Датчик скрытой проводки схема: Схемы лучших самодельных детекторов скрытой проводки

Содержание

Схемы лучших самодельных детекторов скрытой проводки


Иногда возникает необходимость просверлить стену, забить гвоздь или дюбель, но как знать не находится ли в том месте в стене электрический провод? Согласитесь, если гвоздь или сверло перфоратора продырявит электрический провод в стене, то как минимум одна электроточка в доме работать не будет, а возможно и вовсе проедется переделывать ремонт.

Точно также при ремонте или обрыве электропровода в стене, возникает необходимость точного определения места где проложены провода.

Один из вариантов определения местонахождения провода под напряжением или без… – прибор (детектор — индикатор) для поиска скрытой проводки.


Существуют множество моделей таких специфических устройств различного ценового сегмента.

Модели таких топовых производителей как Bosсh, Stanley, Garrett, Skil и др.

Так же и более дешевые их аналоги отечественных и китайских производств.

Дешёвые приборы могут находить провода только под напряжением. Более дорогие устройства являются многофункциональными и умеют обнаруживать обесточенные провода различных металлов.

По принципу работы все «электродетекторы» можно поделить на такие виды:

  • электромагнитные
  • электростатические
  • детектор металлов (материалов)
  • комбинированные

Для начинающего электрика или просто хозяйственного человека который не желает тратить от 100 долларов и больше, на хороший профессиональный детектор скрытой проводки, я предложу два самодельных устройства которые по своей эффективности и практичности (проверенной на практике) могут сравнится с дорогими моделями.

В поисках «идеального» устройства для поиска скрытых проводов, было перепробовано много заводских детекторов дешевой ценовой категории, было спаяно и собрано много популярных в интернете схем.
В результате одна из схем оказалась достойной повторению, а другое устройство было переделкой и по большой мере модификацией которой в интернете негде не было.

Детектор скрытой проводки №1

Данный детектор может быть полезен при ремонте или например когда требуется просверлить стену, особенно в том случае когда разводка трасс проводов в доме заведомо не известна.

Устройство имеет мало количество деталей. Основой схемы служит популярная микросхема — таймер NE555

В большинстве схем этой микросхемы, ее 5й вывод не используется и часто просто соединяется на минус питания через конденсатор.

Но если подать на этот вывод небольшое напряжение то можно сдвинуть пороги срабатывания компараторов самой микросхемы.

В данной схеме величину подаваемого напряжения, на 5й вывод микросхемы, будет регулировать полевой транзистор который будет выполнять роль датчика электромагнитного поля.

Для этой цели отлично подойдет отечественный полевой транзистор КП103 так как он имеет хорошую чувствительность, но его трудно найти так как он довольно старинный и уже не производится, но ему можно найти аналог — другой p-канальный полевой транзистор (не мосфет), например 2n3329.

Между 5м выводом и плюсом питания, стоит построечный резистор, так как разные транзисторы имеют разные параметры и с помощью данного подстроечного резистора можно настроить чувствительность при поиске проводки с разной толщиной стен.

Затвор транзистора выполняет роль антенны, которой служит кусок толстого медного провода.

В роли индикации служат светодиод (любого цвета) и пэзоизлучатель, который обязательно должен быть с встроенным генератором, то есть при подаче напряжения он должен пищать и быть росчитаным на 12 вольт.

В дали от источников электромагнитного поля, детектор производит звук и мигания с одинаковым интервалом, но при приближение к токопроводящим проводам — звук (интервал) меняется и становится более частым по мере приближения.

Как настроить прибор. В непосредственной близости с кабелем или розеткой устанавливаем максимальную чувствительность то есть чтоб частота звуковых интервалов была наиболее частой.

В других случаях, например если нужно определить прохождения провода в стене с большей точностью (до 0.5 см), чувствительность можно уменьшить.

Детектор скрытой проводки №2 

Данный детектор обладает более высокой чувствительностью и может находить провода на большей глубине чем предыдущее устройство.

С помощью такого детектора можно находить не только провода под напряжением, но и без напряжения, а так же искать места обрывов провода, и это становится возможным в виду того что устройство можно использовать в паре с «звуковым» генератором.

В паре эти два устройства дают возможность найти провод даже на глубине до 10-20 см в бетоне, при определенной настройке чувствительности и мощности работы генератора.

Первое устройство — плата от обычного кассетного плеера.

Для удобства можно снять все лишнее, оставив лишь плату или можно собрать в другом небольшом корпусе (желательно металлическом)

Вместо магнитной головки плеера, его вход выведен на гнездо установленное на корпусе детектора. Через аналогичный штекер, к гнезду можно подключать различные датчики поля.

Экспериментальным путем было найдено 3 таких «датчика»:

1. Небольшой дроссель на феросердечнике с тонкого провода

2. Электромагнитный «телефон» ТК — 67

3. Красный светодиод В каждого датчика свои особенности, которые в различие материалов стены, глубины и ситуации дают возможность с большей точностью определить где находится провод. В качестве питания служит небольшая батарея от любого мобильного телефона напряжением 3.7 вольт

В качестве индикации в детекторе служит выходной каскад усилителя звука в плате плеера. На выходе стоит гнездо подключения наушников, но когда наушники не подключены звук воспроизводится встроенным в детектор малогабаритным динамиком.

В несильно шумных местах звук динамика недостаточен, тогда с помощью наушников можно достаточно точно определять неоднородность звуковой частоты. Это может быть или

звук сети частотой 50 герц или звук подаваемый устройством генератора.

Второе устройство — генератор звуковой частоты, с умощненным выходом способный выдавать мощность в нагрузке где то примерно до 5 — 10 ватт.

Устройство собрано на популярной микросхеме — таймере NE555 по стандартной схеме звукового генератора с регулировкой частоты на подстроечном резисторе. В ходе экспериментов было выявлено что с изменением частоты звука можно находить провод на большей глубине при одинаковой мощности работы генератора. На транзисторе bd139 собран выходной каскад усилителя способный выдавать большую мощность в нагрузке. Транзистор установлен на небольшой алюминиевый радиатор.

Нагрузкой служит провод который проложен в стене, он должен быть замкнутым контуром. В качестве ограничения тока применен резистор на 1 — 2 вата который для удобства замены установлен возле выходного «крокодила». 

Данный генератор дает возможность с помощью приемника находить не только местонахождения трасс проводки которая под напряжением, но и обесточенных проводов, а так же искать места обрывов.

Ниже представлены несколько способов работы генератора в паре с приемником.

Поиск провода в обесточенной комнате:


Поиск обрывов провода в стене или на полу, с помощью общего (естественного) заземления: Практика показала что для нахождения провода на глубине 1-1.5 см в бетоне, достаточно тока в нагрузке в 0.15 — 0.3 ампера. Для этого резистор был подобран сопротивлением в 22 Ом. При большой протяжности трассы провода в стене — сопротивление «нагрузки» возрастает и возможно придется уменьшить ограничивающий резистор в плоть до подключения на прямую (без резистора) Работа генератора на большой мощности (с малым сопротивлением резистора) будет быстро садить аккумуляторы и не даст точно определить центр прохождения провода, поэтому резистор нужно подбирать в зависимости от ситуации.

В качестве защиты устройства генератора установлено предохранитель и супрессор который должен защитить устройство от случайного попадания сетевого напряжения на вход генератора. 

Супрессор должен быть двунаправленным, на напряжение примерно 30 вольт

Напряжение питания схемы должно быть не меньше 5 вольт и не больше 12.

Как показывает многолетняя практика, совсем не обязательно покупать профессиональные детекторы скрытой проводки и трассоискатели, как и дешевые индикаторы скрытой проводки которые годятся лишь для индикации напряжения в открытом кабеле.
   Протестировав множество схем которые блуждают в интернете, а также различных способов нахождения проводов в стене были созданы вполне работоспособные, надежные и эффективные устройства которые отлично справляются как с поиском провода под напряжением, так и без, а так же определением обрывов в стене или под полом.

Детекторы скрытой проводки.

Детекторы скрытой проводки.


> Тестер «карандашного» типа S48NS

> Сигнализатор скрытой проводки Е121

> Логический пробник


Выпускаемые промышленно детекторы часто комбинированы – в них содержится несколько типов обнаружителей:
·         Электростатические. За – просты, большая дальность обнаружения.
Против – не работают на влажных стенах (показывают, что проводка везде). Требуют наличия напряжения в проводке.

·         Электромагнитные. За – просты, хорошая точность обнаружения.
Против – требуют не только напряжения в сети, но и того, чтобы провод был нагружен на мощную нагрузку, обычно порядка киловатт.

·         Металлодетекторы. Просто ищут, метал в стенах. За – можно искать без напряжения в сети.
Против – сложны, мешают посторонние металлы. Если где-то рядом забит гвоздик, то ничего хорошего не получится.



Индикаторы скрытой проводки


Резистор R1 нужен для защиты микросхемы К561ЛА7 от повышенного напряжения статического электричества (как показала практика, его можно и не ставить). Антенной является кусок медного провода любой толщины. Главное, чтобы он не прогибался под собственным весом, т.е. был достаточно жестким. Длина антенны определяет чувствительность устройства. Наиболее оптимальной является величина 5…15 см. При приближении антенны к электропроводке детектор издает характерный треск.

 

Устройством удобно определять местоположение перегоревшей лампы в елочной гирлянде — возле нее треск прекращается. Пьезоизлучатель типа ЗП-3 включен по мостовой схеме, что обеспечивает повышенную громкость.

 


На рис.2 изображен детектор, имеющий звуковую и световую индикацию.

Сопротивление резистора R1 должно быть не менее 50 МОм. В цепи светодиода VD1 нет токоограничивающего резистора, микросхема DD1 (К561ЛА7) с этой функцией хорошо справляется сама.

 

 

 

 

 

 

 


СХЕМА ИНДИКАТОРА СКРЫТОЙ ПРОВОДКИ.

 

Детали:
— C1…С5 — 10 мкФ;
— VT1 — KT209х или КТ361х;
— VT2 — KП103х;
— VT3 — КТ315х, КТ503х или КТ3102х;
— R1 — 50К…1,2 М;
— R2 — 150…560 Ом;
— Антенна 80…100мм.

  


Прибор для обнаружения скрытой проводки

Питается схема от 3 -5 В. Схема на двух батарейках от часов беспрерывно работает около 6 часов. Антенной служит катушка, намотана проводом  0.3 или 0.5 мм на каркасе 3 мм. Катушку можно использовать как на каркасе, в виде штанги, так и в бескаркасном виде.

В зависимости от толщины провода, наматывается определённое количество витков при проволоке 0.3 мм — 25 вт., 0.5 мм — 50 вт.

Настройка сводится к подбору резистора R1*, им настраивается максимальная громкость главного телефона, в зависимости от его сопротивления.

В схеме вместо полевого транзистора КП103 можно использовать КП303Д.

 

 

 

Прибор для обнаружения обрыва в электропроводке.

Следующий прибор можно легко поместить в маркер, антенну вытянуть через отверстие для стержня, длина антенны 5-10 См, если нужна чувствительность не более 5 — 10см, то для антенны достаточно и длины затвора полевого транзистора.

Полевой транзистор VT1 (рис.1) выполняет роль датчика «улавливающего» даже очень слабую напряженность электрического поля. Поэтому когда рядом  с фазовым проводом осветительной сети окажется полевой транзистор искателя, сопротивление его участка сток-исток уменьшится настолько, что транзисторы VT2, VT3 откроются. Вспыхнет светодиод HL1. Полевой транзистор может быть любой из серии КП103, а светодиод — из серии АЛ307. Биполярные транзисторы могут быть любые маломощные кремниевые или германиевые указанной на схеме структуры и с возможно большим коэффициентом передачи тока. Резисторы — МЛТ-0,125. Транзистор VT2 (КТ203) можно заменить на КТ361. При монтаже полевого транзистора его располагают горизонтально на плате, а вывод затвора отгибают так, чтобы он находился над корпусом транзистора. Если при работе искателя выявится его излишняя чувствительность, вывод затвора укорачивают.

 


Простой бесконтактный пробник.

Всего два элемента — микросхема DD1 и светодиод HL1 — составляют схему этого пробника, микросхема К176ЛП1 содержит три p и три n-канальных КМОП транзистора. Соединив выводы микросхемы таким образом, чтобы образовалась цепочка из трех инверторов, можно получить устройство, которое достаточно хорошо усиливает токи, наводимые полем переменного напряжения в фазовом проводе электросети.

Между выходом последнего инвертора — вывод 12 DD1 и плюсом источника питания пробника включен светодиод. Он загорается, когда близко от вывода 6 микросхемы расположить фазный сетевой провод. 

Светодиод погаснет, если, проводя пробником вдоль подключенного к электросети неисправного провода, дойти до места разрыва.

Объединение инверторов в цепочку нужно производить, соединяя между собой следующие выводы DD1:

1.       Вариант соединения выводов микросхемы: 3, 8 и 13; 2 и 10; 4, 7 и 9;1 и 5; 11 и 14.

2.       Вариант соединения выводов микросхемы: 3,8,10 и 13; 1, 5 и 12; 2,11 и 14; 4,7 и 9.

Чувствительность пробника такова, что касаться изоляции проверяемых проводов им вовсе не обязательно. Потребляемый ток не превышает 3 мА — при напряжении элементов питания 4 -5В.

Длина проводника — «щупа» пробника, ведущего к выводу 6 микросхемы, должна быть не более 15 — 20 мм. Выключатель в пробнике необязателен, так как в нерабочем режиме схема потребляет пренебрежительно малый ток, обусловленный лишь статическим током в КМОП — транзисторах инверторов микросхемы.


Схема искателя скрытой проводки  — индикатор переменного электрического поля

 

Простой индикатор переменного электрического поля скрытой проводки может быть собран с использованием в качестве регулируемого внешним электрическим полем делителя напряжения — резистора R1 и канала полевого транзистора. В качестве управляемого генератора импульсов использован генератор на микросхеме К122ТЛ1. Нагрузкой генератора для индикации являются высокоомные головные телефоны типа ТОН-1 (ТОН-2)

  При наличии внешнего переменного электрического поля сигнал, наводимый на антенну, поступает на управляющий электрод полевого транзистора (затвор), что вызывает модуляцию сопротивления канала полевого транзистора. В итоге, падение напряжения на делителе изменяется, что, в свою очередь, вызывает появление генерации с изменяющейся частотой.

Индикатор скрытой проводки на микросхемах

Схема состоит из  усилителя напряжения переменного тока, основой которого служит операционный усилитель DA1, и генератора колебаний звуковой частоты, собранного на триггере Шмитта DD1.1 (К561ТЛ1), частотозадающей цепи R7C2 и пьезоизлучателе BF1.
При расположении антенны WA1 вблизи от фазового провода электросети наводка ЭДС промышленной частоты 50 Гц усиливается микросхемой DA1, в результате чего зажигается светодиод HL1. Это же выходное напряжение операционного усилителя, пульсирующее с частотой 50 Гц, запускает генератор звуковой частоты.
Ток, потребляемый микросхемами прибора при питании их от источника напряжением 9V, не превышает 2 мА, а при включении светодиода HL1 — 6…7 мА.

Антенной WA1 служит площадка фольги на плате размером примерно 55х12 мм.

Монтажную плату размещают в корпусе из диэлектрического материала так, чтобы антенна оказалась в головной части и была максимально удалена от руки оператора. На лицевой стороне корпуса располагают выключатель питания SA1, светодиод HL1 и звукоизлучатель BF1.

Начальную чувствительность прибора устанавливают подстроечным резистором R2. Безошибочно смонтированный прибор в налаживании не нуждается.


Искатель скрытой проводки

Сигнал с антенны длиной 200 мм подается на операционный усилитель DA1 К140УД7. С выхода 6 DA1 усиленный сигнал подается на формирователь прямоугольных импульсов DD1 К561ЛА7 и затем на выходной каскад VT1, зажигая светодиод HL1. Желательно не только видеть, но и слышать этот сигнал. Подключать звуковой излучатель параллельно R5, HL1 нежелательно. Для  звука применен мультивибратор, на таймере КР1006ВИ1. Конденсаторами С1, С2 подбирается приятное звучание и его длительность, а также свечение светодиода HL2. В этом варианте частота звучания составляет 1,7 кГц.

В зависимости от изоляции и глубины залегания проводов в стене, чувствительность можно менять касанием руки общего провода через конденсатор малой емкости СЗ 27…33 пФ, не доводя прибор до самовозбуждения. При большей емкости прибор возбудится.

Питается прибор от 3-х пальчиковых батареек, соединенных последовательно, с общим напряжением 4,5 В. При пользовании прибором необходимо отключать мощные источники электрического поля: трансформаторы, телевизоры, лампы дневного света. В качестве звукоизлучателя используются пьезоизлучатель от телефонных аппаратов.

Светодиоды HL1 - зеленого, HL2 — красного свечения.


Прибор для обнаружения повреждений скрытой электропроводки

Прибор питается от автономного источника напряжением 9v и заключен в алюминиевый корпус размером 80x38x27 мм.

Принцип работы:

На один из проводов скрытой электропроводки подается переменное напряжение 12V от понижающего трансформатора. Остальные провода заземляют. Приспособление включается и перемещается параллельно поверхности стены на расстоянии 5…40 мм. В местах обрыва или окончания провода индикатор гаснет. Приспособление может быть также использовано для обнаружения повреждений жил в гибких переносных и шланговых кабелях.


Детектор скрытой проводки
Устройство избавит вас от возможного риска попадания сверлом в провод при сверлении отверстия в стене, позволит проследить путь провода и во многих других случаях, когда необходимо обнаружить скрытые провода.
В качестве датчика используется отрезок провода или металлический стержень диаметром около 5 мм и длинной 70…90 мм.
Принцип работы схемы.

На биполярных транзисторах VT1 и VT3 собран низкочастотный мультивибратор. Его рабочая частота определяется в основном номиналами конденсаторов, в качестве которых используют алюминиевые, ниобиевые или танталовые электролитические конденсаторы.
В исходном состоянии, когда щуп антенны прибора удален на значительное расстояние от скрытой проводки, полевой транзистор VT2 находиться в режиме отсечки. При этом на резисторе R4, который включен в цепь истока транзистора VT2 (КП103Д), падает напряжение примерно равное 3,5 вольт. При этом фиксируется потенциал базы VT3 на уровне, который удерживает VT3 в насыщенном состоянии и светодиод светится непрерывно. Транзистор VT1 в это время находиться в режиме отсечки.

Когда щуп антенны приближается к месту скрытой прокладки провода, где поддерживается переменный потенциал 220В, электрическая составляющая электромагнитного поля сетевого провода наводит на входе антенны переменный потенциал, равный сотням милливольт-единицам вольт. В этом случае соответствующие полупериоды входного сигнала открывают VT2, ток через резистор R4 увеличивается, а значит, увеличивается и падение напряжения на нем. Потенциал базы VT3 относительно эмиттера VT3 становиться низким, переводя VT3 в режим отсечки.
В результате светодиод начинает мигать, сигнализируя о наличии в этом месте скрытой проводки.
РАДІОАМАТОР 11’2001


ИСКАТЕЛЬ СКРЫТОЙ ПРОВОДКИ

При обнаружении сигнала частотой 50 Гц  cветодиод будет мигает с частотой примерно 1,56 Гц, с такой же частотой пре­рывается звуковой сигнал.        

Рассмотрим схему (рис.1).

 Антенна W1 -кусок монтажного провода длиной около 25 см, расположенный по периметру узкой боко­вой части корпуса прибора. На транзисторах VT1 и VT2 сделан простой усилитель — фор­мирователь логических импульсов. Он уси­ливает наведенный в антенне сигнал и по­дает его на счетчик D1 (вход «С»). Из числа   выходов многоразрядного счетчика К561ИЕ16 аналог 4020BEY (D1) используется выход только с весовым коэффициентом «16». То есть, изменение состояния этого выхода происходит через каждые 16 входных импульсов, значит, деление частоты составляет 32. Таким образом, при приеме сигнала частотой 50 Гц здесь будет частота 1,5625 Гц. С этой частотой и будет мигать светодиод HL1, подключенный к данному выходу счетчика через промежуточный транзисторный ключ — усилитель тока (VT3), чтобы облегчить работу с прибором есть звуковой сигнализатор, сделанный на микросхеме D2. Это   схема    мультивибратора,   выдающего импульсы частотой около 2000 Гц. На элементах D2.1 и D2.2 сделан собственно мультивибратор, а элементы D2.3 и D2.4 образуют усилитель напряжения, поднимающий разность потенциалов между выводами пьезоэлектрического звукоизлучателя  BF1 в два раза, по сравнению с номинальным напряжением уровня логической единицы.

Мультивибратор     управляемый, — чтобы он  работал нужно подать напряжение логической единицы на вывод 13 элемента D2.1. Таким образом,    включение   звука происходит одновременно с включением индикаторного светодиода. Питается приборчик от 9-вольтовой батарейки  типа   «Крона». Выключатель S1  - кнопка без фиксации. Когда вы ищите проводку нужно держать его нажатым, - отпустили,  и выключился (так сделано с целью экономии батареи). Звуокоизлучатель BF1 — от прозвонки неисправного мультиметра. На  печатной  плате  он располагается  над микросхемой D2 (приклеен).

Счетчик К561ИЕ16 можно заменить практически любым двоичным КМОП-счетчиком, у которого есть выход с весовым коэффициентом «16». Это может быть К561ИЕ20, К176ИЕ1, или два включенных последовательно счетчика микросхемы К561ИЕ10. Но в любом случае потребуется переделка печатной платы.

Печатная плата показана на рисунке 2.

На плате размещены все детали кроме антенны и источника питания. Никакого налаживания не требуется.

 


ДВОИЧНЫЙ ИСКАТЕЛЬ СКРЫТОЙ ПРОВОДКИ

Схема пробника состоит из щупа-антенны, транзисторного усилителя-формирователя импульсов и счетчика с индикаторным светодиодом на выходе.

Антенна улавливает электромагнитное поле, и на выходе усилительного каскада на VT1 и VT2 появляются импульсы, частота которых равна частоте входного сигнала. Если это сигнал электропроводки, то, понятно, частота импульсов будет равна 50 Гц. Если радиосигнал, то и частота импульсов будет много выше.

 Далее, импульсы поступают на счетчик, который делит их частоту на 32. А на выходе счетчика включен индикаторный светодиод.

Работает пробник так:

Когда на антенну поступает электромагнитное поле, излучаемое электропроводкой, на выходе счетчика возникают импульсы частотой около 1,56 Гц, и индикаторный светодиод мигает равномерно с такой же частотой. Если же, на антенну поступает радиосигнал, частота которого значительно выше 50 Гц, — светодиод мигает значительно быстрее и это зрительно воспринимается как его постоянное свечение с несколько пониженной яркостью. Либо, он вообще не горит, так как микросхема серии К561 может и не пропустить сигнал слишком высокой частоты.

Для отстройки от слабых, но сильно мешающих радиосигналов есть переменный резистор R1, которым можно регулировать чувствительность входа пробника.

Питается прибор от «Кроны», малогабаритной батареи напряжением 9V.

Пробник сделан в виде миниатюрного устройства, размещенного в подходящем корпусе.

Антенной служит отрезок обмоточного провода диаметром около 1 мм длиной около 30 см, который виток к витку намотан на передней части корпуса и закреплен.

 

Переменный резистор R1 сделан из подстроечного резистора, с самодельной рукояткой (из пластмассового винта-барашка).

Налаживания практически не требуется, только если подбор размеров антенны.


ИСКАТЕЛЬ ПРОВОДКИ

Особенность этого искателя проводки в том, что он не только показывает расположение электропроводки, но и может оценить её глубину расположения, а так же, позволит обнаружить радиожучок или другое передающее или излучающее радиоволны устройство. С его помощью можно определить и то, какая часть проводки более нагружена, а какая менее.

Принципиальная схема показана на рисунке.

Антенна W1 представляет собой жестяную пластинку размерами примерно 60×60 мм. Пластинка связана со входом через переменный резистор R1, которым можно регулировать уровень чувствительности прибора. На транзисторе VT1 выполнен каскад, повышающий входное сопротивление прибора. Переменное напряжение наводок с его выхода через конденсатор С1 поступает на измеритель уровня переменного напряжения, выполненный на микросхеме DА1-AN6884  (KA2284), включенной по типовой схеме.  

Уровень величины напряжения сетевых наводок индицируется на шкале из пяти светодиодов HL1-HL5 — AЛ307.

Прибор собран в корпусе неисправного пульта дистанционного управления видеоплейером «Orion-688». Батарея питания состоит из трех элементов «АА» общим напряжением 4,5V. Два элемента размещены в батарейном отсеке пульта, и еще один непосредственно в корпусе пульта. Рядом с этим элементом расположена микросхема DА1 со светодиодами. Антенная пластина расположена в передней части корпуса и изогнута по форме.


СТРОИТЕЛЬНЫЙ МЕТАЛЛОИСКАТЕЛЬ

Поможет обнаружить электропроводку, замурованные в стену трубы и даже гвоздик под обоями. Глубина действия его не велика, гвоздик он найдет, если слой обоев или штукатурки над ним не более 5 мм, водопроводную трубу на глубине до 200мм, а электропроводку на глубине до 20-30 мм.

Металлоискатель состоит из генератора высокой частоты на транзисторе VT1, работающего на частоте около 100 кГц, детектора этого ВЧ напряжения на транзисторе VT2 и схемы индикации на транзисторах VT3-VT4 и светодиоде HL1.

Катушки генератора ВЧ намотаны на ферритовом стержне (как для магнитной антенны АМ-приемника). Режим работы генератора устанавливают на краю срыва, но так, чтобы при наличии всех металлических предметов, которые входят в состав металлоискателя, он работал. При этом, транзистор VT2 под действием ВЧ напряжения, поступающего на его базу, открыт и напряжение на его коллекторе мало на столько, что транзисторы VT3 и VT4 закрыты и светодиод HL1 не горит.

При приближении к магнитной антенне металлического предмета начинается понижение амплитуды генерации ВЧ-генератора с его дальнейшим срывом. ВЧ напряжение на базе VT2 снижается или перестает поступать и транзистор VT2 закрывается. Постоянное напряжение на его коллекторе возрастает (через резистор R4) и достигает такого уровня, при котором происходит открывание транзисторов VT3 и VT4 и загорается светодиод HL1.

Таким образом,   перемещения прибора относительно металлического предмета будут индицироваться миганиями этого светодиода, и более того, малые перемещения будут так же влиять и на яркость свечения светодиода. Но, это, разумеется, будет возможно только при точной настройке прибора, которую нужно время от времени повторять (для этого есть два  подстроенных  резистора регуляторы, которых выведены на верхнюю панель пластмассового корпуса).


Катушки L1 и L2 намотаны на ферритовом стержне диаметром 8 мм и длиной около 100 мм. Они расположены рядом. L1 содержит 120 витков, a L2 — 45 витков. Провод типа ПЭВТЛ 0,35.

Питается металлоискатель от импортного аналога батареи «Крона».

Налаживание.

Расположив прибор вдали от металлических предметов (снимите часы с руки) подстраивают резисторы R3 и R5 (методом последовательного приближения) так, чтобы прибор был на грани срыва генерации (светодиод светит на пониженной яркостью и неравномерно). Затем, оставив в покое R5 продолжают подстройку R3, так чтобы светодиод погас. Далее, испытывают прибор на пятикопеечную моменту, добиваясь подстройкой R3 и R5 наибольшей чувствительности.

 


ИСКАТЕЛЬ СКРЫТОЙ ПРОВОДКИ БЕЗ ИСТОЧНИКА ПИТАНИЯ.
От множества аналогичных отличается тем, что не требует ни собственного источника питания, ни каких либо других приспособлений и измерительных приборов.

Схема прибора показана на рис. 1.

В качестве источника энергии выступает та самая сеть переменного тока, которую мы и опасаемся повредить гвоздём, электродрелью или перфоратором. Когда на устройство подано напряжение питания сети переменного тока 220 В, накопительный конденсатор большой ёмкости быстро заряжается до напряжения открывания стабилитрона VD1.  После зарядки конденсатора С1 устройство можно вынуть из розетки. Поиск места закладки проводки ведётся обычным способом. Когда антенна WA1 находится вблизи места пролегания электропроводки, полевой транзистор VT2 открывается с частотой сети переменного тока, светодиод HL1 начинает светиться. Чем ближе расположена электропроводка, тем ярче он светит. Транзистор VT1 работает как микромощный стабилитрон с напряжением стабилизации 6…10В. Дополнительно он выполняет функцию высокоомного разрядного резистора для перехода затвор-исток транзистора VT2. Кнопка SB1 без фиксации положения предназначена для проверки наличия достаточного заряда на обкладках конденсатора С1. С понижением напряжения на конденсаторе С1 чувствительность прибора не изменяется, но снижается яркость свечения светодиода. Сенсор Е1 предназначен для того, чтобы при необходимости можно было увеличить чувствительность прибора, для чего нужно прикоснуться к нему пальцем. Резисторы R3, R4 ограничивают импульсный ток, протекающий через диоды выпрямительного моста в момент включения устройства в сеть.  Детали: Вместо транзистора КП504А можно применить любой из серий КП501, КП502, КП504, КР1064КТ1, КР1014КТ1, ZVN2120, BSS88, BSS124.


Цоколёвка некоторых транзисторов приводится на рисунке.

Светодиод HL1 должен быть суперярким, например, «красные» L-1503SRC/F, L-1503SRC/E, L-1513SRC/F. Неплохие результаты были получены и с современными суперяркими светодиодами голубого и белого цвета свечения. Стабилитрон VD1 любой маломощный на напряжение стабилизации 18…20 В, например, 1N4747A, КС218Ж, КС520В. При   отсутствии

таких стабилитронов можно установить два, включенных последовательно Д814Б1 или 1N4739A. Вместо диодного моста VD2 можно применить любой малогабаритный из серий КЦ422, КЦ407, DB101… DB107, RB151… RB157. Конденсатор С2 плё­ночный типов К73-17, К73-24, К73-39 на рабо­чее напряжение 630 В и ёмкостью 0,1…0,25 мкФ Оксидный конденсатор С1 — самая крупная деталь устройства, автор использовал относительно малогабаритный фирмы «Philips». Этот конденсатор должен иметь как можно меньший ток утечки. Конденсаторы с большим рабочим напряжением обычно имеют меньший ток утечки среди конденсаторов одной ёмкости и фирмы. Сенсор можно изготовить из металлического корпуса неисправного транзистора, например, КТ203, МП16… МП42.

 

Если прибор будет работать неустойчиво, то следует к выводам затвора и истока VT2 подключить высокоомный резистор сопротивлением 100… 200 МОм. При желании устройство можно модернизировать. Например, следующим образом. Если последовательно со стабилитроном VD1 установить светодиод, (анодами вместе), то этот светодиод будет сигнализировать о полной зарядке конденсатора С1. Если последовательно со светодиодом HL1, соблюдая полярность, установить пьезокерамический излучатель звука со встроенным генератором, например, НРА17АХ, то совместно со свечением светодиода HL1 звукоизлучатель будет генерировать прерывистый тон — прибор станет информативнее. При настройке устройства не забывайте отключать его от сети.


Следующая схема содержит электростатический тип обнаружения проводки.

Схема:

На антенну наводится напряжение от проводки. Оно детектируется диодом на U1A и C5. На U1D собран генератор, управляемый напряжением, U1C и Q3 – это усилитель для пьезопищалки. 

Работаем так – прислоняем к стене, где точно нет проводки, регулируем чувствительность так, чтобы детектор слегка кряхтел. Двигаем и там, где тон становится выше, там и есть наша проводка.

*Функциональные аналоги: K544УД14, КМ1401УД4, 1435УД4, LF347, TLO84


Источник: http://bsvi.ru/


 
Тестеры напряжения «карандашного» типа: S-Line GK2, MEET MS-48NS, YADITE 8848

Технические характеристики

Параметр

Значение

Измеряемые параметры

·         напряжение постоянное
·         напряжение переменное

·         прозвон цепи

Определение переменного напряжения

Контактным методом

70 … 250 В

Бесконтактным

70 … 1000 В

Тест постоянного напряжения

до 250 В

Тест полярности

1.2 … 36 В

Испытание презвонкой

«O» = 0.5 МОм;
«L» = 0…50 МОм;
«H» = 0…100 МОм

Тест батарей

есть

·         Частота переменного тока 50 … 500 Гц

·         Питание: две батареи SR 1.5 В (типоразмер «AAA»)

Условные обозначения

«0» — контактный тест сети переменного тока.

«L» — бесконтактный тест, низкая чувствительность.

«H» — бесконтактный тест, высокая чувствительность.

 

НАЗНАЧЕНИЕ: контактное и бесконтактное обнаружение переменного напряжения; определение фазы переменного напряжения; определение полярности постоянного напряжения; позвонка непрерывности цепи; проверка диодов, транзисторов и конденсаторов.


Устройство:

 



Схема прибора YADITE 8848:




Сигнализатор скрытой проводки Е121 (ДЯТЕЛ)


 Назначение:

•   проверка правильности фазировки (подключения) бытовых элект­росчетчиков без снятия пломбы и защитной крышки;

•   обнаружение скрытой проводки;

•   обнаружение фазного провода на изолированных и неизолированных токоведущих частях электрических сетей переменного тока без непосредственной связи с этими частями;

•   проверка исправности предохранителей,  плавких вставок, обрывов в проводах находящихся под напряжением;

•   индикация с поверхности земли наличия напряжения на ВЛ 10 кВ и выше;

•   индикация с поверхности земли наличия напряжения контактной сети троллей­бусов и трамваев;

•   обнаружение электромагнитных полей ПК, телевизоров и др. бытовой техники;

•   обнаружение утечек  СВЧ-печей.

Основная область применения — при обслуживании электросчетчиков, электро­установок и электрических сетей. Принцип действия сигнализатора основан на ис­пользовании электростатической индукции в переменном электрическом поле, возни­кающем вокруг токоведущего проводника.

Сигнализатор обеспечивает проверку наличия напряжения в цепях переменного тока номинальным напряжением 380 В промышленной частоты без электрического контак­та с проводником

Сигнализатор имеет четыре диапазона чувствительности к элект­рическому полю, создаваемому проводником

«1» — 0…10 ±5 мм, «2» — 0…100 ±50 мм, «3» — 0…300 ±150 мм, «4» — 0…700 ±350 мм.

Сигнализатор имеет режим самоконтро­ля. Габаритные размеры — 210x80x45 мм.    Масса прибора — 250 г.

Схема прибора аналогичного промышленному Е121.

вариант самостоятельного изготовления.

 
Детали:
ВЧ кабель сплошной экран и кнопки без фиксации (тип  304, 8*8mm push ON).

Полевой транзистор N-JFET типа, BF-245 затвор транзистора G подпаян к навесному монтажу,
на фото видно показанно как это сделать.
    
Потом, эту часть навесного монтажа полевого транзистора, экранируем, на общий провод.
Внимание, экран ВЧ кабеля на общий провод не припаивается, соблюдайте точность подключения по схеме!

Общий вид печатной платы.


Настройка схемы сводится только к подбору порога чувствительности подстроечным резистором 47 ком.


       

Файл печатной платы в архиве —

Plata_«D».



Схема встраивается в подходящий корпус, например от пульта ДУ телевизора.



Источник: http://radiomaster.com.ua/


Логический пробник для статических и динамических режимов

 

При подаче на вход пробника импульсов с частотой до 25 Гц чередование цифр «О» и «1» на индикаторе можно различить, при частотах свыше 25 Гц начинает сказываться влияние конденсатора С1. В результате яркость свечения сегмента d резко уменьшается и индицируется буква «П», что означает присутствие на входе пробника импульсов с относительно высокой частотой.





При отсутствии сигнала на входе элемента D1.1 низкий логический уровень, на входах D1.2 — D1.4 - высокий. Сегменты индикатора не светятся.

Если на вход пробника поступает уровень, соответствующий логической «1», на выходе элемента D1.1 будет логический «0», на выходе D1.2 — логическая «1», элементы D1.3 и D1.4 остаются в первоначальном состоянии.

При этом светятся сегменты b и с и индицируется цифра «1».

Когда на входе пробника будет логический «0», на выходе элементов D1.2-D1.4 появится высокий логический уровень и будут светиться сегменты а, b, с, d, e и f, т е будет индицироваться «О».

 


Логический пробник на NE556

Выполнен на базе микросхемы NE556 и имеет индикацию на светодиодах. При наличии логической единицы на входе устройства светодиод D2 светится ярко, если же присутствует логический ноль, то светодиод не горит. Светодиод D2 пульсирует с частотой входного сигнала

Микросхема NE555 (отечественный аналог КР1006ВИ1)
Микросхема NE556 представляет собой те же таймеры, но сдвоенные (два в одном корпусе)

Copyright ©2011 SHC Odessa.

Детектор скрытой проводки своими руками

В этой статье будет рассмотрена схема довольно простого детектора скрытой проводки. Сделать его своими руками не составит труда, так как все детали доступны и схема не сложная, так же есть файл с печатной платой. Данный детектор поможет вам определить место прохождения электрической проводки, которая скрыта в стене, тем самым исключит возможность её повреждения при проведении определённых работ. 

Схема детектора:

Чувствительным элементом схемы является полевой транзистор КП103, к затвору которого подключается антенна. Можно применять транзистор в любом корпусе и с любым буквенным индексом. Прибор реагирует на провода под напряжением 220 В 50 Гц независимо от того, течёт по ним ток, или нет.

Также в схеме используется микросхема К561ЛА7, которая представляет собой 4 логических элемента 2И-НЕ. Её можно заменить импортным аналогом, микросхемой CD4011. Светодиод на схеме загорается тогда, когда антенна оказывается в непосредственной близости от провода под напряжением.

В качестве антенны можно использовать отрезок обычного тонкого провода, длиной 5-10 см. Чем больше его длина, тем больше чувствительность прибора. Схема потребляет примерно 10-15 мА, питается напряжением 9 вольт. Для питания подойдёт обычная батарейка Крона. При необходимости, к 10 выводу микросхемы можно подключить любой пьезокерамический излучатель, например, ЗП-3, тогда при обнаружении провода будет раздаваться звук.

Сборка детектора

Схема собирается на миниатюрной печатной плате размерами 40 х 30 мм, сделать которую можно методом ЛУТ. Печатная плата полностью готова к печати, отзеркаливать её не нужно. После травления желательно залудить дорожки, это упростит пайку деталей, и медь не будет окисляться.

После того как печатная плата готова, можно приступить к распайки деталей. Следует быть осторожным, обращаясь с микросхемой – она чувствительна к статическому электричеству и её легко можно повредить. Поэтому на плату припаиваем панельку под микросхему и помещаем в неё микросхему только после завершения сборки.

Также нужно быть внимательным при припаивании транзистора – если он в пластиковом корпусе, то на плату припаиваются только две ножки – сток и исток, и антенна припаивается непосредственно к затвору. Если корпус металлический, все три ножки припаиваются на плату вместе с антенной.

Важно не перепутать цоколёвку, иначе прибор не заработает. Провода питания, для удобства, можно сразу припаять к коннектору для Кроны, как я и сделал. После завершения пайки обязательно нужно смыть остатки флюса с платы, иначе может пострадать чувствительность. Желательно также проверить правильность монтажа и соседние дорожки на замыкание.

Испытания детектора

После завершения сборки можно приступать к испытаниям. Берём крону и подключаем её к плате, поставив в разрыв одного из проводов амперметр. Потребление схемы должно составлять 10-15 мА. Если ток норме, можно поднести антенну детектора к любому сетевому проводу и наблюдать, как будет загораться светодиод и пищать пьезоизлучатель, если он установлен.

Дальность обнаружения проводки составляет примерно 3-5 см, в зависимости от длины антенны. При этом не следует прикасаться к антенне, от этого заметно падает чувствительность. Прибор не требует никакой настройки и начинает работать сразу после подачи питания. Помимо сетевых проводов, он реагирует также на кабель витую пару. Удачной сборки.

Смотрите видео работы прибора

На видео наглядно видно, как работает такой детектор. С его помощью удалось достаточно точно определить, где проходят провода от выключателя.

 

Печатная плата детектора:

Скачать печатную плату

Купить детали можно на Алиэкспресс:

 

Детектор скрытой проводки своими руками

Зачастую мы сталкиваемся в своей жизни с такой проблемой, как скрытая электропроводка в квартире. Вам понадобилось проделать отверстие в стене, чтобы повесить зеркало, часы или полку, и в этот момент произошла неприятность – в стене все начало искрить, и свет в помещении погас. В чем же дело? Дело в том, что при сверлении вы задели провод, который идет под стеной к лампе. И теперь придется чинить испорченный провод. А этого можно было легко избежать, используя специальный детектор скрытой электропроводки. Покупать такой прибор в магазине не обязательно, потому что его можно сделать своими руками дома из подручных средств. Рассмотрим далее, как можно сделать детектор скрытой проводки своими руками.

Способы, с помощью которых можно узнать, где именно проходит электропроводка в квартире

Есть несколько способов, благодаря которым можно легко распознать скрытую электропроводку. Например:

  • если есть такая возможность, заглянуть в техническую документацию вашей квартиры, в которой должна быть схема разводки электрики
  • можно предугадать схему прокладки проводки, обратив внимание на расположение распределительной коробки, а также на то, каким образом от нее идут провода к розеткам и выключателям. В случае, когда проводка делалась опытным и грамотным электриком, прокладка кабелей происходит под прямым углом, потому что так заложено в стандартах
  • очень хорошо, если вы сами делали ремонт в квартире, и разводкой электричества занимались тоже сами, поскольку необходимости в детекторе у вас не будет

Но бывает, что проводку проводил неквалифицированный мастер, который ради экономии метров провода разводил их по коротким путям. В таком случае, конечно же, не обойтись без специальных средств для поиска скрытой проводки.

В магазине можно найти различного рода поисковики для проводов. Обычно их называют детекторами скрытой проводки. Искатели бывают двух типов:

  • низкий класс поиска – они, как правило, настроены на источник электромагнитного излучения, то есть на провода, которые находятся под напряжением
  • высокий класс поиска – они наиболее точные и могут найти провода, которые не снабжены на момент поиска электричеством, то есть они настроены просто на выявление самого провода

Прибор низкого класса обычно стоит гораздо дешевле. Поэтому, чтобы вообще сильно не тратиться на покупку таких приборов, можно сделать детектор своими руками. Для домашнего использования его вам будет вполне достаточно.

Схема устройства и материалы для изготовления искателя

Мы предлагаем вам к рассмотрению самую простую схему сборки устройства поиска скрытой проводки. Для того чтобы самостоятельно собрать простой детектор скрытой электропроводки, вам потребуются детали, которые вы без проблем сможете найти среди своего домашнего арсенала, или за копейки приобрести в магазине радиотехники. Перечислим вам все необходимые материалы:

  • микросхема К561ЛА7
  • батарейка «Крона» на 9 В
  • резистор мощностью 1 МОм
  • пищалка (пьезоизлучатель или звуковой/световой датчик)
  • медный стержень (или проволока одножильная) длиной от 5 до 10 см
  • кусок картона
  • иголка (для прокалывания отверстий)
  • паяльник (мощностью не больше 25 Ватт)
  • короб или деревянная линейка

Рассмотрим подробнее все эти материалы, а также механизм сборки такого устройства. Основной элемент здесь – это советская микросхема. Она чувствительна к электромагнитному и статическому полю, которое исходит от проводников электрической энергии или каких-либо электронных устройств. От повышенного электростатического поля схема будет защищена резистором. Чувствительность самого прибора определит длина антенны. В качестве антенны мы используем одножильный медный провод, длина которого не должна превышать 10 см. Если длина будет больше, то существует вероятность так называемого самовозбуждения микросхемы, в результате чего прибор будет неточно указывать нам впоследствии на наличие провода в том или ином месте.

Есть один нюанс, который следует учесть. При подборе длины антенны детектора, нужно всегда проверять, чтобы она реагировала только на электрический кабель. То есть необходимо постоянно подносить искатель к предметам, пока реакция антенны не будет производиться только на электропровод.

В списке материалов вы обнаружили так называемую пищалку, звуковой датчик, или как его профессионально называют – пьезоэлемент. Также можно использовать светодиодный элемент. Этот элемент необходим нам будет для восприятия на слух электромагнитного поля, а светодиодный датчик будет светом указывать на место, где располагается провод. Впоследствии, когда мы будет работать с детектором, при обнаружении им напряжения в проводе, он будет издавать характерный треск. Такую пищалку можно найти в старом тетрисе, тамагочи или часах.

Схема у нас будет питаться от батарейки крона, с напряжением 9 Вольт. Далее займемся навесным монтажом – берем картон, прикладываем к нему микросхему ножками вниз и под каждой ножкой с помощью иголки делаем отверстия, всего их должно получиться 14, по 7 штук с каждой стороны схемы. После мы продеваем все ножки микросхемы через это отверстие и загибаем их. Таким образом, мы надежно закрепили ИМС (интегральная микросхема) на картоне, впоследствии нам будет проще с пайкой проводов.

Далее наступает самый сложный и важный момент – соединение всех элементов

Здесь необходимо использовать паяльник не больше 25 Ватт, иначе схема может перегреться. Приступаем к сборке:

Изначально перед работой, надо подготовить план-схему, на которой вы подробно пропишете все элементы и моменты их соединения. Микросхема, а точнее ее контакты, лучше всего пронумеровать от 1 до 14, начиная слева направо, при условии, что паз торца схемы будет наверху. И далее производим последовательно все соединения:

  • соединяем батарейку выход «+» с ИМС (интегральная микросхема) к контакту № 14
  • соединяем батарейку выход «-» с контактом № 7
  • соединяем резистор с медным стержнем (или проволокой) к контакту схемы № 1 и № 2 параллельно
  • соединяем пьезоизлучатель (датчик звука или светового индикатора) с контактом № 4 одним проводком напрямую
  • соединяем пищалку с контактами №3, 5 и 6 вторым проводом

Далее всю получившуюся конструкцию необходимо аккуратно расположить в каком-либо удобном коробе или на деревянной линейке.

Если вы исполнили все рекомендации по сборке, то схема должна заработать сразу. А для того чтобы детектор не работал постоянно, можно подключить тумблер, расположив его между батарейкой и схемой.

Детектор поиска напряжения сети готов. Благодаря всем этим несложным действиям вы, не потратив лишних средств и времени, смогли создать для себя своими руками домашнее устройство для поиска скрытой проводки. Его вы можете использовать теперь всегда, когда соберетесь повесить в своей квартире что-нибудь, или просто захотите поменять электропроводку. Самодельный детектор без проблем поможет вам правильно делать отверстия в стене, чтобы не повредить провода.

РадиоКот :: Детектор скрытой проводки

РадиоКот >Схемы >Цифровые устройства >Защита и контроль >

Детектор скрытой проводки

Добрый день, уважаемые любители электроники! Хотелось бы поделиться с вами одним из моих изделий. Недавно захотелось поставить в квартиру реле напряжения для защиты аппаратуры от пере и недонапряжения. Ибо, вытянуть счастливый билет в качестве 380в  не хотелось бы. Вначале у меня просто в розетке стоял варистор, но позже я решил поставить РН. Тем более, что схема реле у меня была от некогда пришедшего в негодность переходника со всроенным реле напряжения. Итак, схема была вставлена в подходящий корпус от бывшего адаптера. Выведены нужные провода.

Но, 3 кВт на квартиру мне показалось мало, поэтому был сделан контактор из 3-х давно валявшихся дома реле РПУ-0-УХЛ4 на 220в. Все коммутирующие контакты были соеденины параллельно, что обеспечило гораздо больший ток коммутации, чем в родном реле. Припаял конденсатор 2200 пф на 5 кв. от возможной дуги.

Настало время сверления стен, но меня всегда при этой процедуре волнует вопрос, а не встретимся ли мы с проводкой в стене, тем более возле электросчетчика? Итак, было принято решение собрать детектор скрытой проводки. После просмотра схем на просторах интернета была выбрана эта, да и эти детали давненько лежат у всякого любителя электроники:

 

Так же, решил добавить немного креатива, и вставить прибор в пустой флакон от шарикового антиперсперанта.

 

В связи с простотой схемы, печатную плату решил не делать, а все монтировал на спинке и брюшке микросхемы. Так же, решил туда вставить Li-Ion аккумулятор от старой батареи нетбука и контроллер заряда с Али Экспресса.

 

Пошел процесс сборки и утрамбовки всего содержимого в корпус.

 

 

Антенну решил сделать не из медной проволоки, а из телевизионного коаксиального кабеля. Понравилось то, что он жесткий, но эластичный.

Забегая вперед скажу, что работа данной схемы  меня абсолютно не устроила. Эксперементировал с антеннами разной длины, из разного материала. Результат не удовлетворял. Проводка в стенах упорно не находилась. А без резистора 50 мОм схема вообще сходила с ума. И тогда я решил попробовать перед 1-2 входом  микросхемы добавить полевой транзистор. Принцип такой же, как у “Дятла” Е121. Тоже полевик, потом логика. Только нет переключателей чувствительности детектора. И после этого результатом я остался очень доволен. Прибор получился чувствительным, и довольно точным для подобной самоделки. Плюс, с питанием от аккумулятора. Заряжается от обычной телефонной зарядки. Вот моя доработанная схема:

 

 Думаю, 3-5 см в стене он видит. Конечно, еще зависит от интенсивности тока в проводнике. Так же, от материала стен и т.д. Кроме того, все электрики говорят, что к любому подобному прибору надо приноровиться.

Во всяком случае, при тестах я ни какие утюги в розетки не включал. Почти все прозванивается и так.

Пишу статью, ибо такой прибор – это весьма удобная, полезная и простая в сборке конструкция, которая необходима  любому домашнему умельцу.

Пару слов о деталях: Резистор R1 я поставил 100мОм. На радио рынке такого номинала не было, поэтому пришлось сделать небольшой баянчик из резисторов. Меньше ставить не рекомендую – уменьшится чувствительность.

Вот, что получилось в итоге:

 Во время тестирования с творческим подходом вмешалась жена, и предложила  назвать прибор “Цикада — 1”. Возражений не было. Лишь добавил в конце литеру “М”, в связи с внесенными в схему изменениями.

 И общий вид защиты от скачков напряжения:

 

В будущем я планирую реле напряжение перенести ближе к контактору, возле счетчика. Розетка в коридоре бывает нужна.

Так же, при помощи прибора сразу обнаружились несколько неправильно включенных электроприборов с перевернутыми  фазой и нулем. Наводка ловилась за пол метра. Все было устранено. Хватит лишних излучений.

Файлы:
Вид сзади

Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

ДЕТЕКТОР ПРОВОДКИ

   Представляю очень простой детектор скрытой проводки. Собрать сможет каждый. Все детали в принципе доступны. Он собран на сверх чувствительных транзисторах ВС547. Источник питания 6В — я использую сдохшие батарейки крона из мультиметра. Стрелка на схеме это антенна детектора.


   Итак, о сборке детектора проводки. Так как схема очень проста, ее собрал навесом. На фото схема со штекером для кроны. Было принято собрать для детектора приличный корпус, для этого взял коробочку из под балласта настенных ламп дневного света:


   Потом наклеил алюминиевый скотч в качестве антенны:


   Нашел какие-то аккумуляторы на 1,5В (не знаю от чего) чуть тоньше чем пальчиковые батарейки. Взял 3 штуки — это 4,5В; схема от этого тоже работает:


   Проделал отверстия под светодиод и выключатель (выключатель уже вставил):


   Разместил все во внутрь детектора и припаял антенну к скотчу:


   Вот детектор скрытой проводки в сборке:


   А вот в действии. Работает на расстоянии примерно 10см от провода 220


   Тут я ищу проводку в стене:


   Данный прибор очень чувствительный, и я не сомневаюсь, что он вас удивит, так как он реагирует даже на слабое электрическое поле и на прикосновение рук! Думаю, у многих возникнет вопрос — как припаять медь к алюминию. Итак, сначала надо удалить пленку с метала. Химическое удаление пленки может быть произведено следующим способом: место на алюминии, к которому предполагается подпаять провод, зачищают и на него аккуратно наносят две-три капли насыщенного раствора медного купороса. Далее к алюминию подключают отрицательный полюс источника постоянного тока, а к положительному полюсу подсоединяют кусок медной проволоки, конец которой опускают в каплю так, чтобы проволока не касалась панели. На панели через некоторое время осядет слой красной меди, к которому (после сушки) припаивают обычным способом нужный провод. Желаю удачной сборки! Денис

   Форум по детекторам

   Форум по обсуждению материала ДЕТЕКТОР ПРОВОДКИ

Детектор скрытой проводки (схема, принцип работы)

Кроме часто встречающихся в радиолюбительской практике датчиков, существуют и более редкие, но, тем не менее, эффективные приборы и устройства. Об одном из них — датчике от танкового шлемофона — рассказано ниже.

Все известные схемы искателей скрытой проводки можно условно разделить на детекторы (сигнализаторы) наличия переменного напряжения и сигнализаторы магнитного и электрического поля. В качестве датчиков к таким устройствам с разной эффективностью служат в основном пассивные индуктивные элементы (кроме пассивных элементов в устройствах контроля и сигнализации электрического поля широко используются полевые транзисторы).

Это катушки реле с большим количеством витков на стальном (типа РКН и аналогичные) или ферритовом сердечниках, катушки от высокоомных телефонов (типа ТОН-1, ТОН-2 и аналогичные с сопротивлением 1600 Ом), динамические микро? фоны типа МД200, МД201 и аналогичные, звукозаписывающие (воспроизводящие, универсальные) головки от магнитофонов. Наилучший результат удалось получить, используя универсальную головку от катушечного магнитофона «Яуза» и даже такие «неформальные» элементы, как датчик от ларингофона танков Т-60—Т-80 (см. рис. 2.31).

На рисунке показан один и тот же ларингофонный датчик ТЛГ-1А в разном исполнении (изолированном и неизолированном корпусе). Выход ларингофонного датчика имеет три контакта: корпус датчика (экран) и два контакта (+) и (-). Датчик подключается к усилителю строго с соблюдением полярности.

Танковые шлемофоны используются в народном хозяйстве еще с начала 1970 годов в качестве элементов переговорного устройства вездеходов и тягачей (в географических условиях непроходимой местности, тайге, на севере), поэтому не представляют на сегодняшний день никакого секрета. Однако если исследовать ларингофон глубже, обнаружатся его высокоэффективные (по чувствительности к слабым сигналам) качества.

Рис. 2.31. Фото ларингофонного датчика шлемофона Т-72

Как известно, ларингофон реагирует не столько на уровень громкости звука [об этом можно судить по закрытому (запаянному) корпусу], сколько на слабую детонацию, вибрацию и изменения магнитного поля. Датчик ТЛГ-1А отрицательным выводом подключается к общему проводу усилителя, а «плюсовым» выводом — к отрицательной обкладке оксидного конденсатора С1. Корпус датчика остается неподключенным.

Диаграмма направленности рекомендуемого устройства широка, что позволяет применять его при поиске скрытой проводки в небольших сетях коммуникаций (в квартирах, частных домах). В производственных помещениях, где электрическими кабелями «окутаны» все стены, прибор будет малоэффективен. Зато там, где спрятанная электрическая проводка редка и глубоко запрятана в бетон, находится под толстым слоем штукатурки, устройство обнаруживает ее на расстоянии до 80 см (в зависимости от материала стен). По нарастающей (максимальной) громкости звука в телефоне определяют точное местонахождение проводки. Для нормальной работы устройства, естественно, по искомым проводам должен протекать переменный (или импульсный) ток. Чем больше сила тока, тем с большего расстояния и с большей точностью устройство с ларингофонным датчиком обнаруживает местонахождение проводки.

Поскольку чувствительность датчика высока, можно использовать усилитель звуковой частоты упрощенной конструкции, например на основе микросхемы К140УДЗЗ. Рекомендуемый усилитель обладает функцией регулировки усиления входного сигнала.

Электрическая схема усилителя с подключенным ларингофоном ТЛГ-1А представлена на рис. 232.

В качестве телефона используется хорошо знакомый радиолюбителям телефонный капсюль ДЭМШ-4М, обеспечивающий достаточную громкость звука.

Источник питания устройства— стабилизированный источник питания 5 В постоянного тока. Ток потребления усилителя при максимальном усилении составляет 10—12 мА. На частотах 1000—5000 Гц коэффициент усиления ОУ DA1 максимальный, около 100.

Рис. 2.32. Электрическая схема усилителя с ларингофоном Т/ІГ- 1А

На элементах R4, VD1, C3, С4 собран стабилизатор напряжения. Оксидный конденсатор С4 фильтрует низкочастотные помехи по питанию. Конденсатор C3 фильтрует помехи по высокой частоте.

Резистор R4 (ОМЛТ-0,5) ограничивает ток так, чтобы стабилитрон VD1 находился в рабочем режиме — ток стабилизации 1—10 мА, UCT = 3,3 В. Этот ограничивающий резистор рассеивает небольшое количество тепла — его мощность (0,5 Вт) выбрана с запасом. Можно питать узел от двух элементов А316, тогда R4, VD1, C3, С4 не нужны. В таком варианте элементы питания подключаются соответственно к общему проводу и к точке А (положительный полюс).

Напряжение питания усилителя может находится в диапазоне от 1,4 до 5 В, однако при напряжении питания более 3,5 В усилитель возбуждается и уровень шумов возрастает. При напряжении, питания 3 В (оптимальное напряжение питания) величина входного шумового напряжения составляет 440—500 нВ/Гц— это типовое значение для самого ОУ.

Вследствие небольшого уровня опорного напряжения на инвертирующем входе 3 микросхемы DA1 среднеквадратичное значение шума в результирующем сигнале сохраняется на низком уровне. Местный акустический эффект из-за близости расположения ВМ1 и НА1 (который появляется при повышении напряжения питания до 5 В) можно свести на нет корректировкой сопротивления резистора R9. Следует учитывать, что при этом уменьшится и общий коэффициент усиления узла.

Максимальное усиление фиксируется на нагрузке сопротивлением 500 Ом. Однако такой звуковой капсюль найти трудно. При возможной замене НА1 следует учитывать это обстоятельство. Усиление входного сигнала регулируется переменным резистором R5 (СПО-1).

Устройство в налаживании не нуждается. Если узел собран без ошибок с исправными элементами, он начинает работать сразу. Отдельного выключателя питания нет, так как оно поступает на устройство через разъем РП10-5. Можно применить разъем другого типа.

Все постоянные резисторы, кроме R4 — типа МЛТ-0,25. Оксидные конденсаторы — типа К50-6. Остальные — типа КМ-6Б. В качестве ларингофонного датчика ВМ1 можно применить любойдинамическийкапсюльссопротивлением180—250 Ом, например ДЭМШ-1А. НА1 можно заменить на ТМ-4, ВП-1.

Если ларингофон располагается в одном корпусе с усилителем, то экранировать провода не надо. Корпус для устройства — любой: например хорошо подходит пластмассовый, от портативного электрического фонаря, фото которого показано на рис. 2.33.

Рис. 2.33. Фото корпуса из портативного электрического фонаря

Кроме описанного предназначения, устройство усилителя с ларингофонным датчиком может применяться для контроля сейсмического фона, а также в устройствах контроля детонации механических приборов. В налаживании устройство не нуждается.

Кашкаров А. П. 500 схем для радиолюбителей. Электронные датчики.

WIRE HIDE Комплект защиты крышки провода датчика двери гаража премиум-класса. Включает 3 крышки, трубку и все необходимое оборудование. Подходит для Чемберлена / Лифтмастера / Ремесленника / Джинна —


  • Убедитесь, что это подходит введя номер вашей модели.
  • В комплект входят 3 настенные пластины, 66 дюймов трубок и один комплект крепежа.
  • Используйте по три комплекта на дверь. Два для фотодатчиков глаза. Один для потолка.
  • Наша изготовленная на заказ настенная пластина и комплект кабелепровода предоставляют подрядчикам и домовладельцам чистое и быстрое решение, позволяющее скрыть и защитить вашу незащищенную низковольтную проводку.
  • Подходит для всех моделей открывателей гаражных ворот, включая Chamberlain / LiftMaster / Craftsman / Genie.
› См. Дополнительные сведения о продукте

Интерактивные электрические схемы

ShopKey заново изобретает электрические схемы….Опять таки!

Электронные системы в современных легковых и грузовых автомобилях имеют в среднем 30 электронных блоков управления (ЭБУ), а в автомобилях класса люкс их еще больше — до 100 ЭБУ. Эти устройства могут обрабатывать до миллиона строк кода, что больше, чем у некоторых реактивных истребителей. Когда что-то пойдет не так, эти автомобили появятся в вашем магазине!

Поскольку в современных передовых автомобилях так много всего, что может пойти не так, вам нужна информация о ремонте, которая упростит вашу работу и позволит вам контролировать диагностику.Последние усовершенствования легендарных электрических схем ShopKey Pro переопределяют электрическую диагностику с помощью запатентованных интерактивных функций, которые помогут вам сделать следующий шаг к эффективности диагностики.

Вы устали искать на нескольких страницах единую электрическую схему для выбранного компонента? Больше никогда! Легендарные электрические схемы ShopKey Pro имеют интеллектуальную навигацию, которая приведет вас прямо к конкретной схеме для компонента, который вы искали, с автоматически выделенными трассами.Быстрее и проще, чем когда-либо, найти точную электрическую схему, необходимую для эффективной и точной диагностики.

Специалисты по ремонту автомобилей из поколения в поколение любили электрические схемы ShopKey. Теперь любить есть еще больше:

Интерактивность соединяет диаграммы с информацией о компонентах

Эксклюзивно для ShopKey, наши интерактивные схемы подключения позволяют перемещаться по схеме непосредственно к информации о компонентах без вторичного поиска. При просмотре схемы соединений просто щелкните любой компонент на схеме, чтобы увидеть всплывающее меню с вариантами выбора, чтобы узнать больше о спецификациях, расположении компонентов, видах разъемов, пошаговых тестах компонентов и т. Д.Нет необходимости выходить из схемы подключения, чтобы найти соответствующую информацию, необходимую для диагностики проблемы. Все, что вам нужно, прямо здесь. Щелкните еще раз, и вы вернетесь на схему подключения.

Перейдите к схемам подключения компонента

При переходе к схемам подключения через 1Search ™ Plus ShopKey Pro открывает схему для конкретного компонента, который вы ввели в качестве поискового запроса. Современные современные автомобили могут содержать до 16 страниц диаграмм характеристик двигателя.Но с ShopKey Pro нет необходимости рыскать по всем этим страницам. Просто введите компонент, нажмите «Поиск» — и вы на месте.

Компонентные провода выделяются автоматически

ShopKey Pro не только приведет вас к определенной диаграмме, но когда вы откроете эту диаграмму, компонент будет в фокусе со всеми уже выделенными линиями. Одним щелчком мыши вы можете просмотреть другие компоненты и переключить выделение связанных проводов для каждого компонента. Вы мгновенно видите все провода, относящиеся к компоненту — не нужно щелкать каждый провод отдельно.

Упрощенный просмотр сложных диаграмм

Есть диаграмма с несколькими страницами? Нет проблем — выделение распространяется на все страницы, пока цепь не достигнет точки завершения. Больше никаких «глазных диаграмм», которые заставят вас сопоставлять провода от страницы к странице. И когда вы переходите к следующей или предыдущей диаграмме, ShopKey Pro также поддерживает масштабирование и ориентацию. Забудьте о необходимости сбрасывать вид каждый раз, когда вы открываете новую страницу.

Детали или общая картина — все готово

Если вы хотите погрузиться глубже и скрыть невыделенные провода, скрытые провода выглядят блеклыми, но не исчезают полностью.Таким образом, вы видите нужные детали, но при этом имеете полное представление об элементах, включенных в полную схему.

Электрические схемы никогда не были такими сложными — и так легко ориентироваться!

Электропроводка

А теперь самое интересное! Подключить Konnected устройство довольно просто, но это может быть утомительно. Ключ к успеху — терпение и планировать заранее!

Замена существующей панели сигнализации

Если в вашем доме уже есть проводка с существующей панелью сигнализации, вам сначала нужно определить провода датчика, выходящие из ваши стены и в панель охранной сигнализации и отключите их от входов зоны.У большинства охранных панелей есть электрическая схема, и, если вам повезет, на проводах уже может быть указано, к какому датчику они идут. Если нет, сделайте себе одолжение и отметьте их перед тем, как вы начнете переподключение.

Большинство датчиков движения или датчиков разбития стекла имеют 4-жильный кабель: два для питания и два для сигнала. Если ваши датчики с питанием уже получают питание от существующей панели сигнализации, вам не нужно отключать провода питания . Просто отсоедините сигнальные провода от входов зон охранной панели.

Оконечные резисторы

Многие проводные панели сигнализации будут иметь оконечных резисторов , подключенных через обжимные соединители к одному концу пары каждой провода датчика или зоны. Удалите эти резисторы и обжимной разъем при отсоединении проводов от панели сигнализации, они не нужны для этого проекта!

Датчики соединены вместе в зонах

Многие системы охранной сигнализации имеют два или более датчиков, соединенных вместе, чтобы создать зон . Зона — это просто группа датчики.Если какой-либо из датчиков в зоне открыт, зона будет считаться открытой. Это обычно используется, например, чтобы сгруппировать несколько окон в одной комнате, когда вам не обязательно знать, какие именно соответствуют окно открыто, только что любое окно открыто.

Вам решать, хотите ли вы, чтобы датчики были подключены к зонам, или разделить их для мониторинга каждого датчика. индивидуально. Количество датчиков / зон, которые вы можете контролировать, ограничено количеством входных контактов на устройстве Konnected.Каждое устройство может поддерживать до 6 датчиков или зон. Вы всегда можете добавить больше устройств Konnected для виртуальной поддержки неограниченное количество датчиков.

Установка без существующей панели сигнализации

Если в вашем доме «предварительно подключены» датчики, но не установлена ​​панель сигнализации, или вы строите / ремонтируете дом и разводка с датчиками, тогда это должно быть просто! Вам не нужна существующая панель сигнализации для использования Konnected Security. Вы будете подключать датчики напрямую к устройству Konnected.Для питания устройства используйте адаптер питания постоянного тока 12 В.

Подробное описание подключения к электросети

  1. Подключение перемычек к внутренней проводке
  2. Электропроводка дверных и оконных датчиков
  3. Подключение датчиков движения
  4. Подключение сирены, стробоскопа или сигнализации
  5. Электромонтаж детекторов дыма и CO
  6. Новинка: Электромонтаж извещателей разбития стекла
  7. Новый: Дверной звонок
  8. Мощность
Следующий шаг: Подключение перемычек к внутренней проводке Пожалуйста, включите JavaScript, чтобы просматривать комментарии от Disqus.

Пошаговое руководство и видео — блог Reolink

застрял в , как проложить провода камеры безопасности или кабели снаружи или в вашем доме? Здесь вы получите пошаговое руководство, которое покажет вам, как установить проводку наружной и внутренней камеры видеонаблюдения.

Даже если вы впервые прокладываете кабели для камеры видеонаблюдения, вы можете проложить проводку для камеры видеонаблюдения через чердаки / стены, для входной / задней двери, приемной, переднего / заднего двора, цеха, спальни, гаража, склада, подвала. , автостоянка, ферма, подъезд, даже наверху и т. д.быстро и легко.

Большой совет : Если вы выберете камеры видеонаблюдения с батарейным питанием, вы можете просто разместить камеры на открытом воздухе или в помещении, не беспокоясь о проводке и кабелях.

ПОДОЖДИТЕ! Ознакомьтесь со специальными предложениями перед отъездом:

Прямо сейчас вы можете получить ЭКСКЛЮЗИВНЫЕ И БОЛЬШИЕ скидки на широкий спектр камер и систем видеонаблюдения Reolink, беспроводных и подключенных к сети, внутри и снаружи помещений.

Полезное руководство по прокладке проводов камеры видеонаблюдения

Основные вещи, которые вам понадобятся для подключения камер видеонаблюдения

Когда вы собираетесь проложить провода камеры видеонаблюдения снаружи или внутри, вы должны подготовить следующие необходимые предметы.

Для камер безопасности PoE :

  • Провода для камеры безопасности Cat 5/6
  • Сверло
  • Рыболовная лента
  • Инжекторы PoE

Для беспроводных камер видеонаблюдения (без аккумулятора) :

  • Электропровода
  • Сверло
  • Рыболовная лента
  • Удлинитель провода камеры видеонаблюдения

Для аналоговых камер видеонаблюдения :

  • Разъемы BNC RG-59
  • Инструмент для обжима RG-59
  • Инструмент для снятия изоляции RG-59
  • RG-59 / syv-75-5 коаксиальные провода
  • Ствол BNC
  • Кусачки
  • Инструмент для обжима стандартной проволоки
  • Изолента

Перед тем, как проложить кабели, вы можете взглянуть на схему проводов камеры видеонаблюдения ниже.

Схема подключения IP-камеры видеонаблюдения WiFi и PoE

Примечание : Некоторые подробные инструменты здесь не упоминаются. Здесь вы можете увидеть лучшие инструменты для сверления отверстий. Если вам нужно проложить подземные провода для камер видеонаблюдения, чтобы контролировать ваш сад, подъездную дорожку и т. Д., Необходимы трубы из ПВХ / металла.

Часть 1. Как проложить провода камеры видеонаблюдения в доме: с подробными инструкциями и видео по настройке

Прокладка проводов камеры видеонаблюдения внутри вашего дома, например на чердаке, потолке, сайдинге и т. Д.намного проще, чем внешняя работа.

Вы можете следовать этому руководству по установке проводов камеры видеонаблюдения, чтобы скрыть или проложить провода в вашем доме.

Шаг 1. Прежде чем прокладывать кабели для камер видеонаблюдения, спроектируйте центральный узел наблюдения. Место, где вы размещаете свой NVR / DVR — центральный узел наблюдения — в вашем доме, определяет маршрут проводки. Разумное размещение вашего NVR / DVR в вашем доме может помочь вам избавиться от грязной проводки.

Место должно быть легкодоступным, чтобы вы могли удобно подключить камеру наблюдения из любой точки дома.Чердаки и ваш интернет-роутер — идеальные места для NVR / DVR.

Примечание : Здесь вы можете получить полезные советы по размещению камер (систем) видеонаблюдения.

Шаг 2 . Отключайте питание при прокладывании проводов камеры видеонаблюдения, чтобы защитить вашу личную безопасность и избежать повреждения ваших устройств.

Шаг 3 . Просверлите отверстие в месте, где будет розетка (для беспроводной камеры наблюдения и аналоговой камеры наблюдения), и используйте выпрямленную металлическую вешалку для одежды, чтобы нащупать внутри стены любые непредвиденные препятствия.

Сверление, несомненно, является одним из лучших и самых простых способов прокладки проводов камер видеонаблюдения через стены, потолок, виниловый сайдинг и т. Д.

Если вы проложите кабель Ethernet Cat 5/6 от камеры видеонаблюдения, вы можете просто просверлить отверстие, чтобы проложить кабель Ethernet от камеры к домашнему маршрутизатору или сетевому видеорегистратору. Если расстояние между вашей камерой и маршрутизатором / сетевым видеорегистратором слишком велико, вы можете добавить инжектор PoE.

Шаг 4 . Зазор / отверстие должно быть больше, чем максимальное количество проводов, которое вы ожидаете когда-либо проложить.Оставьте внутри несколько футов дополнительных проводов как для завершения, так и для будущей реорганизации, если это необходимо. Маркировка на концах кабелей поможет вам определить, какая камера видеонаблюдения с каким кабелем работает.

Шаг 5 . Перейдите туда, где вы хотите установить камеры видеонаблюдения, например на чердак, под потолок, в подвал или в подвал, и просверлите отверстие в верхней или нижней стеновой плите в той же полости.

Шаг 6 . Прикрепите провода с помощью рыболовной ленты, чтобы выловить провода камеры наблюдения.

Шаг 7 . Протяните провода или кабели камеры видеонаблюдения к месту назначения (вам может понадобиться напарник, который проведет провода для вас). Не забудьте использовать защитную крышку или кабелепровод камеры видеонаблюдения для защиты кабелей.

Надеюсь, что вышеприведенное пошаговое руководство ответило на такие вопросы, как Как провести провода домашних камер безопасности через чердак / стену? Как установить камеры видеонаблюдения в моем двухэтажном доме?

Как спрятать провода камеры видеонаблюдения в доме

Если вы не хотите, чтобы провода камеры видеонаблюдения испортили ваш текущий декор дома, вы можете попробовать следующие советы, чтобы спрятать провода камеры видеонаблюдения внутри.

Решение 1. Когда вы просверливаете отверстие для проводки IP-камеры, например, проводя камеры через потолок, вы можете скрыть кабель камеры безопасности с помощью ограждений для проводов.

Вставьте кабель в ограждение и прикрепите ограждение к стене внутри дома или проведите им к задней части мебели. Так что никаких проводов не видно.

Решение 2. Покрасьте провода. Вы можете прикрепить провода к углу и закрасить их тем же цветом, что и стены.

Решение 3. Проложите провода камеры видеонаблюдения за плинтусом в вашей комнате.

Решение 4. Другой возможный способ скрыть кабели видеонаблюдения — использовать пластиковую трубку, которая позволяет скрыть провода камеры видеонаблюдения от глаз и защитить их от пыли и внешних повреждений.

Любитель DIY разместил на YouTube видео, демонстрирующее руководство по установке камеры видеонаблюдения в его доме. (Он прячет провода камеры наблюдения под столом. Какая отличная идея!) Вы можете посмотреть видео ниже.

Если вам необходимо установить проводку наружной камеры видеонаблюдения, вы можете получить подробное руководство по прокладке проводки камеры наружного наблюдения, приведенное ниже.

Bump: Если вы хотите, как спрятать провода камеры видеонаблюдения снаружи, перейдите к части 2.

Часть 2. Как проложить провода камеры видеонаблюдения за пределами

Когда вам необходимо установить IP-камеры на открытом воздухе, монтаж кабелей для наружных камер видеонаблюдения является ключевым процессом.

Вы можете проверить руководство по подключению ваших камер видеонаблюдения от вашего дома к удаленному участку, например, подъездной дорожке, изолированному гаражу, палисаднику и т. Д.и шаги по установке кабелей камеры видеонаблюдения изнутри вашего дома на улицу, например, на крыльцо.

1. Как запустить камеры видеонаблюдения из вашего дома в удаленное место

2. Как проложить кабели камеры видеонаблюдения от вашего дома до ближайшей точки

3. Как спрятать провода камеры видеонаблюдения за пределами

1. Как запустить и спрятать провода камеры видеонаблюдения снаружи: проект дальней связи

При прокладке проводов камеры видеонаблюдения снаружи (особенно при работе на большие расстояния), вы можете закопать кабели, чтобы защитить их от закалки.

Шаг 1 . Спланируйте маршрут проводов камеры видеонаблюдения. Найдите довольно короткий и легкий путь, чтобы закопать трубы, чтобы упростить работу по захоронению.

Шаг 2 . Вам необходимо использовать ограждение для проводов, ПВХ или металлические каналы для защиты проводов домашних камер видеонаблюдения от несанкционированного доступа как людьми, так и животными — белками (проверьте этот пост, чтобы узнать, как от них избавиться), птицами и т. Д.

Совет редактора: Если вы не используете трубопроводы снаружи или не закапываете провода камеры видеонаблюдения, не забудьте оставить петли для капель, чтобы вода не попадала в розетки через отверстие.

Шаг 3 . Если вам нужно запитать вашу камеру безопасности PoE снаружи, вы можете просто поймать кабель CAT5 / 6, поскольку кабели PoE могут обеспечить как соединение для передачи данных, так и электроэнергию для ваших камер безопасности PoE. Что касается беспроводных камер видеонаблюдения, вам просто нужно проложить провода к розетке, обеспечивающей питание для беспроводных камер видеонаблюдения. (Розетка должна быть водонепроницаемой и защищенной от атмосферных воздействий.)

Шаг 4 . Отметьте место, где вы хотите вырезать отверстие.

Шаг 5 .Просверлите отверстие для вывода проводов камеры видеонаблюдения от вашего дома. Вырезав отверстие в стене, вставьте сверло, чтобы просверлить отверстие, чтобы через него можно было пропустить провода. Не забудьте использовать угловое сверло с коронками для сверления отверстий большого диаметра.

Держите отверстия на шпильках по центру. Просверлить отверстие в стене намного проще, чем сверлить в полу. Все, что вам нужно сделать, это медленно сверлить и не нажимать слишком сильно. Остановитесь, когда почувствуете, что сверло пробивает стену.

Шаг 6 .Закопать электрические провода / сетевые кабели. Перед тем, как проложить провода для камер видеонаблюдения, необходимо проложить кабелепровод из ПВХ на глубину не менее 18 дюймов и 6 дюймов для металлического кабелепровода в соответствии с Национальным электротехническим кодексом (NEC).

Шаг 7 . Сейчас дырки уже проделаны. Дальше идут ходовые провода. Выловить проволоку довольно легко, если прикрепить ее с помощью рыбной ленты или троса. Оберните оголенный провод через петлю из рыбьей ленты и скрутите конец проволоки вокруг себя.Оберните изоленту конец петли и проволоки. Теперь вы готовы тянуть за провода.

Шаг 8 . Вытяните провода камеры видеонаблюдения. Когда один человек встанет для подачи проводов, равномерно потяните за все провода. Не перепутайте провода. Что касается человека, тянущего за провода на другом конце, тяните за провода медленно, например, с интервалом в 2–3 фута. Если тянуть слишком быстро, провода могут оборваться и пальцы вашего партнера будут защемлены.

Вы также можете прочитать этот пост, чтобы получить более подробную информацию о том, как установить камеры видеонаблюдения (написано Амандой, старшим техническим редактором Reolink, которая действительно увлекается проектами DIY).

Некоторые операторы задавали вопросы на форумах, например «Как проложить кабели для ваших наружных камер видеонаблюдения PoE или как установить провода питания для наружных беспроводных камер видеонаблюдения?» . Надеюсь, приведенное выше подробное руководство будет вам полезно.

2. Как установить провода камеры видеонаблюдения изнутри наружу

Если вы просто прикрепите камеру видеонаблюдения к кирпичу за пределами вашего дома, например, проложите провода камеры видеонаблюдения к твердой доске, процесс установки будет довольно простым.

Шаг 1 . Решите, где разместить камеру.

Шаг 2 . Просверлите отверстие от камеры до маршрутизатора или сетевого видеорегистратора (для кабелей PoE камеры).

Для уличных беспроводных камер видеонаблюдения вам просто нужно просверлить отверстие, чтобы проложить к ним силовые кабели.

Шаг 3 . Как упоминалось выше, вы можете скрыть провода камеры видеонаблюдения с помощью ограждений.

Совет редактора: Проложив провода для камер видеонаблюдения снаружи, не забудьте скрыть отверстия.В противном случае влага может стекать по поверхности кабеля видеонаблюдения и попадать прямо в точки электрических подключений, что может вызвать серьезные проблемы, требующие дорогостоящего ремонта.

Вот несколько полезных советов, как закрыть отверстия для проводов камеры видеонаблюдения в стене:

• Заполните отверстие водонепроницаемыми материалами, такими как силикон и уплотнение воздуховода.

• Установите водонепроницаемые наружные покрытия или проходные втулки, чтобы скрыть отверстия.

3. Как спрятать провода камеры видеонаблюдения за пределами

Один из лучших способов спрятать камеры видеонаблюдения снаружи — это проложить провода для захоронения.

Вы можете попробовать следующие шаги, чтобы скрыть провода для ваших камер видеонаблюдения.

Шаг 1. Спланируйте маршрут для прокладки проводов IP-камеры на открытом воздухе. Сделайте маршрут как можно короче, чтобы облегчить работу по захоронению.

Шаг 2. Подготовьте трубы для электромонтажа, например металлические трубы, ПВХ и т. Д.

Шаг 3. Отметьте точки, в которых вам нужно просверлить отверстия.

Шаг 4. Закопать трубы.В соответствии с Национальным электротехническим кодексом, трубопровод из ПВХ должен быть заглублен на глубину не менее 18 дюймов, для металлических труб — 6 дюймов.

Шаг 5. Пора проложить кабели камеры видеонаблюдения. Используйте рыбную ленту, чтобы натянуть провода.

Теперь вы можете спрятать провода камеры видеонаблюдения снаружи и защитить кабели видеонаблюдения от суровых погодных условий и внешних повреждений, таких как вандализм.

Обновление: Пользователь Reolink рассказывает, как он устанавливает купольную камеру видеонаблюдения и прячет провода камеры видеонаблюдения снаружи в распределительной коробке.И выглядит красиво!

Обновление , 11 июня: Если вы хотите узнать, как спрятать кабели камеры видеонаблюдения на открытом воздухе в распределительной коробке, ознакомьтесь с этим подробным руководством прямо сейчас!

Предупреждение о прокладке кабелей камеры видеонаблюдения

Национальный электротехнический кодекс требует, чтобы отверстия, содержащие неметаллический кабель (часто называемый Romex) или гибкий металлический кабель, располагались на расстоянии 1-1 / 4 дюйма или более от края шпильки (рис. A) для защиты проводов. из гвоздей и шурупов.(Винты и гвозди диаметром 1-1 / 4 дюйма, используемые для крепления гипсокартона толщиной 1/2 дюйма, входят в шпильки примерно на 3/4 дюйма)

Когда вам нужно закопать провода камеры видеонаблюдения, сначала прочтите указания по установке подземных проводов, чтобы избежать возможных проблем в будущем.

Часть 3. Руководство по установке камеры видеонаблюдения: включены все типы

Подключение камеры видеонаблюдения — ключевой процесс установки камер видеонаблюдения. Есть еще несколько второстепенных шагов, чтобы завершить всю установку.

Вы можете выполнить следующие шаги, чтобы настроить беспроводные, PoE, беспроводные и аналоговые камеры видеонаблюдения.

1. Беспроводные камеры видеонаблюдения

2. Камеры безопасности PoE

3. Беспроводные камеры наблюдения

4. Аналоговые камеры видеонаблюдения

1. Как установить камеры видеонаблюдения с беспроводным питанием от батарей

Беспроводные камеры видеонаблюдения питаются от батареек и передают данные через Wi-Fi, что делает этот тип камер видеонаблюдения полностью беспроводным сверху вниз.

В качестве типичного примера мы возьмем камеру видеонаблюдения Reolink Argus 2 с батарейным питанием.

Шаг 1 . Загрузите приложение Reolink из App Store (для iPhone) или Google Play (для смартфонов Android).

Шаг 2 . Установите аккумулятор в камеру, и тогда вы услышите устные инструкции, которые помогут вам настроить камеру.

Шаг 3 . Выберите имя и установите пароль для камеры.

Если вы хотите получить камеру безопасности без сверления или установки, попробуйте эту.

2. Как установить камеры видеонаблюдения PoE

Камеры видеонаблюдения

PoE полагаются только на кабель Ethernet Cat 5/6 для передачи данных и мощности, что упрощает настройку камеры этого типа.

Здесь мы берем IP-камеру безопасности RLC-410 PoE, чтобы показать вам общий процесс настройки.

Шаг 1 . Установите камеру в желаемое положение.

Шаг 2 . Протяните кабель Ethernet от камеры к маршрутизатору или сетевому видеорегистратору Reolink.

Шаг 3 . Загрузите и запустите приложение Reolink на свои мобильные телефоны.

Когда ваш смартфон и камера находятся в одной сети, просто скажем, в LAN, камера будет автоматически добавлена ​​в ваш телефон.

Когда ваш мобильный телефон и камера находятся в разных сетях (WAN), вы можете сканировать QR-код на камере или ввести UID камеры для удаленного просмотра в реальном времени.

3. Как установить беспроводные камеры видеонаблюдения

Беспроводные камеры видеонаблюдения зависят от сигнала Wi-Fi для передачи данных, при этом для подачи питания требуется кабель.

Вы можете ознакомиться с приведенным ниже руководством по установке, чтобы получить полную процедуру установки для беспроводных камер видеонаблюдения.

Шаг 1. Установите камеру рядом с розеткой.

Если сетевая розетка находится немного далеко, вы можете проложить кабель питания для ваших беспроводных камер видеонаблюдения.

Шаг 2 . Подключите камеру к розетке.

Также необходимо подключить камеру к маршрутизатору с помощью сетевого кабеля для начальной настройки. После этого вы можете удалить сетевой провод.

Шаг 3 . Загрузите и запустите приложение Reolink на свой iPhone или мобильные телефоны Android.

Камера будет автоматически добавлена ​​к вашему смартфону при подключении к локальной сети. Отсканируйте QR-код или введите UID камеры, чтобы получить доступ к прямой трансляции в глобальной сети.

4. Как установить аналоговые системы видеонаблюдения

Аналоговые камеры видеонаблюдения должны быть подключены к цифровому видеорегистратору для работы. Другими словами, камера видеонаблюдения этого типа не может работать автономно.

Аналоговые камеры видеонаблюдения сложнее установить по сравнению с типом IP-камер, так как камерам нужны кабели для подачи питания, а также их необходимо подключать к видеорегистратору с помощью коаксиальных проводов.

Вы можете проверить руководство по подключению аналоговой камеры видеонаблюдения ниже, чтобы получить более подробную информацию.

Шаг 1 . Определите положение цифрового видеорегистратора и положение установки аналоговых камер видеонаблюдения.

DVR должен располагаться рядом с маршрутизатором и розеткой.

Шаг 2 . Подключите камеру к видеорегистратору коаксиальным кабелем. А также подключите камеру к розетке, чтобы получить питание.

Шаг 3 . Подключите камеру к маршрутизатору, чтобы получить удаленную потоковую передачу в реальном времени.

Вы также можете подключить DVR к монитору с помощью кабеля HDMI для просмотра в реальном времени.

Вы можете установить камеры видеонаблюдения на потолок, одно- или двухэтажные дома, стены с лепниной, виниловый сайдинг и т. Д. С помощью вышеперечисленных пошаговых инструкций.

Помимо приведенного выше подробного пошагового руководства по прокладке проводов камеры видеонаблюдения внутри и снаружи, вы можете узнать больше о настройке проводов камеры видеонаблюдения в приведенной ниже части.

Часть 4. Подробные ответы на самые популярные часто задаваемые вопросы «Запуск кабеля камеры безопасности»

Некоторые читатели прислали нам электронные письма с вопросами о более подробной информации о прокладке проводов для камер видеонаблюдения, таких как схема проводов камеры видеонаблюдения, сращивание, типы и т. Д.

Мы решили добавить часть, которая призвана решить проблемы наших читателей с камерами видеонаблюдения и системными проводами. Предлагаем вам добавить свои собственные идеи в комментарии ниже! Мы изложим ваше мнение в этой статье!

Q 1. Какая длина

и как далеко я могу проложить провода камеры безопасности

A 1 : Ну, это зависит от источника питания камеры видеонаблюдения и дальности подключения к сети.

Вообще говоря, вы можете проложить провода для камер видеонаблюдения в пределах 330 футов без проблем с падением напряжения.Чтобы убедиться, что беспроводные камеры наблюдения работают со стабильным сетевым подключением, проложите кабели видеонаблюдения в пределах рекомендуемого диапазона 250 футов.

После разводки проводов камер видеонаблюдения снаружи вы можете добавить решетку для проводов камеры видеонаблюдения, чтобы защитить наружные камеры от взлома или кражи ворами.

Совет редактора: Если вы планируете проложить провода камеры видеонаблюдения за пределами рекомендованного диапазона, примите во внимание следующие советы:

• Добавьте расширитель WiFi для усиления сигнала WiFi.

• Используйте удлинительные кабели питания.

• Установите беспроводные аккумуляторные камеры видеонаблюдения для наблюдения за объектами вне сети.

Q 2. Как соединить провода питания камеры видеонаблюдения

Можно ли сращивать провода камеры видеонаблюдения?

A 2 : Да, сращивание проводов камеры видеонаблюдения будет простым с помощью приведенного ниже подробного руководства по установке.

Шаг 1 . Используйте нож или кусачки для кабеля, чтобы разделить 2 изолированных провода и удалить полдюйма изоляции с концов проводов.Будьте осторожны, чтобы не поранить пальцы при перерезании проводов.

Шаг 2 . Соедините кабели вместе (проволочными гайками), скручивая оголенные медные концы. Убедитесь, что вы скручиваете положительный провод от одного провода к другому (так же, как и отрицательный кабель).

Шаг 3 . Соедините 2 силовых кабеля вместе, используя соединители проводов камеры наблюдения, а затем вставьте оголенный медный провод от положительного проводника в один конец соединителя. Проделайте то же самое с другим положительным проводом и 2 отрицательными проводами.

Не забудьте использовать датчик камеры видеонаблюдения, чтобы проверить величину электрического тока, который может пропускать провод, чтобы избежать возможного перегорания схемы.

Обратите внимание, что неправильное сращивание проводов камеры видеонаблюдения может привести к неисправности камеры видеонаблюдения. Прочтите этот пост, чтобы найти возможные решения, когда ваши камеры видеонаблюдения не работают.

Q 3. Какие типы проводов камеры видеонаблюдения

A 3: При прокладке проводов для камер видеонаблюдения использование кабеля подходящего типа избавит вас от головной боли и звонков в службу технической поддержки для решения проблем, которых не должно было случиться.

Типы проводов камеры видеонаблюдения

обычно включают 3 основных типа: кабели Ethernet Cat 5/6, сиамские кабели и кабели plug-and-play.

Кабели Ethernet Cat 5/6 — этот тип проводов для камер видеонаблюдения передает данные видео / изображения и питание по одному кабелю. Кабели Cat 5/6 могут передавать видеосигнал на расстояние до 1500 футов. Этот тип кабелей используется для IP-камер PoE, что обеспечивает более простое решение для прокладки проводов по сравнению с традиционными проводными камерами видеонаблюдения.

Дополнительная литература: Прочтите этот пост, чтобы узнать больше о IP-камерах безопасности Cat 5/6.

Сиамские кабели — этот вид проводов для камер видеонаблюдения обычно бывает двух типов: RG59 и 18/2. Кабели RG59 представляют собой специальный коаксиальный провод, используемый для подключения камер к видеорегистратору. Провода 18/2 — это 2 отдельных провода калибра 18, используемых для передачи энергии от источника питания к камерам.

Plug-and-play провода — этот тип кабеля для камеры видеонаблюдения имеет разъемы как для видео, так и для источника питания.Длина передачи данных по проводу камеры видеонаблюдения составляет 25, 50, 100 и 150 футов.

Обратной стороной проводов камеры безопасности PnP является то, что они не могут обеспечить высококачественное видео и передачу энергии по сравнению с двумя вышеупомянутыми типами. И кабели не могут передавать данные сигнала дальше 150 футов.

Q 4. Как установить ограждения проводов для камер видеонаблюдения (запрошено читателем в комментарии)

A 4 : Существует 2 основных типа ограждений для проводов камер видеонаблюдения.

Один из типов выглядит как клетка, которая обычно используется для защиты камеры видеонаблюдения от закалки.

Другой, как правило, имеет форму длинной полосы и используется для защиты проводки камеры видеонаблюдения от дождя, солнечного света и т. Д.

Выполните следующие шаги, чтобы установить ограждения проводов для защиты проводки камеры видеонаблюдения.

Шаг 1 . Свяжите провода камеры видеонаблюдения резиновым кольцом.

Шаг 2 .Используйте ограждение для проволоки, чтобы закрепить связку проволоки.

Шаг 3 . Прикрепите ограждение провода несколькими винтами.

Готово!

Если у вас есть какие-либо вопросы или идеи по поводу «Как установить провода камеры видеонаблюдения», оставьте их в комментариях ниже! Мы представим ваши вопросы и идеи в статье !

% PDF-1.4 % 47 0 объект > эндобдж xref 47 112 0000000016 00000 н. 0000002942 00000 н. 0000003041 00000 н. 0000003954 00000 н. 0000004585 00000 н. 0000005147 00000 н. 0000005230 00000 н. 0000005815 00000 н. 0000006317 00000 н. 0000006428 00000 н. 0000006541 00000 н. 0000006589 00000 н. 0000006636 00000 н. 0000006684 00000 н. 0000006731 00000 н. 0000006780 00000 н. 0000006840 00000 н. 0000006889 00000 н. 0000007105 00000 н. 0000007621 00000 н. 0000008189 00000 н. 0000008740 00000 н. 0000011540 00000 п. 0000011774 00000 п. 0000011896 00000 п. 0000013191 00000 п. 0000013489 00000 п. 0000013878 00000 п. 0000016820 00000 н. 0000019675 00000 п. 0000021901 00000 п. 0000024029 00000 п. 0000026030 00000 н. 0000028597 00000 п. 0000030923 00000 п. 0000035121 00000 п. 0000039618 00000 п. 0000040585 00000 п. 0000040814 00000 п. 0000040896 00000 п. 0000040949 00000 п. 0000041193 00000 п. 0000041245 00000 п. 0000041368 00000 п. 0000041441 00000 п. 0000041596 00000 н. 0000041719 00000 п. 0000041842 00000 п. 0000042056 00000 п. 0000044644 ​​00000 п. 0000045021 00000 п. 0000045486 00000 п. 0000048389 00000 п. 0000048645 00000 п. 0000048961 00000 п. 0000054396 00000 п. 0000054435 00000 п. 0000059870 00000 п. 0000059909 00000 н. 0000065344 00000 п. 0000065383 00000 п. 0000070818 00000 п. 0000070857 00000 п. 0000099519 00000 п. 0000099558 00000 п. 0000127349 00000 н. 0000127388 00000 н. 0000155179 00000 н. 0000155218 00000 н. 0000191280 00000 н. 0000191319 00000 н. 0000191397 00000 н. 0000196121 00000 н. 0000196160 00000 н. 0000253358 00000 н. 0000253814 00000 н. 0000253892 00000 н. 0000258616 00000 н. 0000258655 00000 н. 0000259108 00000 н. 0000259186 00000 н. 0000263910 00000 н. 0000263949 00000 н. 0000264404 00000 н. 0000264482 00000 н. 0000269206 00000 н. 0000269245 00000 н. 0000269698 00000 н. 0000269776 00000 н. 0000297065 00000 н. 0000297104 00000 н. 0000302015 00000 н. 0000302093 00000 н. 0000329382 00000 н. 0000329421 00000 н. 0000334354 00000 н. 0000334432 00000 н. 0000361721 00000 н. 0000361760 00000 н. 0000366750 00000 н. 0000371637 00000 н. 0000512879 00000 н. 0000514886 00000 н. 0000515172 00000 н. 0000515591 00000 н. 0000517544 00000 н. 0000588590 00000 н. 0000598027 00000 н. 0000598275 00000 н. 0000599254 00000 н. 0000599814 00000 н. 0000002536 00000 н. трейлер ] / Назад 1394029 >> startxref 0 %% EOF 158 0 объект > поток hb««f`gNfb @

Как подключить датчик приближения к ПЛК

Сигнальными устройствами могут быть кнопки, датчики или переключатели.В данном случае речь идет о датчиках ««>

Подключение датчика приближения к ПЛК на первый взгляд может быть сложной задачей. Во-первых, не существует универсального способа подключения датчиков приближения . Процесс различается в зависимости от датчика , датчика и модуля ввода, используемых в конфигурации.

Основы

Первый шаг — понять, как устроены сети PLC . Четыре основных компонента сети включают следующее:

  1. Источник питания
    • Источник питания обеспечивает питание ЦП, модулей ввода-вывода , и сигнальных устройств.
  2. CPU (иногда называемый процессором или контроллером)
    • ЦП (центральный процессор) — это, по сути, мозг операции.
    • ЦП берет данные из системы ввода-вывода и обрабатывает их в соответствии с указаниями программиста.
  3. Система ввода / вывода
    • Модули ввода / вывода (иногда называемые картами ввода / вывода) могут принимать входные сигналы, передавать выходные сигналы или и то, и другое.
    • Модули ввода могут принимать цифровые или аналоговые сигналы
  4. Сигнальные устройства
    • Сигнальные устройства могут быть кнопками, датчиками или переключателями.В данном случае речь пойдет о датчиках .

Датчики

подключаются к модулям ввода-вывода, а модули ввода-вывода подключаются к ЦП. Важно прочитать электрическую схему модуля ввода, чтобы понять его работу. Рабочее напряжение модуля, тип входа и расположение клемм — вот лишь некоторые из параметров, используемых для подключения к сети. В этом обсуждении будут использоваться такие термины, как нагрузка , опускание, источник, положительный или общий , PNP, NPN, 2-, 3-, и , 4-проводный .Чтобы ознакомиться с некоторыми из этих терминов, прочитайте сообщение в нашем блоге Как читать схему подключения датчика .

Тип ввода / вывода

Датчик источника (PNP) должен работать с входной картой с опусканием , а датчик с опусканием (NPN) должен работать с платой ввода с источником . Это верно, потому что сеть может быть смоделирована как простая цепь, и чтобы замкнуть цепь, ток должен течь по замкнутому контуру.Некоторые модули могут принимать как входы PNP, так и NPN, и это указано на схеме подключения модуля.

Полярность напряжения (+/-)

Термин общий относится к (+/-) эталонной полярности конфигурации PNP или NPN. Общий провод используется для уменьшения количества клеммных соединений между датчиками и ПЛК. Этот провод отмечен на схеме подключения модуля ввода / вывода.

Выходы датчика PNP переключаются в положительном (+) положении. Это означает, что несколько датчиков могут быть подключены к входной плате со всеми отрицательными проводами датчика к одному общему проводу (-).

Выходы датчика

NPN переключаются в отрицательном (-) положении. Это означает, что несколько датчиков могут быть подключены к входной карте со всеми положительными проводами датчиков к одному общему проводу (+).

Проводные соединения

Входные карты не знают разницы между 2-, 3- или 4-проводными датчиками, но входные карты для 2-проводных датчиков должны быть рассчитаны на то, чтобы принимать падение напряжения датчика и уровень тока в закрытом состоянии (указано в технических характеристиках). Датчики с 3 и 4 проводами имеют специальные выходные провода.Эти выходные провода проходят прямо ко входу модуля.

Логика нормально разомкнутого или нормально замкнутого датчика не влияет на физические соединения между датчиком и ПЛК.

Внутренние нагрузки

Платы источника

имеют внутреннюю резистивную нагрузку, подключенную между V + и его входами. У понижающих карт есть внутренняя резистивная нагрузка, подключенная между их входами и V- (также называемая землей , или 0 В постоянного тока. ). Почему это правда? Датчик PNP (источника) переключается на (+), в то время как принимающая плата уже подключена к заземлению постоянного тока.Датчик NPN (опускания) переключается на (-), в то время как карта источника уже подключена к V +.

Схема системы

Таблицы данных датчика

показывают следующее:

  • Тип выхода
  • Выходной сигнал
    • Цифровой или аналоговый; если аналоговый, это аналоговый сигнал напряжения или аналоговый сигнал тока?
    • Выход цифрового датчика должен совпадать с картой цифрового входа, а выход аналогового датчика должен совпадать с картой аналогового входа
  • Тип подключения

Технические данные карты ввода показывают следующее:

  • Поглощение или добыча
    • Некоторые карты могут принимать как входы PNP, так и NPN
  • Подключение ввода / вывода
    • Некоторые карты имеют только входные клеммы, некоторые — только выходные клеммы, а некоторые — оба
    • Карты источника обычно имеют только общих и входных клемм , в то время как приемные карты обычно имеют только В + и входные Карты, которые могут принимать и исходить, могут иметь общий, вход, и В + клеммы
  • Силовой режим

PNP и NPN: почему это важно?

В конфигурации PNP выход датчика внутренне подключен к положительной полярности напряжения.Чтобы замкнуть цепь, нагрузка (вход ПЛК) должна быть , внешне подключена к отрицательной (общей) полярности напряжения. В конфигурации NPN выход датчика внутренне подключен к отрицательной полярности напряжения. Чтобы создать полную цепь, нагрузка должна быть , внешне подключена к положительной (общей) полярности напряжения:

Питание датчика и модуля ввода

Способ подключения датчика к источнику питания зависит от того, имеет ли датчик выход типа PNP или NPN.Датчик PNP обычно называется датчиком , источником , что означает, что датчик можно рассматривать как датчик , который получает (или выдает) входную мощность сигнала с по на плату ввода-вывода. Датчик NPN обычно называется датчиком с опусканием и , что означает, что датчик можно рассматривать как датчик , поглощающий (или принимающий) входную мощность сигнала от карты ввода-вывода.

Какой провод куда идет?

Напомним, что датчик источника (PNP) посылает питание и сигнал в опускающийся модуль, в то время как опускающийся (NPN) датчик получает питание и сигнал от модуля источника.Датчики PNP переключаются на (+), а датчики NPN переключаются на (-).

Входные платы с понижающим током имеют внутреннюю нагрузку, подключенную между входами и клеммой заземления постоянного тока. Чтобы замкнуть цепь, датчик PNP переключается на (+). Входные платы источника имеют внутреннюю нагрузку, подключенную между входами и клеммой + VDC. Чтобы замкнуть цепь, датчик NPN переключается на (-).

Собираем все вместе

  • Шаг 1. Определите параметры сети
    • Тип выхода
    • Выходной сигнал
    • Тип подключения
    • Поглощение / поставка
    • Подключение ввода / вывода
    • Силовой режим
  • Шаг 2: Подключите выходы датчиков к входам ПЛК
    • 2-проводные конфигурации
        Датчик
      • PNP (нагрузка подключена снаружи к отрицательной клемме)
        • Провод датчика (-) проложен прямо ко входу ПЛК
      • Датчик
      • NPN (нагрузка подключена снаружи к положительной клемме)
        • Провод датчика (+) проложен прямо ко входу ПЛК
      • 3-проводные конфигурации
        • Датчик PNP
          • Выходной провод датчика проложен прямо ко входу ПЛК
        • Датчик NPN
          • Выходной провод датчика проложен прямо ко входу ПЛК
        • 4-проводные конфигурации
          • Датчик PNP
            • Выходные провода датчика подключены к отдельным входам ПЛК
          • Датчик NPN
            • Выходные провода датчика подключены к отдельным входам ПЛК
  • Шаг 3. Подключите датчик и входной модуль к источнику питания
    • 2-проводные конфигурации
      • Датчик PNP
        • Провод датчика (-) проложен прямо ко входу ПЛК
        • Провод датчика (+) подключен к + VDC
      • Датчик NPN
        • Провод датчика (+) проложен прямо ко входу ПЛК
        • Провод датчика (-) идет на 0 В постоянного тока (отрицательная клемма) на блоке питания
      • 3-проводные конфигурации
        • Датчик PNP
          • Провод датчика (+) подключен к источнику питания + VDC
          • Провод датчика (-) идет к общему проводу (0 В постоянного тока) на плате ввода
        • Датчик NPN
          • Провод датчика (+) подключен к + VDC на плате ввода
          • Провод датчика (-) идет к общему источнику питания (0 В постоянного тока)

На практике: краткий обзор

В этом примере используется модуль ввода Allen-Bradley ControlLogix 1756-IB16D.Из каталога, который можно найти на веб-сайте Rockwell Automation , можно увидеть, что это модуль Digital Sinking Input . Устройства ввода (датчики, переключатели, кнопки) подключаются справа, а общих (заземляющих) проводов для устройств и источника питания подключаются слева. Блок питания изображен внизу схемы.

Как датчик подключен к этому модулю?

Если рассматривать схему с точки зрения протекания тока, красные стрелки на диаграмме выше показывают направление протекания тока, чтобы показать, что ток выходит из источника питания на положительном выводе и попадает в датчик.Когда датчик PNP обнаруживает цель, он переключается на положительный сигнал и замыкает цепь, чтобы послать сигнал через выходной провод на входную карту. Плата ввода — это , сток , что означает, что ее внутренняя нагрузка подключена между ее входными клеммами и землей. Он должен замкнуть цепь, подключив общий (-) полярный провод к отрицательной клемме источника питания.

В этом примере используется модуль ввода Allen-Bradley ControlLogix 1746-IV16. Из каталога на веб-сайте Rockwell Automation видно, что это модуль Digital Sourcing Input .К этому модулю могут быть подключены только датчики погружения (NPN) . Как работает эта схема?

Ток течет от положительной клеммы источника питания во входной модуль. В этом случае модуль ввода получает питание от до датчика. Ток течет из входного модуля от клеммы V + (где внутренняя нагрузка входной платы подключена между V + и ее входными клеммами) в датчик для питания датчика. Датчик NPN переключается на (-), и потребляет мощность обратно к источнику питания, чтобы замкнуть цепь.

Важность терминологии

В промышленности большинство производителей ПЛК не моделируют сети ПЛК с точки зрения тока. Для простоты обсуждения, установка смоделирована как цепь с протеканием тока, чтобы помочь различать цепи типа PNP и NPN.

2-проводный DC PNP, 2-проводный DC NPN, 3-проводный DC PNP и 3-проводный DC NPN случаи были рассмотрены в этом обсуждении. Подключение 4-проводного датчика постоянного тока такое же, как и для 3-проводного датчика, но каждый выходной провод подключается к другому входу на входной плате.Примеры, используемые в этом обсуждении, представляют собой общие установки в современной промышленности, но различаются в зависимости от приложения.

Подключение 3-проводных датчиков постоянного тока NPN и PNP



Подключение 3-проводных датчиков постоянного тока может сбивать с толку. Недавно я получил вопрос о датчиках PNP и NPN. Они хотели объяснить, что такое раковина и как ее подключить. Путаница по поводу нормально разомкнутых и нормально замкнутых функций датчика также является распространенным вопросом. На нескольких диаграммах будет показан резистор, подключенный к синему проводу, и нагрузка на остальных, что все это означает?

Иногда язык, который мы используем для этих устройств, сбивает с толку.Иногда так мы говорим о датчике, а иногда об устройстве, которое мы подключаем. (PLC)
Мы сломаем его и перейдем к проводке ко входу PLC. Давайте начнем.

Дополнительные компоненты, подключенные к ПЛК, включают следующее:
Вот быстрый способ подключения устройств NPN и PNP
— Подключение датчика NPN к ПЛК Видео
— Подключение датчика PNP к ПЛК Видео
— Подключение контактных дискретных входов ПЛК Видео
Подключение проводки Реле
— Подключение датчиков NPN и PNP к ПЛК с помощью промежуточного реле Видео
Click PLC HMI Rotary Encoder Dial Input — Video
Wiring Stack Light to Click PLC — Video
Wiring Push Buttons and Selector Switch to Click PLC — Video
— Test и сборка кнопок и селекторного переключателя — Видео
Подключение индуктивного датчика приближения NPN PNP к ПЛК Click — Видео
Подключение емкостного датчика приближения NPN PNP к ПЛК Click — Видео
Подключение ультразвукового датчика приближения к ПЛК Click — Видео
— Распаковка нашего ультразвукового датчика приближения UK1F — Видео
Универсальный формирователь сигналов и изолятор — Видео

Посмотрите видео ниже, чтобы увидеть подключение и работу наших датчиков NPN и PNP ко входу Click PLC.

Поглощение и поиск?

Электронный поток движется от отрицательного к положительному. Количество электронного потока — это ток, измеряемый в амперах. «Обычный поток тока» изменяется от положительного к отрицательному. Это используется, когда мы говорим о подключении этих твердотельных устройств.

На приведенной выше диаграмме стрелка показывает условный ток. Вход ПЛК опускается, потому что мы переключаемся на отрицательное питание. (Ослабление нагрузки / отрицательное переключение)

Глядя на переключатель, мы можем обозначить это как датчик источника.Как видите, вы должны определить, ищете ли вы источник интереса или уходите от него.

На приведенной выше диаграмме показаны схемы входов и выходов ПЛК с приемником и источником.

Нормально открытый (NO) и нормально закрытый (NC)?

Если что-то называется закрытым, то у нас будет текущий поток. Закройте выключатель света, и свет включится.
Если что-то называется открытым, то у нас нет текущего потока. Откройте выключатель света, и свет погаснет.
«Обычно» — это состояние вывода, когда что-то еще не влияет на него. Например, датчик не видит объект. Выход может быть нормально открытым или нормально закрытым.

NO — нормально разомкнутый и NC — нормально замкнутый можно комбинировать в зависимости от того, как вы хотите, чтобы ваша логика работала. Датчик верхнего предела обычно подключается в нормально замкнутом состоянии. Он откроется, остановив цепь, если будет достигнут верхний предел.

Входы ПЛК

Большинство входов ПЛК могут быть либо потребляющими, либо источниками на общую.Это общая точка входов для карты ПЛК.

Эта схема имеет общую схему ПЛК при + DC. Итак, это исходная точка поиска. Вы не можете смешивать источник и сток вместе, иначе у вас будет короткое замыкание на источник питания.

На этой диаграмме вы увидите, что общий вывод ПЛК находится на 0DC (-). Таким образом, этот вход станет точкой входа в тонущую точку.
Посмотрите видео ниже, чтобы увидеть подключение датчика к ПЛК Click как источника, так и входа приемника.

Подключение NPN к нашему ПЛК — Подключение 3-проводных датчиков постоянного тока


Мы заменим входной контакт ПЛК источника, показанный выше, на датчик NPN.Выход датчика подключен к точке входа ПЛК. Выход нашего датчика, когда он включен, позволяет обычному току течь обратно в 0DC. Это можно назвать понижением нагрузки или отрицательным переключением.

Вот схема подключения датчика NPN. Это емкостной датчик приближения СК1-00-2Н. Поле на диаграмме представляет нагрузку. В нашем случае вход ПЛК будет нашей нагрузкой.

PNP Подключение к нашему ПЛК — Подключение 3-проводных датчиков постоянного тока


Мы заменим опускающийся входной контакт ПЛК, который мы показали выше, датчиком PNP.Выход датчика подключен к точке входа ПЛК. Выход нашего датчика при включении позволяет обычному току течь + постоянный ток на вход. Это можно назвать подачей нагрузки или положительным переключением.

Вот схема подключения датчика PNP. Это емкостной датчик приближения СК1-00-2Н. Поле на диаграмме представляет нагрузку. В нашем случае вход ПЛК будет нашей нагрузкой.

Некоторые датчики имеют выходные контакты PNP и NPN, а также NO и NC. Вот почему мы всегда должны обращаться к электрической схеме производителя.Резистор, показанный на некоторых схемах, называется подтягивающим или понижающим резистором. Обычно это внутреннее устройство датчика. Производители также иногда показывают нагрузку с резистором.

Посмотрите видео ниже, чтобы увидеть подключение и работу нашего датчика PNP / NPN ко входу Click PLC.

Технические характеристики емкостных датчиков приближения серии

CK
Использование функций обучения на датчиках. NO / NC и считывание

Смотрите на YouTube: Подключение 3-проводных датчиков постоянного тока NPN и PNP

Вот некоторая дополнительная информация по подключению входов ПЛК.
Подключение датчика NPN к ПЛК
https://youtu.be/Z09l3HKMpqs
https://accautomation.ca/heres-a-quick-way-to-wire-npn-and-pnp-devices/
Подключение Датчик PNP к ПЛК
https://youtu.be/nP33k5e_Y-k
https://accautomation.ca/heres-a-quick-way-to-wire-npn-and-pnp-devices/
Контакты для подключения Дискретные входы ПЛК
https://www.youtube.com/watch?v=xh5dE2Z09d0
https://accautomation.ca/how-plc-inputs-work/
Подключение светового стека к ПЛК
https: / / accautomation.ca / wiring-stack-light-to-click-plc /
https://youtu.be/gwDIVtNSXfs

Если у вас есть вопросы или вам нужна дополнительная информация, свяжитесь со мной.
Спасибо,
Гарри

Если вы, как и большинство моих читателей, стремитесь изучать технологии.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *