Перекос нагрузки по фазам: Устранение перекоса фаз: симметрирование или выравнивание фазных напряжений и нагрузок — Симметрирующие трансформаторы

Содержание

Перекос фаз. Причины возникновения и устранение. Защита

В трехфазной электрической сети на каждой фазе должно быть одно и то же напряжение, с допустимым отклонением. Если напряжение распределено по фазам неравномерно, то возникает перекос фаз. В результате такого явления в промышленном оборудовании (электродвигатели, трансформаторы) происходит значительное уменьшение мощности. В бытовых условиях такой перекос между фазами может привести к неисправностям электрических устройств и других потребителей энергии.

Когда электрические устройства подключены на одну фазу, то есть риск возникновения перекоса между фазами. Чтобы не допускать нарушения снабжения электрической энергией, необходимо разобраться в том, от чего возникает такое отрицательное явление.

Причины возникновения

Существуют разные причины перекоса по напряжению между фазами. Основной популярной причиной стало неравномерное и неграмотное распределение нагрузки по фазам сети. При появлении перекоса на участке с трехфазным питанием, можно говорить о том, что некоторые фазы эксплуатируются с чрезмерной нагрузкой, а третья фаза нагружена незначительно.

Чаще всего однофазные нагрузки в виде бытовых электрических устройств подключают на одну фазу. Поэтому перекос фаз появляется при одновременном запуске нескольких мощных устройств. Начальными признаками перекоса являются работающие бытовые приборы, у которых заметно снизилась мощность, либо они совсем отключились. При этом приборы освещения стали выдавать тусклый свет, а лампы дневного света при этом мерцают.

Для более точного определения того, есть ли перекос фаз, нужно вызвать специалиста, и на месте провести тщательную проверку. Только путем проведения измерений можно выявить разницу в напряжении на разных фазах.

Последствия и опасность

Главная опасность этого явления состоит в некорректной работе бытовых устройств, и возникновения возможности выхода их из строя. Максимальная часть отрицательных последствий приходится на разные виды электрических двигателей, установленных в различной бытовой технике.

Отрицательные факторы влияния перекоса фаз делятся на три вида:
  1. Возникновение неисправностей подключенных электрических устройств, оборудования и приборов, снижение их срока эксплуатации.
  2. Неисправности источников электроэнергии: повреждения, повышение расхода энергии, снижение срока службы источника.
  3. Негативные факторы для потребителей энергии: повышение затрат на оплату электроэнергии, вероятность получения травм, необходимость проведения ремонта и обслуживания электрооборудования.

Если перекос фаз образовался на автономной отдельной электростанции, то потребление топлива и смазочных материалов в этом случае существенно повысится, а генератор может выйти из строя. Если на одной фазе напряжение выше, чем на двух других фазах, то нарушается электробезопасность, что может привести к возгоранию электропроводки и оборудования.

В результате видно, что последствия этого отрицательного явления существенные, их устранение и решение может привести к значительному материальному ущербу. Для предотвращения таких негативных ситуаций, необходимо заблаговременно принять соответствующие меры.

Способы защиты

Для нормальной эксплуатации трехфазной сети, а также чтобы напряжение на отдельной фазе соответствовала номинальному значению, необходимо применять специальные приборы и устройства. Обычно для этого подключают стабилизатор напряжения.

В быту применяются однофазные исполнения, способные защитить электрооборудование. В производственных условиях используется 3-фазный стабилизатор, включающий в себя три однофазных устройства. Однако полностью устранить фазные перекосы эти приборы не способны, так как они выравнивают напряжение в одной фазе.

Иногда такие устройства сами создают условия для неравномерного распределения электроэнергии. Эта проблема может решиться только с помощью специальных технологий, выравнивающих напряжение между всеми фазами.

Существует несколько способов защиты:
  • Использование устройств, выравнивающих нагрузку по фазам в автоматическом режиме.
  • Создание проекта снабжения электрической энергией объекта с учетом предполагаемых значений нагрузок.
  • Изменение электрической схемы цепи с учетом мощности потребителей.
  • Подключение специального реле, которое будет контролировать величину напряжения на фазах, и отключать питание при выявлении несимметрии.

Такими методами можно защитить электрические устройства от неисправностей, и исключить перекос напряжения.

Симметрирующий трансформатор

Чтобы предотвратить перекос напряжений между фазами и поддерживать определенное значение фазного напряжения, следует применять специальную технологию, позволяющую выравнивать значение напряжения не отдельно на некоторой фазе, а обеспечивать симметричность всех трех фаз, то есть всю трехфазную сеть. Такая альтернативная технология реализована в симметрирующем трансформаторе.

Диапазон измерений
Такой инновационный прибор может работать при 100-процентном перекосе напряжения и способен устранить фазный перекос напряжений в широком интервале их изменений, при любых причинах возникновения этого негативного явления:
  • Перекос во входной сети пинания, возникший вследствие повреждений распределительной сети.
  • Неравномерное разделение нагрузок между фазами.
  • Включение в работу мощного устройства.
  • Смешанные причины перекоса.
Практическое использование
Задачами, разрешаемыми путем включения в работу симметрирующего трансформатора, являются:
  • Равномерное распределение потребителей между фазами.
  • Устранение перекоса фазных напряжений (выравнивание всех фаз между собой в трехфазной сети).
  • Поддержание заданного значения напряжения на каждой фазе.
  • Преобразование трехфазной электрической сети питания в 1-фазную сеть:
    — с гальванической развязкой сети питания и потребителя электроэнергии;
    — без гальванической развязки;
    — с изменением (повышением или снижением) напряжения на его выходе.
  • Преобразование трехфазной сети, состоящей из трех проводов, в трехфазную сеть с четырьмя проводами (создание рабочего нулевого провода для возможности подсоединения нагрузки на фазу).
  • Возможность получения 50% 3-фазной мощности с одной фазы.
  • Применение генераторов с меньшей мощностью для такой же группы потребителей.
  • Включение в работу более мощных нагрузок при ограничениях на допустимую мощность из общей государственной сети, либо при работе от автономного источника.
  • Во время промерзания трубопроводов или обледенения проводов возможен отогрев этих коммуникаций, а также другого оборудования.
Допустимые нормы на перекос фаз

Основным рабочим документом, регламентирующим качество электрической энергии, и нормы несимметрии в трехфазной сети считается ГОСТ13109-97, а допускаемое отклонение нагрузок определяется по документу СП31-110, в котором для вводно-распределительных устройств допускаются разница величины нагрузок между фазами не более 15%, а для распределительных щитов – не более 30%.

Похожие темы:

Перекос фаз в трехфазной сети последствия — советы электрика

Перекос фаз в загородном доме

Источник: http://vprl.ru/publ/istochniki_pitanija/tekhnologii/perekos_faz_v_zagorodnom_dome/8-1-0-134

Перекос фаз: определение, причины его возникновения и способы защиты

В однофазном режиме значение напряжения должно составлять 220 вольт, а при трёхфазном — 380 вольт. Но в реальности эти числа практически не встречаются.

Поэтому проверив значение напряжения в розетке, можно наглядно убедиться в существовании перекоса фаз.

Чтобы приблизить значение напряжения к стандартным значениям, необходимо понимать, что подразумевается под словосочетанием «перекос фаз», его причинами и возможными способами устранения.

  • Суть понятия
  • Причины возникновения
  • Способы защиты
  • Последствия перекоса

Фаза — это электрическая цепь с некоторым значением синусоидальной электродвижущей силы.

Трёхфазная цепь, в свою очередь, состоит из трёх электрических цепей, которые владеют синусоидальной электродвижущей силой с одинаковой амплитудой и частотой тока.

Трёхфазная сеть состоит из трёх синусоидальных токов или напряжений, которые имеют одну частоту и сдвинуты по фазе на угол, равный 120 градусам.

Если потребителей электрической энергии подключить к фазам сети неравномерно — например, большинство сосредоточить в одной, а в двух других их будет гораздо меньше — это приведёт к асимметрии напряжения. При этом в трёхфазных четырёхпроводных сетях несимметричность параметров будет менее заметна, так как нулевой провод выравнивает неравномерность напряжения по фазам.

Причины возникновения

Нарушение симметричности напряжений в трёхфазной цепи — нежелательная ситуация. Поэтому для того чтобы её устранить, необходимо понять, почему она может возникнуть. Причины перекоса фаз в трёхфазной сети сводятся к основным трём обстоятельствам:

  • неравномерное группирование потребителей;
  • отсоединение нулевого провода;
  • замыкание фазного провода на землю.

При неправильном распределении потребителей в трёхфазной трёхпроводной цепи, напряжение на них будет существенно отличаться. Потребители, обладающие наименьшим сопротивлением, окажутся под повышенным напряжением. Токоприёмники с большим значением сопротивления будут иметь напряжение, не достигающее оптимального значения.

На источниках электроэнергии неравномерное распределение напряжения по фазам скажется в виде увеличенного потребления энергии, повреждений изоляции, износа, сокращение срока службы. При использовании автономного дизельного генератора увеличится расход топлива и охлаждающего вещества.

Снижение качества электрической изоляции для потребителей чревато такими последствиями:

  • повреждение, поломка бытовых приборов или электрической проводки;
  • возникновение пожара;
  • получение травм;
  • выход из строя электроприборов.

Способы защиты

Устранить нежелательное явление перекоса можно с помощью организационных мероприятий и установкой защитной аппаратуры.

К организационным мероприятиям относится правильное распределение нагрузки по всем фазам с учётом мощности. Недостатком является тот факт, что при всём желании проектировщика произвести очень точное размещение, особенно при подключении квартир, домов, невозможно.

Защитная аппаратура, которую можно установить:

  • Трёхфазный автоматический выключатель.
  • Трёхфазный стабилизатор напряжения.
  • Реле контроля фаз. Особенно целесообразно использовать реле совместно со стабилизаторами напряжения.
  • Симметрирующие трансформаторы. По строению они отличаются от силовых тем, что имеют дополнительную обмотку, которая включается между заземлением средней точки и нулём.

Недостатки трёхфазных стабилизаторов:

  • излишний расход электроэнергии;
  • низкая надёжность работы из-за частой смены деталей;
  • принцип работы, способствующий появлению перекоса фаз.

Последствия перекоса

Наиболее просто обнаружить неравномерность напряжения даже без вольтметра в быту. При его пониженном значении бытовые приборы могут не включаться, осветительные приборы будут гореть очень тускло.

Последствия

неравномерного распределения нагрузки:

  • ухудшение качества электроэнергии;
  • появление уравнительных токов, из-за которых потери электроэнергии увеличиваются;
  • неэффективная работа электрооборудования, снижение качества электрической изоляции и, как следствие, уменьшение срока службы аппаратуры.

Перекос фаз — явление крайне нежелательное, но, к сожалению, довольно распространённое при работе электрооборудования. Полностью искоренить его почти невозможно. Поэтому необходимо следить, чтобы отклонения значения напряжений всегда находились в допустимых пределах. Это обеспечит длительный срок службы электроприборов и сохранит здоровье и жизнь обслуживающему персоналу.

Источник: https://220v.guru/fizicheskie-ponyatiya-i-pribory/prichiny-i-posledstviya-perekosa-faz.html

Перекос фаз в трехфазной сети: причины и последствия

У конечных потребителей сетей централизованного электроснабжения, которое является трёхфазным, применяется напряжение 220 В. Это фазное напряжение. Три фазы распределяются между несколькими потребителями.

Они подключаются к сети не одновременно и с неодинаковыми нагрузками.

Поэтому необходимо использование нейтрали чтобы обеспечивать подачу фазного напряжения каждому потребителю при несимметричной нагрузке в этой трёхфазной сети.

Суть проблемы

Но поскольку существует ограничение по мощности конечных трансформаторных подстанций, при упомянутых выше нагрузках величины фазных напряжений изменяются соответственно нагрузкам.

У более нагруженной фазы напряжение уменьшается например до 195 – 205 В, а менее нагруженной увеличивается до 245 В и более.

Последствием таких нагрузок является ток в нейтрали, который по своей величине может быть близким к току нагруженной фазы.

Как следствие этого – увеличение потерь. Они есть в кабельных и воздушных линиях электропередачи, трансформаторных подстанциях, и даже в высоковольтных ЛЭП питающих эти подстанции.

Особенно характерно такое «смещение нейтрали» – термин, характеризующий фазные напряжения при несимметричных нагрузках в трёхфазной сети, для жилого сектора потребителей электроэнергии.

При этом повышение напряжения является небезопасным для некоторых бытовых электроприборов.

Совет

Используемые в инфраструктуре жилого фонда трёхфазные асинхронные двигатели уже при двухпроцентной асимметрии испытывают дополнительный нагрев обмоток, что заметно сокращает срок службы изоляции.

Причём дальнейшее увеличение асимметрии в разы, то есть всего лишь до 4 – 6% вызывает рост общих потерь почти в два раза. То же относится и к лампам накаливания и люминесцентным лампам.

При повышении напряжения всего лишь на пять процентов спирали в них почти в два раза быстрее перегорают.

Что делать при перекосе фаз?

Чтобы уменьшить смещение нейтрали перед подстанциями рекомендуется устанавливать специальные симметрирующие автотрансформаторы. Схемы включения таких трансформаторов приведены ниже на изображениях.

Приведенные выше схемы применимы также с глухо заземлённой нейтралью нагрузки при отсутствии технической возможности встраивания компенсационной автотрансформаторной обмотки в нулевой провод, соединяя через эту обмотку нагрузку с сетью.

Поскольку увеличение нагрузки например в фазе А вызовет увеличение тока в этой фазе, напряжение на соответствующей последовательно включённой обмотке автотрансформатора тоже увеличится и произойдёт компенсация падения напряжения пропорциональная силе тока нагрузки. Установка автотрансформаторов вблизи распределительной подстанции обеспечивает наилучший эффект. Когда с этой подстанции электроэнергия по разделённым фазам подаётся потребителям, становится возможным симметрирование напряжения.

Это уменьшает потери и позволяет отфильтровать гармонические составляющие тока, возникающие от работы полупроводниковых ключей электронных балластов газоразрядных ламп, мощных инверторов, сварочных аппаратов.

Работа этих устройств вносит искажения в синусоидальную форму напряжения питающей электросети.

Следствием подобных искажений являются тепловые потери во всех работающих электрических машинах, подключенных к этой электросети.

Компенсация смещения нейтрали с использованием специального автотрансформатора весьма недешёвый способ борьбы с потерями электроэнергии при смещении нейтрали при несимметричной фазной нагрузке. Однако положительный эффект от этого способа получается непрерывно и быстро окупает все расходы.

Источник: http://podvi.ru/elektrotexnika/perekos-faz.html

Перекос по фазам в трехфазной сети

Источник: http://www.yugtelekabel.ru/perekos-po-fazam-v-trexfaznoj-seti.html

Перекос фаз. Что это такое и с чем он связан? Как исправить?

Одним из выдающихся благ цивилизации является электричество. Благодаря тому, что это открытие в наше время так распространено, жизнь общества в целом, и каждого человека в отдельности, значительно упростилась и стала более комфортной.

Вместе с тем, время от времени, в электросети могут возникать трудности, требующие решения. С ростом средней мощности бытовых приборов и техники, установленной в одном месте, например, в квартире, нередко возникает явление, называемое перекосом фаз.

В таких случаях, очень многие задаются вопросом, какие причины вызывают перекос фаз? И так, давайте разбираться.

Что же собой представляет перекос фаз

Трехфазную электрическую сеть в идеале можно представить равносторонним треугольником с нейтральной точкой в его середине.

   Перекос фаз

Он отражает работу силового трансформатора на подстанции, которая установлена в каждом микрорайоне города и предназначена для равномерного распределения электричества по всем потребителям. Стороны этого треугольника – это векторные линии, соединяющие его вершины. Обозначив вершины точками A, B, C и нейтралью N, можно составить таблицу напряжений и зависимость между ними:

  • AB=BC=CA=380 В
  • AN=BN=CN=220 В

При этом напряжения AB, BC, CA в 1,73 раза больше напряжений AN, BN, CN. Идеальный трехфазный генератор, который обычно используется для питания всех бытовых приборов и промышленных сетей, должен обеспечивать эти уровни напряжений в широком диапазоне нагрузок.

Причины перекоса фаз

Причин перекоса может быть несколько, однако, наиболее распространенной является причина, связанная с неправильной и неравномерно распределенной нагрузкой в фазах внутренних сетей. В случае возникновения перекоса на объекте с трехфазным питанием, это означает, что одна или две фазы работают с перегрузкой, тогда как другие фазы имеют гораздо меньшую нагрузку.

Однофазные потребители нередко попадают на одну фазу, и в этом случае перекос фаз образуется при одновременном включении большого количества бытовой техники. Первыми признаками перекоса могут быть бытовые приборы, мощность которых заметно упала, или они вообще перестали работать. Освещение становится тусклым, а лампы дневного света начинают мерцать.

Важно

Основная опасность ситуации состоит в том, что бытовые приборы начинают работать некорректно, и появляется реальная возможность поломок вплоть до полного выхода их из строя. Наибольшая часть негативных последствий приходится на различные виды электродвигателей, которые установлены почти во всех приборах.

После того, как выяснился вопрос, что такое перекос фаз и с чем он связан, необходимо рассмотреть основные способы борьбы с этим явлением. Следует сразу отметить, что данные способы не являются универсальными, а подходят только для конкретных ситуаций.

Устранение перекоса фаз

Для того, чтобы избежать перекос фаз, необходимо осуществить тщательное планирование всех мощностей и рассчитать все возможные нагрузки с их правильным распределением по фазам. Как правило, составляется подробный электропроект на квартиру или дом.

При эксплуатации необходимо выполнять проверку тока с помощью специальных тестеров. Если возникнет необходимость, должна быть выполнена переброска однофазных нагрузок с более загруженных фаз на менее загруженные.

Ток на каждой фазе трёхфазного автомата должен быть тщательно измерен, после чего нужно перераспределить однофазные нагрузки так, чтобы токи на каждой фазе были приблизительно равными.

Эта работа должна выполняться только профессионалом, имеющим специальное оборудование.

Защита от внешнего перекоса фаз может быть исполнена с помощью стабилизаторов напряжения. На каждую фазу устанавливают определённый стабилизатор. Это будет более эффективно, чем установка одного трёхфазного стабилизатора.

В заключение необходимо подчеркнуть, что перекос фаз может стать причиной повреждения или полного выхода из строя электроприборов. Следовательно, для её устранения необходимо установить стабилизаторы или привлечь профессионалов, которые квалифицированно спроектируют электросеть.

Видео

Смотрите также по этой теме:

   Защита от перенапряжения. Что поможет защитить сеть?

   Источник бесперебойного питания для частного дома.

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

Источник: https://powercoup.by/energosberezhenie/perekos-faz

Нормы на перекос фаз | Электролаборатория

Перекос фаз явление в электротехнике встречающееся довольно часто. Практики хорошо знакомы с ним и знают его последствия. А вот причина негативных его проявлений далеко не всем понятна.

Сначала давайте определимся в терминах.  Речь идет о разнице напряжений, между фазами в трехфазной сети или фазными и нулевым проводником в той же трехфазной цепи. Под перекосом мы будем понимать различие этих напряжений.

Напомним, что любая трехфазная цепь может быть выполнена с «глухо заземлённой нейтралью» либо с «изолированной нейтралью». Первая имеет три фазных проводника и, так называемый, нулевой провод. Вторая только три фазных проводника. Соответственно, потребители в первой цепи могут быть соединены как в треугольник, так и на звезду. Во второй только в треугольник.

В сети 380/220 В с глухо заземлённой нейтралью потребители, в подавляющем большинстве случаев, подключены по схеме «звезда». Это относится как к асинхронным двигателям, так и к «осветительным нагрузкам». О таких случаях мы будем вести речь в дальнейшем. Сделаем одно замечание.

Совет

Сопротивление питающих линий является конечным, носит омический характер и должно учитываться при расчете трехфазной цепи.

Так называемый перекос фаз, является отклонением от нормальной разницы между мгновенными значениями линейных напряжений, либо результатом изменения фазового угла между линейными напряжениями. Последний случай можно исключить из рассмотрения, так как он встречается крайне редко.

Когда мы определились с терминами можно перейти к рассмотрению вопроса по существу. И тут становиться всё просто. Предположим, что все нагрузки у нас осветительные. Под этим термином понимают активные нагрузки, например в виде ламп накаливания.

Ещё, предположим, что к одной из фаз подключено лампочек значительно больше чем к остальным. Токи, протекающие через них, по законам Кирхгофа будут протекать не только через нулевой проводник но, и через других потребителей.

В результате падение напряжения на потребителях других фаз неизбежно вырастет. Это и вызывает перекос фаз.

Все это можно объяснить и через напряжения. Большой ток одной из фаз создает небольшое, но вполне реальное падение напряжения в нулевом проводе. Это напряжение сдвинуто на угол 120о относительно других фаз. Поэтому напряжение, приложенное к их нагрузкам, является суммой фазного напряжения и напряжения на нулевом проводе.

Крайним случаем перекоса фаз является однофазное замыкание на «землю». В этом случае токи короткого замыкания будут протекать и через потребителей, питающихся от двух других фаз что, неизбежно, вызовет перенапряжение в них.

Ещё одним из случаев того же порядка является обрыв нулевого провода. При этом также нарушается баланс токов в нагрузках.

Обратите внимание

Напряжения в сети могут изменяться крайне непредсказуемо, в зависимости от величины  нагрузки на каждую из фаз. Практики знают, что напряжения в бытовых розетках, в этих условиях могут достигать даже линейных значений.

Ещё перекос фаз возникает при обрыве одного из фазных проводников. Такой режим называется неполнофазным.  

В любом случае перекос фаз ведёт к экономическим потерям, связанным с протеканием токов в нулевом проводнике. В теоретических основах электротехники (ТОЭ) для таких расчётов вводят понятия токов прямой, обратной и нулевой последовательностей.

Ещё раз. Существенное увеличение тока одной из фаз трехфазной сети, потребители которой соединены в звезду, незамедлительно ведёт за собой увеличение напряжения на нагрузках других фазных проводов.

При этом напряжение перегруженной фазы относительно нулевого провода понижается. Чем это чревато? У ламп накаливания значительно сокращается срок службы либо светоотдача, у асинхронных двигателей, подключенных к такой сети, ухудшается КПД.

В конце концов, повышенное напряжение может вывести из строя электронные приборы.

Ещё одно негативное явление это появление гармоник высших порядков при питании различных электрических машин от несбалансированной сети. Речь идет о двигателях, трансформаторах и генераторах. Это связанно с процессами, протекающими в их магнитопроводах.

 Гармоники высших порядков часто вызывают сбои в работе электронного оборудования. Поэтому при проектировании электрических сетей необходимо равномерно распределять нагрузки по фазам.

Своды правил по проектированию считают предельным разброс нагрузок в 30% в распределительных щитках, а для вводных распредустройств 15%.

Какие требования предъявляются к перекосу фаз нормативными документами? Основным документом, определяющим качество электроэнергии, является ГОСТ 13109-97. Его требования выражаются в терминах нулевых и обратных последовательностей. Не уверены, что стоит грузить читателя столь сложными материями.

Важно

Конечно, выявить перекос фаз не сложно с помощью простейших приборов не прибегая к посторонней помощи.

Но провести анализ причин перекоса фаз, выработать конкретные рекомендации по его устранению могут только профессиональные специалисты. Наша электролаборатория выполняет любые электротехнические измерения.

Мы прошли государственную аккредитацию и имеем соответствующие документы.  Мы с радостью поможем решить ваши проблемы.

Источник: https://elektrolaboratoriya.com/elektrolaboratoriya-ispytaniya/perekos-faz-kakie-normyi-na-perekos-faz.html

Допустимый перекос фаз, причины возникновения и способы устранения

Это явление, возникающее в трехфазных четырех- и пятипроводных электрических сетях с глухозаземленной нейтралью. Данное состояние сети отличается несимметрией токов и напряжений с разными амплитудами напряжений углами между ними.

Для лучшего понимания и большей наглядности процесса предлагаем сравнить векторные диаграммы напряжений трехфазных сетей. Диаграмма 1 отличается идеальной взаимосвязью линейных и фазных напряжений, на диаграмме 2 хорошо видна несимметрия напряжений сети, т. е. имеет место перекос фаз.

Причины возникновения

В большинстве случаев к этому аварийному режиму приводит неравномерное распределения нагрузки – когда одна или две фазы перегружены. В этом случае высокие токи потребления на них приводят к неизбежному увеличению напряжения на других фазах.

Нередко, причиной несимметрии напряжения сети является неполнофазный режим, опасный не только для нагрузок с питающим напряжением 220 В, но и для трехфазного оборудования. Так, отсутствие одной фазы в линии может привести к возрастанию токов в остальных.

Обрыв нулевого провода. Режим работы линии при отсутствии рабочего нуля (N) можно отнести к разряду неполнофазных. Нарушение соотношений токов нагрузки на в таких случаях неизбежно вызывает изменение фазных напряжений (Uф). Отклонения напряжений зависит от соотношения мощностей нагрузки по фазам. В некоторых случаях Uф может достигать линейных значений (380 В).

Замыкание одной из фаз с рабочей нейтралью (“нулем”) и несработка по каким-либо причинам автомата защиты (неисправность, большая длина участка линии между местом КЗ и автоматом и пр.). В этом случае также происходит увеличение Uф на других проводниках.

Способы устранения

Несомненно, лучшим способом предотвращения несимметрии напряжения является планирование равномерного распределения предполагаемой нагрузки по фазам сети еще на стадии проектирования электроустановки.

Для устранения возникшей несимметрии напряжения в ходе эксплуатации электрической сети производят замеры токов по фазам и перераспределением нагрузок (переключение с более загруженных на менее нагруженные фазы) добиваются равных токов потребления.

В быту для обеспечения допустимого напряжения питания отдельных приборов или их группы нередко используют однофазные стабилизаторы напряжения, в трехфазных сетях – соответственно, трехфазные устройства. 

Совет

Однако, следует учитывать, что выравнивание значения Uф до допустимого с использованием трехфазного стабилизатора неизбежно сопровождается отклонением от нормы на других фазах.

Таким образом, можно говорить об эффективности его использования для предотвращения отклонения напряжения на одной (контролируемой) фазе, но его отклонение от нормы на других может стать вторичной причиной возникновения несимметрии напряжении.

Допустимый перекос фаз

Главным действующим документом, определяющим качество электроэнергии и регламентирующим нормы несимметрии напряжений является ГОСТ 13109-97 (п.п 5.5). Допустимое отклонение соотношений нагрузок, согласно требований СП 31-110 (9.5) – 15% в панелях ВРУ и 30% в распредщитах.

Источник: http://l220.ru/?id=pf

Сергей Никитин.

Устраняем проблемы с электрической сетью

Существует очень много проблем с электрической сетью в частных домах, частые скачки напряжения, перекосы фаз, заниженное напряжение и прочее. В данной статье пойдёт речь как просто и относительно дёшево устранить эту проблему.

Сразу оговорюсь, этим способом можно решить проблему при наличии трёхфазной сети или возможностью подключения к фазному напряжению 380 Вольт. В загородных домах, на дачах, да и в сельской местности, перекос фаз наблюдается более выражено.

При этом может быть выход из строя электроприборов с преобладающей реактивной нагрузкой.

К таким приборам относятся холодильники, вентиляторы, пылесосы, да и любые бытовые приборы и устройства, имеющие трансформаторные источники питания.

Обратите внимание

Что такое “перекос фаз”, я здесь объяснять не буду, кто не в курсе – гугл Вам в помощь, но кто с этим сталкивался, тот уже очень хорошо это знает. И так расскажу одну не большую историю; В одном посёлке, у хорошего моего друга, в частном доме постоянно прыгало напряжение.

Дом был построен большой и ввод напряжения там был трёхфазный, то есть 3х380 Вольт. Естественно вся нагрузка дома была распределена равномерно по фазам, но это на стабильности напряжения никак не отразилось, так как перекос фаз (неравномерная нагрузка по фазам) возникал уже до ввода в дом.

От этого очень часто в доме перегорала бытовая аппаратура, микроволновки меняли почти каждый год, потому что из-за пониженного напряжения магнетрон быстрее терял свою способность греть, да и грел он не очень. На каждой розетке стояли стабилизаторы напряжения, но они не успевали отрабатывать резкие скачки напряжения.

Был в доме даже и бесперебойник с чистой синусоидой на выходе и мощностью 9 кВт!!!!. И вот после долгих уговоров и бесед с другом по решению этой проблемы (а ему советовали специалисты что таким простым способом не решить данную проблему), было принято решение сделать данный проект по устранению последствий перекоса.

Для начала прикинули мощность, которую нужно прокачать, то есть необходимую для обеспечения всего дома. Получилось у нас около 16-18 кВт. Начали для претворения проекта в жизнь, искать необходимый нам трансформатор, сначала конечно же трёхфазный. Нашли готовый ТСЗ-16 380/380, но он стоил на сайте 70-80 т.р.

, а при обращении к продавцу, цена его уже поднималась до 100 т.р., да и его вес был более 100кг.

По этому пришлось попробовать найти однофазные трансформаторы, но уже три штуки. И о чудо, есть такие, называются ОСЗ, а дальше идёт его мощность.

Остановились на 6 кВт, три штуки, 380в на 220 вольт, и стоят они в среднем около 9 т.р. за штуку и весит один трансформатор около 25кг. В той фирме, куда мы обращались, на вопрос – есть ли такие, нам сказали, что намотаем любые и по этой цене.

И так у нас появились три трансформатора однофазных 380/220 вольт и мощностью 6 кВт. Подключил я их все, по ниже приведённой схеме.

Важно

И так, соблюдая фазировку обмоток, соединяем входные обмотки и выходные по схеме. Если есть возможность сделать хорошее заземление, то промышленный «Ноль» можно вообще не использовать, необходимы будут для работы только фазные напряжения.

Вы спросите – что, и всё, проблема будет решена? А всё оказывается очень просто, между фазами напряжение 380 вольт в основном всегда может быть или 380 вольт или только ниже, и никогда не бывает выше, в отличии от линейного напряжения 220 вольт, которое из-за неравномерной нагрузки или не качественного «Ноль» может достигать до 380 вольт.

К тому же, из-за того, что преобразование напряжения происходит у Вас непосредственно в доме, то и токи от подстанции до ввода у вас будут в два раза меньше, следовательно потери напряжения будут в два (почти в два) раза меньше.

Есть трансформаторы с дополнительными отводами, которыми можно переключать напряжение, например зимой когда в сети напряжение занижено его можно приподнять, а летом когда нагрузка меньше его можно приопустить.

С отводами трансформаторы конечно дороже, но конкретно у ТСЗ-6-380/220 (они кстати алюминием намотаны) есть место куда можно 5-8 витков провода обычного одножильного электрического медного 6 кв.мм. без проблем домотать, и это либо добавит либо сбросит вольт 15-24 (в зависимости в какую обмотку Вы их подключите и как сфазируете).

У этого трансформатора один виток почти 3 вольта. В первичную обмотку можно провод и 4 кв.мм подмотать. И будет вам дёшево и удобно. Конструкцию из трансформаторов мы сделали одну для трёх. Трансформаторы сначала были извлечены из своих металлических корпусов и установлены один на другой.

Между ними проложены были две реечки из дерева высотой 10-15 мм, слегка скреплены парой болтов в свои штатные отверстия. Вся эта конструкция была закрыта вертикальным кожухом, который имеет вентиляционные отверстия снизу и сверху.

Кожух желательно делать немножко выше всей конструкции, вентиляционное отверстие снизу в виде щели высотой 5-6 см и шириной почти с сам трансформатор, сверху площадь вентиляционного отверстия должна быть больше нижней, что бы была лучше вентиляция (тяга). Сами катушки при эксплуатации почти не греются, греется само железо, но это сейчас норма. После установки данной конструкции, а их было установлено две, пропали все проблемы с качеством электрической сети, ни бросков, ни провалов при включении микроволновок, электро утюгов и электро чайников. Желаю всем удачи.

 

В трехфазной сети силового кабеля периодически возникает такое явление, как перекос по фазам. Это может привести к значительному падению мощности в электрооборудовании (электродвигателе, трансформаторе) и выходу их из строя. В этой статье мы расскажем, что такое перекос фаз в трехфазной сети, почему происходит это явление и какие имеет последствия.

Вообще перекос по фазам – явление достаточно распространенное. И если оно остается в рамках допустимых значений, указанных в ГОСТ и ПУЭ, то большой беды в этом нет. Так, максимальная разница между токами проводника с наименьшей нагрузкой и токами проводника с наибольшей составляет 30% – это значение в пределах нормы. Для панелей ВРУ оно составляет 15%.

Все в том же ГОСТ указано, что максимальная разница по фазам в обратной последовательности должна составлять 2%.

Почему возникает перекос по фазам

Обратите внимание

Этому есть несколько причин. Основная – неравномерное и несбалансированное распределение фазовой нагрузки, когда одна фаза получает избыточное питание, а две другие, соответственно, недостаточное.

В однофазной сети нагрузка также может меняться, например, при одновременном включении нескольких мощных электроприборов. Тогда мощность сети сразу падает, оборудование перестает работать или же выходит из строя.

Особенно сильно страдают электродвигатели. Диагностировать проблему и узнать, где именно происходит перекос по фазам можно с помощью токоизмерительных клещей.

Трехфазная электрическая сеть имеет заземленную нейтральную жилу, которая выравнивает перекос, если таковой случился. Но если она обрывается, роль нейтральной жилы берет на себя одна из фазовых. И в этом случае на ней будет 380 В, а на других жилах – 127 и меньше.

Негативные последствия перекоса

Негативные последствия перекоса по фазам можно разделить на три типа:

  1. Повреждение электроприборов, вывод их из строя.

  2. Повреждение генераторов и трансформаторов электросети.

  3. Увеличение расходов на эксплуатацию электросети, снижение ее безопасности и надежности.

Из-за того что электроэнергия распределяется по проводникам неравномерно, в электросети значительно увеличивается потребление электричества. Трехфазная сеть, у которой образовалась несимметрия, может снизить срок эксплуатации электроприборов и бытовой техники.

Неравномерное распределение электричества заметно повышает его расход в сети. А вот срок эксплуатации бытовой и цифровой техники наоборот, может снизиться.

Если мы говорим об автономном электрогенераторе, то у него повысится расход топлива, и так же ухудшится надежность.

Как бы то ни было, все эти процессы негативного свойства, и чтобы их избежать, необходимо заранее предпринять меры по защите.

Меры по защите

Первой и одной из наиболее распространенных защитных мер является установка в сеть стабилизатора напряжения. Для установки в трехфазную сеть используются стабилизаторы, состоящие из трех однофазных. Однако нейтрализовать перекос всегда и везде они не могут, поэтому применяются дополнительные меры:

  • правильное проектирование с учетом всех современных правил и требований;
  • применение приборов, которые способны автоматически выравнивать нагрузку;
  • изменение текущей схемы работы электросети, в том числе и изменение мощности потребителей, если это возможно;
  • установка реле контроля фаз и напряжения – устройства, которое автоматически отключит этот элемент электросети при перекосе по фазам.

Защита от перекоса фаз в трехфазной сети — советы электрика

Реле контроля фаз — основное назначение, принцип работы и схема подключения. ТОП-лучших производителей электрооборудования!

В трёхфазной электрической цепи при неравномерном значении напряжения на разных фазах возникает очень неприятное явление – перекос фаз. Его результатом, как правило, становится значительное понижение мощности прибора. Это приведет к поломке, как промышленного оборудования, так и обычной бытовой техники.

Не будем углубляться в причины возникновения этого перекоса, а рассмотрим способы его устранения. Для предотвращения возникновения перекоса фаз, который в основном проявляется в трёхфазных сетях, используют реле контроля фаз.

Назначение

Основное назначение реле контроля фаз это, безусловно, защита всех электротехнических промышленных и бытовых устройств, подключённых к трёхфазной сети.

Реле обеспечивает контроль за наличием сетевого напряжения, его симметричности во всех фазах и правильным чередованием.

Обратите внимание

Кроме этих прямых обязанностей, данное реле может обладать функцией контроля заданного уровня напряжения, и при уменьшении или увеличении определённого порога отключать питание.

Реле желательно располагать там, где происходит многократное переподключение приборов, например, для оборудования, которое часто переносят с одного места на другое и где неправильное чередование фаз будет довольно критично. Или при одновременном использованьи значительного количества приборов большой мощности (в квартирах или частных домах).

Конструктивные особенности

В процессе изготовление таких реле используют надёжные микропроцессоры, что объясняет простоту настройки, а также высокую надёжность этих устройств. Конструкция реле контроля обязательно включает в себя схему, вычисляющую порядок чередования фаз, и в соответствие с заложенным в схему алгоритмом срабатывают контакты на выходе реле.

В самых простых устройствах на вход подаётся 3-фазы и ноль, а на выходе имеем реле с переключающимся контактом. Запитка внутренней схемы осуществляется за счет фазы L1. Также обычно присутствуют 2 и более индикаторов – в зависимости от модели и производителя.

На выходы реле контроля можно подключать магнитные пускатели и контакты для запуска электродвигателей или любую сигнальную цепь, предупреждающую об отклонения в сети от нормы.

Типы

Самые распространенные типы реле контроля фаз, которые в основном используют на производстве и в бытовых условиях это ЕЛ11, ЕЛ12, ЕЛ13 и ЕЛ11МТ, ЕЛ-12МТ.

Для защиты источников питания, АВР, генераторов и преобразователей электроэнергии используют ЕЛ11 и ЕЛ11МТ.

Для обеспечения безопасности электродвигателей кранов мощностью до 100 кВт применяют ЕЛ-12 и ЕЛ12МТ.

ЕЛ13 применяется в основном при подключении реверсивных электродвигателей до75 кВт.

Крепление данных реле можно осуществить как с помощью DIN-рейки, так и с помощью крепёжных винтов.

Характеристики

Ниже приведены основные характеристики реле.

1) Рабочие напряжения:

  • EЛ11 – 100 V, 110 V, 220 V, 380 V, 400 V, 415 V
  • ЕЛ12 -100 V, 200V, 280 V
  • ЕЛ13 – 220 V, 380 V

2) Предел срабатывания реле.

а) При симметричном снижений напряжений на фазе:

  • EЛ11 – 0.7 * Uфн
  • ЕЛ12 – 0,5 * Uфн
  • ЕЛ13 – 0,5 * Uфн

б) При разрыве 1-ой или более фаз:

  • Срабатывают все виды реле.

в) При неправильном чередования фаз

  • ЕЛ11,ЕЛ12 – срабатывают
  • ЕЛ13 – не срабатывает

3) Время задержки (срабатывания) в секундах

  • ЕЛ11,ЕЛ12 – 0,1 до 10
  • ЕЛ13 – не более 0,15

4) Рабочие температуры:

  • ЕЛ11,ЕЛ12 — -40до +40 С
  • ЕЛ13 — — 10 до +45 C

5) Температура хранения от -60 до +50

6) Масса устройства

  • ЕЛ11,ЕЛ13 – 0,3  кг
  • ЕЛ12 -0,25  кг

Как подключить реле

Если при подключении промышленного или бытового оборудования используются частотные преобразователи, то использование реле контроля фаз вовсе не обязательно.

Непосредственное подключение осуществляется по инструкции как подключить реле именно этого типа. Довольно часто схема подключения изображена на корпусе устройства. Для этого следует обратить внимание на различные фото реле контроля фаз.

Подключение к внешним и внутренним источникам осуществляется с помощью проводов под зажимы. Под него подводят либо один провод сечением 2,5 мм либо два провода с сечением до 1,5 мм. Для подключения обязательно нужно соблюсти строгое чередование фаз A, B и С.

Важно

Обычно реле проверяет разрыв плюса их чередование, и уровень напряжения сети. При обнаружении неисправности в сети в действие вступает реле. Схема подключения может быть как трёх проводная без ноля, так и четырёх проводная с нулём. В квартирах часто применяется такая схема подключения. Подключаемую нагрузку формируют равномерно на каждую из 3-х фаз.

При выходе за заданные значения какой-либо из фаз, срабатывает реле, отвечающее за данный контур, а остальная нагрузка (при условии нахождении в границах нужного диапазона) продолжает работать.

Рассмотрим схему подключения с нулем.

Такая схема обеспечивает полный контроль над напряжением на каждой фазе, перекос и правильное чередование, и еще стоит отметить тот факт, что они применяется, как промышленный вариант.

На выходе устройства с помощью силового контакт подсоединяем контактор, который одним концом своей обмотки подключён к нулевому проводу, а вторым концом к выходу одной из фаз.

Контакты 1, 2 и 3 подключают напряжение снятое с реле контроля напряжения на любую трёхфазную нагрузку такую как электродвигатель, или проточные обогреватели высокой мощности и прочее.

Внутренняя схема реле измеряет значение напряжения на каждой из фаз и при нахождении U пределах нормальных значений, то подаёт энергию на подключённый контактор.

Тот в свою очередь держит контакты в замкнутом состояние, и напряжение достигает внешней подключенной нагрузки.

В случае если вольтаж на любой из фаз выходит за заданный нами диапазон, то реле прекращает питать обмотку нашего контактора и тот, в свою очередь, размыкает свои контакты, обесточивая всю подключенную внешнюю нагрузку.

Выбор реле

Выбор нужного нам типа реле зависит непосредственно от технических характеристик подключаемого устройства и самого реле. Рассмотрим, какое реле лучше выбрать нам на примере подключения АВР (автомата ввода резервного питания). Сначала определяем нужный нам вариант подключения с нулевым проводом или без него.

Затем выясняем нужные нам параметры самого реле.

Для подключения АВР необходимы такие рабочие характеристики в этом устройстве: контроль над слипанием и над обрывом фаз, контроль последовальности; задержка должна быть 10-15 сек; и должен присутствовать контроль за колебаниями заданного напряжение ниже или выше нужного нам порога. Для подключения по схеме с нулевым проводом нужен визуальный контроль по каждой фазе. При подключениях АВР можно выбирать тип реле EЛ11.

Фото реле контроля фаз

Источник: http://electrikmaster.ru/rele-kontrolya-faz/

Перекос фаз в трехфазной сети: что это такое, причины, последствия, защита

Самая распространенная проблема, порождающая массу деструктивных последствий – перекос фаз в трехфазной сети (до 1,0 кВ) с глухозаземленной нейтралью.

При определенных условиях такое явление может вывести из строя электрические приборы и создать угрозу для жизни.

Учитывая актуальность проблемы, будет полезным узнать, что представляет собой несимметрия токов и напряжений, а также причины ее возникновения. Это позволит выбрать наиболее оптимальную стратегию защиты.

Что такое перекос фаз?

Данный термин используется для описания состояния сети, при котором возникают неравномерные нагрузки между фазами, что приводит к возникновению перекоса. Если составить векторную диаграмму идеальной трехфазной сети, то она будет выглядеть так, как показано на рисунке ниже.

Диаграмма напряжений в идеальных трехфазных сетях

Как видно из рисунка, в данном случае равны как линейные напряжения (АВ=ВС=СА=380,0 В), так и фазные (АN=ВN=СN=220,0 В).

К сожалению, на практике добиться такого идеального равенства нереально. То есть, линейные напряжения сети, как правило, совпадают, в то время как в фазных наблюдаются расхождения.

В некоторых случаях они могут превысить допустимый предел, что приведет к возникновению аварийной ситуации.

Пример диаграммы напряжений при возникновении перекоса

Допустимые нормы значений перекоса

Поскольку в трехфазных сетях предотвратить и полностью устранить перекосы невозможно, существуют нормы несимметрии, в которых установлены допустимые отклонения. В первую очередь это ГОСТ 13109 97, ниже приведена вырезка из него (п. 5.5), чтобы избежать разночтения документа.

Нормы несимметрии напряжения  ГОСТ 13109-97

Поскольку, основная причина перекоса фаз напрямую связана с неправильным распределением нагрузок, существуют нормы их соотношения, прописанные в СП 31 110. Вырезку из этого свода правил также приведем в оригинале.

Вырезка из СП 31-110 (п 9.5)

Здесь необходимы пояснения в терминологии. Для описания несимметрии используются три составляющих, это прямая, нулевая и обратная последовательность.

Первая считается основной, она определяет номинальное напряжение.

Две последние можно рассматривать в качестве помех, которые приводят к образованию в цепях нагрузки соответствующих ЭДС, которые не участвуют в полезной работе.

Причины перекоса фаз в трехфазной сети

Как уже упоминалось выше, данное состояние электросети чаще всего вызвано неравномерным подключением нагрузки на фазы и обрывом нуля. Чаще всего это проявляется в сетях до 1, кВ, что связано с особенностями распределения электроэнергии, между однофазными электроприемниками.

Обмотки трехфазных силовых трансформаторов подключаются «звездой». Из места соединения обмоток отводится четвертый провод, называемый нулевым или нейтралью.

Если происходит обрыв нулевого провода, то в сети возникает несимметрия напряжений, причем перекос напрямую будет зависеть от текущей нагрузки. Пример такой ситуации приведен ниже.

В данном случае RН это сопротивления нагрузок, одинаковые по значению.

Перекос фаз, вызванный обрывом нейтрали

В данном примере напряжение на нагрузке, подключенной к фазе А, превысит норму и будет стремиться к линейному, а на фазе С упадет ниже допустимого предела. К подобной ситуации может привести перекос нагрузки, выше установленной нормы. В таком случае напряжение на недогруженных фазах повысится, а на перегруженных упадет.

К перекосу напряжений также приводит работа сети в неполнофазном режиме, когда происходит замыкание фазного провода на землю. В аварийных ситуациях допускается эксплуатация сети в таком режиме, чтобы обеспечить электроснабжение потребителям.

Исходя из вышесказанного, можно констатировать три основные причины перекоса фаз:

  1. Неравномерная нагрузка на линии трехфазной сети.
  2. При обрыве нейтрали.
  3. При КЗ одного из фазных проводов на землю.

Несимметрия в высоковольтных сетях

Вызвать подобное состояние в сети 6,0-10,0 кВ иногда может подключенное к ней оборудование, в качестве характерного примера можно привести дугоплавильную печь.

Несмотря на то, что она не относится к однофазному оборудованию, управление тока дуги в ней производится пофазно. В процессе плавки также могут возникнуть несимметричные КЗ.

Учитывая, что существуют дугоплавильные установки запитывающиеся от напряжения 330,0 кВ, то можно констатировать, что и в данных сетях возможен перекос фаз.

Совет

В высоковольтных сетях перекос фаз может быть вызван конструктивными особенностями ЛЭП, а именно, разным сопротивлением в фазах.

Чтобы исправить ситуацию выполняется транспозиция фазных линий, для этого устанавливаются специальные опоры. Эти дорогостоящие сооружения не отличаются особой прочностью.

Такие опоры не особо стремятся устанавливать, предпочитая пожертвовать качеством электроэнергии, чем надежностью ЛЭП.

Опасность и последствия

Считается, что наиболее значимые последствия несимметрии связаны с низким качеством электроэнергии. Это, безусловно, так, но нельзя забывать и о других негативных воздействиях.

К таковым относится образование уравнительных токов, вызывающих увеличение расхода электрической энергии.

В случае с трехфазным автономным электрическим генератором это также приводит к повышенному расходу дизеля или бензина.

При равномерном подключении нагрузки, геометрическая сумма проходящих через нее токов была бы близкой к нулю. Когда возникает перекос, растет уравнительный ток и напряжение смещения. Увеличение первого приводит к росту потерь, второго – к нестабильному функционированию бытовых приборов или другого оборудования, срабатыванию защитных устройств, быстрому износу электроизоляции и т.д.

Перечислим, какие последствия можно ожидать, когда появляется перекос:

  1. Отклонение фазного напряжения. В зависимости от распределения нагрузок возможно два варианта:
  • Напряжение выше номинального. В этом случае большинство электрических устройств, оставленных включенными в бытовые розетки, с большой вероятностью выйдут из строя. При срабатывании защиты результат будет менее трагическим.
  • Напряжение падает ниже нормы. Увеличивается нагрузка на электродвигатели, происходит падение мощности электромашин, растут пусковые токи. Наблюдаются сбои в работе электроники, устройства могут отключиться и не включаться пока перекос не будет устранен.
  1. Увеличивается потребление электричества оборудованием.
  2. Нештатная работа электрооборудования приводит к уменьшению эксплуатационного срока.
  3. Снижается ресурс техники.

Не следует забывать, что перекос может создать угрозу для жизни. При превышении номинального напряжения вероятность КЗ в проводке не велика, при условии, что она не ветхая, а кабель подобран правильно. Более опасны в этом случае электроприборы, подключенные к сети. Когда появляется перекос, может произойти КЗ на корпус или возгорания электроприбора.

Защита от перекоса фаз в трехфазной сети

Наиболее простой, но, тем не менее, эффективный способ минимизировать негативные последствия описанного выше отклонения – установить реле контроля фаз. С внешним видом такого устройства и примером его подключения (в данном случае после трехфазного счетчика), можно ознакомиться ниже.

Реле контроля фаз (А) и пример схемы его подключения (В)

Данный трехфазный автомат может обладать следующими функциями:

  1. Производить контроль амплитуды электротока. Если параметр выходит за установленные границы, нагрузка отключается от питания. Как правило, диапазон срабатывания прибора можно настраивать в соответствии с особенностями сети. Данная опция имеется у всех приборов данного типа.
  2. Проверка очередности подключения фаз. Если чередование неправильное питание отключается. Данный вид контроля может быть важен для определенного оборудования. Например, при подключении трехфазных асинхронных электромашин от этого зависит, в какую сторону будет происходить вращение вала.
  3. Проверка обрыва на отдельных фазах, при обнаружении такового нагрузка отключается от сети.
  4. Функция отслеживает состояние сети, как только появляется перекос, происходит срабатывание.

Совместно с реле контроля фаз можно использовать трехфазные стабилизаторы напряжения, с их помощью можно несколько улучшить качество электроэнергии. Но данный вариант не отличается эффективностью, поскольку такие приборы сами могут взывать нарушение симметрии, помимо этого на стабилизаторах возникают потери.

Лучший способ симметрировать фазы – использовать для этой цели специальный трансформатор. Этот вариант выравнивания фаз может дать результаты, как при неправильном распределении однофазных нагрузок на автономный 3-х фазный генератор электроэнергии, так и в более серьезных масштабах.

Защита в однофазной сети

В данном случае повлиять на внешние проявления системы электроснабжения не представляется возможным, например, если фазы перегружены, потребители электроэнергии не могут исправить ситуацию. Все, что можно сделать, это обезопасить электрооборудование путем установки реле напряжения и однофазного стабилизатора.

Имеет смысл установить общее стабилизирующее устройство на всю квартиру или дом. В этом случае необходимо высчитать максимальную нагрузку, после этого добавить запас 15-20%.. Это запас на будущее, поскольку со временем количество электрооборудования может увеличиться.

Совсем не обязательно подключать к стабилизатору сети все оборудование, некоторые виды приборов (например, электропечи или бойлеры), могут быть подключены к реле напряжения (через АВ)  напрямую. Это позволит сэкономить, поскольку устройства меньшей мощности стоят дешевле.

Источник: https://www.asutpp.ru/perekos-faz-v-trehfaznoj-seti.html

Защита от перекоса фаз в трехфазной сети

Это явление, возникающее в трехфазных четырех- и пятипроводных электрических сетях с глухозаземленной нейтралью. Данное состояние сети отличается несимметрией токов и напряжений с разными амплитудами напряжений углами между ними.

Для лучшего понимания и большей наглядности процесса предлагаем сравнить векторные диаграммы напряжений трехфазных сетей. Диаграмма 1 отличается идеальной взаимосвязью линейных и фазных напряжений, на диаграмме 2 хорошо видна несимметрия напряжений сети, т. е. имеет место перекос фаз.

Причины возникновения

В большинстве случаев к этому аварийному режиму приводит неравномерное распределения нагрузки — когда одна или две фазы перегружены. В этом случае высокие токи потребления на них приводят к неизбежному увеличению напряжения на других фазах.

Нередко, причиной несимметрии напряжения сети является неполнофазный режим. опасный не только для нагрузок с питающим напряжением 220 В, но и для трехфазного оборудования. Так, отсутствие одной фазы в линии может привести к возрастанию токов в остальных.

Обратите внимание

Обрыв нулевого провода. Режим работы линии при отсутствии рабочего нуля (N) можно отнести к разряду неполнофазных. Нарушение соотношений токов нагрузки на в таких случаях неизбежно вызывает изменение фазных напряжений (Uф). Отклонения напряжений зависит от соотношения мощностей нагрузки по фазам. В некоторых случаях Uф может достигать линейных значений (380 В).

Замыкание одной из фаз с рабочей нейтралью («нулем») и несработка по каким-либо причинам автомата защиты (неисправность, большая длина участка линии между местом КЗ и автоматом и пр.). В этом случае также происходит увеличение Uф на других проводниках.

Способы устранения

Несомненно, лучшим способом предотвращения несимметрии напряжения является планирование равномерного распределения предполагаемой нагрузки по фазам сети еще на стадии проектирования электроустановки.

Для устранения возникшей несимметрии напряжения в ходе эксплуатации электрической сети производят замеры токов по фазам и перераспределением нагрузок (переключение с более загруженных на менее нагруженные фазы) добиваются равных токов потребления.

В быту для обеспечения допустимого напряжения питания отдельных приборов или их группы нередко используют однофазные стабилизаторы напряжения, в трехфазных сетях — соответственно, трехфазные устройства.

Однако, следует учитывать, что выравнивание значения Uф до допустимого с использованием трехфазного стабилизатора неизбежно сопровождается отклонением от нормы на других фазах.

Таким образом, можно говорить об эффективности его использования для предотвращения отклонения напряжения на одной (контролируемой) фазе, но его отклонение от нормы на других может стать вторичной причиной возникновения несимметрии напряжении.

Допустимый перекос фаз

Главным действующим документом, определяющим качество электроэнергии и регламентирующим нормы несимметрии напряжений является ГОСТ 13109-97 (п.п 5.5). Допустимое отклонение соотношений нагрузок, согласно требований СП 31-110 (9.5) — 15% в панелях ВРУ и 30% в распредщитах.

Информация

Данный сайт создан исключительно в ознакомительных целях. Материалы ресурса носят справочный характер.

При цитировании материалов сайта активная гиперссылка на l220.ru обязательна.

Перекос фаз в трехфазной сети: причины и последствия

У конечных потребителей сетей централизованного электроснабжения, которое является трёхфазным, применяется напряжение 220 В. Это фазное напряжение. Три фазы распределяются между несколькими потребителями.

Они подключаются к сети не одновременно и с неодинаковыми нагрузками.

Поэтому необходимо использование нейтрали чтобы обеспечивать подачу фазного напряжения каждому потребителю при несимметричной нагрузке в этой трёхфазной сети.

Суть проблемы

Но поскольку существует ограничение по мощности конечных трансформаторных подстанций, при упомянутых выше нагрузках величины фазных напряжений изменяются соответственно нагрузкам.

У более нагруженной фазы напряжение уменьшается например до 195 – 205 В, а менее нагруженной увеличивается до 245 В и более.

Последствием таких нагрузок является ток в нейтрали, который по своей величине может быть близким к току нагруженной фазы.

Как следствие этого – увеличение потерь. Они есть в кабельных и воздушных линиях электропередачи, трансформаторных подстанциях, и даже в высоковольтных ЛЭП питающих эти подстанции.

Особенно характерно такое «смещение нейтрали» – термин, характеризующий фазные напряжения при несимметричных нагрузках в трёхфазной сети, для жилого сектора потребителей электроэнергии.

При этом повышение напряжения является небезопасным для некоторых бытовых электроприборов.

Важно

Используемые в инфраструктуре жилого фонда трёхфазные асинхронные двигатели уже при двухпроцентной асимметрии испытывают дополнительный нагрев обмоток, что заметно сокращает срок службы изоляции.

Причём дальнейшее увеличение асимметрии в разы, то есть всего лишь до 4 – 6% вызывает рост общих потерь почти в два раза. То же относится и к лампам накаливания и люминесцентным лампам.

При повышении напряжения всего лишь на пять процентов спирали в них почти в два раза быстрее перегорают.

Что делать?

Чтобы уменьшить смещение нейтрали перед подстанциями рекомендуется устанавливать специальные симметрирующие автотрансформаторы. Схемы включения таких трансформаторов приведены ниже на изображениях.

Приведенные выше схемы применимы также с глухо заземлённой нейтралью нагрузки при отсутствии технической возможности встраивания компенсационной автотрансформаторной обмотки в нулевой провод, соединяя через эту обмотку нагрузку с сетью.

Поскольку увеличение нагрузки например в фазе А вызовет увеличение тока в этой фазе, напряжение на соответствующей последовательно включённой обмотке автотрансформатора тоже увеличится и произойдёт компенсация падения напряжения пропорциональная силе тока нагрузки. Установка автотрансформаторов вблизи распределительной подстанции обеспечивает наилучший эффект. Когда с этой подстанции электроэнергия по разделённым фазам подаётся потребителям, становится возможным симметрирование напряжения.

Это уменьшает потери и позволяет отфильтровать гармонические составляющие тока, возникающие от работы полупроводниковых ключей электронных балластов газоразрядных ламп, мощных инверторов, сварочных аппаратов.

Работа этих устройств вносит искажения в синусоидальную форму напряжения питающей электросети.

Следствием подобных искажений являются тепловые потери во всех работающих электрических машинах, подключенных к этой электросети.

Компенсация смещения нейтрали с использованием специального автотрансформатора весьма недешёвый способ борьбы с потерями электроэнергии при смещении нейтрали при несимметричной фазной нагрузке. Однако положительный эффект от этого способа получается непрерывно и быстро окупает все расходы.

Совет

0 Измерение тока и напряжения мультиметром Необходимость измерения напряжения в электрической системе у пользователя может […]

2 Промежуточное реле РПУ И снова здравствуйте. Я решил дать вам немного более узкого материала и открываю цикл […]

0 Проверка напряжения сети: индикация и измерение Для чего надо знать величину напряжения Известно, что в сети централизованного […]

Чтобы в процессе эксплуатации жилища не возникало проблем с использованием и обслуживанием электросети, нужно знать, что такое фаза. ноль и земля в электропроводке квартиры.

Александр, чем конкретно данную статью дополнить? Постараюсь учесть Ваше пожелание!

Перекос фаз — как с этим бороться и какую пользу можно поиметь с этого

Перекос фаз является феноменом, появляющимся в сети трёхфазного тока в случае неправильного распределения нагрузки на фазы. Он может быть вызван короткими замыканиями фазных проводов, обрывами фазных или нулевых проводов и т.д.

Опасность перекоса фаз

Фазный перекос опасен тем, что в перегруженной цепи напряжение поступает к приборам в недостаточном или в чрезмерном количестве. Естественно, он препятствует их эффективной работе и может вызывать их выход из строя. Особенно страдают электродвигатели, установленные в приборах.

Он может наблюдаться в магазинах, мастерских, на производстве, и т.д. Так, перекос возможен, если в мастерской одна из фаз снабжает всё станочное оборудование, а другая – лишь лампочки и компьютер

Обратите внимание

При появлении перекоса возможны существенные энергозатраты. При правильном распределении нагрузок по фазам можно значительно уменьшить суммы, затрачиваемые на оплату электричества.

Фазный перекос может быть выявлен по внешним признакам: мигание ламп, сбои в электронике и др. Для того, чтобы получить точную информацию, требуется иметь новый трёхфазный счётчик, регистрирующий события, имеющие место в электронной системе, включая и фазный перекос. После выявления его причин нужно принять все меры для его устранения.

Причины перекоса фаз

Возможны различные причины перекоса фаз, однако, как правило, они возникают в результате ошибочного распределения нагрузки в фазах внутренних сетей. Если он появляется на объекте, где есть трёхфазное питание, это означает, что возможна перегрузка одной-двух фаз.

Наиболее часто явление перекоса фаз наблюдается на крупных предприятиях, оснащённых однофазными электросварочными устройствами, индукционными, рудотермическими плавильными печами и иными нагревательными установками с высокой потребительской мощностью.

Причиной появления неполнофазного режима работы электроустановок может быть обрыв фазы, приводящий к сильным увеличениям токов в остальных фазах. Это аварийный режим, приводящий к перегрузкам электрооборудования и его преждевременному выходу из строя.

Среди причин несимметрии напряжения следует отметить выход из строя автоматического выключателя, когда происходит КЗ фазы с нулевым проводом. При этом наблюдается увеличение напряжения между нулевым проводом и остальными фазами.

Предотвращение перекоса фаз

Для того, чтобы избежать несимметрии напряжения, необходимо осуществить тщательное планирование всех мощностей и рассчитать все возможные нагрузки с их правильным распределением по фазам. Как правило, составляется подробный электропроект на квартиру или дом.

При эксплуатации необходимо выполнять проверку тока с помощью специальных тестеров. Если возникнет необходимость, должна быть выполнена переброска однофазных нагрузок с более загруженных фаз на менее загруженные.

Ток на каждой фазе трёхфазного автомата должен быть тщательно измерен, после чего нужно перераспределить однофазные нагрузки так, чтобы токи на каждой фазе были приблизительно равными.

Эта работа должна выполняться только профессионалом, имеющим специальное оборудование.

Защита от внешнего перекоса фаз может быть использована с помощью стабилизаторов напряжения. На каждую фазу устанавливают определённый стабилизатор. Это будет более эффективно, чем установка одного трёхфазного стабилизатора.

В заключение необходимо подчеркнуть, что несимметрия напряжений может стать причиной повреждения или полного выхода из строя электроприборов. Следовательно, для её устранения необходимо установить стабилизаторы или привлечь профессионалов, которые квалифицированно спроектируют электросеть.

Какие от этого могут быть плюсы? Видео:

Источники: http://l220.ru/?id=pf, http://podvi.ru/elektrotexnika/perekos-faz.html, http://imhodom.ru/node/12220

Источник: http://electricremont.ru/zashhita-ot-perekosa-faz-v-trehfaznoj-seti.html

Перекос фаз. Причины возникновения и устранение. Защита

В трехфазной электрической сети на каждой фазе должно быть одно и то же напряжение, с допустимым отклонением. Если напряжение распределено по фазам неравномерно, то возникает перекос фаз.

В результате такого явления в промышленном оборудовании (электродвигатели, трансформаторы) происходит значительное уменьшение мощности.

Важно

В бытовых условиях такой перекос между фазами может привести к неисправностям электрических устройств и других потребителей энергии.

Когда электрические устройства подключены на одну фазу, то есть риск возникновения перекоса между фазами. Чтобы не допускать нарушения снабжения электрической энергией, необходимо разобраться в том, от чего возникает такое отрицательное явление.

Причины возникновения

Существуют разные причины перекоса по напряжению между фазами. Основной популярной причиной стало неравномерное и неграмотное распределение нагрузки по фазам сети. При появлении перекоса на участке с трехфазным питанием, можно говорить о том, что некоторые фазы эксплуатируются с чрезмерной нагрузкой, а третья фаза нагружена незначительно.

Чаще всего однофазные нагрузки в виде бытовых электрических устройств подключают на одну фазу. Поэтому перекос фаз появляется при одновременном запуске нескольких мощных устройств.

Начальными признаками перекоса являются работающие бытовые приборы, у которых заметно снизилась мощность, либо они совсем отключились.

При этом приборы освещения стали выдавать тусклый свет, а лампы дневного света при этом мерцают.

Для более точного определения того, есть ли перекос фаз, нужно вызвать специалиста, и на месте провести тщательную проверку. Только путем проведения измерений можно выявить разницу в напряжении на разных фазах.

Последствия и опасность

Главная опасность этого явления состоит в некорректной работе бытовых устройств, и возникновения возможности выхода их из строя. Максимальная часть отрицательных последствий приходится на разные виды электрических двигателей, установленных в различной бытовой технике.

Отрицательные факторы влияния перекоса фаз делятся на три вида:

  1. Возникновение неисправностей подключенных электрических устройств, оборудования и приборов, снижение их срока эксплуатации.
  2. Неисправности источников электроэнергии: повреждения, повышение расхода энергии, снижение срока службы источника.
  3. Негативные факторы для потребителей энергии: повышение затрат на оплату электроэнергии, вероятность получения травм, необходимость проведения ремонта и обслуживания электрооборудования.

Если перекос фаз образовался на автономной отдельной электростанции, то потребление топлива и смазочных материалов в этом случае существенно повысится, а генератор может выйти из строя.

Если на одной фазе напряжение выше, чем на двух других фазах, то нарушается электробезопасность, что может привести к возгоранию электропроводки и оборудования.

В результате видно, что последствия этого отрицательного явления существенные, их устранение и решение может привести к значительному материальному ущербу. Для предотвращения таких негативных ситуаций, необходимо заблаговременно принять соответствующие меры.

Способы защиты

Для нормальной эксплуатации трехфазной сети, а также чтобы напряжение на отдельной фазе соответствовала номинальному значению, необходимо применять специальные приборы и устройства. Обычно для этого подключают стабилизатор напряжения.

В быту применяются однофазные исполнения, способные защитить электрооборудование. В производственных условиях используется 3-фазный стабилизатор, включающий в себя три однофазных устройства. Однако полностью устранить фазные перекосы эти приборы не способны, так как они выравнивают напряжение в одной фазе.

Иногда такие устройства сами создают условия для неравномерного распределения электроэнергии. Эта проблема может решиться только с помощью специальных технологий, выравнивающих напряжение между всеми фазами.

Существует несколько способов защиты:

  • Использование устройств, выравнивающих нагрузку по фазам в автоматическом режиме.
  • Создание проекта снабжения электрической энергией объекта с учетом предполагаемых значений нагрузок.
  • Изменение электрической схемы цепи с учетом мощности потребителей.
  • Подключение специального реле, которое будет контролировать величину напряжения на фазах, и отключать питание при выявлении несимметрии.

Такими методами можно защитить электрические устройства от неисправностей, и исключить перекос напряжения.

Симметрирующий трансформатор

Чтобы предотвратить перекос напряжений между фазами и поддерживать определенное значение фазного напряжения, следует применять специальную технологию, позволяющую выравнивать значение напряжения не отдельно на некоторой фазе, а обеспечивать симметричность всех трех фаз, то есть всю трехфазную сеть. Такая альтернативная технология реализована в симметрирующем трансформаторе.

Диапазон измерений

Такой инновационный прибор может работать при 100-процентном перекосе напряжения и способен устранить фазный перекос напряжений в широком интервале их изменений, при любых причинах возникновения этого негативного явления:

  • Перекос во входной сети пинания, возникший вследствие повреждений распределительной сети.
  • Неравномерное разделение нагрузок между фазами.
  • Включение в работу мощного устройства.
  • Смешанные причины перекоса.

Практическое использование

Задачами, разрешаемыми путем включения в работу симметрирующего трансформатора, являются:

  • Равномерное распределение потребителей между фазами.
  • Устранение перекоса фазных напряжений (выравнивание всех фаз между собой в трехфазной сети).
  • Поддержание заданного значения напряжения на каждой фазе.
  • Преобразование трехфазной электрической сети питания в 1-фазную сеть: • с гальванической развязкой сети питания и потребителя электроэнергии; • без гальванической развязки;• с изменением (повышением или снижением) напряжения на его выходе.
  • Преобразование трехфазной сети, состоящей из трех проводов, в трехфазную сеть с четырьмя проводами (создание рабочего нулевого провода для возможности подсоединения нагрузки на фазу).
  • Возможность получения 50% 3-фазной мощности с одной фазы.
  • Применение генераторов с меньшей мощностью для такой же группы потребителей.
  • Включение в работу более мощных нагрузок при ограничениях на допустимую мощность из общей государственной сети, либо при работе от автономного источника.
  • Во время промерзания трубопроводов или обледенения проводов возможен отогрев этих коммуникаций, а также другого оборудования.

Допустимые нормы на перекос фаз

Основным рабочим документом, регламентирующим качество электрической энергии, и нормы несимметрии в трехфазной сети считается ГОСТ13109-97, а допускаемое отклонение нагрузок определяется по документу СП31-110, в котором для вводно-распределительных устройств допускаются разница величины нагрузок между фазами не более 15%, а для распределительных щитов – не более 30%.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrooborudovanie/jelektropitanie/perekos-faz/

Обрыв нуля и перекос фаз в трехфазной сети. Несимметрия напряжения

В наших статьях мы часто упоминали перекос фаз в трехфазной сети, о том, что это неприятная ситуация, приводящая к несимметрии напряжения и выходу из строя бытовых приборов.

Читатели обратили внимание на то, что в таких ситуациях защитная автоматика должна привести к отключению, или что-то можно было сделать своими руками, по крайней мере, большинство вопросов было сформулировано именно так.

На самом деле нет, поэтому мы решили в рамках этой статьи рассмотреть эту проблему – защиту от перекоса фаз.

Для начала возьмем обычные весы – с коромыслом, на которое положим шарик. Пока весы в равновесии шарик будет посередине. Но как только коромысло наклонится, шарик покатится под уклон.

У шарика тоже есть вес, поэтому, чем ближе он будет к краю коромысла, тем сложнее будет уравновесить эти весы. Проблема даже не в том, что вес шарика неизвестен, дело в том, что он двигается.

Примерно такая же проблема возникает, когда возникает перекос фаз в трехфазной сети, только при этом у весов будет не два плеча, а три, и куда покатится шарик непонятно.

Совет

В примере выше нет формул, но зато есть физика явления, поскольку даже в сети из двух фаз (или фазы и нейтрали) шарик это фактически потребляемая мощность . Если процесс не остановить, то шарик докатится до конца плеча весов, упадёт на чашку, и восстановить равновесие уже не получится, без вмешательства извне. Графически это можно представить вот так:

Зелёные линии – это равновесное состояние, красные показывают, как может измениться напряжение при перекосе фаз в трёхфазной сети , причём аварийной будет ситуация, когда значение отрезка «Фаза С точка N’» превысит 300 вольт. Крайним случаем будут ситуация, в которой точка N совпадёт с «Фаза А» или «Фаза В». Ещё раз смотрим на рисунок – перекос (отрезок N – N’, значение перекоса) в этой ситуации достигнет значения 220 В.

При этом на отрезке «Фаза С – N’» значение напряжения вместо 220В составит 380 В. Для бытового прибора, рассчитанного на максимальные 250 В это катастрофа. Конечно, защитные автоматы должны будут в таких условиях обесточить линию, но это произойдёт только при наличии нагрузки в цепи.

Подведём промежуточный итог: перекос фаз в трёхфазной сети – это ненормальная ситуация, приводящая к изменениям параметров сети,  что может привести к авариям. Давайте посмотрим, откуда возникает такой перекос, и можно ли с ним бороться.

Причины появления перекоса фаз

Мы уже подробно разбирали трёхфазную сеть , осталось рассмотреть ещё один аспект – обрыв нуля в трехфазной сети , который является самой неприятной аварией.

В электросетях обрыв любого провода уже авария, которая ни к чему хорошему не приводит, но разрыв нейтрали это особенная неприятность.

Подавляющее количество квартир сегодня запитано от трёхфазных трансформаторов с глухозаземлённой нейтралью.

Помимо безопасности именно эта нейтраль позволяет безболезненно выравнивать небольшие перекосы фаз в трехфазной сети , подавая в квартиры более-менее 220В с заземлением.

Отключаем нейтраль (например, в стояке подъезда). Что мы получим в итоге этой ситуации? Для начала мы получим неуправляемый процесс перераспределения напряжения (который будет зависеть от загрузки каждой из фаз в разных квартирах). Наиболее сопротивляющаяся (загруженная) фаза возьмет на себя функцию «нейтрали». Напряжение в ней начнёт повышаться до значений в 380В.

Самая разгруженная фаза «просядет» до 127В или ниже. Результат будет прогнозируемый – выход из строя бытовой техники, перегоревшие лампы и прочие неприятности. Первыми выйдут из строя приборы с двигателями, потом с нагревательными элементами. Точные приборы тоже пострадают, но в меньшей степени. Современный телевизор вряд ли сгорит – выключится.

Но стиральная машинка не выживет точно.

Хуже всего придётся тем, кто окажется «в конце» этой линии, нагрузки превысят допустимые, притом, что не все автоматы «сообразят», что пора отключиться. Здесь крайне велики риски возгораний, как приборов, так и проводки.

Обратите внимание

Так что обрыв нуля в трехфазной сети – граничный случай, где полная несимметрия напряжений, отсутствие заземления = поражение током человека и гарантированная аварийная ситуация для электросети.

На фото как раз пример крайнего перекоса фаз на тестовом приборе:

Это, конечно, самая неприятная ситуация, но перепады напряжения в сети тоже не так безобидны, как кажется, особенно когда речь идёт о частном доме запитанном от трёх фаз.

Простое реле контроля напряжения, которое можно установить в квартире (или щитке), настроенное на принудительное отключение при изменениях именно напряжения, поможет уберечь от такой ситуации электропроводку и приборы.

Вернёмся к другим причинам перекосов фаз в трехфазной сети , точнее нас больше интересует бытовое приложение – то есть двухфазная сеть квартиры или частного дома, которая является СОСТАВНОЙ частью трехфазной сети. Не стоит забывать именно об этой детали – наши две фазы лишь часть большой энергосистемы.

Очередной пример. В нашей квартире 4 линии. Возьмем все приборы, удлинители и тройники и всё включим в одну розетку одной линии. А в розетку другой линии включим мультиметр и посмотрим на то, что будет с напряжением.

Что произойдёт? Да, автомат защиты прекратит это безобразие и отключит проблемную линию. Но перед этим мы увидим на мультиметре «свободной линии», что напряжение значительно превысит 220 В.

Как раз на этом принципе и построена защита от перекоса фаз – распределение нагрузки.

Ещё раз – перекос фаз возникает в ситуации, когда одна из фаз «перегружена» нагрузкой, а другая «свободна». Те самые весы – на одну чашку мы складываем приборы, включая их один за другим, а вторая чаша весов пустая. Естественно чаша с приборами перевесит пустую.

В реальности для разветвлённой энергосистемы процесс сложнее, поскольку в процессе участвуют промышленные электроприемники, системы уличного освещения, а также реактивная мощность.

Но смысл процесса именно таков – главная задача электрика, особенно доморощенного, такого как мы, правильно спрогнозировать нагрузки на разных участках электросети в квартире или доме, не допуская сосредоточения мощных потребителей в одной линии.

Способы защиты от перекоса фаз

Таким образом, для защиты от перекоса фаз используются следующие способы:

  1. Грамотное проектирование сети с прогнозом нагрузок. Это позволяет сбалансировать потребление так, что фазы участвующие в питание объекта нагружены равномерно.
  2. Использование приборов, позволяющих выравнивать нагрузку по разным фазам в автоматическом режиме, без участия оператора (для больших объектов).
  3. Изменение схемы потребления в уже существующих сетях, если были допущены ошибки проектирования сети или изначально не было возможности оценить мощность потребления на каждом участке.
  4. Изменение мощности потребителей в самых критических ситуациях.

Самым крайним способом исключения перекоса является перераспределение подачи энергии (переключение многоквартирного дома на более нагруженную линию), что позволяет проблемный объект «разбавить» большим количеством потребителей на всех трёх фазах.

Есть и другие способы, но они относятся к промышленному потреблению, мы рассматривать их не будем. И заметим, что грамотный проект (схема) не панацея, электросеть дома или квартиры не догма, она живёт вместе с жильцами и меняется так часто, что за несколько лет может отличаться от исходного состояния.

Главный вывод этой части статьи – прежде чем подключить электропроводку , продумайте, всё ли вы равномерно распределили по разным линиям. Если покупаете очень мощную стиральную машинку – сделайте для неё отдельную линию. Обратитесь к электрикам, которые помогут правильно эту линию включить.

Важно

В конечном итоге несимметрия напряжений во всём подъезде это суммарные перекосы всех потребителей.

Чем равномернее будет потреблять электричество Ваша квартира, тем меньше проблем будет на этаже, а чем больше будет таких этажей, тем стабильнее будет напряжение, тем дольше будут без проблем работать все электроприборы.

Заключение. Зачем в быту нужны знания о перекосах фаз?

Когда «фаза ушла» и случилась авария, сделать, конечно, ничего не получится, всё уже случится. Но, тем не менее, хотя бы общее представление о равновесии электросистемы должно быть, поскольку ряд признаков дадут понимание о том, что возможна аварийная ситуация.

Основной проблемой перекоса фаз в трехфазной сети является перепад напряжений. Токи тоже будут меняться, но напряжение – основной признак, который даст понимание, что, возникают проблемы.

Мы попробовали эти признаки расположить по наглядности , надеемся, это будет полезно, особенно если у Вас квартира в новостройке.

Обрыв нуля в трехфазной сети мы рассматривать не будем, признаков тут нет, обычно это авария, имеющая слишком короткий временной промежуток до появления последствий, но, тем не менее, главное – обесточить свою электросеть. И важно – вынуть вилки из розеток! Итак, что должно вызвать подозрения:

  • Мигание энергосберегающих ламп или ламп дневного света. Даже мерцание должно насторожить, поскольку эти источники света наиболее чувствительны к напряжению;
  • Мигание ламп накаливания, тусклый или наоборот яркий свет. Изменение яркости, которое видно визуально, хороший повод выключить вводной рубильник, чтобы выяснить причину. В этом случае изменения напряжения уже большие;
  • Признаки нештатной работы электроприборов. Это относится к приборам с встроенной защитой – утюги, электрочайники, микроволновка и т.д. Чайник отключается, микроволновка не стартует. Это говорит о том, что напряжение в сети ниже допустимого. Автоматы защиты пока не реагируют, но параметры сети явно изменились;
  • «Тёплый» выключатель, которым включается свет. Вы можете и не увидеть мигания, но, выключая свет, почувствовали, что выключатель теплее стены. Это опасный признак;
  • При включении вилки в розетку видно (слышно) искрение. Не втыкайте вилку. Это уже совсем плохой признак. Возможно тот самый обрыв нуля в трехфазной сети ;
  • Спонтанные отключения автоматов защиты, при отсутствии перегрузок и понимании, что нагрузка в квартире (доме) никак не изменилась. Выражается это при включении освещения или приборов включенных в сеть (тот же чайник). Как правило, в таких сетях хорошо сделана защита, приборы уцелеют, но меры предосторожности не помешают;
  • Искрение, звуки щелчков в щитке и подобные признаки при входе в квартиру должны насторожить больше всего. В таких ситуациях не стоит пытаться включить лампочку – лучше всего узнать у соседей, что у них происходит и вызывать аварийную бригаду энергетиков. То же самое стоит делать, если на площадке в подъезде лампочка сильно мигает или вообще перегорела (особенно с разрушением колбы). Это признаки аварийной ситуации всей электросети, а не только у Вас в квартире.

И, конечно, стоит подумать над тем, чтобы установить прибор, который может в постоянном режиме показывать напряжение: реле, индикатор или другой. Некоторые современные счётчики снабжены такой опцией, что позволяет визуально контролировать входное напряжение.

Такого рода индикатор незаменим, поскольку не все умеют использовать измерительные приборы, да и сложно постоянно вольтметром или мультиметром измерять параметры.

Отличный выход – стабилизатор напряжения для частного дома (в зоне ответственного оборудования), который показывает входное напряжение и то, которое он даёт на приборы.

Ну и никто не отменял здравый смысл, а также понимание того, что приборы никогда не начнут вести себя «как-то не так», особенно все сразу.

Если это происходит – начинайте принимать меры до того, как перекос фаз приведёт к прямым убыткам.

Помните, что энергетики, конечно, несут ответственность за параметры сети, но она ограничена и границами и множеством оговорок, так что в случае такого рода аварий, рассчитывать на компенсацию не приходится.

Источник: http://obelektrike.ru/posts/obryv-nulja-i-perekos-faz/

Перекос фаз в трехфазной сети

Источник: https://electric-220.ru/news/perekos_faz_v_trekhfaznoj_seti/2017-12-14-1405

Содержание:

В трехфазных электрических сетях напряжение должно равномерно распределяться по каждой фазе, с незначительными отклонениями в пределах допустимой нормы.

При несоблюдении этого условия возникает перекос фаз в трехфазной сети, способный вызвать серьезные негативные последствия.

В промышленности данное явление приводит к значительному снижению мощности электродвигателей, трансформаторов и другого оборудования.

В быту из-за перекоса возникают неисправности бытовой техники и прочих потребителей. Для того чтобы предотвратить подобные ситуации, необходимо хорошо разбираться в сути этого явления.

Причины возникновения

В качестве причины перекоса рассматриваются различные факторы, однако, по общему мнению, специалистов, чаще всего перекос возникает из-за неравномерного и неправильного распределения нагрузки в фазах внутренних электрических сетей. Это означает, что работа одной или двух фаз осуществляется с перегрузкой, а другие фазы в это время находятся под значительно меньшей нагрузкой.

Нередки случаи, когда однофазные потребители оказываются на одной фазе. В результате, причиной перекоса становится большое количество бытовой техники, включенной одновременно.

Основными признаками подобного явления считается заметное падение мощности электрических приборов, а иногда их работа вообще прекращается.

Совет

Обычные лампы накаливания начинают гореть очень тускло, а у люминесцентных ламп начинается мерцание.

Главная опасность таких ситуаций заключается в некорректной работе бытовых приборов и оборудования. Больше всего страдают электродвигатели, установленные во многих устройствах. В некоторых случаях причиной перекоса является обрыв фазы, вызывающий значительное увеличение токов в других фазах. Такой режим работы приводит к перегрузкам оборудования и считается аварийным.

Кроме того, перекос может возникнуть в результате короткого замыкания фазы и нулевого провода. В такой ситуации автоматический выключатель выходит из строя, а между нулем и остальными фазами резко увеличивается напряжение.

Защита и устранение

Для того чтобы предотвратить возникновение перекоса и обеспечить нормальную эксплуатацию трехфазной сети, необходимо привести напряжение на каждой фазе в соответствие с номиналом.

Это можно сделать с помощью специальных приборов и устройств, например, используя стабилизатор напряжения. Как правило, это трехфазное устройство, состоящее из трех однофазных приборов, используемое в условиях промышленного производства.

Тем не менее, стабилизаторы не способны устранять перекосы, они лишь выравнивают напряжение в каждой фазе.

Иногда они сами становятся причиной неравномерного распределения электроэнергии. Поэтому для борьбы с перекосами разработаны специальные технологии, способные выровнять напряжение между фазами. Среди них наибольшее распространение получили:

  • Использование автоматических устройств, выравнивающих нагрузки.
  • Проектирование электроснабжения на объекте с учетом предполагаемых нагрузок. Эффективное устранение перекоса фаз в трехфазной сети возможно путем тщательного планирования мощностей и расчетов возможных нагрузок с учетом их правильного распределения по фазам.
  • Возможность изменения электрических схем с учетом добавленных мощностей потребителей.
  • Подключение специальных устройств, контролирующих фазное напряжение и отключающих питание в случае перекоса.

В процессе эксплуатации нередко приходится измерять перекос фаз в трехфазной сети. Для этого используются специальные тестеры и по итогам измерений однофазные нагрузки перебрасываются с перегруженных фаз на менее загруженные. Ток на каждой фазе должен тщательно измеряться, чтобы при перераспределении токи каждой фазы были примерно одинаковые.

Существуют нормативы, определяющие допустимый перекос и нормы несимметрии. Так, разница нагрузок в вводно-распределительных устройствах между фазами не должна превышать 15%, а в распределительных щитах – 30%.

Использование симметрирующего трансформатора

Одним из наиболее эффективных средств предотвращения перекоса фаз считается симметрирующий трансформатор, способный поддерживать установленное значение фазного напряжения. Он производит выравнивание не на отдельной фазе, а обеспечивает симметрию всех имеющихся фаз. То есть, выравнивается вся трехфазная сеть.

Это высокотехнологичное устройство работает даже при 100-процентных перекосах напряжения и устраняет их в самом широком диапазоне, независимо от причин возникновения. Прибор равномерно распределяет потребителей между фазами, поддерживает заданное значение напряжения. Преобразует токи трехфазных сетей под конкретные условия эксплуатации, выполняет ряд других важных функций.

Последствия

Всем известно, что перекосы фаз могут вызвать серьезные негативные последствия для трехфазной сети.

Заметно увеличивается энергопотребление, электроприборы и оборудование начинает работать неправильно, в их работе происходят сбои, отключения, отказы, перегорают предохранители, изнашивается изоляция.

В трехфазных автономных источниках под влиянием неравномерной загрузки фаз возникают механические повреждения подшипников вала и подшипниковых щитов генератора вместе с приводным двигателем.

Все негативные последствия получают довольно широкое распространение и охватывают многие сферы деятельности:

  • Все электроприемники, в том числе приборы, оборудование и другие в значительной степени подвержены повреждениям, отказам, увеличенному износу, снижению сроков эксплуатации.
  • Источники электроэнергии – генераторы также попадают под воздействие перекоса. У них резко возрастает расход топлива и масла, жидкости в системе охлаждения. Повреждается генератор, увеличивается потребление электричества из общей сети.
  • Для потребителей становится опасен электротравматизм, возгорание проводки или приборов. Возрастают расходы, связанные с необходимостью ликвидации негативных последствий.

Что такое перекос фаз, как устранить, в чем кроется опасность?

Что такое перекос фаз, как устранить, в чем кроется опасность?

Наверняка некоторые из вас наблюдали картину, когда напряжение в сети сильно скачет, слишком низкое или наоборот, составляет 250 и более вольт. Перекос фаз — это когда одна из линий нагружена больше, чем вторая. Результатом этого являются «прыжки» напряжения, когда одна из фаз вдруг становится слишком перегруженной или наоборот.

Перекос фаз, это очень опасно. В первую очередь для работы оборудования с электродвигателями: холодильники, кондиционеры и т. д. Кроме этого, данное явление способно повлечь за собой выход из строя и другой техники, которая капризна к сильным перепадам напряжения.

Что такое перекос фаз и в чем кроется опасность?

Перекос фаз может привести к возникновению следующих проблем:

  • Росту потребления электроэнергии;
  • К выходу из строя обмотки электродвигателей;
  • К выходу из строя некоторых энергопотребителей;
  • Стать причиной увеличения износа техники;
  • Ведет к уменьшению срока эксплуатации электроприборов.

Перекос фаз возникает по разным причинам. Самой распространённой является неграмотное и неравномерное распределение нагрузки в трёхфазовой сети. При этом одна или две фазы эксплуатируются с чрезмерно большой нагрузкой, а третья фаза нагружена незначительно. Здесь-то мы и может наблюдать скачки высокого напряжения, которое составляет более 250 Вольт.

Вообще, высокое напряжение в сети, свыше 250 Вольт, является поводом задуматься именно о перекосе фаз. И если у вас стабильно несколько раз в день отключается реле защиты (на 260 Вольт верхний предел), то есть серьёзный повод обратиться в РЭС.

Ярким примером перекоса фаз может служить подключение сразу нескольких мощных электроприборов. При этом по одной из фаз будет слишком большая просадка напряжения, а на другой, при выключении электроприборов, слишком большой скачок электричества, из-за чего и будет выбивать реле защиты или стабилизатор напряжения.

Как устранить перекос фаз

Перекос фаз нужно устранять на трансформаторной подстанции, а сделать это самостоятельно нельзя. Можно обеспечить стабильное напряжение в домашней сети, если использовать симметрирующий трансформатор. Он позволяет выровнять напряжение на отдельной фазе или же сразу на всех.

Следует знать, что допустимой нормой перекоса фаз считается величина нагрузок между каждой фазой не более чем в 15%. Все, что выше уже является перекосом фаз и должно немедленно устраняться электриками на подстанциях.

К сожалению, самостоятельно выровнять перекос фаз не получится. Однако можно использовать всевозможные способы защиты, для того, чтобы защитить технику от преждевременного выхода из строя. Одной из таких защит, является стабилизатор, который поможет сгладить скачки напряжения в электросети.

О плюсах и минусах стабилизаторов напряжения можно прочесть в этой статье сайта elektriksam.ru

Что такое перекос фаз, как исправить эту проблему.

Одним из выдающихся благ цивилизации является электричество. Благодаря тому, что это открытие в наше время так распространено, жизнь общества в целом, и каждого человека в отдельности, значительно упростилась и стала более комфортной.

Вместе с тем, время от времени, в электросети могут возникать трудности, требующие решения. Одной из проблем многих частных владений, общественных заведений и производственных мощностей является перекос фаз.

Что это такое, и как его исправить?

Что такое перекос фаз: Перекос фаз – это состояние электрической сети, при котором одна или две из трех фаз нагружены сильнее, чем остальные. При этом наблюдается значительное снижение мощности трехфазных электрических приборов, преимущественно двигателей и трансформаторов. Но это, что касается промышленных сетей.

В бытовых условиях перекос наблюдается более выражено, при этом может даже возникать риск выхода из строя электроприборов с преобладающей реактивной нагрузкой. К таким относятся компрессоры холодильников, вентиляторы, приборы с простыми силовыми трансформаторными источниками питания. То все то, что не имеет четкой гальванической развязки с сетью и схему защиты от перенапряжений и просадок.

Следует отметить, что существуют разные виды перекоса в электросети. В зависимости от типа проблемы, выбирается наиболее оптимальный способ ее решения. Остановимся на наиболее распространенной и, в то же время, самой простой ситуации – перекос фаз, вызванный неравномерным распределением внутрисетевой нагрузки.

Большинство сетей являются трехфазными. Если в них нагрузка распределена неравномерно, в следствии чего одна или две фазы перегружены, а третья (или же две) недогружена, происходит перекос. На практике это может выглядеть следующим образом: подавляющее большинство однофазных нагрузок питаются от одной фазы, тогда как остальные могут быть вовсе не задействованы либо использоваться по минимуму.

Наиболее часто встречаются ситуации неисправности, в которых при подключении электропитания к трансформаторам не учитывается их потребляемая мощность. Таким образом, бывает, что физически фазы имеют приблизительно одинаковое количество подключений, но вот потребляемая этими подключениями мощность существенно отличается.

Сосредоточие на одной из фаз приборов с высоким потреблением электричества неизбежно вызывает неравномерную нагрузку между фазами. То же самое можно сказать и об общественных и промышленных объектах – во всех случаях очень важно следить за равномерным распределением нагрузки между имеющимися фазами, это позволит предотвратить возникновение сложностей.

Что же собой представляет перекос фаз с точки зрения электротехники?

Трехфазную электрическую сеть в идеале можно представить равносторонним треугольником с нейтральной точкой в его середине. Он отражает работу силового трансформатора на подстанции, которая установлена в каждом микрорайоне города и предназначена для равномерного распределения электричества по всем потребителям. Стороны этого треугольника – это векторные линии, соединяющие его вершины. Обозначив вершины точками A, B, C и нейтралью N, можно составить таблицу напряжений и зависимость между ними:

AB=BC=CA=380 В;

AN=BN=CN=220 В.

При этом напряжения AB, BC, CA в 1,73 раза больше напряжений AN, BN, CN.

Идеальный трехфазный генератор, который обычно используется для питания всех бытовых приборов и промышленных сетей, должен обеспечивать эти уровни напряжений в широком диапазоне нагрузок.

Чем опасен перекос фаз.

Во время перекоса наблюдается неравномерная нагрузка на фазы – на задействованной напряжение падает ниже нормы, тогда как недогруженная фаза испытывает скачок напряжения, превышающий допустимые показатели. Результаты такого положения могут быть плачевными для многих электроприборов. Это вызвано тем, что отдельный прибор может либо недополучать требующейся мощности, либо получать ее в избытке. Особенно такое положение опасно для приборов, потребляющих много энергии: двигателей для ворот, насосов, оборудования, использующегося в бассейнах и при поливе.

Вернемся: как исправит проблему с перекосом фаз?

Предотвратить негативные последствия для оборудования от перекоса между фазами позволяет трехфазный автомат. Если мощность в одной фазе превышаю предусмотренную нагрузку, автоматически отключается электричество во всем доме/линии. Это не является решением ситуации, потому что лишь подобный подход не позволяет использовать всю доступную мощность. К примеру, при трехфазном автомате на 16А, при превышении нагрузки на одной фазе 16А – система отключится, но это не позволяет полностью использовать всю возможную мощность 48А (16Х3).

Идеальным вариантом является планирование всех мощностей на начальном этапе проектирования здания, таким образом можно равномерно распределить напряжение между всеми фазами, предотвратив тем самым перекос. Если же здание уже сдано в эксплуатацию – можно замерить напряжение на каждой фазе в отдельности, для этого используется вольтметр, и при необходимости осуществить перераспределение.

Реальные рабочие условия

При стандартном распределении на дом с тремя подъездами обычно одна фаза используется для питания одного подъезда, вторая для второго и третья, соответственно, для третьего. Это позволяет равномерно нагрузить развязывающий понижающий трансформатор на подстанции и обеспечить ему оптимальные режимы работы. Но это справедливо, только если нагрузка примерно одинакова, притом как в активной, так и реактивной составляющей.

Но, к сожалению, потребителю не объяснишь, что необходимо придерживаться норм расхода электричества, а если рассматривать сельскую местность, то многие умельцы в сеть подключают очень большую активную нагрузку, что существенно ухудшает условия работы трансформатора на подстанции. Через одно плечо начинает течь больший ток, чем через остальные, тем самым разогревая магнитопровод, а это приводит к возникновению в нем паразитных вихревых токов, нарушающих режим работы источника еще сильнее.

Пишите комментарии,дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Поделиться ссылкой:

Похожее

Распределение нагрузки по фазам. Расчет трехфазной сети

Вам необходимо сделать трехфазное питание для дома? О том, как это сделать, читайте описание ниже.

Прежде всего, нужно провести расчет трехфазной цепи.

Порядок распределения нагрузки по фазам

1. Симметрично распределить нагрузку на три фазы. Мощность на каждой фазе будет равна мощности трехфазной нагрузки, кратная трем.
2. Рассчитать нагрузку на каждую фазу.
3. В результате, нужно добиться того, чтобы на каждой фазе, в момент полной загрузки сети, была примерно одинаковая мощность.
4. Определить ток на самой загруженной фазе. После этого необходимо проверить, чтобы при максимальной мощности ток был меньше тока срабатывания входного трехфазного автомата.

Расчет нагрузки по фазам

Допустим, у вас имеется трехфазный двигатель мощностью 1500 Вт. Соответственно, на каждую фазу приходится по 500 Вт активной мощности. Предположим, что cos фи=0,8. Полная мощность равна: 500/0,8. Получается, что 625 Вт нужно распределить на каждую фазу.

Кроме двигателя к фазам, вероятно, подключены и другие потребители. Например, кроме 500 Вт подключается освещение на 200 Вт и конвектор на 300 Вт. Все мощности суммируются по горизонтали. Реактивная мощность остается без изменений (если не используются нагрузки с реактивной составляющей).

По теореме Пифагора можно определить реактивную мощность.

Но на практике это довольно сложные расчеты. Поэтому, это рассчитывается приближенно: 625 Вт + 500 Вт = 1150 Вт. Эта сумма получается больше точных расчетов по формуле, но страшного ничего нет. Расчет произведен с небольшим запасом.

На практике для приблизительных расчетов достаточно сложить все полные мощности и по ним определить мощность автомата для требуемой нагрузки.

Разводка однофазного щитка

Например, к щиту подключаются — плита (варочная панель) 7,2 кВт; духовой шкаф 4,3 кВт; кухня 5,5 кВт; комната 3,5 кВт; ванная 3,5 кВт; двигатель 3-фазный 1,5 кВт; розетка 3-фазная.

Рассмотрим такую ситуацию: у вас была однофазная сеть и теперь дали разрешение на проведение трехфазной. В этом случае нужно все потребители распределить по фазам.

Самый мощный прибор это варочная панель (плита) 7,2 кВт, которую нужно посадить на первую фазу. На вторую подключить духовой шкаф и комнату. В итоге получается 7,8 кВт. А на третью фазу подключить кухню и ванную комнату. Общая мощность получится 9 кВт. Прибавим еще мощность двигателя, разделив ее на каждую фазу одинаково. В итоге получилось: на первой фазе 7,8 кВт; на второй фазе 9,4 кВт; на третьей — 9,6 кВт. Приблизительно распределили нагрузку по фазам по возможности равномерно. Посмотрим, какой в результате получился щиток.

  • Итак, трехфазный щиток состоит из входного автомата и трехфазного счетчика. Далее, на первую фазу подключен автомат 40 Ампер, через который питается плита мощностью 7,2 кВт. Если просуммировать с двигателем, будет 7,8 кВт.
  • Ко второй фазе через автомат 25 Ампер подключен духовой шкаф и микроволновая печь. Через второй автомат 16 Ампер подсоединена комната проектной мощностью 3,5 кВт. Общая мощность получилась 8,4 кВт.
  • К третьей фазе подключен ДИФ автомат и обычный автомат. Через обычный автомат на 25 Ампер подключена кухня проектной мощностью 5,5 кВт. Через ДИФ автомат подключена ванная комната проектной мощностью 3,5 кВт. Общая мощность на третью фазу получается 9,6 кВт.
Распределение полной мощности двигателя на три фазы по 0,6 кВт:
  • первая фаза: 7,2+0,6=7,8 кВт;
  • вторая фаза: 4,3+3,5+0,6=8,4 кВт;
  • третья фаза: 5,5+3,5+0,6=9,6 кВт.

По всем трем фазам максимальная мощность составляет 9,6 кВт. Если проектная мощность 8,8 кВт и входной автомат на 40 Ампер, а у нас проектная мощность на одной из трех фаз 9,6 кВт, то такой автомат не выдержит нагрузку. Если третью фазу загрузить на полную мощность, то этот автомат отключится. Поэтому, входной автомат нужно ставить на 50 Ампер.

Из этого примера видно, что при небольшом количестве потребителей можно полноценно загрузить трехфазную цепь. Иногда возникает необходимость подключить кондиционеры, электрический теплый пол и другие потребители высокой мощности.

Прежде чем покупать электрическое оборудование, надо рассчитать потребляемую мощность. Потянет ли входной автомат и разрешенный лимит по току на электроснабжение дома?

После подсчета всех нагрузок по фазам можно определить, какой мощности нужен входной автомат. Узнать в энергосбыте, какой резерв по току вам дадут. Возможно, разрешение дадут только на 25 Ампер. Придется покупать приборы из расчета на эти 25 Ампер. На фазу дается только 5,5 кВт.

В этом случае, что делать с электроплитой на 7,2 кВт? Современные электроплиты и варочные панели имеют подключение к двухфазной цепи, а иногда и к трехфазной. Кроме земляного и нулевого вывода имеется L1 и L2 (иногда L1, L2, L3). В первом случае для подключения двухфазной цепи, а во втором – подключение трехфазной цепи. Такие мощные нагрузки предусмотрены специально, чтобы можно было их распределить.

Когда делаете проект и запрашиваете проектную мощность, пытайтесь получить разрешение на мощность с запасом.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Поделиться ссылкой:

Похожее

Дисбаланс напряжения в 3-фазных системах

В рамках моей текущей серии электрических диагностик систем кондиционирования воздуха в этой публикации мы обсудим разбаланс напряжений в 3-фазных системах.

Большинство технических специалистов знают Низкое напряжение вызывает проблемы с двигателями, компрессорами и другими компонентами в системе HVAC. Поскольку низкое напряжение может привести к увеличению силы тока и повышению температуры двигателя, я подумал, что было бы неплохо написать сообщение о проблемах, вызванных дисбалансом напряжения в трехфазных системах.

В то время как низкое напряжение всегда является проблемой, дисбаланс напряжения является более тонкой проблемой. Это состояние, при котором напряжение основных трехфазных компонентов существенно различается между тремя фазами. Когда дисбаланс напряжений слишком велик , может иметь место чрезмерная температура компонентов и даже выгорание.

Многие компрессоры и двигатели заменяются без определения причины неисправности. Часто причина в результате дисбаланса напряжения в 3-фазном питании.

Так что же такое дисбаланс напряжений ? Трехфазное питание состоит из 3 «горячих» проводов, каждый из которых имеет полное линейное напряжение по сравнению с двумя другими. Эти три напряжения должны быть почти, если не точно, равными друг другу. Если напряжения слишком сильно не сбалансированы, компоненты (например, двигатели и компрессоры) начнут перегреваться. Двигатели и компрессоры, работающие со слишком большим дисбалансом напряжений, могут продолжать работать, но при повышенной температуре обмотки двигателя. Это, в свою очередь, сократит срок службы этого компонента.Обычно считается, что максимально допустимый дисбаланс напряжений составляет два процента.

Неуравновешенность напряжений может значительно повысить температуру обмотки двигателя. Температура обмотки увеличивается в 2 раза квадратом процента дисбаланса, как показано в следующей таблице:

Как видно из таблицы, небольшой дисбаланс напряжения приведет к тому, что обмотки двигателя будут работать при значительно повышенных температурах по сравнению с нормальными рабочими температурами, что сокращает срок службы двигателя.

Итак, зная, что дисбаланс напряжения может привести к перегреву двигателей и, в конечном итоге, отказу, как мы можем проверить, есть ли у нас дисбаланс напряжения в нашей системе.

Неуравновешенность напряжений может возникнуть в любом месте электрической цепи компонента. Это может произойти только на двигателе, ниже двигателя на контакторе или пускателе, при отключении или при вводе сервиса в пространство. Например, если дисбаланс существует на стороне нагрузки контактора или пускателя, но отсутствует на стороне линии контактора или пускателя, источником дисбаланса является контактор или пускатель.Падение напряжения на контактах указывает на плохое контактное соединение. Это устраняется заменой контактора или стартера и сохранением двигателя или компрессора.

Чтобы фактически проверить дисбаланс напряжений, необходимо провести измерения напряжения на ветвях A, B и C в нескольких местах, чтобы определить, где существует дисбаланс напряжений. Это фактическое напряжение необходимо измерить с помощью хорошего цифрового вольтметра, чтобы получить точные показания (см. Иллюстрацию ниже).

После получения этих показаний вы можете рассчитать дисбаланс напряжений по следующей формуле:

900 24% дисбаланса напряжений = максимальное отклонение от среднего ÷ среднего × 100

Давайте рассмотрим пример

Если ваши показания напряжения составляли 221 вольт от A до B, 224 вольт от A до C и 215 вольт от B до C, первое, что мы делаем, это складываем эти 3 значения вместе и делим на 3, чтобы получить среднее значение напряжения для этой точки.221 + 224 + 215 = 660 ÷ 3 = 220 вольт. Максимальное отклонение от среднего — это измеренное значение напряжения, наиболее удаленное от среднего значения . Разница между 221 и 220 составляет 1 вольт. Разница между 224 и 220 составляет 4 вольта. Разница между 215 и 220 составляет 5 вольт. Таким образом, максимальное отклонение в этом примере составляет 5 вольт. Теперь используем уравнение:

% дисбаланса напряжений = 5 В ÷ 220 В = 0,0227 × 100 = 2,27%

Несимметрия напряжения здесь означает, что двигатель будет работать 10.На 31% горячее , чем обычно, и срок службы двигателя будет соответственно сокращен, если вернуться к таблице выше.

Итак, что могло вызвать этот дисбаланс напряжений? Как я уже говорил ранее в этом посте, это может быть ВЕЗДЕ в цепи. Это могло быть плохое соединение проводки. Такие соединения могут быть на главной силовой панели, разъединителе, контакторе (на линии или на стороне нагрузки) на двигателе или в любой другой точке 3-фазной системы. Плохие контакты являются точкой электрического сопротивления и вызывают падение напряжения.Провода разных размеров, особенно на длинных участках, вызывают падение напряжения. Если 3-фазные провода не имеют одинакового размера (калибра), на меньшем проводе (-ах) будет падать большее напряжение, вызывая дисбаланс. И, наконец, это может быть сам двигатель или компрессор. Частичное замыкание обмотки на обмотку может вызвать дисбаланс напряжения. Если вы помните, при отключении любого трехфазного двигателя все обмотки должны быть одинаковыми.

Помните об этом тесте при устранении неполадок и отказов компонентов в 3-фазных устройствах.Многие двигатели и компрессоры вышли из строя из-за этого предотвратимого состояния без необходимости. Проверка дисбаланса напряжений должна быть регулярной частью обслуживания 3-фазных устройств. Это особенно важно, если у вас есть двигатель или компрессор, которые вышли из строя, чтобы у нового не было той же проблемы в будущем!

Нравится:

Нравится Загрузка …

Связанные

О компании yorkcentraltechtalk

Я проработал в сфере HVAC большую часть своей жизни.Я проработал 25 лет на подрядчиков по всему, от бытовых котлов до крупных коммерческих котлов и электрических горелок. Последние 23 с лишним года я работал в York International UPG Division (подразделение Johnson Controls) в качестве менеджера службы технической поддержки / обслуживания, но сейчас я на пенсии. Одной из моих целей всегда было «обучить» дилеров и подрядчиков. Причина создания этого блога заключалась в том, чтобы поделиться некоторыми знаниями, мыслями, идеями и т. Д. Со всеми, кто нашел время, чтобы их прочитать. Содержание этого блога является моим собственным мнением, мыслями, опытом и никоим образом не должно толковаться как содержание Johnson Controls York UPG.Я надеюсь, ты найдешь здесь помощь. Я всегда приветствую комментарии и предложения для публикаций и сделаю все возможное, чтобы ответить на любые мысли, вопросы или темы, о которых вы, возможно, захотите услышать. Спасибо, что нашли время прочитать мои сообщения! Майк Бишоп

Влияние несбалансированной электрической нагрузки (Часть: 1)

Введение:

  • Как правило, трехфазный баланс является идеальной ситуацией для энергосистемы и качества поставляемой электроэнергии.Однако несимметрия напряжения может ухудшить качество электроэнергии на уровне распределения.
  • Напряжения достаточно хорошо сбалансированы на уровне генератора и передачи. но напряжения на уровне использования могут стать несбалансированными из-за неравных сопротивлений системы, неравномерного распределения однофазных нагрузок, асимметричного трехфазного оборудования и устройств (например, трехфазных трансформаторов с разомкнутым соединением звезда-открытый треугольник), несбалансированных повреждений , плохое соединение с электрическими разъемами.
  • Чрезмерный уровень несимметрии напряжения может серьезно повлиять на качество электроэнергии. В системе уровень несимметрии тока в несколько раз превышает уровень несимметрии напряжения. Такой дисбаланс линейных токов может привести к чрезмерным потерям в линии, потерям в статоре и роторе двигателя. Неисправность реле, несимметричное измерение счетчиков. Несимметрия напряжений также влияет на системы привода с регулируемой скоростью переменного тока, в которых преобразователь на входе состоит из трехфазных выпрямительных систем
  • Балансировка фаз очень важна и может использоваться для снижения потерь в распределительном фидере и повышения стабильности и безопасности системы

Что такое небаланс напряжения

  • Любое отклонение формы волны напряжения и тока от идеальной синусоидальной формы с точки зрения величины или фазового сдвига называется дисбалансом
  • В идеальных условиях фазы источника питания разнесены на 120 градусов по фазовому углу, и величина их пиков должна быть одинаковой.На уровне распределения несовершенная нагрузка вызывает дисбаланс токов, который перемещается к трансформатору и вызывает дисбаланс трехфазного напряжения. Даже незначительный дисбаланс напряжения на уровне трансформатора значительно искажает форму кривой тока на всех подключенных к нему нагрузках
  • Если трехфазные напряжения имеют одинаковую величину и сдвиг фаз точно на 120 градусов, то трехфазное напряжение называется сбалансированным, в противном случае оно несимметрично.
  • В сбалансированной системе нет напряжений обратной и нулевой последовательности, существуют только компоненты прямой последовательности сбалансированного трехфазного напряжения.Напротив, если система не сбалансирована, в системе могут присутствовать компоненты обратной последовательности или компоненты нулевой последовательности, или и то, и другое.

Причины несимметрии напряжения

  • Переключение трехфазных тяжелых нагрузок приводит к скачкам тока и напряжения, которые вызывают дисбаланс в системе.
  • Неравные импедансы в системе передачи или распределения энергии вызывают дифференцирование тока в трех фазах.
  • Любая большая однофазная нагрузка или несколько небольших нагрузок, подключенных только к одной фазе, вызывают больший ток, протекающий от этой конкретной фазы, вызывая падение напряжения на линии
  • При продолжительной работе электродвигателей в различных средах вызывает деградацию обмоток ротора и статора.Это ухудшение обычно различается в разных фазах, влияя как на величину, так и на фазовый угол формы волны тока
  • Трехфазное оборудование, такое как асинхронный двигатель и трансформатор, с разбалансировкой обмоток. Если реактивное сопротивление трех фаз не одинаково, это приведет к изменению тока, протекающему в трех фазах, и выдаст системный дисбаланс.
  • Утечка тока из любой фазы через подшипники или корпус двигателя временами создает плавающее заземление, вызывая колебания тока.
  • Несбалансированное входящее электроснабжение
  • Неравные настройки отводов трансформатора
  • Большой однофазный распределительный трансформатор в системе
  • Обрыв фазы на первичной обмотке трехфазного трансформатора в распределительной системе
  • Неисправности или заземление в силовом трансформаторе
  • Батареи трансформаторов с открытым треугольником
  • Перегорел предохранитель на 3-фазной батарее конденсаторов для повышения коэффициента мощности
  • Неравномерный импеданс в жилах электропроводки
  • Несбалансированное распределение однофазных нагрузок, таких как освещение
  • Тяжелые реактивные однофазные нагрузки, например сварочные аппараты

Как рассчитать дисбаланс

  • 900 24% несимметрии напряжения = 100x (максимальное отклонение от среднего напряжения) / (среднее напряжение)
  • Пример: Междуфазное напряжение системы составляет 430 В, 435 В и 400 В.
  • Среднее напряжение = (430 + 435 + 400) / 3 = 421 В.
  • Максимальное отклонение напряжения от среднего напряжения = 435-421 = 14В
  • % дисбаланса напряжения = 14 × 100/421 = 3,32%
  • Допустимый предел в виде процента тока обратной последовательности по отношению к току прямой последовательности в идеале составляет 1,3%, но приемлемо до 2%.

Влияние несимметрии напряжения на систему и оборудование:

  • Факторы дисбаланса напряжений можно разделить на две категории: нормальные факторы и аномальные факторы.
  • Неуравновешенность напряжений из-за нормальных факторов, таких как однофазные нагрузки и блоки трехфазных трансформаторов с разомкнутыми соединениями звезда-открытый треугольник, обычно можно уменьшить, правильно спроектировав систему и установив подходящее оборудование и устройства.
  • К аномальным факторам относятся последовательные и шунтирующие замыкания цепей, плохие электрические контакты разъемов или переключателей, асимметричный выход оборудования или компонентов из строя, асинхронное перегорание трехфазных предохранителей, однофазная работа двигателей и т. Д.Вышеупомянутые аномальные факторы могут привести к критическому повреждению систем и оборудования.
  • Увеличьте обратный ток нейтрали

  • Неравномерное распределение нагрузок между тремя фазами системы вызывает протекание несбалансированных токов в системе, которые вызывают несбалансированные падения напряжения в электрических линиях. Это увеличение тока нейтрали, которое вызывает потери в линии.
  • Если система имеет сбалансированную фазу, то нейтральный ток в системе будет меньше.Мы можем сэкономить от тысяч до миллионов рупий, уменьшив потери за счет уменьшения нейтрального тока в системе
  • Таким образом, дисбаланс в распределительной сети НН приводит к увеличению тока нейтрали.
  • Сдвиг напряжения или тока

  • Если система несбалансированная, в системе могут присутствовать компоненты обратной последовательности или компоненты нулевой последовательности, или и то, и другое.
  • Сопротивление для тока обратной последовательности составляет 1/6 от тока прямой последовательности, что означает, что небольшой дисбаланс в форме волны напряжения приведет к увеличению тока и, следовательно, потерь.
  • Чрезмерная потеря мощности

  • Напряжение небаланса всегда вызывает дополнительную потерю мощности в системе. Чем выше дисбаланс напряжений, тем больше рассеивается мощность, тем выше счета за электроэнергию.
  • Несбалансированность тока увеличивает потери I2R
  • Давайте посмотрим на простое упражнение: сбалансированная система Ток нагрузки в фазе R = 200 А, фазе Y = 200 А, фазе B = 200 А и в системе дисбаланса Ток нагрузки в фазе R = 300 А, фазе Y = 200 А, фазе B = 100A, учтите, что сопротивление линии одинаково для всех фаз и для всех фаз.
  • в сбалансированной системе:
  • Общий ток нагрузки = R + Y + B = 200 + 200 + 200 =
  • Общие потери = R (I2R) + Y (I2R) + B (I2R) = 40000 + 40000 + 40000 = 120 000 Вт.
  • в несбалансированной системе:
  • Общий ток нагрузки = R + Y + B = 300 + 200 + 100 =
  • Общие потери = R (I2R) + Y (I2R) + B (I2R) =

    + 40000 + 10000 = 140 000 Вт.

  • Здесь общий ток нагрузки одинаков в обоих случаях, но потери в системе дисбаланса больше, чем в системе балансировки.
  • Дисбаланс в 1% допустим, так как он не влияет на кабель.Но выше 1% он увеличивается линейно, а при 4% снижение рейтинга составляет 20%. Это означает, что 20% тока, протекающего по кабелю, будут непродуктивными, и, таким образом, потери в меди в кабеле увеличатся на 25% при 4% небаланса.
  • Неисправность двигателя

  • Как правило, трехфазный двигатель питается от сбалансированного трехфазного напряжения только с составляющей прямой последовательности, которая создает только крутящий момент прямой последовательности.
  • Сокращение срока службы двигателя за счет нагрева: Дополнительные потери из-за дисбаланса напряжений будут нагревать обмотки двигателя, увеличение рабочей температуры двигателя приведет к нарушению изоляции обмотки и, в конечном итоге, может привести к отказу двигателя.Это также может привести к разложению смазки или масла в подшипнике и снижению номинальных характеристик обмоток двигателя. Несимметрия напряжения 3% увеличивает нагрев на 20% для асинхронного двигателя.
  • Срок службы изоляции обмотки сокращается вдвое на каждые 10 ° C повышения рабочей температуры
  • Вибрация двигателя: Напряжение обратной последовательности, вызванное дисбалансом напряжений, создает противоположный крутящий момент и приводит к вибрации и шуму двигателя. Сильный дисбаланс напряжения может даже привести к поломке двигателя.
  • Уменьшение срока службы двигателя: Тепло, выделяемое небалансным напряжением, также может сократить срок службы двигателя
  • Снижение КПД: В асинхронных двигателях, подключенных к несбалансированному питанию, токи обратной последовательности протекают вместе с током прямой последовательности, что приводит к уменьшению процента производительного тока и низкому КПД двигателя. Любой дисбаланс выше 3% снижает КПД двигателя.
КПД двигателя%
Нагрузка двигателя% полная Несимметрия напряжения
Номинал 1% 2.5%
100 94,4 94,4 93,0
75 95,2 95,1 93,9
50 96,1 95,5 94,1
  • Предположим, что испытанный двигатель мощностью 100 л.с. был полностью загружен и работал 800 часов в год при несимметричном напряжении 2,5%. С ценой на электроэнергию 23Rs / кВтч. расчет годовой экономии энергии и затрат составляет
  • с нормальным напряжением
  • Годовое потребление энергии = 100HPx0.746X800X (100 / 94,4) x23 = 1454068Rs
  • с несимметричным напряжением
  • Годовое потребление энергии = 100 л.с.x0,746X800X (100/93) x23 = 1475957Rs
  • Годовая экономия затрат = 1475957-1454068 = 21889
  • рупий
  • Общая экономия может быть намного больше, поскольку несимметричное напряжение питания может приводить в действие многочисленные двигатели и другое электрическое оборудование.
  • Отключение двигателя: Ток обратной последовательности фаз, протекающий из-за дисбаланса, может вызвать неисправность в двигателе, что приведет к отключению или необратимому повреждению электрического оборудования
  • Уменьшение мощности: Для двигателей дисбаланс в 5% приведет к снижению мощности на 25%.
  • Отключение приводов VFD: Приводы переменной частоты или скорости, подключенные к несбалансированной системе, могут отключиться. VFD рассматривает дисбаланс высокого уровня как обрыв фазы и может отключиться при замыкании на землю или обрыве фазы.

Нравится:

Нравится Загрузка …

Связанные

О Jignesh.Parmar (B.E, Mtech, MIE, FIE, CEng)
Джигнеш Пармар завершил M.Tech (управление энергосистемой), B.E (электричество). Он является членом Института инженеров (MIE) и CEng, Индия. Членский номер: M-1473586. Он имеет более чем 16-летний опыт работы в сфере передачи, распределения, обнаружения кражи электроэнергии, технического обслуживания и электротехнических проектов (планирование-проектирование-технический обзор-координация-выполнение). В настоящее время он является сотрудником одной из ведущих бизнес-групп в качестве заместителя менеджера в Ахмедабаде, Индия. Он опубликовал ряд технических статей в журналах «Электрическое зеркало», «Электрическая Индия», «Освещение Индии», «Умная энергия», «Industrial Electrix» (Австралийские публикации в области энергетики).Он является внештатным программистом Advance Excel и разрабатывает полезные базовые электрические программы Excel в соответствии с кодами IS, NEC, IEC, IEEE. Он технический блоггер и знает английский, хинди, гуджарати, французский языки. Он хочет поделиться своим опытом и знаниями и помочь техническим энтузиастам найти подходящие решения и обновить свои знания по различным инженерным темам.

Дисбаланс IQ в передатчике

Типичные системы связи используют модуляцию I-Q, и мы обсуждали необходимость в модуляции I-Q в прошлом.В этом посте давайте разберемся с дисбалансом I-Q и его влиянием на передаваемый сигнал.

Модуляция и демодуляция I-Q

Типичная модуляция и демодуляция I-Q показаны на рисунке ниже. Учтите, что передаваемая информация представляет собой сложный сигнал,

.

На выходе передатчика I-Q модуляции,

Рисунок: Передатчик и приемник с модуляцией I-Q

В передатчике информация передается и отправляется.

В приемнике мы умножаем сигнал на и с последующей фильтрацией нижних частот (ФНЧ) для извлечения, и соответственно.

От тригонометрических отождествлений,
,

,

.

Математика для извлечения информации в приемнике выглядит следующим образом:

.

Аналогично Q-arm,

.

Игнорируя коэффициент масштабирования 1/2, мы можем восстановить как и.

Дисбаланс фаз при IQ-модуляции

В идеальном модуляторе I-Q разность фаз между сигналами, используемыми для модуляции плеч I и Q, составляет 90 градусов, что приводит к использованию и для отправки и.

Когда имеется дисбаланс фаз , разность фаз может составлять не точно 90 градусов. Можно считать, что используется для отправки и для отправки.

Дисбаланс амплитуды при IQ-модуляции

Когда есть амплитудный дисбаланс, амплитуда синусоидальных и косинусоидальных плеч модулятора изменяется незначительно. Это можно смоделировать как использование для отправки и использование для отправки, где константа находится в диапазоне от 0 до 1.

Передаваемый сигнал, включая влияние фазового и амплитудного дисбаланса, составляет

.

Полученный сигнал с дисбалансом IQ в передатчике

Предполагая, что у нас есть идеальный демодулятор IQ, т.е. в приемнике мы умножаем сигнал на и с последующей фильтрацией нижних частот (ФНЧ) для извлечения, и соответственно.

.

.

Как видно из приведенных выше уравнений, полезный сигнал искажен из-за наличия дисбаланса IQ.

Влияние на спектр из-за дисбаланса I-Q

Чтобы понять влияние I-Q-дисбаланса на передаваемый сигнал, давайте предположим, что передаваемый сигнал — это i-й сигнал.e,

и

Из сообщения об отрицательной частоте мы знаем, что такой сигнал имеет частотную составляющую при и НЕТ частотную составляющую при.

При наличии I-Q дисбаланса на передатчике принимаемый сигнал составляет,

и

.

Щелкните здесь, чтобы загрузить скрипт Matlab / Octave для построения спектра приема с дисбалансом IQ передачи

Рисунок: Спектр принятого сигнала при наличии дисбаланса IQ на передатчике

Достаточно интуитивно понятно, что принятый сигнал имеет частотные компоненты равные, а также равные.Компонент at был введен из-за дисбаланса I-Q.

Обновление: щелкните здесь, чтобы получить коэффициент отклонения изображения (IMRR) с коэффициентом усиления / фазового дисбаланса IQ передачи

Щелкните здесь, чтобы ПОДПИСАТЬСЯ на информационный бюллетень и загрузить БЕСПЛАТНУЮ электронную книгу о вероятности ошибки в AWGN. Спасибо за визит! Удачного обучения.

Теги: IQ

Вам понравилась эта статья? Убедитесь, что вы не пропустите новую статью подписавшись на RSS-канал ИЛИ подписавшись на рассылку новостей по электронной почте. Примечание. Подписка по электронной почте дает вам право загрузить бесплатную электронную книгу по BER BPSK / QPSK / 16QAM / 16PSK в AWGN.

Компенсация за дисбаланс между синфазной и квадратурной составляющими

Компенсация за дисбаланс между синфазными и квадратурными компонентами

Библиотека

Коррекция радиочастотных искажений

×

Описание

Компенсатор I / Q-дисбаланса смягчает эффекты дисбаланса амплитуды и фазы между синфазным и квадратурным компоненты модулированного сигнала.Поддерживаемые схемы модуляции включают OFDM, M-PSK и M-QAM, где M> 2.

Этот блок принимает до трех входных портов, один из которых входной сигнал. При установке Источник компенсатора коэффициент параметр до Оценка по входным данным signal , активируются два дополнительных порта ввода. В первый включается, когда вы устанавливаете Источник шага адаптации размер параметр до Входной порт и второй включается при проверке адаптации коэффициента входной порт коробка.Эти два варианта независимы. Дополнительно, Вы можете установить флажок Порт вывода расчетного коэффициента для создания дополнительного выходного порта, из которого оценивается компенсатор коэффициенты доступны.

При установке параметра Источник коэффициента компенсации до Входной порт , только одна возможная конфигурация возможно (порт входного сигнала, порт входа коэффициента и выходной сигнальный порт).

Параметры

Источник коэффициента компенсатора

Укажите источник коэффициентов компенсатора как Оценка от входного сигнала или Входной порт .Если установлено значение Оценка по входному сигналу , компенсатор вычисляет коэффициенты по входному сигналу. Если установлено значение Входной порт , все остальные свойства отключены, и вы должны предоставить коэффициенты через ввод порт. Значение по умолчанию — Оценка по входному сигналу .

Начальный коэффициент компенсатора

Укажите начальный коэффициент, используемый внутренним алгоритмом для компенсации дисбаланса I / Q.Значение по умолчанию — 0 + 0j .

Источник размера шага адаптации

Укажите источник размера шага адаптации как Свойство или Вход порт . Если установлено значение Свойство , укажите размер шага в поле Размер шага адаптации . Если установлено значение Входной порт , необходимо указать размер шага через входной порт. Значение по умолчанию — , Свойство .

Адаптация размер шага

Задайте размер шага алгоритма адаптации как действительный скаляр.Этот параметр доступен, только если Источник размер шага адаптации установлен на Свойство . Значение по умолчанию — 0,00001 .

Коэффициент порт ввода адаптации

Установите этот флажок, чтобы создать порт ввода, который позволяет сигнал для управления процессом адаптации. Если флажок установлен и если входной сигнал — истинный , расчетный коэффициенты компенсации обновлены. Если порт адаптации не включен или если входной сигнал ложный , компенсация коэффициенты не меняются.По умолчанию флажок не установлен.

Расчетный коэффициент выхода порт

Установите этот флажок, чтобы указать приблизительную компенсацию коэффициенты к выходному порту. По умолчанию флажок не установлен.

Алгоритмы

Этот блок реализует описанный алгоритм, входы и выходы на странице справочника связи IQImbalanceCompensator . Свойства объекта соответствуют к параметрам блока.

Примеры

Компенсация I / Q дисбаланса

В этом примере показано, как использовать блок I / Q Imbalance Compensator для устранения влияния амплитудного и фазового дисбаланса на модулированный сигнал.

Откройте модель doc_iqimbcomp, из командной строки MATLAB.

Модель включает следующие блоки:

Дважды щелкните блок I / Q Imbalance. Вы можете посмотрите, что I / Q амплитудный дисбаланс (дБ) параметр установлен на 5 и I / Q фазовый дисбаланс (град.) параметр также установлен на 5.

Запустите модель. В созвездии сигнала с I / Q-дисбалансом диаграмме, наблюдайте эффекты дисбаланса амплитуды и фазы разбаланс по сигналу 8-PSK.

Посмотрите на созвездие Compensated Signal диаграмма. Обратите внимание на то, что сигнал не соответствует эталону. созвездие (показано красным).

Увеличьте время моделирования с 20 до 100 секунд и снова запустите модель. Вы видите, что созвездие сейчас хорошо совмещен с эталонным созвездием.Это потому, что алгоритм компенсации адаптивный; следовательно, это требует времени для точной оценки I / Q-дисбаланса.

Попробуйте изменить другие параметры моделирования, такие как размер шага в блоке I / Q Imbalance Compensator амплитуда и фазовый дисбаланс в блоке I / Q Imbalance, тип модуляции и т. д. Наблюдайте за эффектами на Compensated Диаграмма созвездия сигнала .

Поддерживаемые типы данных

Коэффициенты выхода Избранная библиография

[1] Анттила, Л., М. Валкама и М. Ренфорс. «Слепой Компенсация частотно-избирательного I / Q-дисбаланса в квадратурном радио Приемники: круговой подход ». Proc. IEEE ICASSP. 2007, стр. III-245 -III-248.

[2] Киаяни, А., Л. Анттила, Ю. Дзо, М. Валкама, «Продвинутый Конструкция приемника для смягчения множественных радиочастотных искажений в системах OFDM: Алгоритмы и радиочастотные измерения ». Журнал электротехники и Компьютерная инженерия. Vol. 2012.

Введено в R2014b

Страница не найдена

Документы

Моя библиотека

раз
Порт Поддерживается Типы данных
Входной сигнал
Выходной сигнал
Размер шага
Адаптация