Достоинства асинхронного двигателя: Двигатель асинхронный однофазный — устройство, принцип работы и схема подключения

Содержание

Двигатель асинхронный однофазный - устройство, принцип работы и схема подключения

Никто глубоко не задумывался о том, как бы жили люди без такого изобретения, как электродвигатель асинхронный однофазный. Казалось бы, что такое умное слово никого не касается и витает где-то в заоблачной дали. Но этот большой помощник в быту встречается на каждом шагу.

Скажите, как можно обходиться без холодильника или пылесоса. А ведь не будь двигателя, всего этого не было бы сейчас. Предлагаем в статье узнать все подробности об этом устройстве, а дочитавшим до конца будет бонус в виде полезного справочника по асинхронным двигателям

Так выглядит однофазный асинхронный двигатель.

История возникновения

Более 60 лет понадобилось многим ученым, пока однофазный асинхронный двигатель начал покорять просторы земного шара. Началось все с 1820-х годов, когда Джозеф Генри и Майкл Фарадей – открыли явления индукции и начали первые эксперименты.

Принцип работы асинхронного двигателя (однофазного) основан на этих основных физических законах. В 80-х годах позапрошлого столетия многие умы разрабатывают трансформаторы и генераторы переменного тока. Год 1885 принес идею первого многофазного двигателя переменного тока от Галилео Феррариса, вскоре Никола Тесла уже представил свой многофазный мотор (1888 год).

В 1889-1891годах русский электротехник, поляк по происхождению, Михаил Осипович Доливо-Добровольский придумал ротор в виде “беличьей клетки”. К этому изобретению его подтолкнул доклад Феррариса «О вращающемся магнитном поле». С началом ХХ века пришло широкое внедрение электромеханических устройств.

Применение однофазных асинхронных двигателей

Известно, что однофазные двигатели уступают трехфазным по некоторым характеристикам. Однофазные моторы имеют в основном бытовое назначение:

  • пылесосы;
  • вентиляторы;
  • электронасосы;
  • холодильники;
  • машины для переработки сырья.

Для того, чтобы выполнить подключение асинхронного двигателя нужна однофазная сеть переменного тока. Такие двигатели работают при напряжении 220 Вольт и частоте 50 Гц. Прилагательное «асинхронный» указывает на то, что скорость вращения якоря отстает от магнитного поля статора.

Однофазные двигатели имеют две независимых цепи, но работают они в основном на одной, отсюда и название. Основные части двигателя:

  1. Статор (неподвижный элемент).
  2. Ротор (вращающаяся часть).
  3. Механическое соединение этих двух частей.
  4. Поворотные подшипники.

Соединение состоит из внутренних колец, установленных на закрепленных втулках вала ротора, наружных колец в защитных боковых крышках, прикрепленных к статору.

Для запуска однофазного асинхронного двигателя с пусковой обмоткой установлена ​​другая катушка. Обмотка стартера установлена ​​со смещением от рабочей катушки на 900 С. Для создания сдвига тока, в цепи однофазного двигателя имеется схема сдвига фаз. Сдвиг можно получить при помощи различных элементов. Это могут быть:

  1. Активное сопротивление.
  2. Емкостное.
  3. Индуктивное.

В видео, представленном ниже, показан принцип работы однофазных асинхронных двигателей.

Принцип действия

Обмотки статора при помощи переменного тока образуют магнитные поля. Они имеют одинаковую амплитуду и частоту, но действуют в разных направлениях, поэтому статический ротор начинает вращаться.

Если в двигателе отсутствует пусковой механизм, ротор останавливается, потому что результирующий крутящий момент равен нулю. В случае, когда ротор начинает вращаться в одном направлении, соответствующий крутящий момент становится выше, когда вал двигателя продолжает вращаться в заданном направлении.

Принцип работы однофазного асинхронного двигателя.

Момент запуска

Сигналом к запуску становится магнитное поле двух обмоток, вращающее подвижную часть двигателя. Оно создается 2 обмотками: главной и пусковой. Дополнительная обмотка меньшего размера является пусковой и подключается к основной схеме включения однофазного двигателя через ёмкостное или индуктивное сопротивление.

Подключение происходит только в момент пуска. При удержании пусковой кнопки короткое время (порядка 2-3 секунд) происходит разгон ротора. В момент отпускания кнопки электрический мотор переходит в режим работы основной фазы.

Пусковая обмотка может работать кратковременно. Более длительное время нахождения под нагрузкой может вызвать перегревание и воспламенение изолирующих элементов, что приведет к выходу из строя.

Надежность повышается за счет встраивания в схему однофазного асинхронного двигателя таких элементов как тепловое реле и центробежный выключатель. Последний отключает пусковую фазу в тот момент, когда ротор разгоняется до номинальной скорости. Отключение происходит автоматически.

Работа реле происходит следующим образом: когда обмотки нагреваются до предельного значения, установленного на реле, механизм прерывает подачу питания на обе фазы, предотвращая отказ из-за перегрузки или по любой другой причине. Это защищает от возгорания.

Возможно, вам будет интересно также почитать все, что нужно знать о шаговых электродвигателях в другой нашей статье.

Варианты подключения

Для того, чтобы мотор заработал необходимо иметь одну 220-вольтовую фазу. Это значит, что подойдет любая стандартная розетка. Благодаря этой простоте двигатели завоевали популярность в быту. Любой прибор, начиная от стиральной машины и до соковыжималки, имеет подобные механизмы в своем составе.

Известны два типа однофазных двигателей в зависимости от способа подключения:

  1. Однофазный асинхронный двигатель с пусковой обмоткой.
  2. Однофазный двигатель с конденсатором.

Схема подключения однофазного асинхронного двигателя с помощью конденсаторов изображена на рисунке.

Схема подключения однофазного асинхронного двигателя с помощью конденсаторов.

Схема содержит пусковую обмотку с конденсатором. После ускорения ротора происходит выключение катушки. Рабочий конденсатор не позволяет размыкаться пусковой цепи, и запускающая обмотка работает через конденсатор в постоянном режиме.

Одновременно с рабочей обмоткой пусковая катушка снабжена током через конденсатор. При использовании в режиме пуска у катушки более высокое активное сопротивление. Фазовый сдвиг при этом имеет достаточную величину, чтобы началось вращение.

Допускается брать пусковую обмотку, с меньшей индуктивностью и большим сопротивлением. Запуск конденсатора осуществляется при подключении его к пусковой обмотке и временному источнику питания.

Чтобы достичь максимального значения пускового момента требуется вращающееся магнитное поле. Для этого нужно добиться положения обмоток под углом 900. При правильно рассчитанной емкости конденсатора обмотки могут быть смещены на 900 градусов. Расчет однофазного асинхронного двигателя зависит от схем подключения, которые приведены ниже.

Схемы включения однофазного асинхронного двигателя.

Различные варианты подключения:

  • временное включение электрического тока на стартовую обмотку через конденсатор;
  • подача на пусковое устройство через резистор, без конденсатора;
  • запуск через конденсатор на пусковую обмотку постоянно, одновременно с работой рабочей обмотки.

Расчет проводной принадлежности

Для расчета проводов, соединяющих рабочую и пусковую обмотки, понадобится омметр. Измеряется сопротивление обмоток. R рабочей обмотки должно быть ниже, чем у стартера. Например, если измерения составили 12 Ом для одной обмотки и 30 Ом для другой, то сработают обе. У рабочей обмотки поперечное сечение больше, чем у выходной.

Выбор емкости конденсатора

Чтобы определить емкость конденсатора, необходимо знать ток потребления электродвигателя. Если ток 1,4 А, то понадобится конденсатор емкостью 6 микрофарад. Также можно ориентироваться на таблицу расчета емкости конденсатора, приведенную ниже.

Таблица расчета емкости конденсаторов.

Проверка работоспособности

Тестирование начинается с визуального осмотра. Возможные неисправности:

  1. Если опорная часть на устройстве была сломана, это может привести к неисправностям.
  2. При потемнении корпуса в средней части идет перегрев. Бывает попадание в корпус различных посторонних предметов, это способствует перегреванию. При износе и загрязнении подшипников возможен перегрев.
  3. Когда однофазный электродвигатель на 220 вольт имеет в схеме подключения конденсатор увеличенного размера, он начинает перегреваться.

Если есть подозрение на наличие такого элемента, его необходимо отсоединить от пусковой обмотки, включить двигатель в сети и вращать вал вручную.

Запустить двигатель минут на пятнадцать, а затем проверить, не прогрелся ли он. Если двигатель не греется, причиной являлась увеличенная емкость конденсатора. Необходимо установить конденсатор, имеющий меньшую емкость.

Для лучшего понимания механизма работы двигателей, рекомендуем также подробнее прочитать, что такое трехфазный двигатель и как он работает.

Достоинства и недостатки

Основными плюсами являются:

  • простота конструкции;
  • повсеместная доступность однофазных сетей переменного тока 220 В при частоте 50 Гц (практически во всех районах).

К минусам можно отнести следующие обстоятельства:

  • невысокий пусковой момент двигателя;
  • низкая эффективность.

Основные достоинства и недостатки однофазных асинхронных двигателей

Заключение

Маломощные однофазные электродвигатели выпускаются в разной модификации и для разного назначения. Перед приобретением необходимо точно знать некоторые характеристики. Подробно с устройством данного типа двигателей можно ознакомиться, скачав книгу Алиева И. И. Асинхронные двигатели в трехфазном и однофазном режимах.

Российские производители предлагают некоторые серии устройств, имеющие мощность от 18 до 600 Вт, частоту вращения 3000 и 1500 об/мин. Все они предназначены для подключения в сеть с напряжением 127, 220 или 380 Вольт и частотой 50 Гц.

Предыдущая

Электрические машиныЧто такое трехфазный двигатель и как он работает

устройство, принцип работы, режимы работы, пуск

В качестве устройства преобразования электрической энергии в механическую в промышленности и быту используется синхронный электродвигатель. В сравнении с другими типами электрических машин он получил меньшее распространение, но в отведенных сферах является незаменимым фаворитом. В чем особенность синхронных агрегатов и как их применяют на практике, мы рассмотрим в данной статье.

Устройство

Конструктивно синхронный электродвигатель состоит из неподвижного элемента, подвижной части, обмоток различного назначения, может комплектоваться коллекторным узлом. Далее рассмотрим каждую составляющую синхронного агрегата более детально на рабочем примере (рисунок 1).

Рис. 1. Устройство синхронного электродвигателя
  • Статор или якорь – выполняется из электротехнической стали монолитным или наборным из шихтованного железа. Предназначен для размещения рабочей обмотки, проводит силовые линии электромагнитного поля, формируемого протекающими токами.
  • Обмотка на статоре – изготавливается из медных проводников, в зависимости от типа статора синхронного электродвигателя может выполняться различными методами, способами намотки и расположения проводников. Применяется для подачи напряжения питания и формирования рабочего магнитного потока.  
  • Ротор с обмоткой возбуждения – предназначен для взаимодействия с магнитным полем статора. В результате подачи напряжения на обмотку возбуждения в роторе электродвигателя создается собственное магнитное поле, задающее состояние вращающегося элемента.
  • Вал – используется для передачи вращательного усилия от электродвигателя к подключаемой к нему нагрузке. В большинстве случаев это основание, на котором крепиться шихтовка или полюса ротора, подшипники, кольца, пластины и другие вспомогательные элементы.
  • Контактные кольца – применяются для подачи питания на обмотки ротора, но устанавливаются не во всех моделях синхронных агрегатов. Питание производиться через специальный преобразователь переменного напряжения в постоянное.
  • Корпус – предназначен для защиты от воздействия внешних факторов, обеспечивает синхронному двигателю достаточную прочность и герметичность, в зависимости от условий его эксплуатации.

Принцип работы

В основе работы синхронного электродвигателя лежит взаимодействие магнитного потока, генерируемого рабочими обмотками с постоянным магнитным потоком. Наиболее распространенной моделью синхронной электрической машины является вариант с рабочей обмоткой на статоре и обмоткой возбуждения на роторе.

Рис. 2. Принцип действия синхронного электродвигателя

Как видите на рисунке 2 выше, в обмотку статора подается трехфазное напряжение из сети, которое формирует переменное магнитное поле. На обмотки ротора электродвигателя подано постоянное напряжение, которое индуцирует такой же постоянный магнитный поток у полюсов. Для наглядности рассмотрим процесс на упрощенной модели синхронного агрегата (рисунок 3).

Рис. 3. Принцип формирования потоков в синхронной электрической машине

При подаче питания на фазные витки статора электродвигателя первый пик амплитуды тока и ЭДС взаимоиндукции приходиться на фазу A, затем B и фазу C.

На графике показана периодичность чередования кривых в зависимости от времени:

  • в точке 1 максимальная ЭДС EA формирует максимальный поток, а электродвижущие силы фаз EB и EC равны между собой и противоположны по знаку, они дополняют результирующую силу.
  • в точке 2 пика достигает ЭДС EB, а электродвижущие силы фаз EA и EC становятся равны между собой и противоположны по знаку, они дополняют результирующую силу, в результате чего магнитное поле совершает вращательное движение.
  • в точке 3 максимум приходиться на ЭДС EC, а электродвижущие силы фаз EB и EA вместе дополняют результирующую силу и снова смещают вектор поля по часовой стрелке.

Оборот поля статора происходит в течении периода, а за счет того, что ротор обладает собственным электромагнитным усилием постоянным во времени, то он синхронно следует за движением переменного магнитного поля, вращаясь вокруг заданной оси. В результате такого вращения происходит синхронное движение ротора вслед за сменой амплитуды ЭДС в витках рабочих обмоток, за счет этого явления электродвигатель и получил название синхронного. Наличие отдельного питания отразилось и на схематическом обозначении таких электрических машин (рисунок 4) в соответствии с ГОСТ 2. 722-68.

Рис. 4. Схематическое обозначение синхронного электродвигателя

Отличие от асинхронного двигателя

Основным отличием синхронного электродвигателя от асинхронного заключается в принципе преобразования электрической энергии в механическое вращение. У синхронного электродвигателя процесс вращения ротора идентичен вращению рабочего электромагнитного поля, вырабатываемого трехфазной сетью. А вот у асинхронного рабочее поле самостоятельно наводит ЭДС в роторе, которая уже затем вырабатывает собственный поток взаимоиндукции и приводит вал во вращение. В результате чего асинхронные электрические машины получают разность во вращении рабочего поля и нагрузки на валу, что выражается физической величиной – скольжением.

В работе классические модели асинхронных электродвигателей с короткозамкнутым ротором:

  • плохо переносят перегрузки;
  • имеют сложности пуска со значительным усилием;
  • меняют скорость вращения, в зависимости от нагруженности рабочего органа.

В некоторой степени эти недостатки преодолевает асинхронный двигатель с фазным ротором, но в полной мере избавиться от недостатков получается лишь синхронному агрегату.

Рис. 5. Отличие асинхронного от синхронного электродвигателя

Разновидности

В современной промышленности и бытовых приборах синхронные электродвигатели используются для решения самых разнообразных задач. Как результат, существенно разнятся и их конструктивные особенности. На практике выделяют несколько критериев, по которым разделяются виды синхронных агрегатов. В соответствии с ГОСТ 16264.2-85 могут подразделяться по таким техническим характеристикам:

  • питающему напряжению;
  • частоте рабочего напряжения;
  • количеству оборотов.

В зависимости от способа получения поля ротора выделяют такие типы синхронных электродвигателей:

  • С обмоткой возбуждения на роторе – синхронизирующее усилие создается за счет подачи питания от преобразователя.
  • С магнитным ротором – на валу устанавливается постоянный магнит, выполняющий те же функции, что и обмотка возбуждении, но без необходимости подпитки (см. рисунок 6).
Рис. 6. Синхронный электродвигатель с постоянными магнитами

С реактивным ротором —  конструкция выполнена таким образом, что в его сердечнике происходит преломление магнитных линий, приводящее всю конструкцию в движение (см. рисунок 7). Под воздействием силового поля поперечные и продольные составляющие в роторе не равны за счет чего пластины поворачиваются вслед за полем.

Рис. 7. Пример реактивного ротора

В зависимости от наличия полюсов все синхронные электродвигатели можно подразделить на:

  • явнополюсные – в конструкции четко видны обособленные полюса с обмотками, применяются для малых скоростей;
  • неявнополюсные – полюс не выделяется, такие модели устанавливают для высоких скоростей;

В зависимости от расположения рабочих обмоток различают прямые (на статоре) и обращенные (рабочие обмотки на роторе).

Режимы работы

Большинство электрических машин обладают обратимой функцией, не составляют исключения и синхронные агрегаты. Их также можно использовать в качестве электрического привода или в качестве генератора, вырабатывающего электроэнергию. Оба режима отличаются способом воздействия на электрическую машину – подачу напряжения на рабочие обмотки или приведение в движение ротора за счет механического усилия.

Генераторный режим

Для производства электроэнергии в сеть используются именно синхронные генераторы. В большинстве случаев для этой цели используются электрические машины с фазными обмотками на статоре, что существенно упрощает процесс съема мощности и дальнейшей передачи ее в сеть. Физически генерация происходит при воздействии электромагнитного поля обмотки возбуждения синхронного генератора с обмотками статора. Силовые линии поочередно пересекают фазные витки и наводят в них ЭДС взаимоиндукции, в результате чего на клеммных выводах возникает напряжение.

Частота получаемого напряжения напрямую зависит от скорости вращения вала и вычисляется по формуле:

f = (n*p)/60 ,

где n – скорость вращения вала, измеряемая в оборотах за минуту,  p – количество пар полюсов.

Синхронный компенсатор

В виду физических особенностей синхронного электродвигателя при холостом ходе аппарата он потребляет из сети реактивную мощность, что позволяет существенно улучшить cosφ системы, практически приближая его к 1.На практике режим синхронного компенсатора используется как для улучшения коэффициента мощности, так и для стабилизации параметров напряжения сети.

Двигательный режим

В синхронной машине двигательный режим осуществляется при подаче рабочего трехфазного напряжения на обмотки якоря. После чего электромагнитное поле якоря начинает толкать магнитное поле ротора, и вал приходит во вращение. Однако на практике двигательный режим осуществляется не так просто, так как мощные агрегаты не могут самостоятельно набрать необходимый ресурс скорости. Поэтому во время запуска используют специальные методы и схемы подключения.

Способы пуска и схемы подключения

Для запуска синхронного электродвигателя требуется дополнительное поле, независимое от воздействия сети. В то же время, на стартовом этапе запуск представляет собой асинхронный процесс, пока агрегат не достигнет синхронной скорости.

Рис. 8. Схема пуска синхронного двигателя

 

При подаче напряжения на якорь возникает ток в его обмотках и генерация ЭДС в железе ротора, который обеспечивает асинхронное движение до того момента, пока не начнется питание обмоток возбуждения.

Еще одним распространенным вариантом пуска является использование дополнительных генераторов, которые могут располагаться на валу или устанавливаться отдельно. Такой метод обеспечивает дополнительное стартовое усилие за счет стороннего крутящего момента.

Рис. 9. Генераторный способ пуска синхронного двигателя

Как видите на рисунке 9, начальное вращение мотора М осуществляется за счет генератора G, который призван вывести устройство на подсинхронную скорость. Затем генератор выводится из рабочей цепи путем размыкания контактов КМ или автоматически при установке рабочих характеристик. Дальнейшее поддержание синхронного режима происходит за счет подачи постоянного напряжения в обмотку возбуждения.

Помимо этого на практике используется схема пуска с полупроводниковыми преобразователями. На рисунке 10 приведен способ тиристорного преобразователя и с установкой вращающихся выпрямителей.

Рис. 10. Тиристорная схема пуска синхронного двигателя

В первом случае запуск синхронного электродвигателя характеризуется нулевым напряжением от преобразователя UD. За счет ЭДС скольжения через стабилитроны VD осуществляется открытие тиристоров VS. В цепь обмотки возбуждения вводится резистор R, предназначенный для предотвращения пробоя изоляции. По мере разгона электродвигателя ЭДС скольжения пропорционально снизится и произойдет запирание стабилитронов VD, цепочка заблокируется, и обмотка возбуждения получит питание постоянным напряжением через UD.

Применение

Область применения синхронных электрических машин охватывает производство электрической энергии на электростанциях. По видам генераторы подразделяются на турбинные, дизельные и гидравлические, в зависимости от способа приведения их во вращение.

Также их используют в качестве электродвигателей, которые могут переносить существенные перегрузки в процессе эксплуатации. Такие двигатели устанавливаются на вентиляторах, компрессорах, силовых агрегатах и прочем оборудовании. Отдельная категория электродвигателей применяется в точном оборудовании, где важна синхронизация операций и процессов.

Преимущества и недостатки

К преимуществам такого электродвигателя следует отнести:

  • высокий cosφ, приближающийся по величине к 1, что в значительной мере превосходит асинхронные электродвигатели;
  • более высокая механическая прочность за счет особенностей конструкции электродвигателя;
  • зависимость момента вращения от напряжения линейная, а не квадратичная, поэтому колебания электродвигателя пропорционально снижаются;
  • на валу электродвигателя присутствует постоянная скорость, не зависящая от прикладываемой нагрузки;
  • может применяться для уменьшения реактивной составляющей в сети.

Среди недостатков синхронных электродвигателей выделяют:

  • сложную конструкцию;
  • более сложный пуск;
  • необходимость использования вспомогательных устройств и блоков;
  • такие электродвигатели сложнее регулировать по числу оборотов;
  • ремонт и обслуживание также обойдется дороже, чем асинхронные электродвигатели.

Видео версия

Библиографический список

  1. Ю. А. Макаричев, В.Н. Овсянников «Синхронные машины» 2010
  2. Абрамович Б.Н., Круглый А.А. «Возбуждение, регулирование и устойчивость синхронных двигателей» 1983
  3. Андреева Е.Г., Морозова Н.С. «Синхронные машины» 2015
  4. Глебов И.А. «Проблемы пуска сверхмощных синхронных маши» 1988
  5. Емец В.Ф., Попков А.А., Петров Г.А. «Синхронные электрические машины» 2009
  6. Кислицын А.Л. «Синхронные машины» 2000

Преимущества и недостатки асинхронных двигателей с короткозамкнутым ротором

Запатентованный российским ученым Михаилом Осиповичем Доливо-Добровольским в 1889 году, трехфазный асинхронный двигатель с короткозамкнутым ротором типа «беличья клетка» (сокращенно АДКЗ), произвел настоящую революцию в электротехнике. Теперь асинхронные двигатели с короткозамкнутым ротором находят самое широкое применение в промышленности, на транспорте, в быту и т.д.

Перечислять области их применения можно очень долго. Электрические приводы дымососов, подъемных кранов, шаровые мельницы, насосы, транспортеры, лебедки, дробилки, всевозможные станки, и бытовые приборы, - множество применений находит это замечательное устройство в наше время.

Конструкция такого двигателя относительно проста

Трехфазная обмотка статора уложена в пазы магнитопровода, набранного из пластин электротехнической стали, и может быть соединена как в «треугольник», так и в «звезду», в зависимости от условий эксплуатации. Обмотка ротора, в свою очередь, образована медными, алюминиевыми, или латунными стержнями, накоротко замкнутыми двумя кольцами с торцов ротора.

Сердечник ротора, как и сердечник статора, набран из листов электротехнической стали, и тоже имеет пазы, в которых и размещены стержни. Обычно стержни отливаются вместе с торцевыми кольцами, и завершенная конструкция ротора со стержнями похожа на «беличью клетку», поэтому ее так и называют.

К преимуществам двигателей такого типа, в частности, перед асинхронными двигателями с фазным ротором, относятся простота обслуживания и отсутствие подвижных контактов. Здесь нет щеток и контактных колец, питание подается только на неподвижную трехфазную обмотку статора, что и делает этот двигатель весьма удобным для самых разных сфер применения, практически универсальным. Такой двигатель прост в изготовлении и сравнительно дешев, затраты при эксплуатации минимальны, а надежность высока.

Если нагрузка на двигатель не чувствительна к скорости вращения его ротора, если не требуется регулировка оборотов, то возможно включение двигателя в любую сеть без каких-либо дополнительных преобразователей. Справедливости ради стоит отметить, что при включении такого трехфазного двигателя в однофазную сеть, требуется подключение пускового фазосдвигающего конденсатора, что отнюдь не является проблемой.

Если говорить о недостатках асинхронных двигателей с короткозамкнутым ротором, то их несколько. При включении двигателя в сеть пусковой ток довольно велик, при этом пусковой момент значительно меньше номинального, это несколько ограничивает область применения, и если требуется большой пусковой момент, то асинхронный двигатель с короткозамкнутым ротором не подойдет.

Проблема регулировки оборотов также имеет место, но и решить ее можно аналогичным образом, опять же применением частотного преобразователя. Современная полупроводниковая база делает частотные преобразователи с каждым годом все более доступными.

Еще одним недостатком асинхронных двигателей с короткозамкнутым ротором является их низкий коэффициент мощности, особенно при малой нагрузке и на холостом ходу, что снижает эффективность такой электрической системы в целом. В масштабах предприятий это чревато существенными потерями, поэтому широко распространена практика применения систем компенсации реактивной мощности, когда параллельно с обмотками электродвигателя устанавливают компенсирующие конденсаторы.


Асинхронный электродвигатель принцип работы - советы электрика

Устройство и принцип действия асинхронных двигателей

Асинхронным двигателем называют устройство, предназначенное для превращения электрической энергии в механическую.

Асинхронным именуют потому, что процессы внутри него протекают неодновременно: частота вращения ротора постоянно опережает частоту вращения магнитного поля, образуемого статором.

Рассмотрим подробнее принцип действия и конструкцию машины, а также ее отличия от синхронного собрата.

Погружаемся в теорию

Работа электродвигателя переменного тока основана на свойстве магнитного поля, заключающемся во взаимодействии с другими полями. Так, если первое поле содержится внутри второго, вращающегося вокруг своей оси, то оно тоже начнет вращаться. Это явление доказывается опытным путем.

Дугообразный магнит укреплен так, чтобы его можно было приводить в движение с помощью ручки. Между северным и южным полюсом помещается цилиндр, выполненный из меди. Он может вращаться.

Если крутить ручку, то магнит начнет обращаться вокруг своей оси. Поэтому магнитный поток, проходящий через цилиндр, будет меняться. А это главное условие для образования вихревых токов внутри самого цилиндра.

А электрический ток всегда создает вокруг магнитное поле.

Поля магнита и цилиндра начинают взаимодействовать друг с другом, результатом чего становится вращение этого цилиндра в том же направлении, что и подковообразный магнит.

Обратите внимание

Так как вращение цилиндра – результат воздействия вращающегося магнитного поля, то он будет отставать на некоторую величину, которую называют скольжением. Оно рассчитывается по формуле (выражается в процентах):

Где s – скольжение, n – скорость вращения постоянного магнита (называют синхронной), n0 – медного цилиндра (называют асинхронной). Именно разница в этих скоростях – необходимое условие для работы электродвигателя.

Конструкция

Проделанный опыт демонстрировал вращение цилиндра за счет вращения постоянного магнита. Поэтому конструкция еще не имеет права называться электродвигателем. Надо изменить ее так, чтобы магнитное поле, необходимое для вращения ротора, создавалось электричеством. И это возможно при использовании трехфазного тока.

Асинхронная машина снабжается:

  • Статором;
  • Ротором;
  • Осью, на которой сидит ротор.

На рисунке внешнее кольцо – это железный статор электродвигателя, состоящий из корпуса со станиной и железного сердечника. На его полюсах размещаются три обмотки (Н – начало, К – конец). Между двумя соседними намотками соблюдается угол – 120 градусов. Каждая из них подключена к одной из фаз трехфазного тока.

Внутри статорного кольца – металлический цилиндр, посаженный на ось, относительно которой он может вращаться. Это ротор асинхронного мотора. Он может быть короткозамкнутым или фазным.

Короткозамкнутый ротор

Это устройство выглядит как сердечник, собранный из листовой стали. Он имеет пазы, в которых находится алюминий, залитый в растопленном состоянии. Металл образует стержни, замыкающиеся торцевыми кольцами накоротко (отсюда и название). С короткозамкнутым ротором сравнивают беличью клетку, потому что у них прослеживается внешнее сходство.

Фазный ротор

Конструкция асинхронной машины с фазным ротором сложна. Однако у них есть преимущество перед короткозамкнутым устройством. Заключается оно в возможности плавно менять скорость вращения.

Фазным ротором представляется вал, укрепленный на шихтованном сердечнике, имеющем трехфазную обмотку. Этим он напоминает конструкцию статора. Начала намоток соединяют по схеме звезда, а концы объединяются с помощью контактных колец. Они изолируются между собой и располагаются на роторном вале.

Чтобы кольца соприкасались с фазным ротором, для каждого из них предусмотрена пара щеток, изготовленных из металла и графита. Они закрепляются в специальных держателях, которые прижимают их к кольцам с помощью пружин.

В случае с фазным ротором трехфазная намотка подсоединяется к пусковому реостату. Поэтому в роторной электроцепи образуется дополнительное сопротивление.

Принцип действия

Понять принцип действия асинхронного двигателя поможет график с рисунком, изображенные ниже.

На графике выделено 4 положения (а, б, в и г), каждому из которых соответствует схема (А, Б, В или Г). Линии связаны с фазным током: l1 – первая, l2 – вторая, l3 – третья фаза. Во время работы электродвигателя происходят следующие изменения:

  • Положение а. Значение тока в l1 – 0, в l2 – отрицательное число, в l3 – положительное. На схеме направление, в котором будет течь ток, указано с помощью стрелок. Будет создан магнитный поток, направленность линий которого можно установить, применив правило правой руки, образует южный полюс (обозначен Ю) на конце полюса 3-ей катушки внутри статора. При этом на 2-ой катушке будет создан северный полюс (С). Это говорит о том, что линии магнитного потока направляются через ротор от 2-ой обмотки к 3-ей.
  • Положение б. Значение переменного тока в l2 – 0, в l1 – положительное число, в l3 – отрицательное. Возникший магнитный поток на 1-ой катушке статора создает южный полюс, а на 3-ей – северный. Поэтому он меняется направление ровно на 120 градусов и направляется через ротор от 3-ей обмотки к 1-ой.
  • Положение в. Значение переменного тока в l3 – 0, в l2 – положительное число, в l1 – отрицательное. Теперь северный полюс соответствует 1-ой катушке, а южный – 2-ой. Это значит, что магнитный поток снова повернулся на 120 градусов и теперь проходит через ротор от 1-ой обмотки ко 2-ой.
  • Положение г. Все значения переменного тока на каждой из фаз, а также направление магнитного потока соответствуют положению а.

Видно, что работа асинхронного электродвигателя возможна благодаря изменению направления переменного тока в статорных обмотках. Каждому периоду изменения тока будет соответствовать один оборот магнитного потока, который будет заставлять ротор вращаться. И неважно, как соединены обмотки, звездой или треугольником.

Однофазные асинхронные машины

Обычно асинхронная машина питается от трехфазного переменного тока. Но был разработан однофазный мотор. Он менее распространен, потому что обладает малой мощностью и требует дополнительной силы для разгона.

Устройство однофазного электрического двигателя включает в себя одну рабочую обмотку. Потому он и называется – однофазный. Но по сути это двухфазная машина, которая работает благодаря тому, что во время пуска в ход в цепь включается вспомогательная, или пусковая обмотка.

Однофазный мотор оснащается короткозамкнутым ротором. Это одно из преимуществ – простота конструкции. Однако у однофазного электродвигателя есть недостаток – это отсутствие пускового момента и малый КПД.

Течение однофазного переменного тока вызывает магнитное поле, состоящее из двух: их амплитуды равны, однако вращаются они в противоположных направлениях. С покоящимся ротором эти поля создают одинаковые по модулю пусковые моменты. Но поскольку их знаки разные, результирующий пусковой момент равен нулю.

Важно

Поэтому ротор остается неподвижен. Но если заставить его вращаться с применением дополнительной силы, между двумя полями образуется скольжение – разность моментов. Будет преобладать тот момент, который направлен в сторону вращения ротора.

Тогда принудительное приведение его в движение можно прекратить: дальнейшая работа обеспечивается скольжением.

Отличия асинхронных и синхронных моторов

Асинхронные машины переменного тока в большинстве снабжены не фазным, а короткозамкнутым ротором. Их отличия от синхронных двигателей:

  • Малая мощность;
  • Простое устройство;
  • Низкая стоимость;
  • Увеличенный срок работы за счет отсутствия щеток;
  • Сложная регулировка скорости (но нет надобности в применении преобразователей).

Модели с фазным ротором от короткозамкнутых отличаются сложным устройством, но возможностью плавно регулировать скорость. Их стоимость и мощность выше, однако щетки часто изнашиваются.

Электрические двигатели асинхронного типа нашли широкое применение в сетях как трехфазного, так и однофазного питания. Они используются в промышленности и в быту. Но только в качестве двигателя, в генераторном режиме лучшие показатели выдают синхронные машины.

Источник: http://ElectricDoma.ru/kak-eto-ustroeno/asinhronnyiy-dvigatel-printsip-rabotyi/

Устройство и принцип действия асинхронных электродвигателей

Источник: http://trigada.ucoz.com/publ/ustrojstvo_i_princip_dejstvija_asinkhronnykh_ehlektrodvigatelej/1-1-0-25

Электродвигатель. Виды и применение. Работа и устройство

Электродвигатель представляет электромашину, перестраивающую электрическую энергию в механическую. Обычно электрическая машина реализует механическую работу благодаря потреблению приложенной к ней электроэнергии, преобразовывающейся во вращательное движение. Ещё в технике есть линейные двигатели, способные создавать сразу поступательное движение рабочего органа.

Особенности конструкции и принцип действия

Не важно какое конструктивное исполнение, но устройство любых электродвигателей однотипное. Ротор и статор находятся внутри цилиндрической проточки.

Вращение ротора возбуждают магнитное поле, отталкивающее его полюса от статора (неподвижной обмотки). Сохранять постоянное отталкивание можно путём перекоммутации обмоток ротора, или образовав вращающееся магнитное поле непосредственно в статоре.

Первый способ присущий коллекторным электродвигателям, а второй — асинхронным трехфазным.

Корпус любых электродвигателей обычно чугунный или выполнен из сплава алюминия. Однотипные двигатели, не смотря на конструкцию корпуса производятся с одинаковыми установочными размерами и электрическими параметрами.

Работа электродвигателя базируется на принципах электромагнитной индукции. Магнитная и электрическая энергия создают электродвижущуюся силу в замкнутом контуре, проводящем ток. Это свойство заложено в работу любой электромашины.

На движущийся электроток в середине магнитного поля постоянно воздействует механическая сила, стремительно пытающаяся отклонить направление зарядов в перпендикулярной силовым магнитным линиям плоскости. Во время прохождения электротока по металлическому проводнику либо катушке, механическая сила норовит подвинуть или развернуть всю обмотку и каждый проводник тока.

Назначение и применение электродвигателей

Электрические машины имеют много функций, они способны усиливать мощность электрических сигналов, преобразовывать величины напряжения либо переменный ток в постоянный и др.

Для выполнения таких разных действий существуют многообразные типы электромашин. Двигатель представлят тип электрических машин, рассчитанных для преобразования энергии.

Важно

А именно, этот вид устройств превращает электроэнергию в двигательную силу или механическую работу.

Он пользуется большим спросом во многих отраслях. Их широко используется в промышленности, на станках различного предназначения и в других установках. В машиностроении, к примеру, землеройных, грузоподъёмных машинах. Также они распространены в сферах народного хозяйства и бытовых приборах.

Классификация электродвигателей

Электродвигатель, является разновидностью электромашин по:

  • Специфике, создающегося вращательного момента: • гистерезисные;• магнитоэлектрические.
  • Строению крепления: • с горизонтальным расположением вала;• с вертикальным размещением вала.
  • Защите от действий внешней среды: • защищённые; • закрытые;• взрывонепроницаемые.

В гистерезисных устройствах вращающий момент образуется путём перемагничивания ротора или гистерезиса (насыщения). Эти двигатели мало эксплуатируются в промышленности и не считаются традиционными. Востребованными являются магнитоэлектрические двигатели. Существует много модификаций этих двигателей.

Их разделяют на большие группы по типу протекающего тока:

  • Постоянного тока.
  • Переменного тока.
  • Универсальные двигатели (работают на постоянном переменном токе).

Особенности магнитоэлектрических двигателей постоянного тока

С помощью двигателей постоянного тока создают регулируемые электрические приводы с высокими эксплуатационными и динамическими показателями.

Типы электродвигателей:

  • С электромагнитами.
  • С постоянными магнитами.

Группа электродвигателей, питание которых выполняется постоянным током, подразделяется на подвиды:

  • Коллекторные. В этих электроприборах присутствует щёточно-коллекторный узел, обеспечивающий электрическое соединение неподвижной и вращающейся части двигателя. Устройства бывают с самовозбуждением и независимым возбуждением от постоянных магнитов и электромагнитов.
  • Выделяют следующие виды самовозбуждения двигателей: • параллельное; • последовательное;• смешанное.
  • Коллекторные устройства имеют несколько минусов: • Низкая надёжность приборов.• Щёточно-коллекторный узел довольно сложная в обслуживании составляющая часть магнитоэлектрического двигателя.
  • Безколлекторные (вентильные). Это двигатели с замкнутой системой, работающие по аналогичному принципу работы синхронных устройств. Оснащены датчиком положения ротора, преобразователем координат, а также инвертором силовым полупроводниковым преобразователем.

Эти машины выпускаются различных размеров от самых маленьких низковольтных до громадных размеров (в основном до мегаватта). Миниатюрными электродвигателями оснащены компьютеры, телефоны, игрушки, аккумуляторные электроинструменты и т.п.

Применение, плюсы и минусы электродвигателей постоянного тока

Электромашины постоянного тока применяют в разных областях. Ими комплектуют подъёмно-транспортные, красочно-отделочные производственные машины, а также полимерное, бумажное производственное оборудование и т.д. Часто электрический двигатель этого типа встраивают в буровые установки, вспомогательные агрегаты экскаваторов и другие виды электротранспорта.

Преимущества электрических двигателей:

  • Лёгкость в управлении и регулировании частоты вращения.
  • Простота конструкции.
  • Отменные пусковые свойства.
  • Компактность.
  • Возможность эксплуатации в разных режимах (двигательном и генераторном).

Минусы двигателей:

  • Коллекторные двигатели требуют трудное профилактическое обслуживание щёточно-коллекторных узлов.
  • Дороговизна производства.
  • Коллекторные устройства имеют не большой срок службы из-за изнашивания самого коллектора.

Электродвигатель переменного тока

В электродвигателях переменного тока электроток описывается по синусоидальному гармоническому закону, периодично меняющему свой знак (направление).

Статор этих устройств изготавливают из ферромагнитных пластинок, имеющих пазы для помещения в них витков обмотки с конфигурацией катушки.

Электродвигатели по принципу работы бывают синхронными и асинхронными. Главным их отличием является то, что скорость магнитодвижущей силы статора в синхронных приборах равна скорости вращения ротора, а в асинхронных двигателях эти скорости не совпадают, обычно ротор вращается медленнее поля.

Синхронный электродвигатель

Из-за одинакового (синхронного) вращения ротора с магнитным полем, аппараты именуют синхронными электродвигателями. Их подразделяют на подвиды:

  • Реактивный.
  • Шаговый.
  • Реактивно-гистерезисный.
  • С постоянными магнитами.
  • С обмотками возбуждения.
  • Вентильный реактивный.
  • Гибридно-реактивный синхронный двигатель.

Большая часть компьютерной техники оснащена шаговыми электродвигателями. Преобразование энергии в этих устройствах основано на дискретно угловом передвижении ротора. Шаговый  электродвигатель имеет высокую продуктивность, независящую от их мизерных размеров.

Достоинства синхронных двигателей:

  • Стабильность частоты вращения, что не зависит от механических нагрузок на валу.
  • Низкая чувствительность к скачкам напряжения.
  • Могут выступать в роли генератора мощности.
  • Снижают потребление мощности, предоставляемой электростанциями.

Недостатки в синхронных устройствах:

  • Сложности с запуском.
  • Сложность конструкции.
  • Затруднения в регулировки частоты вращения.

Недостатки синхронного двигателя, делают более выгодным для использования электродвигатель асинхронного типа.

Тем не менее, большинство синхронных двигателей из-за их работы с постоянной скоростью востребованы для установок в компрессоры, генераторы, насосы, а также крупные вентиляторы и пр. оборудование.

Асинхронный электродвигатель

Статор асинхронных двигателей представляет распределённую двухфазную, трехфазную, реже многофазную обмотку. Ротор выполняют в виде цилиндра, используя медь, алюминий либо металл.

В его пазы залиты либо запрессованные токопроводящие жилы к оси вращения под определённым углом. Они соединяются в одно целое на торцах ротора.

Противоток возбуждается в роторе от переменного магнитного поля статора.

По конструктивным особенностям выделяют два вида асинхронных двигателей:

  • С фазным ротором.
  • С короткозамкнутым ротором.

В остальном конструкция приборов не имеет отличий, статор у них абсолютно одинаковый. По числу обмоток выделяют такие электродвигатели:

  • Однофазные. Этот тип двигателей самостоятельно не запускается, ему требуется стартовый толчок. Для этого применяется пусковая обмотка либо фазосдвигающая цепь. Также приборы запускаются вручную.
  • Двухфазные. В этих устройствах присутствуют две обмотки со смещёнными на угол фазами. В приборе возникает вращающееся магнитное поле, напряженность которого в полюсах одной обмотки нарастает и синхронно спадает в другой.Двухфазный электродвигатель может самостоятельно запускаться, но с реверсом присутствуют сложности. Часто этот тип устройств подключают к однофазным сетям, включая вторую фазу через конденсатор.
  • Трехфазные. Достоинством этих типов электродвигателей является легкий реверс. Основные части двигателя – это статор с тремя обмотками и ротор. Позволяет плавно регулировать скорость ротора. Эти приборы довольно востребованы в промышленности и технике.
  • Многофазные. Состоят эти устройства из встроенной многофазной обмотки в пазах статора на его внутренней поверхности. Эти двигатели гарантируют высокую надёжность при эксплуатации и считаются усовершенствованными моделями двигателей.

Асинхронные электрические двигатели значительно облегчают работу людей, поэтому они незаменимы во многих сферах.

Достоинствами этих приборов, которые сыграли роль в их популярности, являются следующие моменты:

  • Простота производства.
  • Высокая надёжность.
  • Не нуждаются в преобразователях для включения в сеть.
  • Небольшие расходы при эксплуатации.

Ко всему этому, можно добавить относительную стоимость асинхронных приборов. Но они также имеют и недостатки:

  • Невысокий коэффициент мощности.
  • Трудность в точной регулировке скорости.
  • Маленький пусковой момент.
  • Зависимость от напряжения сети.

Но благодаря питанию электродвигателя с помощью частотного преобразователя, некоторые недостатки устройств устраняются.

Поэтому потребность асинхронных моторов не падает. Их применяют в приводах разных станков в областях металлообработки, деревообработки и пр.

В них нуждаются ткацкие, швейные, землеройные, грузоподъёмные и другие виды машин, а также вентиляторы, насосы, центрифуги, разные электроинструменты и бытовые приборы.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrooborudovanie/ustrojstva/elektrodvigatel/

Асинхронный двигатель – принцип работы, устройство, диагностика и ремонт + видео

Среди всех электродвигателей следует особо отметить асинхронный двигатель, принцип работы которого основан на взаимодействии магнитных полей статора с электрическим током, наводящимся с помощью этого поля в обмотке ротора. Вращающееся магнитное поле создается с помощью трехфазного переменного тока, проходящего по обмотке статора, включающего в себя три группы катушек.

https://www.youtube.com/watch?v=1XxaOVESscg

Принцип действия асинхронного двигателя основан на возможности передачи электрической энергии в механическую работу для какой-либо технологической машины.

При пересечении замкнутой обмотки ротора магнитное поле наводит в ней электрический ток.

В результате вращающееся магнитное поле статора взаимодействует с токами ротора и вызывает возникновение вращающегося электромагнитного момента, который и приводит ротор в движение.

Рассматривая устройство асинхронного двигателя, следует отметить его пусковые элементы, состоящие из пускового конденсатора и пусковой обмотки с повышенным сопротивлением. Они отличаются своей дешевизной и простотой, не требуют дополнительных фазосдвигающих элементов. В качестве недостатка необходимо отметить слабую конструкцию пусковой обмотки, которая нередко выходит из строя.

Схема пуска асинхронного двигателя может быть улучшена за счет последовательного включения с обмоткой пускового конденсатора. После отключения конденсатора происходит полное сохранение всех характеристик двигателя.

Очень часто схема включения асинхронного двигателя имеет рабочую обмотку, разбиваемую на две последовательно соединяемые фазы. При этом пространственный сдвиг осей находится в пределах от 105 до 120 градусов.

Для тепловых вентиляторов применяются двигатели с наличием экранированных полюсов.

Совет

Устройство трехфазного асинхронного двигателя требует проведения ежедневного осмотра, внешней очистки и крепежных работ. Два раза в месяц и более двигатель должен продуваться изнутри с помощью сжатого воздуха.

Особое внимание следует обращать на смазку подшипников, которая должна соответствовать конкретному типу двигателя.  Полная замена смазки производится дважды в течение года, с одновременной промывкой подшипников бензином.

Для того чтобы управление трехфазным асинхронным  двигателем осуществлялось удобно и долго, необходимо следить за шумом подшипников во время работы. Следует избегать свистящих, хрустящих или царапающих звуков, свидетельствующих о недостатке смазки, а также глухих ударов, указывающих на то, что обоймы, шарики, сепараторы могут быть поврежденными.

В случае возникновения нетипичного шума или перегревания, подшипники в обязательном порядке подвергаются разборке и осмотру. Происходит удаление старой смазки, после чего производится промывка бензином всех деталей.

Перед тем как посадить на вал новые подшипники, они должны быть предварительно прогреты в масле до нужной температуры.

Новая смазка должна заполнять рабочий объем подшипника примерно на одну третью часть, равномерно распределяясь по всей окружности.

Состояние контактных колец заключается в систематической проверке их поверхности. В случае их поражения ржавчиной применяется зачистка поверхности мягкой наждачной бумагой и протирание керосином. В особых случаях делается их расточка и шлифовка. Таким образом, при нормальном уходе за двигателем он сможет отслужить свой гарантийный срок и проработать намного больше.

Источник: https://carnovato.ru/shema-puska-vkljuchenija-princip-raboty-asinhronnogo-dvigatelja/

Принцип работы электродвигателей

Электродвигатель является одним из ключевых изобретений человечества. Именно благодаря электрическим моторам нам удалось добиться такого высокого развития нашей цивилизации.

Основные принципы работы этого устройства изучаются уже в школе. Современный электродвигатель может выполнять множеств различных задач. В основе его работы лежит передача вращения электроприводного вала на другие виды движения.

В этой статье мы подробно рассмотрим, как работает это устройство.

Характеристики электродвигателей

Электромотор, по сути, представляет собой прибор, при помощи которого электрическая энергия переходит в механическую. В основе этого явления лежит магнетизм. Соответственно, в конструкцию электродвигателя входят постоянные магниты и электрические магниты, а также различные другие материалы, обладающие притягивающими свойствами.

Сегодня этот прибор используется практически повсеместно. Например, электромотор является ключевой деталью часов, стиральных машин, кондиционеров, миксеров, фенов, вентиляторов, кондиционеров и других бытовых приборов. Вариантов использования электродвигателя в промышленности бесчисленное множество.

Их размеры тоже варьируются от головки спички до двигателя на поездах.

Виды электромоторов

В настоящее время производится множество разновидностей электромоторов, которые разделяются по типу конструкции и электропитания.

По принципу электропитания все модели можно разделить на:

  1. устройства переменного тока, которые в качестве питания используют электросеть;
  2. приборы постоянного тока, работающие от блоков питания, пальчиковых батареек, аккумуляторов и других подобных источников.

По механизму работы все электродвигатели разделяются на:

  1. синхронные, имеющие роторные обмотки и щеточный механизм, использующийся для подачи на обмотки электрического тока;
  2. асинхронные, отличающиеся более простой конструкцией без щеток и роторных обмоток.

Принцип работы этих электромоторов существенно отличается. Синхронный двигатель вращается с той же скоростью, что и магнитное поле, которое его вращает. В то же время, асинхронный мотор вращается с меньшей скоростью, чем электромагнитное поле.

Классы электродвигателей (различаются в зависимости от используемого тока):

  • класс AC (Alternating Current) – работает от переменного источника тока;
  • класс DC (Direct Current) – использует для работы постоянный ток;
  • универсальный класс, который может использовать для работы любой источник тока.

Кроме того, электрические двигатели могут отличаться не только по типу конструкции, но и также по способам контроля скорости вращений. При этом, во всех устройствах независимо от типа используется один и тот же принцип преобразования электрической энергии в механическую.

Принцип работы агрегата на постоянном токе

Этот тип электромотора работает на основе принципа, разработанного Майклом Фарадеем в далеком 1821 году. Его открытие заключается в том, что при взаимодействии электрического импульса с магнитом есть вероятность возникновения постоянного вращения.

То есть, если в магнитном поле разметить вертикальную рамку и пропустить по ней электрический ток, то вокруг проводника может возникнуть электромагнитное поле. Оно будет непосредственно контактировать с полюсами магнитов. Получается, что к одному из магнитов рамка будет притягиваться, а от другого отталкиваться.

Обратите внимание

Соответственно, она повернется из вертикального положения в горизонтальное, в котором влияние магнитного поля на проводник будет нулевым. Получается, что для продолжения движения нужно будет дополнить конструкцию еще одной рамкой под углом или же поменять направление тока в первой рамке.

В большинстве приборов это достигается за счет двух полуколец, к которым присоединяются контактные пластинки от аккумулятора. Они способствуют быстрому изменению полярности, в результате чего движение продолжается.

Современные электромоторы не имеют постоянных магнитов, так как их место занимаю электрические магниты и катушки индуктивности. То есть, если вы разберете любой такой двигатель, то увидите витки проволоки, покрытые изоляционным составом.

По сути, они и представляют собой электромагнит, который еще называется обмоткой возбуждения. Постоянные магниты в конструкции электродвигателей применяются только в небольших детских игрушках, работающих от пальчиковых батареек.

Все остальные более мощные электродвигатели оснащаются только электрическими магнитами или же обмотками. При этом, вращающаяся деталь получила название ротор, а статичная – статор.

Как работает асинхронный электромотор

Корпус асинхронного двигателя вмещает в себя обмотки статора, благодаря которым и создается вращающееся поле магнита. Концы для подключения обмоток выводят через специальную клеммную колодку.

Охлаждение осуществляется за счет вентилятора, размещенного на вале в торце электрического двигателя. Ротор плотно соединен с валом, изготовленным из металлических стержней. Эти короткозамкнутые стержни замыкаются между собой с обеих сторон.

За счет такой конструкции, двигатель не нуждается в периодическом обслуживании, так как здесь нет необходимости время от времени менять токоподающие щетки. Именно поэтому, асинхронные моторы считаются более надежными и долговечными, чем синхронные.

В основном причиной поломки асинхронных двигателей является изнашивание подшипников, на которых осуществляется вращение вала.

Для работы асинхронных двигателей необходимо, чтобы вращение ротора осуществлялось медленнее, чем вращение электромагнитного поля статора. Именно за счет этого в роторе и возникает электрический ток.

Если бы вращение осуществлялось с одинаковой скоростью, то по закону индукции ЭДС не образовывалось бы, и отсутсвовало вращение в целом. Однако, в настоящей жизни за счет трения подшипников и повышенной нагрузки на вал ротор будет крутиться медленнее.

Магнитные полюса регулярно вращаются в обмотках ротора, за счет чего постоянно изменяется направление тока в роторе.

Важно

По этому же принципу работает и круговая пила, так как наибольшие обороты она набирает без нагрузки. Когда пила начинает резать доску, ее скорость вращения снижается и одновременно ротор начинает вращаться медленнее по отношению к электромагнитному полю. Соответственно, по законам электротехники в нем начинает возникать еще большая величина ЭДС.

После этого возрастает потребляемый мотором ток и он начинает работу на полной мощности. При нагрузке, при которой мотор застопорится, может возникнуть разрушение короткозамкнутого ротора. Это возникает из-за того, что в двигателе возникает максимальная величина ЭДС. Именно поэтому необходимо подбирать электромотор необходимой мощности.

Если взять двигатель слишком большой мощности, то это может привести к неоправданным затратам энергии.

Скорость, с которой вращается ротор, в данном случае зависит от количества полюсов. Если в устройстве имеется два полюса, то скорость вращения будет соответствовать скорости вращения магнитного поля. Максимально асинхронный электрический двигатель может развивать до 3 тысяч оборотов в секунду. Частота сети при этом может составлять до 50 Гц.

Для уменьшения скорости в два раза вам придется повысить количество полюсов в статоре до 4 и так далее. Единственный недостаток асинхронных моторов – это то, что они могут поддаваться регулировке скорости вращения вала только посредством изменения частоты электрического тока.

Кроме того, в асинхронном моторе вы не сможете добиться постоянной частоты вращения вала.

Как работает синхронный электрический двигатель переменного тока

Синхронный электрический двигатель применяется в тех случаях, когда нужна постоянная скорость вращения и возможность ее быстрой регулировки.

Кроме того, синхронный мотор используется там, где нужно добиться скорости вращения более 3 тысяч оборотов, что является пределом для асинхронного двигателя.

Поэтому, такой тип электродвигателя преимущество используется в бытовой технике, такой как пылесос, электрический инструментарий, стиральная машина и так далее.

Совет

Корпус синхронного мотора переменного тока содержит обмотки, которые наматываются на якорь и ротор.

Их контакты припаиваются к секторам токосъемного коллектора и кольца, на которые посредством графитовых щеток подают напряжение.

Выводы здесь располагаются так, чтобы щетки всегда подавали напряжения только на одну пару. Из недостатков синхронного мотора можно отметить их меньшую надежность, по сравнению асинхронными двигателями.

Самые частые поломки синхронных двигателей:

  • Преждевременный износ щеток или нарушение их контакта из-за ослабления пружины.
  • Загрязнение коллектора, который чистится при помощи спирта или нулевой наждачной бумаги.
  • Изнашивание подшипников.

Принцип работы синхронного мотора

Вращающий момент в таком электродвигателе создается путем взаимодействия между магнитным полем и током якоря, которые контактируют между собой в обмотке возбуждения.

По мере направления переменного тока будет изменяться и направление магнитного потока, что обеспечивает вращение в только в одну сторону. Скорость вращения регулируется путем изменения силы подаваемого напряжения.

Изменение скорости напряжения чаще всего используется в пылесосах и дрелях, где для этой цели применяется переменное сопротивление или реостат.

Механизм работы отдельных типов двигателя

Промышленные электродвигатели могут работать как на постоянном, так и на переменном токе. В основе их конструкции лежит статор, который представляет собой электромагнит, создающий магнитное поле.

Промышленный электромотор содержит обмотки, которые поочередно подключаются к источнику питания при помощи щеток. Они попеременно поворачивают ротор на определенный угол, что приводит его в движение.

Самый простой электродвигатель для детских игрушек может работать только при помощи постоянного тока. То есть, он может получать ток от пальчиковой батарейки или аккумулятора.

Ток при этом проходит по рамке, находящейся между полюсами магнита постоянного типа. Благодаря взаимодействию магнитных полей рамки с магнитом она начинает вращаться.

По завершению каждого полуоборота, коллектор переключает контакты в рамке, которые проходят к батарейке. В результате этого рамка совершает вращательные движения.

Таким образом, на сегодняшний день существует большое количество электродвигателей разнообразного предназначения, которые имеют один принцип работы.

Источник: http://EkoWheel.com/blog/elektrodvigatel/kak-rabotaet-elektrodvigatel

Принцип работы и устройство асинхронного двигателя

Асинхронный (индукционный) двигатель – механизм, превращающий силу переменного тока в механическую. Под асинхронным подразумевают, что скорость движения магнитной силы статора выше аналогичной величины оборотов ротора.

Для того, чтобы получше представлять, что такое асинхронный двигатель и принцип действия трехфазного асинхронного двигателя, где он используется и как работает, необходимо разобраться в его составных частях и деталях, исследовать технические характеристики. Кроме того, не лишним будет понять, как происходит преобразование силы во время пуска и где используется асинхронный двигатель на практике.

В сегодняшней статье мы попробуем ответить на самые интересные вопросы, связанные с асинхронными двигателями, разобраться в том, что такое устройство однофазного асинхронного двигателя, рассмотрим принципы работы, а также плюсы и минусы данного типа устройств.

Немного истории

Первый подобный механизм электродвигателей появился еще в 1888 году и представил его американский инженер Никола Тесла. Однако, его опытный образец устройства и был не самым удачным, так как был двух фазным или много фазным и рабочие характеристики асинхронного двигателя не удовлетворяли потребителей. Поэтому широкого распространения не получил.

А вот благодаря российскому ученому Михаилу Доливо-Доброволь скому в изобретение удалось вдохнуть новую жизнь. Именно ему принадлежит первенство в деле создания первого в мире трехфазного асинхронного мотора.

Такое усовершенствование конструкции стало революционным, так как принцип работы трехфазного асинхронного двигателя позволял использовать для работы всего три провода, а не четыре.

Обратите внимание

Так что для плавного пуска устройства в массовое производство препятствий больше не оставалось.

Сегодня, благодаря своей простоте эти машины получили широкое распространение, а механическая характеристика асинхронного двигателя устраивает всех водителей.

Каждый год доля асинхронных двигателей, среди всех двигателей мира, составляет 90%.

Простота в использовании, принцип действия асинхронного двигателя, легкий пуск, надежность и дешевизна, помогли этим моторам распространиться по всему миру и буквально совершить технический переворот в промышленности.

Принцип работы трехфазного двигателя основан на питании от трех фаз переменного тока в стандартной сети. Для работы ему требуется именно такое электричество и поэтому он назван трех фазным.

Устройство трехфазного двигателя

Любой мотор асинхронного типа, независимо от его мощности и размеров, состоит из одних и тех же частей, механическая характеристика асинхронного двигателя также одна и та же. Главными среди составляющих являются:

  • статор (неподвижная часть машины)
  • ротор (вращающаяся часть)

Помимо этого, в современных трех фазных двигателях можно найти следующие детали:

  • вал
  • подшипники
  • обмотку
  • заземление
  • корпус (в который монтируются все детали)

Как уже указывалось выше, базовые элементы двигателя — это статор (неподвижная часть) и ротор (подвижная деталь).

Статор выполнен в виде цилиндра, составлен данный элемент из множества металлических, форменных листов. Внутренняя часть создана таким образом, чтобы расположить обмотку. Центры обмоток расположены под углом в 120 градусов, а подключение происходит, исходя из доступного напряжения и двух возможных вариантов: на три или пять контактов.

Ротором называют подвижную часть подобного мотора, которая необходима для плавного пуска. Устройство асинхронного двигателя с фазным ротором является полноценным, ведь именно во вращении ротора состоит основной принцип работы трехфазного мотора.

Важно

Принципы, использование которых лежит в работе такого приспособления, как устройство асинхронного двигателя:

  1. Правило левой руки буравчика.
  2. Закон электромагнитной индукции Фарадея.

Исходя из типа обмотки, ротор может быть короткозамкнутым или фазным.

Короткозамкнутым называют ротор, состоящий из множества стальных частей.

Работа асинхронного двигателя с короткозамкнутым ротором заключается в следующем: в специальные пазы заливают алюминий, формирующий сердцевины, крепящиеся с обеих сторон стопорными кольцами, такая конструкция получила название «беличья клетка». Называется так, потому что замкнута накоротко и в ней не может использоваться сопротивление.

Фазным называют ротор, который обмотан по принципу, аналогичному статору, подходящему для трехфазной сети. Края проводки сердцевины замыкают в звезду, а оставшиеся контакты подводят к контактным частям.

Согласно принципу обратимости, любым фазным асинхронным двигателям свойственна возможность работать в качестве двигателя, генератора или электромагнитного тормоза. Электромеханическая характеристика асинхронного двигателя:

  1. Двигатель.
  2. Самый частый вид использования механизма.
  3. Генератор.
  4. Действие машины можно обратить, то есть механическую энергию, приложенную к сердцевине можно превратить в электрический ток. Для этого центральной части нужно вращаться быстрей магнитного поля. Потребляя механическую энергию генератор начнет создавать тормозной момент, возвращая электрическую энергию.
  5. Электромагнитный тормоз.

Изменение порядка чередования фаз приводит к тому, что магнитное поле и сердцевина вращаются в различные стороны, при этом потребляется как механическая энергия, так и напряжение сети, создавая тормозной момент. Собранная энергия приводит к нагреву машины.

Принцип работы трехфазного двигателя

Принцип работы асинхронного двигателя в следующем: подавая напряжение на статор, в его проводке возникает магнитное воздействие, которая благодаря углу размещения осей обмоток, суммируется и создает итоговый, вращающий магнитный поток.

Вращаясь, он создает в проводниках электродвижущую силу. Обмотка сердцевины, создана таким образом, что при включении в сеть, появляется сила, налаживающаяся на действие статора и создающая движение.

Устройство и принцип действия асинхронного двигателя зависит и от сердцевины. Движение сердцевины происходит, когда магнитная сила статора и пусковой момент преодолевают тормозную мощность ротора и внутренняя часть начинает движение, в этот момент проявляется такой показатель, как скольжение.

Скольжение очень важный параметр. В начале движения ротора оно равно 1, но вместе с ростом частоты движения, наблюдается выравнивание, и как следствие снижаются электродвижущие силы и ток в обмотках, это приводит к снижению вращающего момента.

Существует крайний предел скольжения, превышать это значение не стоит, ведь механизм может «опрокинуться», что приведет к нарушению его нормальной работы. Минимальное скольжение происходит на холостых оборотах мотора, при увеличении момента значение будет расти, до наступления критической отметки.

Для создания асинхронной работы нужно сделать так, чтобы напряжение статора и общий магнитный поток соответствовали значению переменного тока.

Во время пуска вектор результирующего магнитного поля неподвижной части плавно вращается с определенной частотой. Через сечение ротора проходит магнитный поток. Электроэнергия, подходящая к двигателю в момент пуска, уходит на перемагничивание статора и ротора.

Совет

Стоит заметить, что для электромоторов, в том числе асинхронных свойственно то, что во время пуска в короткий промежуток времени достигается до 150% крутящего момента.

Пусковой ток превышает номинальный в 7 раз и из-за этого, в момент пуска падает напряжение во всей электрической сети. Если падение напряжения слишком большое, то даже сам двигатель может не запуститься – таков принцип его действия.

Поэтому на практике используют устройство плавного пуска.

Устройство плавного пуска

Устройства плавного пуска асинхронных двигателей имеет свою специфику. Оно используется для плавного пуска или остановки электромагнитных двигателей. Может быть механическим, электромеханичес ким или полностью электронным.

Пусковая характеристика асинхронного двигателя предназначена:

  • для плавного разгона асинхронного двигателя
  • для плавной остановки
  • для снижения тока во время пуска
  • для синхронизации нагрузки и крутящего момента

Принцип работы и действия устройства плавного пуска основаны на широкой вариативности переменных. Как следствие, появляются большие возможности для управления режимами работы.

Хорошие и плохие свойства асинхронных моторов

Асинхронный двигатель принцип работы и устройство имеет достоинства и недостатки.

Трансформаторы, внутри которых находится вращающийся ротор, используемый для работы двигателя, получили обширное применение так как принцип действия у них простой и понятный, а само устройство работает бесперебойно.

Однако и короткозамкнутым и фазным устройствам свойственны определенные недостатки. Причем именно принцип их действия лежит в основе данных минусов.

Плюсы:

  1. Короткозамкнутым и фазным устройствам свойственна простота конструкции.
  2. Так как принцип действия очень прост, устройства получаются дешевыми.
  3. Простота пуска и высокие эксплуатационные характеристики.
  4. Простота пуска обеспечивает легкое управление.
  5. Принцип действия и работы таков, что асинхронные моторы могут работать в тяжелых условиях.

Минусы:

  1. Принцип работы основан на том, что при изменении скорости, теряется мощность.
  2. Когда увеличивается нагрузка, практически сразу начинает снижаться крутящий момент.
  3. В момент плавного пуска, мощность асинхронного мотора достаточно низкая.

Стоит отметить, что в настоящее время, отдается предпочтение устройствам с короткозамкнутым ротором. А вот устройства, в которых ротор фазный используются в редких случаях, как правило, когда достигается большая мощность.

Источник: http://cars-bazar.ru/remont/ustroystvo-asinhronnogo-dvigatelya

Загрузка…

Электрические машины, преобразующие электрическую энергию переменного тока в механическую энергию, называются электродвигателями переменного тока.

В промышленности наибольшее распространение получили асинхронные двигатели трехфазного тока. Рассмотрим устройство и принцип действия этих двигателей.

Принцип действия асинхронного двигателя основан на использовании вращающегося магнитного поля.

Для уяснения работы такого двигателя проделаем следующий опыт.

Укрепим подковообразный магнит на оси таким образом, чтобы его можно было вращать за ручку. Между полюсами магнита расположим на оси медный цилиндр, могущий свободно вращаться.

Рисунок 1. Простейшая модель для получения вращающегося магнитного поля

Начнем вращать магнит за ручку по часовой стрелке. Поле магнита также начнет вращаться и при вращении будет пересекать своими силовыми линиями медный цилиндр.

В цилиндре, по закону электромагнитной индукции, возникнут вихревые токи, которые создадут свое собственное магнитное поле — поле цилиндра.

Это поле будет взаимодействовать с магнитным полем постоянного магнита, в результате чего цилиндр начнет вращаться в ту же сторону, что и магнит.

Установлено, что скорость вращения цилиндра несколько меньше скорости вращения поля магнита.

Совет

Действительно, если цилиндр вращается с той же скоростью, что и магнитное поле, то магнитные силовые линии не пересекают его, а следовательно, в нем не возникают вихревые токи, вызывающие вращение цилиндра.

Скорость вращения магнитного поля принято называть синхронной, так как она равна скорости вращения магнита, а скорость вращения цилиндра — асинхронной (несинхронной). Поэтому сам двигатель получил название асинхронного двигателя. Скорость вращения цилиндра (ротора) отличается от синхронной скорости вращения магнитного поля на небольшую величину, называемую скольжением.

Обозначив скорость вращения ротора через n1 и скорость вращения поля через n мы можем подсчитать величину скольжения в процентах по формуле:

s = (n – n1) / n.

В приведенном выше опыте вращающееся магнитное поле и вызванное им вращение цилиндра мы получали благодаря вращению постоянного магнита, поэтому такое устройство еще не является электродвигателем.

Надо заставить электрический ток создавать вращающееся магнитное поле и использовать его для вращения ротора. Задачу эту  в свое время блестяще разрешил М. О. Доливо-Добровольский.

Он предложил использовать для этой цели трехфазный ток.

Устройство асинхронного электродвигателя М. О. Доливо-Добровольского

Рисунок 2. Схема асинхронного электродвигателя Доливо-Добровольского

На полюсах железного сердечника кольцевой формы, называемого статором электродвигателя, помещены три обмотки, сети трехфазного тока 0 расположенные одна относительно другой под углом 120°.

Внутри сердечника укреплен на оси металлический цилиндр, называемый ротором электродвигателя.

Если обмотки соединить между собой так, как показано на рисунке, и подключить их к сети трехфазного тока, то общий магнитный поток, создаваемый тремя полюсами, окажется вращающимся.

На рисунке 3 показан график изменения токов в обмотках двигателя и процесс возникновения вращающегося магнитного поля.

Рассмотрим – подробнее этот процесс.

Рисунок 3. Получение вращающегося магнитного поля

В положении «А» на графике ток в первой фазе равен нулю, во второй фазе он отрицателен, а в третьей положителен. Ток по катушкам полюсов потечет в направлении, указанном на рисунке стрелками.

Обратите внимание

Определив по правилу правой руки направление созданного током магнитного потока, мы убедимся, что на внутреннем конце полюса (обращенном к ротору) третьей катушки будет создан южный полюс (Ю), а на полюсе второй катушки — северный полюс (С). Суммарный магнитный поток будет направлен от полюса второй катушки через ротор к полюсу третьей катушки.

В положении «Б» на графике ток во второй фазе равен нулю, в первой фазе он положителен, а в третьей отрицателен. Ток, протекая по катушкам полюсов, создает на конце первой катушки южный полюс (Ю), на конце третьей катушки северный полюс (С). Суммарный магнитный поток теперь будет направлен от третьего полюса через ротор к первому полюсу, т. е. полюсы при этом переместятся на 120°.

В положении «В» на графике ток в третьей фазе равен нулю, во второй фазе он положителен, а в первой отрицателен.

Теперь ток, протекая по первой и второй катушкам, создаст на конце полюса первой катушки — северный полюс (С), а на конце полюса второй катушки — южный полюс (Ю), т. е.

полярность суммарного магнитного поля переместится еще на 120°. В положении «Г» на графике магнитное поле переместится еще на 120°.

Таким образом, суммарный магнитный поток будет менять свое направление с изменением направления тока в обмотках статора (полюсов).

При этом за один период изменения тока в обмотках магнитный поток сделает полный оборот. Вращающийся магнитный поток будет увлекать за собой цилиндр, и мы получим таким образом асинхронный электродвигатель.

Напомним, что на рисунке 3 обмотки статора соединены «звездой», однако вращающееся магнитное поле образуется и при соединении их «треугольником».

Важно

Если мы поменяем местами обмотки второй и третьей фаз, то магнитный поток изменит направление своего вращения на обратное.

Такого же результата можно добиться, не меняя местами обмотки статора, а направляя ток второй фазы сети в третью фазу статора, а третью фазу сети — во вторую фазу статора.

Таким образом, изменить направление вращения магнитного поля можно переключением двух любых фаз.

Мы рассмотрели устройство асинхронного двигателя, имеющего на статоре три обмотки. В этом случае вращающееся магнитное поле двухполюсное и число его оборотов в одну секунду равно числу периодов изменения тока в одну секунду.

Если на статоре разместить по окружности шесть обмоток, то будет создано четырехполюсное вращающееся магнитное поле. При девяти обмотках поле будет шестиполюсным.

При частоте трехфазного тока f, равной 50 периодам в секунду, или 3000 в минуту, число оборотов n вращающегося поля в минуту будет:

при двухполюсном статоре n = (50 х 60 ) / 1 = 3000 об/мин,

при четырехполюсном статоре n = (50 х 60 ) / 2 = 1500 об/мин,

при шестиполюсном статоре n = (50 х 60 ) / 3 = 1000 об/мин, 

при числе пар полюсов статора, равном  p:  n = (f х 60 ) / p,

Итак, мы установили скорость вращения магнитного поля и зависимость ее от числа обмоток на статоре двигателя.

Ротор же двигателя будет, как нам известно, несколько отставать в своем вращении.

Однако отставание ротора очень небольшое. Так, например, при холостом ходе двигателя разность скоростей составляет всего 3%, а при нагрузке 5 – 7%. Следовательно, обороты асинхронного двигателя при изменении нагрузки изменяются в очень небольших пределах, что является одним из его достоинств.

Рассмотрим теперь устройство асинхронных электродвигателей

Совет

Статор современного асинхронного электродвигателя имеет невыраженные полюсы, т. е. внутренняя поверхность статора сделана совершенно гладкой.

Чтобы уменьшить потери на вихревые токи, сердечник статора набирают из тонких штампованных стальных листов.Собранный сердечник статора закрепляют в стальном корпусе.

В пазы статора закладывают обмотку из медной проволоки. Фазовые обмотки статора электродвигателя соединяются «звездой» или «треугольником», для чего все начала и концы обмоток выводятся на корпус — на специальный изоляционный щиток. Такое устройство статора очень удобно, так как позволяет включать его обмотки на разные стандартные напряжения.

Ротор асинхронного двигателя, подобно статору, набирается из штампованных листов стали. В пазы ротора закладывается обмотка.

В зависимости от конструкции ротора асинхронные электродвигатели делятся на двигатели с короткозамкнутым ротором и фазным ротором.

Обмотка короткозамкнутого ротора сделана из медных стержней, закладываемых в пазы ротора. Торцы стержней соединены при помощи медного кольца. Такая обмотка называется обмоткой типа «беличьей клетки». Заметим, что медные стержни в пазах не изолируются. 

В некоторых двигателях «беличью клетку» заменяют литым ротором.

Асинхронный двигатель с фазным ротором (с контактными кольцами) применяется обычно в электродвигателях большой мощности и в тех случаях; когда необходимо, чтобы электродвигатель создавал большое усилие при трогании с места. Достигается это тем, что в обмотки фазного двигателя включается пусковой реостат.

Короткозамкнутые асинхронные двигатели пускаются в ход двумя способами:

1) Непосредственным подключением трехфазного напряжения сети к статору двигателя. Этот способ самый простой и наиболее популярный.

Обратите внимание

2) Снижением напряжения, подводимого к обмоткам статора. Напряжение снижают, например, переключая обмотки статора со «звезды» на «треугольник». 

Пуск двигателя в ход происходит при соединении обмоток статора «звездой», а когда ротор достигнет нормального числа оборотов, обмотки статора переключаются на соединение «треугольником».

Ток в подводящих проводах при этом способе пуска двигателя уменьшается в 3 раза по сравнению с тем током, который возник бы при пуске двигателя прямым включением в сеть с обмотками статора, соединенными «треугольником». Однако этот способ пригоден лишь в том случае, если статор рассчитан для нормальной работы при соединении его обмоток «треугольником».

Наиболее простым, дешевым и надежным является асинхронный электродвигатель с короткозамкнутым ротором, но этот двигатель обладает некоторыми недостатками — малым усилием при трогании с места и большим пусковым током. Эти недостатки в значительной мере устраняются применением фазного ротора, но применение такого ротора значительно удорожает двигатель и требует пускового реостата.

Принцип действия асинхронного электродвигателя - советы электрика

Электрический двигатель — принцип работы электродвигателя

Электрические двигатели предназначены для преобразования электрической энергии в механическую. Первые их прототипы были созданы в 19 веке, а сегодня эти устройства максимально интегрированы в жизнь современного человечества. Примеры их использования можно встретить в любой сфере жизнедеятельности: от общественного транспорта до домашней кофемолки.

Содержание:

Электрический двигатель: вид в разрезе

Принцип преобразования энергии

Принцип работы электродвигателя любого типа заключается в использовании электромагнитной индукции, возникающей внутри устройства после подключения в сеть. Для того чтобы понять, как эта индукция создается и приводит элементы двигателя в движение, следует обратиться к школьному курсу физики, объясняющему поведение проводников в электромагнитном поле.

Итак, если мы погрузим проводник в виде обмотки, по которому движутся электрические заряды, в магнитное поле, он начнет вращаться вокруг своей оси. Это связано с тем, что заряды находятся под влиянием механической силы, изменяющей их положение на перпендикулярной магнитным силовым линиям плоскости. Можно сказать, что эта же сила действует на весь проводник.

Схема, представленная ниже, показывает токопроводящую рамку, находящуюся под напряжением, и два магнитных полюса, придающие ей вращательное движение.

Именно эта закономерность взаимодействия магнитного поля и токопроводящего контура с созданием электродвижущей силы лежит в основе функционирования электродвигателей всех типов. Для создания аналогичных условий в конструкцию устройства включают:

  • Ротор (обмотка) – подвижная часть машины, закрепленная на сердечнике и подшипниках вращения. Она исполняет роль токопроводящего вращательного контура.
  • Статор – неподвижный элемент, создающий магнитное поле, воздействующее на электрические заряды ротора.
  • Корпус статора. Оснащен посадочными гнездами с обоймами для подшипников ротора. Ротор размещается внутри статора.

Для представления конструкции электродвигателя можно создать принципиальную схему на основе предыдущей иллюстрации:

После включения данного устройства в сеть, по обмоткам ротора начинает идти ток, который под воздействием магнитного поля, возникающего на статоре, придает ротору вращение, передаваемое на крутящийся вал. Скорость вращения, мощность и другие рабочие показатели зависят от конструкции конкретного двигателя и параметров электрической сети.

Классификация электрических двигателей

Все электродвигатели между собой классифицируют в первую очередь по типу тока, протекающему через них. В свою очередь, каждая из этих групп тоже делить на несколько видов, в зависимости от технологических особенностей.
Двигатели постоянного тока

На маломощных двигателях постоянного тока магнитное поле создается постоянным магнитом, устанавливаемым в корпусе устройства, а обмотка якоря закрепляется на вращающемся валу. Принципиальная схема ДПТ выглядит следующим образом:

Обмотка, расположенная на сердечнике, изготавливается из ферромагнитных материалов и состоит из двух частей, последовательно соединенных между собой. Своими концами они подсоединяются к коллекторным пластинам, к которым прижимаются графитовые щетки. На одну из них подается положительный потенциал от источника постоянного тока, а на другую – отрицательный.

После подачи питания на двигатель происходит следующее:

  1. Ток от нижней «плюсовой» щетки подается на ту коллекторную пластину, к контактной платформе которой она подключена.
  2. Прохождение тока по обмотке на коллекторную пластину (обозначено пунктирной красной стрелкой), подключенную к верхней «отрицательной» щетке создает электромагнитное поле.
  3. Согласно правилу буравчика, в правой верхней части якоря возникает магнитное поле южного, а в левой нижней — северного магнитного полюса.
  4. Магнитные поля с одинаковым потенциалом отталкиваются друг от друга и приводят ротор во вращательное движение, обозначенное на схеме красной стрелкой.
  5. Устройство коллекторных пластин приводит к смене направления протекания тока по обмотке во время инерционного вращения, и рабочий цикл повторяется вновь.

Самый простой электрический двигатель

При очевидной простоте конструкции существенным недостатком таких двигателей является низкий КПД, обусловленный большими потерями энергии. Сегодня ДПТ с постоянными магнитами используются в простых бытовых приборах и детских игрушках.

Устройство двигателей постоянного тока большой мощности, используемых в производственных целях, не предусматривает использование постоянных магнитов (они занимали бы слишком много места). В этих машинах используется следующая конструкция:

  • обмотка состоит из большего количества секций, представляющих собой металлический стержень;
  • каждая обмотка отдельно подключается к положительному и отрицательному полюсу;
  • количество контактных площадок на коллекторном устройстве соответствует количеству обмоток.

Таким образом, снижение потерь электроэнергии обеспечивается плавным подключением каждой обмотки к щеткам и источнику питания. На следующей картинке представлена конструкция якоря такого двигателя:

Устройство электрических двигателей постоянного тока позволяет легко обратить направление вращения ротора с помощью простой смены полярности на источнике питания.

Функциональные особенности электродвигателей определяются наличием некоторых «хитростей», к которым относится сдвиг токосъемных щеток и несколько схем подключения.

Сдвиг узла токосъемных щеток относительно вращения вала происходит после запуска двигателя и изменения подаваемой нагрузки. Это позволяет компенсировать «реакцию якоря» — эффект, снижающий эффективность машины за счет торможения вала.

Есть три способа подключения ДПТ:

  1. Схема с параллельным возбуждением предусматривает параллельное подключение независимой обмотки, как правило, регулируемой реостатом. Так обеспечивается максимальная стабильность скорости вращения и её плавная регулировка. Именно благодаря этому двигатели с параллельным возбуждением находят широкое применение в грузоподъемном оборудовании, на электрическом транспорте и станках.
  2. Схема с последовательным возбуждением тоже предусматривает использование дополнительной обмотки, но подключается она последовательно с основной. Это позволяет при необходимости резко увеличить крутящий момент двигателя, к примеру, на старте движения железнодорожного состава.
  3. Смешанная схема использует преимущества обоих способов подключения, описанных выше.

Биполярный электрический двигатель

Двигатели переменного тока

Главным отличием этих двигателей от описанных ранее моделей заключается в токе, протекающем по их обмотке. Он описывает по синусоидальному закону и постоянно меняет свое направление. Соответственно и питание этих двигателей осуществляется от генераторов со знакопеременной величиной.

Одним из главных конструктивных отличий является устройство статора, представляющего собой магнитопровод со специальными пазами для расположения витков обмотки.

Обратите внимание

Двигатели переменного тока классифицируют по принципу работы на синхронные и асинхронные. Коротко говоря, это означает, что в первых частота вращения ротора совпадает с частотой вращения магнитного поля в статоре, а во вторых – нет.

Настоятельно рекомендуем прочитать нашу статью об устройстве электродвигателей переменного тока.

Синхронные двигатели

В основе работы синхронных электродвигателей переменного тока тоже лежит принцип взаимодействия полей, возникающих внутри устройства, однако в их конструкции постоянные магниты закрепляются на роторе, а по статору проводится обмотка. Принцип их действия демонстрирует следующая схема:

Проводники обмотки, по которой проходит ток, показанные на рисунке в виде рамки. Вращение ротора происходит следующим образом:

  1. На определенный момент времени ротор с закрепленным на нем постоянным магнитом находится в свободном вращении.
  2. На обмотке в момент прохождения через нее положительной полуволны формируется магнитное поле с диаметрально противоположными полюсами Sст и Nст. Оно показано на левой части приведенной схемы.
  3. Одноименные полюса постоянного магнита и магнитного поля статора отталкиваются друг от друга и приводят двигатель в положение, показанное на правой части схемы.

В реальных условиях для создания постоянного плавного вращения двигателя используется не одна катушка обмотки, а несколько. Они поочередно пропускают через себя ток, благодаря чему создается вращающееся магнитное поле.

Асинхронные двигатели

А асинхронном двигателе переменного тока вращающееся магнитное поле создается тремя (для сети 380 В) обмотками статора. Их подключение к источнику питания осуществляется через клеммную коробку, а охлаждение — вмонтированным в двигатель вентилятором.

Ротор, собранный из нескольких замкнутых между собой металлических стержней, жестко соединен с валом, составляя с ним одно целое. Именно из-за соединения стержней межу собой этот тип ротора называется короткозамкнутым.

Благодаря отсутствию токопроводящих щеток в данной конструкции значительно упрощается техническое обслуживание двигателя, увеличивается срок службы и надежность.

Главной причиной выхода из строя двигателей этого типа является износ подшипников вала.

Принцип работы асинхронного двигателя основывается на законе электромагнитной индукции – если частота вращения электромагнитного поля обмоток статора превышает частоту вращения ротора, в нем наводится электродвижущая сила.

Это важно, поскольку при одинаковой частоте ЭДС не возникает и, соответственно, не возникает вращения.

В действительности нагрузка на вал и сопротивление от трения подшипников всегда замедляет ротор и создает достаточные для работы условия.

Главным недостатком двигателей данного типа является невозможность получения постоянной частоты вращения вала. Дело в том, что рабочие характеристики устройства изменяются в зависимости от различных факторов. К примеру, без нагрузки на вал циркулярная пила вращается с максимальной скоростью.

Важно

Когда мы подводим к пильному полотну доску и начинаем её резать, частота вращения диска заметно снижается. Соответственно, снижается и скорость вращения ротора относительно электромагнитного поля, что приводит к наведению еще большей ЭДС.

Это увеличивает потребляемый ток и рабочая мощность мотора увеличивается до максимальной.

Принцип работы электрического мотора

Важно подбирать двигатель подходящей мощности – слишком низкая приведет к повреждению короткозамкнутого ротора из-за превышения расчетного максимума ЭДС, а слишком высокая приводит к необоснованным энергозатратам.

Асинхронные двигатели переменного тока рассчитаны на работу от трехфазной электрической сети, однако могут быть подключены и в однофазную сеть. Так, например, они используются в стиральных машинах и станках для домашних мастерских. Однофазный двигатель имеет примерно на 30% более низкую мощность, по сравнению с трехфазным – от 5 до 10 кВт.

Ввиду простоты исполнения и надежности асинхронные двигатели переменного тока наиболее распространены не только в производственном оборудовании, но и в бытовой технике.

Универсальные коллекторные двигатели

Во многих бытовых электроприборах необходимо наличие высокой скорости вращения двигателя и крутящего момента при малых пусковых токах и плавной регулировке. Всем этим требования удовлетворяют коллекторные двигатели, называемые универсальными. По своему устройству они очень похожи на двигатели постоянного тока с последовательным возбуждением.

Главным отличием от ДПТ является магнитная система, комплектуемая несколькими изолированными друг от друга листами электротехнической стали, к полюсам которых подсоединены по две секции обмотки. Такая конструкция снижает нагрев элементов токами Фуко и перемагничивание.

Высокая синхронность магнитных полей в универсальных коллекторных двигателях сохраняет высокую скорость вращения даже под большой нагрузкой на вал. Поэтому их используют в маломощном быстроходном оборудовании и домашней технике. При подключении в цепь регулируемого трансформатора появляется возможность плавной настройки частоты вращения.

Главный недостаток таких электромоторов заключается в низком моторесурсе, обусловленном быстрым стиранием графитовых щеток.

Источник: http://TokIdet.ru/elektrooborudovanie/elektrodvigateli/princip-raboty.html

Разбираемся в принципах работы электродвигателей: преимущества и недостатки разных видов

Электродвигатели – это устройства, в которых электрическая энергия превращается в механическую. В основе принципа их действия лежит явление электромагнитной индукции.

Однако способы взаимодействия магнитных полей, заставляющих вращаться ротор двигателя, существенно различаются в зависимости от типа питающего напряжения – переменного или постоянного.

Устройство и принцип действия электродвигателя постоянного тока

В основе принципа работы электродвигателя постоянного тока лежит эффект отталкивания одноименных полюсов постоянных магнитов и притягивания разноименных. Приоритет ее изобретения принадлежит русскому инженеру Б. С. Якоби. Первая промышленная модель двигателя постоянного тока была создана в 1838 году. С тех пор его конструкция не претерпела кардинальных изменений.

В двигателях постоянного тока небольшой мощности один из магнитов является физически существующим. Он закреплен непосредственно на корпусе машины. Второй создается в обмотке якоря после подключения к ней источника постоянного тока. Для этого используется специальное устройство – коллекторно-щеточный узел. Сам коллектор – это токопроводящее кольцо, закрепленное на валу двигателя.

К нему подключены концы обмотки якоря.

Чтобы возник вращающий момент, необходимо непрерывно менять местами полюса постоянного магнита якоря. Происходить это должно в момент пересечения полюсом так называемой магнитной нейтрали. Конструктивно такая задача решается разделением кольца коллектора на секторы, разделенные диэлектрическими пластинами.

Концы обмоток якоря присоединяются к ним поочередно.

Чтобы соединить коллектор с питающей сетью используются так называемые щетки – графитовые стержни, имеющие высокую электрическую проводимость и малый коэффициент трения скольжения.

Совет

В двигателях большой мощности физически существующих магнитов не используют из-за их большого веса. Для создания постоянного магнитного поля статора используется несколько металлических стержней, каждый из которых имеет собственную обмотку из проводника, подключенного к плюсовой или минусовой питающей шине. Одноименные полюса включаются последовательно друг другу.

Количество пар полюсов на корпусе двигателя может быть равно одной или четырем. Число токосъемных щеток на коллекторе якоря должно ему соответствовать.

Электродвигатели большой мощности имеют ряд конструктивных хитростей. Например, после запуска двигателя и с изменением нагрузки на него, узел токосъемных щеток сдвигается на определенный угол против вращения вала. Так компенсируется эффект «реакции якоря», ведущий к торможению вала и снижению эффективности электрической машины.

Также существует три схемы подключения двигателя постоянного тока:

  • с параллельным возбуждением;
  • последовательным;
  • смешанным.

Параллельное возбуждение – это когда параллельно обмотке якоря включается еще одна независимая, обычно регулируемая (реостат).

Такой способ подключения позволяет очень плавно регулировать скорость вращения и достигать ее максимальной стабильности. Его используют для питания электродвигателей станков и кранового оборудования.

Последовательная – в цепь питания якоря дополнительная обмотка включена последовательно. Такой тип подключения используется для того, чтобы в нужный момент резко нарастить вращающее усилие двигателя. Например, при трогании с места железнодорожных составов.

Двигатели постоянного тока имеют возможность плавной регулировки частоты вращения, поэтому их применяют в качестве тяговых на электротранспорте и грузоподъемном оборудовании.

Двигатели переменного тока — в чем отличие?

Устройство и принцип работы электродвигателя переменного тока для создания крутящего момента предусматривают использование вращающегося магнитного поля. Их изобретателем считается русский инженер М. О. Доливо-Добровольский, создавший в 1890 году первый промышленный образец двигателя и являющийся основоположником теории и техники трехфазного переменного тока.

Вращающееся магнитное поле возникает в трех обмотках статора двигателя сразу, как только они подключаются к цепи питающего напряжения. Ротор такого электромотора в традиционном исполнении не имеет никаких обмоток и представляет собой, грубо говоря, кусок железа, чем-то напоминающий беличье колесо.

Магнитное поле статора провоцирует возникновение в роторе тока, причем очень большого, ведь это короткозамкнутая конструкция. Этот ток вызывает возникновение собственного поля якоря, которое «сцепляется» с вихревым магнитным потом статора и заставляет вращаться вал двигателя в том же направлении.

Магнитное поле якоря имеет ту же скорость, что и статора, но отстает от него по фазе примерно на 8–100. Именно поэтому двигатели переменного тока называются асинхронными.

Принцип действия электродвигателя переменного тока с традиционным, короткозамкнутым ротором, имеет очень большие пусковые токи. Вероятно, многие из вас это замечали – при пуске двигателей лампы накаливания меняют яркость свечения. Поэтому в электрических машинах большой мощности применяется фазный ротор – на нем уложены три обмотки, соединенные «звездой».

Обмотки якоря не подключены к питающей сети, а посредством коллекторно-щеточного узла соединены с пусковым реостатом. Процесс включения такого двигателя состоит из соединения с питающей сетью и постепенного уменьшения до нуля активного сопротивления в цепи якоря. Электромотор включается плавно и без перегрузок.

Особенности использования асинхронных двигателей в однофазной цепи

Несмотря на то, что вращающееся магнитное поле статора проще всего получить от трехфазного напряжения, принцип действия асинхронного электродвигателя позволяет ему работать и от однофазной, бытовой сети, если в их конструкцию будут внесены некоторые изменения.

Для этого на статоре должно быть две обмотки, одна из которой является «пусковой». Ток в ней сдвигается по фазе на 90° за счет включения в цепь реактивной нагрузки. Чаще всего для этого используется конденсатор.

Обратите внимание

Запитать от бытовой розетки можно и промышленный трехфазный двигатель. Для этого в его клеммной коробке две обмотки соединяются в одну, и в эту цепь включается конденсатор. Исходя из принципа работы асинхронных электродвигателей, запитанных от однофазной цепи, следует указать, что они имеют меньший КПД и очень чувствительны к перегрузкам.

Электродвигатели этого типа легко запускаются, но частоту их вращения практически невозможно регулировать.

Они чувствительны к перепадам напряжения, а при «недогрузе» снижают коэффициент полезного действия, становясь источником непропорционально больших затрат электроэнергии. При этом существуют методы использования асинхронного двигателя как генератор.

Универсальные коллекторные двигатели — принцип работы и характеристики

В бытовых электроинструментах малой мощности, от которых требуются малые пусковые токи, большой вращающий момент, высокая частота вращения и возможность ее плавной регулировки, используются так называемые универсальные коллекторные двигатели. По своей конструкции они аналогичны двигателям постоянного тока с последовательным возбуждением.

В таких двигателях магнитное поле статора создается за счет питающего напряжения. Только немного изменена конструкция магнитопроводов – она не литая, а наборная, что позволяет уменьшать перемагничивание и нагрев токами Фуко. Последовательно включенная в цепь якоря индуктивность дает возможность менять направление магнитного поля статора и якоря в одном направлении и в той же фазе.

Практически полная синхронность магнитных полей позволяет двигателю набирать обороты даже при значительных нагрузках на валу, что и требуется для работы дрелей, перфораторов, пылесосов, «болгарок» или полотерных машин.

Если в питающую цепь такого двигателя включен регулируемый трансформатор, то частоту его вращения можно плавно менять. А вот направление, при питании от цепи переменного тока, изменить не удастся никогда.

Такие электромоторы способны развивать очень высокие обороты, компактны и имеют больший вращающий момент. Однако наличие коллекторно-щеточного узла снижает их моторесурс – графитовые щетки достаточно быстро истираются на высоких оборотах, особенно если коллектор имеет механические повреждения.

Электродвигатели имеют самый большой КПД (более 80 %) из всех устройств, созданных человеком. Их изобретение в конце XIX века вполне можно считать качественным цивилизационным скачком, ведь без них невозможно представить жизнь современного общества, основанного на высоких технологиях, а чего-либо более эффективного пока еще не придумано.

Синхронный принцип работы электродвигателя на видео

Источник: http://elektrik24.net/elektrooborudovanie/elektrodvigateli/princip-raboty-3.html

Асинхронный двигатель: принцип работы, особенности конструкции

Асинхронный двигатель представляет собой мотор переменного тока, скорость вращения которого не равна частоте напряжения в обмотках статора. Эти электродвигатели получили широкое распространение, потому что являются достаточно выносливыми.

Асинхронный однофазный, трехфазный моторы могут работать при значительной нагрузке продолжительное время, не перегреваясь, держать свой крутящий момент.

Работа асинхронного двигателя проста, но при этом его характеристики напрямую зависят от параметров обмоток и технологии их укладки.

Область применения

Асинхронный двигатель получил широкое распространение в качестве тягового, второстепенного и прочих видов силовых компонентов. Учитывая особенности его конструкции, отсутствие скользящих контактов, эксплуатация такого мотора намного проще.

Также, схема подключения не требует сложных устройств управления, если говорить о простом режиме работы с постоянной частотой.

Плюс ко всему и срок службы до сервисного обслуживания намного дольше, так как внутреннее пространство и обмотки не загрязняются графитом.

Применяется асинхронный электродвигатель во многих сферах:

  • Системы вентиляции – благодаря выносливости и неприхотливости при эксплуатации моторы с короткозамкнутыми роторами достаточно часто используются в качестве вентиляторов. Они хорошо переживают продолжительную работу на максимальных оборотах, обеспечивая пользователей или технологическое оборудование интенсивным воздушным потоком.
  • Конвейеры – благодаря высокому моменту, способности его поддерживать при нагрузках моторы асинхронного типа стали идеальным вариантом для реализации управления подвижными производственными линиями.
  • Следящие системы и приводные устройства – особо часто применяют асинхронные двигатели в приводных системах на технологическом оборудовании. Но для организации управления таким типом двигателя потребуется особая схема подключения и частотный блок управления, а ротор асинхронного двигателя оснащается неодимовыми магнитами. Такие моторы рассчитаны на работы с частотой до 400 Гц.
  • Бытовая сфера. Из такого мотора можно сделать различные рабочие агрегаты бытового назначения или для небольшой мастерской: вентилятор, управляемые заслонки, циркулярная пила, фуганок, прочее оборудование.

Разновидности моторов

От типа питающей сети асинхронные электродвигатели подразделяются на:

  1. Трехфазные. Обмотки асинхронных двигателей такого типа состоят из 3 катушек, специальным образом уложенных в пазах статора. Они предназначены для работы в промышленности, так как имеют высокий КПД и cosφ приближенный к 1, а для обеспечения дополнительной экономии работают с системой рекуперации энергии при торможении, выступая генератором.
  2. Однофазный асинхронный двигатель. Применяется в быту и промышленности: старые стиральные машины, бытовые вентиляторы, холодильное и прочие виды оборудования. Имеют меньший КПД, мощность, по сравнению с трехфазными, что объясняется потерями в статоре из-за отсутствия дополнительной фазы.

Устройство асинхронного двигателя

Устройство асинхронного двигателя является достаточно простым:

  • Статор – является неподвижной частью электрического двигателя, который снабжен обмотками возбуждения.
  • Ротор – вращающийся элемент мотора, который крутится под действием магнитного поля, создаваемым обмотками возбуждения, расположенными на статоре. Различают 2 типа двигателя от конструкции ротора: короткозамкнутые и фазные.
  • Фланцы – статическая часть электрического двигателя, в которой находятся опорные подшипники, удерживающие ротор и являющиеся своего рода крепежом для статора. Он зажимается между двумя фланцами-крышками стяжными болтами. Либо они прикручены к корпусу статора.
  • Клеммная коробка – часть статической конструкции двигателя, в которую выводятся концы обмоток со статора. Посредством его осуществляется подключение двигателя к схеме управления.
  • Крыльчатка и защитный кожух – используется для обеспечения принудительной вентиляции, а кожух предохранит обслуживающий персонал от травматизма.
  • Дополнительные сервисные обмотки – при необходимости совместно с обмоткой возбуждения на статоре может быть дополнительная, предназначенная для контроля и измерения рабочих параметров мотора во время его работы.
  • Термодатчики – промышленные асинхронные двигателя, кроме обмоток, также имеются датчики температуры, контролирующие перегрев на случай резкого возрастания тока потребления.

Также двигателя могут быть оборудованными планарными редукторами и изготовленными в едином корпусе. Это преимущественно промышленные типы агрегатов, применяемые на станках, конвейерах и прочих видах оборудования.

Особенности устройства каждого из элементов

Статор асинхронного электродвигателя представляет собой цилиндр, изготовленный из листов специальной электротехнической стали толщиной до 0.5 мм, покрытых лаком. Этот цилиндр является сердечником, с внутренней стороны имеются пазы, куда укладываются обмотки.

В трехфазных, соответственно, сдвинутые на 120 градусов, в однофазных – на 90. Обмотки могут быть уложены несколькими способами в зависимости от схемы их подключения и эксплуатационных требований. Именно от этого зависит такой показатель, как момент и мощность на валу.

А при наличии количества полюсов более, чем 2 пары, то он может использоваться в следящих системах управления приводными механизмами.

Статор запрессован в корпус либо же расположен между фланцами. Корпус и боковые крышки изготовлены из чугуна или сплава алюминия. На них имеются ребра для увеличения площади и повышения эффективности отведения тепла при работе. Такое устройство позволяет лучше охлаждать двигатель, обеспечивая продолжительную работу при предельных нагрузках.

Однополюсная обмотка такого электродвигателя наматывается из 3-х катушек. Каждая из них называется фазой.

Для достижения требуемых параметров работы мотора обмотка укладывается в противоположных пазах сердечника.

Важно

Катушки соединяются между собой специальным образом в соответствии со схемой подключения и ожидаемых характеристик, обеспечивая возбуждение магнитного поля и необходимый момент при вращении.

Все концы датчиков выводятся в клеммную коробку, что позволяет их соединять в звезду или треугольник, что зависит от схемы подключения системы управления, величины питания.

3-фазный электродвигатель является универсальным, при необходимости его можно подключать к однофазному питанию с линейным напряжением.

При соединении обмоток треугольником напряжение обмоток равно линейному Uф, а при подключении по схеме звезды – √3Uф.

Ротор

Ротор в асинхронном электродвигателе представляет собой вал, на котором закрепляется сердечник, набранный из листов электротехнической стали.

Что трехфазный, что однофазный мотор, ротор имеет практически одинаковую конструкцию.

В качестве обмотки в обычных асинхронных моторах на рабочую частоту 50Гц используются куски медного или алюминиевого провода большой толщины или стержни, соединенные между собой торцевыми замыкающими кольцами.

Для того чтобы обмотка надежно удерживалась в сердечнике, имеются специальные пазы, куда она запрессована. Торцевые кольца могут быть снабжены вентиляционными лопатками, предназначенными для улучшения интенсивности охлаждения внутреннего пространства. Вал закреплен на подшипниках, впрессованных во фланцы или плитах, закрепленных к станине в зависимости от устройства.

Между валом и статором имеется зазор, величина которого зависит от пусковых параметров мотора. Если необходимо увеличить мощность и момент, то он должен быть как можно меньше. Одновременно с ростом мощности увеличиваются и добавочные потери в верхних слоях статора и ротора.

Принцип работы

Асинхронный двигатель принцип работы имеет достаточно простой. Он основан на двух физических явлениях:

  1. При подаче напряжения на статорные обмотки в двигателе возникает вращающееся магнитное поле.
  2. Поле оказывает воздействие на ток, индуцируемый в роторе. А это создает крутящий момент, поворачивающий вал двигателя относительно полюсов.

За каждый поворот вала полюса меняются полярностью с частотой сети. Поэтому напряжение обмотки статора имеет стандартную частоту, а скорость вращения зависит от:

  • нагрузки на валу;
  • количества пар полюсов;
  • особенностей намотки статора.

Маркировка электродвигателя

Для упрощения процесса подключения и выбора схемы асинхронного 3-фазного ЭД на каждом из них имеется соответствующая маркировка. В ней указываются такие характеристики, как:

  • крутящий момент;
  • мощность;
  • максимальная скорость вращения;
  • cosφ.

Также в зашифрованной маркировке имеется указание типа двигателя, количества полюсов. Их необходимо учитывать при выборе мотора для тех или для других нужд. А для облегчения процесса подключения все концы сводятся в клеммную коробку, где подписаны следующим образом:

Если мотор подключается к сети 380 В с линейным напряжением обмоток 220В, то его схема обмоток должна быть треугольником. Но если двигатель подключается к стандартной сети 380В, то схема включения обмоток должна быть звездой.

Скольжение

При рассмотрении принципа работы асинхронного электрического двигателя применяют такое понятие, как скольжение, и обозначается параметр буквой «s». Оно возникает из-за разницы в скоростях вращения магнитного поля статора и реальной частоты вращения ротора. При этом первый показатель на порядок больше. Следовательно, чем выше разница, тем сильнее скольжение.

Скольжение позволяет объяснить принцип работы. За счет отставания частоты вращения ротора от магнитного поля статора и обеспечивается наведение ЭДС в короткозамкнутом роторе. Но если бы поле вращалось со скоростью частоты ЭДС в роторе, то собственно вращения не происходило.

Скольжение, являясь относительной величиной, измеряется в %. И становится больше при увеличении нагрузки на валу двигателя.

Двигателя с фазным ротором

Когда речь идет о моторах с фазным ротором, то он имеет немного иное устройство. Также имеется 3 обмотки, которые соединены в звезду, а их начала выведены на подводящие кольца.

Сравнивая два типа двигателя с короткозамкнутым и фазным роторами, то у второго развивается момент сразу же под высокой нагрузкой. Такие моторы получили применение в системах, где требуется сделать мощный приводной агрегат с высокой тягой.

Также такие моторы являются более удобными для регулируемого управления посредством регулятора частоты.

Недостатки асинхронных электродвигателей

В стандартном исполнении без магнитов на роторе асинхронные электродвигатели являются маломощными. Они неспособны сразу обеспечить высокий крутящий момент. А также для их запуска требуется большое количество электрической мощности, которая может превышать предельно допустимые показатели системы питания.

Поэтому их пуск должен выполняться без нагрузки. Кроме этого, асинхронные электродвигатели являются мощными источниками электромагнитных помех, сопровождающимися сбоями в работе различных других устройств, находящихся вблизи. Для снижения их влияния необходимо предусматривать качественное заземление и обязательное экранирование.

Источник: https://instrument.guru/elektro/asinhronnyj-dvigatel-printsip-raboty-osobennosti-konstruktsii.html

Устройство и принцип работы трехфазного асинхронного двигателя

То, что асинхронные двигатели сегодня используются во всех отраслях промышленности и сельского хозяйства, необходимо поклониться русскому инженеру М.О. Доливо-Добровольскому.

Именно он в 1889 году (а точнее 8 марта) изобрел трехфазный асинхронный двигатель, который преобразовывает электроэнергию в энергию механическую (вращения).

Это, по сути, стало прорывом в технике и началом новой эры.

Самое главное, что электрические моторы данного типа оказались очень надежными, их производство достаточно простое, что влияет на небольшую себестоимость изделия.

Плюс несложная конструкция, которая легко поддается не только производству, но и ремонту. Если обратиться к статистическим данным, то по ним можно сделать вывод, что асинхронные двигатели являются самыми производимыми в мире.

На их счет приходится до 90% выпуска. Так что цифры говорят сами за себя.

Но почему эти приборы названы асинхронными? Все дело в том, что частота вращения магнитного поля статора всегда больше вращения ротора. Кстати, у электродвигателей этого типа принцип работы основан именно на вращении магнитного поля.

Принцип работы двигателя

Чтобы понять, как работают электродвигатели асинхронные трехфазные, необходимо провести один несложный эксперимент. Для этого вам понадобиться обычный магнит подковообразного типа и медный стержень.

При этом магнит надо хорошо закрепить к рукоятке, с помощью которой его можно крутить на одном месте вокруг своей оси. Медный стержень закрепляется в подшипниках и устанавливается в пространство между концами (полюсами) магнита-подковы.

То есть, стержень оказывается как бы внутри магнита, а, точнее сказать, внутри его плоскости вращении.

Принцип работы трехфазного асинхронного двигателя

Теперь надо просто вращать магнитное устройство за ручку. Лучше по часовой стрелке. Так как между полюсами есть магнитное поле, то оно также будет вращаться.

При этом поле будет пересекать или рассекать своими силовыми линиями медный стержень-цилиндр. И тут включается закон электромагнитной индукции. То есть, внутри медного стержня начнут возникать вихревые токи.

Они, в свою очередь, начнут образовывать свое собственное магнитное поле, которое будет взаимодействовать с основным магнитным полем.

При этом стержень начнет вращаться в ту же сторону, что и магнит. И вот тут возникает один момент, который также лежит в принципе работы электродвигателя. О нем было уже упомянуто. Если скорость вращения стержня будет такое же, как у магнита, то их силовые линии пересекаться не будут. То есть, вращения не будет в виду отсутствия вихревых токов.

И еще пару нюансов:

  • Магнитное поле вращается с той же скоростью, что и сам магнит, поэтому скорость называют синхронной.
  • А вот стержень вращается с меньшей скоростью, поэтому ее и называют асинхронной. Отсюда, в принципе, название и самого электрического мотора.

Кстати, определить величину скольжения несложно, для этого необходимо воспользоваться формулой:

S=n-n1/n, где

  • S – это величина скольжения;
  • n – скорость вращения магнита;
  • n1 – скорость вращения ротора.

Устройство двигателя

Конечно, показанное выше устройство назвать электродвигателем никак нельзя, потому что для примера был использован магнит, которого в моторе просто нет. Поэтому необходимо создать такую конструкцию, в которой электрический ток создавал бы это самое магнитное поле. К тому же оно должно еще и вращаться. Русскому ученому это оказалось под силу с помощью трехфазного переменного тока.

Поэтому в конструкции трехфазного асинхронного двигателя установлены три обмотки, расположенные относительно друг друга под углом в 120º. Каждая обмотка подсоединена к фазному контуру трехфазной сети переменного тока. Обмотки закрепляются к статору, который собой представляет металлический сердечник в виде полого корпуса. Они же закрепляются к полюсам сердечника.

Совет

Внутри полого сердечника на подшипниках закрепляется ротор. По сути, это тот же стержень-цилиндр. Ниже показана схема подключения обмоток и расположение ротора.

Как только электрический ток начинает подаваться на обмотки, образуется вращающееся магнитное поле, которое воздействует на ротор, заставляя его вращаться тоже.

Как работает

Чтобы понять принцип действия трехфазного асинхронного двигателя, необходимо рассмотреть график его работы. Чтобы облегчить данную задачу, предлагаем рассмотреть схему, расположенную ниже.

  • Итак, позиция «А». В ней на первом полюсе фаза равна нулю, второй полюс является северным, то есть, отрицательным, в третьей фазе положительный заряд. Поэтому ток движется по стрелкам, указанным на рисунке. Тот, кто забыл школьную программу физики, напоминаем, что движение магнитного поля действует по правилу правой руки. Значит, вращение его будет направлено от севера к югу, то есть, от второй катушки (обмотки) к третьей.
  • Позиция «Б». Теперь ноль расположен на второй обмотке, на первой юг (плюс), на третьей север (минус). То есть, магнитный поток будет теперь направлен от катушки №3 на катушку №1. Получается так, что полюсы сместились на 120º.
  • В позициях «В» и «Г» произошли точно такие же сдвиги полюсов на 120º.

Смена полярности создает вращение магнитного потока, который в свою очередь увлекает за собой ротор. Последний начинает вращаться. Как было сказано выше, из энергии электрической получается энергия вращения (механическая).

Нами была рассмотрена конструкция электродвигателя асинхронного трехфазного с тремя обмотками на статоре, в котором используется двухполюсная схема магнитного поля. Число его оборотов вращения равна числу колебаний электрического тока в минуту. Если в сети переменного тока число колебания в секунду равно 50 Гц, то за минуту это значение станет 3000 (об/мин).

Источник: http://OnlineElektrik.ru/eoborudovanie/edvigateli/ustrojstvo-i-princip-raboty-trexfaznogo-asinxronnogo-dvigatelya.html

Принцип работы и устройство асинхронного двигателя

Асинхронный (индукционный) двигатель – механизм, превращающий силу переменного тока в механическую. Под асинхронным подразумевают, что скорость движения магнитной силы статора выше аналогичной величины оборотов ротора.

Для того, чтобы получше представлять, что такое асинхронный двигатель и принцип действия трехфазного асинхронного двигателя, где он используется и как работает, необходимо разобраться в его составных частях и деталях, исследовать технические характеристики. Кроме того, не лишним будет понять, как происходит преобразование силы во время пуска и где используется асинхронный двигатель на практике.

В сегодняшней статье мы попробуем ответить на самые интересные вопросы, связанные с асинхронными двигателями, разобраться в том, что такое устройство однофазного асинхронного двигателя, рассмотрим принципы работы, а также плюсы и минусы данного типа устройств.

Немного истории

Первый подобный механизм электродвигателей появился еще в 1888 году и представил его американский инженер Никола Тесла. Однако, его опытный образец устройства и был не самым удачным, так как был двух фазным или много фазным и рабочие характеристики асинхронного двигателя не удовлетворяли потребителей. Поэтому широкого распространения не получил.

А вот благодаря российскому ученому Михаилу Доливо-Доброволь скому в изобретение удалось вдохнуть новую жизнь. Именно ему принадлежит первенство в деле создания первого в мире трехфазного асинхронного мотора.

Такое усовершенствование конструкции стало революционным, так как принцип работы трехфазного асинхронного двигателя позволял использовать для работы всего три провода, а не четыре.

Так что для плавного пуска устройства в массовое производство препятствий больше не оставалось.

Сегодня, благодаря своей простоте эти машины получили широкое распространение, а механическая характеристика асинхронного двигателя устраивает всех водителей.

Каждый год доля асинхронных двигателей, среди всех двигателей мира, составляет 90%.

Обратите внимание

Простота в использовании, принцип действия асинхронного двигателя, легкий пуск, надежность и дешевизна, помогли этим моторам распространиться по всему миру и буквально совершить технический переворот в промышленности.

Принцип работы трехфазного двигателя основан на питании от трех фаз переменного тока в стандартной сети. Для работы ему требуется именно такое электричество и поэтому он назван трех фазным.

Устройство трехфазного двигателя

Любой мотор асинхронного типа, независимо от его мощности и размеров, состоит из одних и тех же частей, механическая характеристика асинхронного двигателя также одна и та же. Главными среди составляющих являются:

  • статор (неподвижная часть машины)
  • ротор (вращающаяся часть)

Помимо этого, в современных трех фазных двигателях можно найти следующие детали:

  • вал
  • подшипники
  • обмотку
  • заземление
  • корпус (в который монтируются все детали)

Как уже указывалось выше, базовые элементы двигателя — это статор (неподвижная часть) и ротор (подвижная деталь).

Статор выполнен в виде цилиндра, составлен данный элемент из множества металлических, форменных листов. Внутренняя часть создана таким образом, чтобы расположить обмотку. Центры обмоток расположены под углом в 120 градусов, а подключение происходит, исходя из доступного напряжения и двух возможных вариантов: на три или пять контактов.

Ротором называют подвижную часть подобного мотора, которая необходима для плавного пуска. Устройство асинхронного двигателя с фазным ротором является полноценным, ведь именно во вращении ротора состоит основной принцип работы трехфазного мотора.

Принципы, использование которых лежит в работе такого приспособления, как устройство асинхронного двигателя:

  1. Правило левой руки буравчика.
  2. Закон электромагнитной индукции Фарадея.

Исходя из типа обмотки, ротор может быть короткозамкнутым или фазным.

Короткозамкнутым называют ротор, состоящий из множества стальных частей.

Работа асинхронного двигателя с короткозамкнутым ротором заключается в следующем: в специальные пазы заливают алюминий, формирующий сердцевины, крепящиеся с обеих сторон стопорными кольцами, такая конструкция получила название «беличья клетка». Называется так, потому что замкнута накоротко и в ней не может использоваться сопротивление.

Фазным называют ротор, который обмотан по принципу, аналогичному статору, подходящему для трехфазной сети. Края проводки сердцевины замыкают в звезду, а оставшиеся контакты подводят к контактным частям.

Согласно принципу обратимости, любым фазным асинхронным двигателям свойственна возможность работать в качестве двигателя, генератора или электромагнитного тормоза. Электромеханическая характеристика асинхронного двигателя:

  1. Двигатель.
  2. Самый частый вид использования механизма.
  3. Генератор.
  4. Действие машины можно обратить, то есть механическую энергию, приложенную к сердцевине можно превратить в электрический ток. Для этого центральной части нужно вращаться быстрей магнитного поля. Потребляя механическую энергию генератор начнет создавать тормозной момент, возвращая электрическую энергию.
  5. Электромагнитный тормоз.

Изменение порядка чередования фаз приводит к тому, что магнитное поле и сердцевина вращаются в различные стороны, при этом потребляется как механическая энергия, так и напряжение сети, создавая тормозной момент. Собранная энергия приводит к нагреву машины.

Принцип работы трехфазного двигателя

Принцип работы асинхронного двигателя в следующем: подавая напряжение на статор, в его проводке возникает магнитное воздействие, которая благодаря углу размещения осей обмоток, суммируется и создает итоговый, вращающий магнитный поток.

Вращаясь, он создает в проводниках электродвижущую силу. Обмотка сердцевины, создана таким образом, что при включении в сеть, появляется сила, налаживающаяся на действие статора и создающая движение.

https://www.youtube.com/watch?v=1XxaOVESscg

Устройство и принцип действия асинхронного двигателя зависит и от сердцевины. Движение сердцевины происходит, когда магнитная сила статора и пусковой момент преодолевают тормозную мощность ротора и внутренняя часть начинает движение, в этот момент проявляется такой показатель, как скольжение.

Скольжение очень важный параметр. В начале движения ротора оно равно 1, но вместе с ростом частоты движения, наблюдается выравнивание, и как следствие снижаются электродвижущие силы и ток в обмотках, это приводит к снижению вращающего момента.

Существует крайний предел скольжения, превышать это значение не стоит, ведь механизм может «опрокинуться», что приведет к нарушению его нормальной работы. Минимальное скольжение происходит на холостых оборотах мотора, при увеличении момента значение будет расти, до наступления критической отметки.

Важно

Для создания асинхронной работы нужно сделать так, чтобы напряжение статора и общий магнитный поток соответствовали значению переменного тока.

Во время пуска вектор результирующего магнитного поля неподвижной части плавно вращается с определенной частотой. Через сечение ротора проходит магнитный поток. Электроэнергия, подходящая к двигателю в момент пуска, уходит на перемагничивание статора и ротора.

Стоит заметить, что для электромоторов, в том числе асинхронных свойственно то, что во время пуска в короткий промежуток времени достигается до 150% крутящего момента.

Пусковой ток превышает номинальный в 7 раз и из-за этого, в момент пуска падает напряжение во всей электрической сети. Если падение напряжения слишком большое, то даже сам двигатель может не запуститься – таков принцип его действия.

Поэтому на практике используют устройство плавного пуска.

Устройство плавного пуска

Устройства плавного пуска асинхронных двигателей имеет свою специфику. Оно используется для плавного пуска или остановки электромагнитных двигателей. Может быть механическим, электромеханичес ким или полностью электронным.

Пусковая характеристика асинхронного двигателя предназначена:

  • для плавного разгона асинхронного двигателя
  • для плавной остановки
  • для снижения тока во время пуска
  • для синхронизации нагрузки и крутящего момента

Принцип работы и действия устройства плавного пуска основаны на широкой вариативности переменных. Как следствие, появляются большие возможности для управления режимами работы.

Хорошие и плохие свойства асинхронных моторов

Асинхронный двигатель принцип работы и устройство имеет достоинства и недостатки.

Трансформаторы, внутри которых находится вращающийся ротор, используемый для работы двигателя, получили обширное применение так как принцип действия у них простой и понятный, а само устройство работает бесперебойно.

Однако и короткозамкнутым и фазным устройствам свойственны определенные недостатки. Причем именно принцип их действия лежит в основе данных минусов.

Плюсы:

  1. Короткозамкнутым и фазным устройствам свойственна простота конструкции.
  2. Так как принцип действия очень прост, устройства получаются дешевыми.
  3. Простота пуска и высокие эксплуатационные характеристики.
  4. Простота пуска обеспечивает легкое управление.
  5. Принцип действия и работы таков, что асинхронные моторы могут работать в тяжелых условиях.

Минусы:

  1. Принцип работы основан на том, что при изменении скорости, теряется мощность.
  2. Когда увеличивается нагрузка, практически сразу начинает снижаться крутящий момент.
  3. В момент плавного пуска, мощность асинхронного мотора достаточно низкая.

Стоит отметить, что в настоящее время, отдается предпочтение устройствам с короткозамкнутым ротором. А вот устройства, в которых ротор фазный используются в редких случаях, как правило, когда достигается большая мощность.

Источник: http://cars-bazar.ru/remont/ustroystvo-asinhronnogo-dvigatelya

Асинхронный электродвигатель переменного тока

Электродвигатель предназначен для преобразования электрической энергии в механическую энергию. Это – одно из самых важных электротехнических устройств, без которого немыслима жизнь современного человечества.

Электродвигатель постоянного тока: принцип работы

Если проводник с током поместить в магнитное поле, то он придет в движение. Это продемонстрировал в 1821 году Майкл Фарадей, потом этот принцип был положен в основу работы электродвигателя.

Если поместить рамку с током в поле постоянного магнита, то на нее будет действовать сила, поворачивая вокруг оси вращения. Движение будет осуществляться до тех пор, пока система не придет в равновесие. В этот момент нужно изменить полярность тока в рамке, и движение продолжится.

Постоянно меняя полярность тока в рамке, можно получить ее непрерывное вращение. Для этого ток в нее подается через контактные пластины на валу, называемые коллектором, соединенный с источником питания через подпружиненные щетки.

При вращении пластины коллектора получают питание то от положительного полюса источника, то от отрицательного.

Коллекторы современных двигателей постоянного тока имеют большое число выводов (ламелей), что позволяет им работать устойчивее и достигать больших скоростей вращения. Питание к ним подводится через графитовые или медно-графитовые щетки.

Якорь с коллектором

Постоянные магниты, в силу непостоянства их магнитного потока, заменяют электромагнитами, обмотки которых располагают в неподвижной части двигателя, называемой статором. Вращающуюся же часть электродвигателя с обмоткой постоянного тока называют якорем.

Статор и якорь имеют сердечники для усиления электромагнитных свойств. Их изготавливают наборными из тонких металлических пластин, изолированных друг от друга специальным термостойким лаком. Это снижает потери на вихревые токи, нагревающие сердечники и снижающие коэффициент полезного действия двигателя. Сердечники имеют сложную форму. В них сделаны пазы, в которые укладываются обмотки.

Принцип работы асинхронного электродвигателя переменного тока

Переменный ток для электродвигателей удобен тем, что можно отказаться от коллекторных схем, изменяющих фазу тока в обмотке на валу двигателя, называемой уже не якорем, а ротором.

На переменном токе она сама изменяется по синусоидальному закону. Но есть и сложность: магнитное поле статора тоже изменяется по синусоидальному закону.

Поэтому обмотки статора разных фаз разделяется на несколько частей и располагаются в пространстве в определенном порядке.

Совет

Принцип работы двигателя переменного тока немного отличается от постоянного. Вращающееся по кругу магнитное поле статора создает магнитный поток, за счет которого в обмотке ротора создается ЭДС. Проводники обмотки замкнуты накоротко, поэтому по ним течет ток. Взаимодействие вращающегося магнитного поля статора с током в короткозамкнутом роторе приводит к его вращению.

При этом скорость, с которой вращается ротор меньше скорости вращения магнитного поля в статоре. Поэтому эти двигатели и называют асинхронными.

Асинхронный электродвигатель с короткозамкнутым ротором

Если обмотки ротора выполнить не короткозамкнутыми, а вывести их концы на контактные кольца, то получится электродвигатель с фазным ротором. Включая в цепь ротора резисторы, можно регулировать скорость вращения.

Это позволяет применять такие двигатели на кранах и экскаваторах. Все мощные асинхронные электродвигатели тоже имеют фазный ротор.

Плавное или ступенчатое изменение величины сопротивления в цепи ротора во время пуска позволяет снизить пусковые токи и плавно разгонять приводимый во вращение агрегат.

Фазный ротор асинхронного электродвигателя

Принцип действия синхронного электродвигателя переменного тока

Как видно из названия, ротор этого электродвигателя вращается с той же скоростью, что и магнитное поле статора, подключенного к сети переменного тока. В ротор же через контактные кольца и щетки подается постоянный ток, называемый током возбуждения. Регулируя величину тока в роторе, можно менять режим работы электродвигателя.

При определенных параметрах возбуждения получается режим, когда синхронный двигатель начинает отдавать в сеть реактивную мощность. Это – полезное свойство, позволяющее отказаться от применения установок компенсации реактивной мощности на предприятиях, где работают такие двигатели.

Однофазные электродвигатели переменного тока

Самая распространенная конструкция однофазного электродвигателя включает в себя обмотку на статоре и последовательно соединенную с ней обмотку якоря. Соединение происходит через щетки и коллектор якоря с большим количеством ламелей.

Обмотки расположены так, что при взаимодействии подключенной в данный момент к цепи обмотки якоря с магнитным полем статора создается вращающий момент. Якорь поворачивается, и подключенной оказывается следующая обмотка.

За счет этого момент вращения всегда остается постоянным.

Другая конструкция использует ротор с короткозамкнутыми обмотками и две обмотки на статоре. Одна из них включается через конденсатор, создающий при работе электродвигателя сдвиг фаз между токами и напряжениями в обмотках. Получается некоторое подобие асинхронного электродвигателя, но работающего не на трех, а на двух «фазах».

Источник: http://electric-tolk.ru/ustrojstvo-i-princip-raboty-elektrodvigatelya/

Свойства и область применения электродвигателей асинхронных

Электродвигатели применяются достаточно широко. Асинхронные электродвигатели могут применяться как в бытовой технике, так и на промышленных предприятиях.
Асинхронный электродвигатель благодаря простоте в производстве и надежности в эксплуатации широко применяют в электрическом приводе. Электродвигатели асинхронные имеют свои специфические свойства, области применения и ограничения использования.
У асинхронного электродвигателя ограничен диапазон регулирования частоты вращения и значительное потребление реактивной мощности в режиме малых нагрузок. Создание регулируемых статических полупроводниковых преобразователей частоты существенно расширяет область применения электродвигателей асинхронных в автоматических регулируемых электроприводах.
Электродвигатель состоит из двух основных частей – статора и ротора. Статором называется неподвижная часть машины. С внутренней стороны статора сделаны пазы, куда укладывается трехфазная обмотка, питаемая трехфазным током. Вращающаяся часть машины называется ротором, в пазах его тоже уложена обмотка. Статор и ротор собираются из отдельных штампованных листов электротехнической стали толщиной 0,35-0,5 мм. Отдельные листы стали изолируются один от другого слоем лака. Воздушный зазор между статором и ротором делается как можно меньше (0,3-0,35 мм в машинах малой мощности и 1-1,5 мм в машинах большой мощности).
В зависимости от конструкции ротора асинхронные электродвигатели бывают с короткозамкнутым и с фазным роторами. Электродвигатели с короткозамкнутым ротором наиболее распространены, они достаточно просты по устройству и удобны в эксплуатации.
Свойства и область применения асинхронных электродвигателей
Электродвигатели асинхронные с короткозамкнутым ротором имеют следующие преимущества:
Электродвигатели асинхронные имеют практически постоянную скорость при разных нагрузках;
Есть возможность непродолжительных механических перегрузок;
Электродвигатели асинхронные просты в конструкции;
Простота пуска электродвигателя асинхронного, легкость его автоматизации;
Более высокие cos φ и КПД, чем у двигателей с фазным ротором.
Однако асинхронные электродвигатели с короткозамкнутым ротором имеют и свои недостатки. К ним относятся: : – затруднения в регулировании скорости вращения электродвигателя; – большой пусковой ток; – низкий cos φ при недогрузках.
Применение асинхронных электродвигателей с короткозамкнутым ротором ограничено, они применяются в тех случаях, когда не требуется регулирование скорости вращения двигателя.
Преимущества асинхронных электродвигателей с фазным ротором:
большой начальный вращающий момент;
возможность кратковременных механических перегрузок;
приблизительно постоянная скорость при различных перегрузках;
меньший пусковой ток по сравнению с двигателями с короткозамкнутым ротором;
возможность применения автоматических пусковых устройств.
Электродвигатели асинхронные с фазным ротором используются в тех случаях, когда требуется уменьшить пусковой ток и повысить пусковой момент, а также когда требуется регулирование скорости в небольших пределах.
Перегрузочная способность электродвигателей асинхронных характеризуется отношением максимального момента двигателя Мм к его номинальному моменту Мн. В зависимости от величины мощности и назначения двигателя отношение Мм/Мн колеблется примерно в пределах 1-3.

Преимущества и недостатки асинхронного двигателя с короткозамкнутым ротором

Асинхронный двигатель с короткозамкнутым ротором:

Асинхронные двигатели с клеткой

Squireel широко используются в промышленности. Под эту категорию попадает почти 70% промышленных двигателей и приводов. В асинхронных двигателях с короткозамкнутым ротором обмотки ротора намотаны в короткозамкнутом роторе. Эти двигатели имеют очень прочную конструкцию и очень дешевы. Эти моторы могут работать в любых рабочих условиях.Некоторые из преимуществ, недостатков и областей применения асинхронного двигателя с короткозамкнутым ротором по сравнению с асинхронным двигателем с контактным кольцом обсуждаются ниже:

Преимущества асинхронного двигателя с короткозамкнутым ротором:

  • Асинхронные двигатели с короткозамкнутым ротором дешевле по стоимости по сравнению с асинхронными двигателями с контактным кольцом.
  • Требуется меньше обслуживания и прочная конструкция. Из-за отсутствия контактных колец продолжительность технического обслуживания щеток и затраты, связанные с износом щеток, сведены к минимуму
  • Асинхронные двигатели с короткозамкнутым ротором
  • требуют меньшего количества проводников, чем электродвигатели с контактным кольцом, поэтому потери меди в двигателях с короткозамкнутым ротором меньше, что приводит к более высокой эффективности по сравнению с асинхронным двигателем с контактным кольцом
  • Двигатели с короткозамкнутым ротором
  • являются взрывозащищенными благодаря отсутствию контактных колец щеток и щеток, что исключает риск искрообразования.
  • Двигатели с короткозамкнутым ротором охлаждаются лучше, чем асинхронные двигатели с контактным кольцом
  • Двигатели с короткозамкнутым ротором работают почти с постоянной скоростью, имеют высокую перегрузочную способность и работают с лучшим коэффициентом мощности.

Индукция с короткозамкнутым ротором Двигатель Недостатки:

Некоторые недостатки и недостатки асинхронных двигателей с короткозамкнутым ротором перечислены ниже:

  • Основным недостатком асинхронных двигателей с короткозамкнутым ротором является низкий пусковой момент и высокие пусковые токи.Пусковой крутящий момент будет примерно в 1,5–2 раза больше крутящего момента при полной нагрузке, а пусковой ток в 5–9 раз превышает ток полной нагрузки. В асинхронных двигателях с контактным кольцом более высокий пусковой крутящий момент может быть достигнут путем создания внешнего сопротивления в цепях ротора во время пуска асинхронного двигателя с контактным кольцом. Такое расположение в асинхронных двигателях с контактным кольцом также снижает высокие пусковые токи во время пуска асинхронного двигателя.
  • Асинхронные двигатели с короткозамкнутым ротором более чувствительны к колебаниям напряжения питания.Когда напряжение питания снижается, асинхронный двигатель потребляет больше тока. Во время скачков напряжения увеличение напряжения насыщает магнитные компоненты асинхронного двигателя с короткозамкнутым ротором.
  • Управление скоростью невозможно в асинхронном двигателе с короткозамкнутым ротором. Это один из основных недостатков асинхронных двигателей с короткозамкнутым ротором .
  • Общие потери энергии при запуске двигателя с короткозамкнутым ротором больше по сравнению с двигателями с фазным ротором. Этот момент важен, если приложение предполагает частый запуск.

Применение асинхронного двигателя с короткозамкнутым ротором:

Асинхронные двигатели

с короткозамкнутым ротором широко используются в промышленности, чем асинхронные двигатели с контактным кольцом, из-за более низкой стоимости, прочной конструкции и низких эксплуатационных расходов. Асинхронные двигатели с короткозамкнутым ротором подходят для применений, в которых для привода требуется постоянная скорость, низкий пусковой момент и отсутствие приводов для регулирования скорости.

Что такое электрический привод? - Определение, детали, преимущества, недостатки и применение

Определение : Система, которая используется для управления движением электрической машины, такой тип системы называется электрическим приводом.Другими словами, привод, в котором используется электродвигатель, называется электрическим приводом. В электроприводе в качестве основного источника энергии используется любой из первичных двигателей, например дизельный или бензиновый двигатель, газовые или паровые турбины, паровые двигатели, гидравлические двигатели и электродвигатели. Этот первичный двигатель передает механическую энергию на привод для управления движением.

Блок-схема электропривода представлена ​​на рисунке ниже. Электрическая нагрузка, такая как вентиляторы, насосы, поезда и т. Д., Состоит из электродвигателя.Требование электрической нагрузки определяется скоростью и крутящим моментом. Для привода нагрузки выбирается двигатель, соответствующий возможностям нагрузки.

Детали электропривода

Основными частями электроприводов являются силовой модулятор, двигатель, блок управления и датчики, их части подробно описаны ниже.

Модулятор мощности - Модулятор мощности регулирует выходную мощность источника. Он управляет мощностью от источника к двигателю таким образом, чтобы двигатель передавал характеристику скорости-момента, требуемую нагрузкой.Во время переходных процессов, таких как запуск, торможение и изменение скорости, чрезмерный ток, потребляемый от источника. Этот чрезмерный ток, потребляемый от источника, может его перегрузить или вызвать падение напряжения. Следовательно, модулятор мощности ограничивает ток источника и двигателя.

Модулятор мощности преобразует энергию в соответствии с требованиями двигателя, например, если источником является постоянный ток и используется асинхронный двигатель, то модулятор мощности преобразует постоянный ток в переменный. Он также выбирает режим работы двигателя, т.е.е., движение или торможение.

Блок управления - Блок управления управляет модулятором мощности, который работает на малых уровнях напряжения и мощности. Блок управления также по желанию управляет модулятором мощности. Он также генерирует команды для защиты силового модулятора и двигателя. Входной командный сигнал, который регулирует рабочую точку привода, от входа к блоку управления.

Датчик - Он определяет определенные параметры привода, такие как ток и скорость двигателя.В основном это требуется либо для защиты, либо для работы в замкнутом контуре.

Преимущества электропривода

Ниже приведены преимущества электропривода.

  • Электропривод имеет очень большой диапазон крутящего момента, скорости и мощности.
  • Их работа не зависит от условий окружающей среды.
  • Электроприводы не загрязнены.
  • Электроприводы работают на всех квадрантах скоростного момента.
  • Привод легко запускается и не требует дозаправки.
  • КПД приводов высокий, потому что на нем меньше потерь.

Электроприводы обладают многими преимуществами, указанными выше. Единственный недостаток привода заключается в том, что иногда механическая энергия, производимая первичным двигателем, сначала преобразуется в электрическую, а затем в механическую работу с помощью двигателя. Это может быть сделано с помощью электрического соединения, связанного с первичным двигателем и нагрузкой.

Из-за следующих преимуществ механическая энергия, уже доступная от неэлектрического первичного двигателя, иногда сначала преобразуется в электрическую энергию генератором и обратно в механическую энергию электродвигателя.Таким образом, электрическая связь обеспечивает между неэлектрическим первичным двигателем и воздействием нагрузки на характеристику гибкого управления привода.

Например, - Тепловоз вырабатывает дизельную энергию с помощью дизельного двигателя. Механическая энергия преобразуется в электрическую с помощью генератора. Эта электрическая энергия используется для привода другого локомотива.

Недостатки электропривода

Сбой питания полностью отключил всю систему.

  1. Применение привода ограничено, так как его нельзя использовать в местах, где нет источника питания.
  2. Может вызвать шумовое загрязнение.
  3. Первоначальная стоимость системы высока.
  4. Имеет плохой динамический отклик.
  5. Низкая выходная мощность привода.
  6. При обрыве проводов или коротком замыкании система может выйти из строя, из-за чего возникает несколько проблем.

Применение электропривода

Он используется в большом количестве промышленных и бытовых приложений, таких как транспортные системы, прокатные станы, бумагоделательные машины, текстильные фабрики, станки, вентиляторы, насосы, роботы, мойки и т. Д.

Типы однофазных асинхронных двигателей с областями применения и преимуществами

Шаги по внедрению асинхронного двигателя начались в 1892 году. Ранее в 1893 году он был рассчитан на работу с частотой 60 Гц. Это стало практически возможным благодаря Westinghouse. Позже были проведены исследования работы двигателей этого типа при двухфазном питании. Многофазный источник питания дает гораздо лучшие преимущества, чем однофазный. Недостатком однофазного двигателя является то, что он не может запускаться самостоятельно, в то время как трехфазный двигатель может запускаться самостоятельно.Трехфазный ИД может создавать вращающееся магнитное поле, которое делает возможным самозапуск. В этой статье мы обсудим, каковы типы, конструкция, работа, способы запуска, недостатки, преимущества и области применения.

Типы однофазных асинхронных двигателей

Они подразделяются на разные типы в зависимости от различных методов пуска. Это

  • Асинхронный двигатель с разделенной фазой
  • Конденсаторный запуск Асинхронный двигатель
  • Конденсаторный пуск с конденсаторным запуском Асинхронный двигатель
  • Постоянный конденсатор
  • Тип с экранированным полюсом

Требуемые двигатели выбираются в зависимости от требуемого пускового момента и рабочего момента при запуске и рабочие токи, полученные от источника питания и рабочего цикла.Способы пуска однофазного ИД показаны на рисунке ниже.

Способы пуска

1) Расщепленная фаза

В расщепленной фазе IM резистор включен последовательно с пусковой обмоткой. Таким образом, это также называется IM с запуском сопротивления. Переключатель (SW) также включен последовательно с обмоткой для отключения после того, как ротор достигнет скорости вращения. Основная обмотка и пусковая или вспомогательная обмотки смещены под углом 90 градусов друг к другу. Двухфазный IM показан на рисунке ниже.

Асинхронный двигатель с расщепленной фазой

Основная обмотка имеет низкое сопротивление и высокое реактивное сопротивление, тогда как вспомогательная обмотка имеет высокое сопротивление и низкое значение реактивного сопротивления. Схема обмотки модуля Split Phase IM показана на рисунке ниже.

Расщепленная фаза

Векторная диаграмма расщепленной фазы IM показана на рисунке.

Сплит-фазовая диаграмма

Из векторной диаграммы мы можем понять, что основной ток возбуждения отстает от напряжения на угол.Но из-за пусковой обмотки угол вектора пускового тока уменьшается. Он почти совпадает с вектором напряжения. Таким образом, можно развить изначально высокий пусковой крутящий момент.

2) Асинхронный двигатель с пусковым конденсатором

Конденсатор включен последовательно с пусковой обмоткой, связанной с центробежным переключателем. Этот конденсатор используется для запуска двигателя вначале, пока он не наберет достаточную скорость, после чего конденсатор отключается путем размыкания переключателя. Конденсаторный пусковой IM показан на рисунке ниже.

Схема обмоток конденсаторного пускового ИД показана на рисунке ниже.

Конденсаторный пуск

Векторная диаграмма, соответствующая конденсаторному пусковому двигателю, показана на рисунке ниже.

Конденсаторная диаграмма запуска

Из векторной диаграммы мы можем понять, что основная обмотка возбуждения будет опережать напряжение, поскольку она имеет емкостный характер из-за введения конденсатора. Пусковой крутящий момент будет высоким и с улучшенным коэффициентом мощности.Но плохой рабочий крутящий момент из-за удаления конденсатора с помощью переключателя после запуска ротора.

3) Конденсаторный пусковой конденсаторный асинхронный двигатель

Конденсатор подключен последовательно с пусковой обмоткой, связанной с центробежным переключателем, а также конденсатор подключен параллельно пусковому конденсатору. Этот конденсатор используется для запуска двигателя вначале, пока он не наберет достаточную скорость, после чего конденсатор отключается путем размыкания переключателя. Но конденсатор, подключенный параллельно, остается неизменным для улучшения условий работы.Конденсатор пусковой конденсатор запуска IM показан на рисунке ниже.

Конденсатор пусковой конденсатор Запуск двигателя

Схема обмоток конденсаторного пускового конденсатора IM показана на рисунке ниже.

Запуск конденсатора Запуск конденсатора

Векторная диаграмма, соответствующая двигателю запуска конденсатора, показана на рисунке ниже.

Из векторной диаграммы можно понять, что основная обмотка возбуждения будет опережать напряжение, так как она имеет емкостный характер из-за введения конденсатора.Пусковой крутящий момент будет высоким и с улучшенным коэффициентом мощности, а рабочий крутящий момент также будет хорошим. Рабочий крутящий момент хороший, потому что, хотя пусковой конденсатор отключен, рабочий конденсатор продолжает работать, чтобы поддерживать хороший крутящий момент.

4) Постоянный конденсатор

Конденсатор включен последовательно с пусковой обмоткой и не связан с центробежным переключателем. Этот конденсатор используется для первоначального запуска двигателя, а также остается во время работы для улучшения характеристик.Постоянный конденсатор IM показан на рисунке ниже.

Постоянный конденсатор IM

Схема обмотки постоянного конденсатора IM показана на рисунке ниже.

Схема обмоток асинхронного двигателя постоянного конденсатора

Векторная диаграмма IM постоянного конденсатора показана на рисунке ниже.

Постоянная фазовая диаграмма конденсатора

Из векторной диаграммы мы можем понять, что, поскольку конденсатор используется постоянно последовательно с пусковой обмоткой.Пусковой и рабочий крутящие моменты, соответствующие конденсаторному двигателю, хорошие.

5) Заштрихованный полюс

Заштрихованный полюс IM состоит из ротора с короткозамкнутым ротором, который вращается под действием магнитного поля явного полюса. ON конец явного полюса прикреплен медной катушкой, которая также рассматривается как заштрихованное кольцо, которое закорачивается. На рисунке ниже показан заштрихованный полюс типа IM.

Двигатель с экранированными полюсами

Магнитное поле, индуцированное в основных полюсах, индуцируется в затененной катушке с помощью принципа индукции.Создаваемый магнитный поток представляет собой переменное поле. Поток, наведенный в заштрихованной катушке, противодействует потоку главного полюса. Во время положительного цикла противодействие потока больше направлено к основному полю и наоборот, во время отрицательного цикла. Таким образом, вращающееся магнитное поле создается из-за противодействия полей в течение всего цикла. Таким образом, создается уникальный крутящий момент, способный вращать ротор. Так работает самозапускающийся двигатель. Схема обмотки заштрихованного полюса IM показана на рисунке ниже.

Схема типов с экранированными полюсами

Применение различных типов однофазных асинхронных двигателей

Двухфазные
  • Они используются для запуска таких нагрузок, как вентиляторы, нагнетательные вентиляторы, смесители-измельчители и стиральные машины.
Пуск конденсатора
  • Они используются в приложениях с большой нагрузкой, когда требуется частый запуск.
  • Используется в кондиционерах, компрессорах холодильников, конвейерных лентах и ​​других устройствах.
Конденсатор Пуск Конденсатор Работа
  • Они используются в приложениях с большой нагрузкой, а также там, где требуется частый запуск и высокая инерция.
  • Используется в кондиционерах, холодильниках и насосах.
Постоянный конденсатор
  • Этот двигатель имеет высокий КПД и улучшенный коэффициент мощности. Они используются в вентиляторах, нагнетателях, кондиционерах и компрессорах в холодильниках.
Тип экранированного полюса
  • Они используются для устройств с низким пуском, таких как охлаждающие вентиляторы, вытяжные вентиляторы, нагнетатели, вентиляторы различных типов, реле и настольные вентиляторы.
  • Дешево
  • Нет необходимости во внешнем источнике
  • Самозапуск

Недостатки однофазного асинхронного двигателя

  • Низкий пусковой крутящий момент
  • Больше потерь
  • Низкая эффективность
  • Невозможно изменить направление
  • Низкое Фактор силы.

Таким образом, мы получили обзор однофазного ИД, это машина, которая работает по принципу электромагнитной индукции. Этот RMF разработан с помощью определенных методов запуска, которые позволяют двигателю запускаться самостоятельно.Мы также изучили, какие типы однофазных асинхронных двигателей, рабочие, типы методов запуска, преимущества, недостатки и применения различных типов однофазных асинхронных двигателей. Вопрос к читателям, каковы преимущества разных типов однофазных ИМ?

Изображение кредита

Конденсатор Пуск Конденсатор Запуск Elmec Systems Kenya Ltd
Схема закрашенных полюсов с этикетками

Сервопривод

или асинхронный двигатель - Что подойдет для вашего применения?

Выбирая двигатель для своего приложения, выбираете асинхронный двигатель или серводвигатель? Каковы преимущества и недостатки каждого? Давайте разберемся в преимуществах обоих, чтобы увидеть, какая технология двигателя лучше всего подходит для вашего применения.

Два основных фактора, которые следует учитывать при выборе между серводвигателями и асинхронными двигателями, - это, конечно, производительность и стоимость. Мы можем оценить производительность двигателя, посмотрев на его плотность крутящего момента, инерцию, динамические характеристики и насколько легко им можно управлять с помощью частотно-регулируемого привода. Для вашего двигателя вы захотите получить максимальную производительность при минимально возможных затратах. Теперь давайте углубимся в характеристики сервоприводов и асинхронных двигателей.

Серводвигатель KEB со встроенным редуктором.Серводвигатели, как правило, имеют длинный узкий корпус.

Преимущества серводвигателя

Двигатели с постоянными магнитами или серводвигатели используются в станкостроительной промышленности из-за их легкого управления движением как для вращательного, так и для линейного движения, а также их высокой максимальной скорости и короткого времени разгона. Плотность крутящего момента также является отличительной чертой серводвигателя. Серводвигатели могут создавать крутящий момент на 40–60% выше, чем асинхронный двигатель аналогичного размера.Компактность двигателя особенно важна для машин, для которых важны вес и занимаемая площадь.

Постоянные магниты обеспечивают повышенную плотность мощности.

Размер ротора серводвигателя обычно меньше диаметра, чем у его эквивалентного аналога с асинхронным двигателем, что приводит к меньшей инерции. Это делает серводвигатели особенно привлекательными для профилей динамического управления движением, где требуется быстрое время цикла.

Серводвигатели

будут обеспечивать полный крутящий момент при нулевой скорости.Это не относится к асинхронным двигателям с сетевым пуском. Применения, требующие полной нагрузки при нулевой скорости, такие как динамометр или моталка, выиграют от этой рабочей характеристики.

Достижения в технологии сервоприводов позволили увеличить использование серводвигателей, поскольку теперь производители могут предлагать приводы с возможностью выполнения сложных расчетов тока и идентификации полюсов ротора в режиме реального времени. KEB даже предлагает возможность позиционирования сервопривода без какой-либо обратной связи.

Поскольку в серводвигателях обычно не используется вентилятор, они обычно имеют более высокий рейтинг защиты от проникновения, часто IP55 или IP65 в стандартной комплектации. Это более высокий IP-рейтинг, чем у традиционных двигателей ODP или TEFC, которые будут иметь IP44 или IP54.

Сервоприводы, подобные этому, обычно не имеют вентилятора. На одну точку входа меньше означает, что рейтинг IP обычно выше.

Недостатки серводвигателя

Что касается стоимости, серводвигатели традиционно были более дорогими из-за стоимости материалов для постоянных магнитов.Но разрыв в цене между сервоприводами и асинхронными двигателями сокращается в течение многих лет. Раньше сервосистема стоила в два раза дороже, чем система с асинхронным двигателем. Сейчас эта разница сократилась до 10-40%.

В некоторых приложениях преимущества серводвигателя становятся недостатками. Такие машины, как дробилка, могут выиграть от более инерционного двигателя, который может перемещаться за счет импульсов крутящего момента. Кроме того, приложения, которые не требуют обратной связи по скорости или положению, могут быть более легко решены с помощью асинхронного двигателя с пуском от сети.Есть несколько сервоприводов с линейным питанием, но для большинства из них потребуется сервопривод или усилитель.

Сервоприводы

могут быть дополнительно оснащены тормозами, но в основном они предназначены для удержания или аварийной остановки. При этом размер тормозов, предлагаемых с сервоприводами, может быть ограничен. Кроме того, могут быть недоступны такие опции тормоза, как ручные отпускания или микровыключатели. Еще один важный момент: в некоторых серводвигателях используются тормоза с постоянными магнитами. Хотя тормоза с постоянным магнитом отключаются, они не считаются «отказоустойчивыми» и могут быть не лучшим вариантом для приложений, связанных с безопасностью.Можно оснастить сервопривод пружинным тормозом, но это стоит учитывать.


Преимущества асинхронного двигателя

Трехфазные асинхронные двигатели с короткозамкнутым ротором исторически представляли собой недорогой выбор премиум-класса для простых односкоростных приложений, таких как транспортировочные конвейеры, поворотные столы, вентиляторы и другие простые системы. Хотя разница в стоимости серводвигателя по сравнению с асинхронным двигателем аналогичного размера не совсем та, что была 10-20 лет назад, асинхронные двигатели все еще находят свое место в определенных приложениях, и серводвигатель не всегда является правильной заменой. для асинхронного двигателя, если вы можете оправдать добавленную стоимость.

Например, если вам нужно поддерживать постоянную скорость при большой нагрузке, скажем, для приложений более 30 или 40 л.с., асинхронный двигатель, вероятно, будет лучшим выбором. Это связано с высокими затратами на производство большого количества постоянных магнитов, необходимых для такого большого двигателя, в сочетании с тем фактом, что быстрое ускорение, высокие динамические скорости и точное позиционирование не являются требованиями для данного приложения.

Кроме того, хотя для асинхронных двигателей с векторным приводом требуются элементы управления с обратной связью или энкодеры, чтобы конкурировать по характеристикам с управлением серводвигателем, достижения в технологии приводов теперь позволяют нам запускать двигатель в векторном режиме с обратной связью без энкодера.KEB называет это своей приводной технологией ASCL.

Векторное управление двигателем по-прежнему предлагает возможности позиционирования и точного управления скоростью


Асинхронный двигатель Недостатки

В общем, асинхронные двигатели будут больше и иметь большую инерцию, чем серводвигатели. Таким образом, они не будут лучшим вариантом для высокодинамичных приложений, хотя они могут выполнять позиционирование, если оснащены правильным устройством обратной связи. Асинхронные двигатели будут немного менее эффективными, чем серводвигатели, особенно при меньших размерах.Однако с недавним законодательством требуемые уровни эффективности были увеличены, и разрыв между сервоприводами и асинхронными двигателями был сокращен.


Заключение

Как системы асинхронных двигателей, так и сервосистемы могут быть подходящими для вашего применения в зависимости от ваших требований к производительности и ценообразования. Асинхронные двигатели могут предложить более дешевые, надежные и прочные решения для одноосных приложений с простыми профилями движения. Серводвигатели могут предложить высокие динамические характеристики и плотность крутящего момента, но по более высокой цене.

Здесь, в KEB, мы рады, что можем предложить как решения для асинхронных двигателей мощностью от 0,25 до 50 л.с., так и решения для серводвигателей мощностью от 0,25 до 20 л.с. Мы также можем предложить как индукционные, так и сервоприводы со встроенным редуктором. У нас есть косозубые рядные, косозубые конические, прямоугольные косозубые червяки, параллельные валы и планетарные передачи. Если вы не знаете, какое решение лучше всего подходит для вашей области применения, мы будем более чем рады помочь вам подобрать подходящий двигатель.

Пожалуйста, свяжитесь с ближайшим к вам представителем KEB, если у вас есть вопросы по заявлению или вам нужна дополнительная информация.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *