Индукционные электродвигатели: Ошибка выполнения

Содержание

Индукционный электродвигатель - Большая Энциклопедия Нефти и Газа, статья, страница 1

Индукционный электродвигатель

Cтраница 1

Индукционные электродвигатели превосходят размерами двигатели постоянного тока, но отсутствие коллектора делает их более надежными и уменьшает трение, а следовательно, и всегда имеющуюся в действительности ( хотя и не всегда учитываемую) зону нечувствительности.  [1]

Ткацкий станок, на основе индукционного электродвигателя по любому из предшествующих пунктов, осуществляющего рабочее перемещение челнока, причем челнок состоит из тонкой полоски неферромагнитного электропроводного материала, на которой укреплена челночная бобина.  [2]

Постоянство натяжения обеспечивается с помощью однофазного индукционного электродвигателя, работающего на режиме торможения.  [4]

При помощи зубчатого венца и шестерни 2 шпуля соединена с двухфазным индукционным электродвигателем 3, вращение которого направлено в сторону, противоположную вращению шпули от воздействия на нее провода при намотке. Электродвигатель питается пониженным ( не более 80 % от рабочего) напряжением. Провод при сматывании преодолевает стремление шпули, вызванное электродвигателем, поворачиваться по стрелке А, благодаря чему и создается требуемое натяжение провода.  [6]

После усиления этого сигнала он подается на питание обмотки управления ОУ двухфазного индукционного электродвигателя.  [7]

Я попробовал вставить в алюминиевую пластину, служившую подвижной частью, несколько постоянных магнитов, с помощью которых пластина могла разгоняться до номинальной скорости между двумя статорами линейного индукционного электродвигателя. Но в первых же двух испытаниях два комплекта так называемых постоянных магнитов совершенно размагнитились - а стоили они недешево.  [8]

Осенью 1888 г. Доливо-Добровольский, тогда еще молодой инженер, познакомился с содержанием доклада Феррариса и обратил свое внимание именно на ту часть доклада, где Феррарис делает вывод о практической непригодности

индукционного электродвигателя. Доли - о - Доброволъекий не-согласился с таким выводом Феррариса.  [9]

Средняя часть ротора / / соединена с полостью внутреннего полукольца ротора / черпательной трубой ( пунктир), конец к-рой IV треугольного сечения загнут против направления потока вращаемой ротором / жидкости. Характеристика вращающего момента центробежной гидромуфты подобна характеристике трехфазного индукционного электродвигателя, ротор к-рого работает всегда с нек-рым скольжением.  [10]

Мое первое профессиональное изобретение, которое начало формироваться в моем сознании еще в студенческие годы, относилось к той самой не вполне обычной ситуации, когда теория опережает практику. Получив, если можно так выразиться, двойную порцию лекций по индукционным электродвигателям ( вначале в политехнической школе в Лондоне, где я проходил подготовку на звание офицера Королевских военно-воздушных сил, а затем в Манчестерском университете, куда я поступил после увольнения из армии в запас), я стал выделять их среди прочих электрических машин.  [11]

В начале работы по созданию нового типа электропривода для герметичной аппаратуры высокого давления важно было установить принципиальную возможность осуществления такого привода. В НИИТВЧ был испытан макет электродвигателя с экранированным ротором, специально изготовленный из обычного индукционного электродвигателя с короткозамкнутым ротором.  [12]

С предварительного усилителя сигнал поступает на основной усилитель, в качестве которого используют стандартный усилитель от электронного потенциометра. Этот усилитель имеет три ступени усиления напряжения и двухтактный усилитель мощности, который является фазочувствительным; он управляет работой двухфазного индукционного электродвигателя.  [13]

Электрооборудование - для работы с комплексными гидридами должно быть изготовлено во взрывобезопасном исполнении. Для этой цели удобно использовать индукционные электродвигатели. Одним из наиболее безопасных способов перемешивания является применение магнитных мешалок. В этом случае удобно использовать эрленмейеровские колбы с нормальным шлифом. Перемешивание проводится плоскими магнитами; при этом происходит также измельчение, что особенно важно для проведения реакций в гетерогенной среде.  [15]

Страницы:      1    2

Найдите эффективный и мощный индукционный электродвигатель переменного тока

О продукте и поставщиках:

Alibaba.com предлагает обширную коллекцию высококачественных, надежных и эффективных. индукционный электродвигатель переменного тока продается, подходит для использования в промышленном и бытовом оборудовании. Файл. индукционный электродвигатель переменного тока могут быть однофазными или трехфазными, с разным размером корпуса, частотой вращения и номинальной мощностью. Найдите блоки с фланцевым креплением, с высоким крутящим моментом, на лапах, с двойным напряжением и низким крутящим моментом от различных ведущих поставщиков и брендов.

В продаже есть высокопроизводительные и эффективные устройства постоянного тока. или AC.

индукционный электродвигатель переменного тока доступны в уникальных стилях, таких как последовательный, индукционный, синхронный, асинхронный, PMDC, шунтирующий и составной намотки. Эти агрегаты, спроектированные в соответствии с последними механическими и электрическими требованиями к характеристикам двигателей, отличаются надежностью, долгим сроком службы и универсальностью. Они имеют высококачественные и высокопроизводительные компоненты, в том числе прочную алюминиевую раму, опоры на лапах, стандартные валы, конденсаторный пуск, ротор и ход.

Откройте для себя. индукционный электродвигатель переменного тока с высокоэффективной конструкцией, превосходным пусковым моментом, быстрым откликом и простотой в использовании, работающей на чрезвычайно высоких скоростях. Существуют устройства с разной выходной мощностью и мощностью, а также различные размеры и конструкции, специально разработанные для небольших бытовых приборов или электроинструментов. Независимо от машины, устройства или устройств, делайте покупки на Alibaba.com, чтобы найти продукты, отличающиеся надежной работой, превосходной производительностью, простотой обслуживания и интересным внешним видом.

Найдите на Alibaba.com информацию. индукционный электродвигатель переменного тока и покупайте товары с функциями и функциями, подходящими для различных бытовых приборов и электроинструментов. Выбирайте из разных производителей и поставщиков, которым доверяют в мире. Просматривайте товары разных брендов, чтобы фильтровать и находить высококачественные товары, соответствующие бюджетам и ожиданиям уникальных покупателей.

Индукционный электродвигатель переменного тока. Электродвигатели: какие они бывают

Зачастую основное внимание уделяется изучению трёхфазных электродвигателей, частично в связи с тем, что трёхфазные электродвигатели применяются чаще, чем однофазные. Однофазные электродвигатели имеют тот же принцип действия, что и трёхфазные электродвигатели, только с более низкими пусковыми моментами. Они подразделяются по типам в зависимости от способа пуска.

Стандартный однофазный статор имеет две обмотки, расположенные под углом 90° по отношению друг к другу. Одна из них считается главной обмоткой, другая - вспомогательной, или пусковой. В соответствии с количеством полюсов каждая обмотка может делиться не несколько секций.

На рисунке приведен пример двухполюсной однофазной обмотки с четырьмя секциями в главной обмотке и двумя секциями во вспомогательной.


Следует помнить, что использование однофазного электродвигателя - это всегда, своего рода, компромисс. Конструкция того или иного двигателя зависит, прежде всего, от поставленной задачи. Это значит, что все электродвигатели разрабатываются в соответствии с тем, что наиболее важно в каждом конкретном случае: например, КПД, вращающий момент, рабочий цикл и т.д. Из-за пульсирующего поля однофазные электродвигатели CSIR и RSIR могут иметь более высокий уровень шума по сравнению с двухфазными электродвигателями PSC и CSCR, которые работают намного тише, так как в них используется пусковой конденсатор. Конденсатор, через который производится пуск электродвигателя, способствует его плавной работе.

Основные типы однофазных индукционных электродвигателей

Бытовая техника и приборы низкой мощности работают от однофазного переменного тока, кроме того, не везде может быть обеспечено трёхфазное электропитание. Поэтому однофазные электродвигатели переменного тока получили широкое распространение, особенно в США. Очень часто электродвигателям переменного тока отдают предпочтение, так как их отличает прочная конструкция, низкая стоимость, к тому же они не требуют технического обслуживания.

Как видно из названия, однофазный индукционный электродвигатель работает по принципу индукции; тот же принцип действует и для трёхфазных электродвигателей. Однако между ними есть различия: однофазные электродвигатели, как правило, работают при переменном токе и напряжении 110 -240 В, поле статора этих двигателей не вращается. Вместо этого каждый раз при скачке синусоидального напряжения от отрицательного к положительному меняются полюса.

В однофазных электродвигателях поле статора постоянно выравнивается в одном направлении, а полюса меняют своё положение один раз в каждом цикле. Это означает, что однофазный индукционный электродвигатель не может быть пущен самостоятельно.


Теоретически, однофазный электродвигатель можно было бы запустить при помощи механического вращения двигателя с последующим немедленным подключением питания. Однако на практике пуск всех электродвигателей осуществляется автоматически.

Выделяют четыре основных типа электродвигателей:

Индукционный двигатель с пуском через конденсатор / работа через обмотку (индуктивность) (CSIR),

Индукционный двигатель с пуском через конденсатор/работа через конденсатор (CSCR),

Индукционный двигатель с реостатным пуском (RSIR) и

Двигатель с постоянным разделением емкости (PSC).

На приведённом ниже рисунке показаны типичные кривые соотношения вращающий момент/частота вращения для четырёх основных типов однофазных электродвигателей переменного тока.



Однофазный электродвигатель с пуском через конденсатор/работа через обмотку (CSIR)

Индукционные двигатели с пуском через конденсатор, которые также известны как электродвигатели CSIR, составляют самую большую группу однофазных электродвигателей.

Двигатели CSIR представлены несколькими типоразмерами: от самых маломощных до 1,1 кВт. В электродвигателях CSIR конденсатор последовательно соединён с пусковой обмоткой. Конденсатор вызывает некоторое отставание между током в пусковой обмотке и в главной обмотке.



Это способствует задержке намагничивания пусковой обмотки, что приводит к появлению вращающегося поля, которое влияет на возникновение вращающего момента. После того как электродвигатель наберёт скорость и приблизится к рабочей частоте вращения, открывается пускатель. Далее электродвигатель будет работать в обычном для индукционного электродвигателя режиме. Пускатель может быть центробежным или электронным.

Двигатели CSIR имеют относительно высокий пусковой момент, в диапазоне от 50 до 250 процентов от вращающего момента при полной нагрузке. Поэтому из всех однофазных электродвигателей эти двигатели лучше всего подходят для случаев, когда пусковые нагрузки велики, например для конвейеров, воздушных компрессоров и холодильных компрессоров.


Однофазный электродвигатель с пуском через конденсатор/ работа через конденсатор (CSCR)

Этот тип двигателей, которые коротко называются «электродвигатели CSCR», сочетает в себе лучшие свойства индукционного двигателя с пуском через конденсатор и двигателя с постоянно подключённым конденсатором. Несмотря на то, что из-за своей конструкции эти двигатели несколько дороже других однофазных электродвигателей, они остаются наилучшим вариантом для применения в сложных условиях. Пусковой конденсатор электродвигателя CSCR последовательно соединён с пусковой обмоткой, как и в электродвигателе с пуском через конденсатор. Это обеспечивает высокий пусковой момент.


Электродвигатели CSCR также имеют сходство с двигателями с постоянным разделением емкости (PSC), так как у них пуск тоже осуществляется через конденсатор, который последовательно соединён с пусковой обмоткой, если пусковой конденсатор отключен от сети. Это означает, что двигатель справляется с максимальной нагрузкой или перегрузкой.

Электродвигатели CSCR могут использоваться для работы с низким током полной нагрузки и при более высоком КПД. Это даёт некоторые преимущества, в том числе обеспечивает работу двигателя с меньшими скачками температуры, в сравнении с другими подобными однофазными электродвигателями.

Электродвигатели CSCR - самые мощные однофазные электродвигатели, которые могут использоваться в сложных условиях, например, в насосах для перекачивания воды под высоким давлением и в вакуумных насосах, а также в других высокомоментных процессах. Выходная мощность таких электродвигателей лежит в диапазоне от 1,1 до 11 кВт.


Однофазный электродвигатель с пуском через сопротивление/работа через обмотку (индуктивность) (RSIR)

Данный тип двигателей ещё известен как "электродвигатели с расщеплённой фазой". Они, как правило, дешевле однофазных электродвигателей других типов, используемых в промышленности, но у них также есть некоторые ограничения по производительности.

Пусковое устройство электродвигателей RSIR включает в себя две отдельные обмотки статора. Одна из них используется исключительно для пуска, диаметр проволоки данной обмотки меньше, а электрическое сопротивление - выше, чем у главных обмоток. Это вызывает отставание вращающегося поля, что, в свою очередь, приводит в движение двигатель. Центробежный или электронный пускатель отсоединяет пусковую обмотку, когда частота вращения двигателя достигает, приблизительно, 75% от номинальной величины. После этого электродвигатель продолжит работу в соответствии со стандартными принципами действия индукционного электродвигателя.



Как уже говорилось раньше, для электродвигателей RSIR есть некоторые ограничения. У них низкие пусковые моменты, часто в диапазоне от 50 до 150 процентов от номинальной нагрузки. Кроме того, электродвигатель создаёт высокие пусковые токи, приблизительно от 700 до 1000% от номинального тока. В результате продолжительное время пуска будет вызывать перегрев и разрушение пусковой обмотки. Это означает, что электродвигатели данного типа нельзя использовать там, где необходимы большие пусковые моменты.

Электродвигатели RSIR рассчитаны на узкий диапазон напряжения питания, что, естественно, ограничивает области их применения. Их максимальные вращающие моменты варьируются в пределах от 100 до 250% от расчетной величины. Необходимо также отметить, что дополнительной трудностью является установка тепловой защиты, так как довольно сложно найти защитное устройство, которое срабатывало бы достаточно быстро, чтобы не допустить прогорания пусковой обмотки. Электродвигатели RSIR подходят для использования в небольших приборах для рубки и перемалывания, вентиляторах, а также для применения в других областях, в которых допускается низкий пусковой момент и требуемая выходная мощность на валу от 0,06 кВт до 0,25 кВт. Они не используются там, где должны быть высокие вращающие моменты или продолжительные циклы.


Однофазный электродвигатель с постоянным разделение емкости (PSC)

Как видно из названия, двигатели с постоянным разделением емкости (PSC) оснащены конденсатором, который во время работы постоянно включен и последовательно соединён с пусковой обмоткой. Это значит, что эти двигатели не имеют пускателя или конденсатора, который используется только для пуска. Таким образом, пусковая обмотка становится вспомогательной обмоткой, когда электродвигатель достигает рабочей частоты вращения.



Конструкция электродвигателей PSC такова, что они не могут обеспечить такой же пусковой момент, как электродвигатели с пусковыми конденсаторами. Их пусковые моменты достаточно низкие: 30-90% от номинальной нагрузки, поэтому они не используются в системах с большой пусковой нагрузкой. Это компенсируется за счёт низких пусковых токов - обычно меньше 200% от номинального тока нагрузки, - что делает их наиболее подходящими двигателями для областей применения с продолжительным рабочим циклом.

Двигатели с постоянным разделением емкости имеют ряд преимуществ. Рабочие параметры и частоту вращения таких двигателей можно подбирать в соответствии с поставленными задачами, к тому же они могут быть изготовлены для оптимального КПД и высокого коэффициента мощности при номинальной нагрузке. Так как они не требуют специального устройства пуска, их можно легко реверсировать (изменить направление вращения на обратное). В дополнение ко всему вышесказанному, они являются самыми надёжными из всех однофазных электродвигателей. Вот почему Grundfos использует однофазные электродвигатели PSC в стандартном исполнении для всех областей применения с мощностями до 2,2 кВт (2-полюсные) или 1,5 кВт (4-полюсные).

Двигатели с постоянным разделением емкости могут использоваться для выполнения целого ряда различных задач в зависимости от их конструкции. Типичным примером являются низкоинерционные нагрузки, например вентиляторы и насосы.


Двухпроводные однофазные электродвигатели

Двухпроводные однофазные электродвигатели имеют две главные обмотки, пусковую обмотку и рабочий конденсатор. Они широко используются в США с однофазными источниками питания: 1 ½ 115 В / 60 Гц или 1 ½ 230 В / 60 Гц. При правильном подключении данный тип электродвигателей можно использовать для обоих видов электропитания.


Ограничения однофазных электродвигателей

В отличие от трёхфазных для однофазных электродвигателей существуют некоторые ограничения. Однофазные электродвигатели ни в коем случае не должны работать в режиме холостого хода, так как при малых нагрузках они сильно нагреваются, также рекомендуется эксплуатировать двигатель при нагрузке меньшей 25% от полной нагрузки.

Электродвигатели PSC и CSCR имеют симметричное/ круговое вращающееся поле в одной точке приложения нагрузки; это значит, что во всех остальных точках приложения нагрузки вращающееся поле асимметричное/эллиптическое. Когда электродвигатель работает с асимметричным вращающимся полем, сила тока в одной или обеих обмотках может превышать силу тока в сети. Такие избыточные токи вызывают потери, в связи с этим одна или обе обмотки (что чаще происходит при полном отсутствии нагрузки) нагреваются, даже если ток в сети относительно небольшой. Смотрите примеры.



О напряжении в однофазных электродвигателях

Важно помнить о том, что напряжение на пусковой обмотке электродвигателя может быть выше сетевого напряжения питания электродвигателя. Это относится и к симметричному режиму работы. Смотрите пример.


Изменение напряжения питания

Нужно отметить, что однофазные электродвигатели обычно не используются для больших интервалов напряжения, в отличие от трёхфазных электродвигателей. В связи с этим может возникнуть потребность в двигателях, которые могут работать с другими видами напряжения. Для этого необходимо внести некоторые конструкционные изменения, например, нужна дополнительная обмотка и конденсаторы различной ёмкости. Теоретически, ёмкость конденсатора для различного сетевого напряжения (с одной и той же частотой) должна быть равна квадрату отношения напряжений:


Таким образом, в электродвигателе, рассчитанном на питание от сети в 230 В, используется конденсатор 25µФ/400 В, для модели электродвигателя на 115 В необходим конденсатор ёмкостью 100µФ с маркировкой более низкого напряжения - например 200 В.

Иногда выбирают конденсаторы меньшей ёмкости, например 60µФ. Они дешевле и занимают меньше места. В таких случаях обмотка должна подходить для определённого конденсатора. Нужно учитывать, что производительность электродвигателя при этом будет меньше, чем с конденсатором ёмкостью 100µФ - например, пусковой момент будет ниже.

Заключение

Однофазные электродвигатели работают по тому же принципу, что и трёхфазные. Однако у них более низкие пусковые моменты и значения напряжения питания (110-240В).

Однофазные электродвигатели не должны работать в режиме холостого хода, многие из них не должны эксплуатироваться при нагрузке меньше 25 % от максимальной, так как это вызывает повышение температуры внутри электродвигателя, что может привести к его поломке.

Асинхронный (индукционный) двигатель (АД) – устройство, преобразовывающий электрическую энергию в механическую. «Асинхронный» означает разновременный. Электродвигатели асинхронные питаются от сети переменного тока.

Особенности асинхронных двигателей

Применение

Такие электродвигатели (частотные преобразователи) не используются в сетях постоянного тока. Но они имеют широкое применение во всех отраслях народного хозяйства. По статистике, до 70% электроэнергии, которая преобразуется в механическую энергию поступательного либо вращательного движения, потребляется именно индукционными электродвигателями.

Асинхронная машина не подключается к сети постоянного тока.

Асинхронные частотные преобразователи не требуют сложного производства и просты по своей конструкции, но в тоже время очень надежны. Такие двигатели могут работать от однофазной и трехфазной сети, используя разные частоты. Преобразователи не подходят для сетей постоянного тока. Для их управления применяют сравнительно несложные схемы.

При выборе асинхронного двигателя зачастую возникают проблемы с определением:

  • его мощности;
  • характеристик и приемлемой схемы, с помощью которой осуществляется управление электродвигателем;
  • расчетом мощности конденсаторов, которые нужны, чтобы преобразователь работал от одной фазы;
  • марки и сечения провода;
  • устройств защиты и управления, которыми оснащен преобразователь.

Чтобы во всем этом разобраться, необходимо знать устройство и особенности работы асинхронного агрегата. Это поможет правильно подобрать преобразователь для решения конкретной задачи.

Индукционный агрегат свое название получил благодаря тому, что магнитное поле вращается с более высокой скоростью, чем сам ротор, поэтому последний всегда пытается «догнать» скорость вращения поля.

Устройство АД

Ротор и статор – главные элементы индукционного двигателя.

Схема устройства асинхронного агрегата

Схема: вал (1), подшипники (2,6), лапы (4), крыльчатка (7), статор (10), коробка выводов (11), ротор (9), кожух вентилятора (5), щиты подшипниковые (3,8).

На рисунке представлено устройство типового агрегата. Статор АД имеет форму цилиндра. Внутренняя часть имеет размеры, обеспечивающие зазор между ротором и статором. В пазах сердечника расположены обмотки. Их оси для нормальной работы расположены относительно одна другой под углом 1200. Между собой концы обмоток собираются с помощью схемы «звезда» либо «треугольник», но это зависит непосредственно от напряжения. Ротор может быть фазным либо короткозамкнутым.

Ротор вращается по ходу движения магнитного поля.

Трехфазную обмотку устанавливают на фазный ротор, она напоминает обмотку статора. С одной стороны концы обмотки фазного ротора обычно соединяются в «звезду», а свободные концы подсоединяются к контактным кольцам. Для включения в цепь обмотки фазного ротора дополнительного сопротивления используются щетки, подключенные к кольцам. Такая конструкция не предназначена для работы в цепях постоянного тока, так как необходимое вращение обеспечивает изменение фазы.

Короткозамкнутый ротор – это сердечник, который сделан из стальных листов. Пазы в короткозамкнутом роторе заполняются расплавленным алюминием, в результате чего получаются стержни, замыкаемые накоротко торцевыми кольцами.

Таким короткозамкнутым ротором создаются условия для минимального электрического сопротивления. Эта конструкция получила название «беличья клетка» или «беличье колесо».

Конструкция «беличья клетка»

В короткозамкнутом роторе повышенной мощности пазы заполняются медью или латунью. Беличье колесо – это и есть короткозамкнутая обмотка ротора.

В зависимости от подключаемой фазы индукционный агрегат подразделяется на однофазный и трехфазный. С помощью учета данного параметра различают принцип действия асинхронного двигателя.

Однофазная индукционная машина

Чаще всего индукционный однофазный двигатель переменного тока устанавливается в бытовой технике, так как электроснабжение дома осуществляется от однофазной электросети. Преимуществом таких двигателей переменного тока является достаточно прочная конструкция и низкая стоимость, отсутствие сложных схем управления.

Они вполне подходят для длительной работы, так как не нуждаются в техническом обслуживании. Обычно однофазный двигатель малой мощности – до 0,5 кВт. Такие электродвигатели устанавливаются в стиральных машинах, компрессорах холодильников и другой бытовой технике, где ротором создается небольшая скорость вращения, сравнительно небольшой объем силы тока.

Схема работы однофазного двигателя малой мощности

В однофазных индукционных агрегатах на статоре установлено управление ротором от двух обмоток, которые сдвинуты одна от другой на 900 тока для образования пускового момента. Одна обмотка является пусковой, а вторая – рабочей.

Однофазные электродвигатели не подходят для сетей постоянного тока. Они характеризуются низкими энергопоказателями и малой перегрузочной способностью. Агрегаты функционируют в нормальном режиме, если не нарушен определенный диапазон частоты поля. После начала вращения устройство управления подключает рабочую обмотку. Это позволяет уменьшить потребление энергии.

В электрических приводах с обычным запуском устанавливаются, как правило, однофазные индукционные двигатели, имеющие экранированные полюса. В таком асинхронном электродвигателе в качестве вспомогательной фазы выступают короткозамкнутые витки, имеющие минимальные сопротивления, размещенные на выраженных полюсах статора.

Учитывая то, что пространственный угол, образованный витком и осями основной фазы, гораздо меньше 900, в таком электродвигателе есть эллиптическое поле. С помощью него создаются сравнительно небольшие силы, чем и объясняются невысокие рабочие и пусковые свойства индукционных электродвигателей, оснащенных экранированными полюсами с фазным включением.

Индукционные однофазные электродвигатели, имеющие короткозамкнутый ротор подразделяются на:

  • с усиленным сопротивлением фазы пуска;
  • агрегаты с короткозамкнутым ротором, оснащенные рабочим конденсатором;
  • оснащенные фазным пусковым конденсатором;комбинированные с фазным управлением, короткозамкнутым ротором;
  • комбинированные с фазным управлением, короткозамкнутым ротором;
  • с экранированными полюсами.

Трехфазный двигатель

В трехфазной индукционной машине обмотка предназначена для образования вращающегося по кругу магнитного поля, которое проходит через короткозамкнутую обмотку ротора. Созданные с фазным управлением аппараты не применяются в цепях постоянного тока. При прохождении поля через проводники обмотки статора образуется электродвижущая сила, которая и вызывает прохождение переменного тока в обмотке, управляющей ротором, имеющим собственное магнитное поле. Данное магнитное поле при взаимодействии с фазным магнитным вращающимся полем статора вызывает вращение определенной частоты вслед за полями между ним и ротором.

Схема работы индукционного трехфазного агрегата

Данный принцип разработал академик из Франции Араго. Иными словами, если подковообразный магнит установить вблизи металлического диска свободно закрепленным на оси и вращать его с поддержанием определенной частоты оборотов, то металлический диск без дополнительного управления начнет движение за магнитом, однако скорость его вращения будет меньше, чем скорость движения магнита.

Данное явление обусловлено правилами электромагнитной индукции. Во время вращения около поверхности металлического диска полюсов магнита в контурах под полюсом образуется электродвижущая сила соответствующей частоты, и возникают токи, создающие магнитное поле металлического диска. Магнитное поле диска начинает взаимодействовать с полем полюсов вращающегося магнита, в результате чего диск «увлекается» своим магнитным полем.

Так и в асинхронном агрегате, в качестве металлического диска выступает короткозамкнутая обмотка ротора, а в качестве магнита – магнитопровод и обмотка статора.

Чтобы облегчить управление и запуск трехфазного электродвигателя при к однофазной сети (переменного, а не постоянного тока), на момент пуска дополнительно устанавливается параллельно с рабочим и пусковой конденсатор. Им компенсируют отсутствие фазы и соответствующей частоты поля.

Запуск трехфазного двигателя

Двигатель в работе. Видео

О том, как работает асинхронный двигатель в режиме генератора, можно посмотреть в этом видео. Здесь представлены дельные советы по оптимизации процесса, в том числе и те, которые относятся к схемам управления фазным вращением.

Таким образом, зная особенности работы индукционной машины, с уверенностью можно сказать, что преобразование в механическую энергию электрической происходит в результате вращения вала электродвигателя (ротора).

Скорость вращения магнитного поля ротора и статора напрямую зависит от частоты питающей сети и количества пар полюсов. В случае, когда тип двигателя ограничивает число пар полюсов, то для управления изменением частоты питающей сети в больший диапазон используют частотный преобразователь.

Выше рассмотрены особенности управления фазным вращением. Также приведены отличия конструкции с короткозамкнутым минимальным ротором, который используется для уменьшения сопротивления. Следует помнить, что устройство некоторых агрегатов подразумевает возможность их применения только в цепях постоянного тока. Преобразователи с фазным вращением работают при питании переменным током.

Cтраница 4

На этом первом изобретении я показал, как практическая польза может отступить перед изящным решением, венчающим задачу. В подобной ситуации нетрудно погрязнуть в анализе и убить на это годы. И наоборот, можно, как произошло со мной, провести эти годы с большой пользой, выясняя такие подробности работы индукционных двигателей, какие невозможно извлечь из книг, научных статей или лекций.  

При поступлении сигнала в управляющую обмотку возникает вращающееся эл-л ИПТичеСкое магнитное. Это поле наводит токи в теле цилиндра ротора индукционного двигателя. В результате взаимодействия наведенных токов с вращающимся полем создается вращающий момент. Величина и направление скорости вращения индукционного двигателя зависит ч от величины и фазы управляющего напряжения. С изменением фазы управляющего напряжения с 90 на - 90 (фаза управляющего напряжения при этом должна повернуться на 180) направление вращения ротора меняется на обратное.  

Вследствие неполной трансформаторной связи между обмотками возникает добавочное рассеяние через воздушный зазор. Величина добавочного рассеяния зависит от углового положения ротора. Поэтому эквивалентные параметры двигателя при неподвижном роторе могут значительно зависеть от углового положения ротора, что приводит к изменению пускового момента. Это явление будет наиболее ощутимо для исполнительных индукционных двигателей с небольшим числом пазов ротора.  

Согласно последней формуле при прочих равных условиях электромеханическая постоянная времени индукционного двигателя тем больше, чем больше скорость холостого хода. Индукционные двигатели находят применение в системах переменного тока различной частоты: от 50 до 1 000 гц. Поскольку увеличение частоты означает увеличение скорости холостого хода, это одновременно приводит к росту электромеханической постоянной времени. Для примера можно указать, что среднее значение Тэы для индукционных двигателей на 50 гц составляет около 0 03 - 0 05 сек, а для двигателей на 400 гц - около 0 1 - 0 2 сек.  

Согласно формулам (3 - 33) при прочих разных условиях электромеханическая постоянная времени индукционного двигателя тем больше, чем больше скорость холостого хода. Индукционные двигатели находят применение в системах переменного тока различной частоты: от 50 до 1 000 гц. Поскольку увеличение частоты означает увеличение скорости холостого хода, это одновременно приводит к росту электромеханической постоянной времени. Для примера можно указать, что среднее значение Тэы для индукционных двигателей на 50 гц составляет около 0 05 - 0 07 сек, а для двигателей на 400 гц - около 0 2 - 0 3 сек.  

В случае же значительного кранового и транспортного оборудования вопрос о ходе тока является менее определенным. Окончательное право коллекторные двигатели переменного тока отвоевали себе пови-димому лишь в регулируемых приводах текстильной пром-сти (кольцевой ватер), хотя вопрос о приводе ситцепечатных машин с пределами регулирования от 1: 4 до 1: 10 от двигателей постоянного или переменного тока является пока спорным. Здесь возможно применение как постоянного тока по принципу прямого и обратного включения, так и шунтовых коллекторных двигателей с возбуждением со статора. Регулируемый многомоторный привод рогулечных ватеров конструируется, как указано выше, в форме регулируемых индукционных двигателей с изменением частоты питающего тока при помощи особого преобразователя частоты. Борьба между постоянным и переменным током идет и в металлообрабатьтвающей промышленности. Надлежащее использование электрически регулируемых металлообрабатывающих станков современной конструкции требует регулируемых двигателей. Коллекторные двигатели переменного тока в силу высокой стоимости и большого веса совершенно не привились для металлообрабатывающих станков. Борьба постоянного тока, имеющего в случае регулируемых реверсивных и часто пускаемых приводов ряд технич.  

Одно из плеч моста включает емкостный датчик, переменная емкость которого может быть пропорциональна измеряемой величине. Во второе плечо моста включена постоянная емкость. Два противоположных плеча моста составлены из омических сопротивлений, одно из которых переменно. Нагрузкой выходного каскада усиления является трансформатор Тр %, во вторичной обмотке которого включена управляющая обмотка индукционного двигателя.  

К настоящему времени положение сильно изменилось. Рост мощности станций и отдельг-ных распределительных трансформаторов говорит за возможность применения коротко-замкнутых двигателей значительно бблыпих мощностей, чем допускалось в Европе и у нас до сих пор. Те преимущества, которыми обладают короткозамкнутые двигатели по сравнению с двигателями с кольцами (простота обслуживания, более высокий коэфици-ент мощности и кпд, меньшая стоимость), вызвали широкое применение короткозам-кнутых индукционных двигателей как в Европе, так и в СССР.  

Механические характеристики серводвигателя оказывают большое влияние на его поведение. Форма механической характеристики в значительной степени зависит от значения полного сопротивления ротора. На рис. 7 - 6 показаны кривые механических характеристик для нескольких значений сопротивления ротора. Сопротивление ротора обычно изменяется с увеличением удельного сопротивления проводящего материала, используемого в роторе. Индукционные двигатели, применяемые в качестве силовых, проектируются с минимальным сопротивлением ротора, что дает максимальный момент при малых значениях скольжения. Увеличение роторного сопротивления линеаризует механическую характеристику.  

Cтраница 2

В нулевую группу входят однофазные системы с трех-и двухлучевыми индукционными двигателями, а также системы с магнесинами и с ферродинамометрами.  

Асинхронные машины, в виде трехфазных асинхронных двигателей (индукционные двигатели), приобретают в: е большее значение. Причиной является простая конструкция их и главным образом все большее распространение районных станций, распределяющих электрическую энергию в форме трехфазного тока.  

В том случае, когда пуск станка может производиться включением индукционного двигателя нормальной конструкции и мощности, близкой к той, которая потребляется станком во время его работы, вопрос должен решаться в принципе в сторону отказа от главной сцепной муфты. В остальных случаях необходимо принять в расчет при сравнении варианта с муфтой и без нее удорожание двигателя (если оно имеет место), стоимость вспомогательных устройств и аппаратуры управления, а также специфические недостатки, присущие указанным выше способам пуска. Решение в пользу сохранения муфты или отказа от нее определяется результатами технико-экономического расчета для сравниваемых вариантов. Так как главная фрикционная муфта станка является одновременно элементом, предохраняющим станок от поломок при случайном возрастании крутящего момента сныше установленной нормы, то в случае отказа от муфты обязательно должны быть предусмотрены автоматически действующие механические предохранительные устройства или электрическая аппаратура, выполняющая ту же функцию.  

В системах с несущей частотой этот метод получения резонансных комплексных нулей посредством присоединения параллельных ветвей осуществляется индукционным двигателем для демодуляции, схемой из массы, пружины и демпфера для создания резонансного контура п демодулирующим индукционным датчиком. Выходной сигнал индукционного датчика вычитается из сигнала входа. Это также создает два комплексных нуля относительно частоты сигнала информации (огибающей) или четыре комплексных нуля относительно модулированной несущей.  

Трансформаторы с подвижной обмоткой (потен-циал-регуля-юры), предназначенные для более высоких напряжений, выполняются в форме индукционного двигателя с закрепленным якорем, который переставляется в зависимости от требующегося дополнительного напряжения, складывающегося последовательно с основным.  

В качестве двигателей для следящих систем могут быть использованы как сериесные, так и шунтовые двигатели постоянного тока, а также индукционные двигатели переменного тока.  

Трудно сказать, как развивались бы работы в области электричества, если бы были усовершенствованы термоэлектрические машины Зеебека, построенные за пятьдесят лет до того, как получил признание индукционный двигатель Фара-дея. Но этого не случилось, и сейчас термоэлектрические генераторы во много раз менее эффективны, чем магнитные генераторы, и только чрезмерная простота термоэлементов гарантирует возможность их практического применения в малой энергетике. В равной степени со стоимостью и технологией изготовления важную роль играют размеры и вес термоэлементов. Однако наиболее важным является их кпд, определяемый как температурами 7 и Т2, при которых работает термобатарея, так и физическими свойствами материала термоэлемента.  

Трудно сказать, как развивались бы работы в области электричества, если бы были усовершенствованы термоэлектрические машины Зеебека, построенные за пятьдесят лет до того, как получил признание индукционный двигатель Фара-дея. Но этого не случилось, и сейчас термоэлектрические генераторы во много раз менее эффективны, чем магнитные генераторы, и только чрезмерная простота термоэлементов гарантирует возможность их практического применения в малой энергетике. В равной степени со стоимостью и технологией изготовления важную роль играют размеры и вес термоэлементов. Однако наиболее важным является их кпд, определяемый как температурами Тг и 7, при которых работает термобатарея, так и физическими свойствами материала термоэлемента.  

Согласно последней формуле при прочих равных условиях электромеханическая постоянная времени индукционного двигателя тем больше, чем больше скорость холостого хода. Индукционные двигатели находят применение в системах переменного тока различной частоты: от 50 до 1 000 гц. Поскольку увеличение частоты означает увеличение скорости холостого хода, это одновременно приводит к росту электромеханической постоянной времени. Для примера можно указать, что среднее значение Тэы для индукционных двигателей на 50 гц составляет около 0 03 - 0 05 сек, а для двигателей на 400 гц - около 0 1 - 0 2 сек.  

Согласно формулам (3 - 33) при прочих разных условиях электромеханическая постоянная времени индукционного двигателя тем больше, чем больше скорость холостого хода. Индукционные двигатели находят применение в системах переменного тока различной частоты: от 50 до 1 000 гц. Поскольку увеличение частоты означает увеличение скорости холостого хода, это одновременно приводит к росту электромеханической постоянной времени. Для примера можно указать, что среднее значение Тэы для индукционных двигателей на 50 гц составляет около 0 05 - 0 07 сек, а для двигателей на 400 гц - около 0 2 - 0 3 сек.  

Сложнее дело обстоит в случае регулируемых приводов. Индукционный двигатель трехфазного тока сам по себе следует считать практически почти нерегулируемым. Однофазные репульсионные двигатели, конкурирующие при малых мощностях с трехфазными коллекторными, в силу худшего использования материала постепенно вытесняются трехфазными. Подобно тому как это имело место в области электрической тяги, в ряде промышленных установок происходит борьба между постоянным и переменным током у регулируемых приводов. В случае единичных регулируемых установок порядка нескольких сот kW, например нереверсивные прокатные станы, шахтные вентиляторы, регулируемые воздуходувки, когда пределы регулировки не превышают 1: 2, применяются каскадные агрегаты в виде сист. Установки трехфазных коллекторных двигателей большой мощности (300 - 400 kW) чрезвычайно редки. Реверсивные прокатные станы (номинальной мощностью в 2 000 - 5 000 kW), требующие регулировки в широких пределах (до 200 - 300 %) номинальной скорости, приводятся исключительно двигателями постоянного тока, питаемыми от трехфазной сети по сист. В случае нескольких регулируемых установок большой и средней мощности, расположенных вместе, применяются теперь двигатели постоянного тока (напр, бумагоделательные машины, прокатные металлургич. При пределах регулировки больше чем 1: 3, для регулирования широко применяется система Леонарда; она же используется в таких случаях и для пуска в ход. США и Франции применяется постоянный ток; этот род тока принят и в СССР для вновь строящихся металлургич. В Германии эк е динамостроительные з-ды усиленно пропагандируют внедрение в эту область индукционных двигателей. Коллекторные двигатели переменного тока, для таких тяжелых условий работы непригодны.  

Известным недостатком двигателей переменного тока является их сравнительно большой вес, в 2 - 3 раза превышающий вес двигателей постоянного тока той же мощности. Однако высокая надежность индукционных двигателей (отсутствие щеток, требующих осмотра я смены) во многих случаях компенсируют указанный недостаток.  

ИНДУКЦИОННЫЙ ДВИГАТЕЛЬ

То же, что асинхронный двигатель.

  • - ток, возникающий в проводящем контуре, находящемся в перем. магн. поле или движущемся в магн. поле. ...

    Физическая энциклопедия

  • - электрич. ток, возни кающий вследствие эл.-магн. индукции...

    Естествознание. Энциклопедический словарь

  • -) - геофиз...

    Геологическая энциклопедия

  • - электрич. ток, возникающий вследствие электромагнитной индукции...

    Большой энциклопедический политехнический словарь

  • - относительный лаг, принцип действия которого основан на возникновении при движении судна дополнительной эдс в контуре, находящемся в магнитном поле, создаваемом специальным соленоидом...

    Морской словарь

  • - ИНДУКЦИОННЫЙ ток - электрический ток, возникающий вследствие электромагнитной индукции...

    Большой энциклопедический словарь

  • - ...

    Орфографический словарь русского языка

  • - ИНДУ́К-ИЯ, -и,...

    Толковый словарь Ожегова

  • - ИНДУКЦИО́ННЫЙ, индукционная, индукционное...

    Толковый словарь Ушакова

  • Толковый словарь Ефремовой

  • - индукцио́нный I прил. соотн. с сущ. индукция I, связанный с ним II прил. соотн. с сущ. индукция II, связанный с ним III прил. соотн...

    Толковый словарь Ефремовой

  • - ...

    Орфографический словарь-справочник

  • - индукци"...

    Русский орфографический словарь

  • - индукцио́нный относящийся к индукции2, и-ная катушка - состоит из двух обмоток на сердечнике из магнитного материала; служит для возбуждения путем индукции токов высокого напряжения...

    Словарь иностранных слов русского языка

  • - ...

    Формы слова

  • - индуктивный, наведенный,...

    Словарь синонимов

"ИНДУКЦИОННЫЙ ДВИГАТЕЛЬ" в книгах

ДВИГАТЕЛЬ

Из книги Огненный Подвиг. часть I автора Уранов Николай Александрович

ДВИГАТЕЛЬ "Величайшая мощь лежит в магните сердца. Им мы ищем, им мы творим, им мы находим, им мы притягиваем. Так запомним. Так утверждаю".Беспред., § 558От рождения тела стучит физическое сердце, и тело живет лишь постольку, поскольку сердце не перестанет стучать. Можно

6. Двигатель

Из книги Техобслуживание и мелкий ремонт автомобиля своими руками. автора Гладкий Алексей Анатольевич

6. Двигатель 6.1. Содержание вредных веществ в отработавших газах и их дымность превышают величины, установленные ГОСТ Р 520332003 и ГОСТ Р 52160-2003.6.2. Нарушена герметичность системы питания.6.3. Неисправна система выпуска отработавших газов.6.4. Нарушена герметичность системы

Индукционный измерительный прибор

автора Коллектив авторов

Индукционный измерительный прибор Индукционный измерительный прибор – электроизмерительный прибор, работа которого основана на возникновении вращающего момента его подвижной части при воздействии на нее двух (или более) переменных магнитных потоков. Индукционным

Индукционный ракетный двигатель

Из книги Большая энциклопедия техники автора Коллектив авторов

Индукционный ракетный двигатель Индукционный ракетный двигатель – разновидность электротермического ракетного двигателя, в котором нагрев рабочего тела осуществляется посредством воздействия высокочастотного магнитного поля, которое создается индукционной

1847 г. Гальске, индукционный телеграф братьев фон Сименс

Из книги Популярная история - от электричества до телевидения автора Кучин Владимир

1847 г. Гальске, индукционный телеграф братьев фон Сименс В 1847 году берлинский электромеханик ИоганнГальске (1814–1890) сконструировал специальный пресс для бесшовной изоляции медных проводов с помощью гуттаперчи.В этом же 1847 году немецкий электротехник и предприниматель

Индукционный нагрев

БСЭ

Индукционный насос

Из книги Большая Советская Энциклопедия (ИН) автора БСЭ

Индукционный прибор

Из книги Большая Советская Энциклопедия (ИН) автора БСЭ

Индукционный ускоритель

Из книги Большая Советская Энциклопедия (ИН) автора БСЭ

Двигатель

Из книги Большая Советская Энциклопедия (ДВ) автора БСЭ

2.2.6. Двигатель

Из книги 100 способов избежать аварии. Спецкурс для водителей категории В автора Каминский Александр Юрьевич

2.2.6. Двигатель Нарушена герметичность системы питания(п. 6.2 Приложения).Под этой неисправностью надо понимать протекание бензина. Очевидно, что неисправность очень опасна, ведь пары бензина могут загореться в любой момент. Казалось бы, об этом не имеет смысла говорить,

11 Электростатический индукционный генератор переменного тока

Из книги Статьи автора Тесла Никола

11 Электростатический индукционный генератор переменного тока Около полутора лет тому назад, будучи занят изучением переменных токов с коротким периодом, я пришел к мысли, что такие токи можно получать, вращая заряженные поверхности на малом расстоянии от проводников. И

Двигатель регресса Двигатель регресса Нынешняя система налогообложения - удавка для экономики России 13.02.2013

Из книги Газета Завтра 950 (7 2013) автора Завтра Газета

автора Коллектив авторов

6.6.7. ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ В ЭЛЕКТРОПРИВОДЕ. СИСТЕМЫ ТИРИСТОРНЫЙ ПРЕОБРАЗОВАТЕЛЬ - ДВИГАТЕЛЬ (ТП - Д) И ИСТОЧНИК ТОКА - ДВИГАТЕЛЬ (ИТ - Д) В послевоенные годы в ведущих лабораториях мира произошел прорыв в области силовой электроники, кардинально изменивший многие

7.1.3. ИНДУКЦИОННЫЙ НАГРЕВ

Из книги История электротехники автора Коллектив авторов

7.1.3. ИНДУКЦИОННЫЙ НАГРЕВ Начальный период. Индукционный нагрев проводников основан на физическом явлении электромагнитной индукции, открытом М. Фарадеем в 1831 г. Теорию индукционного нагрева начали разрабатывать О. Хэвисайд (Англия, 1884 г.), С. Ферранти, С. Томпсон, Ивинг. Их

Высокоэффективные индукционные электродвигатели серии CHIMP YX3

Описание и отзывы

Характеристики

YX3 серия трехфазные асинхронные двигатели

Описание продукта:

1.B5 фланец 11. Именная табличка 21. Латунь чистая
2. Крышка вала 12. Волна шайба 22. Латунь Наконечник
3. Болт 13, которые подходят под все модели. endshield 23. Терминал доска
4. Пружинная шайба 14. Уплотнительное кольцо 24. Клеммная коробка база
5. Передняя endshield 15. Вентилятор 25. Прокладка
6. Подшипник 16. Вентилятор зажима 26. Клеммная коробка с крышкой
7. Ключ 17. Кожух вентилятора 27. Винт
8. Ротора 18. Шайба 28. Земли Марк
9. Статора 19. Кожух вентилятора винт 29. Куртка
10. Рамка 20. Латунная шайба 30. Кожа шайба

 

 

  Размер установки и общий dilmension      
Рама Размер установки Габаритные размеры
IMB5 IMB14 IMB3
  А B C D E F G H K М N P S T М N P S T AB Переменного тока AD HD L
56 90 71 36 9 20 3 7,2 56 5,8 65 50 80 M5 2,5 98 80 120 7 3 110 120 110 155 195
63 100 80 40 11 23 4 8,5 63 7 75 60 90 M5 2,5 115 95 140 10 3 130 130 115 165 230
71 112 90 45 14 30 5 11 71 7 85 70 105 M6 2,5 120 110 160 10 3,5 145 145 125 185 225
80 125 100 50 19 40 6 15,5 80 10 100 80 120 M6 3 165 130 200 12 3,5 160 165 135 215 295
90S 140 100 56 24 50 8 20 90 10 115 95 140 M8 3 165 130 200 12 3,5 180 185 145 235 335
90L 140 125 56 24 50 8 20 90 10 115 95 140 M8 3 165 130 200 12 3,5 180 185 145 235 360
100L 160 140 63 28 60 8 24 100 12 130 110 160 M8 3,5 215 180 250 15 4 205 215 170 255 380
112 м 190 140 70 28 60 8 24 112 12 130 110 160 M8 3,5 215 180 250 15 4 145 240 180 285 400
132S 216 140 89 38 80 10 33 132

12

165 130 200 M10 4 265 230 300 15 4 280 275 195 325 475
132 м 216 178 89 38 80 10 33 132 12 165 130 200 M10 4 265 230 300 15 4 280 275 195 325 515
160 м 254 210 108 42 110 12 37 160 15 / / / / / 300 250 350 19 5 325 325 255 385 600
160L 254 254 108 42 110 12 37 160 15 / / / / / 300 250 350 19 5 325 325 255 385 645
180 м 279 279 121 48 110 14 42,5 180 15 / / / / / 300 250 350 19 5 355 380 280 455 700
180L 279 279 121 48 110 14 42,5 180 15 / / / / / 300 250 350 19 5 355 380 280 455 740

 

 

Мы всегда стремимся удовлетворить потребности клиентов шимпанзе персонала постоянные ориентиры.

Качество и репутация является навсегда тема шимпанзе.

 

Параметр продукта

Параметр продукта 

 

                       1.Бренд: шимпанзе6.Номинальное напряжение: 380V

                       2.Модель: YX3-250M-47.Номинальная частота: 50 Гц (или 60 Гц)

                       3.Категория товара: Электрический мотор8.Класс защиты от поражения электрическим током: IP55

                       4.Температура окружающей среды: -15℃<& Theta;<40℃ 9.Класс изоляции: F, CMS свободное программное обеспечение, H

                       5.Диапазон мощности: 0,55-110kw10.Система работы: S1

 

 

Тип
Выход

 

Скорость

В настоящее время И приблизительный срок поставки; Коэффициент мощности При заторможенном Роторе ток/Номинальный ток Вращающий момент при заторможенном Роторе/Номинальный крутящий момент Максимальный крутящий момент/Номинальный крутящий момент
КВт Оборот в минуту (r/min) А % CosΦ Ist/TN Tst/TN Tmax/TN

Синхронная скорость 3000 об/мин

YX3-80M1-2

0,75

2875 1,77 77,5 0,83 6,8 2,3 2,3
YX3-80M2-2 1,1 2875 2,50 82,8 0,83 7,3 2,3 2,3
YX3-90S-2 1,5 2890 3,32 84,1 0,84 7,6 2,3 2,3
YX3-90L-2 2,2 2890 4,72 85,6 0,85 7,8 2,3 2,3
YX3-100L-2 2890 6,17 86,7 0,87 8,1 2,3 2,3
YX3-112M-2 2900 8,04 87,6 0,88 8,3 2,3 2,3
YX3-132S1-2 5,5 2910 11,2 88,6 0,88 8,0 2,2 2,3
YX3-132S2-2 7,5 2910 14,6 89,5 0,89 7,8 2,2 2,3
YX3-160M1-2 11 2930 21,0 90,5

0,89

7,9 2,2 2,3
YX3-160M2-2 15 2930 28,4 91,3 0,89 8,0 2,3 2,3
YX3-160L-2 18,5 2930 34,7 91,8 0,89 8,1 2,2 2,3
YX3-180M-2 22 2940 41,6 92,2 0,89 8,2 2,2 2,3
YX3-200L1-2 30 2950 56,2 92,9 0,89 7,5 2,2 2,3
YX3-200L2-2 37 2950 68,2 93,3 0,89 7,5 2,2 2,3
YX3-225M-2 45 2970 82,5 93,7 0,89 7,6 2,2 2,3
YX3-250M-2 55 2970 99,5 94,0 0,89 7,6 2,2 2,3
YX3-280S-2 75 2970 135 94,6 0,89 6,9 2,0 2,3
YX3-280M-2 90 2970 160 95,0 0,90 7,0 2,0 2,3
YX3-315S-2 110 2980 194 95,0 0,90 7,1 2,0 2,2
Синхронная скорость 1500 об/мин         
YX3-80M1-4 0,55 1440 1,57 80,7 0,75 6,3 2,3 2,3
YX3-80M2-4 0,75 1440 1,88 82,3 0,75 6,5 2,3 2,3
YX3-90S-4 1,1 1410 2,66 83,8 0,75 6,6 2,3 2,3
YX3-90L-4 1,5 1410 3,57 85,0 0,75 6,9 2,3 2,3
YX3-100L1-4 2,2 1440 4,88 86,4 0,81 7,5 2,3 2,3
YX3-100L2-4 1440 6,50 87,4 0,82 7,6 2,3 2,3
YX3-112M-4 4 1445 8,55 88,3 0,82 7,7 2,3 2,3
YX3-132S-4 5,5 1455 11,5 89,2 0,82 7,5 2,0 2,3
YX3-132M-4 7,5 1455 15,3 90,1 0,83 7,4 2,0 2,3
YX3-160M-4 11 1460 22,1 91,0 0,85 7,5 2,2 2,3
YX3-160L-4 15 1460 29,6 91,8 0,86 7,8 2,2 2,3
YX3-180M-4 18,5 1470 35,8 92,2 0,86 7,8 2,2 2,3
YX3-180L-4 22 1470 42 92,6 0,86 7,8 2,2 2,3
YX3-200L-4 30 1470 57,3 93,2 0,86 7,2 2,2 2,3
YX3-225S-4 37 1480 69,7 93,6 0,86 7,3 2,2 2,3
YX3-225M-4 45 1480 84,3 93,9 0,86 7,4 2,2 2,3
YX3-250M-4 55 1480 103 94,2 0,86 7,4 2,2 2,3
YX3-280S-4 75 1480 139 94,7 0,88 6,7 2,2 2,3
YX3-280M-4 90 1480 167 95,0 0,88 6,9 2,2 2,3
YX3-315S-4 110 1490 201 95,4 0,88 6,9 2,2 2,2
Синхронная скорость 1000 об/мин
YX3-90S-6 0,75 920 2,08 77,7 0,72 5,8 2,1 2,1
YX3-90L-6 1,1 920 2,97 79,9 0,73 5,9 2,1 2,1
YX3-100L-6 1,5 950 3,80 81,5 0,74 6,0 2,1 2,1
YX3-112M-6 2,2 950 5,37 93,4 0,74 6,0 2,1 2,1
YX3-132S-6 965 7,19 84,9 0,74 6,8 2,0 2,1
YX3-132M1-6 965 9,43 86,1 0,74 6,8 2,0 2,1
YX3-132M2-6 5,5 965 12,6 87,4 0,75 7,1 2,0 2,1
YX3-160M-6 7,5 975 16,7 89,0 0,78 6,7 2,1 2,1
YX3-160L-6 11 975 24,1 90,0 0,79 6,9 2,1 2,1
YX3-180L-6 15 975 31,4 91,0 0,81 7,2 2,0 2,1
YX3-200L1-6 18,5 975 38,3 91,5 0,81 7,2 2,1 2,1
YX3-200L2-6 22 975 44,3 92,0 0,82 7,3 2,1 2,1

YX3-225M-6

30 985 59,2 92,5 0,81

7,1

2,0 2,1
YX3-250M-6 37 985 70,8 93,0 0,84 7,1 2,1 2,1
YX3-280S-6 45 985 85,8 93,5 0,86 7,2 2,1 2,0
YX3-280M-6 55 985 104 93,8 0,86 7,2 2,1 2,0
YX3-315S-6 75 990 141 94,2 0,85 6,7 2,0 2,0
YX3-315M-6 90 990 169 94,5 0,84 6,7 2,0 2,0
YX3-315L1-6 110 990 206 95,0 0,85 6,7 2,0 2,0

 

Информация о компании

 

 

 

 

Taizhou qiantao насосы обратную связь о том, что вы хотите о том, что вы хотите.Является современным предприятием с сочетанием с целью разработки новой продукции, промышленные исследования сервис. Она специализируется на производстве электрического насоса и мотора с более чем50 серий и 1000 Технические характеристики.
Наша компания центры на людей, оснащен большим технологическая команда и талант управления, формируя значительные персоналом и Продвинутая технология advantagement.

У нас есть современное электрические насосы и сборочный конвейер для двигателей, а также он-лайн автоматического тестирования системы. Все эти оборудование поставка выгодные управления состояние и надежного обнаружения методов. Наша компания прошла ISO9001:2000 международную сертификацию системы качества и "3C" Электрика сертификации продукции. Продукты завоевали производства разрешения национальным техническому надзору бюро и "сельскохозяйственная техника популяризации номерных знаков" Предоставлен национальным Минагрополитики.

Удовлетворенность клиентов-это вечное погоне за «qiantao» сотрудников. Качество и репутация является навсегда главная тема qiantao. Мы искренне желаем сотрудничать и развиваться вместе со всеми партнерами. В то же время, мы тепло приветствуем новых и старых клиентов дома и за рубежом, чтобы делать бизнес вместе с нами и свяжитесь с нами.

В любое время суток, qiantao насос co., ltd является апплинг берем на себя нормализованного technology development и управления качеством строительства. Мы постоянно твердеет, улучшить и улучшить компании общий стандарт управления качеством. Мы также популяризации ISO9000 системы менеджмента качества. Они не только подъем в стандартном качестве, мы обещаем качество продукции, укрепить бег Вера "удовлетворенность клиентов-это qiantao людей постоянные ориентиры. Качество и репутация является навсегда главная тема qiantao. ", но и завоевать доверие клиентов.

 

 

 

Больше хитов продаж>

  

             

Серия ФСБ химический насос SCM насос

                                               Нажмите кнопку более                                                                                                  Нажмите кнопку более

 

              

       С термическим закреплением изображения серии масляные насос водяной насос, погружной Pmp с резание крыльчатки

                                                 Нажмите кнопку более                                                                                            Нажмите кнопку более

 

                 

IQ постоянного давления контроллер насоса AUQB

                                                           Нажмите кнопку более                                                                                                Нажмите кнопку более

   

Наши услуги

 Для получения дополнительной информации, просто не стесняйтесь связаться с г-жа Трейси Лин

<Перейти на домашнюю страницу>


Похожие товары

Электродвигатели переменного тока Transtecno в мск и спб

Электродвигатели переменного тока Transtecno пользуются более высоким спросом, чем двигатели постоянного тока. Такие двигатели часто используют как в быту, так и в промышленности. Производство электродвигателей переменного тока намного дешевле, конструкция их проще и надежнее, а эксплуатация проста.
Практически все бытовые приборы и техника (стиральные машины, вытяжки на кухнях и т.д.) оснащены электродвигателями переменного тока. В крупной промышленности они применяются в станковом оборудовании, в лебедках для подъема тяжелого груза, устанавливаются в компрессоры, гидравлические и пневматические насосы, а также устанавливаются на промышленных вентиляторах.
Электродвигатели переменного тока незаменимы в современном мире. Благодаря им значительно облегчается работа людей. Применение электродвигателей помогает снизить затрату человеческих сил и повысить комфорт и удобство повседневной жизни людей.

Асинхронные электродвигатели переменного тока Transtecno TS / MY

Асинхронные электродвигатели переменного тока Transtecno TS / MY являются закрытыми и охлаждаются вентиляторами. Двигатели динамически сбалансированы, надежны и являются экономически выгодным решением. Модели выполнены с алюминиевой рамой и доступны с фланцами B5 или B14. Электродвигатели TS - индукционные трехфазные, 4-полюсные двигатели 230/400 В переменного тока при 50 Гц и 275/480 В переменного тока при 60 Гц, мощность от 0,09 кВт до 3,0 кВт. Электродвигатели MY представлены индукционными однофазными двигателями 230 В переменного тока при 50 Гц. Мощность от 0,09 кВт до 0,75 кВт. Особенно подходят для применения в условиях с низким энергопотреблением. Термостат PTO для защиты от перегрева (только серия MY). Гарантия - 1 год.



Индукционный насос (электродвигатель)

Наше предприятие Орион-мотор специализируется на инновационных проектах в области систем электропривода, технологии и автоматизации производства   (разработка и изготовление).

У нас имеются новые технические решения по линейным и роторным синхронным моторам на постоянных магнитах (прямой привод), по энергосберегающим и регулируемым асинхронным двигателям, а также по координатным системам, электроприводам и оборудованию для различных отраслей промышленности, в том числе для станкостроения, электроники, металлургии и электротранспорта.

Индукционный насос (электродвигатель)

1.  Линейный индукционный насос предназначен для перекачки расплава алюминия (Т=720 0С) через трубу из керамики            (D50хd30 мм, длина 750 мм).

2.  Индукционный асинхронный двигатель насоса имеет 3 фазы. Система охлаждения - водяная.

3.   Немагнитный зазор ~ 65 - 70 мм. Линейная нагрузка ~ 180-200 кА/м. Ток в фазе -- до 35 А (эфф. знач.).

4.   Скорость потока в трубе (расчетное значение) ~ 2 м/с. Производительность ~ 1,4 л/с при силе тяги 15 Н (~ 240 кг в минуту). Длина рабочей части канала 480 мм.

5.   Низкий КПД (несколько процентов) обусловлен большим немагнитным зазором и потерями от вихревых токов в полях рассеяния магнитного потока.

6.   Основная защита насоса от перегрева обеспечивается зеркальными отражателями с водяным охлаждением и водяными радиаторами.

7.   Расчетное значение отводимой тепловой мощности от  ЭМ ~ 2 5 кВт в длительном режиме (рабочая температура обмоток ~ 130-1800С).

8.   Расход воды 4 - 8 л/мин (ΔТ=20 0С). Рабочее давление в контуре водяного охлаждения - не более 3 атмосфер.

9.   Рабочие полюса двигателя защищены от перегрева зеркальными отражателями из тонколистовой нержавеющей стали (0,5 - 0,7 мм).

10.  Регулирование производительности осуществляется электронным блоком управления (инвертором) для асинхронного двигателя (Рэл ~ 30 кВт).

11.  Предусмотрен контроль температуры обмоток, задание и индикация рабочих параметров (применяется промышленный контроллер или ЭВМ).

12.  Блок управления (инвертор) питается от 3-фазной сети переменного тока 220/380 В, 50 Гц. Потребляемая мощность из сети 10 - 12 квт.

13.  Производительность (расчетное значение) 85 л/мин. Сила тяги на эквиваленте нагрузки (стержень из алюминия диаметром 30 мм) 15 Н.

14.  Параметры двигателя установлены по результатам испытаний первого опытного образца индукционного двигателя (насоса).

15.  Была испытана усовершенствованная модель с трубой, имеющей внутренний канал диаметром 40 мм, труба вставляется с боковой стороны насоса.

16.  Результаты испытаний: скорость потока в трубе (d40 мм) ~ 2,4 м/с. Производительность (расчетное значение) ~ 3 л/с (180 л/мин) при силе тяги 40 Н (~ 486 кг в минуту).

17.   Комплект поставки индукционный насос, комплект электропривода в стойке управления, включая инвертор, комплект системы водяного охлаждения, включая насосы и воздушно- водяной радиатор, комплект кабелей и шлангов, управляющий компьютер, включая программное обеспечение.

18.  Керамические трубы поставляются отдельно.

19.  Мы готовы разработать и изготовить индукционные насосы по специальным техническим требованиям заказчика.

 

Редукторы, мотор-редукторы: ООО "Приводные технологии"

о компании
Приводные Технологии - развивающаяся компания малого бизнеса, основным видом деятельности которой является производство, маркетинг и промоушинг, бытовой и промышленной, доступной и надежной приводной техники. Интеграция новейших технологий современного редукторостроения к отечественным условиям производства, - особенность наших технических решений, предлагаемых рынку. Современные запросы приводов стали более требовательны к механической передаточной части, к подводимому электрическому оборудованию, к последующим приводным муфтам и др. Наши предложения редукторных мини-моторов, редукторных узлов и силовых передаточных машин предназначены для эксплуатации в разных отраслях, для достижения различных целей, с любым набором требований и т.д. Помимо всего этого, имеется широкий выбор электрических устройств для оперативного контроля и регулирования режимов работы привода, - так называемая, область приводной электроники.
подробнее
новое на сайте
DC планетарный мотор-редуктор 110.ПP16-F(C)22, 110.ПP36-F(C)22 и 110.ПP64-F(C)22 (123Вт ~ 700Вт) DC планетарный мотор-редуктор 110.ПP16-F(C)22, 110.ПP36-F(C)22 и 110.ПP64-F(C)22 (123Вт ~ 700Вт) Обороты на выходном валу Крутящий момент на выходном валу Передаточное число Мощность двигателя Обороты двигателя Напряжение Модель n 2 (об/мин -1 ) M ...... подробнее
DC мотор 4DC40W (40 Ватт) Маломощный мотор постоянного тока 4DC40W - миниатюрный электродвигатель из семейства Permanent Magnet DC-motor, предназначенный для работы от сети с номинальным напряжением 12 V, 24 V или 90 V. Потребляемая сила тока зависит от подаваемого ...... подробнее
DC мотор 3DC25W (25 Ватт) Мини электродвигатель постоянного тока, представлен моделями 3DC25W, номинальной мощностью 25 Ватт (25 Watt) и номинальным напряжением 12 В (12 V), 24 В (24 V) и 90 В (90 V). Номинальные токи соотвктсвенно 0,75А, 1,5A, 2,0A Номинальный крутящий ...... подробнее
Соосный цилиндрический редуктор MR473, NR473

Номинальная мощность - 4,0 кВт

Выходные обороты: 25 об/мин ... 75 об/мин

Соосно-цилиндрический мотор редуктор MR473-112M/4 (исполнение на лапах) NR473-112M/4 (фланцевое исполнение) представляет собой осевую редукторную механическую передачу с номинальным крутящим моментом - 1440Nm, и электродвигатель с номинальной ...... подробнее

асинхронные двигатели переменного тока | Как работают электродвигатели переменного тока Асинхронные электродвигатели переменного тока

| Как работают двигатели переменного тока - объясните это

Реклама

Криса Вудфорда. Последнее изменение: 21 апреля 2020 г.

Вы знаете, как работают электродвигатели? Ответ, наверное, да и нет! Хотя многие из нас узнали, как базовые моторные работы, из простых научных книг и веб-страниц, таких как эта, многие из двигатели, которые мы используем каждый день - от заводских машин до электропоезда - вообще-то так не работают.Какие книги рассказывают нам о простых двигателях постоянного тока (DC), которые имеют петля из проволоки, вращающаяся между полюсами постоянного магнита; в реальной жизни, в большинстве двигателей большой мощности используется переменный ток (AC) и работают совершенно по-другому: это то, что мы называем индукцией двигатели, и они очень изобретательно используют вращающееся магнитное поле. Давайте посмотрим поближе!

Фотография: Обычный асинхронный двигатель переменного тока со снятыми корпусом и ротором, демонстрирующий медные обмотки катушек, составляющих статор (статическая, неподвижная часть двигателя).Эти катушки предназначены для создания вращающегося магнитного поля, которое вращает ротор (подвижную часть двигателя) в пространстве между ними. Фото Дэвида Парсонса любезно предоставлено Министерством энергетики США / NREL.

Как работает обычный двигатель постоянного тока?

Иллюстрации: Электродвигатель постоянного тока основан на проволочной петле, вращающейся внутри фиксированного магнитного поля, создаваемого постоянным магнитом. Коммутатор (разрезное кольцо) и щетки (угольные контакты к коммутатору) меняют направление электрического тока каждый раз, когда провод перекручивается, что позволяет ему вращаться в одном и том же направлении.

Простые двигатели, которые вы видите в научных книгах, основаны на кусок проволоки, согнутый в прямоугольную петлю, которая подвешена между полюса магнита. (Физики назвали бы это проводник с током сидит в магнитном поле.) Когда вы подключаете такой провод к батарее, через него течет постоянный ток (DC), создавая вокруг него временное магнитное поле. Это временное поле отталкивает исходное поле от постоянного магнита, в результате чего провод перевернуть.Обычно провод останавливался в этой точке, а затем снова переворачивался, но если мы воспользуемся оригинальным вращающимся соединением называется коммутатором, мы можем сделать обратный ток каждый раз, когда проволока переворачивается, а это значит, что проволока будет продолжать вращаться в в том же направлении, пока течет ток. Это суть простого электродвигателя постоянного тока, задуманного в 1820-е годы Майкла Фарадея и превратился в практическое изобретение о десять лет спустя Уильям Стерджен. (Более подробную информацию вы найдете в нашей вводной статье об электродвигателях.)

Прежде чем мы перейдем к двигателям переменного тока, давайте быстро резюмируйте, что здесь происходит. В двигателе постоянного тока магнит (и его магнитное поле) фиксируется на месте и образует внешнюю статическую часть двигатель (статор), а катушка с проводом, несущая электрический ток формирует вращающуюся часть двигателя (ротор). Магнитное поле исходит от статора, который представляет собой постоянного магнита, пока вы подаете электроэнергию на катушку, которая составляет ротор. Взаимодействие между постоянными магнитами поле статора и временное магнитное поле, создаваемое ротором, равно что заставляет мотор крутиться.

Как работает двигатель переменного тока?

В отличие от игрушек и фонариков, большинство домов, офисов, фабрики и другие здания не питаются от маленьких батареек: на них подается не постоянный ток, а переменный ток (AC), который меняет направление примерно 50 раз в секунду. (с частотой 50 Гц). Если вы хотите запустить двигатель от домашней электросети переменного тока, вместо батареи постоянного тока нужна другая конструкция двигателя.

В двигателе переменного тока есть кольцо электромагнитов расположены снаружи (составляя статор), которые предназначены для создания вращающегося магнитного поля.Внутри статора находится цельная металлическая ось, проволочная петля, катушка, беличья клетка из металлических стержней и межсоединений (например, вращающиеся клетки, которым иногда удается развлечь мышей), или другая свободно вращающаяся металлическая деталь, которая может проводить электричество. В отличие от двигателя постоянного тока, где вы посылаете энергию во внутренний ротор, в двигателе переменного тока вы посылаете энергию на внешние катушки, которые составляют статор. Катушки запитываются попарно, последовательно, создает магнитное поле, вращающееся вокруг двигателя.

Фото: Статор создает магнитное поле с помощью туго намотанных катушек из медной проволоки, которые известны как обмотки. Когда электродвигатель изнашивается или перегорает, можно заменить его другим электродвигателем. Иногда легче заменить обмотки двигателя новым проводом - это умелая работа, называемая перемоткой, что и происходит здесь. Фото Сета Скарлетта любезно предоставлено ВМС США.

Как это вращающееся поле заставляет двигатель двигаться? Помните, что ротор, подвешенный внутри магнитное поле, является электрическим проводником.Магнитное поле постоянно меняется (потому что оно вращается), поэтому согласно законам электромагнетизма (если быть точным, закону Фарадея) магнитное поле производит (или индуцирует, если использовать термин Фарадея) электрический ток внутри ротора. Если проводник представляет собой кольцо или провод, ток течет вокруг него по петле. Если проводник представляет собой просто цельный кусок металла, вместо этого вокруг него циркулируют вихревые токи. В любом случае индуцированный ток производит собственное магнитное поле и, согласно другому закону электромагнетизма (Закон Ленца) пытается остановить то, что его вызывает - вращающееся магнитное поле - также вращаясь.(Вы можете думать о роторе отчаянно пытается «догнать» вращающееся магнитное поле, пытаясь устранить разница в движении между ними.) Электромагнитная индукция - это ключ к тому, почему такой двигатель вращается, и поэтому он называется асинхронным.

Как работает асинхронный двигатель переменного тока?

Вот небольшая анимация, чтобы подвести итог и, надеюсь, прояснить все:

  1. Две пары катушек электромагнита, показанные здесь красным и синим цветом, поочередно запитываются источником переменного тока (не показан, но подаются к выводам справа).Две красные катушки соединены последовательно и запитаны вместе, а две синие катушки катушки подключаются таким же образом. Поскольку это переменный ток, ток в каждой катушке не включается и не выключается внезапно (как предполагает эта анимация), а плавно повышается и падает в форме синусоидальной волны: когда красные катушки наиболее активны, синие катушки полностью неактивны, и наоборот. Другими словами, их токи не совпадают (не совпадают по фазе на 90 °).
  2. Когда катушки находятся под напряжением, магнитное поле, которое они создают между ними, индуцирует электрический ток в роторе.Этот ток создает собственное магнитное поле, которое пытается противодействовать тому, что его вызвало (магнитное поле от внешних катушек). Взаимодействие между двумя полями заставляет ротор вращаться.
  3. Когда магнитное поле чередуется между красной и синей катушками, оно эффективно вращается вокруг двигателя. Вращающееся магнитное поле заставляет ротор вращаться в одном направлении и (теоретически) почти с одинаковой скоростью.

Асинхронные двигатели на практике

Что контролирует скорость двигателя переменного тока?

В синхронных двигателях переменного тока ротор вращается с той же скоростью, что и вращающееся магнитное поле; в асинхронном двигателе ротор всегда вращается с меньшей скоростью, чем поле, что делает его примером так называемого асинхронного двигателя переменного тока.Теоретическая скорость ротора в асинхронном двигателе зависит от частоты источника переменного тока и количества катушек, составляющих статор, и без нагрузки на двигатель приближается к скорости вращающегося магнитного поля. На практике нагрузка на двигатель (независимо от того, чем он управляет) также играет роль, замедляя ротор. Чем больше нагрузка, тем больше «пробуксовка» между скоростью вращающегося магнитного поля и фактической скоростью ротора. Чтобы контролировать скорость двигателя переменного тока (чтобы он работал быстрее или медленнее), вы должны увеличивать или уменьшать частоту источника переменного тока, используя так называемый частотно-регулируемый привод.Поэтому, когда вы регулируете скорость чего-то вроде заводской машины, питаемой от асинхронного двигателя переменного тока, вы на самом деле управляете цепью, которая изменяет частоту тока, приводящего в движение двигатель, вверх или вниз.

Что такое «фаза» двигателя переменного тока?

Нам не обязательно приводить в движение ротор с четырьмя катушками (двумя противоположными парами), как показано здесь. Можно построить асинхронные двигатели с любым другим расположением катушек. Чем больше у вас катушек, тем плавнее будет работать мотор.Количество отдельных электрических токов, возбуждающих питание катушек независимо, не в такте, известно как фаза двигателя, поэтому конструкция, показанная выше, представляет собой двухфазный двигатель (с двумя токами, питающими четыре катушки, которые работают не в шаге в двух парах. ). В трехфазном двигателе мы могли бы иметь три катушки, расположенные вокруг статора в виде треугольника, шесть равномерно расположенных катушек (три пары) или даже 12 катушек (три набора по четыре катушки) с одной, двумя или четырьмя катушками. включается и выключается одновременно тремя отдельными противофазными токами.

Анимация: Трехфазный двигатель, питаемый тремя токами (обозначенными красным, зеленым и синие пары катушек), сдвиг по фазе на 120 °.

Преимущества и недостатки асинхронных двигателей

Преимущества

Самым большим преимуществом асинхронных двигателей переменного тока является их простота. У них есть только одна движущаяся часть, ротор, что делает их недорогими, тихими, долговечными и относительно безотказными. ОКРУГ КОЛУМБИЯ двигатели, напротив, имеют коллектор и угольные щетки, которые изнашиваются. выходят и нуждаются в замене время от времени.Трение между щетками и Коммутатор также делает двигатели постоянного тока относительно шумными (а иногда даже довольно вонючими).

Иллюстрации: Электродвигатели чрезвычайно эффективны, обычно преобразовывая около 85 процентов поступающей электроэнергии в полезную исходящую механическую работу. Даже в этом случае довольно много энергии теряется в виде тепла внутри обмоток, поэтому двигатели могут сильно нагреваться. Большинство двигателей переменного тока промышленной мощности имеют встроенные системы охлаждения.Внутри корпуса есть вентилятор, прикрепленный к валу ротора (на противоположном конце оси, который приводит в движение любую машину, к которой прикреплен двигатель), показанный здесь красным. Вентилятор всасывает воздух в двигатель, обдувая его снаружи корпуса, минуя ребра вентиляции. Если вы когда-нибудь задумывались, почему электродвигатели имеют эти выступы снаружи (как вы можете видеть на верхнем фото на этой странице), причина в том, что они охлаждают двигатель.

Недостатки

Поскольку скорость асинхронного двигателя зависит от частоты переменного тока, приводящего его в действие, он вращается со скоростью постоянная скорость, если вы не используете частотно-регулируемый привод; Скорость двигателей постоянного тока намного легче контролировать, просто повышая или понижая напряжение питания.Хотя асинхронные двигатели относительно просты, они могут быть довольно тяжелыми и громоздкими из-за их катушечной обмотки. В отличие от двигателей постоянного тока, они не могут работать от батарей или любого другого источника постоянного тока (например, солнечных батарей) без использования инвертора (устройства, которое преобразует постоянный ток в переменный). Это потому, что им нужно изменяющееся магнитное поле, чтобы вращать ротор.

Кто изобрел асинхронный двигатель?

Изображение: оригинальный дизайн Николы Теслы для асинхронного двигателя переменного тока. Он работает точно так же, как и на анимации выше, с двумя синими и двумя красными катушками, поочередно запитываемыми от генератора справа.Это произведение взято из оригинального патента Tesla, депонированного в Бюро патентов и товарных знаков США, с которым вы можете ознакомиться в приведенных ниже ссылках.

Никола Тесла (1856–1943) был физиком. и плодовитый изобретатель, чей огромный вклад в науку и технику никогда не были полностью признаны. После того, как он приехал в Соединенные Штаты в возрасте 28 лет, он начал работал на известного пионера электротехники Томаса Эдисона. Но двое мужчин поссорились катастрофически и вскоре стали непримиримыми соперниками.Тесла твердо верил что переменный ток (AC) намного превосходил постоянный ток (DC), в то время как Эдисон думал обратное. Со своим партнером Джорджем Westinghouse, Тесла отстаивал AC, в то время как Эдисон был полон решимости управлять миром на DC и придумал всевозможные рекламные трюки, чтобы доказать, что кондиционер слишком опасен для широкого использования (изобретение электрического стула, чтобы доказать, что переменный ток может быть смертельным, и даже ударил током слона Топси переменным током, чтобы показать, насколько это было смертельно опасно и жестоко). Битва между этими двумя очень разные взгляды на электроэнергию иногда называют Войной течений.

Несмотря на лучшие (или худшие) усилия Эдисона, Tesla победила, и теперь электричество переменного тока питает большую часть мира. Во многом именно поэтому многие электродвигатели, которые приводить в действие бытовую технику в наших домах, фабриках и офисах переменного тока асинхронные двигатели, работающие от вращающихся магнитных полей, которые Никола Тесла спроектировал его в 1880-х годах (его патент, проиллюстрированный здесь, был выдан в мае 1888 года). Итальянский физик по имени Галилео Феррарис независимо друг от друга придумал ту же идею примерно в то же время, но история обошлась с ним еще более жестоко, чем Тесла и его имя теперь почти забыты.

Если вам понравилась эта статья ...

... вам могут понравиться мои книги. Мой последний Бездыханный: почему загрязнение воздуха имеет значение и как оно влияет на вас.

Узнать больше

На этом сайте

На других сайтах

Книги

Для читателей постарше
Для младших читателей
  • Электроэнергия для молодых людей: забавные и легкие проекты «Сделай сам» Марка де Винка. Maker Media / O'Reilly, 2017.Отличное практическое введение в электричество, включая несколько занятий, связанных с созданием электродвигателей с нуля. Возраст 9–12 лет.
  • Эксперименты с электродвигателем Эда Соби. Enslow, 2011. Это отличное общее введение в электродвигатели с большим количеством более широкого научного и технологического контекста. Однако по очевидным практическим соображениям и соображениям безопасности он ориентирован только на проекты с двигателями постоянного тока и лучше всего подходит для детей в возрасте от 11 до 14 лет.
  • Сила и энергия Криса Вудфорда.Факты в файле, 2004. Одна из моих книг, рассказывающих об усилиях человека по использованию энергии с древних времен до наших дней. Возраст 10+.
  • Никола Тесла: разработчик электроэнергии Крисом Вудфордом в «Изобретатели и изобретения», том 5. Нью-Йорк: Маршалл Кавендиш, 2008. Краткую биографию Теслы я написал несколько лет назад. На момент написания все это было доступно в Интернете по этой ссылке в Google Книгах. Возраст 9–12 лет.

Патенты

Патенты

предлагают более глубокие технические детали и собственные идеи изобретателя о своей работе.Вот очень небольшая подборка многих патентов США, касающихся асинхронных двигателей.

  • Патент США 381 968: Электромагнитный двигатель Николы Тесла, 1 мая 1888 г. Оригинальный патент на асинхронный двигатель переменного тока.
  • Патент США 2 959 721: Многофазные асинхронные двигатели Томаса Х. Бартона и др., Lancashire Dynamo & Crypto Ltd, 8 ноября 1960 г. Асинхронный двигатель с улучшенным контролем скорости.
  • Патент США 4311932: Жидкостное охлаждение для асинхронных двигателей, Рэймонд Н. Олсон, Sundstrand Corporation, 19 января 1982 г.Эффективный метод жидкостного охлаждения двигателя без чрезмерного сопротивления жидкости вращающимся компонентам.
  • Патент США 5,751,082: Асинхронный двигатель с высоким пусковым моментом, авторство Umesh C. Gupta, Vickers, Inc., 12 мая 1998 г. Современный двигатель с высоким начальным крутящим моментом.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2012, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Следуйте за нами

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом своим друзьям с помощью:

Цитировать эту страницу

Вудфорд, Крис. (2012/2020) Асинхронные двигатели. Получено с https://www.explainthatstuff.com/induction-motors.html.[Доступ (укажите дату здесь)]

Больше на нашем сайте ...

асинхронные двигатели переменного тока | Как работают электродвигатели переменного тока Асинхронные электродвигатели переменного тока

| Как работают двигатели переменного тока - объясните это

Реклама

Криса Вудфорда. Последнее изменение: 21 апреля 2020 г.

Вы знаете, как работают электродвигатели? Ответ, наверное, да и нет! Хотя многие из нас узнали, как базовые моторные работы, из простых научных книг и веб-страниц, таких как эта, многие из двигатели, которые мы используем каждый день - от заводских машин до электропоезда - вообще-то так не работают.Какие книги рассказывают нам о простых двигателях постоянного тока (DC), которые имеют петля из проволоки, вращающаяся между полюсами постоянного магнита; в реальной жизни, в большинстве двигателей большой мощности используется переменный ток (AC) и работают совершенно по-другому: это то, что мы называем индукцией двигатели, и они очень изобретательно используют вращающееся магнитное поле. Давайте посмотрим поближе!

Фотография: Обычный асинхронный двигатель переменного тока со снятыми корпусом и ротором, демонстрирующий медные обмотки катушек, составляющих статор (статическая, неподвижная часть двигателя).Эти катушки предназначены для создания вращающегося магнитного поля, которое вращает ротор (подвижную часть двигателя) в пространстве между ними. Фото Дэвида Парсонса любезно предоставлено Министерством энергетики США / NREL.

Как работает обычный двигатель постоянного тока?

Иллюстрации: Электродвигатель постоянного тока основан на проволочной петле, вращающейся внутри фиксированного магнитного поля, создаваемого постоянным магнитом. Коммутатор (разрезное кольцо) и щетки (угольные контакты к коммутатору) меняют направление электрического тока каждый раз, когда провод перекручивается, что позволяет ему вращаться в одном и том же направлении.

Простые двигатели, которые вы видите в научных книгах, основаны на кусок проволоки, согнутый в прямоугольную петлю, которая подвешена между полюса магнита. (Физики назвали бы это проводник с током сидит в магнитном поле.) Когда вы подключаете такой провод к батарее, через него течет постоянный ток (DC), создавая вокруг него временное магнитное поле. Это временное поле отталкивает исходное поле от постоянного магнита, в результате чего провод перевернуть.Обычно провод останавливался в этой точке, а затем снова переворачивался, но если мы воспользуемся оригинальным вращающимся соединением называется коммутатором, мы можем сделать обратный ток каждый раз, когда проволока переворачивается, а это значит, что проволока будет продолжать вращаться в в том же направлении, пока течет ток. Это суть простого электродвигателя постоянного тока, задуманного в 1820-е годы Майкла Фарадея и превратился в практическое изобретение о десять лет спустя Уильям Стерджен. (Более подробную информацию вы найдете в нашей вводной статье об электродвигателях.)

Прежде чем мы перейдем к двигателям переменного тока, давайте быстро резюмируйте, что здесь происходит. В двигателе постоянного тока магнит (и его магнитное поле) фиксируется на месте и образует внешнюю статическую часть двигатель (статор), а катушка с проводом, несущая электрический ток формирует вращающуюся часть двигателя (ротор). Магнитное поле исходит от статора, который представляет собой постоянного магнита, пока вы подаете электроэнергию на катушку, которая составляет ротор. Взаимодействие между постоянными магнитами поле статора и временное магнитное поле, создаваемое ротором, равно что заставляет мотор крутиться.

Как работает двигатель переменного тока?

В отличие от игрушек и фонариков, большинство домов, офисов, фабрики и другие здания не питаются от маленьких батареек: на них подается не постоянный ток, а переменный ток (AC), который меняет направление примерно 50 раз в секунду. (с частотой 50 Гц). Если вы хотите запустить двигатель от домашней электросети переменного тока, вместо батареи постоянного тока нужна другая конструкция двигателя.

В двигателе переменного тока есть кольцо электромагнитов расположены снаружи (составляя статор), которые предназначены для создания вращающегося магнитного поля.Внутри статора находится цельная металлическая ось, проволочная петля, катушка, беличья клетка из металлических стержней и межсоединений (например, вращающиеся клетки, которым иногда удается развлечь мышей), или другая свободно вращающаяся металлическая деталь, которая может проводить электричество. В отличие от двигателя постоянного тока, где вы посылаете энергию во внутренний ротор, в двигателе переменного тока вы посылаете энергию на внешние катушки, которые составляют статор. Катушки запитываются попарно, последовательно, создает магнитное поле, вращающееся вокруг двигателя.

Фото: Статор создает магнитное поле с помощью туго намотанных катушек из медной проволоки, которые известны как обмотки. Когда электродвигатель изнашивается или перегорает, можно заменить его другим электродвигателем. Иногда легче заменить обмотки двигателя новым проводом - это умелая работа, называемая перемоткой, что и происходит здесь. Фото Сета Скарлетта любезно предоставлено ВМС США.

Как это вращающееся поле заставляет двигатель двигаться? Помните, что ротор, подвешенный внутри магнитное поле, является электрическим проводником.Магнитное поле постоянно меняется (потому что оно вращается), поэтому согласно законам электромагнетизма (если быть точным, закону Фарадея) магнитное поле производит (или индуцирует, если использовать термин Фарадея) электрический ток внутри ротора. Если проводник представляет собой кольцо или провод, ток течет вокруг него по петле. Если проводник представляет собой просто цельный кусок металла, вместо этого вокруг него циркулируют вихревые токи. В любом случае индуцированный ток производит собственное магнитное поле и, согласно другому закону электромагнетизма (Закон Ленца) пытается остановить то, что его вызывает - вращающееся магнитное поле - также вращаясь.(Вы можете думать о роторе отчаянно пытается «догнать» вращающееся магнитное поле, пытаясь устранить разница в движении между ними.) Электромагнитная индукция - это ключ к тому, почему такой двигатель вращается, и поэтому он называется асинхронным.

Как работает асинхронный двигатель переменного тока?

Вот небольшая анимация, чтобы подвести итог и, надеюсь, прояснить все:

  1. Две пары катушек электромагнита, показанные здесь красным и синим цветом, поочередно запитываются источником переменного тока (не показан, но подаются к выводам справа).Две красные катушки соединены последовательно и запитаны вместе, а две синие катушки катушки подключаются таким же образом. Поскольку это переменный ток, ток в каждой катушке не включается и не выключается внезапно (как предполагает эта анимация), а плавно повышается и падает в форме синусоидальной волны: когда красные катушки наиболее активны, синие катушки полностью неактивны, и наоборот. Другими словами, их токи не совпадают (не совпадают по фазе на 90 °).
  2. Когда катушки находятся под напряжением, магнитное поле, которое они создают между ними, индуцирует электрический ток в роторе.Этот ток создает собственное магнитное поле, которое пытается противодействовать тому, что его вызвало (магнитное поле от внешних катушек). Взаимодействие между двумя полями заставляет ротор вращаться.
  3. Когда магнитное поле чередуется между красной и синей катушками, оно эффективно вращается вокруг двигателя. Вращающееся магнитное поле заставляет ротор вращаться в одном направлении и (теоретически) почти с одинаковой скоростью.

Асинхронные двигатели на практике

Что контролирует скорость двигателя переменного тока?

В синхронных двигателях переменного тока ротор вращается с той же скоростью, что и вращающееся магнитное поле; в асинхронном двигателе ротор всегда вращается с меньшей скоростью, чем поле, что делает его примером так называемого асинхронного двигателя переменного тока.Теоретическая скорость ротора в асинхронном двигателе зависит от частоты источника переменного тока и количества катушек, составляющих статор, и без нагрузки на двигатель приближается к скорости вращающегося магнитного поля. На практике нагрузка на двигатель (независимо от того, чем он управляет) также играет роль, замедляя ротор. Чем больше нагрузка, тем больше «пробуксовка» между скоростью вращающегося магнитного поля и фактической скоростью ротора. Чтобы контролировать скорость двигателя переменного тока (чтобы он работал быстрее или медленнее), вы должны увеличивать или уменьшать частоту источника переменного тока, используя так называемый частотно-регулируемый привод.Поэтому, когда вы регулируете скорость чего-то вроде заводской машины, питаемой от асинхронного двигателя переменного тока, вы на самом деле управляете цепью, которая изменяет частоту тока, приводящего в движение двигатель, вверх или вниз.

Что такое «фаза» двигателя переменного тока?

Нам не обязательно приводить в движение ротор с четырьмя катушками (двумя противоположными парами), как показано здесь. Можно построить асинхронные двигатели с любым другим расположением катушек. Чем больше у вас катушек, тем плавнее будет работать мотор.Количество отдельных электрических токов, возбуждающих питание катушек независимо, не в такте, известно как фаза двигателя, поэтому конструкция, показанная выше, представляет собой двухфазный двигатель (с двумя токами, питающими четыре катушки, которые работают не в шаге в двух парах. ). В трехфазном двигателе мы могли бы иметь три катушки, расположенные вокруг статора в виде треугольника, шесть равномерно расположенных катушек (три пары) или даже 12 катушек (три набора по четыре катушки) с одной, двумя или четырьмя катушками. включается и выключается одновременно тремя отдельными противофазными токами.

Анимация: Трехфазный двигатель, питаемый тремя токами (обозначенными красным, зеленым и синие пары катушек), сдвиг по фазе на 120 °.

Преимущества и недостатки асинхронных двигателей

Преимущества

Самым большим преимуществом асинхронных двигателей переменного тока является их простота. У них есть только одна движущаяся часть, ротор, что делает их недорогими, тихими, долговечными и относительно безотказными. ОКРУГ КОЛУМБИЯ двигатели, напротив, имеют коллектор и угольные щетки, которые изнашиваются. выходят и нуждаются в замене время от времени.Трение между щетками и Коммутатор также делает двигатели постоянного тока относительно шумными (а иногда даже довольно вонючими).

Иллюстрации: Электродвигатели чрезвычайно эффективны, обычно преобразовывая около 85 процентов поступающей электроэнергии в полезную исходящую механическую работу. Даже в этом случае довольно много энергии теряется в виде тепла внутри обмоток, поэтому двигатели могут сильно нагреваться. Большинство двигателей переменного тока промышленной мощности имеют встроенные системы охлаждения.Внутри корпуса есть вентилятор, прикрепленный к валу ротора (на противоположном конце оси, который приводит в движение любую машину, к которой прикреплен двигатель), показанный здесь красным. Вентилятор всасывает воздух в двигатель, обдувая его снаружи корпуса, минуя ребра вентиляции. Если вы когда-нибудь задумывались, почему электродвигатели имеют эти выступы снаружи (как вы можете видеть на верхнем фото на этой странице), причина в том, что они охлаждают двигатель.

Недостатки

Поскольку скорость асинхронного двигателя зависит от частоты переменного тока, приводящего его в действие, он вращается со скоростью постоянная скорость, если вы не используете частотно-регулируемый привод; Скорость двигателей постоянного тока намного легче контролировать, просто повышая или понижая напряжение питания.Хотя асинхронные двигатели относительно просты, они могут быть довольно тяжелыми и громоздкими из-за их катушечной обмотки. В отличие от двигателей постоянного тока, они не могут работать от батарей или любого другого источника постоянного тока (например, солнечных батарей) без использования инвертора (устройства, которое преобразует постоянный ток в переменный). Это потому, что им нужно изменяющееся магнитное поле, чтобы вращать ротор.

Кто изобрел асинхронный двигатель?

Изображение: оригинальный дизайн Николы Теслы для асинхронного двигателя переменного тока. Он работает точно так же, как и на анимации выше, с двумя синими и двумя красными катушками, поочередно запитываемыми от генератора справа.Это произведение взято из оригинального патента Tesla, депонированного в Бюро патентов и товарных знаков США, с которым вы можете ознакомиться в приведенных ниже ссылках.

Никола Тесла (1856–1943) был физиком. и плодовитый изобретатель, чей огромный вклад в науку и технику никогда не были полностью признаны. После того, как он приехал в Соединенные Штаты в возрасте 28 лет, он начал работал на известного пионера электротехники Томаса Эдисона. Но двое мужчин поссорились катастрофически и вскоре стали непримиримыми соперниками.Тесла твердо верил что переменный ток (AC) намного превосходил постоянный ток (DC), в то время как Эдисон думал обратное. Со своим партнером Джорджем Westinghouse, Тесла отстаивал AC, в то время как Эдисон был полон решимости управлять миром на DC и придумал всевозможные рекламные трюки, чтобы доказать, что кондиционер слишком опасен для широкого использования (изобретение электрического стула, чтобы доказать, что переменный ток может быть смертельным, и даже ударил током слона Топси переменным током, чтобы показать, насколько это было смертельно опасно и жестоко). Битва между этими двумя очень разные взгляды на электроэнергию иногда называют Войной течений.

Несмотря на лучшие (или худшие) усилия Эдисона, Tesla победила, и теперь электричество переменного тока питает большую часть мира. Во многом именно поэтому многие электродвигатели, которые приводить в действие бытовую технику в наших домах, фабриках и офисах переменного тока асинхронные двигатели, работающие от вращающихся магнитных полей, которые Никола Тесла спроектировал его в 1880-х годах (его патент, проиллюстрированный здесь, был выдан в мае 1888 года). Итальянский физик по имени Галилео Феррарис независимо друг от друга придумал ту же идею примерно в то же время, но история обошлась с ним еще более жестоко, чем Тесла и его имя теперь почти забыты.

Если вам понравилась эта статья ...

... вам могут понравиться мои книги. Мой последний Бездыханный: почему загрязнение воздуха имеет значение и как оно влияет на вас.

Узнать больше

На этом сайте

На других сайтах

Книги

Для читателей постарше
Для младших читателей
  • Электроэнергия для молодых людей: забавные и легкие проекты «Сделай сам» Марка де Винка. Maker Media / O'Reilly, 2017.Отличное практическое введение в электричество, включая несколько занятий, связанных с созданием электродвигателей с нуля. Возраст 9–12 лет.
  • Эксперименты с электродвигателем Эда Соби. Enslow, 2011. Это отличное общее введение в электродвигатели с большим количеством более широкого научного и технологического контекста. Однако по очевидным практическим соображениям и соображениям безопасности он ориентирован только на проекты с двигателями постоянного тока и лучше всего подходит для детей в возрасте от 11 до 14 лет.
  • Сила и энергия Криса Вудфорда.Факты в файле, 2004. Одна из моих книг, рассказывающих об усилиях человека по использованию энергии с древних времен до наших дней. Возраст 10+.
  • Никола Тесла: разработчик электроэнергии Крисом Вудфордом в «Изобретатели и изобретения», том 5. Нью-Йорк: Маршалл Кавендиш, 2008. Краткую биографию Теслы я написал несколько лет назад. На момент написания все это было доступно в Интернете по этой ссылке в Google Книгах. Возраст 9–12 лет.

Патенты

Патенты

предлагают более глубокие технические детали и собственные идеи изобретателя о своей работе.Вот очень небольшая подборка многих патентов США, касающихся асинхронных двигателей.

  • Патент США 381 968: Электромагнитный двигатель Николы Тесла, 1 мая 1888 г. Оригинальный патент на асинхронный двигатель переменного тока.
  • Патент США 2 959 721: Многофазные асинхронные двигатели Томаса Х. Бартона и др., Lancashire Dynamo & Crypto Ltd, 8 ноября 1960 г. Асинхронный двигатель с улучшенным контролем скорости.
  • Патент США 4311932: Жидкостное охлаждение для асинхронных двигателей, Рэймонд Н. Олсон, Sundstrand Corporation, 19 января 1982 г.Эффективный метод жидкостного охлаждения двигателя без чрезмерного сопротивления жидкости вращающимся компонентам.
  • Патент США 5,751,082: Асинхронный двигатель с высоким пусковым моментом, авторство Umesh C. Gupta, Vickers, Inc., 12 мая 1998 г. Современный двигатель с высоким начальным крутящим моментом.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2012, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Следуйте за нами

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом своим друзьям с помощью:

Цитировать эту страницу

Вудфорд, Крис. (2012/2020) Асинхронные двигатели. Получено с https://www.explainthatstuff.com/induction-motors.html.[Доступ (укажите дату здесь)]

Больше на нашем сайте ...

Полифазные асинхронные двигатели

тесла | Двигатели переменного тока

Большинство двигателей переменного тока являются асинхронными. Асинхронные двигатели пользуются популярностью из-за их прочности и простоты. Фактически, 90% промышленных двигателей - это асинхронные двигатели.

Никола Тесла разработал основные принципы многофазного асинхронного двигателя в 1883 году и к 1888 году создал модель мощностью в половину лошадиных сил (400 Вт). Тесла продал права на производство Джорджу Вестингаузу за 65 000 долларов.

Наиболее крупными (> 1 л.с. или 1 кВт) промышленными двигателями являются многофазные асинхронные двигатели . Под многофазностью мы подразумеваем, что статор содержит несколько различных обмоток на каждый полюс двигателя, приводимых в действие соответствующими синусоидальными волнами со сдвигом во времени.

На практике это две или три фазы. Крупные промышленные двигатели трехфазные. Хотя для простоты мы включили многочисленные иллюстрации двухфазных двигателей, мы должны подчеркнуть, что почти все многофазные двигатели являются трехфазными.

Под асинхронным двигателем мы подразумеваем, что обмотки статора индуцируют ток в проводниках ротора, как трансформатор, в отличие от коллекторного двигателя постоянного тока.

Конструкция асинхронного двигателя переменного тока

Асинхронный двигатель состоит из ротора, известного как якорь, и статора, содержащего обмотки, подключенные к многофазному источнику энергии, как показано на рисунке ниже. Простой двухфазный асинхронный двигатель, представленный ниже, похож на двигатель мощностью 1/2 лошадиные силы, который Никола Тесла представил в 1888 году.

Многофазный асинхронный двигатель Tesla

Статор на рисунке выше намотан парами катушек, соответствующих фазам имеющейся электрической энергии.Статор двухфазного асинхронного двигателя выше имеет 2 пары катушек, по одной паре для каждой из двух фаз переменного тока.

Отдельные катушки пары соединены последовательно и соответствуют противоположным полюсам электромагнита. То есть одна катушка соответствует N-полюсу, другая - S-полюсу, пока фаза переменного тока не изменит полярность. Другая пара катушек ориентирована в пространстве под углом 90 ° к первой паре.

Эта пара катушек подключена к переменному току, сдвинутому во времени на 90 ° в случае двухфазного двигателя.Во времена Теслы источником двух фаз переменного тока был двухфазный генератор переменного тока.

Статор на рисунке выше имеет выступающих полюсов, явно выступающих, как в ранних асинхронных двигателях Tesla. Эта конструкция используется и по сей день для двигателей с малой мощностью (<50 Вт). Однако для более мощных двигателей меньшая пульсация крутящего момента и более высокий КПД будут иметь место, если катушки встроены в пазы, вырезанные в пластинах статора (рисунок ниже).

Рама статора с пазами для обмоток

Пластины статора представляют собой тонкие изолированные кольца с прорезями, пробитыми из листов электротехнической стали.Набор из них закреплен концевыми винтами, которые также могут удерживать концевые кожухи.

Статор с обмотками 2 φ (а) и 3 φ (б)

На рисунке выше обмотки двухфазного и трехфазного двигателей установлены в пазы статора. Катушки наматываются на внешнее приспособление, а затем вставляются в пазы. Изоляция, зажатая между периферией катушки и пазом, защищает от истирания.

Фактические обмотки статора более сложные, чем отдельные обмотки на полюс на рисунке выше.Сравнивая двигатель 2-φ с двигателем Tesla 2-φ с выступающими полюсами, количество катушек такое же. В реальных больших двигателях обмотка полюса разделена на идентичные катушки, вставленные во много меньших пазов, чем указано выше.

Эта группа называется фазовой лентой (см. Рисунок ниже). Распределенные катушки фазового пояса подавляют некоторые нечетные гармоники, создавая более синусоидальное распределение магнитного поля по полюсу. Это показано в разделе синхронного двигателя.

В пазах на краю стойки может быть меньше витков, чем в других пазах.Краевые пазы могут содержать обмотки от двух фаз. То есть фазовые пояса перекрываются.

Ключом к популярности асинхронного двигателя переменного тока является его простота, о чем свидетельствует простой ротор (рисунок ниже). Ротор состоит из вала, стального пластинчатого ротора и встроенной медной или алюминиевой беличьей клетки , показанной на (b), снятой с ротора.

По сравнению с якорем двигателя постоянного тока, здесь нет коммутатора. Это устраняет щетки, искрение, искрение, графитовую пыль, регулировку и замену щеток, а также повторную обработку коллектора.

Многослойный ротор с (а) встроенной беличьей клеткой, (б) токопроводящей клеткой, удаленной с ротора

Проводники в короткозамкнутой клетке могут быть перекошены, перекручены относительно вала. Несоосность пазов статора снижает пульсации крутящего момента.

Сердечники ротора и статора состоят из пакета изолированных пластин. Пластины покрыты изолирующим оксидом или лаком для минимизации потерь на вихревые токи.Сплав, используемый в пластинах, выбран с учетом низких гистерезисных потерь.

Теория работы асинхронных двигателей

Краткое объяснение работы заключается в том, что статор создает вращающееся магнитное поле, которое волочит ротор.

Теория работы асинхронных двигателей основана на вращающемся магнитном поле. Один из способов создания вращающегося магнитного поля - вращение постоянного магнита. Если движущиеся магнитные линии потока разрезают проводящий диск, он будет следовать за движением магнита.

Линии магнитного потока, разрезающие проводник, будут индуцировать напряжение и, как следствие, ток в проводящем диске. Этот поток тока создает электромагнит, полярность которого противодействует движению постоянного магнита - Закон Ленца .

Полярность электромагнита такова, что он притягивается к постоянному магниту. Диск следует с немного меньшей скоростью, чем постоянный магнит.

Вращающееся магнитное поле создает крутящий момент в проводящем диске

Крутящий момент, развиваемый диском, пропорционален количеству силовых линий, разрезающих диск, и скорости, с которой он разрезает диск.Если бы диск вращался с той же скоростью, что и постоянный магнит, не было бы ни потока, разрезающего диск, ни индуцированного тока, ни поля электромагнита, ни крутящего момента.

Таким образом, скорость диска всегда будет ниже скорости вращающегося постоянного магнита, так что линии потока, разрезающие диск, индуцируют ток, создают электромагнитное поле в диске, которое следует за постоянным магнитом.

Если к диску приложена нагрузка, замедляющая его, будет развиваться больший крутящий момент, поскольку больше линий магнитного потока разрезают диск.Крутящий момент пропорционален скольжению , степени, на которую диск отстает от вращающегося магнита. Большее скольжение соответствует большему потоку, разрезающему проводящий диск, создавая больший крутящий момент.

В основе аналогового автомобильного вихретокового спидометра лежит принцип, проиллюстрированный выше. Когда диск удерживается пружиной, отклонение диска и иглы пропорционально скорости вращения магнита.

Вращающееся магнитное поле создается двумя катушками, расположенными под прямым углом друг к другу, и приводится в действие токами, которые не совпадают по фазе на 90 °.Это не должно вызывать удивления, если вы знакомы с диаграммами Лиссажу на осциллографах.

В противофазе (90 °) синусоидальные волны образуют круговой узор Лиссажу

На приведенном выше рисунке круговой Лиссажу создается путем подачи на входы осциллографа горизонтального и вертикального сдвига по фазе синусоидальных волн на 90 °. Начиная с (a) с максимальным отклонением «X» и минимальным «Y», след перемещается вверх и влево в направлении (b).

Между (a) и (b) две формы сигнала равны 0.707 Впик при 45 °. Эта точка (0,707, 0,707) попадает в радиус окружности между (a) и (b). Трасса перемещается в (b) с минимальным отклонением «X» и максимальным «Y». При максимальном отрицательном отклонении «X» и минимальном отклонении «Y» след переместится в (c).

Затем с минимальным «X» и максимальным отрицательным «Y» он переходит в (d), а затем обратно в (a), завершая один цикл.

Окружность синуса по оси X и косинуса по оси Y

На рисунке показаны две синусоидальные волны с фазовым сдвигом на 90 °, приложенные к отклоняющим пластинам осциллографа, расположенным под прямым углом в пространстве.Комбинация фазированных синусоидальных волн на 90 ° и отклонения под прямым углом дает двумерный узор - круг. Этот круг очерчен электронным лучом, вращающимся против часовой стрелки.

Для справки, на рисунке ниже показано, почему синфазные синусоидальные волны не образуют круговой диаграммы. Равное отклонение «X» и «Y» перемещает освещенное пятно от исходной точки в (a) вверх вправо (1,1) в (b), назад вниз влево к исходной точке в (c), вниз влево до (-1 .-1) в точке (d) и обратно в исходное положение.Линия получается равными прогибами по обеим осям; y = x - прямая линия.

Отсутствие кругового движения синфазных сигналов

Если пара синусоидальных волн, сдвинутых на 90 ° по фазе, создает круговую форму Лиссажу, аналогичная пара токов должна быть способна создавать круговое вращающееся магнитное поле. Так обстоит дело с двухфазным двигателем. По аналогии, три обмотки, расположенные в пространстве на 120 ° друг от друга и питаемые соответствующими фазированными токами 120 °, также будут создавать вращающееся магнитное поле.

Вращающееся магнитное поле синусоидальной волны, фазированной под углом 90 °

По мере того, как синусоидальные волны с фазой 90 °, показанные на рисунке выше, развиваются от точек (a) до (d), магнитное поле вращается против часовой стрелки (рисунки a-d) следующим образом:

  • (а) φ-1 максимум, φ-2 ноль
  • (a ’) φ-1 70%, φ-2 70%
  • (б) φ-1 ноль, φ-2 максимум
  • (в) φ-1 максимально отрицательный, φ-2 ноль
  • (d) φ-1 ноль, φ-2 максимально отрицательный

Полная скорость двигателя и скорость синхронного двигателя

Скорость вращения вращающегося магнитного поля статора связана с количеством пар полюсов на фазу статора.На приведенном ниже рисунке «полная скорость» всего шесть полюсов или три пары полюсов и три фазы. Однако на каждую фазу приходится только одна пара полюсов.

Магнитное поле будет вращаться один раз за цикл синусоидальной волны. В случае мощности 60 Гц поле вращается со скоростью 60 раз в секунду или 3600 оборотов в минуту (об / мин). При мощности 50 Гц он вращается со скоростью 50 оборотов в секунду или 3000 об / мин. 3600 и 3000 об / мин - это синхронная скорость двигателя.

Хотя ротор асинхронного двигателя никогда не достигает этой скорости, это определенно верхний предел.Если мы удвоим количество полюсов двигателя, синхронная скорость уменьшится вдвое, потому что магнитное поле вращается в пространстве на 180 ° на 360 ° электрической синусоидальной волны.

Удвоение полюсов статора уменьшает синхронную скорость вдвое

Синхронная скорость определяется по формуле:

 N  с  = 120 · f / P N  с  = синхронная скорость в об / мин f = частота подаваемой мощности, Гц P = общее количество полюсов на фазу, кратное 2 
  Пример:  На приведенном выше рисунке «половинная скорость» четыре полюса на фазу (3 фазы).Синхронная скорость для мощности 50 Гц составляет: S = 120 · 50/4 = 1500 об / мин 

Краткое объяснение асинхронного двигателя состоит в том, что вращающееся магнитное поле, создаваемое статором, тянет за собой ротор.

Более подробное и более правильное объяснение состоит в том, что магнитное поле статора индуцирует переменный ток в проводниках короткозамкнутого ротора, которые составляют вторичную обмотку трансформатора. Этот индуцированный ток ротора, в свою очередь, создает магнитное поле.

Магнитное поле вращающегося статора взаимодействует с этим полем ротора.Поле ротора пытается выровняться с полем вращающегося статора. Результат - вращение ротора с короткозамкнутым ротором. Если бы не было механической нагрузки крутящего момента двигателя, подшипников, сопротивления ветра или других потерь, ротор вращался бы с синхронной скоростью.

Однако проскальзывание между ротором и полем статора синхронной скорости развивает крутящий момент. Именно магнитный поток, разрезающий проводники ротора при его проскальзывании, создает крутящий момент. Таким образом, нагруженный двигатель будет скользить пропорционально механической нагрузке.

Если бы ротор работал с синхронной скоростью, не было бы потока статора, разрезающего ротор, не было бы тока, индуцированного в роторе, не было бы крутящего момента.

Крутящий момент в асинхронных двигателях

Когда питание подается на двигатель впервые, ротор находится в состоянии покоя, а магнитное поле статора вращается с синхронной скоростью N s . Поле статора режет ротор с синхронной скоростью N s . Ток, индуцированный в закороченных витках ротора, является максимальным, как и частота тока, частота сети.

По мере увеличения скорости ротора скорость, с которой магнитный поток статора сокращает ротор, представляет собой разницу между синхронной скоростью N s и фактической скоростью N ротора, или (N s - N). Отношение фактического потока, разрезающего ротор, к синхронной скорости определяется как скольжение :

 s = (N  s  - N) / N  s  где: N  s  = синхронная скорость, N = скорость ротора 

Частота тока, наведенного в проводники ротора, равна только частоте сети при пуске двигателя и уменьшается по мере приближения ротора к синхронной скорости. Частота ротора определяется по:

 f  r  = s · f где: s = скольжение, f = частота сети статора 

Скольжение при 100% крутящем моменте обычно составляет 5% или меньше в асинхронных двигателях. Таким образом, для частоты сети f = 50 Гц частота наведенного тока в роторе fr = 0,05 · 50 = 2,5 Гц. Почему он такой низкий? Магнитное поле статора вращается с частотой 50 Гц. Скорость вращения ротора на 5% меньше.

Вращающееся магнитное поле режет только ротор на 2.5 Гц. 2,5 Гц - это разница между синхронной скоростью и фактической скоростью ротора. Если ротор вращается немного быстрее при синхронной скорости, поток вообще не будет резать ротор, f r = 0.

Крутящий момент и скорость в зависимости от% скольжения. % N с =% синхронной скорости

На рисунке выше показано, что пусковой крутящий момент, известный как крутящий момент при заторможенном роторе (LRT), превышает 100% крутящего момента при полной нагрузке (FLT), безопасного продолжительного крутящего момента.Крутящий момент заблокированного ротора составляет около 175% от FLT для приведенного выше примера двигателя.

Пусковой ток, известный как , ток заторможенного ротора (LRC) составляет 500% от тока полной нагрузки (FLC), безопасного рабочего тока. Ток большой, потому что это аналог закороченной вторичной обмотки трансформатора. Когда ротор начинает вращаться, крутящий момент может немного уменьшиться для определенных классов двигателей до значения, известного как тяговый момент .

Это наименьшее значение крутящего момента, с которым когда-либо сталкивался пусковой двигатель.Когда ротор набирает 80% синхронной скорости, крутящий момент увеличивается со 175% до 300% крутящего момента полной нагрузки. Этот пробивной крутящий момент происходит из-за большего, чем обычно, 20% скольжения.

Сила тока в этот момент уменьшилась лишь незначительно, но после этой точки будет быстро уменьшаться. Когда ротор ускоряется с точностью до нескольких процентов от синхронной скорости, как крутящий момент, так и ток значительно уменьшаются. При нормальной работе скольжение будет составлять всего несколько процентов.

Для работающего двигателя любой участок кривой крутящего момента ниже 100% номинального крутящего момента является нормальным.Нагрузка двигателя определяет рабочую точку на кривой крутящего момента. В то время как крутящий момент и ток двигателя могут превышать 100% в течение нескольких секунд во время запуска, продолжительная работа выше 100% может привести к повреждению двигателя.

Любая крутящая нагрузка двигателя, превышающая крутящий момент пробоя, приведет к остановке двигателя. Крутящий момент, скольжение и ток будут приближаться к нулю в условиях нагрузки «без механического крутящего момента». Это состояние аналогично разомкнутому вторичному трансформатору.

Существует несколько основных конструкций асинхронных двигателей, которые значительно отличаются от кривой крутящего момента, приведенной выше.Различные конструкции оптимизированы для запуска и работы с различными типами нагрузок. Крутящий момент заблокированного ротора (LRT) для двигателей различных конструкций и размеров находится в диапазоне от 60% до 350% момента полной нагрузки (FLT).

Пусковой ток или ток заторможенного ротора (LRC) может находиться в диапазоне от 500% до 1400% от тока полной нагрузки (FLC). Этот потребляемый ток может вызвать проблемы с запуском больших асинхронных двигателей.

Классы двигателей NEMA и IEC

Различные стандартные классы (или конструкции) двигателей, соответствующие кривым крутящего момента (рисунок ниже), были разработаны для лучшего управления нагрузками различных типов.Национальная ассоциация производителей электрооборудования (NEMA) определила классы двигателей A, B, C и D для удовлетворения этих требований к приводам.

Аналогичные классы N и H Международной электротехнической комиссии (МЭК) соответствуют конструкциям NEMA B и C соответственно.

Характеристики для проектов NEMA

Все двигатели, за исключением класса D, работают со скольжением 5% или менее при полной нагрузке.

  • Класс B (IEC Class N) Двигатели используются по умолчанию в большинстве приложений.При пусковом моменте LRT = от 150% до 170% от FLT он может запускать большинство нагрузок без чрезмерного пускового тока (LRT). КПД и коэффициент мощности высокие. Обычно он приводит в действие насосы, вентиляторы и станки.
  • Пусковой момент класса A такой же, как у класса B. Пусковой момент и пусковой ток (LRT) выше. Этот двигатель справляется с кратковременными перегрузками, которые встречаются в термопластавтоматах.
  • Класс C (IEC Class H) имеет более высокий пусковой момент, чем классы A и B при LRT = 200% от FLT.Этот двигатель применяется для тяжелых пусковых нагрузок, которые необходимо приводить в действие с постоянной скоростью, таких как конвейеры, дробилки, поршневые насосы и компрессоры.
  • Двигатели класса D имеют самый высокий пусковой момент (LRT) в сочетании с низким пусковым током из-за высокого скольжения (от 5% до 13% при FLT). Высокое скольжение приводит к более низкой скорости. Регулировка скорости плохая. Тем не менее, двигатель отлично справляется с нагрузками с переменной скоростью, например с маховиком для аккумулирования энергии. Применения включают пробивные прессы, ножницы и подъемники.
  • Двигатели класса E являются версией класса B с более высоким КПД.
  • Двигатели класса F имеют гораздо более низкие LRC, LRT и крутящий момент, чем у класса B. Они управляют постоянными, легко запускаемыми нагрузками.

Коэффициент мощности асинхронных двигателей

Асинхронные двигатели имеют отстающий (индуктивный) коэффициент мощности от линии электропередачи. Коэффициент мощности больших полностью нагруженных высокоскоростных двигателей может достигать 90% для больших высокоскоростных двигателей. При 3/4 полной нагрузки максимальный коэффициент мощности высокоскоростного двигателя может составлять 92%.

Коэффициент мощности малых тихоходных двигателей может составлять всего 50%. При запуске коэффициент мощности может находиться в диапазоне от 10% до 25%, увеличиваясь по мере достижения ротором скорости.

Коэффициент мощности (PF) значительно зависит от механической нагрузки двигателя (рисунок ниже). Ненагруженный двигатель аналогичен трансформатору без резистивной нагрузки на вторичной обмотке. Небольшое сопротивление отражается от вторичной обмотки (ротора) к первичной обмотке (статору).

Таким образом, в линии электропередачи присутствует реактивная нагрузка до 10% коэффициента мощности.Когда ротор нагружен, возрастающая резистивная составляющая отражается от ротора к статору, увеличивая коэффициент мощности.

Коэффициент мощности и КПД асинхронного двигателя

КПД асинхронных двигателей

Большие трехфазные двигатели более эффективны, чем трехфазные двигатели меньшего размера, и почти все однофазные двигатели. КПД большого асинхронного двигателя может достигать 95% при полной нагрузке, хотя чаще встречается 90%.

Эффективность малонагруженного или ненагруженного асинхронного двигателя низкая, поскольку большая часть тока связана с поддержанием намагничивающего потока. Когда нагрузка крутящего момента увеличивается, больше тока потребляется для создания крутящего момента, в то время как ток, связанный с намагничиванием, остается фиксированным. Эффективность при 75% FLT может быть немного выше, чем при 100% FLT.

КПД снижается на несколько процентов при FLT 50% и снижается еще на несколько процентов при FLT 25%. Эффективность становится низкой только ниже 25% FLT.Изменение КПД в зависимости от нагрузки показано на рисунке выше.

Асинхронные двигатели

обычно имеют завышенный размер, чтобы гарантировать запуск и работу их механической нагрузки в любых условиях эксплуатации. Если многофазный двигатель нагружен менее 75% номинального крутящего момента, когда КПД достигает пика, КПД снижается лишь незначительно до 25% FLT.

Корректор коэффициента мощности Nola

Фрэнк Нола из НАСА предложил корректор коэффициента мощности (PFC) в качестве энергосберегающего устройства для однофазных асинхронных двигателей в конце 1970-х годов.Он основан на предположении, что асинхронный двигатель с неполной нагрузкой менее эффективен и имеет более низкий коэффициент мощности, чем двигатель с полной нагрузкой. Таким образом, можно сэкономить энергию в частично загруженных двигателях, в частности, в двигателях 1-φ.

Энергия, потребляемая для поддержания магнитного поля статора, относительно фиксирована по отношению к изменениям нагрузки. Хотя в полностью загруженном двигателе экономить нечего, напряжение на частично загруженном двигателе может быть уменьшено, чтобы уменьшить энергию, необходимую для поддержания магнитного поля.

Это увеличит коэффициент мощности и эффективность. Это была хорошая концепция для заведомо неэффективных однофазных двигателей, для которых она предназначалась.

Эта концепция не очень применима к большим трехфазным двигателям. Из-за их высокого КПД (90% +) экономия энергии невелика. Более того, двигатель с КПД 95% по-прежнему имеет КПД 94% при 50% крутящем моменте при полной нагрузке (FLT) и 90% КПД при 25% FLT.

Потенциальная экономия энергии при переходе от 100% FLT к 25% FLT - это разница в эффективности 95% - 90% = 5%.Это не 5% мощности при полной нагрузке, а 5% мощности при пониженной нагрузке. Корректор коэффициента мощности Nola может быть применим к 3-фазному двигателю, который большую часть времени простаивает (ниже 25% FLT), например к пробивному прессу.

Срок окупаемости дорогостоящего электронного контроллера оценивается как непривлекательный для большинства приложений. Тем не менее, он может быть экономичным в составе электронного пускателя двигателя или регулятора скорости.

Асинхронные двигатели в качестве генераторов переменного тока

Асинхронный двигатель может работать как генератор переменного тока, если он приводится в действие крутящим моментом, превышающим 100% синхронной скорости (рисунок ниже).Это соответствует нескольким% «отрицательного» скольжения, скажем, -1%.

Это означает, что поскольку мы вращаем двигатель быстрее, чем синхронная скорость, ротор движется на 1% быстрее, чем вращающееся магнитное поле статора. Обычно он отстает в двигателе на 1%. Поскольку ротор разрезает магнитное поле статора в противоположном направлении (впереди), ротор индуцирует напряжение в статоре, возвращая электрическую энергию обратно в линию электропередачи.

Отрицательный момент превращает асинхронный двигатель в генератор

Такой индукционный генератор должен возбуждаться «живым» источником мощностью 50 или 60 Гц.В случае сбоя в электроснабжении энергокомпании выработка электроэнергии невозможна. Этот тип генератора не подходит в качестве резервного источника питания.

В качестве вспомогательного ветряного генератора он имеет то преимущество, что не требует автоматического выключателя отключения питания для защиты ремонтных бригад.

Он отказоустойчив.

Небольшие удаленные (от электросети) установки могут быть выполнены с самовозбуждением путем размещения конденсаторов параллельно фазам статора. Если снять нагрузку, остаточный магнетизм может вызвать небольшой ток.

Этот ток может протекать через конденсаторы без рассеивания мощности. Когда генератор достигает полной скорости, ток увеличивается, чтобы подать ток намагничивания на статор. В этот момент может быть приложена нагрузка. Слабое регулирование напряжения. Асинхронный двигатель может быть преобразован в генератор с самовозбуждением путем добавления конденсаторов.

Процедура запуска заключается в доведении ветряной турбины до скорости в двигательном режиме путем подачи на статор нормального напряжения линии электропередачи.Любая вызванная ветром скорость турбины, превышающая синхронную, будет развивать отрицательный крутящий момент, возвращая мощность в линию электропередачи, изменяя нормальное направление электрического счетчика киловатт-часов.

В то время как асинхронный двигатель представляет отстающий коэффициент мощности по отношению к линии электропередачи, асинхронный генератор переменного тока имеет ведущий коэффициент мощности. Индукционные генераторы не используются широко на обычных электростанциях.

Скорость привода паровой турбины стабильна и регулируется в соответствии с требованиями синхронных генераторов переменного тока.Синхронные генераторы также более эффективны.

Скорость ветряной турбины трудно контролировать, и скорость ветра может изменяться порывами. Асинхронный генератор лучше справляется с этими колебаниями из-за собственного проскальзывания. Это меньше нагружает зубчатую передачу и механические компоненты, чем синхронный генератор.

Однако это допустимое изменение скорости составляет всего около 1%. Таким образом, индукционный генератор, подключенный к прямой линии, считается ветряной турбиной с фиксированной скоростью (см. Асинхронный генератор с двойным питанием для истинного генератора переменного тока с регулируемой скоростью).

Несколько генераторов или несколько обмоток на общем валу можно переключать, чтобы обеспечить высокую и низкую скорость, чтобы приспособиться к переменным ветровым условиям.

Запуск двигателя и контроль скорости

Некоторые асинхронные двигатели могут потреблять более 1000% тока полной нагрузки во время запуска; хотя чаще встречается несколько сотен процентов. Небольшие двигатели мощностью в несколько киловатт или меньше могут запускаться путем прямого подключения к линии электропередачи.

Запуск больших двигателей может вызвать провал напряжения в сети, что повлияет на другие нагрузки.Автоматические выключатели, рассчитанные на запуск двигателя (аналогично плавким предохранителям с задержкой срабатывания), должны заменить стандартные автоматические выключатели для пусковых двигателей мощностью в несколько киловатт. Этот выключатель допускает перегрузку по току на время пуска.

Пускатель асинхронного двигателя с автотрансформатором

В двигателях

мощностью более 50 кВт используются пускатели двигателей для снижения линейного тока с нескольких сотен до нескольких сотен процентов от тока полной нагрузки. Автотрансформатор, работающий в прерывистом режиме, может снизить напряжение статора на долю минуты в течение интервала пуска с последующим приложением полного линейного напряжения, как показано на рисунке выше.

Замыкание контактов S приводит к пониженному напряжению во время интервала пуска. Контакты S размыкаются, а контакты R замыкаются после запуска. Это снижает пусковой ток, скажем, до 200% от тока полной нагрузки. Поскольку автотрансформатор используется только в течение короткого интервала пуска, его размеры могут быть значительно меньше, чем у агрегата, работающего в непрерывном режиме.

Трехфазные двигатели с однофазным питанием

Трехфазные двигатели будут работать от однофазных так же легко, как и однофазные двигатели.Единственная проблема для любого двигателя - это запуск. Иногда 3-фазные двигатели приобретаются для использования с однофазными, если предполагается трехфазное питание.

Номинальная мощность должна быть на 50% больше, чем у сопоставимого однофазного двигателя, чтобы компенсировать одну неиспользуемую обмотку. Однофазное напряжение подается на пару обмоток одновременно с пусковым конденсатором, включенным последовательно с третьей обмоткой.

Пусковой выключатель размыкается на рисунке ниже при запуске двигателя. Иногда во время работы остается конденсатор меньшего размера, чем пусковой.

Пуск трехфазного двигателя от однофазного

Схема на приведенном выше рисунке для работы трехфазного двигателя на однофазной сети известна как статический преобразователь фазы , если вал двигателя не нагружен. Кроме того, двигатель работает как трехфазный генератор.

Трехфазное питание можно отводить от трех обмоток статора для питания другого трехфазного оборудования. Конденсатор подает фазу синтетического примерно на полпути ∠90 ° между выводами однофазного источника питания 180 ° для запуска.

Во время работы двигатель генерирует приблизительно стандартные 3-φ, как показано выше. Мэтт Иссерштедт демонстрирует полную схему питания домашнего механического цеха.

Самозапускающийся статический преобразователь фазы. Рабочий конденсатор = 25-30 мкФ на HP. Взято из рисунка 7, Hanrahan

Поскольку статический преобразователь фазы не имеет крутящего момента, он может запускаться с конденсатором значительно меньшего размера, чем обычный пусковой конденсатор. Если он достаточно мал, его можно оставить в цепи в качестве рабочего конденсатора (см. Рисунок выше).

Однако меньшие рабочие конденсаторы обеспечивают лучшую выходную трехфазную мощность. Более того, регулировка этих конденсаторов для выравнивания токов, измеренных в трех фазах, позволяет получить наиболее эффективную машину. Однако для быстрого запуска преобразователя требуется большой пусковой конденсатор примерно на секунду. Ханрахан представляет детали конструкции.

Более эффективный статический преобразователь фазы. Пусковой конденсатор = 50-100 мкФ / л.с. Рабочие конденсаторы = 12-16 мкФ / л.Взято из рисунка 1, Hanrahan

Асинхронные двигатели с несколькими полями

Асинхронные двигатели

могут содержать несколько обмоток возбуждения, например, 4-полюсную и 8-полюсную обмотки, соответствующие синхронным скоростям вращения 1800 и 900 об / мин. Подать питание на то или иное поле менее сложно, чем на повторное подключение катушек статора.

Несколько полей позволяют изменять скорость

Если поле сегментировано с выведенными выводами, его можно изменить (или переключить) с 4-полюсного на 2-полюсное, как показано выше для 2-фазного двигателя.Сегменты 22,5 ° переключаются на сегменты 45 °. Для ясности выше показана только проводка для одной фазы.

Таким образом, наш асинхронный двигатель может работать на нескольких скоростях. При переключении вышеуказанного двигателя 60 Гц с 4 полюсов на 2 полюса синхронная скорость увеличивается с 1800 до 3600 об / мин.

Q: Если двигатель приводится в движение частотой 50 Гц, каковы будут соответствующие 4-полюсные и 2-полюсные синхронные скорости?

А:

N  с  = 120f / P = 120 * 50/4 = 1500 об / мин (4-полюсный) N  с  = 3000 об / мин (2-полюсный) 

Асинхронные двигатели с переменным напряжением

Скорость малых асинхронных двигателей с короткозамкнутым ротором для таких применений, как приводные вентиляторы, может быть изменена путем снижения сетевого напряжения.Это снижает крутящий момент, доступный нагрузке, что снижает скорость (см. Рисунок ниже).

Регулировка частоты вращения асинхронного двигателя с переменным напряжением

Электронное управление скоростью в асинхронных двигателях

Современная полупроводниковая электроника расширяет возможности управления скоростью. Изменяя частоту сети 50 или 60 Гц на более высокие или более низкие значения, можно изменить синхронную скорость двигателя. Однако уменьшение частоты тока, подаваемого на двигатель, также снижает реактивное сопротивление X L , что увеличивает ток статора.

Это может привести к насыщению магнитной цепи статора с катастрофическими результатами. На практике напряжение на двигателе необходимо уменьшать при уменьшении частоты.

Электронный частотно-регулируемый привод

И наоборот, частота привода может быть увеличена для увеличения синхронной скорости двигателя. Однако необходимо увеличить напряжение, чтобы преодолеть увеличивающееся реактивное сопротивление, чтобы поддерживать ток на уровне нормального значения и поддерживать крутящий момент.

Инвертор приближает синусоидальные волны к двигателю с помощью выходов с широтно-импульсной модуляцией. Это прерывистый сигнал, который может быть включен или выключен, высокий или низкий, процент времени включения соответствует мгновенному напряжению синусоидальной волны.

Когда для управления асинхронным двигателем применяется электроника, становится доступно множество методов управления, от простого до сложного:

  • Скалярное управление: Описанный выше недорогой метод управления только напряжением и частотой без обратной связи.
  • Векторное управление: Также известно как векторное управление фазой. Компоненты тока статора, создающие магнитный поток и крутящий момент, измеряются или оцениваются в реальном времени для улучшения кривой крутящего момента двигателя. Это требует больших вычислений.
  • Прямое управление крутящим моментом: Продуманная адаптивная модель двигателя обеспечивает более прямое управление потоком и крутящим моментом без обратной связи. Этот метод быстро реагирует на изменения нагрузки.
Многофазные асинхронные двигатели Тесла

Краткое описание

  • Многофазный асинхронный двигатель состоит из многофазной обмотки, встроенной в многослойный статор, и проводящей короткозамкнутой клетки, встроенной в многослойный ротор.
  • Трехфазные токи, протекающие внутри статора, создают вращающееся магнитное поле, которое индуцирует ток и, следовательно, магнитное поле в роторе. Крутящий момент ротора развивается, когда ротор немного проскальзывает за вращающимся полем статора.
  • В отличие от однофазных двигателей, многофазные асинхронные двигатели самозапускаются.
  • Пускатели двигателей минимизируют нагрузку на линию питания, обеспечивая при этом больший пусковой крутящий момент, чем требуется во время работы.Снижение линейного тока Пускатели требуются только для больших двигателей.
  • Трехфазные двигатели при запуске будут работать от однофазных.
  • Статический преобразователь фазы - это трехфазный двигатель, работающий на одной фазе без нагрузки на вал, генерирующий трехфазный выходной сигнал.
  • Несколько обмоток возбуждения можно перемонтировать для работы с несколькими дискретными скоростями двигателя, изменив количество полюсов.

Линейные асинхронные двигатели

Статор с обмоткой и короткозамкнутый ротор асинхронного двигателя можно разрезать по окружности и развернуть в линейный асинхронный двигатель.Направление линейного перемещения регулируется последовательностью привода фаз статора.

Линейный асинхронный двигатель предложен в качестве привода высокоскоростных пассажирских поездов. До этого момента линейный асинхронный двигатель с соответствующей системой левитации магнитного отталкивания, необходимой для плавной езды, был слишком дорогим для всех, кроме экспериментальных установок.

Тем не менее, линейный асинхронный двигатель должен заменить катапульты с паровым приводом для запуска самолетов на следующем поколении военно-морского авианосца CVNX-1 в 2013 году.Это повысит эффективность и снизит затраты на техническое обслуживание.

СВЯЗАННЫЙ РАБОЧИЙ ЛИСТ:

Как работает трехфазный асинхронный двигатель

Эта статья и видео будут посвящены основам трехфазного асинхронного двигателя переменного тока, одного из наиболее распространенных на сегодняшний день типов промышленных электродвигателей. Этот обзор объяснит, что такое трехфазная мощность, как работает закон Фарадея, поймет основные компоненты асинхронного двигателя и влияние количества полюсов статора на номинальную скорость и крутящий момент двигателя.


Вы также можете посмотреть видео ниже с обзором трехфазных асинхронных двигателей переменного тока.


Что такое трехфазное питание?

Первое, что нам нужно понять о трехфазном асинхронном двигателе, - это первая часть его названия - трехфазная мощность. Однофазный источник питания использует два провода для обеспечения синусоидального напряжения. В трехфазной системе используются три провода для обеспечения одинакового синусоидального напряжения, но каждая фаза сдвинута на 120 °.В любой момент времени, если вы сложите напряжение каждой фазы, сумма будет постоянной. Однофазное питание подходит для жилых домов или других приложений с низким энергопотреблением, но трехфазное питание [JS2] обычно требуется для промышленных приложений или приложений с более высокой мощностью. Это потому, что он может передавать в три раза больше мощности, используя только в 1,5 раза больше проводов. Это делает энергоснабжение более эффективным и экономичным.


Что такое закон Фарадея?

Другой принцип, лежащий в основе асинхронных двигателей переменного тока, исходит из закона Фарадея.Британский ученый Майкл Фарадей обнаружил, что изменяющееся магнитное поле может индуцировать ток и, наоборот, ток может индуцировать магнитное поле. Используя правило правой руки, вы можете предсказать направление магнитного поля. Для этого представьте, что вы хватаете прямой провод большим пальцем, направленным в направлении тока. Ваши пальцы будут сгибаться в направлении линий магнитного потока.


Майк сжимает маркер, чтобы продемонстрировать правило правой руки

Компоненты асинхронного двигателя

Асинхронный двигатель состоит из двух основных компонентов: статора и ротора.Статор состоит из внешних обмоток или магнитов и неподвижен. Статор неподвижен. Ротор - это внутреннее ядро, и это то, что на самом деле вращается в двигателе. Ротор вращается.

Трехфазный асинхронный двигатель - ротор внутри статора

Беличья конструкция является наиболее распространенным типом асинхронных двигателей, поскольку они самозапускаются, надежны и экономичны. В этой конструкции ротор похож на колесо для хомяка или «беличью клетку», отсюда и название. Ротор состоит из внешнего цилиндра из металлических стержней, закороченных на концах.Внутренняя часть состоит из шахты и прочного сердечника, сделанного из стальных пластин.

Как это работает

Для достижения крутящего момента на валу двигателя через статор подается ток. Это создает вращающееся магнитное поле, которое, в свою очередь, индуцирует ток в роторе. Из-за этого индуцированного тока ротор также создает магнитное поле и начинает следовать за статором из-за магнитного притяжения. Ротор будет вращаться медленнее, чем поле статора, и это называется «скольжением».'Если бы ротор вращался с той же скоростью, что и статор, не было бы индуцированного тока, следовательно, никакого крутящего момента. Разница в скорости колеблется в пределах 0,5-5% в зависимости от обмотки двигателя.


Обмотки и полюса

Трехфазные двигатели доступны в конфигурациях с 2, 4, 6, 8 и более полюсами. Количество полюсов в обмотках определяет идеальную скорость двигателя. Двигатель с большим числом полюсов будет иметь меньшую номинальную скорость, но более высокий номинальный крутящий момент.Из-за этого двигатели с высоким полюсом иногда называют моментными двигателями и могут использоваться для замены двигателя с редуктором. Идеальное соотношение между числом полюсов, частотой и скоростью определяется следующим:

Взаимосвязь между количеством полюсов и частотой вращения асинхронного двигателя.

Заключение 3-фазные асинхронные двигатели переменного тока

состоят из статора и ротора. Во время работы через статор пропускается ток, который индуцирует магнитное поле и приводит к вращению ротора.Скорость вращения вала и приложенный крутящий момент зависят от рабочей частоты и количества пар полюсов в обмотках двигателя. Если вас интересует наша линейка асинхронных двигателей, мотор-редукторов или даже серводвигателей, свяжитесь с инженером KEB, заполнив контактную форму ниже.


Электродвигатель | Британника

Самый простой тип асинхронного двигателя показан на рисунке в разрезе. Трехфазный набор обмоток статора вставлен в пазы в железе статора.Эти обмотки могут быть подключены по схеме "звезда", обычно без внешнего подключения к нейтральной точке, или по схеме "треугольник". Ротор состоит из цилиндрического стального сердечника с проводниками, размещенными в пазах по всей поверхности. В наиболее обычном виде эти проводники ротора соединены вместе на каждом конце ротора токопроводящим концевым кольцом.

Поперечное сечение трехфазного асинхронного двигателя.

Британская энциклопедия, Inc.

Принцип работы асинхронного двигателя может быть разработан, сначала предположив, что обмотки статора подключены к трехфазному источнику питания и что набор из трех синусоидальных токов, показанных на рисунке, протекает в обмотках статора.На этом рисунке показано влияние этих токов на создание магнитного поля через воздушный зазор машины в течение шести мгновений цикла. Для простоты показана только центральная токопроводящая петля для каждой фазной обмотки. В момент t 1 на рисунке, ток в фазе a является максимально положительным, тогда как ток в фазах b и c составляет половину отрицательного значения. Результатом является магнитное поле с приблизительно синусоидальным распределением вокруг воздушного зазора с максимальным значением наружу вверху и максимальным значением внутрь внизу.В момент времени t 2 на рисунке (т. Е. Одна шестая цикла позже), ток в фазе c является максимально отрицательным, в то время как в фазе b и фазе a составляет половину значения положительный. Результатом, как показано на рисунке для t 2 , снова является синусоидально распределенное магнитное поле, но повернутое на 60 ° против часовой стрелки. Исследование распределения тока для т 3 , т 4 , т 5 и т 6 показывает, что магнитное поле продолжает вращаться с течением времени.Поле совершает один оборот за один цикл токов статора. Таким образом, совокупный эффект трех равных синусоидальных токов, равномерно смещенных во времени и протекающих в трех обмотках статора, равномерно смещенных в угловом положении, должен создать вращающееся магнитное поле с постоянной величиной и механической угловой скоростью, которая зависит от частоты электроснабжение.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Вращательное движение магнитного поля относительно проводников ротора вызывает индуцирование напряжения в каждом из них, пропорциональное величине и скорости поля относительно проводников.Поскольку проводники ротора закорочены друг с другом на каждом конце, в этих проводниках будут протекать токи. В простейшем режиме работы эти токи будут примерно равны индуцированному напряжению, деленному на сопротивление проводника. На этом рисунке показана диаграмма токов ротора для моментов времени t 1 рисунка. Видно, что токи приблизительно синусоидально распределены по периферии ротора и расположены так, чтобы создавать вращающий момент против часовой стрелки на роторе (т.е.е. крутящий момент в том же направлении, что и вращение поля). Этот крутящий момент ускоряет ротор и вращает механическую нагрузку. По мере увеличения скорости вращения ротора его скорость относительно скорости вращающегося поля уменьшается. Таким образом, индуцированное напряжение уменьшается, что приводит к пропорциональному снижению тока в проводнике ротора и крутящего момента. Скорость ротора достигает постоянного значения, когда крутящий момент, создаваемый токами ротора, равен крутящему моменту, необходимому на этой скорости для нагрузки, без избыточного крутящего момента, доступного для ускорения объединенной инерции нагрузки и двигателя.

Вращающееся поле и токи, которые оно создает в короткозамкнутых проводниках ротора.

Британская энциклопедия, Inc.

Механическая выходная мощность должна обеспечиваться входной электрической мощностью. Первоначальных токов статора, показанных на рисунке, достаточно для создания вращающегося магнитного поля. Чтобы поддерживать это вращающееся поле в присутствии токов ротора, показанных на рисунке, необходимо, чтобы обмотки статора несли дополнительную составляющую синусоидального тока такой величины и фазы, чтобы нейтрализовать влияние магнитного поля, которое в противном случае могло бы возникнуть. токами ротора на рисунке.Полный ток статора в каждой фазной обмотке складывается из синусоидальной составляющей, создающей магнитное поле, и другой синусоиды, опережающей первую на четверть цикла, или 90 °, для обеспечения необходимой электрической мощности. Вторая, или силовая, составляющая тока находится в фазе с напряжением, приложенным к статору, в то время как первая, или намагничивающая, составляющая отстает от приложенного напряжения на четверть цикла или 90 °. При номинальной нагрузке эта намагничивающая составляющая обычно находится в диапазоне 0.От 4 до 0,6 величины силовой составляющей.

Большинство трехфазных асинхронных двигателей работают с обмотками статора, подключенными непосредственно к трехфазному источнику питания постоянного напряжения и постоянной частоты. Типичные напряжения питания находятся в диапазоне от 230 вольт между фазами для двигателей относительно небольшой мощности (например, от 0,5 до 50 киловатт) до примерно 15 киловольт между фазами для двигателей большой мощности до примерно 10 мегаватт.

За исключением небольшого падения напряжения на сопротивлении обмотки статора, напряжение питания согласуется со скоростью изменения магнитного потока в статоре машины во времени.Таким образом, при питании с постоянной частотой и постоянным напряжением величина вращающегося магнитного поля остается постоянной, а крутящий момент примерно пропорционален силовой составляющей тока питания.

В асинхронном двигателе, показанном на предыдущих рисунках, магнитное поле совершает один оборот за каждый цикл частоты питания. Для источника с частотой 60 Гц скорость поля составляет 60 оборотов в секунду или 3600 оборотов в минуту. Скорость ротора меньше скорости поля на величину, достаточную для того, чтобы индуцировать необходимое напряжение в проводниках ротора для создания тока ротора, необходимого для момента нагрузки.При полной нагрузке скорость обычно на 0,5–5 процентов ниже полевой скорости (часто называемой синхронной скоростью), причем более высокий процент применяется к двигателям меньшего размера. Эта разница в скорости часто называется скольжением.

Другие синхронные скорости могут быть получены с источником постоянной частоты, построив машину с большим количеством пар магнитных полюсов, в отличие от двухполюсной конструкции, показанной на рисунке. Возможные значения скорости магнитного поля в оборотах в минуту: 120 f / p , где f - частота в герцах (циклов в секунду), а p - количество полюсов (которое должно быть четное число).Данный железный каркас может быть намотан для любого из нескольких возможных количеств пар полюсов с использованием катушек, охватывающих угол приблизительно (360/ p ) °. Крутящий момент, передаваемый от рамы машины, останется неизменным, поскольку он пропорционален произведению магнитного поля и допустимого тока катушки. Таким образом, номинальная мощность рамы, являющаяся произведением крутящего момента и скорости, будет примерно обратно пропорциональна количеству пар полюсов. Наиболее распространенные синхронные скорости для двигателей с частотой 60 Гц - 1800 и 1200 оборотов в минуту.

Как работают двигатели переменного тока?

Двигатели переменного тока - это электродвигатели, приводимые в действие переменным током (AC). Двигатели переменного тока широко используются в промышленности, в первую очередь из-за их высокого КПД и их способности создавать постоянный крутящий момент до номинальной скорости.

Типы двигателей переменного тока

Два наиболее широко используемых типа двигателей переменного тока - это асинхронные двигатели и синхронные двигатели.

Трехфазный асинхронный двигатель переменного тока повышенной эффективности IronHorse®

Как работают электродвигатели переменного тока

Двумя основными частями двигателя переменного тока являются статор (неподвижный внешний барабан) и ротор; вращающаяся внутренняя часть двигателя, которая прикреплена к валу двигателя (и приводит в движение).И статор, и ротор создают вращающиеся магнитные поля. В обмотках статора это вращающееся поле обеспечивается синусоидальной природой переменного тока. В роторе магнитное поле создается постоянными магнитами, реактивным сопротивлением или дополнительными электрическими обмотками.

Синхронные двигатели работают синхронно с частотой питающего тока, поскольку их роторы имеют либо постоянные магниты, либо электромагниты, генерирующие вращающееся электромагнитное поле.

В асинхронном двигателе магнитное поле в обмотках ротора «индуцируется» магнитным полем статора. Чтобы эта индукция создавала крутящий момент, скорость поля ротора должна отставать от поля магнитного поля статора. Этот дифференциал скоростей известен как «скольжение» и является причиной того, что асинхронные двигатели будут иметь номинальное значение «об / мин, указанное на паспортной табличке», которое примерно на 5% меньше их синхронной скорости. Например, модель Ironhorse MTRP-001-3DB18 (1 л.с., трехфазный, четырехполюсный, асинхронный двигатель переменного тока) имеет номинальную синхронную скорость 1800 об / мин (при условии мощности 60 Гц), но номинальная частота вращения на паспортной табличке составляет 1760 об / мин.Этот вал двигателя будет вращаться со скоростью 1760 об / мин при питании «поперек линии» с трехфазным питанием 60 Гц по американскому стандарту.

Отличия от двигателей постоянного тока

Промышленные двигатели постоянного тока исторически были щеточными. Двигатели постоянного тока со щетками и коммутаторами имеют ряд недостатков по сравнению с двигателями переменного тока: дополнительное обслуживание (замена щеток), ограниченные диапазоны скоростей и общий ожидаемый срок службы меньше. Асинхронные двигатели переменного тока не имеют щеток и имеют гораздо более длительный срок службы.

Скорость двигателя постоянного тока регулируется путем изменения тока якоря, в то время как управление скоростью двигателя переменного тока достигается путем изменения частоты переменного тока, часто с помощью частотно-регулируемого привода (VFD).

Бесщеточные двигатели постоянного тока

стали доступны в течение последних нескольких десятилетий, в первую очередь в результате появления полупроводниковых схем управления, необходимых для их работы, и наличия высококачественных постоянных магнитов. Бесщеточные двигатели постоянного тока не требуют щеток или физического коммутатора и, следовательно, имеют увеличенный срок службы.Они также преодолевают ограничения скорости щеточных версий.

Управление двигателем переменного тока

Когда требуется простое включение / выключение, часто используются контакторы или ручные пускатели двигателей. Контакторы (большие трехфазные реле) позволяют ПЛК или другому контроллеру переключать питание на двигатель переменного тока. Реверсивные пускатели двигателей представляют собой специализированные версии с двумя контакторами, подключенными таким образом, что они также позволяют изменять направление вращения вала двигателя. Ручные пускатели двигателей включают ручку с ручным управлением, которая позволяет оператору переключать мощность.Все эти типы известны как «поперечное» управление - двигатель подключается непосредственно к «линии» входящего питания (через контактор или пускатель двигателя).

Устройства плавного пуска

Устройства плавного пуска

- это более сложные средства управления двигателем, которые позволяют использовать линейные изменения ускорения и замедления для более плавной остановки и запуска двигателей, чем это возможно при поперечном управлении. В устройствах плавного пуска обычно используются кремниевые управляющие выпрямители (управление SCR) для постепенного увеличения или уменьшения угла зажигания для медленного увеличения или уменьшения количества используемой энергии и обеспечения более плавного пуска или замедления по сравнению с пускателем двигателя, подключенным к сети. .Устройства плавного пуска снижают износ двигателя и любых подключенных механических устройств, а также значительно снижают пусковой ток, необходимый для запуска двигателя. Для больших двигателей это может иметь серьезные последствия для снижения затрат на коммунальные услуги.

Регулятор скорости (ЧРП)

Трехфазные асинхронные двигатели переменного тока иногда получают питание от частотно-регулируемых приводов (ЧРП), которые, как следует из их названия, изменяют частоту мощности, подаваемой на двигатель, для изменения скорости двигателя.Эти устройства принимают стандартную входную мощность 60 Гц (одно- или трехфазную), преобразуют ее в постоянный ток, а затем используют широтно-импульсную модуляцию (ШИМ) для создания моделируемой мощности переменного тока любой частоты, необходимой для вращения двигателя с заданной скоростью. Подробнее о VFD здесь.

Однофазный режим

Также доступны однофазные асинхронные двигатели переменного тока. Эти двигатели требуют специальной схемы для запуска (пусковые конденсаторы и центробежные переключатели), но работают так же, как их трехфазные аналоги, когда они вращаются.Однофазные асинхронные двигатели переменного тока несовместимы с частотно-регулируемыми приводами и могут привести к более высоким расходам на коммунальные услуги из-за своей несбалансированной нагрузки в электросети.

Как указать двигатели переменного тока

Если вы указываете двигатель для нового приложения, начните с определения необходимого напряжения, скорости и мощности, а также типа приложения, как описано в этой статье.

Если вы заменяете двигатель подходящего размера в существующем приложении, вы можете найти всю необходимую информацию на паспортной табличке существующего двигателя.См. Этот информационный документ «Важные соображения по замене и определению размеров электродвигателей переменного тока», чтобы узнать, как определить, нужно ли перематывать или заменять электродвигатель, и как найти электродвигатель подходящего размера для вашего применения.

Помимо стандартных спецификаций для скорости двигателя, мощности и рабочего напряжения, проектировщики должны также учитывать конструкцию NEMA (соотношение скорость-крутящий момент-проскальзывание), тип корпуса и условия охлаждения (если таковые имеются), размер корпуса и варианты монтажа. Вот несколько рекомендаций:

Классификация проектов NEMA

Существует четыре различных проектных классификации NEMA по скорости, крутящему моменту и скольжению, которые помогают определить пригодность для различных приложений:

  • NEMA, конструкция A; подходит для широкого спектра применений - например, для вентиляторов и насосов.Двигатели имеют максимальное скольжение 5%, пусковой ток от высокого до среднего, нормальный момент заторможенного ротора и нормальный момент пробоя.
  • NEMA дизайн B; предназначен для широкого спектра применений с нормальным пусковым моментом (вентиляторы, нагнетатели и насосы). Двигатели имеют максимальное скольжение 5%, низкий пусковой ток, высокий крутящий момент заблокированного ротора и нормальный момент пробоя.
  • NEMA, дизайн C; предназначен для оборудования с высокоинерционным пуском - например, поршневых насосов прямого вытеснения. Двигатели имеют максимальное скольжение 5%, низкий пусковой ток, высокий крутящий момент заблокированного ротора и нормальный момент пробоя.
  • NEMA дизайн D; предназначен для оборудования с очень большим моментом инерции пусков (краны, подъемники и т. д.). Двигатели имеют максимальное скольжение 5-13%, низкий пусковой ток и очень высокий крутящий момент заблокированного ротора.
Тип корпуса и охлаждение

Распространенные типы корпусов включают защиту от капель (DP), полностью закрытые с вентиляторным охлаждением (TEFC) и полностью закрытые без вентиляции (TENV).

  • Каплестойкие двигатели - это двигатели с открытой рамой, предназначенные для внутреннего применения в чистой окружающей среде.Вентиляционные отверстия предназначены для предотвращения попадания падающих твердых частиц и жидкостей.
  • Двигатели
  • TEFC имеют вентилятор, прикрепленный к задней части вала двигателя, чтобы помочь охладить двигатель. Несмотря на то, что в корпусе двигателя нет вентиляционных отверстий, корпус не герметичен для воздуха или жидкости. Хотя двигатель TEFC может работать при более высокой температуре окружающей среды, будьте осторожны на низких скоростях (под управлением VFD), поскольку охлаждающий вентилятор прикреплен к валу двигателя, и ему может потребоваться определенная минимальная скорость для эффективного охлаждения двигателя.
  • Двигатели
  • TENV также не имеют вентиляции, но корпус не герметичен для воздуха или жидкости.

Дополнительные классификации включают двигатели, рассчитанные на промывку (TEWD), взрывозащищенные двигатели (XPRF) и двигатели, предназначенные для использования во взрывоопасных зонах (HAZ).

Размер рамы и установка

Большинство двигателей переменного тока сегодня построено для определенных размеров NEMA. В небольших диапазонах мощности многие двигатели доступны в размере корпуса «NEMA 56C». «56» относится к размерам корпуса двигателя. «C» обозначает двигатель, устанавливаемый на поверхность «C» (фланец).Это самый популярный тип двигателя с торцевым креплением, который имеет специальную схему расположения болтов на конце вала, позволяющую производить монтаж. Важнейшими размерами двигателей с C-образной гранью являются окружность болта, диаметр приводного устройства и размер вала. Двигатели с фланцем C всегда имеют резьбовые монтажные отверстия на лицевой стороне двигателя. Многие двигатели предлагаются как с вариантами монтажа C-Face, так и с жесткой или съемной монтажной базой. По мере увеличения мощности используется ряд различных обозначений Т-образной рамы для обозначения стандартных размеров NEMA.

Для VFD или нет для VFD

Если вы планируете использовать асинхронный двигатель переменного тока с частотно-регулируемым приводом (VFD) - существует ряд дополнительных соображений, ознакомьтесь с нашей статьей «В VFD или нет в VFD».

Для получения дополнительной информации о спецификациях и размерах двигателей всех типов щелкните здесь.

Как работает асинхронный двигатель?

26 сентября 2019

Изобретение асинхронных двигателей навсегда изменило ход человеческой цивилизации.Этот двигатель столетней давности, изобретенный великим ученым Николой Тесла, является наиболее распространенным типом двигателей даже сегодня. Фактически, около 50 процентов мирового потребления электроэнергии приходится на асинхронные двигатели. Давайте перейдем к принципам работы асинхронных двигателей или, точнее, к гениальному мышлению Николы Теслы.

Детали асинхронного двигателя

Асинхронный двигатель состоит из 2 основных частей; Статор и ротор (рис: 1). Статор - это неподвижная часть, а ротор - это вращающаяся часть.Статор в основном представляет собой трехкатушечную обмотку, на которую подается трехфазный переменный ток. Ротор находится внутри статора. Между ротором и статором будет небольшой зазор, известный как воздушный зазор. Величина радиального зазора может варьироваться от 0,5 до 2 мм.

Рис. 1 Статор и ротор асинхронного двигателя

Детали конструкции статора

Статор изготавливается путем укладки тонких высокопроницаемых стальных пластин с прорезями внутри стального или чугунного каркаса. Расположение стальных пластин внутри рамы показано на следующем рисунке.Здесь показаны только некоторые из стальных пластин. Обмотка проходит через пазы статора.

Рис. 2 Детали конструкции статора

Влияние трехфазного тока, проходящего через обмотку статора

Когда через обмотку проходит трехфазный переменный ток, происходит кое-что очень интересное. Он создает вращающееся магнитное поле (RMF). Как показано на рисунке ниже, создается магнитное поле, которое по своей природе вращается. RMF - важное понятие в электрических машинах.Мы увидим, как это происходит, в следующем разделе.

Рис. 3 Вращающееся магнитное поле создается в асинхронном двигателе

Концепция вращающегося магнитного поля (RMF)

Чтобы понять явление вращающегося магнитного поля, гораздо лучше рассмотреть упрощенную трехфазную обмотку всего с 3 катушками. Провод, по которому проходит ток, создает вокруг себя магнитное поле. Теперь для этого специального устройства магнитное поле, создаваемое трехфазным переменным током, будет таким, как показано в конкретный момент.

Рис. 4 Магнитное поле создается вокруг одиночного провода и упрощенной обмотки

Компоненты переменного тока изменяются со временем. Еще два примера показаны на следующем рисунке, где из-за изменения переменного тока магнитное поле также изменяется. Понятно, что магнитное поле просто принимает другую ориентацию, но его величина остается прежней. Из этих трех положений видно, что это похоже на вращающееся магнитное поле однородной силы. Скорость вращения магнитного поля известна как синхронная скорость.

Рис. 5A Трехфазный переменный ток Рис. 5B Здесь проиллюстрирована концепция вращающегося магнитного поля

Влияние RMF на замкнутый провод

Предположим, вы помещаете замкнутый проводник внутрь такого вращающегося магнитного поля. Поскольку магнитное поле колеблется, в контуре будет индуцироваться ЭДС в соответствии с законом Фарадея. E.M.F будет производить ток через петлю. Таким образом, ситуация стала такой, как если бы петля с током находилась в магнитном поле.Это создаст магнитную силу в петле в соответствии с законом Лоренца. Таким образом, петля начнет вращаться, это ясно показано на рис. 6.

Рис. 6 Влияние RMF на замкнутый проводник

Работа асинхронного двигателя

Подобное явление также происходит внутри асинхронного двигателя. Здесь вместо простой петли используется что-то очень похожее на беличью клетку. Беличья клетка имеет стержни, которые закорочены концевыми кольцами.

Трехфазный переменный ток, проходящий через обмотку статора, создает вращающееся магнитное поле.Как и в предыдущем случае, ток будет индуцирован в стержнях беличьей клетки, и она начнет вращаться. Вы можете заметить изменение наведенного тока в стержнях с короткозамкнутым ротором. Это связано со скоростью изменения магнитного потока в одной паре беличьих стержней, которая отличается от другой из-за ее разной ориентации. Это изменение тока в полосе со временем будет меняться.

Рис. 7 RMF создает крутящий момент на роторе, как в случае с простой обмоткой

. Вот почему используется название асинхронный двигатель, электричество индуцируется в роторе за счет магнитной индукции, а не прямого электрического соединения.Чтобы способствовать такой электромагнитной индукции, внутри ротора установлена ​​пластина с изолированным железным сердечником.

Рис. 8 Тонкие слои металлической пластинки, упакованные в ротор

Такие маленькие кусочки железных слоев обеспечивают минимальные потери на вихревые токи. Вы можете отметить одно большое преимущество трехфазных асинхронных двигателей, так как они по своей сути самозапускаются.
Также можно заметить, что стержни беличьей клетки наклонены к оси вращения или имеют перекос. Это необходимо для предотвращения колебаний крутящего момента.Если бы стержни были прямыми, был бы небольшой промежуток времени для передачи крутящего момента в паре стержней ротора на следующую пару. Это вызовет колебания крутящего момента и вибрацию ротора. Обеспечивая перекос в стержнях ротора, прежде чем ослабнет крутящий момент в одной паре стержней, в действие вступит следующая пара. Таким образом предотвращается колебание крутящего момента.

Скорость вращения ротора и концепция скольжения

Здесь вы можете заметить, что и магнитное поле, и ротор вращаются.Но с какой скоростью будет вращаться ротор? Чтобы получить ответ на этот вопрос, рассмотрим разные случаи.

Рассмотрим случай, когда скорость ротора совпадает со скоростью магнитного поля. Ротор испытывает магнитное поле в относительной системе отсчета. Поскольку и магнитное поле, и ротор вращаются с одинаковой скоростью относительно ротора, магнитное поле является стационарным. Ротор будет находиться в постоянном магнитном поле, поэтому наведенных ЭДС и тока не будет. Это означает нулевое усилие на стержнях ротора, поэтому ротор будет постепенно замедляться.Но по мере замедления петли ротора будут испытывать изменяющееся магнитное поле, поэтому индуцированный ток и сила снова возрастут, и ротор будет ускоряться. Короче говоря, ротор никогда не сможет догнать скорость магнитного поля. Он вращается с определенной скоростью, которая немного меньше синхронной скорости. Разница в синхронной скорости и скорости ротора называется скольжением.

N

РОТОР S

SLIP = (N

S - N R ) / N S

ЗНАЧЕНИЕ СКОЛЬЖЕНИЯ = 2-6%

Рис. 9 Здесь проиллюстрирована концепция скольжения

Передача энергии в двигателе

Вращательная механическая сила, полученная от ротора, передается через приводной вал.Короче говоря, в асинхронном двигателе электрическая энергия поступает через статор и выводится из двигателя, а механическое вращение передается от ротора.

Рис. 10 Передача мощности в двигателе

Но между входом и выходом мощности будут многочисленные потери энергии, связанные с двигателем. К различным компонентам этих потерь относятся потери на трение, потери в меди, потери на вихревые токи и гистерезисные потери. Такие потери энергии во время работы двигателя рассеиваются в виде тепла, поэтому вентилятор на другом конце помогает охлаждать двигатель.

Рис. 11 Охлаждающий вентилятор используется для отвода тепла, выделяемого двигателем

Почему асинхронные двигатели так популярны?

Теперь давайте поймем, почему асинхронные двигатели правят как в промышленном, так и в бытовом мире. Вы можете отметить, что асинхронные двигатели не требуют постоянного магнита. У них даже нет щеток, колец коммутатора или датчика положения, как у других аналогов электрических машин. Асинхронные двигатели также запускаются самостоятельно. Наиболее важным преимуществом является то, что скорость асинхронного двигателя можно легко контролировать, регулируя входную частоту питания.

Чтобы понять это правильно, давайте еще раз рассмотрим простую схему расположения катушек. Мы узнали, что вращающееся магнитное поле создается из-за трехфазной входной мощности. Совершенно ясно, что скорость RMF пропорциональна частоте входной мощности. Поскольку ротор всегда пытается догнать RMF, скорость ротора также пропорциональна частоте мощности переменного тока.

N

S ∝ f

Таким образом, используя частотно-регулируемый привод, можно очень легко управлять скоростью асинхронного двигателя.Это свойство асинхронных двигателей делает их привлекательным выбором для лифтов, кранов и электромобилей. Благодаря высокоскоростному диапазону асинхронных двигателей электромобили могут работать с односкоростной коробкой передач.

Рис.12 Односкоростная коробка передач Рис. 13 Контуры КПД асинхронного двигателя

Еще одно интересное свойство асинхронного двигателя состоит в том, что, когда ротор приводится в движение первичным двигателем, он также может действовать как генератор. В этом случае вы должны убедиться, что скорость RMF всегда меньше скорости ротора.

Рис. 14 Скорость RMF всегда меньше скорости ротора

Мы полагаем, что теперь вы получили четкое представление о гениальных принципах работы асинхронного двигателя, а также о том, почему он по-прежнему доминирует в бытовом и промышленном мире.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *