Галогенные лампы. Виды и устройство. Работа и особенности
Многие считают, что галогенные лампы относятся к особенному типу, в них якобы применяется необыкновенный метод образования света. Но все гораздо проще. Это обычные лампы, они являются моделью модернизированной лампы накаливания. В них светит раскаленная вольфрамовая тонкая нить.
Однако, они имеют некоторые особенности. В колбе лампы содержится наполнитель – газ, в который добавлены так называемые галогены, состоящие из йода, хлора и брома. Эти добавки предотвращают при определенной температуре потемнение колбы, и как следствие, снижение светового потока. Поэтому размер колбы, намного меньше, чем у обычных ламп. Вследствие этого повысили давление в колбе с газом. Появилась возможность использования дорогостоящих инертных газов вместо наполнителя.
Принцип работыНекоторые преимущества галогенных ламп:
- Яркий свет за все время работы.
- Компактные размеры.
- Повышенный срок работы, в сравнении с обычными лампами.
- Увеличенный поток света при равной мощности из-за повышенной светоотдачи.
Атомы вольфрама вылетают с поверхности нагретой спирали, но не долетают до колбы, и с помощью химического процесса возвращаются обратно. Это называется галогенным циклом.
Казалось бы, что технология с применением галогенов отработана в совершенстве, вследствие чего лампа будет служить очень длительный срок. Но не все так просто. Атомы вольфрама в результате испарения удаляются с одного места спирали, а прилетают назад на совершенно другие места. В конце концов, в галогенке возникает такая же ситуация, как в обычной лампе, то есть, одни участки спирали утончаются, температура на этом участке повышается, так же как и испарение. Это приводит к тому, что лампа перегорает.
Галогенные лампы наиболее эффективны в своей работе при малом объеме колбы. Этим можно объяснить небольшие размеры изготовления галогенных ламп.
Параметры лампНоминальное значение напряжения галогенок разделяется двумя группами: высокое – 110-240 вольт и низкое – 6-24 вольт. Интервал мощностей полностью соответствует интервалу простых ламп накаливания.
Температура работы и объем теплоты, выделяемой лампами, являются основным свойством излучателей тепла, и представлены повышенными значениями. Вследствие этого галогенки имеют повышенную чувствительность к влаге, являются пожароопасными.
Горячая часть лампы находится очень близко с контактами клемм напряжения питания. Поэтому материал изготовления патрона и материал светильников, оснащенных галогенными лампами, должен быть изготовлен из термостойкого и несгораемого материала. Параметры работы ламп сохраняются при любой окружающей температуре.
Схемы работыПодключение галогенных ламп не имеет отличия от простых ламп накаливания, их вкручивают в патрон светильника, и лампы светят до окончания срока службы. Больше нет никаких дополнительных подключений.
Низковольтные галогенные лампы работают от низковольтных трансформаторов. Ток в сети низкого напряжения достаточно велик, поэтому подключают несколько отдельных групп приборов освещения с раздельными трансформаторами питания. Галогенки могут функционировать как от постоянного тока, так и от переменного.
Время работы галогенокПринято считать, что стандартный срок работы сетевых и низковольтных ламп равен 2000 часов. Некоторые модели ламп могут иметь повышенный срок службы, до 4000 часов. Механические повреждения ламп при работе и частые действия с выключателем освещения значительно уменьшают срок службы.
Цвет температурного спектра галогенных ламп больше, чем у обычных, и составляет 3200 К. Цветопередаточный индекс галогенок наибольший, он составляет 100 Rа.
Особенности работыКроме вышеперечисленных особенностей, имеются еще некоторые моменты:
- К лампам в кварцевых колбах одинарного исполнения нельзя прикасаться голыми руками. Это можно объяснить тем, что кварц имеет способность кристаллизоваться возле инородных частиц, которые заносятся во время прикосновения.
- Некоторые модели галогенных ламп специального назначения не могут работать в любом положении, и нуждаются в определенном размещении в светильнике.
Такие галогенные лампы имеют резьбовой цоколь, предназначены в качестве замены обычных ламп со спиралью в светильнике.
Линейные лампы служат для работы в прожекторах, светильниках для уличного освещения.
Галогенные лампы низкого напряженияЛампа зеркального типа с отражателем из алюминия служит для открытых типов светильников.
Капсульная галогенка низковольтная служит для декорации освещения точечного вида.
Низковольные трансформаторы для галогенокОбычные простые трансформаторы ничем не примечательные в конструкции. Похожи на свои аналоги в электронике. Сердечники трансформаторов бывают тороидальные и Ш-образные.
Вследствие значительных токов работы ламп на вторичной обмотке трансформатора сечение провода может достигать 4 мм2. В корпусе имеются различного типа предохранители. Маркировка на корпусе имеет обозначения предохранителей. К недостаткам трансформаторов с электромагнитным действием относится большой вес. Например, трансформатор на 300 ватт имеет массу до 12 кг. Напрашивается мысль о том, насколько опасным является установка такого тяжелого прибора под потолок, и что после этого может произойти.
Для решения таких проблем, в наше время инновационных технологий придуманы и запущены в производство трансформаторы с электронной начинкой, которые правильнее называть электронными источниками питания. Такие приборы имеют в составе частотный преобразователь, повышающий частоту напряжения питания до 30000 герц. За счет этого величина габаритов трансформатора значительно снизилась.
Вес трансформаторов с электронной начинкой небольшой. При повышении мощности размер увеличивается ненамного. Также они греются меньше, в работе более тихие.
Как выбрать трансформаторЧтобы трансформатор проработал долго, необходимо сделать правильный выбор его параметров. Рассмотрим это на примере. Требуется подключение 3-х ламп мощностью 50 ватт. В итоге выходит 150 ватт, значит, нужен трансформатор на 150 Вт.
Если нужно подключить 4 лампы по 35 ватт, в сумме выходит 140 ватт, то выбирают также на 150 ватт. При применении таких трансформаторов можно загружать его меньше номинального значения на 15 ватт. В схеме подключения применяют светорегулятор. Специалисты не советуют устанавливать такие устройства для галогенных ламп низкого напряжения, так как он быстро сгорит. Но это не совсем так. В продаже имеются светорегуляторы, которые служат именно для таких типов ламп. Если вы применяете обычный светорегулятор, то иногда включайте свет на всю яркость. Эта процедура позволит продлить срок службы светорегулятору на долгие годы.
Достоинства галогенокПриборы освещения с применением галогена имеют свои особенности и свойства. Преимуществами галогенных ламп можно назвать следующие особенности:
- Дают очень приятный для глаз свет для повышенного внимания. Яркий свет излучения снижает напряжение глаз, кристаллик в глазном яблоке не испытывает перенапряжения.
- Отлично сочетается с осветительными системами для рекламных целей, например, для рекламы товаров потенциальным покупателям. При оформлении витрин магазинов белый приятный свет считается оптимальным вариантом. При помощи галогенных видов прожекторов создают фокусировку точечного вида. Специалисты отмечают, что при освещении галогенными лампами цвет поверхностей получается насыщенным и интенсивным, краски обретают новую жизнь.
- Прожекторы на основе галогенных ламп встраиваемого вида стали самыми удобными для освещения дворов. Такие осветительные устройства легко переносят резкие перепады температур. Так же как и светодиодные устройства, они устойчивы к факторам внешней среды, атмосферным явлениям. Чтобы они долго служили, нужно обеспечить хорошую герметичность. Галогенные лампы и прожекторы бытового назначения можно перед приобретением изучить по фотографиям. Они более экономичны на 20%, чем лампы накаливания. Главная их особенность – это яркий свет, освещающий все необходимое пространство.
- Не всем людям подходит белое яркое освещение, которое бьет по глазам, и не во всех местах уместно. В спальнях или детских комнатах редко встречается галогенное освещение. В таких помещениях их могут устанавливать лишь под углом, опытными специалистами, по разработанной схеме освещения.
- Наружная стенка колбы лампы прочная, но она может быть повреждена. Вследствие этого может выйти наружу газ, который опасен для человека. От одной лампы не будет большого вреда, но если ламп много, то это может вызвать мигрень или головокружение.
- Галогенки для бытового применения имеют свои недостатки, как и другие разные устройства. Например, их не советуют ставить в ванной комнате, так как на них будет действовать постоянно влажный воздух, от которого лампы могут в скором времени взорваться.
Разбившиеся галогенные лампы требуют особой утилизации цоколей, осколков и патронов.
Их нельзя выкидывать в обычные баки для мусора. Это является серьезным недостатком. Неисправную лампу нужно положить в универсальный контейнер для отходов химии, если он имеется, или сдать в специальную организацию, которая работает по оказанию подобных услуг.
Похожие темы:
Галогенные лампы – это экономично и долговечно!
Содержание:
- 1. Что такое галогенная лампа?
- 2. Плюсы и минусы изделий
- 3. Плюсы
- 4. Минусы
- 5. Подробно о видах
- 6. Для тех, кто еще сомневается
В последнее время в жилых помещениях и на объектах коммерческого назначения все чаще на смену обычным лампам накаливания приходят современные источники света. Почему? Во-первых, из-за низкой энергоэффективности ламп накаливания. На освещение затрачивается большое количество электроэнергии. При этом одна лампа из общего числа потребляемой мощности только 5% задействует на освещение, а 95% уходит на ее нагрев. Во-вторых, со временем стеклянная колба темнеет из-за оседания на ее стенках частиц вольфрама. Это делает освещение слабее. В-третьих, служат лампы накаливания не более 1000 часов, а многие из них перегорают сразу после замены, например, из-за перенапряжения. И даже невысокая цена ламп накаливания не удерживает потребителей от их замены на лампы другого вида, например, галогенные.
Подсветка подвесного потолка, точечные светильники кухонного гарнитура, настольная лампа или уличный прожектор – везде можно устанавливать галогенные лампы. Стоит отметить, что, кроме сторонников, имеются и противники данного вида ламп, которые говорят об их небезопасности и низкой эффективности. Не верьте мифам! Давайте разберемся детально в том, как устроены галогенные лампы, какие виды изделий существуют и действительно ли их можно смело применять для интерьерного освещения. Начнем с главного.
Что такое галогенная лампа?
Данное изделие состоит из колбы, в которой, как и в лампе накаливания (ЛН), находится нагревательная спираль из вольфрама. Пространство внутри заполнено буферным газом с добавлением галогенов, в частности, паров брома, хлора, фтора и йода. Они снижают испарение вольфрама с нити накала в процессе ее нагрева. Это препятствует потемнению колбы и увеличивает ресурс работы лампы в 3 – 5 раз, по сравнению с ЛН. Испаряемые с тела накала частицы вольфрама возвращаются на спираль, что способствует увеличению температуры ее нагрева, а следовательно, и интенсивности свечения. По спектру цветовая температура ламп галогенного типа близка к абсолютно черному телу, то есть составляет 2700 – 3000 К. Это качество наделяет изделия хорошей цветопередачей и позволяет отлично подсвечивать объекты теплых тонов. Стекло колбы может быть прозрачным или матовым, в зависимости от этого свет будет ярким или приглушенным.
Для справки: абсолютно черным телом принято считать такое физическое тело, которое поглощает направленное на него электромагнитное излучение, при этом ничего не отражает.
Сегодня выпускают галогенные лампы, обладающие различной мощностью и рассчитанные на разное напряжение.
Плюсы и минусы изделий
Интерес к галогенным лампам, как к новому явлению в современном освещении, очень велик со стороны и тех, кто хочет установить их у себя в квартире, и владельцев объектов коммерческого назначения. Изучая информацию в интернете, на форумах, спрашивая консультантов в магазинах электротехники, они слышат множество как положительных, так и отрицательных отзывов. Окончательно запутавшись, уже начинают сомневаться, так ли целесообразно использование галогенных ламп. Объективное мнение можно сложить, только самостоятельно оценив все плюсы и минусы изделий. Вы тоже сомневаетесь? Принять окончательное решение вы сможете, взвесив все «за» и «против», которые мы приведем.
Плюсы
- Компактность – по сравнению с ЛН, корпус галогенных ламп более миниатюрный, что позволяет устанавливать их в точечных плафонах подвесных потолков и мебели. Также это отличная альтернатива энергосберегающим лампам, которые по своим габаритам подходят далеко не под все плафоны.
- Хорошая светоотдача – данный показатель у изделий галогенного типа составляет 15 – 22 лм/Вт, тогда как у ламп накаливания он находится в пределах 7 – 17 лм/Вт. Чем выше это значение, тем эффективнее и экономичнее будет освещение.
- Долгий срок службы – ресурс галогенных ламп составляет от 2000 до 4000 часов, что в 2 – 4 раза выше, чем у ЛН. Если использовать устройство плавного включения, то можно продлить время работы до 8000 – 12 000 часов.
Минусы
- Чувствительность колбы к загрязнениям – при установке галогенных ламп не рекомендуется дотрагиваться до стекла пальцами. В результате остаются потожировые следы, которые при нагреве могут вызвать потемнение. Лучше брать лампочку через салфетку или в чистых перчатках.
- Высокий нагрев колбы – избежать получения ожогов можно, установив лампы таким образом, чтобы не было вероятности соприкосновения человека с нагретой колбой. Также не следует допускать нагрева лампой различных поверхностей.
- Возможные трудности с монтажом – не всякую галогенную лампу удастся вкрутить в светильник и сразу же включать его. Низковольтным изделиям требуется подключение через понижающий трансформатор. Также для продления ресурса работы таких изделий бывает необходимо устройство плавного включения.
Стоит отметить, что описанные недостатки станут для вас несущественными, если знать, как использовать галогенные лампы, и соблюдать рекомендации по установке. Преимущества же сделают эти изделия универсальными. Их применяют в бытовом освещении, автомобильной оптике, декоративной подсветке, осветительной фотоаппаратуре, промышленных прожекторах и т. д. Нас же интересуют те, что предназначены для интерьерной и архитектурной подсветки и освещения. О них пойдет речь далее.
Подробно о видах
Допустим, вы планируете заменить все осветительные приборы в квартире на модели с галогенными лампами или ищете мощный источник света для освещения рабочей площадки. Вариантов установки может быть два: лампа вставляется в осветительный прибор на место обычной лампы накаливания или приобретается специальная осветительная техника с возможностью установки только галогенных ламп. Независимо от того, какой из вариантов вы предпочтете, необходимо знать, какие изделия в каких случаях используются, какие у них типы цоколей и особенности конструкции. Прочитайте информацию в таблице, и для вас не составит труда подобрать галогенную лампу для конкретных задач и условий эксплуатации.
Тип лампы | Описание |
Линейная |
Имеет длинную колбу из кварцевого стекла, с обеих сторон которой находятся выводы с цоколями типа R7S. Внутри по всей длине колбы заключена нить накала, которая крепится на специальных проволочных кронштейнах. Длина корпуса может быть от 78 до 118 мм. Главной особенностью является очень яркий свет, поэтому обычно такие лампы применяются для уличного освещения и архитектурной подсветки, например, устанавливаются в прожекторах |
С внешней колбой
|
Галогенная лампа заключена внутрь колбы, которая по виду напоминает лампу накаливания. Это помогает защитить ее от прикосновений и, как следствие, от потемнения. Выпускаются изделия с типом цоколя Е14 и Е27, поэтому являются заменой энергосберегающим и лампам накаливания в бытовых светильниках, настольных лампах, люстрах и т.д. |
С отражателем
|
Их еще называют лампами направленного света. Корпус представляет собой полусферу, на внутренних стенках которой находится светоотражающий материал, за счет которого формируется направленный световой поток. |
Капсульная
|
Ее корпус – это миниатюрная капсула, в которой заключена спираль накала. На конце капсулы расположены металлические выводы для крепления в патрон. Различаются такие изделия по типу цоколя: G4; G5,3; G9. Устанавливаются такие лампы в приборах, используемых для интерьерной подсветки, например, точечных светильниках, встроенных в мебель, и гипсокартонные конструкции. Иногда их применяют и в приборах бытового освещения |
Если вы ищете галогенные лампы для установленной осветительной техники общего назначения, то следует подбирать лампы по типу цоколя. Когда стоит вопрос о монтаже подсветки с нуля или покупке галогенных осветительных приборов, исходить нужно из конкретных задач и уже в соответствии с ними подбирать конкретные модели и лампы к ним.
Для тех, кто еще сомневается
Все до сих пор не уверены, подойдут ли галогенные лампы для решения ваших задач? Тогда посчитайте, сколько раз в год вам приходится менять обычные лампы накаливания, например, в люстре. Кроме денежных затрат на покупку новых ламп, это еще и масса неудобств – приходится подниматься на высоту, выкручивать перегоревший элемент и вкручивать новый. Особенно если высота потолка более трех метров, и замена ламп заставляет в прямом смысле попотеть. С галогенными лампами такие ситуации будут возникать гораздо реже. Заменять лампочки в люстре вы будете, например, не три раза в год, а раз в три года.
Широкий диапазон мощности выпускаемых изделий галогенного типа делает их универсальными – в точечный светильник подвесного потолка можно установить лампочку на 35 Вт, в промышленный прожектор – на 150 Вт. Заменив обычные лампы на галогенные, можно сэкономить до 50% электроэнергии, затрачиваемой на освещение. Согласитесь, это не так уж мало! Несмотря на то что галогенные лампы дороже ламп накаливания, по цене они гораздо доступнее люминесцентных и светодиодных аналогов. Их можно смело назвать золотой серединой по соотношению цены и срока службы. Если вы не готовы поменять все осветительные приборы на галогенные, можете заменить для начала только лампочки и подсчитать, сколько денег на оплате счетов вы сэкономите.
Уже готовы купить галогенные лампы? Тогда выбирайте их на нашем сайте и делайте заказ. В каталоге вы найдете изделия, различающиеся по мощности, типу цоколя и напряжению, а также понижающие трансформаторы для низковольтных ламп. Оформляйте заказ через сайт или звоните по телефону 8-800-333-83-28.
Плюсы и минусы галогенных ламп
Спросите любого жителя мегаполиса, без чего не может обойтись современный человек. Ответы будут самыми разными, но до того момента, пока не выключат свет в квартире. Причина не важна, хоть те же самые плановые работы на подстанции. Не работает телевизор, компьютер, чайник, и в доме темно. Так что самой необходимой характеристикой оказывается именно электричество.
Важность искусственного освещения пространства даже не обсуждается. С чего же отсчитывается «лампочное летоисчисление»?
Начало всему положила обыкновенная лампа накаливания, или по-простому лампочка (кто-то кличет ее «лампой Ильича», т.к. она появилась в советскую эпоху в домах колхозников). К ней уже все привыкли, ее можно приобрести в любом магазине. Это хитрая конструкция из цоколя и специального стекла, из которой выкачали воздух. В вакууме располагается нить вольфрама. За счет электричества ниточка накаляется и дает свет, поэтому ее также называют «нитью накаливания». Огромным недостатком такого источника освещения является то, что дизайнеры не могут изменить ее форму, и им приходится под него подстраиваться.
Следующим этапом эволюции этого приспособления стала лампа галогенная. При сравнении с обычным светильником она невероятное изобретение и огромный шаг вперед в оформительском и научном ключе.
Структура галогенной лампы
Светильник представляет собой что-то вроде колбы, часто двойной. Он меньше по размерам, если сравнивать его с устройством накаливания. Его колба сделана из кварца, материала, который просто не выносит никакого жира. А это значит, что при замене следует брать лампу с помощью сухой салфетки или тряпочки. В противном случае контакт с голыми руками вызовет кристаллизацию и разрушение механизма, т.е. он перегорит.
Преимущества галогенной лампы
Первое, что стоит отметить внутри нее не вакуум, а инертный газ, в который помещены галогены. Это не что иное, как бром и йод. А для чего же они применяются? Нитка вольфрама имеет свойство испаряться. Конечно, это происходит не моментально, но довольно быстро. В среде же инертного вещества процесс замедляется, а температура накаливания сохраняется, поэтому механизм служит дольше.
Второй положительный эффект от использования галогенов также важен. Как бы ни старались дизайнеры и сами обитатели помещения, от обычной лампы накаливания невозможно добиться света, полностью соответствующего задумке. Он резкий и имеет желтоватый оттенок. В галогенной лампе благодаря йоду свет получается мягким, ровным и ярким, поскольку реагент не дает стеклу вступать во взаимодействие с молекулами вольфрама, предотвращая образование легкой пленки на поверхности устройства.
Третьим плюсом галогенных световых конструкций является отношение их к классу энергосберегающих устройств.
Еще одно обстоятельство может подвигнуть вас к покупке галогенки: за счет того, что свет от нее ровный, ткани и обивка в помещении защищены от выгорания.
Минусы устройства
При покупке этого чуда техники следует знать, что одним из немногих недостатков лампочки является то, что ее колба при длительном включении сильно нагревается. Но это не должно вас настораживать. Если вместе с устройством приобрести специальный дихроичный отражатель, эта небольшая неприятность с высокой температурой его поверхности решится сама собой. В жилых пространствах самыми практичными считаются галогенные светильники с двойной колбой, оснащенные дихроичными и световыми отражателями.Небольшая рекомендация от специалистов не используйте галогенки без фильтров против ультрафиолетового излучения, которые защитят ваши глаза, кожу и предметы интерьера от вредоносного воздействия.
Применение в дизайне
Именно галогенные конструкции позволят оформительской мысли без проблем решать, как подстроить освещение под свой замысел, а не отказываться от блестящих идей. Во-первых, галогенные светильники отличаются минимальными размерами, поэтому чтобы установить эти приборы не придется опускать слишком сильно потолок. Максимум на 6 см.
Во-вторых, свет можно сделать направленным, чтобы очертить определенную территорию. Сейчас стало модным зонировать пространство в комнатах. Также с помощью разноцветных защитных стекол добиться цветовой феерии в освещении стало значительно проще. А если применить еще и поверхность с рифленой структурой, свет станет «искрящимся» потоком, что выглядит невероятно эффектно, особенно в большом помещении, где нужно выделить лишь определенную часть.
Виды мощности у галогенных лампочек
Эти устройства бывают разной мощности – в 220 вольт и в 12 вольт.
С первыми все довольно понятно, потому что 220 вольт это стандартное напряжение в сети. Для второго варианта вам нужно будет купить дополнительно понижающий трансформатор. При установке более чем 10 галогенных светильников, лучше взять несколько маленьких трансформаторов, чем один на всю конструкцию. Причины для этого крайне практичны.
Во-первых, чтобы заменить большой трансформатор, если он перегорит, понадобится крупное вложение средств. Во-вторых, если сломается оборудование, отвечающее за 3 светильника из 12, остальные 9 будут работать.
Галогенная лампа, конечно, имеет свои недостатки, но, по сравнению со своей предшественницей, она обладает рядом преимуществ, способных склонить рачительного хозяина и думающего дизайнера к ее использованию при оформлении пространства.
Плюсы и минусы галогеновых ламп
Безопасность на дороге, особенно в темное время суток, во многом зависит именно от качества освещения дороги. Существует несколько видов осветительных приборов, но в данной статье хотелось бы рассказать именно о галогеновых лампах, их достоинствах и недостатках.
Как появились галогеновые лампы?
Изначально в машины ставились обычные лампы накаливания, которые довольно долго использовалисьв качестве единственного источника освещения проезжей части, но не отличались хорошими показателями яркости и долгим сроком службы. С развитием новых технологий были разработаны галогеновые лампы, которые и пришли на смену стандартным лампам накаливания. Пик их популярности приходится на 80-е годы. Такая популярность этих ламп объясняется, в первую очередь, небольшой ценовой политикой, которая полностью соответствует световым характеристикам ламп. Сегодня галогеновые лампы используют как источник ближнего и дальнего света, а также как противотуманные и габаритные фары.
Галогеновые лампы
Обычные галогеновые лампы – это лампы, которые имеют две нити накаливания для ближнего и дальнего света. В основном, они отличаются от обычных ламп накаливания тем, что наполнены парами газов, в данном случае это пары бора или йода. Срок службы таких ламп небольшой, но при правильной эксплуатации они смогут вам прослужить полтора, два года. Такие лампы изготавливаются из кварцевого стекла, но стоит отметить, что оно иногда реагирует на вибрации и встряски, что может привести к быстрому выходу из строя самой лампы. Галогеновые лампы отличаются своей компактностью и являются прекрасным вариантом освещения для автомобилей разных марок.
Галогеновые лампы. Плюсы и минусы
Плюсы |
Повышенная светоотдача. |
Хорошая яркость. Свет галогеновых ламп имеет желтоватый поток, который обеспечивает качественную видимость дорожного полотна в ночь и при непогодных условиях. Достаточно неплохая яркость позволяет осветить не только дорогу перед автомобилем, но и захватить обочину, что позволяет заранее увидеть пешеходов или животных, предотвратив аварию. |
Широкий выбор цветов. Благодаря нанесению на поверхность стеклянной колбы напыления разных оттенков, достигаются различные цвета галогеновой лампы, а именно, синий или желтый. |
Эксплуатационный период. Время работы галогеновых немного выше, чем у обычных ламп накаливания. В лучшем случае и при правильной эксплуатации, такие лампы смогут вам прослужить до двух лет. |
Минусы |
Высокая температура. Колба галогеновой лампы нагревается до высокой температуры, причиной чего является большая светоотдача и сильный разогрев вольфрамовой нити. |
Качество лампы. Это касается не всех ламп, так как некоторые производители, чтобы снизить стоимость продукта, которая и так небольшая, делают галогеновые лампы низкого качества по низкой цене. |
Низкая экономия энергии. Галогеновые лампы не являются экономными, так как потребляют большое количество энергии. |
Дополнительный уход. Такие лампы смогут нормально функционировать только в идеальных условиях эксплуатации. |
Многих водителей интересует вопрос, почему галогеновые лампы быстро перегорают? Сейчас мы попытаемся выяснить основные причины этой проблемы.
Причины, почему галогеновые лампы быстро перегорают
- Скачок напряжения. Дело в том, что галогенки могут быть подключены напрямую в сеть или через специальный трансформатор. Если лампы подключены к сети, то при каждом их включении происходит сильный скачек напряжения, который и может привести к перегоранию галогеновых ламп.
- Неправильная установка. Если проводить монтаж галогеновых ламп неосторожно и без перчаток, то это может привести к быстрому их выходу из строя. Использование перчаток рекомендуется для того, чтобы ограничить цоколь и саму колбу лампы от отпечатков пальцев, так как из-за этого колба может лопнуть.
- Неисправный генератор, от которого и возникают скачки напряжения.
Устройство и работа галогенок
Большинство автолюбителей прекрасно знают, что такое галогеновые лампы, но многие не знают, чем они отличаются от других осветительных приборов. Сегодня мы хотели бы разрушить этот стереотип и больше рассказать, как о самой галогеновой лампе, так и о принципе ее работы.
Галогеновые лампы. Принцип работы
Галогеновые лампы – это следующее поколение стандартных ламп накаливания. Огромную популярность они получили в начале 80-х годов и до сих пор являются хорошим выбором многих автолюбителей.
Что же такое галогеновая лампа? Это стандартная лампа, в которой находится буферный газ. В основном, это пары брома или йода. У таких ламп небольшой эксплуатационный период, который в определенных случаях достигает отметки в 1500 рабочих часов. Галогенки способны намного быстрее и сильней разогреть нить накаливания, что обеспечит прекрасную видимость проезжей части в любое время суток. Принцип работы галогеновых ламп немного отличается от обычной лампы накаливания. Здесь пары галогена в смеси с инертным газом обеспечивают нити накала защиту от окисления и разрушения, а попутно, и яркое свечение. Также это отображается и на эксплуатационном периоде лампы. Хоть галогеновые лампы и имеют прекрасные технические показатели, но все же они имеют свои недостатки.
Преимущества галогеновой лампы
- Хорошая светоотдача
- Небольшие размеры
- Ближний/дальний режимы света (не для всех цоколей)
- На протяжении всего срока службы галогеновый лампы сохраняется та же яркость
- Безопасная установка и работа
Недостатки галогеновой лампы
- Высокая вероятность перегорания лампы из-за скачков напряжения
- Высокая температура колбы лампочки во время работы и вероятность взрыва колбы
Галогеновые лампы – устройство на самом деле уникальное, так как в автомобильной оптике используются исключительно все поколения галогеновых ламп, и каждый вид используется только по своему прямому назначению. Их установка не требует каких-то специальных знаний, достаточно лишь сохранить в чистоте саму колбу. Галогеновые лампы – оптимальное решение в автомобильной оптике.
Типы цоколей галогенных ламп . Электропара
Галогенные лампы обладают обширным набором достоинств. Это высокая цветопередача, отличная яркость и сила светового потока, долговечность и миниатюрные размеры. Мы не так часто совершаем покупку осветительных приборов, чтобы иметь возможность изучить все особенности того или иного типа лампочек. Двухштырьковые, резьбовые – оказывается, цоколи галогенных ламп бывают очень разными в зависимости от применения.
Винтовой цоколь E27 и E14 – это самые популярные типы цоколей. Наличие резьбы позволяет подключить к патрону практически все известные виды лампочек. Его универсальность является действительно заслуженной.
Штырьковые цоколи
R7s – линейные галогенные лампы, не требующие подключения к трансформатору. Работают такие лампочки обычно в сети 220 Вольт и имеют возможность диммирования. Цоколь с утопленным контактом.
GU5.3 – штырьковый цоколь с расстоянием между контактами 5,3 мм. Стандартные лампы с отражателем. Компактные, удобные в установке. Некоторые модели диммируемые и оснащены защитным стеклом от ультрафиолетовых лучей.
G9 – штырьковый цоколь с расстоянием между контактами 9 мм. Маленькие галогеновые лампочки для монтажа во встраиваемые и потолочные светильники. Диммируемые, яркие осветительные приборы, не требуют трансформатора.
GU10 – штырьковый цоколь с расстоянием между контактами 10 мм. Эти лампы имеют отражатель, рефлекторную колбу, не требуют использования трансформатора.
G53 – штырьковый цоколь с расстоянием между контактами 53 мм. Эти мощные лампы оснащены дихроичным отражателем для мощного пучка света. Диммируемые, УФ фильтр, срок службы около 3 000 часов.
G4 – штырьковый цоколь с расстоянием между контактами 4 мм. Используются для монтажа в точечных светильниках, миниатюрные размеры, работают в сети 12 В.
Какой бы тип цоколя ни был у галогенной лампы, следует всегда при покупке исходить из своих собственнх потребностей и технических характеристики осветительного прибора. Мы гарантируем качество товара.
Классификация и обозначение галогенных ламп
Использование галогенных ламп распространено в торговых объектах, поскольку они компактны и обладают отличной цветопередачей.
Галогенные лампы накаливания подразделяются:
- на линейные
- и компактные (малогабаритные).
Линейные галогенные лампы обычно оборудованы цоколями по обеим сторонам колбы. Лампы мощностью 2000 ватт и выше не оснащены цоколями, а оборудованы плоскими или проволочными выводами для их зажима. Мощность этих ламп варьируется в диапазоне 100–20 000 ватт, а номинальное напряжение составляет 110, 127 и 220 вольт. Линейные лампы российского производства содержат в маркировке буквы КГ или КИ (кварцевые галогенные или йодные галогенные, соответственно) и следующие за ними цифрами, которые сообщают напряжение и мощность ламп. В некоторых случаях, после указания мощности лампы через дефис может указываться цифра, информирующая о модификации лампы. Например, в маркировке КГ 220–1000-5 указана пятая модификация лампы.
Малогабаритные галогенные лампы выпускаются для работы в сетях с напряжением 220 В и мощностью 500–5000 Вт. Применяются лампы с высокой мощностью чаще всего для установки в прожекторы для киносъемок. Компактные лампы оснащены особыми цоколями и имеют специальную конструкцию. В последнее время выпуск этих ламп снижается, так как их сменяют металлогалогенные источники света, имеющие повышенные технические характеристики.
В маркировке российских компактных галогенных ламп содержатся буквы КГМ или КГМН (кварцевая галогенная малогабаритная), АКГ (автомобильная кварцевая галогенная), КГСМ (кварцевая галогенная самолетная малогабаритная), после которых указываются номинальное напряжение, и мощность. У автомобильных галогенных ламп с двумя накаливаемыми телами (для переключения ближнего и дальнего света) в маркировке присутствует мощность каждого накаливаемого тела.
У ламп с отражателями в обозначении, кроме напряжения и мощности, должны указываться угол рассеяния и диаметр отражателя.
Области и особенности применения галогенных ламп
Линейные галогенные лампы чаще всего используются при освещении улиц, торцевых частей зданий, рекламных вывесок и т.д. Компактные галогенные лампы, оснащенные отражателями, применяются для точечной подсветки музейных экспонатов, ювелирных товаров, а также в настольных лампах. Компактные галогенные лампы без отражателей, помимо точечного освещения, применяются в различных оптических и сигнальных устройствах.
Важно учитывать то, что из-за особенностей химических процессов почти все линейные галогенные лампы работают лишь в горизонтальном положении, и максимальный угол их наклона составляет 4°. При увеличении этого угла верхняя часть колбы быстро темнеет, и продолжительность службы лампы резко снижается. Компактные галогенные лампы работают одинаково независимо от расположения.
Следует отметить, что галогенные лампы дороже обычных ламп накаливания в 10 и более раз, так как в них применяются дорогостоящие материалы (ксенон, кварц), а также имеют более сложный и высокотехнологичный процесс изготовления. Поэтому использовать такие лампы нужно там, где это на самом деле необходимо и экономически оправдано, несмотря на высокие характеристики ламп.
Несколько подробнее можно рассказать о лампах с колбами из прессованного стекла, оснащенные с внутренней стороны отражателем (PAR-лампы). Эти лампы выполняют задачи лампы и светильника одновременно. Лампы типа PAR обычно оснащены цоколем Е27, что позволяет устанавливать их в обычные патроны, и предназначены они для эксплуатации в сетях с напряжением 220 В. Установленный отражатель образует нужную кривую распределения силы света, отчего пропадает необходимость в использовании дополнительной оптики. Характеристики этих ламп несколько хуже, чем характеристики компактных ламп, оснащенных отражателем, но пользуются большим спросом, так как подключаются в сеть 220 В без использования трансформатора. Обычно эти лампы используются при создании системы точечной подсветки торговых залов и витрин.
Задолго до появления ламп PAR возникли автомобильные и самолетные лампы, тоже выполняющие функции ламп и осветительных устройств. Лампы выпускаются в колбах из прессованного стекла, на внешней стороне которой устанавливается отражатель. Такие лампы работают на низком напряжении (12–24 В) и оснащены особыми цоколями.
Характеристики российских и зарубежных ламп накаливания общего назначения почти не различаются. Характеристики зарубежных галогенных ламп чуть лучше, чем характеристики отечественных. К примеру, продолжительность службы низковольтных ГЛН немецких фирм достигают 10 000 часов и имеют светоотдачу 22 лм/Вт, тогда как лампы российского производства, имеющие те же значения, имеют срок службы всего 2 000 часов.
Классификация галогенных ламп позволяет разобраться в их разнообразии. Ведь даже их форма различна. Отличия имеются по типу цоколя, материалам, мощности, напряжению питания. Даже тел накала может быть не один, а два. Лампы могут быть изначально оснащены оптическими элементами.
Галогенные лампы: принцип действия, классификация и ключевые преимущества
Галогенные лампы— это отличная альтернатива светодиодным и люминесцентным светильникам. Такие источники освещения сохраняют принцип экономного потребления электрической энергии, излучая при этом сбалансированный поток света и не требуя соблюдения правил утилизации. У ламп данного типа существует огромное количество преимуществ, делающих их эксплуатацию чрезвычайно выгодной. Однако есть и недостатки.
Конструктивно галогенные лампы представляют собой традиционные лампы накаливания, в которых используется нить из вольфрама особой марки. Главным же отличием является заполнение колбы смесью кислорода и инертного газа с галогеносодержащими компонентами (как правило, это соединения йода и брома). Работа этих источников освещения базируется на испарении вольфрама с нити накаливания, который галогены переносят обратно на спираль. Там под воздействием температуры соединения распадаются, выделяя свет. Это обеспечивает таким лампам ключевые преимущества: во-первых, стенки колбы не темнеют, поскольку вольфрам возвращается на спираль, а во-вторых, происходит регенерация нити, что увеличивает эксплуатационный ресурс.
Преимущества и недостатки галогенных ламп
Конструктивные особенности галогенных ламп и специфика применяемых материалов обеспечивают изделиям ряд ключевых достоинств и недостатков, которые следует рассмотреть с точки зрения критериев эксплуатации.
К преимуществам относятся:
- Экономичность. Благодаря высокому давлению, хорошим рабочим характеристикам вольфрама и удержанию основной части тепла в колбе светоотдача галогенных ламп обеспечивается в пределах от 15 до 22 лм/Вт (при 12 лм/Вт у обычных ламп накаливания). При одинаковой мощности энергопотребление у таких источников снижено в два раза.
- Срок службы. За счет частичного восстановления спирали, эксплуатационный ресурс галогенных ламп составляет от 2 до 5 тысяч часов.
- Качество излучаемого света. Светильники, работающие на основе галогена, генерируют излучение, максимально близкое по спектральному составу к дневному. По данному параметру они обходят даже люминесцентные и светодиодные лампы. Даже при сильном нагревании у «галогенок» цветопередача сохраняется в диапазоне Ra 99–100.
- Размеры. Возможность создания энергоэффективных, но при этом компактных источников освещения, сыграла значительную роль в высокой популярности галогенных ламп. Лаконичность размеров позволяет им соответствовать любым требованиям современного дизайна интерьеров, когда свет устанавливается при устройстве натяжных и подвесных потолков, а также других конструкций. Кроме того, за счет компактности их можно использовать даже в автомобилях.
Кроме того, галогенные лампы совместимы с диммитирующими приборами (регулирующими освещенность) и отличаются высокой безопасностью работы в различных условиях, включая избыточную влажность.
Недостатков у галогенных ламп мало, но они все же имеются. Минусы, в первую очередь, связаны с высокой температурой нагрева колбы, что создает риски возгорания или оплавления. Кроме того, малейшее загрязнение поверхности может вывести элемент из строя.
Виды галогенных ламп
Сегодня галогенные лампы представлены широким разнообразием моделей и конструкций. Так, различают линейные источники, изделия с внешней колбой и источники направленного света. Кроме того, встречаются капсульные варианты — миниатюрные светильники, специально предназначенные для низковольтных сетей. Такая вариативность конструктивных и технических исполнений обеспечивает галогенным лампам достаточно широкую сферу применения.
Их преимущества удовлетворяют запросам как при организации обычного освещения, так и для решения сложных дизайнерских задач с наличием регулирующей электроники и цепей управления. При этом сохраняется экономичность, долговечность и безопасность галогенных ламп.
Вольфрамовые галогенные лампы и газонаполненные лампы
Применение и технические примечания
Ниже приводится техническая информация и информация по применению вольфрамовых галогенных и газонаполненных ламп ILT. Многие из наших ламп можно приобрести прямо в нашем интернет-магазине. Чтобы поговорить с одним из наших экспертов по лампам, узнать о лампе, изготовленной по индивидуальному заказу, или попросить образец, свяжитесь с нами, заполнив форму здесь.
ILT предлагает большой выбор газонаполненных ламп с различными размерами, цоколями и типами газа, включая цоколи T-1 3/4, G4-G10, двухштырьковые, проволочные выводы, сборки отражателей MR3 — MR11 с газами. включая галоген, ксенон, аргон и криптон
<Назад ко всем источникам света
Обзор ламп Настроить мою лампу
Как работают вольфрамовые галогенные лампы (краткий обзор)
Вольфрамовые галогенные лампы по конструкции аналогичны обычным газонаполненным лампам с вольфрамовой нитью, за исключением небольшого следа галогена (обычно брома) в заполняющем газе.
Газообразный галоген вступает в реакцию с вольфрамом, который испарился, мигрировал наружу и отложился на стенке лампы. Когда стенка кварцевой оболочки достигает температуры приблизительно 250 ° C, галоген вступает в реакцию с вольфрамом с образованием галогенида вольфрама, который отделяется от стенки лампы и мигрирует обратно к нити накала.
Галогенид реагирует на нити накала, где температура около 2500 ° C вызывает диссоциацию вольфрама и галогена. Вольфрам осаждается на более холодных частях нити, а галоген высвобождается для продолжения цикла.
Нить накала вольфрамовой галогенной лампы служит двум целям. Один из них предназначен для генерации света, а второй — для выработки тепла, необходимого для получения температуры стенок выше 250 ° C.
Эти лампы спроектированы таким образом, чтобы поддерживать требуемую температуру стенок при работе от расчетного напряжения. Снижение напряжения более чем на 10% от расчетного, вероятно, приведет к падению температуры стенок ниже требуемых 250 ° C.
Испытания показывают, что в большинстве случаев эти пониженные рабочие условия не влияют на работу лампы.К тому времени, когда температура стенки упадет до точки, при которой цикл галогена перестает функционировать, температура нити снизится до точки, при которой испарение вольфрама будет незначительным. Если наблюдается почернение стен, следует избегать диапазона рабочего напряжения, при котором это происходит. Сжигание лампы при расчетном напряжении в течение короткого периода времени обычно может устранить почернение лампы из-за временной эксплуатации в таком диапазоне напряжений.
Однако в редких случаях вольфрамовые галогенные лампы со снижением номинала более чем на 10% могут испытывать неблагоприятную реакцию коррозионного воздействия галогена на вольфрамовую нить, что приводит к преждевременному выходу лампы из строя.Не рекомендуется использовать вольфрамовые галогенные лампы при напряжении, превышающем расчетное, поскольку лампы обычно рассчитаны на свои максимальные пределы. Температура уплотнения лампы не должна превышать 350 ° C, в противном случае произойдет окисление молибденовой ленты, что приведет к преждевременному выходу лампы из строя.
Вольфрамовые галогенные лампы — идеальные источники света для спектрофотометров, поскольку они обеспечивают широкополосное спектральное излучение от ультрафиолетового до видимого и инфракрасного до пяти микрон.Некоторый выход излучения может быть получен при 320 и 340 нм. По этой причине ILT НЕ блокирует УФ-излучение от наших вольфрамовых галогенных ламп.
Выход спектрального излучения для вольфрамовых ламп накаливания
Типы нитей
Подробная техническая информация — вакуумные, газонаполненные и вольфрамовые галогенные лампы
Вакуумные лампы (ссылка на таблицу продуктов)
Вольфрамовая нить вакуумной лампы накаливания нагревается до температур, при которых излучается видимый свет за счет резистивного нагрева.Нить накала действует как электрический резистор, который рассеивает мощность пропорционально приложенному напряжению, умноженному на ток через нить. Когда этого уровня мощности достаточно, чтобы поднять температуру выше 1000 градусов Кельвина, излучается видимый свет. По мере увеличения рассеиваемой мощности количество света увеличивается, а пиковая длина волны света смещается к синему. Типичные вакуумные лампы могут иметь температуру нити накала от 1800 до 2700 градусов Кельвина. Свет от низкотемпературных ламп кажется красновато-желтым, в то время как высокотемпературные лампы выглядят более белыми.
Вольфрамовая нить накала испаряется быстрее, чем выше температура нити. Частицы испаренного вольфрама имеют тенденцию осаждаться на стеклянной оболочке, что со временем приводит к увеличению светового препятствия. В зависимости от области применения препятствие для выхода света может быть достаточно высоким, чтобы закончить срок службы лампы. В конце концов, материал нити накаливания испарится в количестве, достаточном для разрыва нити, что полностью завершит срок службы лампы. Оба эти эффекта сильно зависят от температуры нити накала, поэтому долговечные вакуумные лампы, как правило, работают в нижнем диапазоне температур, и свет имеет желтоватый оттенок.
Первоначально электрическое сопротивление вольфрамовой нити при комнатной температуре довольно низкое. Когда к лампе впервые подается электрическое питание, большой пусковой ток вызывает быстрый нагрев нити накала. Сопротивление нити накала увеличивается до значения, в пять-десять раз превышающего сопротивление холоду, что приводит к стабилизации тока, потребляемого лампой, и к излучению стабильного светового потока. В зависимости от размера нити накала период пуска может составлять от десятков миллисекунд до сотен миллисекунд.Это требование пускового тока следует учитывать при выборе источника питания для конкретного применения лампы.
Газонаполненные лампы (ссылка на таблицу продуктов)
Газонаполненные лампы излучают свет от нити накаливания, работающей в атмосфере инертного газа. Добавление инертного газа подавляет испарение вольфрамовой нити, что увеличивает срок службы лампы или позволяет работать при более высоких температурах в течение того же срока.В качестве обычных газов используются азот, аргон, криптон и ксенон. Стоимость резко возрастает по мере использования более редких газов, особенно для ксенона, из-за их очень низкого естественного содержания. Преимущество газов с более высоким атомным весом состоит в том, что они подавляют испарение вольфрамовой нити более эффективно, чем газы с более низким весом. Это позволяет нити накаливания газонаполненных ламп работать при температурах до 3200 градусов Кельвина и достигать разумного срока службы. Свет от этих ламп имеет высокое содержание синего цвета, что придает свету чисто-белый вид.
Газонаполненным лампам требуется больше энергии для достижения той же температуры накала, чем вакуумным лампам. Окружающий газ охлаждает нить накала, подавляя испарение и уменьшая миграцию испаренного вольфрама на стенку лампы. Более высокая рабочая температура газонаполненных ламп обеспечивает большую светоотдачу на ватт входной мощности, что оправдывает их использование в критических приложениях.
Вольфрамовые галогенные лампы (ссылка на таблицу продуктов)
Вольфрамовая галогенная лампа похожа на лампу, заполненную инертным газом, за исключением того, что она содержит небольшое количество активного газообразного галогена, такого как бром.Инертный газ подавляет испарение вольфрамовой нити, в то время как газообразный галоген снижает количество вольфрама, покрывающего внутреннюю стенку лампы. Газообразный галоген вступает в реакцию с вольфрамом, который испаряется, мигрирует наружу и осаждается на стенке лампы. Когда температура стенки лампы достаточна, галоген вступает в реакцию с вольфрамом с образованием бромида вольфрама, который отделяется от стенки лампы и мигрирует обратно к нити накала. Соединение бромида вольфрама реагирует на нити накала лампы, где температура, близкая к 2500 ° C, вызывает рассеивание вольфрама и галогена.Вольфрам осаждается на нити накала и освобождается для повторения цикла снова. К сожалению, вольфрам не осаждается в той же зоне, где происходило испарение, поэтому нить накала все равно становится тоньше и в конечном итоге выходит из строя.
Вольфрамовая нить накала галогенной лампы служит двум целям. Один из них — генерировать свет, а второй — генерировать тепло, необходимое для получения температуры стенок выше 250 ° C. Эти лампы были разработаны для поддержания требуемой температуры стенок при работе от расчетного напряжения.Снижение напряжения более чем на 10% от расчетного, вероятно, приведет к падению температуры стенок ниже требуемых 250 ° C. Испытания показывают, что в большинстве случаев эти пониженные рабочие условия не влияют на работу лампы. К тому времени, когда температура стенки упадет до точки, при которой цикл галогена перестает функционировать, температура нити снизится до точки, при которой испарение вольфрама будет незначительным. Если наблюдается почернение стен, следует избегать диапазона рабочего напряжения, при котором это происходит.Сжигание лампы при расчетном напряжении в течение короткого периода времени обычно может устранить почернение лампы из-за временной эксплуатации в таком диапазоне напряжений. Однако в редких случаях галогенные лампы с пониженными характеристиками более чем на 10% могут испытывать неблагоприятную реакцию коррозионного воздействия галогена на вольфрамовую нить, что приводит к преждевременному выходу лампы из строя.
Светоотдача вольфрамовой галогенной лампы более стабильна, чем у негалогенной газовой лампы, благодаря очищающему действию газообразного галогена на колбу лампы.Эта особенность в сочетании с высокой цветовой температурой света и долгим сроком службы делает эти лампы очень востребованными для многих промышленных и научных приложений. Ограничение рабочего цикла из-за требования поддерживать температуру оболочки лампы при температуре, достаточной для запуска галогенного цикла, является недостатком. Однако в приложениях с непрерывным режимом работы относительно легко обеспечить правильную вентиляцию для обеспечения надлежащей рабочей температуры.
Не рекомендуется эксплуатировать вольфрамовые галогенные лампы при напряжении, превышающем расчетное, поскольку лампы обычно рассчитаны на свои максимальные пределы.Температура уплотнения лампы не должна превышать 350 ° C, в противном случае произойдет окисление молибденовой ленты, что приведет к преждевременному выходу лампы из строя.
Вольфрамовые галогенные лампы — идеальные источники света для спектрофотометров, поскольку они обеспечивают широкополосное спектральное излучение в диапазоне от ультрафиолетового, видимого и инфракрасного до пяти микрон. Некоторый выход излучения может быть получен при 320 и 340 нм.
Срок службы при проектном и рабочем напряжении
Срок службы лампы, выраженный в часах, рассчитан при расчетном напряжении и в идеальных лабораторных условиях.Отклонение от расчетного напряжения приведет к уменьшению или увеличению срока службы лампы. Это отклонение также изменит значения потребления тока, яркости и цветовой температуры. Эти отклонения должны использоваться инженером-проектировщиком для улучшения технических характеристик лампы для конкретного применения.
На рисунке 1 показаны процентные изменения тока, цветовой температуры и яркости, когда рабочее напряжение отличается от расчетного.
Указанный здесь номинальный срок службы выражается в часах.Номинальный срок службы рассчитывается при расчетном напряжении, переменном токе и в идеальных лабораторных условиях. При фактическом использовании срок службы может сократиться в результате агрессивных сред, таких как удары, вибрация и экстремальные температуры. Срок службы можно существенно увеличить, выбрав рабочее напряжение меньше расчетного. Это снижение от расчетного напряжения также приведет к более холодной нити накала, обеспечивающей повышенную устойчивость к ударам и вибрации.
Из-за незначительных различий в производстве миниатюрных ламп и в составных частях невозможно обеспечить работу каждой отдельной лампы в течение того срока, на который она была рассчитана.Срок службы лампы оценивается как средний срок службы большой группы ламп.
Rapid Lamp Calculator Схема
Эта диаграмма позволяет пользователю определить зависимость тока, средней сферической канделы и срока службы от значения напряжения, приложенного к лампе, в процентах от расчетного напряжения для этой лампы. Проведите горизонтальной линией через процентное значение расчетного напряжения, которое будет использоваться, и прочтите значение рассчитанных параметров в правой части диаграммы.
Галогенная лампа — Energy Education
Рисунок 1.Ксеноновая галогенная лампа. [1]Галогенные лампочки — это довольно эффективные лампочки, которые излучают свет из потока электричества. Галогенные лампы используются при съемках, но также используются в жилом и коммерческом освещении, а также в автомобилях. [2]
Это усовершенствованная форма лампы накаливания; они работают одинаково, но служат намного дольше: [2]
- Более высокое давление — газ, содержащийся в колбе, находится под более высоким давлением (7-8 атм), что делает колбу меньше, чем обычная лампа накаливания.Лампы должны быть изготовлены из более прочных материалов, чтобы выдерживать такое давление.
- Галогеновый газ — газ внутри галогенной лампы соединяется с парами вольфрама, выделяемыми нитью накала (часть, которая нагревается и излучает свет). Если температура достаточно высока, этот пар повторно осаждается на нити, рециркулируя вольфрам и продлевая срок службы лампы. [3]
Лампа может нагреваться намного сильнее, производя больше света на единицу электроэнергии по сравнению с лампой накаливания.Недостатком являются сильные ожоги галогеновых ламп при прикосновении к ним во время работы. [2]
Преимущества
- Маленький, легкий и простой в изготовлении.
- Обычная лампа накаливания может длиться до 1000 часов, а галогенная лампа — более 2500 часов.
- Галогенные лампы имеют цветовую температуру, близкую к солнечной, которая имеет более белый цвет по сравнению с оранжевым цветом, излучаемым лампами накаливания. [2] Для сравнения см. Приведенное ниже моделирование PhET: лампы накаливания работают при температуре около 2800 К, а галогены — до 3400 К. [2] [3]
- Более длительный срок службы, как описано выше.
- Мгновенный запуск (не нужно прогревать)
Недостатки
- Очень горячий (опасность ожога).
- Может взорваться из-за высокого давления и разбросать осколки стекла наружу. Это можно смягчить, если использовать стеклянный экран, который защищает от травм. [2]
Phet Simulation
Университет Колорадо любезно разрешил нам использовать следующую симуляцию Фета.Изучите эту симуляцию, чтобы увидеть, как изменение температуры меняет количество излучения, создаваемого нитью накала лампочки. Обратите внимание, что большая часть энергии уходит в виде тепла (в инфракрасном спектре, справа от видимого спектра):
Для дальнейшего чтения
Список литературы
Галогенные лампы Обычные лампы и трубки
Галогенные лампы Обычные лампы и трубки — PhilipsТеперь вы посещаете веб-сайт Philips, посвященный освещению.Вам доступна локализованная версия.
Продолжать
Сортировать по:
По умолчанию: A-ZZ-AN, Newest
. {{/ if_checkFilterType}} {{#if_checkFilterType displayType «checkbox»}}{{отображаемое имя}}
{{#each filterKeys}} {{/каждый}}b2b-li.d77v2-фильтры-развернуть
b2b-li.d77v2-фильтры-коллапс
{{/ if_checkFilterType}}Закрывать Показать фильтры
Показать больше фильтров
Показать меньше фильтров
Выбранные критерии фильтрации не дали никаких результатов.Пожалуйста, настройте свои фильтры.
{{/если}} {{#if valueLadder}}{{valueLadder.label}}
{{/если}} {{название}} {{totalProducts}} {{#if_compare 1 totalProducts}} продукты {{еще}} продукт {{/ if_compare}} {{#if wow}} {{Ух ты}} {{/если}}Сортировать по:
По умолчанию: A-ZZ-AN, Newest
.Выбранные критерии фильтрации не дали никаких результатов.Пожалуйста, настройте свои фильтры.
Отметьте продукт, который хотите добавить
Отметьте продукт, который хотите добавить
Отметьте продукт, который хотите добавить
Отметьте продукт, который хотите добавить
© 2018-2021 Сигнифай Холдинг.Все права защищены.
Как работает галогенная лампа?
Начнем с обычной электрической лампочки, такой как обычная бытовая лампа. Обычная лампочка представляет собой довольно большой тонкий корпус из матового стекла.Внутри стекла находится газ, например аргон и / или азот. В центре лампы находится вольфрамовая нить накала. Электричество нагревает эту нить примерно до 4500 градусов по Фаренгейту (2500 градусов по Цельсию). Как и любой горячий металл, вольфрам при этом нагревается добела и излучает большое количество видимого света в процессе, называемом накаливанием . См. «Как работают газовые фонари» для получения дополнительной информации о накаливании.
Обычная лампочка не очень эффективна, и ее срок службы составляет от 750 до 1000 часов при нормальном использовании.Это не очень эффективно, потому что в процессе излучения света он также излучает огромное количество инфракрасного тепла — гораздо больше тепла, чем света. Поскольку цель лампочки — генерировать свет, тепло тратится впустую. Это длится недолго, потому что вольфрам в нити накала испаряется и осаждается на стекле. В конце концов, тонкое пятно на нити накала приводит к ее разрыву, и колба «перегорает».
В галогенной лампе также используется вольфрамовая нить, но она заключена в кварцевый колпак гораздо меньшего размера.Поскольку конверт расположен так близко к нити накала, он бы расплавился, если бы он был сделан из стекла. Газ внутри оболочки тоже другой — он состоит из газа галогенной группы . Эти газы обладают очень интересным свойством: они соединяются с парами вольфрама. Если температура достаточно высока, газообразный галоген будет соединяться с атомами вольфрама, когда они испаряются, и повторно осаждаются на нити накала. Этот процесс переработки позволяет нити служить намного дольше. Кроме того, теперь можно нагревать нить накаливания сильнее, что означает, что вы получаете больше света на единицу энергии.Однако вы все равно получаете много тепла; и поскольку кварцевая оболочка расположена так близко к нити накала, она на очень горячая, на горячая по сравнению с обычной лампочкой
ZEISS Microscopy Online Campus | Лампы вольфрамово-галогенные
Введение
Источники света накаливания, в том числе более старые версии с вольфрамовой и углеродной нитью, а также новые, более совершенные вольфрамово-галогенные лампы, успешно используются в качестве высоконадежных источников света в оптической микроскопии на протяжении многих десятилетий и продолжают оставаться одними из них. предпочтительные механизмы освещения для различных методов визуализации.Старые лампы, оснащенные вольфрамовой проволочной нитью и заполненные инертным газом аргоном, часто используются в студенческих микроскопах для получения светлопольных и фазово-контрастных изображений, и эти источники могут быть достаточно яркими для некоторых приложений, требующих поляризованного света. Вольфрамовые лампы относительно недороги (по сравнению со многими другими источниками света), их легко заменить, и они обеспечивают адекватное освещение в сочетании с диффузионным фильтром из матового стекла. Эти особенности в первую очередь ответственны за широкую популярность источников света накаливания во всех формах оптической микроскопии.Вольфрамово-галогенные лампы, наиболее совершенная конструкция в этом классе, генерируют непрерывное распределение света в видимом спектре, хотя большая часть энергии, излучаемой этими лампами, рассеивается в виде тепла в инфракрасных длинах волн (см. Рисунок 1). Из-за относительно слабого излучения в ультрафиолетовой части спектра вольфрамово-галогенные лампы не так полезны, как дуговые лампы и лазеры, для исследования образцов, которые необходимо освещать с длинами волн менее 400 нанометров.
Несколько разновидностей вольфрамово-галогенных ламп в настоящее время являются источником освещения по умолчанию (и предоставляются производителем) для большинства учебных и исследовательских микроскопов, продаваемых по всему миру.Они отлично подходят для исследования в светлом поле, микрофотографии и цифровой визуализации окрашенных клеток и срезов тканей, а также для многочисленных применений отраженного света для промышленного производства и разработки. В поляризованных световых микроскопах, используемых для идентификации частиц, анализа волокон и измерения двойного лучепреломления, а также для повседневных петрографических геологических приложений, обычно используются вольфрамово-галогенные лампы высокой мощности для обеспечения необходимой интенсивности света через скрещенные поляризаторы.Стереомикроскопы также используют преимущества этого повсеместного источника света как в моделях начального, так и в продвинутых моделях. Для визуализации живых клеток с помощью методов усиления контраста (в основном дифференциального интерференционного контраста ( DIC ) и фазового контраста) в составных микроскопах проходящего света наиболее распространенным в настоящее время источником света является вольфрамово-галогенная лампа мощностью 100 Вт. . В долгосрочных экспериментах (обычно требующих от сотен до тысяч снимков) эта лампа особенно стабильна и при нормальных условиях эксплуатации подвержена лишь незначительным уровням временных и пространственных колебаний выходной мощности.
Первые коммерческие лампы накаливания с вольфрамовой нитью были представлены в начале 1900-х годов. Было обнаружено, что эти усовершенствованные нити, которые можно было наматывать, скручивать и эксплуатировать при очень высоких температурах, гораздо более универсальны, чем их предшественники на основе углерода и осмия. Углеродные лампы страдают от быстрого испарения нити накала при температурах выше 2500 ° C и, следовательно, должны работать при более низких напряжениях для получения света с относительно низкой цветовой температурой (желтоватый).Напротив, вольфрам имеет температуру плавления приблизительно 3380 ° C и может быть нагрет почти до этой температуры в стеклянной оболочке для получения света, имеющего более высокую цветовую температуру и срок службы, чем любой из предыдущих материалов, используемых для нити ламп. Основная проблема с вольфрамовыми лампами заключается в том, что во время нормальной работы нить накала постоянно испаряется с образованием газообразного вольфрама, который медленно уменьшает диаметр нити накала и в конечном итоге затвердевает на внутренней стороне стеклянной колбы в виде почерневшего, покрытого сажей отложений.Со временем мощность лампы уменьшается, поскольку остатки осажденного вольфрама на стенках внутренней оболочки становятся толще и поглощают все большее количество более коротких видимых длин волн. Точно так же потеря вольфрама из нити накала уменьшает диаметр, делая ее настолько тонкой, что в конечном итоге она выходит из строя.
Вольфрамово-галогенные лампы были впервые разработаны в начале 1960-х годов путем замены традиционной стеклянной колбы на кварцевую колбу с более высокими характеристиками, которая была больше не сферической, а трубчатой.Кроме того, внутри оболочки были запечатаны незначительные количества паров йода. Замена стекла с более низкой температурой плавления на кварцевое была необходима, потому что цикл регенерации галогена лампы (подробно описанный ниже) требует, чтобы оболочка поддерживалась при высокой температуре (превышающей допустимую для обычного стекла), чтобы предотвратить образование галогеновых соединений вольфрама. от затвердевания на внутренней поверхности. Из-за новых компонентов эти усовершенствованные лампы первоначально назывались термином: иодид кварца .Хотя лампы, содержащие галогены, представляли собой значительное улучшение по сравнению с обычными вольфрамовыми лампами, которые они заменили, новые лампы имели легкий розоватый оттенок, характерный для паров йода. Кроме того, кварц легко подвергается воздействию слабых щелочей, образующихся во время работы, что приводит к преждевременному выходу из строя самой оболочки. В последующие годы соединения брома заменили йод, и оболочка была изготовлена из более новых сплавов боросиликатного стекла для производства вольфрамово-галогенных ламп с еще более длительным сроком службы и более высокой мощностью излучения.
Как обсуждалось ранее, в традиционных лампах накаливания испаренный газообразный вольфрам из нити накала переносится через паровую фазу и непрерывно осаждается на внутренних стенках стеклянной колбы. Этот артефакт затемняет внутренние стенки колбы и постепенно снижает светоотдачу. Чтобы поддерживать потери света на минимально возможном уровне, обычные вольфрамовые лампы накаливания помещают в большие колбы, имеющие достаточную площадь поверхности, чтобы минимизировать толщину осажденного вольфрама, который накапливается в течение срока службы лампы.Напротив, трубчатая оболочка в вольфрамово-галогенных лампах заполнена инертным газом (азотом, аргоном, криптоном или ксеноном), который во время сборки смешивается с небольшим количеством соединения галогена (обычно бромистого водорода; HBr ). и следовые уровни молекулярного кислорода. Соединение галогена служит для инициирования обратимой химической реакции с вольфрамом, испаренным из нити, с образованием газообразных молекул оксигалогенида вольфрама в паровой фазе. Температурные градиенты, образующиеся в результате разницы температур между горячей нитью накала и более холодной оболочкой, способствуют перехвату и рециркуляции вольфрама в нить накала лампы благодаря явлению, известному как цикл регенерации галогена (проиллюстрирован на Рисунке 2).Таким образом, испаренный вольфрам реагирует с бромистым водородом с образованием газообразных галогенидов, которые впоследствии повторно осаждаются на более холодных участках нити, а не накапливаются медленно на внутренних стенках оболочки.
Цикл регенерации галогена можно разделить на три критических этапа, которые показаны на рисунке 2. В начале работы оболочка лампы, наполняющий газ, парообразный галоген и нить накала изначально находятся в равновесии при комнатной температуре. Когда к лампе подается питание, температура нити накала быстро повышается до ее рабочей температуры (в районе 2500–3000 ° C), в результате чего также нагревается наполняющий газ и оболочка.В конце концов, оболочка достигает стабильной рабочей температуры, которая колеблется от 400 до 1000 C, в зависимости от параметров лампы. Разница температур между нитью накала и оболочкой создает температурные градиенты и конвекционные токи в заполняющем газе. Когда температура оболочки достигает примерно 200–250 ° C (в зависимости от природы и количества паров галогена), начинается цикл регенерации галогена. Атомы вольфрама, испарившиеся из нити накала (см. Рис. 2 (а)), вступают в реакцию с парами газообразного галогена и следовыми количествами молекулярного кислорода с образованием оксигалогенидов вольфрама (рис. 2 (б)).Вместо того, чтобы конденсироваться на горячих внутренних стенках оболочки, оксигалогенидные соединения циркулируют конвекционными токами обратно в область, окружающую нить, где они разлагаются, оставляя элементарный вольфрам, повторно осаждающийся на более холодных областях нити (рис. 2 (c)). ). После освобождения от связанного вольфрама соединения кислорода и галогенидов диффундируют обратно в пар, чтобы повторить цикл регенерации. Непрерывная рециркуляция металлического вольфрама вперед и назад между паровой фазой и нитью обеспечивает более равномерную толщину проволоки, чем это было бы возможно в противном случае.
Преимущества цикла регенерации галогенов включают возможность использования меньших по размеру конвертов, которые поддерживаются в чистом состоянии без отложений в течение всего срока службы лампы. Поскольку колба меньше, чем в обычных вольфрамовых лампах, дорогой кварц и родственные стеклянные сплавы могут быть более экономичными при производстве. Более прочные кварцевые оболочки позволяют использовать более высокое внутреннее давление газа, чтобы помочь в подавлении испарения нити накала, тем самым позволяя увеличивать температуру нити, что приводит к большей световой отдаче, и смещать профили излучения, чтобы обеспечить большую долю более желательных длин волн видимого диапазона.В результате вольфрамово-галогенные лампы сохраняют свою первоначальную яркость на протяжении всего срока службы, а также преобразуют электрический ток в свет более эффективно, чем их предшественники. С другой стороны, вольфрам, испарившийся и повторно осаждаемый в цикле регенерации галогена, не возвращается на свое первоначальное место, а скорее скатывается на самых холодных участках нити, что приводит к неравномерной толщине. В конечном итоге лампы выходят из строя из-за уменьшения толщины нити накала в самых жарких регионах. В противном случае вольфрамово-галогенные лампы могут иметь практически бесконечный срок службы.
Ранние исследования показали, что добавление фторидных солей к парам, запечатанным внутри вольфрамово-галогенных ламп, дает на выходе самый высокий уровень видимых длин волн, а также осаждал рециклированный вольфрам на участках нити накала с более высокими температурами. Это открытие вселило надежду на то, что вольфрамовые нити могут иметь более однородную толщину в течение значительного увеличения срока службы этих ламп. Кроме того, смещение выходного профиля излучения лампы для включения большего количества видимых длин волн было весьма желательно по сравнению с более низкими цветовыми температурами, обеспечиваемыми аналогичными лампами, имеющими альтернативные галогенные соединения (йодид, хлорид и бромид).К сожалению, было обнаружено, что фторидные соединения агрессивно воздействуют на стекло (обратите внимание, что фтористоводородная кислота обычно используется для травления стекла), что приводит к преждевременному разрушению оболочки. Таким образом, фторидные соединения не подходят для коммерческих ламп. Как следствие, обсуждаемые выше бромидные соединения по-прежнему являются предпочтительным реагентом для производства вольфрамово-галогенных ламп, но производители ламп продолжают исследовать применение новых смесей заполняющего газа и галогенов для этих очень полезных источников света.
Вольфрамово-галогенные лампы накаливания работают как тепловые излучатели, что означает, что свет генерируется при нагревании твердого тела (нити накала) до очень высокой температуры. Таким образом, чем выше рабочая температура, тем ярче будет свет. Все лампы на основе вольфрама демонстрируют спектральные профили излучения, напоминающие профили излучения излучателя с черным телом, а спектральный выходной профиль вольфрамово-галогенных ламп качественно аналогичен профилям ламп накаливания с вольфрамовой и угольной нитью.Большая часть излучаемой энергии (до 85 процентов) находится в инфракрасной и ближней инфракрасной областях спектра, при этом 15-20 процентов попадают в видимую область (от 400 до 700 нанометров) и менее 1 процента — в ультрафиолетовых длинах волн. (ниже 400 нм). Мягкая стеклянная оболочка обычных ламп накаливания поглощает большую часть ультрафиолетового излучения, генерируемого вольфрамовой нитью, но оболочка из плавленого кварца в вольфрамово-галогенных лампах поглощает очень мало излучаемого ультрафиолетового света выше 200 нанометров.
Значительная часть электроэнергии, потребляемой накаленными вольфрамовыми проволочными волокнами, выводится в виде электромагнитного излучения, охватывающего диапазон длин волн от 200 до 3000 нанометров. Математически полное излучение увеличивается как четвертая степень температуры проволоки, что смещает спектральное распределение в сторону все более коротких (видимых) длин волн в колоколообразном профиле по мере увеличения температуры (см. Рисунки 1 и 3). Несмотря на то, что пиковые длины волн имеют тенденцию перераспределяться из ближнего инфракрасного диапазона ближе к видимой области с более высокими температурами нити накала, точка плавления вольфрама не позволяет большей части выходного излучения смещаться в видимую область спектра.При самых высоких практических рабочих температурах пиковое излучение составляет примерно 850 нанометров, при этом около 20 процентов общего выходного излучения приходится на видимый свет. Инфракрасные волны, составляющие большую часть выходного сигнала, должны рассеиваться как нежелательное тепло. В результате, по сравнению со спектром дневного света (5000+ K), излучаемого ртутными, ксеноновыми и металлогалогенными дуговыми лампами, в галогенидных лампах всегда преобладают красные участки спектра.
В случае идеального радиатора с черным телом воспринимаемая цветовая температура равна истинной (измеренной) температуре материала радиатора.Однако на практике общее излучение обычных источников излучения (таких как лампы накаливания) меньше, чем можно было бы ожидать от черного тела. Цветовая температура выражается в Кельвинах ( K ), в то время как фактическая измеренная температура более практично выражается в градусах Цельсия ( C ). Два числа различаются на 273,15 линейных единиц градусов, при этом значение Кельвина равно Цельсию плюс 273,15. Более высокие цветовые температуры соответствуют более белому свету , который больше напоминает солнечный свет, тогда как более низкие цветовые температуры имеют тенденцию смещать цвета в сторону желтых и красноватых оттенков.Вольфрам не является истинным черным телом в том смысле, что полное испускаемое излучение меньше, чем могло бы наблюдаться в идеальном случае, однако вольфрам является лучшим излучателем (и более точно приближается к истинному черному телу) в более короткой видимой области длин волн, чем в более длинные волны. Для значительной части видимого диапазона длин волн цветовая температура вольфрама выше, чем эквивалентная истинная температура в градусах Цельсия. Таким образом, для измеренной температуры нити накала 3000 C цветовая температура составляет примерно 3080 K.Предел цветовой температуры вольфрама определяется температурой плавления, которая составляет чуть более 3350 ° C или приблизительно 3550 K.
Таким образом, в качестве излучателей накаливания вольфрамово-галогенные лампы генерируют непрерывный спектр света, который простирается от центрального ультрафиолета до видимого и инфракрасного диапазонов длин волн (см. Рисунки 1 и 3). По сравнению со спектром излучения солнечного света и теоретическим излучателем черного тела 5800 K (как показано на рис. 3 (а)), в вольфрамово-галогенных лампах всегда преобладают более длинноволновые области.Однако по мере увеличения температуры нити в вольфрамово-галогенной лампе профиль излучения света смещается в сторону более коротких длин волн, так что по мере приближения температуры к предельной точке плавления вольфрама доля видимых длин волн, излучаемых лампой, существенно увеличивается. Этот эффект проиллюстрирован на рисунке 3 (b) путем нормализации выходного распределения излучения лампы при цветовых температурах 2800 K и 3300 K на тот же световой поток. В дополнение к значительно меньшей доле излучения в инфракрасном диапазоне, кривая 3300 K показывает гораздо больший выход в видимом диапазоне длин волн.
Фотометрические характеристики для оценки характеристик источников света несколько необычны в том смысле, что две системы единиц существуют параллельно для определения важных переменных, связанных с яркостью и спектральным выходом. Физическая фотометрическая система рассматривает свет исключительно как электромагнитное излучение с точки зрения яркости (яркости), связанной с единицами длины и угла и измеряемой в ваттах. Физиологическая фотометрическая система учитывает способ, которым гипотетический человеческий глаз оценивает источник света.Поскольку каждый человеческий глаз несколько по-разному реагирует на видимый спектр света, стандартный глаз определен международным соглашением. Основной характеристикой этого стандарта является чувствительность к разным цветам света, основанная на максимальном отклике на 550-нанометровый (зелено-желтый) свет, измеряемом в единицах люмен и , а не ваттах. Физиологическая система подойдет, если датчиком света является человеческий глаз, цифровая камера, фотопленка или какое-либо другое устройство, которое реагирует аналогичным образом.Однако эта система выйдет из строя, если анализируемый свет попадет в ультрафиолетовую или инфракрасную область, невидимую для человеческого глаза. В этом случае для измерений и анализа необходимо использовать физическую фотометрическую систему.
Технические характеристики вольфрамово-галогенной лампы для микроскопии
| |||||||||||||||||||||||||||||||||||||
Таблица 1
В таблице 1 представлены электрические характеристики, размеры нити накала, типичный срок службы и фотометрическая мощность некоторых из самых популярных вольфрамово-галогенных ламп, используемых в настоящее время в оптической микроскопии.Среди наиболее важных терминов, используемых для сравнения этих ламп, — световой поток , который представляет собой общий излучаемый свет, измеренный в люмен (). Световой поток увеличивается пропорционально его физическому фотометрическому эквиваленту в ваттах. Другая важная величина, известная как сила света , — это та часть светового потока, которая измеряется телесным углом в одном направлении. Сила света в единицах кандел и используется для оценки характеристик лампы в оптической системе.Лампы также оцениваются с точки зрения световой отдачи () при использовании люмен на ватт электрической мощности (относящейся к физическим и физиологическим системам) для определения эффективности преобразования электроэнергии в видимое излучение. Теоретический максимум световой отдачи составляет 683 люмен на ватт, но на практике вольфрамово-галогенные лампы обычно достигают предела в 37 люмен на ватт. Чтобы более четко понять электрические характеристики вольфрамово-галогенных ламп, обычно можно применять следующие обобщения: на каждые 5 процентов изменения напряжения, подаваемого на лампу, срок службы либо удваивается, либо сокращается вдвое, в зависимости от того, находится ли напряжение. уменьшилось или увеличилось.Кроме того, каждые 5 процентов изменения напряжения сопровождаются 15-процентным изменением светового потока, 8-процентным изменением мощности, 3-процентным изменением тока и 2-процентным изменением цветовой температуры.
Большое разнообразие конструкций вольфрамово-галогенных ламп включает встроенные отражатели, которые служат для эффективного сбора фронтов световых волн, излучаемых лампой, и их упорядоченного направления в систему освещения. Эти предварительно собранные блоки, получившие название от рефлекторных ламп (см. Рис. 4), нашли широкое применение в качестве внешних осветителей для приложений стереомикроскопии.Свет от осветителя может быть направлен в любую область образца с помощью гибкого оптоволоконного световода. Рефлекторные лампы сильно различаются по конструкции в зависимости от характеристик и геометрии рефлектора, а также от положения лампы внутри рефлектора. Тем не менее, все лампы с отражателем включают в себя однотактные лампы, которые устанавливаются в центре оптической оси отражателя с цоколем, вклеенным в вершину отражателя. Конфигурация нити накала обычно определяется характеристиками луча, необходимыми для конкретной оптической системы, для которой предназначена лампа.В рефлекторных лампах используются все конструкции нити накала, включая поперечную, осевую и плоскую.
Рефлекторные лампы обычно подключаются к патронам с молибденовыми штырями, выступающими наружу из задней части рефлектора, и устанавливаются с керамическими крышками. В некоторых случаях используются специальные кабельные соединения, чтобы пространственно отделить электрический контакт от источника тепла (лампы). Поскольку рефлекторные лампы обычно встраиваются как часть точно выровненной оптической системы, электрическое соединение только изредка используется как часть крепления.Существует несколько методов установки отражателей, в том числе установка держателя на переднем крае отражателя, использование давления на заднюю часть крышки отражателя, центрирование края отражателя в конусе и регулировку края отражателя на угловом упоре. В большинстве случаев конструкция основания рефлектора и механизм крепления используются для обозначения конкретного класса рефлекторной лампы. Внешний диаметр переднего отверстия рефлектора является определяющим критерием для рефлекторных ламп, и производители установили два основных размера.Они обозначены как MR 11 и MR 16 , где буквы представляют собой аббревиатуру для металлического отражателя , а цифры относятся к диаметру отражателя в восьмых долях дюйма. Таким образом, рефлекторная лампа MR 16 имеет диаметр приблизительно 50 миллиметров, тогда как лампы MR 11 имеют диаметр почти 35 миллиметров.
Вольфрамово-галогенные отражатели предназначены для фокусировки или коллимирования света, излучаемого лампой, как показано на рисунке 4.Фокусирующие отражатели концентрируют свет в небольшом пятне (фокусной точке) в центральной оптической оси на определенном расстоянии от отражателя (см. Рисунок 4 (b)). Этот тип отражателя имеет эллиптическую геометрию, что требует, чтобы нить накала лампы располагалась в первой фокусной точке эллипсоида так, чтобы проецируемое световое пятно концентрировалось во второй фокусной точке. При проектировании светильников для фокусирующих отражателей важнейшим критерием является установка лампы на надлежащем расстоянии от входной апертуры оптической системы.Коллимирующие отражатели имеют параболическую геометрию, чтобы генерировать параллельный луч света, характеристики луча которого определяются параметрами лампы и размером отражателя (см. Рисунок 4 (c)). Угол выхода луча в первую очередь определяется размером нити накала лампы и свободным отверстием отражателя. В большинстве случаев осевая нить накала с круглым сердечником обеспечивает осесимметричный луч.
Отражатели обычно изготавливаются из стекла, но некоторые из них также изготавливаются из алюминия.Их внутренние стенки могут быть гладкими или иметь фасетки для контроля распределения света. Внутренняя структура варьируется от мелких, едва заметных зерен до крупных, выложенных плиткой граней (см. Рис. 4 (а)). В стеклянных отражателях внутренняя поверхность куполообразного отражателя покрывается (обычно осаждением из паровой фазы) для получения требуемых отражающих свойств. Стабильность размеров стеклянных отражателей превосходит стабильность металлических отражателей, а возможность выбора конкретных материалов покрытия, в том числе тех, которые могут изменять спектральный характер отраженного света, делает эти отражатели гораздо более универсальными.Металлические отражатели намного проще и дешевле изготавливать, но они ограничены в управлении спектральным выходом и более подвержены колебаниям геометрических допусков во время работы.
Если требуется весь спектр излучения, излучаемого лампой, или в случаях, когда полезен инфракрасный свет, оптимальным выбором будут металлические или стеклянные отражатели с тонким золотым покрытием. Однако там, где необходимо использовать определенные отражательные свойства для выбора длин волн посредством интерференции, оптимальными являются дихроичные тонкопленочные покрытия на стеклянных отражателях.Эти покрытия состоят примерно из 40-60 очень тонких слоев, каждый из которых составляет всего четверть длины волны света, и состоят из чередующихся материалов, имеющих высокий и низкий показатель преломления. Точная настройка толщины и количества слоев позволяет разработчикам генерировать широкий спектр выходных спектральных характеристик. Среди ламп с дихроичным отражателем наиболее полезным для микроскопии является отражатель холодного света , потому что только видимый свет в диапазоне длин волн от 400 до 700 нанометров направляется в оптическую систему (рис. 4 (d)).Инфракрасные волны излучаются через заднюю часть отражателя и отводятся от фонаря с помощью электрического вентилятора. Применение подходящих отражателей холодного света снижает общую тепловую нагрузку на систему освещения и дает свет, который можно записывать с помощью пленочных и цифровых фотоаппаратов.
Базовая анатомия одноцокольной вольфрамово-галогенной лампы, обычно используемой для освещения в оптической микроскопии, показана на рисунке 5. Общая длина измеряется от конца штифта основания до точки герметичной выхлопной трубы.Важным критерием для размещения лампы по отношению к системе коллекторных линз является длина светового центра (рис. 5 (а)), при которой центр нити накала соответствует определенной плоскости отсчета в цоколе лампы. Другими важными параметрами являются диаметр колбы (самая толстая часть оболочки), ширина основания (обычно немного больше диаметра колбы) и размеры поля нити накала (высота и ширина). Эффективный размер источника освещения, используемого при проектировании выходной оптической системы, определяется высотой и шириной нити накала (поле нити накала).Допуски и положение поля накала имеют решающее значение и не должны отклоняться более чем на 1 миллиметр от оси симметрии лампы (определяемой плоскостью штифтов основания и центральной линией лампы). Допуски поля накала разработаны для конкретной архитектуры волокна и должны измеряться, когда нить накала горячая.
Чрезмерно высокие рабочие температуры вольфрамово-галогенных ламп требуют существенно более прочных и толстых прозрачных колб, чем обычные вольфрамовые и угольные лампы.Стекло из кварцевого стекла из кварцевого стекла является стандартным материалом, используемым при производстве вольфрамово-галогенных ламп, поскольку этот материал может выдерживать температуру оболочки до 900 C и рабочее давление до 50 атмосфер. В целом оптическое качество кожухов кварцевых ламп значительно ниже, чем у ламп из дутого стекла, используемых для производства обычных ламп накаливания. Этот артефакт связан с тем, что кварц сложнее обрабатывать (в первую очередь из-за более высокой температуры плавления).Кварц, предназначенный для огибающих ламп, начинается с цилиндрической трубки, которую сначала обрезают до нужной длины, а затем присоединяют меньшую выхлопную трубу. Позже в процессе производства, после того, как нить накала и выводные штифты вставлены и зажаты, оболочка заполняется соответствующим газом и галогеновым соединением, прежде чем выхлопная труба будет удалена и запломбирована в процессе, называемом наконечник , который оставляет видимый дефект на конверте. Вольфрамово-галогенные лампы, используемые в микроскопии, обычно имеют выступающее пятно, расположенное в верхней части оболочки в области, которая не влияет на оптическое качество света, излучаемого лампой (рис. 5 (а)).Предварительно изготовленные внутренние конструктивные элементы лампы (нить накала, соединитель из фольги и штыри) вставляются в трубчатый кварц до того, как свинцовые штыри герметично запечатываются в оболочке путем защемления. Форма внешней поверхности зажима обеспечивает максимальную механическую прочность.
После защемления выводов штифта (этот процесс проводится, когда оболочка промывается инертным газом, чтобы избежать окисления), колба заполняется через выхлопную трубу соответствующим газом, содержащим 0.От 1 до 1,0 процента галогенового соединения. Инертный наполняющий газ может быть ксеноном, криптоном, аргоном или азотом, а также смесью этих газов, имеющей наивысший средний атомный вес, совместимый с желаемым сопротивлением дуге. Галоген, используемый для вольфрамово-галогенных ламп, используемых в микроскопии, обычно представляет собой HBr, CH 3 Br или CH 2 Br 2 . Высокое внутреннее давление в лампе достигается за счет заполнения оболочки до желаемого давления и погружения лампы в жидкий азот для конденсации заполняющего газа.После герметизации выхлопной трубы на выходе наполняющий газ расширяется по мере того, как он нагревается до температуры окружающей среды. В высокоэффективных вольфрамово-галогенных лампах, производимых Osram (Сильвания, США), используется технология Xenophot , в которой газ криптон заменен ксеноном, который имеет более высокую атомную массу, чем криптон и другие газы-наполнители. Ксенон обеспечивает лучшее подавление испарения вольфрама, обеспечивает более высокую температуру нити накала и увеличивает световую отдачу примерно на 10 процентов (что соответствует увеличению цветовой температуры примерно на 100 K).Лампы Xenophot продаются с использованием аббревиатуры HLX , которая образована от терминов H алоген, L напряжение тока и X энон. Большинство вольфрамово-галогенных ламп, используемых в исследовательских микроскопах, оснащены лампами Osram / Sylvania HLX или их эквивалентами.
Вольфрам всегда используется для изготовления проволочной нити в современных лампах накаливания. Чтобы быть пригодной для вольфрамово-галогенных ламп, необработанная вольфрамовая проволока должна пройти сложный процесс легирования и термообработки, чтобы придать пластичность, необходимую для обработки, и гарантировать, что нить накала не деформируется в течение длительных периодов высокой температуры во время работы лампы.Провод также необходимо тщательно очистить, чтобы предотвратить выброс вредных газов после герметизации лампы. Длина нити накала определяется рабочим напряжением, при более высоком напряжении требуется большая длина. Диаметр определяется уровнями мощности лампы и желаемым сроком службы. Для высоких уровней мощности требуются более толстые волокна, которые к тому же механически прочнее. Геометрия нити в значительной степени определяет фотометрические свойства вольфрамово-галогенных ламп. Лампы, используемые в микроскопии, обычно имеют геометрию нити с плоским сердечником, при которой проволока сначала наматывается в форме прямоугольного стержня, а затем зажимается поперек длинной оси.Вместо диаметра и длины нити с плоским сердечником измеряются по длине и ширине плоской стороны нити и по толщине прямоугольной формы. Характеристики светового излучения ламп накаливания с плоским сердечником значительно отличаются от характеристик излучения других геометрических форм. Наиболее значительная часть излучаемого света излучается перпендикулярно плоской поверхности нити накала, которая совмещена с собирающей оптикой для максимальной пропускной способности. В некоторых конструкциях ламп используется специальная нить накала с плоским сердечником, у которой светоизлучающая поверхность имеет квадратную форму.Эти лампы являются предпочтительными источниками освещения в микроскопии проходящего света.
Одним из критических факторов при производстве вольфрамово-галогенных ламп является герметизация внутренних элементов, чтобы изолировать их от внешней атмосферы. Подводящие провода (молибденовые штыри; рис. 5 (b)) выходят из цоколя лампы через уплотнение, чтобы установить и закрепить лампу в гнезде, подключенном к источнику питания. Наиболее важным аспектом создания уплотнения является разница в коэффициентах теплового расширения кварцевых и вольфрамовых нитей накала.Кварц имеет очень низкий коэффициент расширения, тогда как у вольфрама намного выше. Без надлежащего уплотнения подводящие провода будут быстро расширяться, когда лампа нагревается, и разбивают окружающее стекло. В современных вольфрамово-галогенных лампах очень тонкая молибденовая фольга (шириной от 2 до 4 миллиметров и толщиной от 10 до 20 микрометров; рис. 5 (b)) заделана в кварц, и каждый конец фольги приварен к коротким соединительным проводам из молибдена, которые в свою очередь приварены к нити накала и подводящему штифту.Молибден используется в уплотнении, потому что острые как бритва края позволяют безопасно врезать его в кварц во время операции зажима. Лампы, используемые для микроскопии, имеют односторонние основания, имеющие либо молибденовые штыри, выступающие из зажима, либо вольфрамовые штыри, которые изнутри связаны с молибденовой фольгой, как описано выше. Расстояние между штифтами стандартизовано и составляет от 4 до 6,35 миллиметра (обозначено как G4 и G6.35; G для стекла). Диаметр штифта колеблется от 0.От 7 до 1 миллиметра.
Поскольку на данный момент технология производства вольфрамово-галогенных ламп настолько развита, срок службы обычной лампы внезапно заканчивается, обычно при включении холодной лампы накаливания. В течение среднего срока службы современные вольфрамово-галогенные лампы не чернеют и претерпевают лишь незначительные изменения в фотометрических выходных характеристиках. Как и в случае с другими лампами накаливания, срок службы вольфрамово-галогенной лампы определяется скоростью испарения вольфрама из нити накала.Если нить накала не имеет постоянной температуры по всей длине провода, а вместо этого имеет области с гораздо более высокой температурой, вызванные неравномерной толщиной или внутренними структурными изменениями, то нить обычно выходит из строя из-за преждевременного обрыва в этих областях. Даже несмотря на то, что испаренный вольфрам возвращается в нить за счет цикла регенерации галогена (обсужденного выше), материал, к сожалению, откладывается на более холодных участках нити, а не в тех критических горячих точках, где обычно происходит утонение.В результате практически невозможно предсказать, когда какая-либо конкретная нить накала выйдет из строя в лампах, которые работают непрерывно. В тех лампах, которые часто включаются и выключаются, можно с уверенностью предположить, что они выйдут из строя в какой-то момент при включении.
Вольфрамово-галогенные лампы могут работать с источниками питания постоянного или переменного тока, но в большинстве исследовательских приложений микроскопии используются источники питания постоянного тока ( DC ). Самые современные источники питания для вольфрамово-галогенных ламп имеют специализированную схему, обеспечивающую стабилизацию тока и подавление пульсаций.Критическая фаза для вольфрамово-галогенной лампы — это когда напряжение впервые подается на холодную нить накала, период, когда сопротивление нити примерно в 20 раз ниже, чем при полной рабочей температуре. Таким образом, когда напряжение питания мгновенно подается на лампу путем ее включения, течет очень высокий начальный ток (до 10 раз выше, чем в установившемся режиме; называемый броском тока , ток), который медленно падает по мере того, как температура нити накала и электрическое сопротивление увеличивать. Пиковый уровень тока достигается в течение нескольких миллисекунд после запуска, но обычно заканчивается примерно за полсекунды.К сожалению, высокий пусковой ток, возникающий при холодном запуске, отрицательно сказывается на ожидаемом сроке службы лампы. Специализированная схема источника питания (часто называемая схемой плавного пуска ) используется для компенсации высоких пусковых токов в самых передовых приложениях (включая микроскопию), в которых вольфрамово-галогенные лампы используются для проведения логометрических измерений.
На рисунке 6 показана типичная вольфрамово-галогенная лампа мощностью 100 Вт, используемая в микроскопии проходящего света.Лампа оснащена охлаждающими отверстиями, которые позволяют конвекционным потокам омывать лампу более прохладным воздухом во время работы. Металлический отражатель, покрывающий внутреннюю часть светильника, помогает сферическому отражателю направлять максимально возможный уровень светового потока в систему коллекторных линз для подачи на оптическую цепь микроскопа. Этот усовершенствованный фонарик содержит запасной патрон и сменный пластиковый инструмент, который оператор может использовать для захвата корпуса лампы во время переключения лампы.Регулировка положения лампы по отношению к оптической оси сферического отражателя и коллектора может быть выполнена с помощью винтов с внутренним шестигранником, которые перемещают основание. Лампа крепится к осветителю микроскопа с помощью запатентованного монтажного фланца, который соединяет лампу с вертикальным или инвертированным микроскопом (хотя большинство ламп не взаимозаменяемы с одной марки микроскопа на другую). Инфракрасный (тепловой) фильтр перед системой коллекторных линз поглощает значительное количество нежелательного излучения, и дополнительные фильтры обычно могут быть вставлены в световой тракт (используя прорези держателя фильтра в осветителе микроскопа) для поглощения выбранных диапазонов видимых длин волн, регулировки цветовой температуры или добавить нейтральную плотность (уменьшение амплитуды света).Большинство ламп для микроскопии не оборудованы диффузионными фильтрами, но они часто требуются для достижения равномерного освещения по всему полю обзора и обычно помещаются производителем в осветительный прибор микроскопа.
История галогенных ламп — Кто изобрел галогенные лампочки?
С самого начала эволюции лампы накаливания инженеры пытались создать лампу, которая прослужила бы дольше и давала более яркий свет. потребляя меньше энергии.Срок службы лампы определяется сроком службы нити накала, и если испарение нити уменьшится, срок службы лампы сократится. дольше. Если можно поднять температуру, лампа накаливания будет светить ярче. Для всех этих проблем — галогенная лампа — решение. Не без изъянов, конечно.
Галогенная лампа — это своего рода лампа накаливания с небольшим количеством галогенового газа, чаще всего йода или брома, в атмосфере кварца или кварца. колба из алюмосиликатного стекла.В обычных лампах накаливания вольфрам испаряется под действием тепла и откладывается на внутренней поверхности лампы. стеклянная колба, затемняющая ее поверхность. Основная характеристика галогенной лампы — это соотношение между вольфрамом и газообразным галогеном в стеклянной колбе (т.н. галогенный цикл). Когда вольфрам испаряется, он вступает в реакцию с галогеном, образуя галогенид, который не осаждается на стекле. Когда галогенид приближается к вольфрам, который имеет высокую температуру, растворяется в вольфрам, который возвращается в нить накала, и в галоген, который возвращается в атмосферу в колбе, чтобы снова реагировать.Таким образом стекло остается прозрачным, а вольфрамовая нить служит дольше. Из-за высокой температуры и необходимости в том, чтобы колба была маленькой, чтобы галоген мог реагировать с вольфрамом, колба должна быть прочной и стойкой. Поэтому его делают из кварцевого или алюмосиликатного стекла. Поскольку лампочка сильная, возможно для повышения давления и концентрации галогена в колбе, что опять же дает лучшую реакцию между галогеном и вольфрамом. Первая лампа, использующая галогеновый газ (хлор) был запатентован в 1882 году, но первая коммерческая галогенная лампа, в которой в качестве газообразного галогена использовался йод, была запатентована в 1959 году компанией General Electric.Это было Разработана Элмером Фридрихом и Эмметом Вили, которые работали в General Electric в 1955 году. С 1980 года галогенные лампы были усовершенствованы и сделаны более легкими.
Галогенные лампы бывают двух вариантов: односторонние и двухсторонние. Двусторонние имеют более сильный свет и потребляют больше энергии, поэтому используются в качестве прожекторов, рабочих фар и освещение для кинопроизводства. Галогенные односторонние лампы используются в автомобильных фарах, кинопроекторах из-за сильного света и небольших размеров (с добавление теплопоглощающих фильтров из-за высокой температуры, которую они развивают) и в домах в качестве общего освещения, настольных ламп или непрямых молния.Они также использовались для подсветки в более ранних ЖК-мониторах, но были заменены другими типами ламп.
Галогенные лампы становятся намного горячее, потому что у них меньшая поверхность, которая меньше охлаждается и находится ближе к нити накала. Так они представляют опасность и там Известны случаи ожогов второй и третьей степени от прикосновения к галогенным лампам. Нельзя прикасаться к луковицам, даже если они холодные, потому что остатки пальцы нагреваются с другой скоростью, чем части без него, и растягиваются, что может привести к взрыву лампы.Есть даже законы, согласно которым галоген лампа должна быть за защитным стеклом или проволочной пюре.
Вольфрамово-галогенные лампы — Primelite Manufacturing
Primelite продолжает наш взгляд на различные типы лампочек. От ламп накаливания до светодиодов освещение сильно изменилось за последние 200 с лишним лет. В последние недели мы изучили лампы накаливания и отражатели (лампы накаливания). На этой неделе мы рассмотрим вольфрамово-галогенные лампы.
Что такое вольфрамово-галогенные лампы.
Вольфрамово-галогенная лампа, также известная как кварцево-галогенная, кварцево-йодная или галогенная лампа, представляет собой лампу накаливания, содержащую газообразный галоген (йод, бром). Как и в обычных лампах накаливания, галогенная лампа содержит вольфрамовую нить. Эта комбинация газообразного галогена и вольфрамовой нити дает свет с более высокой освещенностью и цветовой температурой в лампе меньшего размера.
Недостатком вольфрамово-галогенной лампы является очень высокая теплоотдача.Из-за высокой температуры вольфрамово-галогенные лампы изготавливаются из более толстого стекла, как правило, из плавленого кварца, стекла с высоким содержанием кремнезема или алюмосиликата. Лампа также излучает более «голубой» белый свет, более близкий к солнечному, по сравнению с «более теплым» белым светом, производимым обычными лампами накаливания. Лампы также обладают «полной яркостью» и имеют регулировку яркости.
Небольшой размер вольфрамово-галогенных ламп делает их идеальными для использования в жилых и коммерческих дорожных светильниках, встраиваемых светильниках (банках), в торговых помещениях и для освещения товарных витрин.Телевизионная и киноиндустрия уже давно используют вольфрамово-галогенные лампы из-за их светового потока и размера.
Вольфрамово-галогенные лампы бывают разных размеров и конфигураций, наиболее распространенными из которых являются одно- или двухцокольные (одинарные с одной лампой, двойные с двумя). Двухцокольные лампы обычно используются для рабочего освещения и ламп для кинопроизводства. Самая распространенная вольфрамово-галогенная лампа с одной лампой — MR-16.
ЛампыMR-16 — это рабочая лошадка семейства вольфрамово-галогенных ламп.Эти лампы с «многогранным отражателем» (MR) состоят из галогенной лампы, объединенной со стеклянным отражателем. Отражатель может быть фасетным или гладким, что позволяет получать разные лучи, от узких прожекторов до широких прожекторов. Лампы MR-16 очень полезны для направленного освещения и используются в дорожном освещении, встраиваемых банках, подвесных светильниках, настольных лампах, ландшафтном и торговом освещении.
У вольфрамово-галогенной лампы много преимуществ, но есть несколько недостатков. Как упоминалось ранее, лампы очень сильно нагреваются, что может привести к взрыву, в результате чего на лампу необходимо накрыть защитное стекло.Сами луковицы не должны касаться человеческих пальцев, потому что оставленный кожный жир может привести к выходу лампы из строя. Даже с этими проблемами вольфрамово-галогенная лампа оказалась очень важной в области освещения.
Как и все лампы накаливания, вольфрамово-галогенные лампы постепенно выводятся из эксплуатации и заменяются более эффективными, не имеющими проблем с температурой и более дешевыми в эксплуатации версиями светодиодных ламп.