Элемент пельтье что это такое: Что такое элемент Пельтье и как его сделать своими руками?

Содержание

Элемент пельтье (Peltier) | Сила Тока .NET

Сегодняшняя статья пойдёт об элементе Пельтье — сердце ПЦР-амплификатора (автомобильного холодильника) от 12 V.  Странная особенность этих холодильников в том, что они не придерживаются выставленной температуры, а уменьшают температуру внутри на определённое количество градусов, относительно температуры окружающей среды. А все потому, что автохолодильники вместо использования фреона и традиционной циркуляции его по трубкам работает на основе элемента «Пельтье». В основном, эта разница температур в пределах от 15 до 25 градусов цельсия. Поэтому при уличной температуре в 30 °С, в автохолодильнике максимальный минимум можно выжать в 5 — 10 °С выше нуля.

Элемент Пельтье. Что это такое.

Элемент Пельтье или модуль Пельтье это  термоэлектрический преобразователь, который при пропускании через него тока, создает разность температур на стенках.

Своими словами: Это, пластина с двумя выводами, толщиной около 4 мм. Если подать ток на выводы (контакты) элемента, то одна его сторона нагревается, а другая охлаждается. Если сменить полярность, то и температуры, на стенках, так же поменяются на противоположные.

Как это работает

Из описания элемента (термоэлектрический преобразователь) понятно, что элементы Пельтье преобразовывают электричество в изменение температуры и наоборот, воздействие на стенки элемента разности температур преобразовывают в электричество, поэтому его ещё называют «термоэлектрический генератор». В основном, каждый из элементов состоит из 127ми полупроводников, соединённых последовательно. Из-за этого стоит помнить, что при выходе из строя одного из них, весь элемент придет в негодность.

При прохождении тока через «внутренности» элемента Пельтье, одна его стенка нагревается а обратная — охлаждается. Такой же принцип работает и в обратном порядке: если принудительно одну стенку элемента нагревать, и вторую охлаждать, то на контактах образуется постоянный ток. Полярность у которого будет зависеть от того, какую именно сторону будут нагревать.

Важно помнить о граничной температуре. Полупроводники, внутри элемента крепятся на припое с температурой плавления, около 140 °C. Это значит, что если температура нагрева приблизится к этому значению, вероятно весь элемент выйдет из строя (расплавится и развалится).

В работе, при охлаждении чего либо с помощью элементов Пельтье, не стоит забывать отводить высокую температуру с обратной стороны элемента. Так как это может привести к разрушению элемента. В автомобильный холодильниках, упоминавшихся ранее, стоит воздухоотвод, который выводит наружу горячий воздух.

Разновидности элементов

На сегодняшний день, проворливые китайцы изготавливают огромное количество вариаций и размеров элементов «Пельтье», что позволяет приобрести их по вполне доступной цене, около $2-3 за штуку.

  • Основные встречающиеся размеры это 25х25 мм., 30х30 мм., 40х40 мм., 50х50 мм. и 62х62 мм.
  • По напряжению питания  различают элементы на 5,9 в., 12 в., 15 вольт.
  • Так же существуют и различные мощности элементов. Обычно это от 3,2 до 15 Ампер.
  • Ещё один из основных показателей элементов — разность минимальной и максимальной температур(ΔT max) У «китайских» экземпляров это, в основном, :  67°C — 68°C.

Где применяются элементы Пельтье

Элементы Пельтье уже перестали быть экзотическим продуктом из мира фантастики, и стали доступны по цене для всякого рода экспериментаторов, поэтому количество новинок, на его основе заметно возросло.

Из основных применений стоит выделить, все те же:

  • портативные холодильники от 12 вольт,
  • настольные охладители для пива от usb,
  • кулеры для воды,
  • а так же охлаждение для процессора компьютера.

Но в случае с последним, зачастую элемент не справляется при сильной загрузке компьютера, даже при использовании температурного аккумулятора.

Используя принцип Пельтье в обратном порядке —  добывают электричество. Но об этом в следующей статье.

Элемент Пельтье — это… Что такое Элемент Пельтье?

Элемент Пельтье — это термоэлектрический преобразователь, принцип действия которого базируется на эффекте Пельтье — возникновении разности температур при протекании электрического тока. В англоязычной литературе элементы Пельтье обозначаются TEC (от англ. Thermoelectric Cooler — термоэлектрический охладитель).

Эффект, обратный эффекту Пельтье, называется эффектом Зеебека.

Принцип действия

В основе работы элементов Пельтье лежит контакт двух токопроводящих материалов с разными уровнями энергии электронов в зоне проводимости. При протекании тока через контакт таких материалов, электрон должен приобрести энергию, чтобы перейти в более высокоэнергетическую зону проводимости другого полупроводника. При поглощении этой энергии происходит охлаждение места контакта полупроводников. При протекании тока в обратном направлении происходит нагревание места контакта полупроводников, дополнительно к обычному тепловому эффекту.

При контакте металлов эффект Пельтье настолько мал, что незаметен на фоне омического нагрева и явлений теплопроводности. Поэтому при практическом применении используются контакт двух полупроводников.

Внешний вид элемента Пельтье. При пропускании тока тепло переносится с одной стороны на другую.

Элемент Пельтье состоит из одной или более пар небольших полупроводниковых параллелепипедов — одного n-типа и одного p-типа в паре (обычно теллурида висмута, Bi2Te3 и германида кремния), которые попарно соединены при помощи металлических перемычек. Металлические перемычки одновременно служат термическими контактами и изолированы непроводящей плёнкой или керамической пластинкой. Пары параллелепипедов соединяются таким образом, что образуется последовательное соединение многих пар полупроводников с разным типом проводимости, так чтобы вверху были одни последовательности соединений (n->p), а снизу противоположные (p->n). Электрический ток протекает последовательно через все параллелепипеды. В зависимости от направления тока верхние контакты охлаждаются, а нижние нагреваются — или наоборот. Таким образом электрический ток переносит тепло с одной стороны элемента Пельтье на противоположную и создаёт разность температур.

Если охлаждать нагревающуюся сторону элемента Пельтье, например при помощи радиатора и вентилятора, то температура холодной стороны становится ещё ниже. В одноступенчатых элементах, в зависимости от типа элемента и величины тока, разность температур может достигать приблизительно 70 К.

Достоинства и недостатки

Достоинством элемента Пельтье является небольшие размеры, отсутствие каких-либо движущихся частей, а также газов и жидкостей. При обращении направления тока возможно как охлаждение, так и нагревание — это даёт возможность термостатирования при температуре окружающей среды как выше, так и ниже температуры термостатирования.

Недостатком элемента Пельтье является очень низкий коэффициент полезного действия, что ведёт к большой потребляемой мощности для достижения заметной разности температур. Несмотря на это, элементы Пельтье нашли широкое применение, так как без каких-либо дополнительных устройств можно реализовать температуры ниже 0 °C.

В батареях элементов Пельтье[1] возможно достижение теоретически очень большой разницы температур, в связи с этим лучше использовать импульсный метод регулирования температуры, благодаря которому можно снизить также потребление энергии.

Применение

Элементы Пельтье применяются в ситуациях, когда необходимо охлаждение с небольшой разницей температур, или энергетическая эффективность охладителя не важна. Например, элементы Пельтье применяются в ПЦР-амплификаторах, маленьких автомобильных холодильниках, так как применение компрессора в этом случае невозможно из-за ограниченных размеров, и, кроме того, необходимая мощность охлаждения невелика.

Кроме того, элементы Пельтье применяются для охлаждения устройств с зарядовой связью в цифровых фотокамерах. За счёт этого достигается заметное уменьшение теплового шума при длительных экспозициях (например в астрофотографии). Многоступенчатые элементы Пельтье применяются для охлаждения приёмников излучения в инфракрасных сенсорах.

Также элементы Пельтье часто применяются для охлаждения и термостатирования диодных лазеров с тем, чтобы стабилизировать длину волны излучения.

В приборах, при низкой мощности охлаждения, элементы Пельтье часто используются как вторая или третья ступень охлаждения. Это позволяет достичь температур на 30—40 К ниже, чем с помощью обычных компрессионных охладителей (до −80 для одностадийних холодильников и до −120 для двухстадийных).

Элементы Пельтье применяются также в качестве источника электрической энергии. Это возможно в случае, когда доступен источник тепловой энергии (геотермальный источник, печь, костер) или просто два близко расположенных объекта с разной температурой (трубопроводы горячей и холодной воды, нагретая на солнце металлическая пластина и сосуд со снегом или водой). Такой источник электрической энергии может быть применен для питания измерительной и сигнальной аппаратуры, а также для заряда аккумуляторов различных электронных устройств. http://poselenie.ucoz.ru/publ/6-1-0-45 http://overland-botsman.narod.ru/termogen.htm

Ссылки

Примечания

что это такое, назначение, характеристики, принцип работ

Холодильное оборудование и комплексы для охлаждения воздуха являются неотъемлемыми элементами повседневной жизни. Однако стандартные объемные конструкции на базе хладагентов нецелесообразны для мобильного применения, к примеру, в сумках-холодильниках. В таких случаях используются приборы, основанные на работе эффекта Пельтье, о котором мы детально расскажем в данном материале.

В основе элемента Пельтье или термоэлектрического охладителя лежит термопара из двух элементов с p- и n- типом проводимости, которые соединяются коммутационной медной пластиной. Детали в большинстве случаев изготовляются из висмута, теллура, сурьмы и селена. Такие устройства применяются в системах охлаждения бытового применения, также они имеют свойство вырабатывать энергию.

Что это такое?

Явление и термин Пельтье предполагают открытие, сделанное в 1834 году французским ученым Жаном-Шарлем Пельтье. Суть открытия состоит в том, что постоянно выделяется или поглощается тепло на участке, где происходит контакт двух разнонаправленных проводников, по которым течет электроток.

Классическая теория объясняет данное явление таким образом: при помощи электротока между металлами переносятся электроны, ускоряющиеся или замедляющиеся, в зависимости от контактной разности потенциалов на проводниках из металла с разным уровнем проводимости. Элементы Пельтье таким образом способствуют превращению кинетической энергии в тепловую.

На втором проводнике происходит обратный эффект, где необходимо пополнение энергии на основании фундаментального закона физики. Происходит такая ситуация благодаря процессу теплового колебания, в результате которого металл второго проводника охлаждается.

При помощи современных технологий можно изготовить модуль Пельтье с максимальным термоэлектрическим эффектом.

Устройство и принцип работы

Современные модули Пельтье являют собой конструкцию, в которой присутствуют две пластины-изолятора, а между ними в строгой последовательности соединены термопары. Стандартная схема данного элемента для лучшего понимания его функционирования приведена на рисунке.

Обозначения элементов конструкции:

  • А – контакты, при помощи которых осуществляется подсоединение к источнику питания;
  • В — горячая поверхность;
  • С — холодная сторона;
  • D – проводники из меди;
  • E – полупроводник р-перехода;
  • F – полупроводник типа n.

Элемент изготовляется так, что обе поверхности находятся в контакте с p-n или n-p переходами, исходя из полярности. Контакты p-n нагреваются, а n-p температура снижается. В результате на концах элемента появляется разница температур DT. Такой эффект означает, что тепловая энергия, которая перемещается  между элементами модуля, регулирует температурный режим в зависимости от полярности. Также следует отметить, что в случае изменения полярности меняются горячая и холодная поверхности.

Технические характеристики

Технические параметры элемента Пельтье предполагают такие значения:

  • холодопроизводительность (Qmax) – рассчитывается на базе предельного тока и разницы температурного режима между концами модуля. Единица измерения – Ватт;
  • предельная температурная разница (DTmax) – измеряется в градусах, данная характеристика приводится для оптимальных условий;
  • Imax – предельная сила электротока, требуемая для обеспечения большей разницы температуры;
  • предельное напряжение Umax, которое требуется для электротока Imax для достижения максимальной температурной разницы DTmax;
  • Resistance – внутреннее сопротивление устройства, измеряется в Омах;
  • СОР – коэффициент эффективности или КПД модуля Пельтье, который отражает соотношение охлаждающей и потребляемой мощностей. В зависимости от особенностей устройства, для недорогих устройств показатель находится в пределах 0,3-0,35, для более дорогих моделей он варьируется до 0,5.

Преимуществами мобильного элемента Пельтье являются небольшие габариты, обратимость процесса, а также возможность использования в качестве переносного электрогенератора или холодильника.

Недостатками модуля являются дороговизна, невысокий КПД в рамках 3%, большие затраты электроэнергии и необходимость постоянного поддержания разницы температурных режимов.

Применение

Даже учитывая невысокий коэффициент эффективности, пластины в модуле Пельтье широко применяются в измерительных, вычислительных приборах, а также в переносной бытовой технике. Приведем перечень устройств, в которых модели являются неотъемлемой частью:

  • переносные холодильные устройства;
  • небольшие генераторы электричества;
  • комплексы охлаждения в ПК и ноутбуках;
  • кулеры для подогрева и охлаждения питьевой воды;
  • осушители воздуха.

Как подключить

Подключить модуль Пельтье можно самостоятельно, это не потребует много времени и усилий. На контакты выходов требуется подать постоянное напряжение, которое указано в инструкции по эксплуатации прибора. Красный провод подсоединяется к плюсу, а черный – к минусу. Обратите внимание, что при изменении полярности поменяются местами нагреваемая и охлаждаемая поверхности.

Перед подключением рекомендуется проверить работоспособность элемента. Одним из простых и надежных способов, как проверить устройство, является тактильный метод: для этого необходимо подсоединить устройство к источнику электротока и прикоснуться к разным контактам. У нормально функционирующего устройства одни контакты будут теплыми, а другие – охлажденными.

Также можно выполнить проверку при помощи мультиметра и зажигалки. Для этого нужно подсоединить щупы в контактам устройства, поднести зажигалку к одной стороне и наблюдать за показаниями мультиметра. Если элемент Пельтье работает в стандартном режиме, в процессе нагрева на одной стороне будет вырабатываться электроток, а данные о напряжении отобразятся на экране мультиметра.

Как сделать элемент пельтье своими руками

Элемент Пельтье нецелесообразно изготовлять в домашних условиях в связи с небольшой стоимостью и необходимостью специальных знаний для создания работоспособного элемента. Однако своими руками можно собрать эффективный мобильный термоэлектрический генератор, который пригодится на даче или в туристическом походе.

С целью стабилизации электрического напряжения потребуется собрать самостоятельно стандартный преобразователь на микросхеме ИМС L6920. На вход устройства необходимо подать напряжение 0,8-5,5 В, а на выходе он будет выдавать 5 В, этого значения достаточно для зарядки аккумулятора мобильных устройств в стандартном режиме. Если применяется стандартное электронное устройство Пельтье, тогда потребуется ограничение предельного значения температуры нагреваемой поверхности до 150 градусов. Для простоты контроля температуры целесообразно применять котелок с кипящей водой, тогда модель не будет нагреваться свыше 100 градусов.

Пластины Пельтье широко используются с целью охлаждения современной бытовой техники, в кондиционерах, эффективность устройства доказали в частности для стабилизации теплового режима и  охлаждения мощного процессора. На основе элемента Пельтье часто изготовляются в домашних условиях эффективные мобильные холодильники для дачи или автомобиля, питания радиатора. В силу обратимости процесса, самодельные элементы используются в роли мобильных небольших электростанций в местностях без источника электроэнергии.

Что такое элемент Пельтье, его характеристики и принцип работы | Энергофиксик

Вы, конечно, прекрасно знаете, что с помощью электрического тока возможно производить нагрев предметов, например, паяльник, чайник и т.п. А вы знаете, что с электричеством можно также и охлаждать? И я сейчас говорю не о холодильниках, где компрессором гоняется фреон, а речь идет о так называемом элементе Пельтье. В этом материале я расскажу вам об этом изделии подробно. Итак, начнем.

Содержание

Историческая справка

Как работает термоэлемент

Внутреннее устройство термоэлемента Пельтье

Недостатки и достоинства такого элемента

Маркировка изделия и ее расшифровка

Технические параметры элемента Пельтье

Область применения данных элементов

Как проверить исправность модуля Пельтье

Заключение

Историческая справка

В далеком 1834 году ученым из Франции Ж. Ш. Пельтье был открыт крайне любопытный эффект при протекании электрического тока по проводнику. Так, если через близко расположенные разнородные проводники пропускать электрический ток, то один из них сильно нагревается, а другой напротив охлаждается. И величина вырабатываемого тепла и холода прямо пропорционально связана с величиной пропускаемого тока.

Если же вектор направления тока изменить, то и стороны нагрева и охлаждения так же поменяются местами. Про это открытие, которое впоследствии назвали эффект Пельтье, на долгие годы просто напросто забыли, пока во второй половине двадцатого столетия не были произведены первые полупроводниковые элементы Пельтье.

Как работает термоэлемент

В основе абсолютно любого термоэлектрического модуля положен принцип разности уровня энергии электронов, то есть один проводящий элемент представляет из себя область с высокой проводимостью, а другой с низкой проводимостью. И если совместить такие проводники и пропустить через них ток, то электрону, чтобы пройти из низкоэнергетической области в высокоэнергетическую нужно накопить энергию. При этом та область где происходит поглощение энергии электроном начинает охлаждаться.

Если изменить полярность подключения элемента, то эффект охлаждения сменится на нагревание.

Этот эффект наблюдается у абсолютно любых элементов, но реальные следы данного явления начинают проявляться, когда используются полупроводники.

Внутреннее устройство термоэлемента Пельтьеyandex.ru

Термоэлектрический модуль (ТЭМ) реализован из N-ого числа термопар. Причем сама термопара выполнена из пары полупроводников разнородного типа, которые соединены между собой пластиной из меди.

Данные полупроводники выполнены из солей таких металлов как: теллур, висмут, селен или сурьма.

Таких термопар соединенных в последовательную цепь может быть в одном устройстве сколь угодно много. И вся эта конструкция закрывается с обеих сторон керамическими пластинами.

Так как число термопар может быть различным, то значит и мощность элемента Пельтье также может варьироваться и очень сильно.

Протекающий постоянный ток нагревает одну часть элемента (например, верхнюю), а вторую (нижнюю) наоборот охлаждает. Если сменить полярность, то нагреваемая и охлаждаемая стороны поменяются местами.

Есть одна очень любопытная особенность функционирования такого элемента. Если в процессе работы принудительно охлаждать ту сторону, что подвергается нагреву, то сторона охлаждающаяся еще больше охладится и разница температур с воздухом может быть десятки градусов.

yandex.ru

Недостатки и достоинства такого элемента

К сожалению, еще не придумано таких изделий, у которых были бы только плюсы, поэтому давайте рассмотрим положительные и отрицательные стороны элемента Пельтье.

Плюсы изделия

1. По размеру данное изделие может быть абсолютно любым.

2. В изделии нет движущихся деталей, а это значит что оно полностью бесшумно.

3. Лишь изменив полярность питания элемента нагревательная поверхность превращается в охлаждающую.

Минусы изделия

1. Единственным, но самым существенным недостатком ТЭМа считается его маленький КПД. И проблема низкого КПД заключена в том, что по своей сути электроны обладают двойной природой и переносят как заряд, так и тепловую энергию и для того, чтобы создать высокоэффективный элемент Пельтье, нужен материал с высокой проводимостью электрического тока и низкой проводимостью тепла, а такой материал пока не придуман.

Маркировка изделия и ее расшифровка

На любом элементе присутствует буквенно-циферный код, который выглядит так:

И вот как он расшифровывается:

Первые две буквы всегда «ТЕ» всегда неизменны и означают что перед нами термоэлемент.

Третья буква указывает на размерность модуля «С» — стандартный модуль, «S» — малый модуль

А первая цифра, идущая после букв, говорит о количестве слоев (каскадов) в элементе.

Далее три идущие цифры говорят о числе термопар в модуле (в данном элементе 127 пар).

Последние две цифры указывают на номинальный ток, в нашем варианте ток равен 10 Амперам.

Технические параметры элемента Пельтье

Главные параметры у элементов таковы:

— Q max – производительность холода. Данный параметр рассчитывается из максимального тока и разности температур между противолежащими обкладками модуля Пельтье.

— Imax – ток, при котором перепад температур достигает своего максимума.

— U max — предельное напряжение.

— Resistence – сопротивление внутренних элементов изделия.

— COP – это КПД нашего изделия. Данный показатель только у самых «крутых» модулей едва дотягивается до 50 %, а те элементы, которые нам могут предложить китайские производители, имеют КПД от 20% до 30%.

Область применения данных элементов

Данные термоэлектрические модули нашли свое применение в следующих областях:

Мобильные (автомобильные) холодильники.

Мобильные термогенераторы. В таких изделиях применяется обратный эффект, то есть при нагревании одной стороны элемента и охлаждении другой, происходит вырабатывание электрической энергии.

Осушители воздуха.

Лабораторные инкубаторы.

Кулеры для воды.

Как проверить исправность модуля Пельтье

Заключение

Это все, что я хотел сегодня вам рассказать об элементе Пельтье. Если вы захотели приобрести такой элемент, то покупал я его в этом магазине. В следующих статьях я расскажу о том, как собрать на основе этого элемента термогенератор, так что если вам статья понравилась, то присоединяйтесь к каналу и оцените ее лайком и репостом. Спасибо за ваше внимание!

Элемент Пельтье, принцип работы

Что такое элемент Пельтье – электро-, термопреобразователь, который состоит из нескольких пар ( в отдельных случаях одной) полупроводников различных по свойству типов («n» и «р»), последние соединяются перемычками из металла – в основном это — медь. На практике данное устройство создает температурную разность на разных концах поверхности при протекании энергии электрического тока.

Одним из наиболее простейших вариантов данного устройства Пельтье в практическом использовании является модификация ТЕС1-12706, изображенная на рисунке 1.

Элемент Пельтье – преобразователь термический, электрический ТЕС1-12706

Принцип работы элемента Пельтье

В корне принципа работы положен термоэлектрический эффект Пельтье. Другими словами — при протекании и под действием электрического тока создается разница температур в местах контактов термопар — полупроводников «n» и «р» — типа.

Элементы Пельтье – доволи таки «чувствительные устройства» к перегреву и высоким температурам. К ним предъявляются высокие требования к эксплуатации, при невыполнении которых, устройство быстро выходит из строя. Очень важно отводить тепло, для этой цели необходимо устанавливать радиатор или вентилятор, в противном случае не достигается температура холодной стороны относительно горячей.

Как работает элемент Пельтье

Представим, что электрический ток проходит через термическую пару, как показано на рисунке 2.

Принцип работы элемента Пельтье

В этом случае происходит процесс поглощения энергии тепла на полупроводниковом контакте n — p и процесс выделения тепловой энергии на p — n контакте. В итоге часть термопары полупроводника, который сопрягается с n — p контактом, будет охлаждаться, а вторая часть с другой противоположной стороны — соответственно, нагреваться.

В том случае, когда поменяем полярность по току, то происходит процессы нагревания и охлаждения, соответственно, также поменяются.

Обратный процесс эффекта Пельтье приводит к тому, что при подводе теплоты к одной стороне термопреобразователя получают энергию электрического тока.

Конечно на практике, применение одной термопары не хватает для полного отвода тепловой энергии, поэтому в преобразователе применяют большое количество. Электрическая цепь собирается из термопар последовательно. В то же время в конструкции термопреобразовательных элементов: нагревающие термопары располагаются на другой стороне относительно охлаждающих.

Устройство элемента Пельтье очень простое. Термические пары конструируются между двумя платинами, выполненными из керамики. Соединение термопар производится медными проводниками (шинами). Количество термопар определяется назначением термопреобразователя, его мощности и места установки и может применяться от одной до нескольких сотен штук.

Устройство элемента Пельтье

Основными элементами термопреобразователя являются: полупроводники р — типа, n — типа, керамические пластины, медные сопряжения — проводники; контакты подвода электрического тока «плюс» и «минус». Для элемента Пельтье разница по температурам разных краев термопар достигает до 70 градусов по Цельсию. Чтобы увеличить данную разницу требуется увеличить каскад последовательного включения термопар.

Основные эксплуатационные характеристики элемента Пельтье

Данное устройство в целом идеально работает в тех случаях, когда хорошо и надежно контактируют термопары с охладительным устройством, будь то радиатор охлаждения или вентилятор охлаждения со змеевиком, то есть – хороший теплосъем.

Модули Пельтье, как их часто называют, очень чувствительны к перепадам по току и напряжению (не более 5 %). Под действием высоких температур (наиболее критическая для элементов до 150 градусов) эффективность снижается во много раз (до 40 %) и модуль очень быстро ломается.

Как правило, в схему работы полупроводниковых элементов недопустимым условием является приспособление релейных устройств: ограничивающих мощность или регулирующих. Это приводит к деградации кристаллических составляющих и к неисправности в скором времени элемента.

Частое включение и выключение устройств также негативно влияет на работу и срок эксплуатации, и его долговечность функционирования. Согласно законов физики — любой нагрев материала приводит к его тепловому расширению, а охлаждение — к сжатию. Соответственно, особенно слабыми местами в полупроводниковых элементах являются «паечные», где из-за механического движения возможно появление дефектов в виде микротрещин и в конце концов к разрыву цепи.

Коэффициент теплопроводности термических пар элемента Пельтье достаточно высок, что с одной стороны является достоинством, а с другой стороны ограничивает срок эксплуатации и расчетное число циклов «стоп-старт-стоп».

Достоинства и недостатки модуля Пельтье

Сравнивать устройство Пельтье с другими охладительными установками с различным приводом в принципе невозможно и нецелесообразно, так как в первом случае имеют полупроводниковые материалы в виде кристаллов, а во втором случае рабочее тело — газ или жидкость ( к примеру: компрессорный холодильник). В различных областях применяются и те и другие устройства.

К преимуществам элементов Пельтье можно отнести:

  • полное отсутствие механики движения и вращающихся частей, а также жидкостей, газов;
  • абсолютно нет шума работы устройств;
  • сравнительно малые размеры;
  • двухфункциональность: нагревание и охлаждение при изменении полярности;

К недостаткам можно отнести:

  • относительно низкий коэффициент полезного действия;
  • требование постоянного источника энергии, питания;
  • число пусков и остановов ограничено;
  • плавность отключения и включения термоэлектрических устройств;
  • контроль нагрева с одной стороны или охлаждения с другой с помощью вентилятора.

Опрос: Понятно ли что такое и как устроен Элемент Пельтье (Кол-во голосов: 16)

Да, понял с первого раза

Пришлось перечитать несколько раз, чтобы понять

Нет, не понял вообще

Чтобы проголосовать, кликните на нужный вариант ответа. Результаты

Область применения элементов Пельтье

Основной и наиболее широким применением термоэлектрические преобразователи нашли в следующих приборах, аппаратах и устройствах:

  • автохолодильники и бытовые аппараты;
  • водо- и воздухоохладители;
  • в электронных приборах и устройствах также в качестве охлаждения;
  • в генераторах электротермических.
Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 6 чел.
Средний рейтинг: 4.5 из 5.

Элементы Пельтье? Элементарно! — NIKOLAB

Элемент Пельтье — это термоэлектрический преобразователь, принцип действия которого базируется на эффекте Пельтье — возникновении разности температур при протекании электрического тока.

 

В основе работы элементов Пельтье лежит контакт двух токопроводящих материалов с разными уровнями энергии электронов в зоне проводимости. При протекании тока через контакт таких материалов, электрон должен приобрести энергию, чтобы перейти в более высокоэнергетическую зону проводимости другого полупроводника. При поглощении этой энергии происходит охлаждение места контакта полупроводников. При протекании тока в обратном направлении происходит нагревание места контакта полупроводников, дополнительно к обычному тепловому эффекту.

 

Обычно элемент Пельтье состоит из одной или более пар небольших полупроводниковых параллелепипедов — одного n-типа и одного p-типа в паре, которые попарно соединены при помощи металлических перемычек. Металлические перемычки одновременно служат термическими контактами и изолированы непроводящей плёнкой или керамической пластинкой. Пары параллелепипедов соединяются таким образом, что образуется последовательное соединение многих пар полупроводников с разным типом проводимости, так чтобы вверху были одни последовательности соединений (n->p), а снизу противоположные (p->n). Электрический ток протекает последовательно через все параллелепипеды. В зависимости от направления тока верхние контакты охлаждаются, а нижние нагреваются — или наоборот. Таким образом электрический ток переносит тепло с одной стороны элемента Пельтье на противоположную и создаёт разность температур.

 

Если охлаждать нагревающуюся сторону элемента Пельтье, например при помощи радиатора и вентилятора, то температура холодной стороны становится ещё ниже. В одноступенчатых элементах, в зависимости от типа элемента и величины тока, разность температур может достигать приблизительно 70 К.
 

Достоинством элемента Пельтье является небольшие размеры, отсутствие каких-либо движущихся частей, а также газов и жидкостей. При обращении направления тока возможно как охлаждение, так и нагревание — это даёт возможность термостатирования при температуре окружающей среды как выше, так и ниже температуры термостатирования. Также достоинством являются отсутствие механических частей и отсутствие шума.
 

Недостатком элемента Пельтье является низкий коэффициент полезного действия (50-60%), что ведёт к большой потребляемой мощности для достижения заметной разности температур. Несмотря на это, элементы Пельтье нашли широкое применение, так как без каких-либо дополнительных устройств можно реализовать температуры ниже 0 °C.
 

Элементы Пельтье применяются в ситуациях, когда необходимо охлаждение с небольшой разницей температур. Например, элементы Пельтье применяются в ПЦР-амплификаторах, маленьких автомобильных холодильниках, так как применение компрессора в этом случае невозможно из-за ограниченных размеров, и, кроме того, необходимая мощность охлаждения невелика. Также элементы Пельтье находят применение в инкубаторах, климатических камерах и водяных банях.
 

 

Баловство с элементом имени Пельтье.

После того, как в мою голову залезла мысль о строительстве своего гнезда, она начала бурлить и отслаиваться в различных строительно-отопительных-осветительных и др. направлениях, кусочек которой хочу предложить Вашему вниманию. Мой первый обзор.

Желаю всем здравствовать! Энергетик из меня ни ахти и советам буду рад. Не так давно мне стало известно, кто такие эти прохладно-горячие элементы, кто не знает, рассказываю: -это такие (обычно плоские) штучки, внутри которых всякие примудрые полупроводники к которым, если подать питание начинают выделять с одной стороны тепло, а с другой прохладу и наоборот если к ним подать тепло с холодом -выдают электрическую энергию.

Задумал я как то сделать в новом доме вечернее светодиодное освещение от 12в (знаю теперь, что это не правильно, что нужно хотя бы 24В) и зарядкой от солнечной батареи, по незнанию купил дешевые 10-ватные китайские матрицы, да ещё и желтые быррр!( aliexpress.com/item/20PCS-10W-LED-Integrated-High-power-LED-Beads-White-Warm-white-900mA-9-0-12-0V/32351320053.html ), аж 40 штук. Ну ни чего (это я себя успокаиваю), для всяких коридоров, туалетов и кладовок подойдут, а в будущем буду их разбавлять более качественными, а то и ксеноном, еще разнообразных датчиков движения- aliexpress.com/item/DC-12V-5A-IR-Pyroelectric-Infrared-PIR-Motion-Sensor-Detector-Module/32333855291.html и дистанционных ключей на 12в, ссылка не хочет работать. Но не о них речь.

После того, как я понял, как хорошо греются светодиодные матрицы встал вопрос по их охлаждению. На чермете купил медную шину толщиной 4мм и шириной-40мм.
Начал с полоски 12см с одной матрицей на термоклее последовательно с резистором на 5 ом от 13В(500мА)-через 15 минут рука уже не могла держать температуру, но и это меня устроило, т.к. светильник будет подключен через датчик движения над лестницей, ( проведение демонстраций на лестнице не планируются) и прикручен к бетонной стене через герметик нагрев будет значительно меньший, что подтвердилось практикой.

И теперь о том, из-за чего я в общем решил написать обзор. Обзор больше не о товаре, а о том, как его еще можно применить. Еще до заказа элементов пельтье, мне подумалось. а что если скрестить эти полупроводники для помощи друг другу? Также отрезал полосу медной шины -12см, на нее наклеил термоклеем элемент пельтье, на элемент наклеил ещё кусок медной шины в размер элемента(а он у нас как раз 40мм), а на этот кусочек наклеил 4 матрицы (типа по 10Вт), которые запитал параллельно через резисторы по 2 Ома и вся эта группа включена последовательно с элементом пельтье, у которого сопротивление около 4 Ома. Получился вот такой пирог с потреблением 0.8А при 13В. Этот пирог без крепления к стене нагревается заметно быстрее, чем с одной матрицей( с таким же радиатором, но тут их четыре), боюсь, как бы не пошёл в разнос, но на стене из-за теплообмена температура нижнего радиатора 53 градуса, а температура верхнего радиатора, на котором сидят матрицы-44 градуса, при наружней температуре-25 градусов через полчаса работы. Так как не обладаю разными чудо-приборами для измерения светоотдачи скажу так, на глаз, похоже на лампу накаливания в 50Вт. а то и поболее. Прошу прощения за колхоз, как умею.Что дает это баловство с пельтье и матрицами?- Получаем разницу температур 10-12 градусов на матрицах и отдающем тепло радиаторе, может кому то их не доставало этих десяти градусов, если есть возможность передать тепло стене, потолку, -то уменьшить размеры светильника, создать более комфортные условия для проживания кристаллов в матрице и разместить матрицы в одной кучке, для общего отражателя.
Обзор начал писать давно, то пирометр ждал, что б температуры мерить, с пирометром получился облом, не реально замерить им температуру в этой конструкции, спасла термопара от тестера, то корпуса под светильники подходящие искал, то батарейки на фотике сели и т.д.

Пока изобразил пару светильников, круглый для ванны с пельтье и овальный для лестничного проёма без оного. С круглым решил перестраховаться и добавил еще радиатор снизу, потому, как ванна будет сообщаться с сухой парилкой.

Так теперь выполняю рекомендации, те, что справа, а именно:
Опишите плюсы и минусы товара.- благо их не много, описываю:
+ — длиной 20см, красного цвета, не сказать, что слишком толстый, но и не тонкий, с одной стороны зачищен и залужен, другой конец уходит в лоно элемента пельтье.
— — то же самое, только черный.

Поделитесь Вашим мнением относительно товара.- делюсь:
Товар красивый, белый, пушистый, гладкий, прохладный, в руке лежит хорошо, ещё бы он с 2-х сторон охлаждал- вообще б ему цены не было. Однозначно! Если дают-брать!

Элементы Пельтье

Элементы Пельтье / термоэлектрические охладители (ТЭО) — это тепловые насосы, передающие тепло от одной стороны к другой в зависимости от направления электрического тока. Контроллеры TEC используются для управления элементами Пельтье.
В этой статье объясняется, как работают элементы Пельтье / термоэлектрические охладители, описываются особенности и упоминаются производители элементов Пельтье.

TEC Controller Обзор продукта

Содержание

Основы элемента Пельтье

Элемент Пельтье может переносить тепло с помощью эффекта Пельтье.Внутри элемента Пельтье эффект Пельтье создает разницу температур между двумя сторонами при протекании тока.

В зависимости от направления протекания постоянного тока возможно охлаждение и нагрев с помощью элементов Пельтье без изменения разъемов или механической настройки. Дополнительные преимущества заключаются в том, что можно реализовать небольшие конструкции и нет движущихся частей. Ток, подаваемый на элемент Пельтье, контролируется контроллером TEC.

Левая сторона: Стандартный элемент Пельтье Правая сторона: Специальные типы элементов Пельтье

Обычно идентификация производителя печатается на холодной стороне элемента Пельтье.Это холодная сторона, если положительное напряжение питания подключено к красному кабелю элемента Пельтье

.

Поскольку кабели обладают теплоемкостью, они подключаются к горячей стороне элемента Пельтье, чтобы не снизить охлаждающую способность элемента.

Как вы можете видеть на правом рисунке, существуют разные типы элементов Пельтье, они различаются по размеру и форме, мощности и температурному диапазону.

Диапазон размеров: от 1 мм x 1 мм до 60 мм x 60 мм
Формы: квадратные, кольцевые, многоступенчатые, одноступенчатые, герметичные или негерметичные, нестандартные
Диапазон температур: разница температур dT макс до 130 ° C (многоступенчатый), макс.температура до 200 ° C
Максимальная холодопроизводительность: до 290 Вт

Элемент Пельтье Модель

Элементы Пельтье можно охарактеризовать с помощью модели. Модель

имеет следующие три эффекта.
  • Эффект Пельтье Q p : Передача тепла от одной стороны к другой. Описанный в этом уравнении Q p = I * α * T
  • Обратный поток тепла Q Rth : Тепловой поток от горячей стороны к холодной.Описанный в этом уравнении Q Rth = dT / Rth
  • Джоулевое нагревание / потери Q Rv представляют в сопротивлении R v : Описанное в этом уравнении Q Rv = I 2 * R v / 2.
    Тепло, выделяемое R v делится поровну на горячую и холодную стороны. Тепло, выделяемое на горячей стороне, непосредственно рассеивается радиатором и поэтому не учитывается в этом уравнении.

Результирующая перекачиваемая тепловая нагрузка Q c зависит от трех эффектов: Q p , Q Rth и Q Rv .

В случае охлаждения уравнение для Q c . Имеет следующий вид: Q c = Q p — Q Rth — Q Rv .

Параметры элемента Пельтье

Помимо механических свойств, элементы Пельтье характеризуются четырьмя важными параметрами. Которые предоставляет производитель: Q max , dT max , U max , I max

  • Q max : Максимальная мощность теплового насоса при разнице температур между горячей и холодной стороной 0 ° K
  • dT max : максимальная разница температур на элементе Пельтье, когда тепло не перекачивается
  • I макс. : ток через элемент Пельтье при Q макс.
  • U max : напряжение через элемент Пельтье при Q max

Параметры Q max и dT max являются теоретическими значениями и используются для описания поведения элементов Пельтье.Однако эти максимальные значения никогда не достигаются в термоэлектрических устройствах. Они предоставляются производителем для характеристики производительности модуля Пельтье.

В термоэлектрических системах всегда существует компромисс между производительностью теплового насоса Q c и разностью температур dT.

Свойства и поведение элементов Пельтье

Следующие четыре диаграммы характеризуют товар с элементом Пельтье. Они полезны для понимания свойств и поведения элементов Пельтье.Подобные диаграммы когда-то используются производителями, например Ferrotec. Все значения в диаграммах относительны.

Тепловой насос в сравнении с текущим

Эта нормализованная диаграмма описывает взаимосвязь между производительностью теплового насоса по оси Y и током по оси X для различных значений разницы температур между горячей и холодной стороной (dT = T hot — T cold ) в случае охлаждения.


Динамика системы. Нормализованная диаграмма Тепловой насос vs.Текущий

Только при относительно небольших перепадах температур dT может передаваться значительное количество тепла. Многоступенчатые элементы Пельтье используются, когда требуется более высокая разница температур.

Перекачиваемое тепло Q C и разность температур dT обратно пропорциональны друг другу, поскольку тепло подается на холодную сторону, разница температур подавляется.

Обычно сквозной ток для элемента Пельтье должен быть в пределах от 0 до 0,7 от I max .

Динамика системы


Динамика системы. Нормализованная диаграмма зависимости теплоносителя от тока

Чтобы понять динамику системы, мы можем наблюдать, что происходит при изменении температуры — и, следовательно, dT — или при увеличении тепловой нагрузки.

Если мы эксплуатируем элемент Пельтье с током около 25% от I max , то можно скомпенсировать повышение dT на 10 Кельвинов — точка A — B — чтобы гарантировать, что производительность теплового насоса остается постоянной, ток должен быть увеличенным.Производительность теплового насоса также может быть увеличена без изменения dT, если перейти от A к C.

Если рабочая точка составляет около 60% от I max , нам потребуется больший ток, чем в предыдущем примере, чтобы компенсировать повышение dT на 10 Кельвинов — точка D в E — когда производительность теплового насоса не должна измениться. Производительность теплового насоса все еще может быть увеличена без потери разницы температур, если перейти от D к F.

Однако, если элемент Пельтье работает с близким к максимальному току, изменение температуры не может быть компенсировано увеличением тока.Переход от более низкой к более высокой разнице температур приведет к снижению производительности теплового насоса.

Коэффициент полезного действия (COP) (КПД)

Определение COP — это тепло, поглощаемое на холодной стороне Q C , деленное на входную мощность P el элемента Пельтье: COP = Q C / P el . COP — это, в основном, эффективность элемента Пельтье при охлаждении.

На следующей диаграмме показана зависимость производительности (COP) от отношения тока I / I max , значения на этой диаграмме являются относительными и нормализованными.


На этой диаграмме показана зависимость производительности (COP) от текущего состояния. Используйте его, чтобы найти рабочий ток, обеспечивающий максимальную производительность при соответствующей разнице температур dT.

Слева мы видим, что КПД максимален при минимальном перепаде температур. Следовательно, мы получаем большое количество тепла, перекачиваемого на единицу электроэнергии. Как мы видим, в зависимости от dT соответствующий максимум COP находится на разных уровнях тока — при более высоких dT он смещается вправо.Если мы проследим кривую вправо, мы обнаружим, что мы должны вложить в систему много электроэнергии, чтобы получить лишь небольшое количество тепла, что соответствует низкому значению COP. Мы также можем заметить, что более высокие токи необходимы для создания более высоких температурных перепадов.

Причина, по которой COP не начинается с нуля при dT> 0 K, заключается в том, что сначала необходимо компенсировать обратный поток тепла Q Rth за счет эффекта Пельтье Q p , прежде чем элемент Пельтье остынет.

Отвод тепла элемента Пельтье

На следующей диаграмме показана зависимость тепла Q h , рассеиваемого на теплой стороне элемента Пельтье, от тока при охлаждении.


Нормализованная диаграмма, показывающая тепло, отводимое радиатором, в зависимости от тока для различных температурных перепадов dT.

Значения нормированные и относительные. Как вы можете видеть, Q h , отклоненный элементом Пельтье, может быть до 2,6 раз больше Q max . Количество тепла на горячей стороне Q h может быть настолько большим, потому что тепло от эффекта Пельтье Q p и тепло сопротивления потерь Q Rv должны рассеиваться.Q h = Q p + Q Применяется Rv .

Зависимость отклоненного тепла от dT

На следующей диаграмме показано соотношение между Q h и Q C для различных dT в случае охлаждения. Отношение Q h / Q c является фактором того, насколько больше тепла должно рассеиваться на горячей стороне, чем на холодной.


Нормализованная диаграмма, показывающая тепло, отводимое радиатором, на количество перекачиваемого тепла по сравнению сток для разных dT.

Это означает, что при большом dT большое количество тепла рассеивается радиатором, а на холодной стороне элемента Пельтье поглощается сравнительно небольшое количество тепла.
Например, если вы хотите охладить один ватт на холодной стороне Q C = 1 Вт. Это дает 1,75 Вт тепла на горячей стороне Q h = 1,75 Вт, если dt = 20 К. При dT = 40 К это примерно 3,5 Вт на горячей стороне Q ч = 3,5 Вт

Напряжение vs.Текущий

Эта нормализованная диаграмма описывает взаимосвязь между напряжением на оси y и током на оси x для различных значений разницы температур между горячей и холодной стороной (dT = T hot — T cold ) в корпус охлаждения.


Нормализованная диаграмма, показывающая зависимость напряжения от тока для различных dT.

Как видите, кривая линейная. Поведение элемента Пельтье такое же, как у резистора с источником напряжения.Наклон кривой уменьшается с увеличением dT. Смещение по оси ординат связано с эффектом Зеебека.

Многоступенчатые элементы Пельтье


Многоступенчатый элемент Пельтье

Все приведенные выше диаграммы относятся к стандартным элементам Пельтье, но поведение многоступенчатых элементов Пельтье аналогично. Многоступенчатые элементы Пельтье используются, когда требуются более высокие значения dT (до 125 K). Но Q max ниже, т.е. меньше тепла может рассеиваться.Это недостаток многоступенчатых элементов Пельтье.

Производителей

Элементы Пельтье

Элементы Пельтье / термоэлектрические охладители (ТЭО) — это тепловые насосы, передающие тепло от одной стороны к другой в зависимости от направления электрического тока. Контроллеры TEC используются для управления элементами Пельтье.
В этой статье объясняется, как работают элементы Пельтье / термоэлектрические охладители, описываются особенности и упоминаются производители элементов Пельтье.

TEC Controller Обзор продукта

Содержание

Основы элемента Пельтье

Элемент Пельтье может переносить тепло с помощью эффекта Пельтье. Внутри элемента Пельтье эффект Пельтье создает разницу температур между двумя сторонами при протекании тока.

В зависимости от направления протекания постоянного тока возможно охлаждение и нагрев с помощью элементов Пельтье без изменения разъемов или механической настройки.Дополнительные преимущества заключаются в том, что можно реализовать небольшие конструкции и нет движущихся частей. Ток, подаваемый на элемент Пельтье, контролируется контроллером TEC.

Левая сторона: Стандартный элемент Пельтье Правая сторона: Специальные типы элементов Пельтье

Обычно идентификация производителя печатается на холодной стороне элемента Пельтье. Это холодная сторона, если положительное напряжение питания подключено к красному кабелю элемента Пельтье

.

Поскольку кабели обладают теплоемкостью, они подключаются к горячей стороне элемента Пельтье, чтобы не снизить охлаждающую способность элемента.

Как вы можете видеть на правом рисунке, существуют разные типы элементов Пельтье, они различаются по размеру и форме, мощности и температурному диапазону.

Диапазон размеров: от 1 мм x 1 мм до 60 мм x 60 мм
Формы: квадратные, кольцевые, многоступенчатые, одноступенчатые, герметичные или негерметичные, нестандартные
Диапазон температур: разница температур dT макс до 130 ° C (многоступенчатый), макс. температура до 200 ° C
Максимальная холодопроизводительность: до 290 Вт

Элемент Пельтье Модель

Элементы Пельтье можно охарактеризовать с помощью модели.Модель

имеет следующие три эффекта.
  • Эффект Пельтье Q p : Передача тепла от одной стороны к другой. Описанный в этом уравнении Q p = I * α * T
  • Обратный поток тепла Q Rth : Тепловой поток от горячей стороны к холодной. Описанный в этом уравнении Q Rth = dT / Rth
  • Джоулевое нагревание / потери Q Rv представляют в сопротивлении R v : Описанное в этом уравнении Q Rv = I 2 * R v /2.
    Тепло, выделяемое R v , поровну распределяется между горячей и холодной стороной. Тепло, выделяемое на горячей стороне, непосредственно рассеивается радиатором и поэтому не учитывается в этом уравнении.

Результирующая перекачиваемая тепловая нагрузка Q c зависит от трех эффектов: Q p , Q Rth и Q Rv .

В случае охлаждения уравнение для Q c . Имеет следующий вид: Q c = Q p — Q Rth — Q Rv .

Параметры элемента Пельтье

Помимо механических свойств, элементы Пельтье характеризуются четырьмя важными параметрами. Которые предоставляет производитель: Q max , dT max , U max , I max

  • Q max : Максимальная мощность теплового насоса при разнице температур между горячей и холодной стороной 0 ° K
  • dT max : максимальная разница температур на элементе Пельтье, когда тепло не перекачивается
  • I макс. : ток через элемент Пельтье при Q макс.
  • U max : напряжение через элемент Пельтье при Q max

Параметры Q max и dT max являются теоретическими значениями и используются для описания поведения элементов Пельтье.Однако эти максимальные значения никогда не достигаются в термоэлектрических устройствах. Они предоставляются производителем для характеристики производительности модуля Пельтье.

В термоэлектрических системах всегда существует компромисс между производительностью теплового насоса Q c и разностью температур dT.

Свойства и поведение элементов Пельтье

Следующие четыре диаграммы характеризуют товар с элементом Пельтье. Они полезны для понимания свойств и поведения элементов Пельтье.Подобные диаграммы когда-то используются производителями, например Ferrotec. Все значения в диаграммах относительны.

Тепловой насос в сравнении с текущим

Эта нормализованная диаграмма описывает взаимосвязь между производительностью теплового насоса по оси Y и током по оси X для различных значений разницы температур между горячей и холодной стороной (dT = T hot — T cold ) в случае охлаждения.


Динамика системы. Нормализованная диаграмма Тепловой насос vs.Текущий

Только при относительно небольших перепадах температур dT может передаваться значительное количество тепла. Многоступенчатые элементы Пельтье используются, когда требуется более высокая разница температур.

Перекачиваемое тепло Q C и разность температур dT обратно пропорциональны друг другу, поскольку тепло подается на холодную сторону, разница температур подавляется.

Обычно сквозной ток для элемента Пельтье должен быть в пределах от 0 до 0,7 от I max .

Динамика системы


Динамика системы. Нормализованная диаграмма зависимости теплоносителя от тока

Чтобы понять динамику системы, мы можем наблюдать, что происходит при изменении температуры — и, следовательно, dT — или при увеличении тепловой нагрузки.

Если мы эксплуатируем элемент Пельтье с током около 25% от I max , то можно скомпенсировать повышение dT на 10 Кельвинов — точка A — B — чтобы гарантировать, что производительность теплового насоса остается постоянной, ток должен быть увеличенным.Производительность теплового насоса также может быть увеличена без изменения dT, если перейти от A к C.

Если рабочая точка составляет около 60% от I max , нам потребуется больший ток, чем в предыдущем примере, чтобы компенсировать повышение dT на 10 Кельвинов — точка D в E — когда производительность теплового насоса не должна измениться. Производительность теплового насоса все еще может быть увеличена без потери разницы температур, если перейти от D к F.

Однако, если элемент Пельтье работает с близким к максимальному току, изменение температуры не может быть компенсировано увеличением тока.Переход от более низкой к более высокой разнице температур приведет к снижению производительности теплового насоса.

Коэффициент полезного действия (COP) (КПД)

Определение COP — это тепло, поглощаемое на холодной стороне Q C , деленное на входную мощность P el элемента Пельтье: COP = Q C / P el . COP — это, в основном, эффективность элемента Пельтье при охлаждении.

На следующей диаграмме показана зависимость производительности (COP) от отношения тока I / I max , значения на этой диаграмме являются относительными и нормализованными.


На этой диаграмме показана зависимость производительности (COP) от текущего состояния. Используйте его, чтобы найти рабочий ток, обеспечивающий максимальную производительность при соответствующей разнице температур dT.

Слева мы видим, что КПД максимален при минимальном перепаде температур. Следовательно, мы получаем большое количество тепла, перекачиваемого на единицу электроэнергии. Как мы видим, в зависимости от dT соответствующий максимум COP находится на разных уровнях тока — при более высоких dT он смещается вправо.Если мы проследим кривую вправо, мы обнаружим, что мы должны вложить в систему много электроэнергии, чтобы получить лишь небольшое количество тепла, что соответствует низкому значению COP. Мы также можем заметить, что более высокие токи необходимы для создания более высоких температурных перепадов.

Причина, по которой COP не начинается с нуля при dT> 0 K, заключается в том, что сначала необходимо компенсировать обратный поток тепла Q Rth за счет эффекта Пельтье Q p , прежде чем элемент Пельтье остынет.

Отвод тепла элемента Пельтье

На следующей диаграмме показана зависимость тепла Q h , рассеиваемого на теплой стороне элемента Пельтье, от тока при охлаждении.


Нормализованная диаграмма, показывающая тепло, отводимое радиатором, в зависимости от тока для различных температурных перепадов dT.

Значения нормированные и относительные. Как вы можете видеть, Q h , отклоненный элементом Пельтье, может быть до 2,6 раз больше Q max . Количество тепла на горячей стороне Q h может быть настолько большим, потому что тепло от эффекта Пельтье Q p и тепло сопротивления потерь Q Rv должны рассеиваться.Q h = Q p + Q Применяется Rv .

Зависимость отклоненного тепла от dT

На следующей диаграмме показано соотношение между Q h и Q C для различных dT в случае охлаждения. Отношение Q h / Q c является фактором того, насколько больше тепла должно рассеиваться на горячей стороне, чем на холодной.


Нормализованная диаграмма, показывающая тепло, отводимое радиатором, на количество перекачиваемого тепла по сравнению сток для разных dT.

Это означает, что при большом dT большое количество тепла рассеивается радиатором, а на холодной стороне элемента Пельтье поглощается сравнительно небольшое количество тепла.
Например, если вы хотите охладить один ватт на холодной стороне Q C = 1 Вт. Это дает 1,75 Вт тепла на горячей стороне Q h = 1,75 Вт, если dt = 20 К. При dT = 40 К это примерно 3,5 Вт на горячей стороне Q ч = 3,5 Вт

Напряжение vs.Текущий

Эта нормализованная диаграмма описывает взаимосвязь между напряжением на оси y и током на оси x для различных значений разницы температур между горячей и холодной стороной (dT = T hot — T cold ) в корпус охлаждения.


Нормализованная диаграмма, показывающая зависимость напряжения от тока для различных dT.

Как видите, кривая линейная. Поведение элемента Пельтье такое же, как у резистора с источником напряжения.Наклон кривой уменьшается с увеличением dT. Смещение по оси ординат связано с эффектом Зеебека.

Многоступенчатые элементы Пельтье


Многоступенчатый элемент Пельтье

Все приведенные выше диаграммы относятся к стандартным элементам Пельтье, но поведение многоступенчатых элементов Пельтье аналогично. Многоступенчатые элементы Пельтье используются, когда требуются более высокие значения dT (до 125 K). Но Q max ниже, т.е. меньше тепла может рассеиваться.Это недостаток многоступенчатых элементов Пельтье.

Производителей

Элементы Пельтье

Элементы Пельтье / термоэлектрические охладители (ТЭО) — это тепловые насосы, передающие тепло от одной стороны к другой в зависимости от направления электрического тока. Контроллеры TEC используются для управления элементами Пельтье.
В этой статье объясняется, как работают элементы Пельтье / термоэлектрические охладители, описываются особенности и упоминаются производители элементов Пельтье.

TEC Controller Обзор продукта

Содержание

Основы элемента Пельтье

Элемент Пельтье может переносить тепло с помощью эффекта Пельтье. Внутри элемента Пельтье эффект Пельтье создает разницу температур между двумя сторонами при протекании тока.

В зависимости от направления протекания постоянного тока возможно охлаждение и нагрев с помощью элементов Пельтье без изменения разъемов или механической настройки.Дополнительные преимущества заключаются в том, что можно реализовать небольшие конструкции и нет движущихся частей. Ток, подаваемый на элемент Пельтье, контролируется контроллером TEC.

Левая сторона: Стандартный элемент Пельтье Правая сторона: Специальные типы элементов Пельтье

Обычно идентификация производителя печатается на холодной стороне элемента Пельтье. Это холодная сторона, если положительное напряжение питания подключено к красному кабелю элемента Пельтье

.

Поскольку кабели обладают теплоемкостью, они подключаются к горячей стороне элемента Пельтье, чтобы не снизить охлаждающую способность элемента.

Как вы можете видеть на правом рисунке, существуют разные типы элементов Пельтье, они различаются по размеру и форме, мощности и температурному диапазону.

Диапазон размеров: от 1 мм x 1 мм до 60 мм x 60 мм
Формы: квадратные, кольцевые, многоступенчатые, одноступенчатые, герметичные или негерметичные, нестандартные
Диапазон температур: разница температур dT макс до 130 ° C (многоступенчатый), макс. температура до 200 ° C
Максимальная холодопроизводительность: до 290 Вт

Элемент Пельтье Модель

Элементы Пельтье можно охарактеризовать с помощью модели.Модель

имеет следующие три эффекта.
  • Эффект Пельтье Q p : Передача тепла от одной стороны к другой. Описанный в этом уравнении Q p = I * α * T
  • Обратный поток тепла Q Rth : Тепловой поток от горячей стороны к холодной. Описанный в этом уравнении Q Rth = dT / Rth
  • Джоулевое нагревание / потери Q Rv представляют в сопротивлении R v : Описанное в этом уравнении Q Rv = I 2 * R v /2.
    Тепло, выделяемое R v , поровну распределяется между горячей и холодной стороной. Тепло, выделяемое на горячей стороне, непосредственно рассеивается радиатором и поэтому не учитывается в этом уравнении.

Результирующая перекачиваемая тепловая нагрузка Q c зависит от трех эффектов: Q p , Q Rth и Q Rv .

В случае охлаждения уравнение для Q c . Имеет следующий вид: Q c = Q p — Q Rth — Q Rv .

Параметры элемента Пельтье

Помимо механических свойств, элементы Пельтье характеризуются четырьмя важными параметрами. Которые предоставляет производитель: Q max , dT max , U max , I max

  • Q max : Максимальная мощность теплового насоса при разнице температур между горячей и холодной стороной 0 ° K
  • dT max : максимальная разница температур на элементе Пельтье, когда тепло не перекачивается
  • I макс. : ток через элемент Пельтье при Q макс.
  • U max : напряжение через элемент Пельтье при Q max

Параметры Q max и dT max являются теоретическими значениями и используются для описания поведения элементов Пельтье.Однако эти максимальные значения никогда не достигаются в термоэлектрических устройствах. Они предоставляются производителем для характеристики производительности модуля Пельтье.

В термоэлектрических системах всегда существует компромисс между производительностью теплового насоса Q c и разностью температур dT.

Свойства и поведение элементов Пельтье

Следующие четыре диаграммы характеризуют товар с элементом Пельтье. Они полезны для понимания свойств и поведения элементов Пельтье.Подобные диаграммы когда-то используются производителями, например Ferrotec. Все значения в диаграммах относительны.

Тепловой насос в сравнении с текущим

Эта нормализованная диаграмма описывает взаимосвязь между производительностью теплового насоса по оси Y и током по оси X для различных значений разницы температур между горячей и холодной стороной (dT = T hot — T cold ) в случае охлаждения.


Динамика системы. Нормализованная диаграмма Тепловой насос vs.Текущий

Только при относительно небольших перепадах температур dT может передаваться значительное количество тепла. Многоступенчатые элементы Пельтье используются, когда требуется более высокая разница температур.

Перекачиваемое тепло Q C и разность температур dT обратно пропорциональны друг другу, поскольку тепло подается на холодную сторону, разница температур подавляется.

Обычно сквозной ток для элемента Пельтье должен быть в пределах от 0 до 0,7 от I max .

Динамика системы


Динамика системы. Нормализованная диаграмма зависимости теплоносителя от тока

Чтобы понять динамику системы, мы можем наблюдать, что происходит при изменении температуры — и, следовательно, dT — или при увеличении тепловой нагрузки.

Если мы эксплуатируем элемент Пельтье с током около 25% от I max , то можно скомпенсировать повышение dT на 10 Кельвинов — точка A — B — чтобы гарантировать, что производительность теплового насоса остается постоянной, ток должен быть увеличенным.Производительность теплового насоса также может быть увеличена без изменения dT, если перейти от A к C.

Если рабочая точка составляет около 60% от I max , нам потребуется больший ток, чем в предыдущем примере, чтобы компенсировать повышение dT на 10 Кельвинов — точка D в E — когда производительность теплового насоса не должна измениться. Производительность теплового насоса все еще может быть увеличена без потери разницы температур, если перейти от D к F.

Однако, если элемент Пельтье работает с близким к максимальному току, изменение температуры не может быть компенсировано увеличением тока.Переход от более низкой к более высокой разнице температур приведет к снижению производительности теплового насоса.

Коэффициент полезного действия (COP) (КПД)

Определение COP — это тепло, поглощаемое на холодной стороне Q C , деленное на входную мощность P el элемента Пельтье: COP = Q C / P el . COP — это, в основном, эффективность элемента Пельтье при охлаждении.

На следующей диаграмме показана зависимость производительности (COP) от отношения тока I / I max , значения на этой диаграмме являются относительными и нормализованными.


На этой диаграмме показана зависимость производительности (COP) от текущего состояния. Используйте его, чтобы найти рабочий ток, обеспечивающий максимальную производительность при соответствующей разнице температур dT.

Слева мы видим, что КПД максимален при минимальном перепаде температур. Следовательно, мы получаем большое количество тепла, перекачиваемого на единицу электроэнергии. Как мы видим, в зависимости от dT соответствующий максимум COP находится на разных уровнях тока — при более высоких dT он смещается вправо.Если мы проследим кривую вправо, мы обнаружим, что мы должны вложить в систему много электроэнергии, чтобы получить лишь небольшое количество тепла, что соответствует низкому значению COP. Мы также можем заметить, что более высокие токи необходимы для создания более высоких температурных перепадов.

Причина, по которой COP не начинается с нуля при dT> 0 K, заключается в том, что сначала необходимо компенсировать обратный поток тепла Q Rth за счет эффекта Пельтье Q p , прежде чем элемент Пельтье остынет.

Отвод тепла элемента Пельтье

На следующей диаграмме показана зависимость тепла Q h , рассеиваемого на теплой стороне элемента Пельтье, от тока при охлаждении.


Нормализованная диаграмма, показывающая тепло, отводимое радиатором, в зависимости от тока для различных температурных перепадов dT.

Значения нормированные и относительные. Как вы можете видеть, Q h , отклоненный элементом Пельтье, может быть до 2,6 раз больше Q max . Количество тепла на горячей стороне Q h может быть настолько большим, потому что тепло от эффекта Пельтье Q p и тепло сопротивления потерь Q Rv должны рассеиваться.Q h = Q p + Q Применяется Rv .

Зависимость отклоненного тепла от dT

На следующей диаграмме показано соотношение между Q h и Q C для различных dT в случае охлаждения. Отношение Q h / Q c является фактором того, насколько больше тепла должно рассеиваться на горячей стороне, чем на холодной.


Нормализованная диаграмма, показывающая тепло, отводимое радиатором, на количество перекачиваемого тепла по сравнению сток для разных dT.

Это означает, что при большом dT большое количество тепла рассеивается радиатором, а на холодной стороне элемента Пельтье поглощается сравнительно небольшое количество тепла.
Например, если вы хотите охладить один ватт на холодной стороне Q C = 1 Вт. Это дает 1,75 Вт тепла на горячей стороне Q h = 1,75 Вт, если dt = 20 К. При dT = 40 К это примерно 3,5 Вт на горячей стороне Q ч = 3,5 Вт

Напряжение vs.Текущий

Эта нормализованная диаграмма описывает взаимосвязь между напряжением на оси y и током на оси x для различных значений разницы температур между горячей и холодной стороной (dT = T hot — T cold ) в корпус охлаждения.


Нормализованная диаграмма, показывающая зависимость напряжения от тока для различных dT.

Как видите, кривая линейная. Поведение элемента Пельтье такое же, как у резистора с источником напряжения.Наклон кривой уменьшается с увеличением dT. Смещение по оси ординат связано с эффектом Зеебека.

Многоступенчатые элементы Пельтье


Многоступенчатый элемент Пельтье

Все приведенные выше диаграммы относятся к стандартным элементам Пельтье, но поведение многоступенчатых элементов Пельтье аналогично. Многоступенчатые элементы Пельтье используются, когда требуются более высокие значения dT (до 125 K). Но Q max ниже, т.е. меньше тепла может рассеиваться.Это недостаток многоступенчатых элементов Пельтье.

Производителей

Эффект Пельтье — обзор

1.

Объясните возникновение эффектов Зеебека, Пельтье и Томсона в неоднородных проводниках, используя инструменты феноменологической линейной термодинамики. Каков физический смысл параметров, определяющих величину этих эффектов?

2.

Объясните движение ионов через мембрану под действием приложенного к ней электрического потенциала, используя инструменты линейной термодинамики.

3.

Выведите уравнение для феноменологического описания активного транспорта вещества через мембрану (раздел 2.3.2) для случая сопряженного переноса вещества через мембрану и химических процессов, далеких от равновесия (т. Е. При | A rij |> RT).

4.

Какие свойства присущи обратным коэффициентам Онзагера? Что можно сказать о значениях обратных коэффициентов Онзагера, учитывающих взаимосвязь диффузии и ступенчатых химических превращений?

5.

Что можно сказать о значениях обратных коэффициентов Онзагера, учитывающих взаимосвязь теплопроводности и ступенчатых химических превращений? В чем разница между коэффициентами «классического» и «модифицированного» коэффициентов Онзагера?

6.

Напишите феноменологические уравнения Хориути-Борескова-Онзагера для трех параллельных взаимодействующих ступенчатых реакций

A ⇄ B

A ⇄ C

A ⇄ D, которые продолжаются через мономолекулярные превращения промежуточных продуктов.Объясните значение всех значений в выражении и запишите отношения между ними. Какими будут уравнения, если концентрация компонента D стационарна?

7.

Найдите коэффициенты взаимности Λ ij для случая стационарной скорости параллельных ступенчатых реакций, описываемых схемами:

Стационарное состояние устанавливается по отношению к промежуточным соединениям, обозначенным Y i .

Найдите выражение для уравнений Хориути-Борескова-Онзагера, описывающее взаимное влияние данных ступенчатых реакций при наличии диффузии химических компонентов.Коэффициент диффузии одинаков для всех компонентов.

8.

Ступенчатая реакция R + A 1 ⇄ P 1 сопровождается параллельной ступенчатой ​​реакцией R + A 2 ⇄ P 2 . Найти коэффициенты взаимности Λ ij для случая взаимного влияния этих ступенчатых реакций, протекающих в стационарном режиме, по отношению к их промежуточным продуктам. Реакции следуют механизму

R ⇄ X,

A 1 + X ⇄ P 1 ,

R ⇄ Y 1 ⇄ Y 2 ⇄ Y 3 ⇄ Y 4 ⇄ Y 5 ,

Y 4 + A 2 ⇄ P 2 ,

, где X и Y i — промежуточные.Каковы ожидаемые условия потребления побочного продукта P 2 вместо его образования?
9.

Найти коэффициенты Λ ij для стационарного режима прямоточных ступенчатых реакций, достигаемых механизмом с интермедиатами X i и Y j :

R 1 ⇄ X 1 ⇄ → X 2 ⇄ X 3 ⇄ → X 4 ,

X 2 + R 2 ⇄ Y 1 ⇄ Y 2 ⇄ Y 3 ⇄ Y 4 ⇄ Y 5 ,

Y 2 ⇄ P 1 ,

Y 2 ⇄ P 2 .

10.

Биотехнологический синтез фермента AHD 80 осуществляется хорошо клонированным штаммом микроорганизмов в ходе процессов, сопряженных с реакцией ассимиляции глюкозы, химическое сродство реакции 42 кДж. / моль. Оцените требуемую скорость ассимиляции глюкозы в закрытом ферментере при 37 ° C, если скорость снижения энтропии из-за реакции синтеза фермента составляет 8 кДж / ч · К в ферментере.

11.

В гомогенной реакционной системе параллельные ступенчатые реакции

A 1 + A 2 ⇄ B 1

A 1 + A 2 ⇄ B 2

перейти в стационарный режим через механизм

A 1 ⇄ Y 1 ⇄ Y 2 ⇄ Y 3 ⇄ Y 4 ,

Y 3 + A 2 ⇄ Y 5 ⇄ B 1 ,

Y 4 + A 2 ⇄ B 2 ,

, где Y и являются промежуточными продуктами.

Найдите выражение для модифицированных уравнений Онзагера, описывающее взаимное влияние данных ступенчатых реакций при наличии диффузии химических компонентов, порождаемой неоднородностью системы. Коэффициент диффузии одинаков для всех компонентов.

12.

Почему теорема Пригожина о скорости производства энтропии важна для области химии и каковы условия ее применимости?

13.

Превращение исходных компонентов R i в продукт P следует по схеме

Выразите взаимосвязь между химическими потенциалами и концентрациями промежуточных продуктов реакции A i в стационарном режиме процесса. Напишите выражение для скорости производства энтропии. Сформулируйте теорему Пригожина о скорости производства энтропии в стационарном состоянии для данной системы. Насколько применима эта теорема для данной системы при температуре 1200 К, если сродство ступенчатой ​​реакции R 1 + R 2 ← P равно 2 кДж / моль? 50 кДж / моль?

14.

Превращение исходного компонента R в продукт P происходит по схеме R + A 1 ⇄ 2 A 1

Здесь A и являются промежуточными продуктами. Покажите взаимосвязь между химическими потенциалами и концентрациями промежуточных продуктов реакции в стационарном режиме процесса. Напишите выражение для скорости производства энтропии. Сформулируйте теорему Пригожина о скорости производства энтропии в стационарном состоянии для данной системы.Насколько эта теорема применима для данной системы при температуре 500 К, если сродство ступенчатой ​​реакции R → P равно 2 кДж / моль? 50 кДж / моль?

15.

Преобразование исходного компонента R в продукт P происходит по схеме

R ⇄ A 1 ⇄ A 2 ⇄ A 3 ⇄ P,

A 1 + 2 S ⇄ 2A 4 ⇄ A 2 + 2 S ⇄ A 5 .

Здесь A и — промежуточные соединения, а S — молекула растворителя.Покажите взаимосвязь между химическими потенциалами и концентрациями промежуточных продуктов реакции S и в стационарном режиме процесса. Напишите выражение для скорости производства энтропии. Сформулируйте теорему Пригожина о скорости производства энтропии в стационарном состоянии для данной системы. Насколько применима эта теорема для данной системы при температуре 300 К, если сродство ступенчатой ​​реакции R ← P равно 2 кДж / моль? 30 кДж / моль?

Эффект Пельтье и термоэлектрическое охлаждение


Эффект Пельтье это явление, которое потенциально разница применяется через термопара вызывает температуру разница между стыками разных материалы в термопаре.

Этот эффект противоположен Эффект Зеебека (назван в честь ученого, открывшего его в 1821 году). В Эффект Зеебека заключается в том, что если разные металлы соединены в двух отдельные места, а перекрестки хранятся в разных температуры, то разность потенциалов между «спаями» ( перекрестки).

Позже, в 1834 году, Жан Пельтье обнаружил, что противоположность Зеебека эффект также верен: что разность потенциалов (и, следовательно, ток) может вызвать перепад температур, независимо от того, что окружает температура есть.

Так как горячий спай можно разместить вне утепленная область, а холодный спай может быть размещен внутри области, Пельтье эффект можно использовать для охлаждения области (или объекта).

Элементы Пельтье (термоэлектрические охладителей)

Метод термоэлектрического охлаждение (с использованием эффекта Пельтье) полезен, потому что он может охладить объект без каких-либо движущихся частей или другого сложного оборудования, которое изолирует прохладнее из окружающей среды.Устройства, которые построенные, чтобы воспользоваться этим явлением, известны как Пельтье. элементы, или термоэлектрические кулеры (ТИК). Основные идеи из простых Элементы Пельтье можно соединять последовательно, чтобы получить гораздо больше сложный Пельтье модули (также известные как практические ТИК), которые обладают большей охлаждающей способностью. Тем не менее величайший разница температур между радиатором и прохладной областью для Устройство Пельтье имеет температуру порядка 50 ° C.
Общие области применения элементов Пелье включают: охлаждение компонентов компьютера, особенно процессора.

Наиболее распространенное сочетание материалов в термопарах Элементами Пельтье (ТЕС) являются два полупроводника висмут и Теллурид. Как правило, TEC состоит из кубиков или гранул. сделал полупроводников, каждый из которых контактирует с радиаторами на горячей и холодной стороне элемента Пельтье. Эти кубики находятся «легированный» — то есть добавляются дополнительные примеси, так что там лишние или меньшее количество свободных электронов в каждом кубе. В полупроводник кубы с лишними свободными электронами (и поэтому несут в основном отрицательный заряд) известны как полупроводники N-типа, а те, у которых мало свободных электронов (и несут в основном положительный заряд) являются полупроводниками P-типа.В пары полупроводниковых кубов P и N устанавливаются и соединяются в массив так, чтобы пары имели электрическое последовательное соединение, но тепловое параллельное соединение. Когда ток подается на это система (TEC), способ протекания тока через полупроводники вызывает разность температур и приводит к тому, что сторона радиатора Элемент Пельтье для нагрева, а холодная сторона — для охлаждения (или охлаждения). все, что находится в тепловом контакте с этой стороной).



An вид изнутри ТЕС (элемент Пельтье).
p6.gif>


Элемент Пельтье, с керамические пластины для частичной изоляции
внутрь из внешней среды.

Сторона радиатора TEC становится очень горячо, поэтому необходимо иметь вентилятор и / или какой-то радиатор, чтобы рассеять это нагревать.В противном случае весь ТЭО начнет нагреваться, и шт слились бы вместе.
«Нормальные» элементы Пельтье примерно несколько сантиметров толщиной и сторона в несколько миллиметров или сантиметров. Чтобы получить больше охлаждение способностей, отдельные элементы соединяются в стеки, или они могут быть подключенными в некоторой комбинации последовательного и параллельного электрического соединения.


Модуль Пельтье с Вентилятор и радиатор
отводят тепло от радиатора.
p6.gif>



.
S H Цена 26 марта 2007 Веб-проект Physics 212

Как добиться контроля температуры с помощью модульной системы Пельтье

Модуль Пельтье, также известный как термоэлектрический модуль, представляет собой мощное устройство для управления температурой, используемое в таких приложениях, как лазерные изделия.Когда через модуль проходит ток, создается перепад температур, в результате чего одна сторона становится горячей, а другая — холодной. В зависимости от конструкции модуля и приложенного напряжения и тока может быть достигнута разница температур более 100 ° C.

Брюс Роуз, главный инженер по приложениям в CUI Devices

В качестве твердотельного устройства модуль не имеет движущихся частей и может использоваться в электронной системе для охлаждения или нагрева; изменение полярности приложенного напряжения меняет направление потока тепловой энергии.Разработчики часто используют модули Пельтье для охлаждения таких компонентов, как ИС или силовые модули, особенно там, где требуется точный контроль температуры или если принудительного воздушного охлаждения недостаточно. Термоэлектрическая система может быстро реагировать на изменения условий эксплуатации и при необходимости может охлаждать объекты до температуры ниже температуры окружающей среды.

В системе охлаждения охлаждаемое устройство присоединяется к одной стороне модуля Пельтье, а радиатор — к другой (рис. 1). Как также показано на рисунке 1, для подачи тока на работу модуля необходим внешний источник питания.

Может применяться обратная связь с обратной связью с использованием датчика температуры на охлаждаемом устройстве для управления подачей питания на модуль. Радиатор, показанный на рис. 1, должен быть такого размера, чтобы справляться не только с теплом, передаваемым от подключенного компонента, но и с теплом, рассеиваемым за счет электрического тока, подаваемого для работы модуля.

Рисунок 1. Основные элементы термоэлектрической системы охлаждения.

Проектирование термоэлектрической системы

Температурные требования приложения определяют первоначальный выбор элемента Пельтье.К ним относятся тепловая мощность, передаваемая через модуль, максимальный перепад температур и максимальная температура горячей стороны. Когда подходящий модуль определен, разработчики могут рассчитать ток и напряжение, необходимые для достижения желаемого перепада температур.

Стандартные линейки модулей Пельтье, такие как семейство термоэлектрических охладителей CUI Devices, обычно предлагают разработчикам несколько вариантов, которые удовлетворяют тепловым требованиям приложения с соответствующими значениями напряжения и тока.Блог CUI «Как выбрать модуль Пельтье» представляет более подробное обсуждение выбора устройства.

Самый простой способ выяснить, как управлять модулем Пельтье для поддержания заданной температуры, — это сначала рассчитать необходимый ток в зависимости от передаваемой тепловой мощности и разницы температур в модуле. Это можно прочитать непосредственно из графиков в техническом описании модуля, на которых показана зависимость тепловой мощности от разницы температур для различных значений тока.Затем, используя графики зависимости напряжения от разницы температур из таблицы данных, необходимое напряжение может быть считано непосредственно с графика при выбранном значении тока.

Если указанное напряжение подается непрерывно без управления с обратной связью (рис. 2), модуль будет работать при таком уровне передачи мощности и перепаде температур, которые можно определить из таблицы данных.

Рис. 2. Работа при постоянном напряжении без обратной связи по температуре обеспечивает передачу на уровне мощности и при разнице температур, как указано в таблице данных.

Замыкание контура

Если модуль требуется для охлаждения устройства до определенной температуры, температура измеряется, как показано на рисунке 1, и данные передаются обратно для управления подаваемым напряжением или током. Датчик температуры может быть термопарой, твердотельным датчиком температуры или инфракрасным датчиком.

Каскад широтно-импульсной модуляции обычно реализуется на выходе стандартного источника питания, как показано на рисунке 3, для управления напряжением, подаваемым на модуль.Каскад ШИМ добавляется извне, потому что многие выходы источников питания не позволяют достаточно широкий диапазон регулировки для достижения минимального и максимального напряжений, необходимых для управления модулем Пельтье.

Рекомендуется использовать фильтр на выходе ШИМ для уменьшения пульсаций, которые могут снизить коэффициент полезного действия модуля (COP). Желательно максимальное значение пульсации около пяти процентов, поскольку чрезмерная пульсация также может вызвать проблемы с электрическими шумами в охлаждаемом устройстве.

Рисунок 3.Обратная связь по температуре управляет выходным каскадом ШИМ для регулировки приложенного напряжения.

Кроме того, полоса пропускания контура тепловой обратной связи должна быть небольшой, что означает, что ее можно спроектировать разными способами. Поскольку полярность приложенного напряжения определяет направление теплопередачи (рисунок 4), подходящие средства изменения полярности позволяют системе либо охлаждать, либо нагревать целевой объект.

Рисунок 4. Полярность приложенного напряжения определяет направление теплопередачи.

Ручка самонагрева

Как упоминалось ранее, модуль Пельтье сам генерирует тепло в дополнение к теплу, исходящему от охлаждаемого объекта. Следовательно, радиатор должен иметь возможность рассеивать это собственное тепло в дополнение к теплу, передаваемому через модуль от охлаждаемого объекта.

Если модуль работает с низким КПД, что может произойти, если применяется недостаточная фильтрация источника питания, тепловая мощность из-за самонагрева может быть больше, чем мощность, передаваемая от охлаждаемого объекта.Температура окружающей среды и мощность радиатора определяют максимальную рабочую температуру модуля и общее тепловыделение системы.

Заключение

Модуль Пельтье может быть эффективным инструментом для управления температурой объекта, особенно если желаемая уставка ниже температуры окружающей среды. В качестве твердотельного устройства модуль Пельтье обычно меньше, легче и более энергоэффективен, чем обычная система терморегулирования, содержащая компрессор и рассеивающий нагреватель.Излучение электрического и акустического шума также обычно ниже.

Кроме того, термоэлектрическая система может работать в любой физической ориентации, при этом не требуя специальных компонентов для проектирования системы. Это делает термоэлектрический контроль температуры привлекательным вариантом, когда требования к производительности высоки, а пространство, время и бюджет разработки могут быть ограничены.

Дополнительная литература

Ознакомьтесь с ассортиментом охлаждающих устройств Пельтье от CUI Devices.

Прочтите блог «Как выбрать модуль Пельтье» в блоге CUI Devices, чтобы узнать больше о выборе правильного модуля для вашего приложения.

Модули Пельтье

Элементы Пельтье , которые также называют термоэлектрическими модулями или TEC, представляют собой тепловой насос с электрическим приводом. Здесь энергия в виде тепла передается с одной стороны модуля на другую и должна там рассеиваться. Модуль Пельтье основан на так называемом эффекте Пельтье , который описывает квазиинверсию эффекта Зеебека. Эффект Пельтье утверждает, что энергия может переноситься в виде тепла посредством электрического тока в полупроводнике, что создает разницу температур.Эффект Зеебека означает, что ток возникает, когда к полупроводнику прикладывается разность температур. Эффект Зеебека используется для измерения температуры или сбора электроэнергии.
Элемент Пельтье — это тепловой насос, в основе которого лежит перенос электрического тока в полупроводнике.

Термоэлектрические модули часто используются в:

  • Медицинский
  • Лазерные технологии
  • Лаборатория / аналитическая техника
  • Газоаналитическая техника
  • Для конденсации
  • Автомобильная техника для рекуперации энергии
  • Военная техника

Основные преимущества элемента Пельтье:

  • Точное управление электричеством
  • Путем изменения полярности может быть создано реверсирование теплового потока
  • Работа без вибрации
  • Продолжительность действия (> 20 лет)
  • Малые размеры

uwe electronic предоставляет очень большую программу элементов Пельтье, которая может охватывать множество приложений.

30 золотых правил для технологии Пельтье

  1. Количество твердотельных пар, а также плотность пакетов модуля Пельтье определяет размер модуля.
  2. На каждую твердотельную пару падает ок. 0,12 Вольт. Большое количество твердотельных пар увеличивает максимально возможное напряжение, и, таким образом, можно уменьшить ток.
  3. Сильный ток влияет на срок службы модуля, так как со временем увеличивает количество микротрещин твердотельного материала.
  4. Сильный ток ведет к более высокому тепловому нагреву и, следовательно, снижает эффективность.
  5. Отношение охлаждающей способности (Qc) к используемому току математически можно рассматривать как экспоненциальный подход к максимальному значению. Следовательно, необходимо задействовать много электроэнергии для последних 30% достижения максимального охлаждения.
  6. Теплоотдача на теплой стороне модуля Пельтье складывается из охлаждающей способности и задействованной электрической энергии (рабочей энергии).
  7. Эффективность модуля Пельтье — это отношение теплопередачи к задействованной электрической энергии.
  8. Очень высокая эффективность охлаждения с помощью Пельтье достигается при работе прибл. 50% максимального значения напряжения / тока.
  9. Информация о максимальной мощности охлаждения Qc модуля Пельтье основана на разнице температур между обеими сторонами (0 Кельвинов), максимальном токе / напряжении и температуре окружающей среды 300K (27 ° C). Реальная мощность охлаждения ниже и может быть оценена с помощью диаграммы производительности.
  10. Стандартные модули достигают в условиях вакуума и температуры окружающей среды 300K (27 ° C) максимальной разницы температур прибл. 70 Кельвинов.
  11. Высококачественные модули могут достигать значений примерно 72 Кельвина и более, в то время как недорогие модули едва достигают примерно 60 Кельвинов.
  12. Специальные модули, такие как многоступенчатые каскады, создают разницу температур до 120К. Недостаток — низкая теплопроизводительность и высокая цена.
  13. Хороший отвод тепла на теплой стороне модуля Пельтье улучшает охлаждающую способность, эффективность и максимальную разницу температур deltaT.
  14. Отвод тепла в окружающую среду зависит от мощности радиатора. Более высокая активная поверхность радиатора (размер, а также количество ребер) улучшает тепловое сопротивление.
  15. Большие вентиляторы с большим потоком воздуха улучшают тепловое сопротивление радиатора.
  16. Прямой обдув корпуса радиаторов наиболее эффективен, поскольку наибольшее количество тепла всегда отводится на землю корпуса.
  17. Жидкостные радиаторы в большинстве случаев обладают еще более высокими тепловыми качествами, тем не менее, они значительно более затратны.
  18. Между модулем Пельтье и радиатором следует нанести хороший термоинтерфейсный материал (термопрокладки, термопаста или термоклей) для увеличения теплопередачи
  19. Очень хорошая теплопередача между материалами достигается с помощью тонкого слоя термопасты, так как она может адаптироваться к микроскопическим неровностям.
  20. PCM (материал с фазовым переходом) показывает особенно высокий коэффициент заполнения. Она увлажняет поверхности даже лучше, чем обычная термопаста, а также имеет то преимущество, что не высыхает.
  21. Высокое контактное давление также улучшает теплопередачу, но при сборке очень важно предотвратить усилие сдвига.
  22. Прижимное давление к модулю Пельтье должно быть в пределах 3-8 кг / см².
  23. Опционально можно покрывать металлизацией только небольшие модули размером до 12×12 мм. Их можно паять в процессе изготовления прямо на радиатор.
  24. Максимальная кратковременная рабочая температура всегда должна быть на 20-30 ° C ниже температуры припоя отвеса (139 ° C; 183 ° C и 232 ° C).
  25. Длительное использование модуля Пельтье при температуре> 120 ° C приводит к диффузии меди в твердотельный материал и, как следствие, к снижению производительности.
  26. Для защиты от влаги обязательно наличие пломбы. Но за счет рекуперации тепла производительность ок.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *