной скорости становится 1500 оборотов.

Его принцип действия основывается на переработке механической энергии в электроэнергию. Заставить ротор вращаться, и производить электричество можно с помощью сильного крутящегося момента. В идеальном варианте – постоянный холостой ход, который способен поддерживать одинаковую скорость движения.

Все виды моторов, работающие от силы непостоянного тока, называются асинхронными. У них магнитное поле статора кружится скорее, чем поле ротора, соответственно направляя его в сторону своего движения. Чтобы изменить электромотор на функционирующий генератор понадобится повысить скорость передвижения ротора, чтобы он не следовал за магнитным полем статора, а начал двигаться в другую сторону.

Получить подобный результат можно, подключив прибор к электросети, конденсатор с большой емкостью или целую группу конденсаторов. Они заряжаются и скапливают энергию от магнитных полей. Фаза конденсатора имеет заряд, который противоположен источнику тока мотора, из-за чего происходит замедление работы ротора, и начинается выработка тока статорной обмоткой.

Схема генератора

Схема очень простая и не нуждается в наличии специальных знаний и умений. Если запустить разработку не подключая ее к сети, начнется вращение и, после выхода на синхронную частоту, статорная обмотка станет образовывать электрическую энергию.

Прикрепив к ее зажимам специальную батарею из нескольких конденсаторов (С) можно получить опережающий емкостный ток, который будет создавать намагничивание. Емкость конденсаторов должна быть выше критического обозначения С0, которое зависит от габаритов и характеристик генератора.

В данной ситуации происходит процесс самостоятельного запуска, а на статорной обмотке монтируется система с симметричным трехфазным напряжением. Показатель создаваемого тока напрямую зависит от емкости для конденсаторов, а также характеристики машины.

Простейшая схема включения асинхронного двигателя

Делаем своими руками

Чтобы преобразовать электромотор в работоспособный генератор понадобиться применять неполярные конденсаторные батареи, поэтому электролитические конденсаторы лучше не использовать.

В трехфазном моторе подключить конденсатор можно по таким схемам:

  • «Звезда» – дает возможность провести генерацию при меньшем количестве оборотов, но с более низким выходным напряжением;
  • «Треугольник» – вступает в работу при большом количестве оборотов, соответственно вырабатывает больше напряжения.

Можно создать собственное устройство из однофазного мотора, но при условии, что он оборудован ротором с коротким замыканием. Чтобы запустить разработку следует воспользоваться фазосдвигающим конденсатором. Однофазный мотор коллекторного типа для переделки не подходит.

Внешний вид простейшего ветрогенератора с применением асинхронного двигателя

Необходимые инструменты

Создать собственный генератор несложно, главное иметь все необходимые элементы:

  1. Асинхронный мотор.
  2. Тахогенератор (прибор для измерения тока) или же тахометр.
  3. Емкость под конденсаторы.
  4. Конденсатор.
  5. Инструменты.

Пошаговое руководство

  1. Поскольку понадобится перенастроить генератор таки образом, чтобы скорость вращений превышала обороты мотора, первоначально необходимо подсоединить двигатель к электросети и завести. Затем с помощью тахометра определить скорость его вращений.
  2. Узнав скорость, следует к полученному обозначению прибавить еще 10%. Например, технический показатель мотора 1000 об/мин, то у генератора должно быть порядка 1100 об/мин (1000*0,1%=100, 1000+100=1100 об/мин).
  3. Следует подобрать емкость под конденсаторы. Чтобы определиться с размерами используйте данные таблицы.

Таблица конденсаторных емкостей

Мощность генератора КВ А Холостой ход Полная нагрузка
ЕмкостьМкф Реактивная мощность Квар COS=1 COS=0.8
Емкость Мкф Реактивная мощность Квар Емкость Мкф Реактивная мощность Квар
2,0 28 1,27 36 1,63 60 2,72
3,5 45 2,04 56 2,54 100 4,53
5,0 60 2,72 75 3,4 138 6,25
7,0 74 3,36 98 4,44 182 8,25
10,0 92 4,18 130 5,9 245 11,1
15,0 120 5,44 172 7,8 342 15,5

Важно! Если емкость будет большой, то генератор начнет нагреваться.

Подберите соответствующие конденсаторы, которые смогут обеспечить требуемую скорость вращений. Будьте осторожны при установке.

Важно! Все конденсаторы должны быть заизолированы специальным покрытием.

Устройство готово и может использоваться в качестве источника электроэнергии.

Важно! Прибор с короткозамкнутым ротором создает высокое напряжение, поэтому если необходим показатель в 220В, следует дополнительно установить понижающий трансформатор.

Генератор на магнитах

Магнитный генератор имеет несколько отличий. Например, он не нуждается в установке конденсаторных батарей. Магнитное поле, которое будет создавать электричество в обмотке статора, создается за счет ниодимовых магнитов.

Особенности создания генератора:

  1. Необходимо открутить обе крышки двигателя.
  2. Понадобится устранить ротор.
  3. Ротор необходимо проточить, сняв верхний слой нужной толщины (толщина магнита + 2мм). Самостоятельно выполнить данную процедуру без токарного оборудования крайне сложно, поэтому следует обратиться в токарный сервис.
  4. Сделайте шаблон для круглых магнитиков на листе бумаги, исходя из параметров диаметр 10-20 мм, толщина около 10 мм, а присягающая сила порядка 5-9 кг на см2. Подбирать размер следует в зависимости от габаритов ротора. Затем прикрепите созданный шаблон на ротор и разместите магнитики полюсами и под углом 15-200 к оси ротора. Ориентировочное количество магнитов в одной полоске около 8 штук.
  5. У вас должно выйти 4 группы полос, каждая по 5 полосок. Между группами должно сохраняться расстояние величиной в 2 диаметра магнита, а между полосками в группе – 0,5-1 диаметр магнита. Благодаря данному расположению ротор не будет залипать к статору.
  6. Установив все магниты, следует залить ротор специальной эпоксидной смолой. Как только она высохнет, покройте цилиндрический элемент стекловолокном и снова пропитайте смолой. Такое крепление позволит избежать вылету магнитов в момент движения. Следите, чтобы диаметр у ротора был таким же, как до проточки, чтобы при установке он не терся об статорную обмотку.
  7. Просушив ротор, его можно установить на место и прикрутить обе крышки двигателя.
  8. Провести испытания. Для запуска генератора понадобится поворачивать ротор с помощью электродрели, а на выходе вымерять полученный ток тахометром.

Переделывать или нет

Чтобы определить, эффективна ли работа самостоятельно сделанного генератора, следует просчитать, насколько оправданы усилия по преобразованию устройства.

Нельзя сказать, что устройство очень простое. Двигатель асинхронного двигателя не уступает по сложности синхронному генератору. Единственное отличие отсутствие электрической цепи для возбуждения работы, но она заменяется батареей конденсаторов, что ничем не упрощает устройство.

Преимущество конденсаторов в том, что они не требуют дополнительного обслуживания, а энергию получают от магнитного поля ротора или производимого электрического тока. Из этого можно сказать, что единственный плюс от этой разработки – отсутствие необходимости в обслуживании.

Еще одно положительное качество – эффект клирфактора. Он заключается в отсутствии высших гармоник в генерируемом токе, то есть чем ниже его показатель, тем меньше расходуется энергии на обогрев, магнитное поле и иные моменты. У трехфазного электромотора этот показатель составляет около 2%, в то время когда у синхронных машин он минимум 15%. К сожалению, учет показателя в быту, когда в сеть включены разнотипные электроприборы, нереален.

Другие показатели и свойства разработки отрицательные. Он не способен обеспечивать номинальную промышленную частоту производимого напряжения. Поэтому устройства применяют вместе с выпрямительными машинами, а также для зарядки аккумулятора.

Генератор чувствителен к малейшим перепадам электричества. В промышленных разработках для возбуждения применяется аккумулятор, а в самодельном варианте часть энергии уходит на батарею конденсаторов. В случае, когда нагрузка на генератор выше номинала, ему не достаточно электричества для подзарядки, и он останавливается. В некоторых случаях применяют емкостные батареи, которые меняют свой динамический объем в зависимости от нагрузки.

Просчитать, учесть и компенсировать изменения тока, которые происходят случайно, к сожалению, нереально, поэтому устройству характерна нестабильная работа.

Блиц-советы

  1. Устройство очень опасно, поэтому не рекомендуется использовать напряжение в 380 В, разве что при крайней необходимости.
  2. Согласно с мерами предосторожности и техникой безопасности необходимо дополнительно установить заземление.
  3. Следите за тепловым режимом разработки. Ему не присуще работать при холостом ходу. Чтобы уменьшить тепловое воздействие следует хорошо подобрать конденсаторную емкость.
  4. Правильно просчитайте мощность производимого электрического напряжения. Например, когда в трехфазном генераторе функционирует лишь одна фаза, значит, мощь составляет 1/3 от общей, а если работает две фазы соответственно 2/3.
  5. Есть возможность косвенным образом контролировать частоту непостоянного тока. Когда прибор работает вхолостую выходящее напряжение начинает увеличиваться, и превышает показатели промышленного (220/380В) на 4-6%.
  6. Лучше всего изолировать разработку.
  7. Следует оснастить самодельное изобретение тахометром и вольтметром, чтобы фиксировать его работу.
  8. Желательно предусмотреть специальные кнопки для включения и выключения механизма.
  9. Уровень КПД будет понижаться на 30-50%, данное явление неизбежно.

housetronic.ru

Асинхронный генератор своими руками: устройство, принцип работы, схемы

Для питания бытовых устройств и промышленного оборудования необходим источник электроэнергии. Выработать электрический ток возможно несколькими способами. Но наиболее перспективным и экономически выгодным, на сегодняшний день, является генерация тока электрическими машинами. Самым простым в изготовлении, дешёвым и надёжным в эксплуатации оказался асинхронный генератор, вырабатывающий львиную долю потребляемой нами электроэнергии.

Применение электрических машин этого типа продиктовано их преимуществами. Асинхронные электрогенераторы, в отличие от синхронных генераторов, обеспечивают:

  • более высокую степень надёжности;
  • длительный срок эксплуатации;
  • экономичность;
  • минимальные затраты на обслуживание.

Эти и другие свойства асинхронных генераторов заложены в их конструкции.

Устройство и принцип работы

Главными рабочими частями асинхронного генератора является ротор (подвижная деталь) и статор (неподвижный). На рисунке 1 ротор расположен справа, а статор слева. Обратите внимание на устройство ротора. На нём не видно обмоток из медной проволоки. На самом деле обмотки существуют, но они состоят из алюминиевых стержней короткозамкнутых на кольца, расположенные с двух сторон. На фото стержни видны в виде косых линий.

Конструкция короткозамкнутых обмоток образует, так называемую, «беличью клетку». Пространство внутри этой клетки заполнено стальными пластинами. Если быть точным, то алюминиевые стержни впрессовываются в пазы, проделанные в сердечнике ротора.

Рис. 1. Ротор и статор асинхронного генератора

Асинхронная машина, устройство которой описано выше, называется генератором с короткозамкнутым ротором. Тот, кто знаком с конструкцией асинхронного электродвигателя наверняка заметил схожесть в строении этих двух машин. По сути дела они ничем не отличаются, так как асинхронный генератор и короткозамкнутый электродвигатель практически идентичны, за исключением дополнительных конденсаторов возбуждения, используемых в генераторном режиме.

Ротор расположен на валу, который сидит на подшипниках, зажимаемых с двух сторон крышками. Вся конструкция защищена металлическим корпусом. Генераторы средней и большой мощности требуют охлаждения, поэтому на валу дополнительно устанавливается вентилятор, а сам корпус делают ребристым (см. рис. 2).

Рис. 2. Асинхронный генератор в сборе

Принцип действия

По определению, генератором является устройство, преобразующее механическую энергию в электрический ток. При этом не имеет значения, какая энергия используется для вращения ротора: ветровая, потенциальная энергия воды или же внутренняя энергия, преобразуемая турбиной либо ДВС в механическую.

В результате вращения ротора магнитные силовые линии, образованные остаточной намагниченностью стальных пластин, пересекают обмотки статора. В катушках образуется ЭДС, которая, при подсоединении активных нагрузок, приводит к образованию тока в их цепях.

При этом важно, чтобы синхронная скорость вращения вала немного (примерно на 2 – 10%) превышала синхронную частоту переменного тока (задаётся количеством полюсов статора). Другими словами, необходимо обеспечить асинхронность (несовпадение) частоты вращения на величину скольжения ротора.

Следует заметить, что полученный таким образом ток будет небольшим. Чтобы повысить выходную мощность необходимо увеличить магнитную индукцию. Добиваются повышения КПД устройства путём подключения конденсаторов к выводам катушек статора.

На рисунке 3 изображена схема сварочного асинхронного альтернатора с конденсаторным возбуждением (левая часть схемы). Обратите внимание на то, что конденсаторы возбуждения подключены по схеме треугольника. Правая часть рисунка – собственно схема самого инверторного сварочного аппарата.

Рис. 3. Схема сварочного асинхронного генератора

Существуют и другие, более сложные схемы возбуждения, например, с применением катушек индуктивности и батареи конденсаторов. Пример такой схемы показан на рисунке 4.

Рисунок 4. Схема устройства с индуктивностями

Отличие от синхронного генератора

Главное отличие синхронного альтернатора от асинхронного генератора в конструкции ротора. В синхронной машине ротор состоит из проволочных обмоток. Для создания магнитной индукции используется автономный источник питания (часто дополнительный маломощный генератор постоянного тока, расположенный на одной оси с ротором).

Преимущество синхронного генератора в том, что он генерирует более качественный ток и легко синхронизируется с другими альтернаторами подобного типа. Однако синхронные альтернаторы более чувствительны к перегрузкам и КЗ. Они дороже от своих асинхронных собратьев и требовательнее в обслуживании – необходимо следить за состоянием щёток.

Коэффициент гармоник или клирфактор асинхронных генераторов ниже, чем у синхронных альтернаторов. То есть они вырабатывают практически чистую электроэнергию. На таких токах устойчивее работают:

  • ИБП;
  • регулируемые зарядные устройства;
  • современные телевизионные приёмники.

Асинхронные генераторы обеспечивают уверенный запуск электромоторов, требующих больших пусковых токов. По этому показателю они, фактически, не уступают синхронным машинам. У них меньше реактивных нагрузок, что положительно сказывается на тепловом режиме, так как меньше энергии расходуется на реактивную мощность. У асинхронного альтернатора лучшая стабильность выходной частоты на разных скоростях вращения ротора.

Классификация

Генераторы короткозамкнутого типа получили наибольшее распространение, ввиду простоты их конструкции. Однако существуют и другие типы асинхронных машин: альтернаторы с фазным ротором и устройства, с применением постоянных магнитов, образующих цепь возбуждения.

На рисунке 5 для сравнения показаны два типа генераторов: слева на базе асинхронного двигателя с короткозамкнутым ротором, а справа – асинхронная машина на базе АД с фазным ротором. Даже при беглом взгляде на схематические изображения видно усложнённую конструкцию фазного ротора. Привлекает внимание наличие контактных колец (4) и механизма щёткодержателей (5). Цифрой 3 обозначены пазы для проволочной обмотки, на которую необходимо подать ток для её возбуждения.

Рис. 5. Типы асинхронных генераторов

Наличие обмоток возбуждения в роторе асинхронного генератора повышает качество генерируемого электрического тока, однако при этом теряются такие достоинства как простота и надёжность. Поэтому такие устройства используются в качестве источника автономного питания только в тех сферах, где без них трудно обойтись. Постоянные магниты в роторах применяют в основном для производства маломощных генераторов.

Область применения

Наиболее часто встречается применение генераторных установок с короткозамкнутым ротором. Они недорогие, практически не нуждаются в обслуживании. Устройства, оборудованные пусковыми конденсаторами, обладают приличными показателями КПД.

Асинхронные альтернаторы часто используют в качестве автономного или резервного источника питания. С ними работают переносные бензиновые генераторы, их используют для мощных мобильных и стационарных дизельных генераторов.

Альтернаторы с трёхфазной обмоткой уверенно запускают трехфазный электродвигатель, поэтому часто используются в промышленных энергоустановках. Они также могут питать оборудование в однофазных сетях. Двухфазный режим позволяет экономить топливо ДВС, так как незадействованные обмотки находятся в режиме холостого хода.

Сфера применения довольно обширная:

  • транспортная промышленность;
  • сельское хозяйство;
  • бытовая сфера;
  • медицинские учреждения;

Асинхронные альтернаторы удобны для сооружения локальных ветровых и гидравлических электростанций.

Асинхронный генератор своими руками

Оговоримся сразу: речь пойдёт не об изготовлении генератора с нуля, а о переделывании асинхронного двигателя в альтернатор. Некоторые умельцы используют готовый статор от мотора и экспериментируют с ротором. Идея состоит в том, чтобы с помощью неодимовых магнитов сделать полюса ротора. Примерно так может выглядеть заготовка с наклеенными магнитиками (см. рис. 6):

Рис. 6. Заготовка с наклеенными магнитами

Вы наклеиваете магниты на специально выточенную заготовку, посаженную на валу электродвигателя, соблюдая их полярность и угол сдвига. Для этого потребуется не менее 128 магнитиков.

Готовую конструкцию необходимо подогнать к статору и при этом обеспечить минимальный зазор между зубцами и магнитными полюсами изготовленного ротора. Поскольку магнитики плоские, придётся их шлифовать или обтачивать, при этом постоянно охлаждая конструкцию, так как неодим теряет свои магнитные свойства при высокой температуре. Если вы сделаете всё правильно – генератор заработает.

Проблема состоит в том, что в кустарных условиях очень сложно изготовить идеальный ротор. Но если у вас есть токарный станок и вы готовы потратить несколько недель на подгонку и доработки – можете поэкспериментировать.

Я предлагаю более практичный вариант – превращение асинхронного двигателя в генератор (смотрите видео ниже). Для этого вам понадобится электромотор с подходящей мощностью и приемлемой частотой вращения ротора. Мощность двигателя должна быть минимум на 50% выше от требуемой мощности альтернатора. Если такой электромотор есть в вашем распоряжении – приступайте к переработке. В противном случае лучше купить готовый генератор.

Для переработки вам потребуется 3 конденсатора марки КБГ-МН, МБГО, МБГТ (можно брать другие марки, но не электролитические). Конденсаторы подбирайте на напряжение не менее 600 В (для трёхфазного двигателя). Реактивная мощность генератора Q связанная с емкостью конденсатора следующей зависимостью: Q = 0,314·U2·C·10-6.

При увеличении нагрузки возрастает реактивная мощность, а значит, для поддержания стабильного напряжения U необходимо увеличивать ёмкость конденсаторов, добавляя новые ёмкости путём коммутации.

Видео: делаем асинхронный генератор из однофазного двигателя – Часть 1

Часть 2

Часть 3

Часть 4

Часть 5

Часть 6

Для упрощения подбора конденсаторов воспользуйтесь таблицей:

Таблица 1

Мощность альтернатора (кВт-А) Ёмкость конденсатора (мкФ) на холостом ходу Ёмкость конденсатора (мкФ) при средней нагрузке Ёмкость конденсатора (мкФ) при полной нагрузке
2 28 36 60
3,5 45 56 100
5 60 75 138

На практике, обычно выбирают среднее значение, предполагая, что нагрузка не будет максимальной.

Подобрав параметры конденсаторов, подключите их к выводам обмоток статора так, как показано на схеме (рис. 7). Генератор готов.

Рис. 7. Схема подключения конденсаторов

Советы по эксплуатации

Асинхронный генератор не требует особого ухода. Его обслуживание заключается в контроле состояния подшипников. На номинальных режимах устройство способно работать годами без вмешательства оператора.

Слабое звено – конденсаторы. Они могут выходить из строя, особенно тогда, когда их номиналы неправильно подобраны.

При работе генератор нагревается. Если вы часто подключаете повышенные нагрузки – следите за температурой устройства или позаботьтесь о дополнительном охлаждении.

www.asutpp.ru

Самодельный генератор из асинхронного электродвигателя

В стремлении получить автономные источники электроэнергии специалисты нашли способ как своими руками переделать, трехфазный асинхронный электродвигатель переменного тока в генератор. Такой метод имеет ряд преимуществ и отдельные недостатки.

Внешний вид асинхронного электродвигателя

В разрезе показаны основные элементы:

  1. чугунный корпус с радиаторными рёбрами для эффективного охлаждения;
  2. корпус короткозамкнутого ротора с линиями сдвига магнитного поля относительно его оси;
  3. коммутационно контактная группа в коробке (борно), для коммутации обмоток статора в схемы звезда или треугольник и подключения проводов электропитания;
  4. плотные жгуты медных проводов обмотки статора;
  5. стальной вал ротора с канавкой для фиксации шкива клиновидной шпонкой.

Детальная разборка асинхронного электродвигателя с указанием всех деталей показана на рисунке ниже.

Детальная разборка асинхронного двигателя

Достоинства генераторов, переделанных из асинхронных двигателей:

  1. простота сборки схемы, возможность не разбирать электродвигатель, не перематывать обмотки;
  2. возможность вращения генератора электротока ветряной или гидротурбиной;
  3. генератор из асинхронного двигателя широко используется в системах мотор-генератор для преобразования однофазной сети 220В переменного тока в трёхфазную сеть с напряжением 380В.
  4. возможность использования генератора, в полевых условиях раскручивая его от двигателей внутреннего сгорания.

Как недостаток можно отметить сложность расчёта ёмкости конденсаторов, подключаемых к обмоткам, фактически это делается экспериментальным путём.

Поэтому трудно добиться максимальной мощности такого генератора, бывают сложности с электропитанием электроустановок, которые имеют большое значение пускового тока, на циркулярных электропилах с трёхфазными двигателями переменного тока, бетономешалках и других электроустановках.

Принцип работы генератора

В основу работы такого генератора заложен принцип обратимости: «любая электроустановка преобразующая электрическую энергию в механическую, может сделать обратный процесс». Используется принцип работы генераторов, вращение ротора вызывает ЭДС и появление электрического тока в обмотках статора.

Исходя из этой теории, очевидно, что асинхронный электродвигатель можно переделать в электрогенератор. Чтобы осознано провести реконструкцию необходимо понять, как происходит процесс генерации и что для этого требуется. Все двигатели, которые приводит в движение сила переменного тока, считаются асинхронными. Поле статора движется с небольшим опережением относительно магнитного поля ротора, подтягивая его за собой в сторону вращения.

Чтобы получить обратный процесс, генерацию, поле ротора должно опережать движение магнитного поля статора, в идеальном случае вращаться в противоположном направлении. Добиваются этого включением в сеть питания, конденсатора большой ёмкости, для увеличения ёмкости используют группы конденсаторов. Конденсаторная установка заряжается, накапливая магнитную энергию (элемент реактивной составляющей переменного тока). Заряд конденсатора по фазе противоположный источнику тока электродвигателя, поэтому вращение ротора начинает замедляться, обмотка статора генерирует ток.

Этот принцип работы используется практически в электровозах, трамваях при необходимости плавного торможения. По такому же принципу некоторые «Кулибины», замедляют вращение диска электросчётчиков, пытаясь сократить расходы на электроэнергию.

Преобразование

Как практически своими руками преобразовать асинхронный электродвигатель в генератор?

Для подключения конденсаторов надо открутить верхнюю крышку борно (коробка), где расположена контактная группа, коммутирующая контакты обмоток статора и подключены провода питания асинхронного двигателя.

Открытое борно с контактной группой

Обмотки статора могут быть соединены в схему «Звезда» или «Треугольник».

Схемы включения «Звезда» и «Треугольник»

На шильдике или в паспорте на изделие показаны возможные схемы подключения и параметры двигателя при различных подключениях. Указывается:

  • максимальные токи;
  • напряжение питания;
  • потребляемая мощность;
  • количество оборотов в минуту;
  • КПД и другие параметры.

Параметры двигателя, которые указаны на шильдике

В трёхфазный генератор из асинхронного электродвигателя, который делают своими руками, конденсаторы подключаются по аналогичной схеме «Треугольником» или «Звездой».

Вариант включения со «Звездой» обеспечивает пусковой процесс генерации тока на более низких оборотах, чем при соединении схемы в «Треугольник». При этом напряжение на выходе генератора будет немного ниже. Подключение по схеме «Треугольника» предоставляет незначительное увеличение выходного напряжения, но требует более высоких оборотов при запуске генератора. В однофазном асинхронном электродвигателе подключается один фазосдвигающий конденсатор.

Схема подключения конденсаторов на генераторе в «Треугольник»

Используются конденсаторы модели КБГ-МН, или другие марки не менее 400 В бесполярные, двухполюсные электролитические модели в этом случае не подходят.

Как выглядит бесполюсный конденсатор марки КБГ-МН

Так как в бытовых условиях рассчитать необходимую ёмкость конденсаторов для используемого двигателя практически невозможно, экспериментальным путём была составлена таблица.

Расчёт ёмкости конденсаторов для используемого двигателя

Номинальная выходная мощность генератора, в кВт Предположительная ёмкость в, мкФ
2 60
3,5 100
5 138
7 182
10 245
15 342

В синхронных генераторах возбуждение процесса генерации происходит на обмотках якоря от источника тока. 90% асинхронных двигателей имеют короткозамкнутые роторы, без обмотки, возбуждение создаётся остаточным в роторе статическим зарядом. Его достаточно чтобы на первоначальном этапе вращения создать ЭДС, которое наводит ток, и подзаряжает конденсаторы, через обмотки статора. Дальнейшая подзарядка уже поступает от генерируемого тока, процесс генерации будет непрерывным, пока вращается ротор.

Автомат подключения нагрузки к генератору, розетки и конденсаторы рекомендуется установить в отдельный закрытый щит. Соединительные провода от борно генератора до щита проложить в отдельном изолированном кабеле.

Даже при неработающем генераторе необходимо избегать прикосновения к клемам конденсаторов контактов розеток. Накопленный конденсатором заряд остаётся длительное время и может ударить током. Заземляйте корпуса всех агрегатов, мотора, генератора, щита управления.

Монтаж системы мотор-генератор

При монтаже генератора с мотором своими руками надо учитывать, что указанное количество номинальных оборотов используемого асинхронного электродвигателя на холостом ходу больше.

Схема мотор-генератора на ременной передаче

На двигателе в 900 об/м при холостом ходе будет 1230 об/м, чтобы получить на выходе генератора, переделанного из этого двигателя достаточную мощность, надо иметь количество оборотов на 10% больше холостого хода:

1230 + 10% =1353 об/м.

Ременная передача рассчитывается по формуле:

Vг = Vм x Dм\Dг

Vг – необходимая скорость вращения генератора 1353 об/м;

Vм – скорость вращения мотора 1200 об/м;

Dм – диаметр шкива на моторе 15 см;

Dг – диаметр шкива на генераторе.

Имея мотор на 1200 об/м где шкив Ø 15 см, остаётся рассчитать только Dг – диаметр шкива на генераторе.

Dг = Vм x Dм/ Vг = 1200об/м х 15см/1353об/м = 13,3 см.

Генератор на ниодимовых магнитах

Как сделать генератор из асинхронного электродвигателя?

Этот самодельный генератор исключает применение конденсаторных установок. Источник магнитного поля, которое наводит ЭДС и создаёт ток в обмотке статора, построен на постоянных ниодимовых магнитах. Для того чтобы это сделать своими руками необходимо последовательно выполнить следующие действия:

  • Снять переднюю и заднюю крышки асинхронного электродвигателя.
  • Извлечь ротор из статора.

Как выглядит ротор асинхронного двигателя

  • Ротор протачивается, снимается верхний слой на 2 мм больше толщины магнитов. В бытовых условиях сделать расточку ротора своими руками не всегда представляется возможным, при отсутствии токарного оборудования и навыков. Нужно обратиться к специалистам в токарные мастерские.
  • На листе обычной бумаги готовится шаблон для размещения круглых магнитов, Ø 10-20мм, толщиной до 10 мм, с силой притяжения 5-9 кг, на кв/см, размер зависит от величины ротора. Шаблон наклеивается на поверхность ротора, магниты размещаются полосами под углом 15 – 20 градусов относительно оси ротора, по 8 штук в полосе. На рисунке ниже видно, что на некоторых роторах отмечены тёмно-светлые полосы смещения линий магнитного поля относительно его оси.

Установка магнитов на ротор

  • Ротор на магнитах рассчитывается так, чтобы получилось четыре группы полос, в группе по 5 полосок, расстояние между группами 2Ø магнита. Промежутки в группе 0.5-1Ø магнита, такое расположение снижает силу залипания ротора к статору, он должен проворачиваться усилиями двух пальцев;
  • Ротор на магнитах, сделанный по рассчитанному шаблону, заливается эпоксидной смолой. После того как она немного подсохнет цилиндрическая часть ротора покрывается слоем стекловолокна и опять пропитывается эпоксидной смолой. Это исключит вылет магнитов при вращении ротора. Верхний слой на магнитах не должен превышать первоначального диаметра ротора, который был до проточки. В противном случае ротор не встанет на своё место или при вращении будет тереться об обмотку статора.
  • После просушки, ротор можно поставить на место и закрыть крышки;
  • Испытывать, электрогенератор необходимо – проворачивать ротор электродрелью, измеряя напряжение на выходе. Количество оборотов при достижении нужного напряжения измеряется тахометром.
  • Зная необходимое количество оборотов генератора, ременная передача рассчитывается по методике описанной выше.

Интересный вариант применения, когда электрогенератор на основе асинхронного электродвигателя, используется в схеме электрический мотор-генератор с самоподпиткой. Когда часть мощности вырабатываемой генератором поступает на электродвигатель, который его раскручивает. Остальная энергия расходуется на полезную нагрузку. Осуществив принцип самоподпитки практически можно на долгое время обеспечить дом автономным электропитанием.

Видео. Генератор из асинхронного двигателя.

Для широкого круга потребителей электроэнергии покупать мощные дизельные электростанции как TEKSAN TJ 303 DW5C с мощностью на выходе 303 кВА или 242 кВт не имеет смысла. Маломощные бензиновые генераторы дорогие, оптимальный вариант сделать своими руками ветровые генераторы или устройство мотор-генератор с самопдпиткой.

Используя эту информацию можно собрать генератор своими руками, на постоянных магнитах или конденсаторах. Такое оборудование очень полезно на загородных домах, в полевых условиях, как аварийный источник питания, когда отсутствует напряжение в промышленных сетях. Полноценный дом с кондиционерами, электрическими плитами и нагревательными бойлерами, мощный мотор циркулярной пилы они не потянут. Временно обеспечить электроэнергией бытовые приборы первой необходимости могут, освещение, холодильник, телевизор и другие, которые не требуют больших мощностей.

Оцените статью:

elquanta.ru

как переделать ветромотор своими руками

Не всегда покупка заводского генератора является целесообразной. Иногда проще использовать подручные материалы и инструменты, чтобы сделать его самостоятельно. Устройства мощностью до 1 кВт будет достаточно для подключения уличного освещения на даче или любых других бытовых приборов. Можно соорудить такой генератор из асинхронного двигателя.

Конструктивные особенности

Изготовление асинхронного генератора своими руками дает множество преимуществ. Это бесплатный источник электричества, который можно использовать в разных целях. К тому же сделать такую работу может даже начинающий мастер.

Конструктивно схема электрогенератора будет состоять из нескольких ключевых элементов:

  1. Ротор. Он имеет лопасти, турбину и хвост, который позволяет монтировать конструкцию против направления ветра.
  2. Мачта. Может быть с растяжками или без, которые нужны для установки ротора. Как правило, высота мачт составляет около 5—6 метров, хотя это зависит от ветров в определённом регионе.
  3. Аккумуляторы. Можно взять старые свинцовые агрегаты.
  4. Электрогенератор переменного тока. Для этого нужно подготовить двигатель для последующей переделки.
  5. Устройство с дисплеем, чтобы регулировать уровень заряда аккумулятора.
  6. Преобразователь электричества. Достаточно мощности в 1 тыс. Вт.
  7. Система заземления.

Принцип работы устройства

Принцип работы самодельных генераторов переменного тока на 220 В ничем не отличается от устройств, которые применяются в промышленных целях. И те и другие перерабатывают кинетическую энергию в электрическую.

В конструкциях, изготовленных своими руками, сила ветра крутит ветряк, который закреплён на роторе. Таким образом, кинетическая энергия передаётся генератору. Он и производит электроэнергию. В качестве генератора зачастую используется переделанный асинхронный двигатель.

Вырабатываемая генератором электроэнергия передаётся в аккумуляторы. Последние должны оснащаться модулем контроля заряда. Из аккумуляторов электроэнергия поступает в инвертор постоянного напряжения. Таким образом, можно создать переменное напряжение. Оно будет подходить для использования в бытовых целях, то есть с параметрами 220 В и 50 Гц.

Чтобы преобразовать переменное напряжение в постоянное, необходимо установить специальный контроллер. Именно благодаря ему аккумуляторы заряжаются. Иногда инверторы могут выполнять функцию источника бесперебойного питания. То есть в случае отсутствия централизованного электричества или перебоев в его работе асинхронный генератор переменного тока можно использовать для бытовых целей, питания различных приборов, работающих на 220 В.

Необходимые материалы и инструменты

Для изготовления мотора-генератора своими руками достаточно иметь антисинхронный двигатель. Остальные материалы можно найти в хозяйстве или на специализированных рынках радиотехники.

Могут понадобиться такие инструменты и материалы:

  1. Труба из стали с толщиной стенок не менее 3 мм и общим диаметром 6 см и больше. Высоту нужно подбирать индивидуально, в зависимости от скорости ветров в регионе. Но нужно помнить, что чем выше будет мачта, тем сильнее будет дуть ветер и, соответственно, вырабатываться больше электричества.
  2. Для изготовления лопастей можно использовать различные материалы, но лучше купить готовую деталь заводского производства, так как она будет идеально откалибрована. Самостоятельно изготовить её можно из труб или листов ПВХ, металла. Кроме этого, может подойти деревянная доска, профиль из стеклоткани.
  3. В качестве основы (опоры для мачты) подойдёт бетонная стяжка. С другой стороны, можно использовать металл или дерево. Нужно только помнить, что за надёжность конструкции отвечает основа. Если опора будет слабой, то мачта со временем рухнет от ветра.
  4. Дрель и набор свёрл.
  5. Ножовка.
  6. Разводной ключ.
  7. Рулетка.
  8. Лист металла, который будет служить материалом для изготовления мачты.
  9. Стальная рама. Она будет выполнять функцию основы для ветрогенератора, поворотного механизма и лопастей.
  10. Весь необходимый дополнительный инструмент, включая сварку, с помощью которого можно изготовить устройство.
  11. Хомуты для фиксации растяжек.
  12. Металлический трос с сечением 12 мм.

Характеристики ветрогенератора

Сначала необходимо определиться с желаемым итоговым результатом. Характеристики электродвигателя, выполняющего роль генератора, могут быть разными, и от этого зависит, сколько электроэнергии устройство будет вырабатывать за единицу времени.

Для производства среднего количества энергии генератор должен иметь приблизительно такие характеристики:

  1. Минимальная мощность установки — 1.3 кВт.
  2. Желательны неодимовые магниты в конструкции. Их функция заключается в обеспечении электромагнитной движущейся силы. Для этого может применяться и стальная гильза, которая устанавливается на ротор.
  3. Расположение магнитов на роторе должно соответствовать схеме. Это значит, что их полюсы должны быть развёрнуты в правильную сторону.
  4. Предварительно вал ротора нужно проточить и подогнать размеры под диаметр магнитов.
  5. При установке магнитов не всегда требуется переделывать обмотку. Если она состоит из проводов с большим сечением — ничего страшного, это только увеличит мощность. Самым лучшим вариантом обмотки будет устройство, имеющее шесть полюсов, провод с сечением не более 1.2 мм и максимум 24 витка на катушке.

Нюансы монтажа

Как правило, для изготовления ветро генератора из асинхронного двигателя своими руками применяется ветряк с тремя лопастями, которые в диаметре достигают двух метров. Если увеличить количество лопастей или их длину, то улучшение характеристик не произойдёт. Перед тем как выбирать модификацию устройства, тип, характеристики, габариты, необходимо осуществить правильный расчёт.

Для начала нужно рассчитать мощность самой мачты. Она должна устанавливаться на бетонную основу толщиной полметра. Предварительно следует вырыть яму, также учитывая при этом состояние и тип почвы.

Подключать к электросети каждый из приборов нужно в определённом порядке. Сначала идут аккумуляторы, а потом уже и ветрогенератор. Вращаться вал электромотора может либо горизонтально, либо вертикально. Как правило, устанавливают в вертикальном положении, это связано с конструктивными особенностями. Для обеспечения защиты от влаги генератор оборудуют прокладками или колпаком.

Для установки мачты необходимо выбрать открытое место, где будет максимальное количество ветров. Высота монтажа генераторного устройства должна быть достаточно большой. Переделанный асинхронник в идеальном варианте устанавливается на высоте 15 метров, но на практике мачты более 7 метров никто не использует.

В качестве основного источника электрического питания дома устройство лучше не использовать. Такое тихоходное устройство следует устанавливать для страховки от ситуаций с перебоями в электричестве или для экономии семейного бюджета, поскольку счёт за централизованную подачу существенно уменьшается.

Стоит отметить, что установки подобного типа можно использовать не во всех регионах. Минимальная скорость ветра для целесообразности использования должна постоянно держаться на отметке 7 метров за секунду. Если этот показатель меньше, то и электроэнергии будет вырабатываться очень мало.

Перед установкой проводятся необходимые расчёты. В некоторых ситуациях могут возникнуть сложности с обработкой узлов асинхронного движка. Ветряк нельзя изготовить без соответствующих модулей, а также проведения предварительных испытаний устройства. Подключение такого оборудования осуществить невозможно.

Переделка своими руками

Конечно, можно купить асинхронный генератор заводского производства, но вариант самостоятельного изготовления значительно экономнее и не занимает много времени. В процессе не должно возникнуть никаких сложностей даже у неопытного человека.

Для переделки коллекторного двигателя переменного тока необходимо подготовить некоторые инструменты. Выполнять работу нужно с учётом определённых правил:

  1. Основной особенностью работы устройства является более высокая скорость вращения вала генератора, нежели двигателя. Поэтому сначала следует выяснить количество оборотов мотора за определённое время. Сделать можно такую операцию тахометром.
  2. Зная этот показатель, к полученой цифре требуется прибавить 10%. То есть при оборотах мотора в 1200 оборотов за минуту генератор должен иметь вращение 1310 оборотов.
  3. Для производства однофазного устройства или трёхфазного на 380 вольт необходимо подготовить ёмкость для конденсаторов. Следует учесть, что все конденсаторы системы не должны отличаться фазами.
  4. Ёмкость лучше подбирать средних размеров. Если она будет очень большой, то моторчик может перегреваться.
  5. К выбору и установке конденсаторов нужно подойти особо тщательно. Они должны обеспечивать нужное вращение вала двигателя. Их изоляция также важна во избежание попадания влаги.

Генератор можно взять и с других устройств, к примеру, от автомобиля ВАЗ. После этого требуется переходить к его монтажу на мачту. Следует помнить, что в случае использования ротора, работающего в короткозамкнутом режиме, устройство будет вырабатывать ток с высоким напряжением.

Для получения 220 вольт следует оснастить устройство понижающим трансформатором. Устройство не нужно подключать к электросети, поскольку оно работает по методу самозапитки.

Таким образом, сделать генератор из асинхронного двигателя не является сложной задачей даже для начинающего мастера. Если учесть все возможности устройства, то можно сделать вывод, что в определённых ситуациях оно поможет с перебоями электричества, а при установлении очень мощного ветрогенератора будет основным источником энергии в доме.

rusenergetics.ru

Генератор из асинхронного двигателя своими руками

За основу был взят промышленный асинхронный двигатель переменного тока, мощностью 1,5 кВт с частотой вращения вала 960 об/мин. Сам по себе такой мотор изначально не может работать как генератор. Ему необходима доработка, а именно замена или доработка ротора.
Табличка с маркировкой двигателя:

Двигатель хорош тем, что у него везде где нужно стоят уплотнения, особенно у подшипников. Это существенно увеличивает интервал между периодическими техническими обслуживаниями, так как пыль и грязь никуда просто так попасть и проникнуть не могут.
Ламы у этого электродвигателя можно поставить на любую сторону, что очень удобно.

Переделка асинхронного двигателя в генератор

Снимаем крышки, извлекаем ротор.
Обмотки статора остаются родные, двигатель не перематывается, все остается как есть, без изменений.

Ротор дорабатывался на заказ. Было решено сделать его не цельнометаллическим, а сборным.

То есть, родной ротор стачивается до определенного размера.
Вытачивается стальной стакан и запрессовывается на ротор. Толщина скана в моем случае 5 мм.

Разметка мест для приклеивания магнитов была одной из самых сложных операций. В итоге методом проб и ошибок было решено распечатать шаблон на бумаге, вырезать в нем кружочки под неодимовые магниты – они круглые. И приклеить магниты по шаблону на ротор.
Основная загвоздка возникла в вырезании множественных кружочков в бумаге.
Все размеры подбираются сугубо индивидуально под каждый двигатель. Каких-то общих размеров размещения магнитов дать нельзя.

Неодимовые магниты приклеены на супер клей.

Была сделана сетка из капроновой нити для укрепления.

Далее обматывается все скотчем, снизу делается герметичная опалубка, герметизированная пластилином, а сверху заливная воронка из того же скотча. Заливается все эпоксидной смолой.

Смола потихоньку стекает сверху вниз.

После застывания эпоксидной смолы, снимаем скотч.


Теперь все готов к сборке генератора.

Загоняем ротор в статор. Делать это нужно особо осторожно, так как неодимовые магниты обладают огромной силой и ротор буквально залетает в статор.

Собираем, закрываем крышки.

Магниты не задевают. Залипания почти нет, крутится относительно легко.
Проверка работы. Вращаем генератор от дрели, с частотой вращения 1300 об/мин.
Двигатель подключен звездой, треугольником генераторы такого типа подключать нельзя, не будут работать.
Снимается напряжение для проверки между фазами.

Генератор из асинхронного двигателя работает отлично.

Смотрите видео

Более подробную информацию смотрите в видеоролике.

Канал автора — Peter Dmitriev

sdelaysam-svoimirukami.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о