Ограничитель перенапряжения: устройство и принцип работы
Для создания условий безаварийной и долгосрочной эксплуатации огромной массы электрооборудования, используемого, как в промышленности, так и в повседневной деятельности, в первую очередь необходимо обеспечить безопасный способ доставки и стабильность параметров электроэнергии. Особую опасность для электрических потребителей представляет кратковременное многократное превышение значение величины номинального напряжения в электрической сети. В электротехнике это явление известно, как перенапряжение. Как правило, причиной его проявления является воздействие на линии электропередач грозовых явлений или же коммутационных процессов внутри электрической установки. Возникающие импульсы высокого напряжения могут безвозвратно вывести из строя дорогостоящее оборудование, быть причиной возникновения пожаров и взрывов. Для защиты от возникающих пиковых значений напряжения, служат специальные высоковольтные устройства, ограничители перенапряжения, принцип работы и назначение которых мы и рассмотрим далее.Назначение
Устройство
Первичным и основным элементом, из чего состоит ограничитель перенапряжения, служит варистор, выполняющий роль нелинейного переменного резистора. Конструктивно ОПН состоят из варисторов, размещенных в корпусе, изготовленном из фарфора или высокопрочного полимера. Конструкция ограничителя выполнена с учетом условий, обеспечивающих взрывобезопасность, в случае возникновения токов короткого замыкания. В зависимости от назначения и места установки ОПН могут быть исполнены в различных вариантах. Для ограничителей, используемых для защиты линий электропередач и оборудования промышленных объектов, на крышке корпуса предусмотрен контактный болт для подключения к сети, в комплект ОПН входит изолированная от контакта с землей плита основания.
Устройства, предназначенные для защиты от пиковых импульсов напряжения электрохозяйства квартиры или дачного домика, очень компактны, имеют привлекательный дизайн, а также снабжены устройством для крепления на din-рейку. В зависимости от категории сложности, могут быть обустроены индикацией режимов работы и дистанционным управлением.
Устройство модульного ограничителя перенапряжения предоставлено на фото:
где:
- Корпус
- Предохранитель
- Сменный варисторный модуль
- Указатель износа варисторного модуля
- Насечки на зажимах
Принцип работы
Принцип действия ОПН объясняется нелинейным характером вольтамперных характеристик (ВАХ) варисторов. Для их изготовления применяется материал, где находит применение окись цинка в смеси с оксидами других металлов. Благодаря составу данной смеси, колонка, собранная из варисторов является комбинацией параллельных и последовательных включений p-n переходов, что и обуславливает природу вольтамперных характеристик нелинейных резисторов ограничителей.
Когда характеристики напряжения в сети соответствуют номинальным значениям, ограничитель находится в режиме непроводящего состояния. Величина тока в варисторах имеет мизерные значения и объясняется емкостным характером. При появлении в сети импульса напряжения, величина которого может вызвать пробой изоляции электрооборудования, в цепи нелинейных резисторов ОПН, в соответствии с их вольтамперными характеристиками, будет иметь место возникновение значительного импульса тока. В конечном итоге это снижает величину перенапряжения до параметров безопасных для безаварийной эксплуатации оборудования. Когда напряжение в сети нормализуется, ОПН вновь возвращается в непроводящий режим.
Виды ОПН
Конструкции ОПН, предлагаемые производителями энергетикам весьма разнообразны, их различают по следующим признакам:
- Типу изоляции (фарфор или полимер).
- Конструктивному исполнению (одна или несколько колонок).
- Величине рабочего напряжения.
- Месту установки ограничителя.
Если говорить об ограничителях перенапряжения, устанавливаемых на DIN-рейку, то тут устройства первоначально разделяются на однофазные и трехфазные. Помимо этого модульные ОПН (они же УЗИП), делятся на три основных класса: B, C и D. Ограничители класса B устанавливаются на вводе в здание, C — непосредственно в распределительном щите квартиры либо дома, D — на отдельное оборудование, которое нужно защитить от помех, если с этим не справились ОПН класса B и C. Подробнее о модульных ограничителях перенапряжения вы можете узнать из видео:
Технические характеристики
- Максимально действующее напряжение. Под этим понятием необходимо понимать величину наибольшего значения величины напряжения, при котором ограничитель способен сохранять свою работоспособность без ограничения по времени.
- Номинальное напряжение, эквивалентно величине, воздействие которого ОПН способен выдерживать в течение 10 минут.
- Ток проводимости. Величина тока, в цепи нелинейных резисторов в период воздействия номинальных значений приложенного напряжения. Как правило, имеет мизерное значение.
- Номинальный разрядный ток. Параметр, определяющий классификацию ограничителя в условиях грозового режима.
- Расчетный ток коммутационного перенапряжения. Значение тока, определяющее классификацию при коммутационных перенапряжениях.
- Токовая пропускная способность. Величина эквивалентная классу разряда линии.
- Устойчивость к короткому замыканию. Категория способности ОПН противостоять токам короткого замыкания, сохраняя при этом целостность защитной оболочки.
Защита электрохозяйства административных зданий, многоквартирных домов и предприятий возлагается на соответствующие службы энергетических компаний, оградить свой дом от нежелательных последствий грозового разряда возложена на домовладельца. В настоящее время этот вопрос решается просто. В специализированных магазинах представлен широкий выбор ограничителей перенапряжения различной степени сложности и ценового диапазона.
На рисунке ниже показано подключение ОПН к однофазной сети и условное обозначение на схеме. Подключить ограничитель перенапряжения к домашней электросети не сложно, но выполнение этой операции лучше доверить специалисту, если вы не имеете опыта в электромонтажных работах.
Напоследок рекомендуем просмотреть видео, на котором наглядно рассматривается конструкция и принцип действия ограничителей перенапряжения нелинейных:
Вот мы и рассмотрели устройство, назначение и принцип действия ограничителя перенапряжения. Как вы видите, существует различные виды и конструктивные исполнения данных устройств, благодаря чему можно подобрать подходящий вариант для собственных условий применения.
Будет интересно прочитать:
samelectrik.ru
Ограничитель перенапряжений. Ограничитель импульсных перенапряжений
Ограничитель импульсных перенапряжений — это один из наиболее широко известных высоковольтных приборов, использующийся для защиты сети.
Описание приспособления
Для начала стоит объяснить, из-за чего, в принципе, возникают импульсные перенапряжения и чем они опасны. Причиной появления этого процесса является нарушение в атмосферном или коммутационном процессе. Такие дефекты вполне способны нанести огромный ущерб электрическому оборудованию, которое подвергнется такому воздействию.
Тут стоит привести пример на громоотводе. Это устройство отлично справляется с отводом сильного разряда, бьющего в объект, однако оно никак не сможет помочь, если разряд попадет в сеть через воздушные линии. Если такое происходит, то первый же проводник, который попадется на пути у такого разряда, выйдет из строя, а также может стать причиной поломки другого электрического оборудования, которое подключено к этой же электрической сети. Элементарная защита — отключение всех приборов во время грозы, однако в некоторых случаях это невозможно, а потому были изобретены такие устройства, как ограничители перенапряжений ОПН.
Что даст использование устройства
Если говорить об обычных средствах защиты, то их конструктивное исполнение несколько хуже, чем у ОПН. При обычном исполнении устанавливаются карборундовые резисторы. Дополнительной конструкцией являются искровые промежутки, которые соединены между собой последовательным образом.
В ограничителях импульсных перенапряжений же имеются такие элементы, как нелинейные транзисторы. Основой для этих элементов стал оксид цинка. Таких деталей имеется несколько, и все они объединяются в одну колонку, которая помещается в специальный корпус из такого материала, как фарфор или полимер. Это обеспечивает полностью безопасное использование таких устройств, а также надежно защищает их от любых внешних воздействий.
Тут важно отметить, что основная особенность ограничителя перенапряжения — это конструкция оксидно-цинковых резисторов. Такое исполнение позволяет сильно расширить функции, которые может выполнять устройство.
Технические параметры
Как и у любого другого устройства, у ОПН имеется основная характеристика, которая определяет его работоспособность и качество. В данном случае таким показателем стала величина рабочего напряжения, которое может подводиться к клеммам устройства без какого-либо ограничения в плане времени.
Имеется еще одна характеристика — ток проводимости. Это значение тока, который проходит через прибор под воздействием напряжения. Измерить данный показатель можно лишь в условиях реального использования устройства. Основными числовыми показателями данного параметра являются емкость и активность. Общий показатель этой характеристики может достигать нескольких сотен микроампер. По полученному значению этой характеристики оценивается работоспособность ограничителя перенапряжений.
Описание устройства ОПН
Для того чтобы изготовить данное устройство, производители используют те же электротехнические и конструкторские методы, которые применяются в изготовлении других продуктов. Это наиболее заметно при осмотре размеров и материалов, использующихся для изготовления корпуса. Внешний вид также имеет некоторую схожесть с другими устройствами. Однако стоит отметить, что отдельного внимания удостаиваются такие вещи, как установка ограничителя перенапряжения, а также его дальнейшее подключение к общим электроустановкам потребительского типа.
Имеется несколько требований, которые предъявляются именно к этому классу устройств. Корпус ОПН должен быть полностью защищен от прямого прикосновения человека. Должен быть полностью исключен риск того, что устройство загорится из-за возможных перегрузок. Если элемент выйдет из строя, то это не должно повлечь за собой короткого замыкания в линии.
Назначение и применение ОПН
Основное предназначение нелинейных ограничителей перенапряжения — это защита изоляции электрического оборудования от атмосферных или коммутационных перенапряжений. Данное устройство относится к группе высоковольтных приборов.
В этих аппаратах отсутствует такой раздел, как искровой промежуток. Если сравнивать диапазон действия ОПН и обычного вентильного разрядника, то ограничитель способен выдерживать более глубокие перепады напряжения. Основная задача данного устройства — выдерживать эти нагрузки без ограничения по времени. Еще одно существенное отличие ограничителя перенапряжения от обычного вентильного заключается в том, что размеры, а также физический вес конструкции в данном случае гораздо ниже. Наличие такого элемента, как крышка из фарфора или полимеров, привело к тому, что внутренняя часть устройства надежно защищена от внешних воздействий окружающей среды.
ОПН-10
Устройство этого прибора несколько отличается от обычного ОПН. В данном варианте применяется колонка варисторов, которые заключены в покрышку. Для создания покрышки в данном случае используется уже не фарфор или полимеры, а стеклопластиковая труба, на которую опрессована оболочка из трекингостойкой кремнийорганической резины. Кроме того, колонка варисторов имеет алюминиевые выводы, которые поджаты с двух сторон, а также ввернуты внутрь трубы.
Ограничитель перенапряжений ОПН-10 относится к полимерной группе устройств. Основная задача данного прибора — это защита электрического оборудования распределительных устройств. Также применяются для защиты сетей элементы с классами 150 кВ, с изолированной или компенсированной нейтралью. Использовать эти приспособления можно на открытом воздухе в умеренных и холодных поясах. Диапазон рабочей температуры от минус 60 до плюс 60 градусов по Цельсию. Проводить монтажные работы, а также дальнейшую эксплуатацию оборудования можно лишь в соответствии с правилами техники безопасности.
Ограничитель импульсных перенапряжений ОПС1
Серия ограничителей импульсных напряжений ОПС1 используется также для защиты от грозовых или коммутационных перенапряжений. Устанавливается такой прибор в месте ввода электрической энергии на объект. Также может монтироваться на вводе главного распределительного щита объекта.
Существует несколько классов защиты. Агрегаты класса В применяются для того, чтобы защитить электрическую сеть от перенапряжения после прямого удара молнии. Место установки — на входе в здание, до ВРУ.
Класс С — специализируется на защите непосредственно электрического оборудования от таких процессов, как остаточное атмосферное и коммутационное воздействие. Место установки ограничителя — это местные распределительные щитки.
fb.ru
Ограничитель импульсных перенапряжений
Содержание:
- Преимущества в использовании ОПН
- Технические характеристики ОПН
- Устройство ограничителей импульсных перенапряжений
- Защита от импульсных перенапряжений
Среди множества защитных устройств широко известен такой высоковольтный аппарат, как ограничитель импульсных перенапряжений. Импульсные перенапрежения возникают в результате нарушений в атмосферных или коммутационных процессах и способны нанести серьезный вред электрооборудованию.
Основным средством защиты дома при попадании молнии служит громоотвод или молниеотвод. Но он не способен справиться с разрядом, проникшим в сеть через воздушные линии. Поэтому проводник, принявший на себя этот импульс, становится основной причиной выхода из строя электрооборудования и домашней аппаратуры, подключенной к данной сети. Чтобы избежать подобных неприятностей рекомендуется их полное отключение на период грозы. Гарантированная защита обеспечивается путем установки ограничителей перенапряжения (ОПН).
Преимущества в использовании ОПН
В обычных средствах защиты установлены карборундовые резисторы, а также соединенные последовательно искровые промежутки. В отличие от них в ОПН устанавливаются нелинейные резисторы, основой которых является окись цинка. Они объединяются в общую колонку, помещенную в фарфоровый или полимерный корпус. Таким образом, обеспечивается их эффективная защита от внешних воздействий и безопасная эксплуатация устройства.
Особенности конструкции оксидно-цинковых резисторов позволяют выполнять ограничителям перенапряжения более широкие функции. Они свободно выдерживают, независимо от времени, постоянное напряжение электрической сети. Размеры и вес ОПН значительно ниже, чем у стандартных вентильных разрядников.
Технические характеристики ОПН
Основной величиной, характеризующей работу ограничителя перенапряжения ОПН, является максимальное действие рабочего напряжения, которое может подводиться к клеммам прибора без каких-либо временных ограничений.
Ток, проходящий через защитное устройство под действием напряжения, называется током проводимости. Его значение измеряется в условиях реальной эксплуатации, а основными показателями служит активность и емкость. Общая величина такого тока может составлять до нескольких сотен микроампер. По этому параметру оцениваются рабочие качества ОПН.
Все импульсные ограничители способны устойчиво переносить медленно изменяющееся напряжение. То есть, они не должны разрушаться в течение определенного времени при повышенном уровне напряжения. Значения, полученные при испытаниях, позволяют настроить защитное отключение прибора по истечению установленного срока.
Величина предельного разрядного тока является максимальным значением грозового разряда. С ее помощью устанавливается предел прочности импульсного ограничителя при прямом попадании молнии.
Нормативный ресурс ОПН определяется и токовой пропускной способностью. Он рассчитывается для работы в наиболее тяжелых условиях, когда присутствуют максимальные грозовые или коммутационные перенапряжения.
Устройство ограничителей импульсных перенапряжений
Производители электротехники пользуются технологией и конструкторскими решениями, которые применяются в других электроустановочных изделиях. Прежде всего, это материал корпуса и габаритные размеры, внешний вид и прочие параметры. Отдельно решаются технические вопросы, связанные с установкой ОПН и его подключением к общим электроустановкам потребителей.
Существуют отдельные требования, предъявляемые именно этому классу устройств. Корпус ограничителя перенапряжений должен обеспечивать защиту от прямых прикосновений. Полностью исключается риск возгорания защитного устройства из-за перегрузок. При его выходе из строя на линии не должно быть коротких замыканий.
Современный ограничитель импульсных перенапряжений оборудуется простой и надежной индикацией. К нему может подключаться сигнализация дистанционного действия.
Защита от импульсных перенапряжений
electric-220.ru
Ограничитель перенапряжения: устройство, виды, технические характеристики
Одним из наиболее опасных аварийных режимов в электрических сетях является импульсный скачек напряжения при атмосферных разрядах, перехлесте линий или коммутационных операциях. Эта величина значительно опережает нарастание импульсного тока и воздействует на изоляцию электрооборудования и других устройств, поэтому классические автоматы и другие защиты, реагирующие на изменение номинального тока, против нее не эффективны.
Значение перенапряжения может в разы превышать номинальную рабочую величину, поэтому такое явление подвергает опасности все оборудование и элементы сети. Для предотвращения значительных убытков и последующих затрат на восстановление в электроустановках используются ограничители перенапряжения (ОПН).
Устройство и принцип действия
Конструктивно ограничитель перенапряжения включает в себя полупроводниковый элемент с нелинейной величиной сопротивления. Как правило, в роли таких элементов выступают вилитовые диски, изготовленные на основе оксидов цинка с включением в из состав тех или иных примесей. Снаружи диски закрываются защитной рубашкой, а на концах имеют электрические выводы, один из которых подводится к защищаемой электрической сети, а второй заземляется. Пример частного варианта устройства ограничителя перенапряжения представлен на рисунке 1 ниже:
Рисунок 1: устройство ограничителя перенапряженияРабота ОПН схожа с обычным варистором, отличительной особенностью ограничителя являются некоторые различия с характеристикой варистора в части проводимости и скорости нарастания. Принцип действия ограничителя перенапряжения заключается в его нелинейной вольт-амперной характеристике (ВАХ). Это означает, что при номинальном напряжении сопротивление варисторов достаточно большое и ток через них не протекает – его сопротивление изоляции соизмеримо с изоляцией кабелей, изоляторов и электрических приборов.
В рабочем режиме при возникновении грозовых разрядов или других высоковольтных импульсов сопротивление нелинейных резисторов внутри ограничителя резко снижается. Как правило, эта величина приближается к нулю или несоизмеримо меньше сопротивления сети и всех подключенных к ней приборов. Поэтому при коммутационных или грозовых перенапряжениях ток разряда протекает только через ограничитель перенапряжения на землю, чем и обеспечивается защита электрооборудования.
Пределы срабатывания ограничителя перенапряжений на разряды молний или другие импульсные перенапряжения определяются его ВАХ.
Рис. 2: вольтамперная характеристика ОПНКак видите из рисунка 2, при работе ограничителя перенапряжения до 600В, протекающий через него ток будет равен нулю. Как только это значение пересечет отметку в 600В, сопротивление резко уменьшиться и протекающий ток увеличиться до сотен и тысяч ампер.
Здесь кривая характеристики представлена тремя участками:
- 1 – область нулевых или сверхмалых токов;
- 2 – область средних токовых нагрузок;
- 3 – область максимального тока.
Применение
Ограничитель перенапряжения применяется для предотвращения нарастания перенапряжения на электрическом оборудовании с последующим переводом импульса разряда на землю.
Рис. 3: пример использования ОПНШирокое применение нелинейных ограничителей распространено в линиях электропередач, где они выступают в роли молниезащиты, а сами провода являются молниеприемниками. В промышленных целях ограничители перенапряжения используются для защиты различных электрических аппаратов и персонала, к примеру, на тяговых и трансформаторных подстанциях, распределительных устройствах и т.д. В бытовых устройствах ОПН применяются для установки в электрических щитках на вводе в здание или для защиты какого-либо ценного оборудования.
Виды ОПН
В связи с большим спектром решаемых задач ограничители перенапряжения подразделяются на несколько видов, которые отличаются по таким параметрам:
- Класс напряжения – рабочая величина, на которую рассчитан ограничитель, разделяется на устройства до 1кВ и выше, как правило, номинал напряжения соответствует стандартному значению электрических параметров сети (6, 10, 35 кВ).
- Материал рубашки – определяет тип изоляции наружного слоя, наиболее часто используются фарфоровые или полимерные модели.
- Класс защищенности – определяет возможность установки или на открытой части, или только внутри помещения.
- Количеству элементов или фаз – число ограничителей перенапряжения зависит от числа защищаемых фаз и величины питающего их напряжения.
Так для каждой из фаз в электроустановке может устанавливаться отдельная колонка или одна для всех. Также следует отметить, что в электроустановках на 110 кВ и более ОПН для одной фазы может собираться из нескольких однотипных элементов, к примеру, из трех на 35 кВ.
В зависимости от причин возникновения перенапряжения в сети устройство защиты должно выстраиваться в соответствии с требованиями стандартов:
- ГОСТ Р 50571.18-2000 – от возможных перенапряжений в низковольтных сетях при замыканиях по высокой стороне.
- ГОСТ Р 50571.19-2000 – от скачков, образованных воздействием молнии и возникающих в результате переключения электроустановок.
- ГОСТ Р 50571.20-2000 – от перенапряжений генерируемых электромагнитными воздействиями.
Комбинация нескольких видов позволяет выстраивать многофункциональные или ступенчатые ограничители.
Фарфоровые
Рис. 4: фарфоровые ОПНДостаточно распространенным вариантом являются ограничители коммутационных перенапряжений с фарфоровым корпусом. Такие модели отличаются своими эксплуатационными параметрами, так как керамика невосприимчива к воздействию солнечной радиации, а находящийся внутри вентильный разрядник практически не зависит от температуры внешней среды.
Также весомым преимуществом этих ограничителей является большая механическая прочность на сжатие и разрыв, благодаря чему их можно использовать и в качестве опорной конструкции. Но фарфоровые ОПН характеризуются сравнительно большим весом, а также представляют значительную угрозу в случае разрыва, так как осколки фарфора поражают близлежащие здания и могут травмировать персонал.
Полимерные
Рис 5: полимерные ОПНС развитием химической отрасли и распространением полимеров в качестве диэлектриков они значительно вытеснили фарфоровые ограничители. Полимерные ОПН представляют собой устройства с рубашкой из каучука, винила, фторопласта или других подобных материалов.
Полимерные ограничители куда боле устойчивы к воздействию влаги, отличаются меньшим весом и большей взрывобезопасностью, так как в случае разрушения корпуса избыточным давлением внутри колонки, рубашка повреждается по линии разлома, но не разлетается острыми осколками. Значительным преимуществом полимерных моделей является их устойчивость к динамическим нагрузкам.
К недостаткам полимерных ОПН относится способность к накоплению пыли и прочих засорителей на поверхности диэлектрика, которые со временем приводят к повышению пропускной способности, увеличению тока утечки и пробою изоляции. Также полимеры боятся солнечной радиации и температурных колебаний в окружающей среде.
Одноколонковые
Такие ограничители перенапряжения представляют собой один конструктивный элемент с нелинейным сопротивлением. Число полупроводниковых дисков в них набирается в соответствии с категорией защищаемой электроустановки. В зависимости от количества и типа осаживающейся на поверхности пыли и засорителей, одноколонковые ОПН подразделяются по классам от II до IV согласно градуировке ГОСТ 9920.
Многоколонковые
В отличии от предыдущих устройств борьбы с коммутационными перенапряжениями, эти средства защиты высоковольтного оборудования имеют несколько колонок, модулей или блоков, объединяемых в одну систему. Данный вид ОПН характеризуется большей надежностью по отношению к защищаемым объектам, так как способен реагировать и на одиночные, и на дифференциальные перенапряжения.
Технические характеристики
При выборе конкретной модели ограничителя перенапряжения обязательно учитываются такие параметры устройства:
- Время срабатывания – характеризует скорость открытия полупроводникового элемента ограничителя после нарастания напряжения.
- Рабочее напряжение – определяет величину электрической энергии, которую ОПН может выдерживать без нарушения работоспособности в течении любого промежутка времени.
- Номинальное повышенное напряжение – значение рабочей величины, которое ОПН способен выдерживать в течении 10 секунд, также нормируется совместно с остаточным напряжением, которое остается в сети.
- Ток утечки – возникает как результат приложения напряжения к ограничителю перенапряжения и определяется его омическим сопротивлением или параметрами резисторов. В исправном состоянии этот параметр составляет сотые или тысячные доли ампер, перетекающие по рубашке и полупроводнику от источника к проводу заземления.
- Разрядный ток – величина, образующаяся при импульсных скачках, в зависимости от источника перенапряжения разделяется на атмосферные, электромагнитные и коммутационные импульсы.
- Устойчивость к току волны перенапряжения – определяет способность сохранять целостность всех элементов конструкции в аварийном режиме.
Обслуживание и диагностика ОПН
В процессе эксплуатации ограничители перенапряжения не являются одноразовым элементом. Поэтому могут многократно производить операции перевода импульсного разряда на заземляющую шину автоматически. Из-за особенностей протекания и величины перенапряжения ОПН может утрачивать заводские параметры, снижать эффективность работы до полного выхода со строя. Для предотвращения подобных ситуаций они подвергаются периодической проверке в процессе эксплуатации, которая регламентируется п.2.8.7 ПТЭЭП. При этом проверяется:
- Сопротивление – не менее раза в 6 лет, измеряется при помощи мегаомметра.
- Ток проводимости – проверяется только при условии снижения предыдущего параметра.
- Пробивное напряжение и герметичность проверяются только после заводского ремонта или при приемке в эксплуатацию на заводе. Самостоятельно электроснабжающими и эксплуатирующими организациями такие меры диагностики для ограничителей не производятся.
- Тепловизионные измерения должны выполняться в соответствии с регламентом изготовителя или местными планово-предупредительными ремонтами.
Также в процессе эксплуатации может выполняться внешний осмотр устройства на наличие подгаров, сколов, загрязнения или других дефектов в изоляции.
Видео по теме статьи
www.asutpp.ru
Ограничители напряжения: Простейшие способы ограничения напряжений и защиты от кратковременных импульсных перенапряжений
В тех случаях, когда необходимо ограничить диапазон изменения какого-либо сигнала, используются устройства, называемые ограничителями. В подобных цепях находят широкое применение диоды различных видов (импульсные, универсальные, стабилитроны, ограничители и др.).
С помощью импульсных стабилитронов или ограничителей напряжения можно защитить входные (и выходные) цепи различных узлов аппаратуры от воздействия кратковременных импульсных помех и перенапряжений, проникающих в них из-за грозовых разрядов, коммутации индуктивных нагрузок, статических электрических разрядов и т.п. (рис. 3.2‑1…3.2‑4).
Рис. 3.2-1. Схема защиты диодного моста и трансформатора
Рис. 3.2-2. Схема защиты входной и выходной цепей транзисторного усилителя
Рис. 3.2-3. Схема защиты ОУ по цепям питания
Рис. 3.2-4. Схемы защиты ОУ по входным и выходным однополярным (а) и двуполярным (б, в) сигнальным цепям
Обыкновенные универсальные, выпрямительные или импульсные диоды также могут использоваться в схемах ограничения напряжения. Например, если необходимо ограничить уровень напряжения сигнала каким-либо конкретным значением, то подойдет простейшая схема представленная на рис. 3.2-5. Здесь напряжение ограничения составляет примерно 5,6 В. Оно складывается из значения опорного напряжения \(U_{оп} = {5 В}\) и падения напряжения на диоде при прямом смещении (для многих кремниевых диодов ~0,6 В).
Рис. 3.2-5. Простейший одноуровневый диодный ограничитель
Аналогично может быть построена схема и для двухуровневого ограничения (рис. 3.2-6).
Рис. 3.2-6. Двухуровневый диодный ограничитель
Такая и подобные схемы широко используются для защиты различных узлов электронной аппаратуры. Например, входные цепи цифровых микросхем КМОП часто выполняются по схеме приведенной на рис. 3.2-7.
Рис. 3.2-7. Типовая схема защиты входных узлов логических элементов КМОП
На рис. 3.2-8 показан последовательный диодный двусторонний ограничитель, в котором при входных напряжениях ±0,5 В напряжение на выходе практически равно нулю и отличается от нуля, если входное напряжение выходит за указанные рамки. Такой ограничитель позволяет подавить нежелательные сигналы малого уровня (фон, шумы).
Рис. 3.2-8. Последовательный двусторонний диодный ограничитель
На рис. 3.2-9 приведен еще один параллельный диодный двусторонний ограничитель, в котором напряжения ±0,5 В передаются на вход без ограничения, а напряжения, выходящие за эти рамки, ограничиваются.
Рис. 3.2-9. Параллельный диодный ограничитель по уровню ±0,5 В
Для получения уровней ограничения порядка ±0,1…0,3 В можно использовать германиевые диоды или диоды Шоттки, а при необходимости увеличения уровней ограничения до ±1 В , вместо одного диода включают последовательно два или более диодов. Для еще больших напряжений можно использовать стабисторы, светодиоды (в прямом включении), стабилитроны.
< Предыдущая | Следующая > |
---|
www.club155.ru
Защита от импульсных перенапряжений. Ограничитель импульсных перенапряжений
Причины возникновения импульсных перенапряжений
Бытовая электротехника изготовлена на полупроводниках и микропроцессорах, которые имеют слабую изоляцию. Эта техника может выйти из строя даже при небольшом импульсном скачке напряжения. Поэтому для защиты электрооборудования от импульсных перенапряжений применяются ограничители импульсных перенапряжений УЗИП.
Причин возникновения импульсных помех несколько. Это удары молнии в линию электропередач или в металлические конструкции, которые находятся рядом с потребителями электроэнергии. Поражение молнией устройств молниезащиты, разряды молний в облаках и близкие удары молний, также наводят электрические импульсные помехи в системе энергоснабжения.
Переключение больших индуктивных и емкостных нагрузок на энергоемких предприятиях, короткое замыкание в сети. Еще на предприятиях во время работы мощных электроустановок создаются электромагнитные помехи.
Устройство защиты от импульсных перенапряжений УЗИП
Работа устройства УЗИП похожа на работу ограничителя перенапряжений имеющих вольтамперную характеристику. Для осуществления качественной защиты от импульсных перенапряжений создают трехступенчатую защиту. Каждая ступень рассчитана на свою величину уровня помех и свою крутизну фронта импульса.
Схема подключения УЗИП к сети TNC и сети TNS
Так УЗИП-I рассчитан на амплитуду помех 25-100 кА с длительностью фронта импульса 350 мкс. УЗИП-II отсекает уровень амплитуды импульсов значением 15-20кА. Защищает это устройство от импульсных помех, вызванных переходными процессами в распредсетях. УЗИП-III предназначен для установки рядом с нагрузкой, и защищает электрооборудование от остаточных импульсных перенапряжений.
Защита от импульсных перенапряжений тремя ступенями УЗИП
Все модули УЗИП крепятся на din-рейке, что удобно при быстрой замене неисправного импульсного блока. Чтобы согласовать работу и временную задержку всех трех ступеней, расстояние между которыми не должно быть меньше 5 метров (для УЗИП на нелинейных элементах — варисторах).
Уменьшение импульсных перенапряжений после каждой ступени защиты УЗИП
Такое расстояние проводников вызвано временной задержкой, которая необходима для нарастания импульса на следующей ступени УЗИП, Эта задержка дает возможность отработать предыдущей ступени, тем самым защитить последующие УЗИП от перегрузки.
Когда длина проводников меньше 5 метров, то ставят компенсационные индуктивности, которые рассчитывают с учетом 1 мкГ/м. Чтобы компенсировать длину проводов в 5 метров, нужно ставить индуктивность 5 мГ. В электросети частного дома УЗИП-I нужно ставить на вводе электрощита,
Схема подключения одного УЗИП в частном доме
УЗИП-II после счетчика и несколько УЗИП-III перед каждым потребителем электроэнергии. Компенсационную индуктивность 5 мГ ставят перед УЗИП-II и УЗИП-III. Это способ защиты дает наилучшие результаты.
Тоже интересные статьи
electricavdome.ru
Ограничители импульсных напряжений (ОИН) / Публикации / Energoboard.ru
Разместить публикацию Мои публикации Написать22 декабря 2011 в 10:00
РМЕА 656111.011 ТУ
Защита электрооборудования и бытовых приборов от грозовых и импульсных перенапряжений.
- ОИН1 — без индикатора рабочего состояния;
- ОИН2 — с индикатором рабочего состояния.
Нормативно-правовое обеспечение
- Отвечают требованиям ГОСТ Р 51992, других стандартов и ПУЭ
- Отвечает требованиям к защите от перенапряжений по ГОСТ Р 50571.19
Технические характеристики
Наименование характеристики | Значение параметров |
Номинальное напряжение питающей сети, В | 220 |
Номинальный разрядный ток, кА | 5; 10; 20 |
Максимальный разрядный ток, кА | 12,5; 25; 50 |
Остаточное напряжение при номинальном токе не выше, В | 2000 |
Класс испытаний по ГОСТ Р 51992 | II |
Степень защиты, обеспечиваемая оболочками | не ниже IP20 |
Температура окружающего воздуха, С | от -45 до 55 |
Габаритные разметы, мм | 80 x 17,5 x 65,5 |
Масса, не более, кг | 0,12 |
Гарантийный срок эксплуатации, лет | 3 |
Советы и рекомендации
О применении устройств для защиты от импульсных напряжений (ОИН) в электроустановках жилых и общественных зданий PDF 224 kB
Конструктивные особенности
Ограничитель импульсных напряжений (ОИН) обеспечивает:
- Максимальное длительное рабочее напряжение 275 В частотой 50 Гц
- Рабочий потребляемый ток при напряжении 275 В не превышает 0,7 мА
- Выполнен в виде унифицированного модуля шириной 17,5 мм для монтажа на рейке 35/7мм
- Выдерживает воздействие импульсов комбинированной волны с напряжением разомкнутой цепи 10,0 кВ и с током короткозамкнутой цепи 5 кА
- Обеспечивает защиту оборудования от импульсного сопротивления категории II по ГОСТ Р 50571.19-2000 (уровень напряжения защиты 2,0 кВ)
- Выдерживает без повреждений воздействие временного перенапряжения 380 В
- Классификация по тепловой защите: ОИН1 и ОИН2 — без тепловой защиты.
- Классификация по наличию индикатора состояния:
- ОИН1 — без индикатора;
- ОИН1С (по дополнительному заказу) — со световым индикатором наличия напряжения сети;
- ОИН2 — со световым индикатором рабочего состояния.
- Классификация по ремонтопригодности: ОИН1 и ОИН2 — моноблочные (неремонтируемые в условиях эксплуатации).
- Допускает присоединение проводников сечением от 4 до 16 мм
Функциональные возможности
- ОИН1 — ограничитель импульсных напряжений моноблок с варистором; по заказу световой индикатор наличия напряжения сети.
- ОИН2 — ограничитель импульсных напряжений моноблок с варистором, световой индикатор рабочего состояния, световая индикация напряжения сети.
Габаритные размеры
4 июня 2012 в 11:00 34628
12 июля 2011 в 08:56 13962
14 ноября 2012 в 10:00 8770
21 июля 2011 в 10:00 6833
29 февраля 2012 в 10:00 6295
28 ноября 2011 в 10:00 6242
24 мая 2017 в 10:00 5569
27 февраля 2013 в 10:00 5494
16 августа 2012 в 16:00 5148
25 декабря 2012 в 10:00 3863
energoboard.ru