Для чего предназначен трансформатор: Трансформатор. Что такое? Зачем нужен?

Содержание

В чем отличие трансформатора тока от трансформатора напряжения?

Трансформаторы — устройства, используемые для преобразования одного из параметров электроэнергии – напряжения или силы тока.

Они относятся к пассивным электрическим устройствам, то есть не генерируют, а потребляют энергию, поэтому мощность тока в трансформаторах не может увеличиваться.

Таким образом, все трансформаторы в зависимости от преобразуемого параметра электрической энергии делятся на 2 вида:

  • трансформаторы электрического тока;
  • трансформаторы электрического напряжения.

Работа любого электрического трансформатора основана на принципе электромагнитной взаимоиндукции – способности проводника с током наводить эдс в соседнем проводнике. Проводниками в трансформаторе являются первичная (входная) и вторичная (выходная) обмотки, намотанные на магнитопровод для усиления магнитной связи между ними. Магнитопровод представляет собой замкнутый или разомкнутый сердечник из железа или композитного сплава с высокой магнитной проницаемостью.

Основными показателями трансформатора являются коэффициенты трансформации по напряжению и току:

КU=U2/U1 и KI=I2/I1

где U1,2 – напряжения в первичной и вторичной обмотке, I1,2 – силы тока в первичной и вторичной обмотке. Они показывают, во сколько раз изменяется входной ток или напряжение на выходе трансформатора. В зависимости от величины коэффициента трансформации различают повышающие (К˃1) и понижающие (К<1) трансформаторы. Если магнитная связь между обмотками не изменяется, то коэффициент трансформации будет равен соотношению количества витков во вторичной и первичной обмотке

K=w2/w1.

Особенности трансформаторов тока (ТТ)

Трансформаторы тока предназначены для преобразования силы тока без изменения его мощности. В основном они применяются для понижения тока до значений, пригодных для их измерения и используются в распределительных щитах для подключения измерительных приборов, счётчиков энергии, защитных реле.

По назначению они делятся на:

  • измерительные;
  • защитные;
  • лабораторные.

В измерительных ТТ первичная обмотка может отсутствовать или представлять собой толстую шину. На шину наматывается несколько витков вторичной обмотки, в которой наводится эдс, пропорциональная силе тока в шине. Шина включается в разрыв цепи, в которой производится измерение. К вторичной обмотке ТТ подключается нагрузка и измерительный прибор.
Важно! Так как КU для ТТ имеет большие значения, то включать их в режиме холостого хода (без нагрузки) запрещается, что может повлечь высоковольтный пробой изоляции проводов и выход из строя трансформатора.

Особенности трансформаторов напряжения (ТН)

ТН предназначены для получения нужной величины напряжения от промышленной сети или другого источника переменного тока. По своему назначению они делятся на:

  • силовые;
  • измерительные;
  • согласующие;
  • лабораторные;
  • высоковольтные трансформаторы.

В быту наиболее широкое применение нашли силовые трансформаторы, используемые повсеместно для подключения бытовых приборов к электросети 220В 50Гц. Конструктивно они представляют собой классический пример устройства трансформатора, состоящего из двух, а также нескольких катушек, намотанных на железный сердечник. По форме сердечника различают:

  • стержневые;
  • кольцевые;
  • тороидальные;
  • Ш-образные трансформаторы.

В отличие от трансформаторов тока благоприятным режимом работы для ТН является режим, близкий к холостому ходу, когда нагрузка на вторичную обмотку минимальна. Оптимальный режим работы достигается, когда сопротивление нагрузки равно или до полутора раз больше сопротивления выходной обмотки трансформатора.

 

§63. Назначение и принцип действия трансформатора

Назначение трансформатора.

Трансформатором называется статический электромагнитный аппарат, преобразующий переменный ток одного напряжения в переменный ток другого напряжения той же частоты.

Трансформаторы позволяют значительно повысить напряжение, вырабатываемое источниками переменного тока, установленными на электрических станциях, и осуществить передачу электроэнергии на дальние расстояния при высоких напряжениях (110, 220, 500, 750 и 1150 кВ). Благодаря этому сильно уменьшаются потери энергии в проводах и обеспечивается возможность значительного уменьшения площади сечения проводов линий электропередачи.

В местах потребления электроэнергии высокое напряжение, подаваемое от высоковольтных линий электропередачи, снова понижается трансформаторами до сравнительно небольших значений (127, 220, 380 и 660 В), при которых работают электрические потребители, установленные на фабриках, заводах, в депо и жилых домах. На э. п. с. переменного тока трансформаторы применяют для уменьшения напряжения, подаваемого из контактной сети к тяговым двигателям и вспомогательным цепям.

Кроме трансформаторов, применяемых в системах передачи и распределения электроэнергии, промышленностью выпускаются трансформаторы: тяговые (для э. п. с), для выпрямительных установок, лабораторные с регулированием напряжения, для питания радиоаппаратуры и др. Все эти трансформаторы называют силовыми.

Трансформаторы используют также для включения электроизмерительных приборов в цепи высокого напряжения (их называют измерительными), для электросварки и других целей. Трансформаторы бывают однофазные и трехфазные, двух- и многообмоточные.

Принцип действия трансформатора.


Действие трансформатора основано на явлении электромагнитной индукции. Простейший трансформатор состоит из стального магнитопровода 2 (рис. 212) и двух расположенных на нем обмоток 1 и 3.

Рис. 212. Схема включения однофазного трансформатора

Обмотки выполнены из изолированного провода и электрически не связаны. К одной из обмоток подается электрическая энергия от источника переменного тока. Эту обмотку называют первичной. К другой обмотке, называемой вторичной, подключают потребители (непосредственно или через выпрямитель).

При подключении трансформатора к источнику переменного тока (электрической сети) в витках его первичной обмотки протекает переменный ток i1, образуя переменный магнитный поток Ф. Этот поток проходит по магнитопроводу трансформатора и, пронизывая витки первичной и вторичной обмоток, индуцирует в них переменные э. д. с. е

1 и е2. Если к вторичной обмотке присоединен какой-либо приемник, то под действием э. д. с. е2 по ее цепи проходит ток i2.

Э. д. с, индуцированная в каждом витке первичной и вторичной обмоток трансформатора, согласно закону электромагнитной индукции зависит от магнитного потока, пронизывающего виток, и скорости его изменения. Магнитный поток каждого трансформатора является определенной величиной, зависящей от напряжения и частоты изменения переменного тока в источнике, к которому подключен трансформатор. Постоянна также и скорость изменения магнитного потока, она определяется частотой изменения переменного тока.

Следовательно, в каждом витке первичной и вторичной обмоток индуцируется одинаковая э. д.с. В результате этого отношение действующих значений э. д. с. Е1 и E

2, индуцированных в первичной и вторичной обмотках трансформатора, будет равно отношению чисел витков N1 и N2 этих обмоток, т. е.

E1/E2 = N1/ N2.

Отношение э. д. с. Евн обмотки высшего напряжения к э. д. с. Eнн обмотки низшего напряжения (или отношение чисел их витков) называется коэффициентом трансформации,

n = Евн / Eнн = Kвн / Kнн.

Коэффициент трансформации всегда больше единицы. Если пренебречь падениями напряжения в первичной и вторичной обмотках трансформатора (в трансформаторах средней и большой мощности они не превышают обычно 2—5 % номинальных значений напряжений U1 и U2), то можно считать, что отношение напряжения U1 первичной обмотки к напряжению U2 вторичной обмотки приблизительно равно отношению чисел их витков

, т. е.

U1/U2 ≈ N1/ N2

Таким образом, подбирая требуемое соотношение между числами витков первичной и вторичной обмоток, можно увеличивать или уменьшать напряжение на приемнике, подключенном к вторичной обмотке. Если необходимо на вторичной обмотке получить напряжение большее, чем подается на первичную, то применяют повышающие трансформаторы, у которых число витков во вторичной обмотке больше, чем в первичной.

В понижающих трансформаторах, наоборот, число витков вторичной обмотки меньше, чем в первичной.

Трансформатор не может осуществить преобразование напряжения постоянного тока. При подключении его первичной обмотки к сети постоянного тока в трансформаторе создается постоянный по величине и направлению магнитный поток, который не может индуцировать э. д. с. в первичной и вторичной обмотках. Поэтому не будет происходить передачи электрической энергии из первичной обмотки во вторичную.

При подключении первичной обмотки трансформатора к сети переменного тока через эту обмотку проходит некоторый ток, называемый током холостого хода. При включении нагрузки по вторичной обмотке трансформатора начинает проходить ток, при этом увеличивается и ток, проходящий по первичной обмотке.

Чем больше нагрузка трансформатора, т. е. электрическая мощность и ток i2, отдаваемые его вторичной обмоткой подключенным к ней приемникам, тем больше электрическая мощность и ток i1, поступающие из сети в первичную обмотку.

Ввиду того что потери мощности в трансформаторе обычно малы, можно приближенно принять, что мощности в первичной и вторичной обмотках одинаковы. В этом случае можно считать, что токи в обмотках трансформатора приблизительно обратно пропорциональны напряжениям: I

1/I2 ≠ U2/U1 или что токи в обмотках трансформатора обратно пропорциональны числам витков первичной и вторичной обмоток: I1/I2 ≠ N2/N1.

Это означает, что в повышающем трансформаторе ток во вторичной обмотке меньше, чем в первичной (во столько раз, во сколько напряжение U2 больше напряжения U1), а в понижающем ток во вторичной обмотке больше, чем в первичной.

Поэтому в трансформаторах обмотки высшего напряжения выполняются из более тонких проводов, чем обмотки низшего напряжения.


Электрощит Самара

Выбор региона

Азербайджан

Армения

Белоруссия

Грузия

Дальнее зарубежье

Казахстан

Киргизия

Молдова

Монголия

Прибалтика

Таджикистан

Туркменистан

Узбекистан

Украина

Москва

Санкт-Петербург

Алтайский край

Амурская область

Архангельская область

Астраханская область

Белгородская область

Брянская область

Владимирская область

Волгоградская область

Вологодская область

Воронежская область

Еврейская автономная область

Забайкальский край

Ивановская область

Иркутская область

Кабардино-Балкарская Республика

Калининградская область

Калужская область

Камчатский край

Карачаево-Черкесская республика

Кемеровская область

Кировская область

Костромская область

Краснодарский край

Красноярский край

Курганская область

Курская область

Ленинградская область

Липецкая область

Магаданская область

Московская область

Мурманская область

Ненецкий автономный округ

Нижегородская область

Новгородская область

Новосибирская область

Омская область

Оренбургская область

Орловская область

Пензенская область

Пермский край

Приморский край

Псковская область

Республика Адыгея

Республика Алтай

Республика Башкортостан

Республика Бурятия

Республика Дагестан

Республика Ингушетия

Республика Калмыкия

Республика Карелия

Республика Коми

Республика Марий Эл

Республика Мордовия

Республика Саха (Якутия)

Республика Северная Осетия-Алания

Республика Татарстан (Татарстан)

Республика Тыва

Республика Хакасия

Ростовская область

Рязанская область

Самарская область

Саратовская область

Сахалинская область

Свердловская область

Смоленская область

Ставропольский край

Тамбовская область

Тверская область

Томская область

Тульская область

Тюменская область

Удмуртская республика

Хабаровский край

Ханты-Мансийский автономный округ

Челябинская область

Чеченская республика

Чувашская республика (Чувашия)

Чукотский автономный округ

Ямало-ненецкий автономный округ

Ярославская область

СЗТТ :: Заземляемые трансформаторы напряжения ЗНОЛ.

03

Скачать опросные листы на трансформаторы напряжения

Скачать каталог на трансформаторы (pdf; 32 Мб)

Скачать каталог на трансформаторы ТВ (pdf; 3,5 Мб)

Скачать каталог «Трансформаторы для железных дорог» (pdf; 4,8 Мб)

 

Руководства по эксплуатации

Сертификаты

Версия для печати (pdf)

Требования к оформлению заказов трансформаторов предназначенных на экспорт

Назначение

Заземляемый трансформатор напряжения ЗНОЛ.03 предназначен для передачи сигнала измерительным приборам и устройствам защиты, в электроустановках класса напряжения (6 – 10) кВ. Поверхность корпуса трансформатора покрыта проводящим слоем,что обеспечивает экранирование и защиту от электрических полей. Вывод первичной обмотки «А» предназначен для соединения свысоковольтной линией с помощью адаптера с бушингом типа «С» по EN 50181. По заказу трансформаторы могут поставлятьсяс выводом первичной обмотки под адаптеры с бушингом типа «А» или «В» по EN 50181.

Расположение высоковольтного вывода «А» — вверху трансформатора или на торце трансформатора со стороны клеммной коробки.

Рабочее положение трансформатора в пространстве – любое.

ТУ16-2010 ОГГ.671 240.001 ТУ

Технические характеристики трансформатора напряжения ЗНОЛ.03

Наименование параметра

Значение параметра

ЗНОЛ.03-6

ЗНОЛ.031-6

ЗНОЛ.03-10

ЗНОЛ.031-10

Класс напряжения, кВ

6

10

Наибольшее рабочее напряжение, кВ

7,2

12

Номинальное напряжение первичной обмотки, В

6000

√3

10000

√3

Номинальное напряжение основной вторичной обмотки, В

100/√3

Номинальное напряжение дополнительной вторичной обмотки, В

100/3

Номинальная мощность основной вторичной обмотки, В·А, в классе точности*:

0,2

0,5

1

10

30

90

Номинальная мощность дополнительной вторичной обмотки в классе точности 3**, В·А

200

Предельная мощность вне класса точности, В·А

400

Предельный допустимый длительный первичный ток, А

0,11

0,07

Схема и группа соединения обмоток

1/1/1-0-0

Номинальная частота, Гц

50

Климатическое исполнение

У3

Примечания

1    * Трансформаторы изготавливаются с номинальной мощностью, соответствующей одному классу точности, в соответствии с заказом.

** В соответствии с заказом могут поставляться трансформаторы с классом точности дополнительной вторичной обмотки 3Р, 6Р.

2 Трансформаторы поставляются с устройством защиты от феррорезонанса СЗТн. Одно устройство на три трансформатора.

 

Общий вид трансформатора (чертеж)

Версия для печати (pdf)

 

 

 

 

 

 

 

 

 

Трансформаторы тока. Виды и устройство. Назначение и работа

В системе обеспечения электрической энергией трансформаторы выполняют различные функции. Конструкции классического вида применяются для изменения определенных свойств тока до значений, наиболее подходящих для осуществления измерений. Существуют и другие виды трансформаторов, которые выполняют задачи по корректировке свойств напряжения до значений, подходящих наилучшим образом для последующего распределения и передачи электроэнергии. Трансформаторы тока согласно своему назначению имеют особенности конструкции, и перечень основных и вспомогательных функций.

Назначение

Основной задачей такого трансформатора является преобразование тока. Он корректирует свойства тока с помощью первичной обмотки, подключенной в цепь по последовательной схеме. Вторичная обмотка измеряет измененный ток. Для такой задачи установлены реле, измерительные приборы, защита, регуляторы.

По сути дела, трансформаторы тока – это измерительные трансформаторы, которые не только измеряют, но и осуществляют учет с помощью приборов. Запись и сохранение рабочих параметров тока нужно для рационального применения электроэнергии при ее транспортировке. Это одна из функций трансформатора тока. Модели конструкций бывают преобразующего типа и силовые варианты исполнений.

Устройство

Обычно все варианты исполнений трансформаторов подобного вида снабжены магнитопроводами с вторичной обмоткой, которая при эксплуатации нагружена определенными значениями параметров сопротивления. Выполнение показателей нагрузки важно для дальнейшей точности измерений. Разомкнутая цепь обмотки не способна создавать компенсации потоков в сердечнике. Это дает возможность чрезмерному нагреву магнитопровода, и даже его сгоранию.

С другой стороны, магнитный поток, образуемый первичной обмоткой, имеет отличие в виде повышенных эксплуатационных характеристик, что также приводит к перегреву магнитопровода. Сердечник трансформатора тока изготавливают из нанокристаллических аморфных сплавов. Это вызвано тем, что трансформатор может работать с более широким интервалом эксплуатационных величин, которые зависят от класса точности.

Отличие от трансформатора напряжения

Одним из некоторых отличий является способ создания изоляции между двумя обмотками. Первичную обмотку в трансформаторах тока изолируют соответственно параметрам принимаемого напряжения. Вторичная обмотка имеет заземление.

Трансформаторы тока работают в условиях, подобных к случаю короткого замыкания, так как у них небольшое сопротивление вторичной обмотки. В этом и заключается назначение трансформаторов, измеряющих ток, а также отличие от трансформатора напряжения по условиям работы.

Для трансформатора напряжения при коротком замыкании его работа опасна из-за риска возникновения аварии. Для трансформатора тока такой режим работы вполне приемлемый и безопасный. Хотя бывают у таких трансформаторов также угрозы аварии, но для этого устанавливают свои системы и средства защиты.

Виды
Трансформаторы тока имеют три основных вида. Наиболее применяемые из них:
  • Сухие.
  • Тороидальные.
  • Высоковольтные (масляные, газовые).

У сухих трансформаторов первичная обмотка без изоляции. Свойства тока во вторичной обмотке зависят от коэффициента преобразования.

Тороидальные исполнения трансформаторов устанавливают на шины или кабели. Поэтому первичная обмотка для них не нужна, в отличие от обычных трансформаторов напряжения и тока. Первичный ток протекает по шине, которая проходит в центре трансформатора. Он дает возможность вторичной обмотке фиксировать показатели тока.

Такие трансформаторы тока редко используются для замера параметров тока, так как их надежность и точность измерений оставляет желать лучшего. Они чаще используются для дополнительной защиты от короткого замыкания.

Принцип работы и применение

При эксплуатации в цепях с большим током появляется необходимость использовать небольшие устройства, которые бы помогали контролировать нужные параметры тока бесконтактным методом. Для таких задач широко применяются токовые трансформаторы. Они измеряют ток, а также выполняют много вспомогательных функций.

Такие трансформаторы производятся в значительном количестве и имеют разные формы и модели исполнения. Отличительными параметрами этих устройств является интервал измерения, класс защиты устройства и его конструкция.

В настоящее время новые трансформаторы тока работают по простому методу, который был известен в то время, когда появилось электричество. При действии с нагрузкой в проводе образуется электромагнитное поле, улавливающееся чувствительным прибором (трансформатором тока). Чем сильнее это поле, тем больший ток проходит в проводе. Нужно только рассчитать коэффициент усиления прибора и передать сигнал в управляющую цепь, либо в цепь контроля.

Трансформаторы выполняют функцию рамки на силовом проводе и реагируют на значение сети питания. Современные измерительные трансформаторы выполнены из большого числа витков, имеют хороший коэффициент трансформации. Во время настройки устройства определяют вольтамперные свойства для расчета точки перегиба кривой. Это нужно для выяснения участка графика с интервалом устойчивости функции трансформатора, который также имеет свой коэффициент усиления.

Кроме задач измерения, измеритель дает возможность разделить цепи управления и силовые цепи, что является важным с точки зрения безопасности. Применяя современные трансформаторы тока, получают сигнал небольшой мощности, не опасный для человека и удобный в работе.

В качестве нагрузки такого устройства может быть любой прибор измерения, который может работать с ним. При большом расстоянии оказывает влияние внутреннее сопротивление линии. В этом случае прибор калибруют. Также, сигнал можно передавать в цепь защиты и управления на основе электронных приборов.

С помощью них производят аварийное отключение линий. Приборы производят контроль сети, определяют нужные параметры. При проектировании встает задача по подбору прибора для измерения и контроля. Трансформаторы выбирают по средним параметрам сети и конструкции прибора измерения. Чаще всего мощные установки комплектуются своими измерительными устройствами.

На современном производстве широко применяются измерительные трансформаторы. Также они нашли применение и в обыденной жизни. Чувствительные приборы осуществляют защиту дорогостоящего оборудования, создают безопасные условия для человека. Они работают в электроцепях, создавая контроль над эксплуатационными параметрами.

Коэффициент трансформации

Этот коэффициент служит для оценки эффективности функционирования трансформатора. Его значение по номиналу дается в инструкции к прибору. Коэффициент означает отношение тока в первичной обмотке к току вторичной обмотки. Это значение может сильно меняться от числа секций и витков.

Нужно учитывать, что этот показатель не всегда совпадает с фактической величиной. Есть отклонение, определяемое условиями работы прибора. Назначение и метод работы определяют значения погрешности. Но этот фактор также не может быть причиной отказа от контроля коэффициента трансформации. Имея значение погрешности, оператор сглаживает ее аппаратурой специального назначения.

Установка

Простые трансформаторы тока, работающие на шинах, устанавливаются очень просто, и не требуют инструмента или техники. Прибор ставится одним мастером при помощи крепежных зажимов. Стационарные требуют оборудования фундамента, монтажа несущих стоек. Каркас крепится сваркой. К этому каркасу монтируется аппаратура. Комплект оснащения зависит назначение устройства и его особенности.

Подключение

Чтобы облегчить процесс соединения проводов с устройством, изготовители маркируют комплектующие детали цифровым и буквенным обозначением. С помощью такой маркировки операторы, которые обслуживают устройство, могут легко сделать соединение элементов.

Способ подключения взаимосвязан с устройством, принципом работы и назначением прибора. Также оказывает влияние и схема обслуживаемой сети. Трехфазные линии с нейтралью предполагают установку прибора только на двух фазах. Эта особенность вызвана тем, что электрические сети на напряжение 6-35 киловольт не оснащены нулевым проводом.

Контроль

Это мероприятие состоит из разных операций: визуальный осмотр, дается оценка всей конструкции, проверяется маркировка, паспортные данные и т.д. Далее, осуществляется размагничивание трансформатора с помощью медленного повышения тока на первичной обмотке. Далее, величину тока уменьшают.

Затем готовят главные мероприятия по измерению параметров. Поверка основывается на оценке правильности полярности клемм катушек по нормам, также определяют погрешность с дальнейшей сверкой с паспортными данными.

Безопасность

Основные опасности при функционировании измерительных трансформаторов обусловлены качеством намотки катушек. Необходимо учитывать, что под витками действует основа из металла, которая в открытом виде создает опасность и угрозу для обслуживающего персонала.

Поэтому создается график обслуживания, по которому проводится периодическая проверка устройства. Персонал обязан следить за состоянием обмоток катушек. Перед проведением проверки трансформатор отключается и подключаются шунтирующие закоротки и заземление обмотки.

Похожие темы:

Электрический трансформатор

Трансформатор – это устройство, главным назначением которого является преобразование электрического тока. Он изменяет напряжение тока посредством электромагнитной индукции.

Работа трансформатора основана на двух базовых принципах:

 

  • Изменяющийся во времени электрический ток создает изменяющееся во времени магнитное поле.
  • Изменение магнитного потока, проходящего через обмотку, электромагнитную индукцию в этой обмотке. В некоторых трансформаторах, работающих на высоких или сверхвысоких частотах, магнитопровод может отсутствовать. Идеальный трансформатор — трансформатор, у которого отсутствуют потери энергии на нагрев обмоток и потоки рассеяния обмоток.

 


В идеальном трансформаторе все силовые линии проходят через все витки обеих обмоток. Такой трансформатор всю поступающую энергию из первичной цепи трансформирует в магнитное поле и, затем, в энергию вторичной цепи. В этом случае поступающая энергия равна преобразованной энергии.

 

 

 

Режимы работы трансформатора


1. Режим холостого хода. Данный режим характеризуется разомкнутой вторичной цепью трансформатора, вследствие чего ток в ней не течёт.

2. Нагрузочный режим. Этот режим характеризуется замкнутой на нагрузке вторичной цепи трансформатора. Данный режим является основным рабочим для трансформатора.

3. Режим короткого замыкания. Этот режим получается в результате замыкания вторичной цепи накоротко. С его помощью можно определить потери полезной мощности на нагрев проводов в цепи трансформатора.

4. Режим холостого хода. Когда вторичные обмотки ни к чему не подключены, ЭДС индукции в первичной обмотке практически полностью компенсирует напряжение источника питания, поэтому ток, протекающий через первичную обмотку, невелик. Для трансформатора с сердечником из магнито-мягкого материала ток холостого хода характеризует величину потерь в сердечнике (на вихревые токи и на гистерезис) и реактивную мощность перемагничивания магнитопровода.

5. Режим короткого замыкания. В режиме короткого замыкания на первичную обмотку трансформатора подается переменное напряжение небольшой величины, выводы вторичной обмотки соединяют накоротко. Величину напряжения на входе устанавливают такую, чтобы ток короткого замыкания равнялся номинальному (расчетному) току трансформатора.

6. Режим с нагрузкой. При подключении нагрузки к вторичной обмотке во вторичной цепи возникает ток, создающий магнитный поток в магнитопроводе, направленный противоположно магнитному потоку, создаваемому первичной обмоткой. В результате в первичной цепи нарушается равенство ЭДС индукции и ЭДС источника питания, что приводит к увеличению тока в первичной обмотке до тех пор, пока магнитный поток не достигнет практически прежнего значения.

 

 

 

 

Виды электрических трансформаторов

 


Силовой трансформатор — трансформатор, предназначенный для преобразования электрической энергии в электрических сетях и в установках, предназначенных для приёма и использования электрической энергии. Автотрансформатор — вариант трансформатора, в котором первичная и вторичная обмотки соединены напрямую, и имеют за счёт этого не только электромагнитную связь, но и электрическую. Обмотка автотрансформатора имеет несколько выводов, подключаясь к которым, можно получать разные напряжения. Преимуществом автотрансформатора является более высокий КПД, поскольку лишь часть мощности подвергается преобразованию — это особенно существенно, когда входное и выходное напряжения отличаются незначительно. Недостатком является отсутствие электрической изоляции (гальванической развязки) между первичной и вторичной цепью. Трансформатор тока — трансформатор, питающийся от источника тока.

Типичное применение — для снижения первичного тока до величины, используемой в цепях измерения, защиты, управления и сигнализации. Номинальное значение тока вторичной обмотки 1А , 5А. Первичная обмотка трансформатора тока включается в цепь с измеряемым переменным током, а во вторичную включаются измерительные приборы. Ток, протекающий по вторичной обмотке трансформатора тока, равен току первичной обмотки, деленному на коэффициент трансформации.

Трансформатор напряжения — трансформатор, питающийся от источника напряжения. Типичное применение — преобразование высокого напряжения в низкое в цепях, в измерительных цепях и цепях РЗиА. Применение трансформатора напряжения позволяет изолировать логические цепи защиты и цепи измерения от цепи высокого напряжения.

Импульсный трансформатор — это трансформатор, предназначенный для преобразования импульсных сигналов с длительностью импульса до десятков микросекунд с минимальным искажением формы импульса. Основное применение заключается в передаче прямоугольного электрического. Он служит для трансформации кратковременных видеоимпульсов напряжения, обычно периодически повторяющихся с высокой скважностью. Разделительный трансформатор — трансформатор, первичная обмотка которого электрически не связана со вторичными обмотками.

Силовые разделительные трансформаторы предназначены для повышения безопасности электросетей, при случайных одновременных прикасаниях к земле и токоведущим частям или нетоковедущим частям, которые могут оказаться под напряжением в случае повреждения изоляции. Согласующий трансформатор — трансформатор, применяемый для согласования сопротивления различных частей электронных схем при минимальном искажении формы сигнала. Одновременно согласующий трансформатор обеспечивает создание гальванической развязки между участками схем. Пик-трансформатор — трансформатор, преобразующий напряжение синусоидальной формы в импульсное напряжение с изменяющейся через каждые полпериода полярностью. Сдвоенный дроссель — конструктивно является трансформатором с двумя одинаковыми обмотками. Благодаря взаимной индукции катушек он при тех же размерах более эффективен, чем обычный дроссель. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания.

Трансфлюксор — разновидность трансформатора, используемая для хранения информации. Основное отличие от обычного трансформатора — это большая величина остаточной намагниченности магнитопровода. Иными словами трансфлюксоры могут выполнять роль элементов памяти. Помимо этого трансфлюксоры часто снабжались дополнительными обмотками, обеспечивающими начальное намагничивание и задающими режимы их работы. Эта особенность позволяла (в сочетании с другими элементами) строить на трансфлюксорах схемы управляемых генераторов, элементов сравнения и искусственных нейронов. Наиболее часто трансформаторы применяются в электросетях и в источниках питания различных приборов.

 

 

 

 

Применение трансформаторов в электросетях

 


Поскольку потери на нагревание провода пропорциональны квадрату тока, проходящего через провод, при передаче электроэнергии на большое расстояние выгодно использовать очень большие напряжения и небольшие токи. Из соображений безопасности и для уменьшения массы изоляции в быту желательно использовать не столь большие напряжения. Трансформаторы понижающие электросетей используют специальную систему охлаждения: трансформатор помещается в баке, заполненном трансформаторным маслом или специальной негорючей жидкостью.

 

 

 

 

Применение трансформаторов в источниках электропитания

 


Для питания разных узлов электроприборов требуются самые разнообразные напряжения. Блоки электропитания в устройствах, которым необходимо несколько напряжений различной величины содержат трансформаторы с несколькими вторичными обмотками или содержат в схеме дополнительные трансформаторы. В схемах питания современных радиотехнических и электронных устройств широко применяются высокочастотные импульсные трансформаторы. В импульсных блоках питания переменное напряжение сети сперва выпрямляют, а затем преобразуют при помощи инвертора в высокочастотные импульсы.

Система управления с помощью широтно-импульсной модуляции позволяет стабилизировать напряжение. После чего импульсы высокой частоты подаются на импульсный трансформатор, на выходе с которого, после выпрямления и фильтрации получают стабильное постоянное напряжение. Трансформаторы 50-60 Гц, несмотря на их недостатки, продолжают использовать в схемах питания, в тех случаях, когда надо обеспечить минимальный уровень высокочастотных помех, например при высококачественном звуковоспроизведении.

 

 

 

 

Эксплуатация электрических трансформаторов

 


Срок службы трансформатора может быть разделен на две категории: Экономический срок службы — экономический срок службы заканчивается, когда капитализированная стоимость непрерывной работы существующего электрического трансформатора превысит капитализированную стоимость доходов от эксплуатации этого трансформатора. Или экономический срок жизни трансформатора (как актива) заканчивается тогда, когда удельные затраты на трансформацию энергии с его помощью становятся выше удельной стоимости аналогичных услуг на рынке трансформации энергии.

 

 

 

 

Трансформатор ТПЛК-10

Трансформатор ТПЛК-10 — опорно-проходной измерительный трансформатор тока. Предназначен для уменьшения высоких первичных значений тока до значений пригодных для измерений. Одновременно служит изоляцией вторичных цепей от высокого первичного напряжения, что в свою очередь позволяет сделать работу в электроустановках более безопасной. Предназначен для установки в комплектные распределительные устройства внутренней установки переменного тока, частоты 50, 60 Гц типа КР-10/31.5.

Трансформатор ТПЛК-10 изготавливают в климатическом исполнении “У” или “Т”, категории размещения 3 и его необходимо эксплуатировать при следующих условиях:
— установку необходимо производить на высоте не превышающей 1000м над уровнем моря;
— верхнее значение температуры внутри КРУ +50°C, нижнее значение температуры — -45°C;
—  допустимое значение влажности воздуха согласно ГОСТ 155-43.1;
— неагрессивная и не взрывоопасная окружающая среда;
— положение в котором может работать трансформатор – любое.

Чертеж, габаритные и установочные размеры трансформатора ТПЛК-10

 

Внимание! При эксплуатации трансформатора, вторичные обмотки должны быть замкнуты! Производство работ на трансформаторе без снятия напряжения с первичной обмотки строго запрещено!

 

Трансформатор ТПЛК-10 обладает следующими техническими характеристиками:

ПараметрЗначение
 Значение номинального напряжения, кВ
 10
 Значение наибольшего рабочего напряжения, кВ
 12
 Значение номинальной частоты переменного тока, Гц
 50
 Значение номинального первичного тока, А
 10, 15, 30, 50, 100, 150, 200, 300, 400, 600, 800, 1000, 1500, 2000
 Значение номинального вторичного тока, А
1 или 5
 Количество вторичных обмоток
 2

Значение класса точности вторичных обмоток

для измерений

для защиты

 

0,2S; 0,2; 0,5S; 0,5;

5P; 10P

 Значение номинальной вторичной нагрузки, ВА вторичных обмоток:

— для измерений при cosφ=1

при активно-индуктивной нагрузке и cosφ=0,8

— для защиты при активно-индуктивной нагрузке и cosφ=0,8

 

 

1; 2; 2,5

3; 5; 10; 15; 20; 25; 30

3; 5; 10; 15; 20

Значение номинальной предельной кратности вторичной обмотки для защиты, не менее:

при номинальном первичном токе, А:

10-400

600; 800

1000; 1500; 2000

 

 

 

12

17

20

Значение кратности трехсекундного тока термической стойкости, при номинальном первичном токе, А:

10

15

30

50

100

150

200

300

400

600

800

1000

1500

2000

 

 

0,7

0,71

1,42

2,36

4,72

7,1

9,45

14,1

18,9

28,3

37,8

47,2

70,8

74

Значение тока электродинамической стойкости, при номинальном первичном токе, А:

10

15

30

100-600

800

1000

1500

2000

 

2,47

3,7

7,4

14,8

74,5

94,5

118

177

189

 

Конструкция трансформатора ТПЛК-10. Трансформатор ТПЛК-10 имеет вид опорно-проходной конструкции. Конструкция трансформатора содержит магнитопровод, первичную и вторичные обмотки. Каждая из вторичных обмоток расположена на своем магнитопроводе. Вторичная обмотка, предназначенная для измерения и учета электроэнергии обозначается №1, а обмотка для защиты обозначена №2. Маркировка выводов обмоток трансформатора – рельефная и выполняется путем заливки трансформаторов эпоксидным компаундом в форму. Электрическую прочность изоляции и защиту обмоток от механических воздействий обеспечивает литой блок, созданный благодаря заливке обмоток изоляционным компаундом. В нижней части литого блока расположены выводы вторичных обмоток. Присоединение неподвижного контакта разъединителя обеспечивает один из выводов первичной обмотки.

 

Под заказ изготавливаются трансформаторы с нестандартным набором катушек по классу точности!

 

Фото трансформатора ТПЛК-10:

Вы можете заказать трансформатор ТПЛК-10 любой конфигурации в компании “ЭнергоСфера” позвонив по телефону:
  • < Трансформатор ТОЛ-10 III-2
  • Трансформатор ТОЛ-10-IM-4 >
Автор: Денис Ярошенко
Трансформатор

— Energy Education

Рис. 1. Трансформатор, устанавливаемый на площадку для распределения электроэнергии. [1]

Трансформатор — это электрическое устройство, которое использует электромагнитную индукцию для передачи сигнала переменного тока (AC) от одной электрической цепи к другой, часто изменяя (или «преобразуя») напряжение и электрический ток. Трансформаторы не пропускают постоянный ток (DC) и могут использоваться для снятия постоянного напряжения (постоянного напряжения) из сигнала, сохраняя при этом изменяющуюся часть (напряжение переменного тока).В электрической сети трансформаторы играют ключевую роль в изменении напряжения, чтобы уменьшить потери энергии при передаче электроэнергии.

Трансформаторы изменяют напряжение электрического сигнала, исходящего от электростанции, обычно увеличивая (также называемое «повышением») напряжение. Трансформаторы также снижают («понижают») напряжение на подстанциях, а также в распределительных трансформаторах. [2] Трансформаторы также используются в составе устройств, как трансформаторы тока.

Как работают трансформаторы

Часто кажется удивительным, что трансформатор сохраняет общую мощность неизменной при повышении или понижении напряжения.Следует иметь в виду, что при повышении напряжения ток падает:

[математика] P = I_1 V_1 = I_2 V_2 [/ математика]

Трансформаторы используют электромагнитную индукцию для изменения напряжения и тока. Это изменение называется действием трансформатора и описывает, как трансформатор изменяет сигнал переменного тока с его первичного на вторичный компонент (как в приведенном выше уравнении). Когда на первичную катушку подается сигнал переменного тока, изменяющийся ток вызывает изменение магнитного поля (становится больше или меньше).Это изменяющееся магнитное поле (и связанный с ним магнитный поток) будет проходить через вторичную катушку, вызывая напряжение на вторичной катушке, тем самым эффективно связывая вход переменного тока от первичного ко вторичному компоненту трансформатора. Напряжение, приложенное к первичному компоненту, также будет присутствовать во вторичном компоненте.

Как упоминалось ранее, трансформаторы не пропускают вход постоянного тока. Это известно как изоляция постоянного тока. [2] Это связано с тем, что изменение тока не может быть вызвано постоянным током; Это означает, что нет изменяющегося магнитного поля, индуцирующего напряжение на вторичном компоненте.

Рисунок 1. Простой рабочий трансформатор. [3] Ток [math] I_p [/ math] поступает с напряжением [math] V_p [/ math]. Ток проходит через [math] N_p [/ math] обмотки, создавая магнитный поток в железном сердечнике. Этот поток проходит через [math] N_s [/ math] витков провода на другом контуре. Это создает ток [math] I_s [/ math] и разность напряжений во второй цепи [math] V_s [/ math]. Электроэнергия ([математика] V \ умноженная на I [/ математика]) остается прежней.

Основным принципом, который позволяет трансформаторам изменять напряжение переменного тока, является прямая зависимость между соотношением витков провода в первичной обмотке и вторичной обмотке и отношением первичного напряжения к выходному напряжению.Отношение числа витков (или петель) первичной обмотки к числу витков вторичной обмотки известно как отношение витков . Соотношение витков устанавливает следующее соотношение с напряжением:

[математика] \ frac {N_p} {N_s} = \ frac {V_p} {V_s} = \ frac {I_s} {I_p} [/ math]
  • [math] N_p [/ math] = Количество витков в первичной катушке
  • [math] N_s [/ math] = Количество витков вторичной катушки
  • [math] V_p [/ math] = напряжение на первичной обмотке
  • [math] V_s [/ math] = Напряжение на вторичной обмотке
  • [math] I_p [/ math] = Ток через первичный
  • [math] I_s [/ math] = Ток через вторичную обмотку

Из этого уравнения, если количество витков в первичной обмотке больше, чем количество витков во вторичной обмотке ([math] N_p \ gt N_s [/ math]), то напряжение на вторичной обмотке будет на меньше, чем на первичной обмотке.Это известно как понижающий трансформатор, потому что он понижает или понижает напряжение. В таблице ниже показаны распространенные типы трансформаторов, используемых в электрической сети.

Тип трансформатора Напряжение Передаточное число Текущий Мощность
Понизить входное (первичное) напряжение> выходное (вторичное) напряжение [math] N [/ math] p > [math] N [/ math] s [math] I [/ math] p <[math] I [/ math] s [math] P [/ math] p = [math] P [/ math] s
Шаг вверх входное (первичное) напряжение <выходное (вторичное) напряжение [math] N [/ math] p <[math] N [/ math] s [math] I [/ math] p > [math] I [/ math] s [math] P [/ math] p = [math] P [/ math] s
Один к одному входное (первичное) напряжение = выходное (вторичное) напряжение [math] N [/ math] p = [math] N [/ math] s [math] I [/ math] p = [math] I [/ math] s [math] P [/ math] p = [math] P [/ math] s

Преобразователь один к одному будет иметь равных значений для всего и используется в основном для цель обеспечения изоляции постоянного тока.

Понижающий трансформатор будет иметь на более высокое первичное напряжение на , чем вторичное напряжение, но на более низкое значение первичного тока на , чем его вторичный компонент.

В случае повышающего трансформатора , первичное напряжение будет ниже на , чем вторичное напряжение, что означает на больший первичный ток , чем вторичный компонент.

КПД

В идеальных условиях напряжение и ток изменяются с одинаковым коэффициентом для любого трансформатора, что объясняет, почему значение первичной мощности равно значению вторичной мощности для каждого случая в приведенной выше таблице.По мере того, как одно значение уменьшается, другое увеличивается, чтобы поддерживать постоянный равновесный уровень мощности. [2]

Трансформаторы могут быть чрезвычайно эффективными. Трансформаторы большой мощности могут достигать отметки КПД 99% в результате успехов в минимизации потерь в трансформаторе. Однако трансформатор всегда будет выдавать немного меньшую мощность, чем его входная мощность, поскольку полностью исключить потери невозможно. Есть некоторое сопротивление трансформатора.

Чтобы узнать больше о трансформаторах, см. Гиперфизику.

Для дальнейшего чтения

Для получения дополнительной информации см. Соответствующие страницы ниже:

Список литературы

Произошла ошибка: SQLSTATE [42S22]: столбец не найден: 1054 Неизвестный столбец «rev_user» в «списке полей»

Что такое преобразователь? | Вондрополис

Что вы считаете величайшим научным открытием или изобретением всех времен? Для некоторых открытие электричества Бенджамином Франклином, вероятно, окажется в верхней части списка.В конце концов, без электричества наша жизнь была бы совсем другой, чем сегодня.

Задумывались ли вы когда-нибудь о том, как электричество поступает от электростанции в ваш дом? Просто подключить электронное устройство к ближайшей розетке — это удобство, которое мы часто принимаем как должное. Однако путь электричества к этим маленьким розеткам в стене — увлекательное путешествие.

Если вы когда-либо видели предметы, свисающие с верхних столбов электроснабжения или большие ящики, стоящие рядом со зданиями, то вы знакомы с некоторыми из наиболее важных частей оборудования в системе, которая обеспечивает энергией ваш дом.Эти машины называются трансформаторами. Нет, они не превращаются в машины супергероев, когда вы не смотрите, но все они о переменах!

Трансформаторы — это электрические машины, которые переводят электричество с одного напряжения на другое. Напряжение — это мера электрической силы, которая толкает электроны по цепи. В некоторых случаях трансформаторы могут брать электричество с более низким напряжением и переключать его на более высокое напряжение. Такие трансформаторы называются повышающими трансформаторами.

Однако большинство трансформаторов являются понижающими трансформаторами.Они берут электричество с высоким напряжением и меняют его на более низкое напряжение. Это критический шаг в процессе доставки энергии, поскольку электричество, поступающее от электростанции, находится под чрезвычайно высоким напряжением, которое слишком велико для использования в вашем доме.

Например, линия электропередачи электростанции может передавать электричество напряжением от 400 000 до 750 000 вольт. Электричество отправляется с таким высоким напряжением, потому что ему часто приходится преодолевать большие расстояния. Использование более высоких напряжений помогает минимизировать потери энергии при перемещении.

В определенных областях, называемых электрическими подстанциями, огромные трансформаторы снижают это высокое напряжение до более низкого напряжения, которое направляется в определенные области. Вы когда-нибудь видели электрическую подстанцию ​​возле своего дома? Обычно по ним можно узнать по наличию большого количества электрических линий и оборудования, в том числе многочисленных трансформаторов.

Понижающие трансформаторы на подстанциях понижают высокое напряжение до более низкого в диапазоне 7200 вольт. Когда электричество достигает вашего района, трансформаторы на опорах или заземляющих коробках, подключенных к подземным проводам, снижают напряжение электричества до 220–240 вольт для использования в вашем доме.Некоторые основные электроприборы, такие как водонагреватели, плиты и кондиционеры, будут использовать 220–240 вольт, в то время как большинство других небольших электроприборов будут использовать 110–120 вольт.

Так как же трансформаторы творит эту электрическую магию? Все это происходит из-за пары простых фактов об электричестве. Трансформаторы работают, потому что колеблющийся электрический ток (известный как переменный ток или AC), протекающий по проводам, входящим в трансформатор (первичный ток), создает магнитное поле.Это флуктуирующее магнитное поле создает ток (вторичный ток) во втором наборе проводов, покидающих трансформатор, в результате процесса, называемого электромагнитной индукцией.

Чтобы сделать этот процесс более эффективным, провода, входящие в трансформатор и выходящие из него, скручены в петли или витки вокруг железного стержня, называемого сердечником. Если первичная и вторичная катушки имеют одинаковое количество витков или витков, напряжение будет одинаковым в каждой. Однако, если вторичная катушка имеет больше или меньше петель или витков, тогда напряжение вторичного тока будет больше или меньше первичного тока.

Например, если первичная обмотка имеет 10 витков, а вторичная обмотка — один виток, то трансформатор снизит первичное напряжение в 10 раз. Таким образом, ток, входящий в трансформатор при 1000 вольт, покинет трансформатор при 100 вольт. .

Что такое трансформатор? — определение и значение

A Трансформатор — это статическая электрическая машина, которая передает электрическую мощность переменного тока от одной цепи к другой цепи с постоянной частотой, но уровень напряжения может быть изменен, что означает, что напряжение может быть увеличено или уменьшено в соответствии с требованиями.

Он работает по принципу Закона электромагнитной индукции Фарадея , который гласит, что «величина напряжения прямо пропорциональна скорости изменения магнитного потока».

Состав:

Необходимость трансформатора

Обычно электроэнергия вырабатывается на 11 кВ. По экономическим причинам мощность переменного тока передается при очень высоких напряжениях, например 220 кВ или 440 кВ, на большие расстояния. Поэтому на электростанциях применяется повышающий трансформатор.

Теперь по соображениям безопасности напряжение понижается до разных уровней понижающим трансформатором на разных подстанциях для подачи энергии в разные места, и, таким образом, мощность используется при 400/230 В.

Если (В 2 > В 1 ) напряжение повышается на выходной стороне и называется повышающим трансформатором

Если (V 2 1 ) уровень напряжения на выходе понижается и известен как понижающий трансформатор.

Конструкция трансформатора

В основном состоит из

  1. Магнитная цепь (состоит из сердечника, ветвей, ярма и демпфирующей конструкции).
  2. Электрическая цепь (состоящая из первичной и вторичной обмоток)
  3. Диэлектрическая цепь (состоящая из изоляции разной формы и используемой в разных местах)
  4. Баки и принадлежности (расширитель, сапун, втулки, охлаждающие трубы и т. Д.)

Типы трансформаторов

Различные типы описаны ниже

  1. Положение обмоток относительно сердечника
  1. По коэффициенту трансформации или количеству витков в обмотках

3. Виды услуг

  • Трансформатор силовой
  • Распределительный трансформатор
  • Измерительный трансформатор
    • Трансформатор тока
    • Трансформатор потенциала
    • Автотрансформатор

4. На основании поставки

5. На базе охлаждения

  • Air Natural (AN) или с воздушным охлаждением, или сухого типа
  • Air ForceD (AF) или тип Air Blast
  • Масло Natural Air Natural (ОНАН)
  • Масло естественное воздушное принудительное (ONAF)
  • Масло с принудительной циркуляцией воздуха (OFAF)
  • Масло природное водное принудительное (ONWF)
  • Нефтяное принудительное водяное нагнетание (OFWF)

Уравнение трансформатора ЭДС

Уравнение ЭДС приведено ниже

Где E 1 и E 2 — напряжения, а N 1 , N 2 — количество витков в первичной и вторичной обмотках соответственно.

Потери в трансформаторе

  1. Потери в сердечнике или в железе
  • Потеря гистерезиса
  • Потери на вихревые токи
  1. Потери меди
  2. Случайные потери

КПД трансформатора

КПД трансформатора определяется как отношение выходной мощности к входной и выражается в уравнении ниже


Это все о трансформаторе. Продолжай читать.

Что такое трансформатор? — Основы схемотехники

Трансформатор представляет собой электрическое устройство, предназначенное для передачи электрической энергии от одной цепи к другой с той же частотой.Его также называют статическим механизмом, поскольку он не имеет движущихся частей. Он используется для управления уровнями напряжения между цепями. Он состоит из трех основных частей, которые состоят из двух обмоток и металлического сердечника, на который намотаны обмотки. Эти обмотки имеют форму катушек, сделанных из материалов, хорошо проводящих ток. Обмотки трансформатора играют главную роль в машине, поскольку эти обмотки служат в качестве индукторов.

Анатомия преобразователя a T

Трансформатор состоит из следующих частей:

  • Первичная обмотка
  • Вторичная обмотка
  • Сердечник
  • Изоляционные материалы
  • Трансформаторное масло
  • Консерватор
  • Сапун
  • Устройство РПН
  • Охлаждающие трубки
  • Реле Бухгольца
  • Взрывоотводчик

Как работают трансформаторы

Первичная обмотка, вторичная обмотка и сердечник являются основными частями силового трансформатора.Эти детали очень важны для работы трансформатора.

Первичная обмотка обычно изготавливается из меди из-за ее высокой проводимости и пластичности. Количество витков катушки должно быть кратно количеству витков вторичной катушки. Он также отвечает за производство магнитного потока. Магнитный поток создается, когда первичная катушка подключена к источнику электричества. Медный провод, используемый в первичной катушке, должен быть тоньше, чем у вторичной катушки, чтобы ток во вторичной катушке был выше, чем в первичной катушке.

Вторичная катушка, которая также сделана из меди, принимает магнитный поток, создаваемый первичной катушкой. Поток проходит через сердечник и соединяется со вторичной обмоткой. Вторичная обмотка подает энергию на нагрузку при измененном напряжении. В этой катушке будет индуцироваться напряжение, поэтому обмотка должна иметь большее количество витков по сравнению с первичной обмоткой. Ток, идущий от первичной катушки, будет генерировать переменный магнитный поток в сердечнике, чтобы вызвать электромагнитное соединение между первичной и вторичной катушками.Магнитный поток, который проходит через две катушки, индуцирует электродвижущую силу, величина которой пропорциональна количеству витков катушки.

Обмотка проводов катушки и выходное напряжение и ток

Величина наведенного напряжения, вызванного наведенным током во вторичной катушке, зависит от количества витков катушки во вторичной катушке. Связь между витками проволоки и напряжением в каждой катушке задается уравнением трансформатора :

Уравнение трансформатора показывает, что отношение входного и выходного напряжений трансформатора равно отношению количества витков на первичной и вторичной обмотках.

Расчет входного и выходного напряжения / тока в зависимости от первичной и вторичной обмоток проводов

Соотношение входного и выходного тока и витков катушки трансформатора определяется выражением:

Данное уравнение показывает, что отношение входного и выходного тока трансформатора равно отношению количества витков двух катушек.

Оценивая два приведенных выше уравнения, мы можем сделать вывод, что если напряжение увеличивается, ток уменьшается.Таким же образом, если напряжение уменьшается, ток увеличивается.

Что такое рейтинг VA?

ВА или вольт-ампер. обычно используется для определения силы тока при заданном напряжении в трансформаторе. Вольт-ампер также используется для измерения полной мощности в электрической цепи. Этот рейтинг определяет, сколько вольт-ампер способен выдать трансформатор.

Определение ВА и расчет максимального тока для первичной и вторичной обмоток

Чтобы рассчитать ток первичной и вторичной обмоток трансформатора с заданной номинальной мощностью, мы используем следующее:

Для отношения количества витков, напряжения и тока

Для максимального первичного тока

Для максимального вторичного тока,

Обозначение выходного напряжения трансформаторов с центральным отводом

Трансформатор с центральным отводом также известен как «двухфазный трехпроводной трансформатор».Это тип трансформатора, который имеет дополнительный провод, подключенный к середине вторичной обмотки трансформатора. Он обеспечивает два вторичных напряжения, V A и V B, с общим подключением. Эти вторичные напряжения равны подаваемому напряжению, что дает равную мощность каждой обмотке.


12-0-12 Трансформатор

A 12-0-12 трансформатор представляет собой понижающий трансформатор с центральным ответвлением с входным напряжением 220 В переменного тока при 50 Гц и выходным напряжением 24 В или 12 В (среднеквадратичное значение).Он назван трансформатором 12-0-12 из-за выходных потенциалов трех клемм, как показано на рисунке выше. Вторичная обмотка состоит из трех выводов: двух выводов от конца до конца и третьего вывода в качестве центрального отвода. На рисунке выше напряжение будет 24 В на всем протяжении (T 1 и T 3 ). Напряжение на T 1 и T 2 будет 12 В. 0 в 12-0-12 представляет контрольную точку с нулевым напряжением.


Для чего нужен электрический трансформатор?

Трансформатор — это электрическое устройство, разработанное и изготовленное для повышения или понижения напряжения.Электрические трансформаторы работают по принципу магнитной индукции и не имеют движущихся частей. Поскольку трансформатор преобразует напряжение на входе в напряжение, необходимое для устройства или оборудования, подключенного к выходу, он обратно увеличивает или уменьшает ток, протекающий между различными уровнями напряжения. Электрический трансформатор иллюстрирует закон сохранения энергии, который гласит, что энергия не может быть ни создана, ни разрушена, а только преобразована!

Основная конструкция электрического трансформатора

Электрические трансформаторы, не имеющие движущихся частей или высокочувствительных основных компонентов или материалов, по своей природе являются исключительно надежными и долговечными элементами оборудования.От хорошо спроектированного и качественно изготовленного трансформатора можно ожидать, что он будет работать непрерывно и без сбоев в течение многих лет при номинальных условиях эксплуатации. В своей основной форме электрический трансформатор состоит из двух катушек или обмоток — входной и выходной — из электропроводящего провода, намотанного на сердечник из электротехнической стали.

Основная функция электрического трансформатора

Когда первичная катушка, принимающая напряжение (вход), находится под напряжением, сердечник намагничивается, и напряжение впоследствии индуцируется или стимулируется в выходной или вторичной катушке.Изменение напряжения (отношения напряжений) между первичной и вторичной катушками зависит от соотношения витков катушек. Когда трансформатор нагружен, то есть когда устройство или оборудование, для питания которого предназначен трансформатор, подключено и трансформатор находится под напряжением, «нагрузка» начинает потреблять ток (выраженный в амперах или амперах) при напряжении, при котором трансформатор был разработан, чтобы доставить.

В Johnson Electric Coil Company мы предлагаем комплексные услуги по проектированию, проектированию и производству для поставки высокоэффективных электрических трансформаторов и индукторов на заказ.Предлагаемые нами услуги по проектированию и производству являются одними из самых разнообразных в отрасли.

Если вы ищете нестандартный электрический трансформатор или индуктор, наша команда Johnson Electric Coil Company может вам помочь. Наш опыт работы в отрасли насчитывает более восьми десятилетий, и мы здесь, чтобы удовлетворить все ваши потребности в электрических трансформаторах на десятилетия вперед.

Чтобы узнать больше о наших трансформаторах и возможностях, связанных с вашими приложениями, позвоните нам сегодня по телефону 800.826.9741 или заполните нашу контактную форму.

трансформаторов | Физика

Цели обучения

К концу этого раздела вы сможете:

  • Объясните, как работает трансформатор.
  • Рассчитайте напряжение, ток и / или количество витков с учетом других величин.

Трансформаторы делают то, что подразумевает их название — они преобразуют напряжения из одного значения в другое (вместо ЭДС используется термин «напряжение», потому что трансформаторы имеют внутреннее сопротивление).Например, многие сотовые телефоны, ноутбуки, видеоигры, электроинструменты и небольшие приборы имеют встроенный трансформатор (как на рисунке 1), который преобразует 120 В или 240 В переменного тока в любое напряжение, используемое устройством. Трансформаторы также используются в нескольких точках систем распределения электроэнергии, таких как показано на рисунке 2. Мощность передается на большие расстояния при высоком напряжении, потому что для данного количества мощности требуется меньший ток, а это означает меньшие потери в линии, как это было раньше. обсуждалось ранее.Но высокое напряжение представляет большую опасность, поэтому трансформаторы используются для получения более низкого напряжения в месте нахождения пользователя.

Рис. 1. Подключаемый трансформатор становится все более знакомым с ростом количества электронных устройств, которые работают от напряжения, отличного от обычных 120 В переменного тока. Большинство из них находятся в диапазоне от 3 до 12 В. (кредит: Shop Xtreme)

Рисунок 2. Трансформаторы изменяют напряжение в нескольких точках системы распределения электроэнергии. Электроэнергия обычно вырабатывается при напряжении более 10 кВ и передается на большие расстояния при напряжениях более 200 кВ, иногда даже 700 кВ, для ограничения потерь энергии.Распределение электроэнергии по районам или промышленным предприятиям осуществляется через подстанцию ​​и передается на короткие расстояния с напряжением от 5 до 13 кВ. Оно снижено до 120, 240 или 480 В для безопасности на месте отдельного пользователя.

Тип трансформатора, рассматриваемый в этом тексте (см. Рисунок 3), основан на законе индукции Фарадея и очень похож по конструкции на устройство Фарадея, которое использовалось для демонстрации того, что магнитные поля могут вызывать токи. Обе катушки называются первичной и вторичной .При нормальном использовании входное напряжение подается на первичную обмотку, а вторичная обмотка создает преобразованное выходное напряжение. Мало того, что железный сердечник улавливает магнитное поле, создаваемое первичной катушкой, его намагниченность увеличивает напряженность поля. Поскольку входное напряжение переменного тока, изменяющийся во времени магнитный поток направляется во вторичную обмотку, вызывая ее выходное переменное напряжение.

Рис. 3. Типичная конструкция простого трансформатора имеет две катушки, намотанные на ферромагнитный сердечник, ламинированный для минимизации вихревых токов.Магнитное поле, создаваемое первичной обмоткой, в основном ограничивается и увеличивается сердечником, который передает его вторичной обмотке. Любое изменение тока в первичной обмотке вызывает ток во вторичной обмотке.

Для простого трансформатора, показанного на рисунке 3, выходное напряжение В, , , , почти полностью зависит от входного напряжения В, , , p , и соотношения количества витков в первичной и вторичной катушках. Закон индукции Фарадея для вторичной обмотки дает наведенное выходное напряжение В с равным

.

[латекс] {V} _ {\ text {s}} = — {N} _ {\ text {s}} \ frac {\ Delta \ Phi} {\ Delta t} \\ [/ latex],

, где N s — количество витков во вторичной катушке, а Δ Φ / Δ t — скорость изменения магнитного потока.Обратите внимание, что выходное напряжение равно индуцированной ЭДС ( В с = ЭДС с ), при условии, что сопротивление катушки невелико (разумное предположение для трансформаторов). Площадь поперечного сечения катушек одинакова с обеих сторон, как и напряженность магнитного поля, поэтому Δ Φ / Δ t одинаковы с обеих сторон. Входное первичное напряжение В p также связано с изменением магнитного потока на

[латекс] {V} _ {p} = — {N} _ {\ text {p}} \ frac {\ Delta \ Phi} {\ Delta t} \\ [/ latex].

Причина этого немного более тонкая. Закон Ленца говорит нам, что первичная катушка противодействует изменению магнитного потока, вызванному входным напряжением В p , отсюда знак минус (это пример самоиндукции , тема, которая будет исследована в некоторых подробнее в следующих разделах). Предполагая пренебрежимо малое сопротивление катушки, правило петли Кирхгофа говорит нам, что наведенная ЭДС в точности равна входному напряжению. Соотношение этих двух последних уравнений дает полезное соотношение:

[латекс] \ frac {{V} _ {\ text {s}}} {{V} _ {\ text {p}}} = \ frac {{N} _ {\ text {s}}} {{ N} _ {\ text {p}}} \\ [/ latex]

Это известно как уравнение трансформатора , и оно просто утверждает, что отношение вторичного напряжения к первичному в трансформаторе равно отношению количества контуров в их катушках.Выходное напряжение трансформатора может быть меньше, больше или равно входному напряжению, в зависимости от соотношения количества витков в их катушках. Некоторые трансформаторы даже обеспечивают переменный выход, позволяя выполнять подключение в разных точках вторичной обмотки. Повышающий трансформатор — это тот, который увеличивает напряжение, тогда как понижающий трансформатор снижает напряжение. Если предположить, что сопротивление незначительно, выходная электрическая мощность трансформатора равна его входной.На практике это почти верно — КПД трансформатора часто превышает 99%. Уравнивание входной и выходной мощности,

P p = I p V p = I s V s = P s .

Перестановка условий дает

[латекс] \ frac {{V} _ {\ text {s}}} {{V} _ {\ text {p}}} = \ frac {{I} _ {\ text {p}}} {{ I} _ {\ text {s}}} \\ [/ latex].

В сочетании с [латексом] \ frac {{V} _ {\ text {s}}} {{V} _ {\ text {p}}} = \ frac {{N} _ {\ text {s}} } {{N} _ {\ text {p}}} \\ [/ latex], мы находим, что

[латекс] \ frac {{I} _ {\ text {s}}} {{I} _ {\ text {p}}} = \ frac {{N} _ {\ text {p}}} {{ N} _ {\ text {s}}} \\ [/ latex]

— это соотношение между выходным и входным токами трансформатора.Таким образом, если напряжение увеличивается, ток уменьшается. И наоборот, если напряжение уменьшается, ток увеличивается.

Пример 1. Расчет характеристик повышающего трансформатора

Портативный рентгеновский аппарат имеет повышающий трансформатор, входное напряжение которого 120 В преобразуется в выходное напряжение 100 кВ, необходимое для рентгеновской трубки. Первичная обмотка имеет 50 петель и потребляет ток 10,00 А. а) Какое количество петель во вторичной обмотке? (b) Найдите текущий выходной сигнал вторичной обмотки.

Стратегия и решение для (а)

Решаем [латекс] \ frac {{V} _ {\ text {s}}} {{V} _ {\ text {p}}} = \ frac {{N} _ {\ text {s}}} {{N} _ {\ text {p}}} \\ [/ latex] для [latex] {N} _ {\ text {s}} \\ [/ latex] для N s , номер петель во вторичной обмотке и введите известные значения.{4} \ end {array} \\ [/ latex].

Обсуждение для (а)

Для создания такого большого напряжения требуется большое количество контуров во вторичной обмотке (по сравнению с первичной). Это справедливо для трансформаторов с неоновой вывеской и трансформаторов, подающих высокое напряжение внутри телевизоров и электронно-лучевых трубок.

Стратегия и решение для (b)

Аналогичным образом мы можем найти выходной ток вторичной обмотки, решив [latex] \ frac {{I} _ {\ text {s}}} {{I} _ {\ text {p}}} = \ frac {{N } _ {\ text {p}}} {{N} _ {\ text {s}}} \\ [/ latex] для [латекса] {I} _ {\ text {s}} \\ [/ latex] для I с и ввод известных значений.{4}} = 12,0 \ text {mA} \ end {array} \\ [/ latex].

Обсуждение для (б)

Как и ожидалось, текущий выход значительно меньше входного. В некоторых зрелищных демонстрациях используются очень большие напряжения для получения длинных дуг, но они относительно безопасны, поскольку выход трансформатора не обеспечивает большой ток. Обратите внимание, что потребляемая мощность здесь составляет P p = I p V p = (10,00 A) (120 В) = 1.20 кВт. Это равно выходной мощности P p = I s V s = (12,0 мА) (100 кВ) = 1,20 кВт, как мы предполагали при выводе используемых уравнений.

Тот факт, что трансформаторы основаны на законе индукции Фарадея, проясняет, почему мы не можем использовать трансформаторы для изменения постоянного напряжения. Если нет изменений в первичном напряжении, значит, во вторичной обмотке нет напряжения. Одна из возможностей — подключить постоянный ток к первичной катушке через переключатель.Когда переключатель размыкается и замыкается, вторичная обмотка вырабатывает напряжение, подобное показанному на рисунке 4. На самом деле это не практичная альтернатива, и переменный ток обычно используется везде, где необходимо увеличивать или уменьшать напряжения.

Рис. 4. Трансформаторы не работают с входом чистого постоянного напряжения, но если он включается и выключается, как показано на верхнем графике, выход будет выглядеть примерно так, как показано на нижнем графике. Это не тот синусоидальный переменный ток, который нужен большинству устройств переменного тока.

Пример 2. Расчет характеристик понижающего трансформатора

Зарядное устройство, предназначенное для последовательного подключения десяти никель-кадмиевых аккумуляторов (суммарная ЭДС 12.5 В постоянного тока) должен иметь выход 15,0 В для зарядки аккумуляторов. В нем используется понижающий трансформатор с первичной обмоткой на 200 контуров и входным напряжением 120 В. а) Сколько витков должно быть во вторичной катушке? (b) Если ток зарядки составляет 16,0 А, каков ток на входе?

Стратегия и решение для (а)

Можно ожидать, что вторичный узел будет иметь небольшое количество петель. Решение [латекс] \ frac {{V} _ {\ text {s}}} {{V} _ {\ text {p}}} = \ frac {{N} _ {\ text {s}}} {{ N} _ {\ text {p}}} \\ [/ latex] для [latex] {N} _ {\ text {s}} \\ [/ latex] для N s и ввод известных значений дает

[латекс] \ begin {array} {lll} {N} _ {\ text {s}} & = & {N} _ {\ text {p}} \ frac {{V} _ {\ text {s} }} {{V} _ {\ text {p}}} \\ & = & \ left (\ text {200} \ right) \ frac {15.0 \ text {V}} {120 \ text {V}} = 25 \ end {array} \\ [/ latex]

Стратегия и решение для (b)

Текущий ввод может быть получен путем решения [latex] \ frac {{I} _ {\ text {s}}} {{I} _ {\ text {p}}} = \ frac {{N} _ {\ текст {p}}} {{N} _ {\ text {s}}} \\ [/ latex] для I p и ввод известных значений. Это дает

[латекс] \ begin {array} {lll} {I} _ {\ text {p}} & = & {I} _ {\ text {s}} \ frac {{N} _ {\ text {s} }} {{N} _ {\ text {p}}} \\ & = & \ left (16.0 \ text {A} \ right) \ frac {25} {200} = 2.00 \ text {A} \ end {array} \\ [/ latex]

Обсуждение

Количество петель во вторичной обмотке невелико, как и ожидалось для понижающего трансформатора. Мы также видим, что небольшой входной ток дает больший выходной ток в понижающем трансформаторе. Когда трансформаторы используются для управления большими магнитами, они иногда имеют небольшое количество очень тяжелых петель во вторичной обмотке. Это позволяет вторичной обмотке иметь низкое внутреннее сопротивление и производить большие токи. Заметим еще раз, что это решение основано на предположении о 100% КПД — или выходная мощность равна входной мощности ( P p = P s ), что является разумным для хороших трансформаторов.В этом случае первичная и вторичная мощность составляют 240 Вт. (Убедитесь в этом сами для проверки согласованности.) Обратите внимание, что никель-кадмиевые батареи необходимо заряжать от источника постоянного тока (как и аккумулятор на 12 В). Таким образом, выход переменного тока вторичной катушки необходимо преобразовать в постоянный ток. Это делается с помощью так называемого выпрямителя, в котором используются устройства, называемые диодами, которые пропускают только односторонний ток.

Трансформаторы

находят множество применений в системах электробезопасности, которые обсуждаются в разделе «Электробезопасность: системы и устройства».

Исследования PhET: Генератор

Генерируйте электричество с помощью стержневого магнита! Откройте для себя физику, лежащую в основе этого явления, исследуя магниты и узнайте, как их можно использовать, чтобы зажечь лампочку.

Щелкните, чтобы загрузить симуляцию. Запускать на Java.

Сводка раздела

  • Трансформаторы используют индукцию для преобразования напряжения из одного значения в другое.
  • Для трансформатора напряжения на первичной и вторичной обмотках связаны соотношением

    [латекс] \ frac {{V} _ {\ text {s}}} {{V} _ {\ text {p}}} = \ frac {{N} _ {\ text {s}}} {{ N} _ {\ text {p}}} \\ [/ latex],

    , где V p и V s — напряжения на первичной и вторичной обмотках, имеющих N p и N s витков.

  • Токи I p и I s в первичной и вторичной обмотках связаны соотношением [латекс] \ frac {{I} _ {\ text {s}}} {{I} _ {\ текст {p}}} = \ frac {{N} _ {\ text {p}}} {{N} _ {\ text {s}}} \\ [/ latex].
  • Повышающий трансформатор увеличивает напряжение и снижает ток, тогда как понижающий трансформатор снижает напряжение и увеличивает ток.

Концептуальные вопросы

1. Объясните, что вызывает физические вибрации трансформаторов при частоте, в два раза превышающей используемую мощность переменного тока.

Задачи и упражнения

1. Подключаемый трансформатор, показанный на рисунке 4, подает 9,00 В в систему видеоигр. (а) Сколько витков во вторичной обмотке, если ее входное напряжение составляет 120 В, а первичная обмотка имеет 400 витков? (б) Какой у него входной ток, когда его выход 1,30 А?

2. Американская путешественница в Новой Зеландии несет трансформатор для преобразования стандартных 240 В в Новой Зеландии в 120 В, чтобы она могла использовать в поездке небольшие электроприборы.а) Каково соотношение витков первичной и вторичной обмоток ее трансформатора? (б) Каково отношение входного тока к выходному? (c) Как новозеландец, путешествующий по Соединенным Штатам, мог использовать этот же трансформатор для питания своих устройств на 240 В от 120 В?

3. В кассетном магнитофоне используется подключаемый трансформатор для преобразования 120 В в 12,0 В с максимальным выходным током 200 мА. (а) Каков текущий ввод? б) Какая потребляемая мощность? (c) Является ли такое количество мощности приемлемым для небольшого прибора?

4.(а) Каково выходное напряжение трансформатора, используемого для аккумуляторных батарей фонарика, если его первичная обмотка имеет 500 витков, вторичная — 4 витка, а входное напряжение составляет 120 В? (b) Какой входной ток требуется для получения выходного сигнала 4,00 А? (c) Какая потребляемая мощность?

5. (a) Подключаемый трансформатор для портативного компьютера выдает 7,50 В и может обеспечивать максимальный ток 2,00 А. Каков максимальный входной ток, если входное напряжение составляет 240 В? Предположим 100% эффективность. (b) Если фактический КПД меньше 100%, потребуется ли входной ток больше или меньше? Объяснять.

6. Многоцелевой трансформатор имеет вторичную катушку с несколькими точками, в которых может быть снято напряжение, давая на выходе 5,60, 12,0 и 480 В. (a) Входное напряжение составляет 240 В на первичную катушку с 280 витками. Какое количество витков в частях вторичной обмотки используется для создания выходного напряжения? (b) Если максимальный входной ток составляет 5,00 А, каковы максимальные выходные токи (каждый из которых используется отдельно)?

7. Крупная электростанция вырабатывает электроэнергию напряжением 12,0 кВ.Его старый трансформатор когда-то преобразовывал напряжение до 335 кВ. Вторичная обмотка этого трансформатора заменяется, так что его выходная мощность может составлять 750 кВ для более эффективной передачи по пересеченной местности на модернизированных линиях электропередачи. (а) Каково соотношение оборотов в новой вторичной системе по сравнению со старой? (b) Каково отношение нового текущего выхода к старому выходу (при 335 кВ) при той же мощности? (c) Если модернизированные линии передачи имеют одинаковое сопротивление, каково отношение потерь мощности в новых линиях к старым?

8.Если выходная мощность в предыдущей задаче составляет 1000 МВт, а сопротивление линии составляет 2,00 Ом, каковы были потери в старой и новой линии?

9. Необоснованные результаты Электроэнергия на 335 кВ переменного тока из линии электропередачи подается в первичную обмотку трансформатора. Отношение числа витков вторичной обмотки к числу витков первичной обмотки составляет Н с / Н p = 1000. (a) Какое напряжение индуцируется во вторичной обмотке? б) Что неразумного в этом результате? (c) Какое предположение или предпосылка ответственны?

10. Создайте свою проблему Рассмотрим двойной трансформатор, который будет использоваться для создания очень больших напряжений. Устройство состоит из двух этапов. Первый — это трансформатор, который выдает намного большее выходное напряжение, чем его входное. Выход первого трансформатора используется как вход для второго трансформатора, который дополнительно увеличивает напряжение. Постройте задачу, в которой вы рассчитываете выходное напряжение последней ступени на основе входного напряжения первой ступени и количества витков или петель в обеих частях обоих трансформаторов (всего четыре катушки).Также рассчитайте максимальный выходной ток последней ступени на основе входного тока. Обсудите возможность потерь мощности в устройствах и их влияние на выходной ток и мощность.

Глоссарий

трансформатор:
Устройство, преобразующее напряжение из одного значения в другое с помощью индукции
уравнение трансформатора:
уравнение, показывающее, что отношение вторичного напряжения к первичному в трансформаторе равно отношению количества витков в их катушках; [латекс] \ frac {{V} _ {\ text {s}}} {{V} _ {\ text {p}}} = \ frac {{N} _ {\ text {s}}} {{N} _ {\ text {p}}} \\ [/ latex]
повышающий трансформатор:
трансформатор, повышающий напряжение
понижающий трансформатор:
трансформатор, понижающий напряжение

Избранные решения проблем и упражнения

1.(а) 30.0 (б) 9.75 × 10 −2 A

3. (а) 20,0 мА (б) 2,40 Вт (в) Да, такая мощность вполне разумна для небольшого прибора.

5. (a) 0,063 A (b) Требуется больший входной ток.

7. (а) 2,2 (б) 0,45 (в) 0,20, или 20,0%

9. (a) 335 МВ (b) слишком высокое, намного выше напряжения пробоя воздуха на разумных расстояниях (c) входное напряжение слишком высокое

Что такое трансформатор? | Определение, принцип работы и типы

Определение трансформатора

Итак, что же такое трансформатор в конце концов? Простое определение трансформатора состоит в том, что это статическое электрическое устройство, которое преобразует электрическую энергию из одной электрической цепи в другую без какого-либо изменения частоты посредством процесса электромагнитной индукции.Интересно отметить, что передача энергии от одной цепи к другой происходит с помощью взаимной индукции, то есть поток, индуцированный в первичной обмотке, связывается со вторичной обмоткой, что мы объясним позже. Отказ трансформатора также может произойти, если для его работы не будут приняты соответствующие меры.

Основная роль трансформатора заключается в повышении или понижении напряжения в зависимости от ситуации, в которой он установлен.

Работа трансформатора

Работа трансформатора основана на простом принципе взаимной индукции между первичной и вторичной обмотками, которые иначе называются катушками, которые помогают преобразовывать энергию из одной цепи в другую.Теперь давайте попробуем понять общую картину:

Итак, в основном первичная обмотка трансформатора получает напряжение переменного по своей природе. Переменный ток, следующий за катушкой, создает непрерывно изменяющийся переменный поток, который создается вокруг первичной обмотки. Затем у нас есть другая катушка или вторичная катушка, которая находится рядом с первичной катушкой, которая связана с первичной, потому что связан некоторый переменный поток. Поскольку поток непрерывно изменяется, он индуцирует ЭДС, индуцированную во вторичной катушке в соответствии с законом электромагнитной индукции Фарадея.Если цепь вторичной стороны замкнута, будет течь ток, и это самая основная работа трансформатора.

Конструкция трехфазного трансформатора

Три основных части любого трансформатора — это первичная обмотка, вторичная обмотка и магнитопровод. Теперь мы подробно рассмотрим каждый из этих компонентов.

Первичная обмотка

Это основная обмотка, через которую ожидается поступающий переменный ток. В зависимости от того, является ли трансформатор повышающим или понижающим трансформатором, конструкция обмотки изменяется соответствующим образом.

Вторичная обмотка

Это обмотка, в которой объединяется поток, создаваемый первичной обмоткой. В этом случае также в зависимости от того, является ли трансформатор повышающим или понижающим трансформатором, конструкция обмотки изменяется соответствующим образом.

Магнитный сердечник

Это требуется для обеспечения пути с низким сопротивлением для магнитного потока, проходящего от первичной обмотки ко вторичной обмотке, чтобы сформировать замкнутую магнитную цепь.Обычно он состоит из CRGOS (холоднокатаная кремниевая сталь с ориентированной зернистостью).

Уравнение трансформатора

Итак, теперь давайте посмотрим на теоретический аспект трансформатора, поскольку для нас важно понять уравнение трансформатора и то, как оно получено, а также различные отношения, которые мы имеем в отношении напряжения, витков и поток.

ЭДС, индуцированная в каждой обмотке трансформатора, может быть рассчитана по его уравнению для ЭДС.

Связь потока представлена ​​законом электромагнитной индукции Фарадея.Это выражается как,

Вышеупомянутое уравнение может быть записано как,

, где E m = 4,44ωΦ m = максимальное значение e. Для синусоидальной волны среднеквадратичное значение ЭДС определяется как

ЭДС, индуцированная в их первичной и вторичной обмотках, выражается как (Wb), f — частота в герцах (Гц), а E 1 и E 2 в вольтах.

If, B м = максимальная плотность потока в магнитной цепи в теслах (Тл)

A = площадь поперечного сечения сердечника в квадратных метрах (м 2 )

Обмотка, имеющая более высокую Номер напряжения имеет высокое напряжение, а первичная обмотка имеет низкое напряжение.

Соотношение напряжений и оборотов

Отношение E / T называется вольт на оборот. Первичное и вторичное вольт на виток определяется формулой

Уравнение (1) и (2) показывает, что напряжение на виток в обеих обмотках одинаковое, то есть

Отношение T 1 / T 2 называется коэффициентом поворота. Соотношение витков выражается как

Соотношение витков первичной и вторичной обмоток, которое равно индуцированному напряжению первичной и вторичной обмоток, указывает, насколько первичное напряжение понижено или повышено.Коэффициент трансформации или коэффициент наведенного напряжения называется коэффициентом трансформации и обозначается символом a. Таким образом,

Любое желаемое соотношение напряжений может быть получено путем изменения числа витков.

Типы трансформаторов

Поскольку трансформаторы используются, вероятно, в каждой области, они представляют собой различные типы трансформаторов в зависимости от нескольких факторов, таких как конструкция трансформатора, применение, область, в которой он используется, конечное назначение трансформатора и т. Д.и т.д. или понижающий трансформатор.

Повышающий трансформатор

Как следует из названия, повышающие трансформаторы используются для увеличения напряжения на вторичной стороне трансформатора. Это достигается за счет большего количества витков на вторичной обмотке трансформатора по сравнению с первичной обмоткой трансформатора.Такой тип трансформатора обычно используется на генерирующих станциях, где напряжение генератора, как правило, составляет 23,5 кВ, повышается до 132 кВ или более.

Понижающий трансформатор

Как следует из названия, понижающие трансформаторы используются для понижения напряжения на вторичной стороне трансформатора. Это достигается за счет меньшего количества витков на вторичной обмотке трансформатора по сравнению с первичной обмоткой трансформатора. Трансформаторы такого типа обычно используются в распределительных сетях, где сетевое напряжение с 11 кВ понижается до 415 В для бытового или коммерческого использования.

Классификация трансформаторов на основе Core Medium

Теперь в зависимости от сердечника между первичной и вторичной обмотками обмотки трансформатора трансформаторы классифицируются как с воздушным сердечником или железным сердечником.

Трансформаторы с воздушным сердечником

Первичная и вторичная обмотки трансформатора намотаны на магнитную ленту, а магнитная связь между ними осуществляется по воздуху. Этот тип трансформаторов обычно не является предпочтительным, поскольку взаимная индуктивность значительно меньше по сравнению с сердечником, поскольку сопротивление, обеспечиваемое воздушным сердечником, очень велико.Но интересно отметить, что гистерезис и потери на вихревые токи полностью устранены.

Железный сердечник

Первичная обмотка и вторичная обмотка размещены на железном сердечнике, который обеспечивает идеальную связь потока между ними. Этот тип трансформатора обычно является предпочтительным, поскольку он обеспечивает очень меньшее сопротивление потоку связи из-за его превосходных магнитных свойств, что делает общий КПД трансформатора намного выше по сравнению с трансформатором с воздушным сердечником.

Классификация трансформаторов на основе использования

Трансформаторы далее классифицируются в зависимости от области применения; мы подробно рассмотрим каждый из них:

Силовой трансформатор

Это те трансформаторы, которые используются в сети передачи, работающие при очень высоких уровнях напряжения и используемые либо для повышающих, либо для понижающих приложений. Класс напряжения включает 400 кВ, 200 кВ, 110 кВ, 66 кВ, 33 кВ и обычно имеет номинальное значение выше 200 МВА.

Поскольку они используются для передачи при большой нагрузке и при напряжении более 33 кВ, они имеют большие размеры, поскольку требуется высокая изоляция. Они также предназначены для работы со 100% -ным КПД, чтобы избежать потерь при передаче.

Для них, чтобы избежать потерь передачи или потерь I2r, они спроектированы таким образом, чтобы сердечник использовался по максимуму и имел потери в стали, равные потерям в меди при нагрузке утечки, для достижения максимальной эффективности.

Распределительный трансформатор

Как следует из названия, такой тип трансформаторов используется в распределительных сетях низкого напряжения в качестве средства обеспечения энергией конечного пользователя. Класс напряжения для распределительного трансформатора составляет 11 кВ, 6,6 кВ, 3,3 кВ, 440 В и 230 В и обычно составляет менее 200 МВА.

Этот тип трансформатора используется для питания промышленных предприятий при напряжении 33 кВ или для бытовых целей при напряжении 415 В. Они работают с более низким КПД, составляющим 50-70%, и имеют небольшие размеры, поскольку требуемая изоляция меньше по сравнению с силовым трансформатором.

Распределительный трансформатор

можно дополнительно классифицировать по типу изоляции: жидкостный трансформатор или трансформатор сухого типа.

Жидкостный трансформатор

Этот тип распределительного трансформатора использует масло в качестве охлаждающей жидкости внутри корпуса трансформатора. Обмотки погружены в трансформатор, а изоляционное масло помогает поддерживать температуру внутри. Следует отметить, что изоляционное масло со временем ухудшается, и его необходимо обрабатывать через некоторое время, потому что значение BDV (напряжение пробоя) падает из-за образования осадка в масле.

Более того, они должны находиться в строгом режиме технического обслуживания и проверяться на предмет утечек в течение многих лет эксплуатации. Далее они подразделяются в зависимости от механизмов охлаждения:

  • Масло Натуральное воздушное Натуральное (ONAN)
  • Масло Натуральное воздушное принудительное (ONAF)
  • Масло принудительное воздушное принудительное нагнетание (OFAF)
  • Масло принудительное водяное принудительное принудительное (OFWF)
  • Сухой трансформатор

    Как следует из названия, в трансформаторах этого типа в качестве изоляционной среды используется масло, а не трансформаторы с воздушным охлаждением, а обмотки изготовлены из изоляции классов F и H.Обычно они предпочитают выбирать трансформатор, когда приложение находится внутри здания или в месте, где безопасность является наивысшим приоритетом. Они также очень компактны по сравнению с масляным трансформатором, поскольку к ним не прикреплены радиаторы для охлаждения. В зависимости от того, как они охлаждаются, они подразделяются на два типа:

  • Air Natural (AN)
  • Air Blast
  • Измерительный трансформатор

    Этот тип трансформатора используется для регистрации напряжения и тока в местах прямого измерения невозможны из-за очень высокой стоимости.Поэтому приборный трансформатор используется для понижения этих токов / напряжений с целью измерения. Есть два типа:

    Трансформаторы тока

    Эти типы трансформаторов используются для того, чтобы амперметры катушек других приборов не были напрямую подключены к линиям высокого тока или, другими словами, трансформатор тока понижал значения на известное соотношение, чтобы его можно было безопасно зарегистрировать с помощью измерительного устройства.

    Трансформаторы потенциала

    Они работают более или менее по тому же принципу, что и силовой или распределительный трансформатор.Единственная разница в том, что их мощность невелика и находится в диапазоне от 100 до 500 ВА, а сторона низкого напряжения обычно намотана на 115–120 В

    Часто задаваемые вопросы по трансформаторам

    Почему мы слышим гудящий звук возле трансформатора?

    Отв. Это происходит из-за явления, которое с научной точки зрения называется магнитострикцией, когда магнитная сталь, используемая в сердечнике, расширяется при намагничивании и сжимается при размагничивании в течение полного цикла намагничивания.Несмотря на то, что они крошечные пропорционально и поэтому обычно не видны невооруженным глазом, их достаточно, чтобы вызвать вибрацию и, следовательно, шум.

    Могут ли трансформаторы работать при напряжениях, отличных от номинальных?

    Отв. Они могут работать при напряжении ниже номинального, но ни в коем случае не выше номинального напряжения до тех пор, пока они не будут снабжены переключателем ответвлений. Следует отметить, что если трансформатор работает ниже номинального напряжения, мощность LVA также будет соответственно уменьшена.

    Может ли трансформатор, рассчитанный на 60 Гц, работать на частоте 50 Гц?

    Отв. Трансформатор, рассчитанный на 60 Гц, не может работать на частоте 50 Гц, так как возникнет больше потерь, что также приведет к более высокому повышению температуры и сокращению срока службы. Но, с другой стороны, трансформатор с номинальной частотой 50 Гц может работать на частоте 60 Гц.

    Почему трансформаторы рассчитаны в кВА, а не в кВт?

    Отв. Когда мы говорим о трансформаторе, у нас есть два типа потерь: потери в стали и потери в меди.Теперь, поскольку потери в стали зависят от напряжения, а потери в меди от тока, общие потери зависят от напряжения и тока, и коэффициент мощности не учитывается. Трансформаторы указаны в кВА, так как кВт будет включать коэффициент мощности.

    Могут ли 3-фазные трансформаторы работать параллельно?

    Отв.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *