Индуктивность. Самоиндукция. Энергия магнитного поля тока. Примеры решения задач по физике. 10-11 класс
Индуктивность. Самоиндукция. Энергия магнитного поля тока. Примеры решения задач по физике. 10-11 класс
- Подробности
- Просмотров: 876
Задачи по физике — это просто!
Не забываем, что решать задачи надо всегда в системе СИ!
А теперь к задачам!
Элементарные задачи из курса школьной физики на расчет индуктивности, самоиндукции, энергии магнитного поля тока.
Задача 1
Какова индуктивность витка проволоки, если при токе 6 А создается магнитный поток 12 мВб?
Задача 2
В катушке из 150 витков течет ток 7,5 А, и при этом создается магнитный поток 20 мВб.
Какова индуктивность катушки?
Задача 3
Через соленоид, индуктивность которого 0,4 мГн и площадь поперечного сечения 10 см2, проходит ток 0,5 А.
Какова индукция поля внутри соленоида, если он содержит 100 витков?
Задача 4
Определить индуктивность контура с током 1,2 А, если контур ограничивает площадь 20 см2, а магнитная индукция поля равна 0,8 Тл, причем вектор магнитной индукции направлен под углом 30o к плоскости контура.
Задача 5
Какая ЭДС самоиндукции возбуждается в обмотке электромагнита с индуктивностью 0,4 Гн при изменении силы тока на 5 А за 0,02 секунды?
Задача 6
Определить энергию магнитного поля катушки, если ее индуктивность 0,2 Гн, а ток в ней 12 А.
Задача 7
Какой должна быть сила тока в катушке с индуктивностью 0,5 Гн, чтобы энергия магнитного поля оказалась равной 1 Дж?
Задача 8
Найти энергию магнитного поля соленоида, индуктивность которого 0,02 Гн, а магнитный поток через него составляет 0,4 Вб.
Промежуточный контроль по физике 11 класс | Методическая разработка по физике (11 класс):
Промежуточный контроль по физике
учени___ 11 класса
________________________________________________________________________
Вариант 1.
1. Если в катушку вдвигают постоянный магнит и в ней возникает электрический ток, то это явление называется:
А. Электростатической индукцией Б. Магнитной индукцией
В. Индуктивность Г. Электромагнитной индукцией
Д. Самоиндукцией
2.Магнитный поток через контур площадью 10 см2 равен 40 мВб. Угол между векторами индукции и нормалью равен 60 . Модуль индукции магнитного поля равен:
А. 2∙10-5 Тл Б. 8∙105 Тл В. 80 Тл Г. 8 Тл Д. 20 Тл
3.При уменьшении тока в катушке в 2 раза энергия ее магнитного поля:
А. Уменьшится в 2 раза Б. Увеличится в 2 раза
В. Уменьшится в 4 раза Г. Увеличится в 4 раза
4. ЭДС самоиндукции, возникающая в катушке индуктивностью 0,2 Гн при равномерном изменении тока от 5 А до 1А за 2 с, равна:
А. 1,6 В Б. 0,4 В В. 10 В Г. 1 В. Д. 2,5 В
5.В катушке, имеющей 1000 витков, при равномерном исчезновении магнитного поля в течение 0,1 с индуцируется ЭДС, равная 10 В. Поток, пронизывающий каждый виток катушки, равен:
А. 10 Вб Б. 1 Вб В. 0,1 Вб Г. 10-2 Вб Д. 10-3 Вб
6. . Если емкость уменьшится в 2 раза, а индуктивность возрастет в 8 раз, то частота колебаний в электрическом контуре:
А. Увеличится в раз Б. Уменьшится в раз
В. Увеличится в 2 раза Г. Уменьшится в 2 раза
Д. Уменьшится в 4 раза
7. Амплитуда гармонических колебаний напряжения равна 10 В. Действующее значение переменного напряжения равно:
А. 10 В Б. 5 В В. 9 В Г. 14 В Д. 7 В
8. Волну, в которой колебания происходят перпендикулярно перемещению этой волны, называют:
а) продольной г) механической
б) поперечной д) звуковой
в) электромагнитной
9. Частота колебаний электромагнитной волны определяется выражением:
а) б)
в) г) д)
10.Генератор ВЧ работает на частоте 150 МГц. Длина волны электромагнитного излучения равна:
а) 0,5 м б) 1 м в) 2 м
г) 4,5 м д) 5 м
11. Предмет расположен на двойном фокусном расстоянии от тонкой линзы. Его изображение будет
а) перевернутым и увеличенным б) прямым и увеличенным
в) прямым и равным по размерам предмету
г) перевернутым и равным по размеру предмету
12.Угол падения света на горизонтально расположенное плоское зеркало равен 300. Каким будет угол отражения света, если повернуть зеркало на 100 так, как показано на рисунке?
а) 400 б) 300
в) 200 г) 100
Промежуточный контроль по физике
учени___ 11 класса
________________________________________________________________________
Вариант2
1. Если катушку надевают на постоянный магнит и в ней возникает электрический ток, то это явление называется:
А. Электростатической индукцией Б. Магнитной индукцией
В. Индуктивностью Г. Электромагнитной индукцией
Д. Самоиндукцией
2.Определите магнитный поток Ф через контур площадью 20 см2в однородном магнитном поле с индукцией , равной 40 Тл, если угол между вектором индукции и нормалью к плоскости контура равен 60 .
А. 104 Вб Б. 10-4 Вб В. 4∙10-2 Вб Г. 4∙102 Вб Д. 1 Вб
3.При увеличении тока в катушке в 3 раза энергия ее магнитного поля:
А. Увеличится в 3 раза Б. Уменьшится в 3 раза
В. Увеличится в 9 раз Г. Уменьшится в 9 раз
Д. Не изменится
4. ЭДС самоиндукции, возникающая в катушке индуктивностью 0,2 Гн при равномерном изменении тока от 6 А до 1А за 1 с, равна:
А. 1,6 В Б. 0,4 В В. 10 В Г. 1 В. Д. 2,5 В
5. В катушке, имеющей 1000 витков поток, пронизывающий каждый виток катушки, равен 0,01 Вб. При равномерном исчезновении магнитного поля в течение 1с будет индуцироваться ЭДС, равная:
А. 10 В Б. 1 В В. 0,1 В Г. 10-2 В Д. 10-3 В
6. Если емкость уменьшится в 2 раза, а индуктивность возрастет в 4 раза, то период колебаний в электрическом контуре:
А. Уменьшится в раз Б. Увеличится в раз
В. Уменьшится в 2 раза Г. Увеличится в 2 раза
Д. Увеличится в 4 раза
7. Амплитуда гармонических колебаний силы тока равна 10 А. Действующее значение силы тока равно:
А. 10 А Б. 5 А В. 14 А Г. 7 А Д. 9 А
8 Колебания, распространяющиеся в пространстве с течением времени, называются:
а) свободными г) волной
б) вынужденными д) затухающими
в) автоколебаниями
9.Длина электромагнитной волны определяется выражением:
а) б) в) г) д)
10. Длина волны электромагнитного излучения генератора ВЧ равна 2 м. Генератор работает на частоте
а) 150МГц б)60 МГц в) 600 МГц
г)15 МГц д) 1,5 МГц
11.На каком расстоянии от собирающей линзы нужно поместить предмет, чтобы его изображение было действительным?
а) большем, чем фокусное расстояние б) меньшем, чем фокусное расстояние
в) при любом расстоянии изображение будет действительным
г) при любом расстоянии изображение будет мнимым
12.Угол падения света на горизонтально расположенное плоское зеркало равен 300. Каким будет угол отражения света, если повернуть зеркало на 100 так, как показано на рисунке?
а) 400 в) 200
б) 300 г) 100
Вариант 3
1. Индуктивность в системе СИ имеет размерность:
А. В Б. Тл В. Гн Г. Вб Д. Ф
2.Определите магнитный поток Ф через контур площадью 10 см2в однородном магнитном поле с индукцией , равной 20 Тл, если угол между вектором индукции и нормалью к плоскости контура равен 60 .
А. 104 Вб Б. 10-2 Вб В. 4∙10-2 Вб Г. 4∙102 Вб Д. 1 Вб
3.При уменьшении тока в катушке в 3 раза энергия ее магнитного поля:
А. Увеличится в 3 раза Б. Уменьшится в 3 раза
В. Увеличится в 9 раз Г. Уменьшится в 9 раз
Д. Не изменится
4.ЭДС самоиндукции, возникающая в катушке индуктивностью 0,8 Гн при равномерном изменении тока от 3 А до 1А за 1с, равна:
А. 1,6 В Б. 0,4 В В. 10 В Г. 1 В. Д. 2,5 В
5. В катушке, имеющей 100 витков, при равномерном исчезновении магнитного поля в течение 0,1 с индуцируется ЭДС, равная 10 В. Поток, пронизывающий каждый виток катушки, равен:
А. 10 Вб Б. 1 Вб В. 0,1 Вб Г. 10-2 Вб Д. 10-3 Вб
6.Если емкость увеличится в 4 раза и индуктивность возрастет в 4 раза, то период колебаний в электрическом контуре:
А. Уменьшится в раз Б. Увеличится в раз
В. Уменьшится в 2 раза Г. Увеличится в 2 раза
Д. Увеличится в 4 раза
7. Амплитуда гармонических колебаний силы тока равна 7 А. Действующее значение силы тока равно:
А. 10 А Б. 5 А В. 14 А Г. 7 А Д. 9 А
8.Волну, в которой колебания происходят вдоль линии перемещения этой волны, называют:
а) продольной г) механической
б) поперечной д) звуковой
в) электромагнитной
9. .Период колебаний электромагнитной волны определяется выражением:
а) б)
в) г) д)
10.Длина радиоволны, на которой суда передают сигнал бедствия SOS, равна 600 м. На какой частоте передаются такие сигналы?
а) 1,8·1011 Гц г) 2·105 Гц
б) 2·10-6 Гц д) 5·104 Гц
в) 5·105 Гц
11. Предмет расположен между собирающей линзой и ее фокусом. Изображение предмета –
а) мнимое, перевернутое б) действительное, перевернутое
в) действительное, прямое г) мнимое, прямое
12. Оптический прибор, преобразующий параллельный световой пучок А в расходящийся пучок С, обозначен на рисунке квадратом. Этот прибор действует как
а) линза б) прямоугольная призма
в) зеркало г) плоско-параллельная пластина
Ответы к тесту
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
I | г | в | в | б | д | г | д | б | в | в | г | в |
II | г | в | в | г | а | б | г | г | в | а | а | а |
III | в | б | г | а | г | д | б | а | б | в | г | а |
Расчёт катушки индуктивности под динамик
Катушки индуктивности в фильтрах колонок
Добротность катушек, которые я мотаю для кроссоверов в акустику получается выше, чем у заводских, а активное сопротивление, при той же индуктивности – меньше. Звучат они заметно лучше заводских, особенно если их предварительно отслушать и поставить «по направлению».
Добротность у катушек большого диаметра, а я их делаю в виде бубликов – получается выше, чем у намотанных на обычных каркасах от трансформаторов или специальных каркасов для катушек.
Для кроссоверов это – хорошо, т.к. крутизна среза кроссовера с высокодобротными катушками получается более резкой.
Обратите внимание
Сами катушки и их каркасы периодически встречаются на радио рынках и барахолках. В СССР было выпущено бессчетное количество колонок S-90, S-50 и S-30. Вот как раз кроссоверы от этих колонок, либо детали от них попадаются довольно часто.
Форм фактор заводских катушек
Практически во всех зарубежных колонках, которые мне доводилось разбирать и переделывать стоят катушки, намотанные на каркасах малого диаметра и большой длины. Для увеличения индуктивности в них, как правило устанавливаются металлические сердечники из обычного прутка или пластин трансформаторной стали либо феррита.
Причина засилья подобных катушек в кроссоверах акустических систем – чисто практическая. Из-за того, что витки провода растянуты по большой длине и находятся на минимальном расстоянии от металлического сердечника, индуктивность катушки, выполненной в «длинном» форм-факторе получается максимально возможной.
При этом из-за малой длины каждого элементарного витка, активное сопротивление такой катушки также – оказывается минимальным. «Вытянутый» конструктив позволяет довольно прилично уменьшить диаметр и, следовательно – сечение необходимого для намотки такой катушки провода, оставаясь в заданных инженерами параметрах индуктивности и активного сопротивления.
Делают катушки в таком форм-факторе исключительно для того, чтобы сэкономить дорогостоящий медный провод.
У «длинных» катушек есть один, но жирный минус – их добротность намного ниже, чем у катушек, намотанных на каркасах большого диаметра. Добротность же – один из ее важнейших параметров, влияющих на крутизну среза звеньев кроссовера и подавление пиков излучения на частотной характеристике динамических головок.
В связи с невысокой добротностью, который показывают такие катушки будучи установленными в кроссоверах, крутизна среза НЧ/СЧ и СЧ/ВЧ звеньев фильтра оказывается недостаточной и на смежные динамические головки проникает сигнал из соседней полосы.
Если не вдаваться в теорию, то получается, то на частоте раздела звеньев кроссовера с малой крутизной спада одновременно играет и одна (например – НЧ) и вторая, смежная с ней головка (например – СЧ) головка. Такая синфазная работа двух головок на каком-то определенном участке частотного диапазона создает хорошо различаемую на слух интерференцию и дополнительные искажения.
Сердечники в катушках
В большинстве заводских катушек, применяемых для кроссоверов установлены ферромагнитные сердечники из пластин трансформатороной стали, или ферритовых стержней.
Иногда встречаются катушки, намотанные на ферритовых каркасах, выполненных в форме цилиндра со щечками.
Любой ферромагнетик, будучи введенным в катушку повышает ее индуктивность, а следовательно – для сохранения расчетных параметров, позволяет уменьшить витки и массу дорогостоящего медного провода.
Важно
К большому сожалению, ферромагнитные материалы в катушках на звук влияют ВСЕГДА отрицательно.
Так, железные сердечники, при больших уровнях сигнала и соотвесттвенно – громкости, нередко входят в насыщение, что приводит к резкому росту искажений, вносимых катушкой.
Хотя, казалось бы, катушка индуктивности это пассивный и теоретически – линейный элемент, откуда у него могут возникнуть искажения, свойственные скорее полупроводниковым приборам?
Я больше десяти раз проводил натурные эксперименты, когда в работающей колонке «по-горячему» менялись две катушки с одинаковой индуктивностью, одна с ферромагнитным сердечником, вторая – воздушная.
И всегда это приводило к однозначному результату. При замене воздушной катушки на катушку с сердечником в звуке появлялись «синтетические» или «железные» нотки и заметные на слух искажения.
Это слышали на 100 % все, кто вместе со мной проводил эксперименты.
При высокой добротности у катушки легче убрать «горбы» на АЧХ путем установки т.н. вырезного фильтра параллельно головке. Вырезной фильтр, это включенные последовательно конденсатор, катушка и резистор.
Чем выше добротность катушки, тем больший номинал резистора можно поставить и тем меньше влияние вырезного фильтра на остальную АЧХ головки + цепь коррекции. Добротность, это отношение между реактивным и активным сопротивлением катушки Q = w L/R пот.
Наматывая индуктивности более толстым проводом, чем у штатных я уменьшаю их активное сопротивление, в итоге добротность катушек – возрастает.
«Двойки» катушек испытывались в НЧ и СЧ звеньях кроссовера и ставились последовательно с динамическими головками.
Как я мотаю катушки
Я мотаю катушки для колонок самодельным литцендратом из 4-8 проводов диаметром 0,7-0,9 мм. Сначала все считал… Точно рассчитать количество витков у меня никогда получается.
В итоге, мотаю на глаз, благо за свою жизнь сделал тысячи катушек и примерно знаю, какая будет индуктивность. Делаю так. Сначала мотаю пробную катушку одиночным проводом, и довожу ее индуктивность до требуемого номинала.
Затем доматываю еще 15–20 % витков.
Далее, мотаю на несколько специальных оправок, такое же количество витков, как у пробной катушки. Если финальная катушка должна состоять из 6 проводов, тогда мотаю еще пять, если из 4-х, еще три и т.д.
Совет
Количество изолированных моножил, которыми мотается итоговая катушка зависит от того, где она будет стоять. Если катушка нужна для включения последовательно с НЧ головкой, количество жил 6-8 штук, диаметр каждой 0,7-0,9 мм.
Итоговое сечение: 3-4 кв.мм.
Приведу пример:
Вчера мотал две катушки для полочных колонок ProAc Studio 115, в каждую заложил по 6 жил диаметром 0,8 мм. Итоговое сечение провода 3 кв.мм. кол-во витков 200, индуктивность 2,5 мГн, сопротивление постоянному току 0,4 Ома. Диаметр катушки 140 мм, высота 50 мм, вес 2 Кг.
НЧ катушки можно мотать моно жилой большого диаметра, а вот катушки, стоящие последовательно с СЧ или СЧ/НЧ головкой, намного лучше играют, если они намотаны вот таким самодельным литцендратом.
Из-за большей площади поверхности нескольких изолированных друг от друга проводников, чем у такой же по сечению моножилы, литцендрат намного лучше пропускает ВЧ сигнал чем одиночный провод.
Хотя НЧ катушка и призвана к тому, чтобы высокие от басовой головки отрезать, многожильные катушки играют на слух легче и воздушнее и это – факт.
Намотав катушку, зачищаю (не обрывая) 4-8 проводов с двух сторон, скручиваю плоскогубцами и измеряю, что получилось. Индуктивность намотанной «литцендратом» катушки с 15-20 % превышением витков над пробной «моножильной», как правило оказывается чуть больше искомой.
Далее, снимаю катушку с оправки и стягиваю ее 4-мя нейлоновыми хомутами. Получается довольно плотный «бублик» круглого, либо близкого к круглому сечения. Опять измеряю – индуктивность чуть возросла. Уминаю бублик на полу своим весом, а он 100 кг…
Надо худеть! Индуктивность еще возросла. После этого отматываю 5-7 витков и не обрезая «литцендратный хвост», опять измеряю. Так довожу индуктивность катушки до искомой величины.
Обратите внимание
После чего – обрезаю хвост, зачищаю его, а саму катушку в 2-3 слоя обматываю изолентой хорошего качества, прямо с нейлоновыми хомутами.
Если нужно соблюсти точность в 1-2 %, что случается редко – не обрезанным «хвостом» корректирую индуктивность, намотав пару витков в том же (для увеличения) или в противоположном (для уменьшения) направлении.
Преимущества такого способа намотки: Катушки выполненные по описанной технологии получаются относительно большого диаметра и малой толщины с почти тороидальным (в разрезе) сечением.
Добротность катушек большого диаметра выше, чем намотанных на квадратных либо прямоугольных каркасах от трансформаторов, а сопротивление из-за тороидальной формы разреза катушки и круглой формы самой катушки – меньше.
Литцендрат для намотки НЧ, да и любых других катушек дает еще один «жирный» бонус: Для подключения динамиков и клемм к кроссоверам, с ним отпадает надобность в каких-то мягких проводах с непонятными акустическими свойствами.
К примеру – литцендрат НЧ катушки колонок ProAc Studio 115 (из 6-ти моножил по 0,8 мм) получился настолько мягким, что его без боязни механического обрыва, удалось подпаять к лепесткам динамика и входным терминалам. Внутри колонки создается весьма высокое давление и соответственно – вибрации.
В таких условиях распаивать лепестки динамика жесткой моножилой – получим риск обрыва. Ну и второй бонус – нет лишних проводов, значит нет 4-х лишних паек между ними, динамиками, катушками и входными терминалами.
Все вышеперечисленное благотворно влияет на звук, в чем я убеждался не один десяток раз.
Крепить катушку большого диаметра и малой толщины – просто. Я фиксирую ее к плате из текстолита при помощи 4-х нейлоновых хомутов.
Если катушку нужно установить вертикально, то креплю ее между двумя пластинами стеклотекстолита при помощи 2-х хомутов к нижней пластине и 2-х к верхней. Сами пластины стягиваю болтами М-4.
Получается очень жесткая двух-платная конструкция фильтра, в которой катушки можно расположить перпендикулярно друг другу, а значит – снизить их взаимное влияние.
Инструкция по намотке для коллег
Берете любую оправку, в данный момент я применяю оправки из бутылок для фанты или минеральной воды – и мотаете на ней пробную катушку. Я приноровился уже и примерно знаю, какое кол-во витков нужно намотать для того, чтобы получить нужную индуктивность. Могу потом составить таблицу. Намотав пробную катушку не снимая ее с оправки, измеряете получившуюся индуктивность.
С начала провода делаете полную зачистку кончика, а там где получился теоретический конец, соскабливаете лак с одной стороны (провод при этом не обрезаете). Если индуктивности мало, обматываете поврежденный участок кусочком изоленты и доматываете какое-то кол-во витков, после чего провод обрезаете. Витки при намотке пробной катушки естественно считаете.
После этого берете вторую оправку (бутылку) и наматываете на нее такое же кол во витков, ну и еще два-шесть раз повторяете такое же действие. У вас получается 4-10 оправок с намотанными катушками в одну сторону.
Важно
Потом кладете все эти оправки в несколько картонных коробок на пол, оттягиваете от каждой оправки по кончику провода, соединяете их в пучок и наматываете общую катушку из 4-10 жил. Ваши оправки (бутылки) в лежачем положении и в коробках, никуда не укатываются и провод на них не путается.
У получившейся катушки из пучка индуктивность относительно одиночной катушки падает процентов на 10-20 не больше, не зависимо от количества проводов в пучке. Допустим, вы намотали на пробную катушку 150-170 витков провода 0,6-0,9 мм в диаметре и получили индуктивность в 1,3 мГн. После этого сделали еще 4 таких же катушки на бутылках.
Потом все провода перемотали на одну общую оправку. Диаметр этой катушки из-за увеличившего сечения провода – вырос, длина каждого витка увеличилась, а кол-во витков естественно – уменьшилось. У вас в итоге получилось уже не 150-170, а 120-130 витков. И как итог – индуктивность вашей катушки упала с 1,3 мГн до 1,0-1,1 мГн. Да и еще, подмеченная особенность.
Индуктивность катушки зависит от кол-ва витков не линейно, а геометрически. начиная с 120-200 витков индуктивность прирастает очень быстро и для домотки недобранного номинала при таком кол-ве витков требуется лишь 5-15 дополнительных, чтобы базовая индуктивность возросла на 10-15 %. Никакого удвоения или ушестерения падения индуктивности не происходит.
Хотя по теории, в катушке, намотанной пучком проводов получается несколько одиночных (по количеству жил) катушек, соединенных параллельно. Индуктивность катушки, намотанной одиночным проводом практически совпадает с индуктивностью катушки, намотанной пучком изолированных друг от друга проводов и зависит только от количества витков. Вот такая история…
В будущем хочу сделать специальные разборные оправки под катушки разного диаметра и толщины. Это не так просто поскольку требует специальных проточек (4-х) для заведения стягивающих нейлоновых хомутов.
Плюс оправки должны быть выполнены из немагнитного материала, желательно вообще их сделать не из металла, а например из: текстолита, эбонита, винипласта и т. д. Стягивать половинки такой оправки нужно немагнитными болтиками и гайками (из титана, дюраля или латуни).
Совет
На сегодня я намотал за полтора года катушек 500-600 если не больше. Хочу заказать сначала один разборной каркас, попробую его в работе, скорректирую и потом уже закажу разные. Мне нужно, чтобы он состоял из двух половин, и на нем можно было мотать катушку формы тороида в сечении.
На каркасе должны быть плоские проточки для стяжки катушки хомутами и при этом, чтобы когда каркас разъединялся, хомуты оставались на самом бублике с проводом. Короче, та еще задача.
Ноу хау от практика
Andrey Polischuk = У Вас есть нереализованный потенциал, если Вам это пригодится, то прекрасно. Я сам проектировал пассивные фильтры, и неоднократно применял следующее:
Часто пищалки имеют отдачу (чувствительность) на несколько дБ (иногда более десяти) больше, чем СЧ/НЧ динамики. Этот запас используется для коррекции АЧХ, а избыток отдачи ВЧ головки гасится резистивным делителем.
Резисторы здесь нужны качественные, из немагнитных сплавов, иначе на высоких частотах возникнут искажения.
Даже чистые сплавы, из которых делаются устанавливаемые в цепь пищалки резисторы содержат примеси железа, и пусть немного, но – искажают.
Однажды я подумал, а что, если сделать катушку с отводом, как автотрансформатор? Многие эту фишку пробовали, и я не изобретатель. Из минусов – самый верх с пищалки снять не удастся, из-за включенной с ней последовательной индуктивности.
Тут помогает трансформатор на длинной линии. Это и есть катушка, намотанная в несколько проводов, у которой полоса рабочих частот простирается до мегагерц.
Например, нам для фильтра нужна катушка в 100 витков, и резистивный делитель на 6 дБ. Самый удобный случай: Берём два провода, мотаем 50 витков и соединяем секции последовательно, к отводу – пищалку, или конденсатор компенсации и пищалку… Вуаля! Имеем фильтр плюс ослабление – 6 дБ без резисторов.
Я делал двух, трёх, и даже четырёхзаходные катушки, в зависимости от необходимого затухания. Этот метод особенно эффективен для мощных рупорных драйверов в сотни ватт.
Обратите внимание
Спасибо за подсказку, я попробую, еще бы нормально платили за такие апгрейды, было бы вообще хорошо. Резисторы для ВЧ и СЧ секций кроссоверов я последнее время мотаю из константана, складывая его вдвое для компенсации паразитной индуктивности. Играют они намного лучше, чем наши проволочные с5-5, с5-16 и с5-37, и не в пример лучше китайских цементно-керамических.
Пока что моё открытие, это симбиоз катушки и резистора в одной детали и самодельные низкоомные без индукционные резисторы из константановой проволоки диаметром 0,9 мм.
Поделюсь наработанным опытом по намотке бестрансформаторных катушек. Все расчеты, которые есть в интернете – приблизительные и мне не подошли, как я ни считал. В итоге лучше всего звучат (действительно лучше) катушки, намотанные интуитивно по приблизительным подсчетам. Я сейчас все катушки мотаю не моножилой, а маложильным литцендратом.
Они звучат лучше даже в НЧ звене кроссовера басовых динамиков и это при частоте обреза 150-300 Гц. Причину не понимаю… Делал в виде эксперимента пару раз по две катушки одинакового диаметра и с одинаковым сечением провода, намотанные, одну – моножилой, вторую – литцендратом. Колонка с литцендратом в НЧ звене фильтра звучит быстрее, динамичнее и ярче на басах.
Низ у нее получается очень упругим. Наматываю я такие катушки “на глазок”, потом измеряю индуктивность и либо доматываю до десяти витков, либо отматываю. Короче, сейчас уже имею опыт и мотаю все катушки на глаз, и только потом немного корректирую кол-во витков. Не имею ни одного отрицательного отзыва от людей, которым я это делал.
Подобные катушки в СЧ и ВЧ звеньях кроссоверов звучат еще лучше.
Ссылки по теме +
Источник: http://aovox.com/creativework/652
Конвертер величин
На рисунке выше показана однослойная катушка индуктивности: Dc — диаметр катушки, D — диаметр оправки или каркаса катушки, p — шаг намотки катушки, d — диаметр провода без изоляции и di — диаметр провода с изоляцией
youtube.com/embed/YgB_wWPxwcQ?feature=oembed» frameborder=»0″ allow=»accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture» allowfullscreen=»»/>
Для расчета индуктивности LS применяется приведенная ниже формула из статьи Р. Уивера (R. Weaver) Численные методы расчета индуктивности:
Здесь
D — диаметр оправки или каркаса катушки в см,
l — длина катушки в см,
N — число витков и
L — индуктивность в мкГн.
Эта формула справедлива только для соленоида, намотанного плоским проводом. Это означает, что катушка намотана очень тонкой лентой без зазора между соседними витками. Она является хорошим приближением для катушек с большим количеством витков, намотанных проводом круглого сечения с минимальным зазором между витками.
Американский физик Эдвард Беннетт Роса (Edward Bennett Rosa, 1873–1921) работавший в Национального бюро стандартов США (NBS, сейчас называется Национальное бюро стандартов и технологий (NIST) разработал так называемые корректирующие коэффициенты для приведенной выше формулы в форме (см. формула 10.1 в статье Дэвида Найта, David W.
Knight):
Здесь LS — индуктивность плоской спирали, описанная выше, и
Важно
где ks — безразмерный корректирующий коэффициент, учитывающий разницу между самоиндукцией витка из круглого провода и витка из плоской ленты; km — безразмерный корректирующий коэффициент, учитывающий разницу в полной взаимоиндукции витков из круглого провода по сравнению с витками из плоской ленты; Dc — диаметр катушки в см, измеренный между центрами проводов и N — число витков.
Величина коэффициента Роса km определяется по формуле 10.18 в упомянутой выше статье Дэвида Найта:
Коэффициент Роса ks, учитывающий различие в самоиндукции, определяется по формуле 10.4 в статье Д. Найта:
Здесь p — шаг намотки (расстояние между витками, измеренное по центрам проводов) и d — диаметр провода. Отметим, что отношение p/d всегда больше единицы, так как толщина изоляции провода конечна, а минимально возможное расстояние между двумя соседними витками с очень тонкой изоляцией, расположенными без зазора, равна диаметру провода d.
На индуктивность катушки влияют несколько факторов.
- Количество витков. Катушка с большим количеством витков имеет бóльшую индуктивность по сравнению с катушкой с меньшим количеством витков.
- Длина намотки. Две катушки с одинаковым количеством витков, но разной длиной намотки имеют разную индуктивность. Более длинная катушка имеет меньшую индуктивность. Это связано с тем, что магнитное поле менее компактной катушки более слабое и оно не может хорошо концентрироваться в растянутой катушке.
- Диаметр катушки. Две плотно намотанные катушки с одинаковым количеством витков и разными диаметрами имеют разную индуктивность. Катушка с бóльшим диаметром имеет бóльшую индуктивность.
- Сердечник. Для увеличения индуктивности в катушку часто вставляется сердечник из материала с высокой магнитной проницаемостью. Сердечники с более высокой магнитной проницаемостью позволяют получить более высокую индуктивность. Сердечники, изготовленные из магнитной керамики — феррита, часто используются в катушках и трансформаторах различных электронных устройств, так как у них очень низкие потери на вихревые токи.
Упрощенная эквивалентная схема реальной катушки индуктивности: Rw — сопротивление обмотки и ее выводов; L — индуктивность идеальной катушки; Rl — сопротивление вследствие потерь в сердечнике; и Cw — паразитная емкость катушки и ее выводов.
В этом калькуляторе мы рассматривали идеальную катушку индуктивности. В то же время, в реальной жизни таких катушке не бывает. Катушки обычно конструируются с минимальными размерами таким образом, чтобы они помещались в миниатюрное устройство.
Любую реальную катушку индуктивности можно представить в виде идеальной индуктивности, к которой параллельно подключены емкость и сопротивление, а еще одно сопротивление подключено последовательно. Параллельное сопротивление учитывает потери на гистерезис и вихревые токи в магнитном сердечнике.
Это параллельное сопротивление зависит от материала сердечника, рабочей частоты и магнитного потока в сердечнике.
com/embed/YLjl7Vpw7QI?feature=oembed» frameborder=»0″ allow=»accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture» allowfullscreen=»»/>
Паразитная емкость появляется в связи с тем, что витки катушки находятся близко друг к другу. Любые два витка провода можно рассмотреть как две обкладки маленького конденсатора. Витки разделяются изолятором, таким как воздух, изоляционный лак, лента или иной изоляционный материал.
Относительная диэлектрическая проницаемость материалов, используемых для изоляции, увеличивает емкость обмотки. Чем выше эта проницаемость, тем выше емкость. В некоторых случаях дополнительная емкость может появиться также между катушкой и противовесом, если катушка расположена над ним.
На высоких частотах реактивное сопротивление паразитной емкости может быть весьма высоким и игнорировать его нельзя. Для уменьшения паразитной емкости используются различные методы намотки катушек.
Совет
Для уменьшения паразитной емкости катушки с высокой добротностью для радиопередатчиков наматывают так, чтобы было достаточно большое расстояние между витками
Если индуктивность большая, то сопротивление обмотки (Rw на схеме) игнорировать уже нельзя. Тем не менее, оно мало по сравнению с реактивным сопротивлением больших катушке на высоких частотах. Однако, на низких частотах и на постоянном токе это сопротивление необходимо учитывать, так как в этих условиях через катушку могут протекать значительные токи.
Катушки индуктивности и обмотки в различных устройствах
Источник: https://www.translatorscafe.com/unit-converter/ru/calculator/coil-inductance/
Расчет катушки индуктивности
Главная > Теория > Расчет катушки индуктивности
Катушки индуктивности предназначены для фильтрации токов высокой частоты. Они устанавливаются в колебательных контурах и используются для других целей в электрических и электронных схемах.
Готовое устройство заводского изготовления надёжнее в работе, но дороже, чем изготовленное своими руками. Кроме того, не всегда удаётся приобрести элемент с необходимыми характеристиками.
В этом случае расчёт катушки индуктивности и само устройство можно сделать самостоятельно.
Устройство катушки индуктивности
Конструкция катушки
Каркас устройства изготавливается из диэлектрика. Это может быть тонкий (нефольгированный) гетинакс, текстолит, а на тороидальных сердечниках –просто обмотка из лакоткани или аналогичного материала.
Обмотка выполняется из одножильного или многожильного изолированного провода.
Внутрь обмотки вставляется сердечник. Он изготавливается из железа, трансформаторной стали, феррита и других материалов. Он может быть замкнутым, тороидальным (бублик), квадратным или незамкнутым (стержень). Выбор материала зависит от условий работы: частоты, магнитного потока и других параметров.
Кроме того, есть приборы, в которых сердечник отсутствует. Они характеризуются большой линейностью импеданса, но при намотке тороидальной формы обладают паразитной ёмкостью.
Расчет параметров катушки индуктивности
Протекающий по проводу электрический ток создаёт вокруг него электромагнитное поле. Соотношение величины поля к силе тока называется индуктивностью. Если провод свернуть кольцом или намотать на каркас, то получится катушка индуктивности. Её параметры рассчитывают по определённым формулам.
Расчёт индуктивности прямого провода
Индуктивность прямого стержня – 1-2мкГн на метр. Она зависит от его диаметра. Точнее можно рассчитать по формуле:
L=0.2l(logl/d-1), где:
- d – диаметр провода,
- l – длина провода.
Эти величины нужно измерять в метрах (м). При этом результат будет иметь размерность микрогенри (мкГн). Вместо натурального логарифма ln допустимо использовать десятичный lg, который в 2,3 раза меньше.
Предположим, что какая-то деталь подключена проводами длиной 4 см и диаметром 0,4 мм. Произведя при помощи калькулятора расчет по выше приведённой формуле, получаем, что индуктивность каждого из этих проводов составит (округлённо) 0,03 мкГн, а двух – 0,06 мкГн.
Ёмкость монтажа составляет порядка 4,5пФ. При этом резонансная частота получившегося контура составит 300 МГц. Это диапазон УКВ.
Важно! Поэтому при монтаже устройств, работающих в частотах УКВ, длину выводов деталей нужно делать минимальной.
Расчёт однослойной намотки
Для увеличения индуктивности провод сворачивается кольцом. Величина магнитного потока внутри кольца выше примерно в три раза. Рассчитать её можно при помощи следующего выражения:
L = 0,27D(ln8D/d-2), где D – диаметр кольца, измеренный в метрах.
При увеличении количества витков индуктивность продолжает расти. При этом индукция отдельных витков влияет на соседние, поэтому получившиеся параметры пропорциональны не количеству витков N, а их квадрату.
Однослойная намотка
Дроссель с сердечником
Параметры обмотки, намотанной на каркас, диаметром намного меньше длины рассчитывается по формуле:
L=*0*N2*S.
Она справедлива для устройства большой длины или большого тора.
Размерность в ней дана в метрах (м) и генри (Гн). Здесь:
- 0 = 4•10-7 Гн/м – магнитная константа,
- S = D2/4 – площадь поперечного сечения обмотки, магнитная проницаемость магнитопровода, которая меньше проницаемости самого материала и учитывает длину сердечника; в разомкнутой конструкции она намного меньше, чем у материала.
Например, если стержень антенны изготовить из феррита с проницаемостью 600 (марки 600НН), то у получившегося изделия она будет равна 150. При отсутствии магнитного сердечника = 1.
Для того чтобы использовать это выражение для расчёта обмоток, намотанных на тороидальном сердечнике, его необходимо измерять по средней линии «бублика». При расчёте обмоток, намотанных на железе Ш-образной формы без воздушного зазора, длину пути магнитного потока измеряют по средней линии сердечника.
Катушка с Ш-образным сердечником
В расчёте диаметр провода не учитывается, поэтому в низкочастотных конструкциях сечение провода выбирается по таблицам, исходя из допустимого нагрева проводника.
В высокочастотных устройствах, так же как и в остальных, стремятся свести омическое сопротивление к минимуму для достижения максимальной добротности прибора. Простое повышение сечения провода не помогает.
Это приводит к необходимости наматывать обмотку в несколько слоёв. Но ток ВЧ идёт преимущественно по поверхности, что приводит к увеличению сопротивления.
Добротность в высокочастотных элементах растёт вместе с увеличением всех размеров: длины и диаметров обмотки и провода.
Максимальная добротность получается в короткой обмотке большого диаметра, с соотношением диаметр/длина, равным 2,5. Параметры такого устройства вычисляются по формуле:
L=0.08D2N2/(3D+9b+10c).
Обратите внимание
В этой формуле все параметры измеряются в сантиметрах (см), а результат получается в микрогенри (мкГн).
По этой формуле рассчитывается также плоская катушка. Диаметр «D» измеряется по среднему витку, а длина «l» по ширине:
l=Dmax-Dmin.
Плоская катушка
Многослойная намотка
Многослойная намотка без сердечника вычисляется по формуле:
L=0.08D2N2/(3D+9b+10c).
Размеры здесь измеряются в сантиметрах (см), а результат получается в микрогенри (мкГн).
Добротность такого устройства зависит от способа намотки:
- обычная плотная намотка – самая плохая, не более 30-50;
- внавал и универсал;
- «сотовая».
Многослойная катушка
Для увеличения добротности при частоте до 10 мГц вместо обычного, одножильного провода, можно взять литцендрат или посеребренный проводник.
Справка. Литцендрат – это провод, скрученный из большого количества тонких изолированных друг от друга жил.
Литцендрат имеет большую поверхность, по сравнению с одножильным проводником того же сечения, поэтому на высоких частотах его сопротивление ниже.
Использование сердечника в высокочастотных устройствах повышает индуктивность и добротность катушки. Особенно большой эффект даёт использование замкнутых сердечников. При этом добротность дросселя зависит не от активного сопротивления провода, а от проницаемости магнитопровода. Рассчитывается такой прибор по обычным формулам для низкочастотных устройств.
Сделать катушку или дроссель можно самостоятельно. Перед тем, как её изготавливать, необходимо рассчитать индуктивность катушки по формулам или при помощи онлайн-калькулятора.
Видео
Источник: https://elquanta.ru/teoriya/raschet-katushki-induktivnosti.html
Теоретический вопрос- индуктивность динамика – Автозвук во всех его проявлениях
Отправлено 10 Август 2010 – 07:25
Понадобилось мне померить индуктивность звуковой катушки динамика.Есть мультиметр с функцией измерения L и C-но этот простой путь не подошел-он меряет на частоте 100Гц (да еще меандром-что даст спектр гармоник до радиодиапазона-он пищит при подключению к мультиметру на слух что-то вроде 1 кгц), это рядом с резонансной частотой- должен выдать цены на дрова этой зимой.
Не вопрос- померим полный импеданс где-нибудь на 500-1000 гц и из нее вычтем сопртивление постоянному току насколько себе представляю эквивалентную модель динамика- это последовательно соединенные Re,катушка индуктивности с нулевым омическим сопротивлением и параллельный колебательный контур -эквивалент мех. резонанса. Если меряем вдали от Fs-последний отбрасывается.
Но- открываю справочник- например здесь http://www.gelezo.co…enniiy_tok.html и вижу -надо активное и индуктивное сопротивления складывать как среднее геометрическое. Это противоречит оставшимся в голове следам институтского курса ТОЭ,для контроля открываю книжку Виноградовой в части измерения параметров динамиков- там тоже используется простое сложение .
Как быть?
Отправлено 10 Август 2010 – 07:55
ах, ну да, это ж “себе”. .а почему бы не померить так, как это все делают? в чём проблема?! (всех устраивает – а его не устраивает…)
Отправлено 10 Август 2010 – 07:59
Важно
Всё намного проще. Компьютер у тебя есть, скачай программу SpeakerWorkShop. Используй “коробочку” из пяти деталей и грузик 10-20 граммов.
Программа выдаст тебе ВСЕ параметры эквивалентной модели твоего динамика и нарисует аппроксимированную Z-характеристику. Можно сразу посмотреть, как индуктивность динамика влияет на увеличение сопротивления на высоких частотах.
ЗЫ здесь сразу можно подкинуть цепочку Цобеля и увидеть, подходит ли она динамику.
Отправлено 10 Август 2010 – 09:27
Ребята, спасибо за советы-но вопрос-то теоретический- сталкиваются два взаимно противоречивых утверждения- Re и XL складываем арифметически или геометрически? Помимо Цобеля, хочу еще и элементами кроссовера поиграццо.
Отправлено 10 Август 2010 – 11:28
Вы в институте полное сопротивление считали иначе?
Отправлено 10 Август 2010 – 17:19
Эх , недоучился я в свое время в институте…
Отправлено 11 Август 2010 – 20:13
Просто тема какая-то… бесперспективная. Ну, измерите вы индуктивность излучателя и – что? Если боитесь, что она попадет в рабочую полосу воспроизводимых (динамиком) частот и подпортит АЧХ с кроссом на пАру, то поверьте, для этого очень придется постараться.
В остальных же случаях знание величины индуктивности излучателя не более полезно, чем знать, что у этого человека врожденное косоглазхие, а у этого – врожденная хромота. С этим живут, это НЕЛЬЗЯ ИЗМЕНИТЬ, а нужно просто смириться.
А если это нужно вам для расчета цобеля, то еще один совет (уж положитесь на многолетнюю практику): от цобеля по жизни еще НИ ОДИН динамик лучше не запел. Просто убьете динамику во имя выпрямления импедансной кривой, да еще время на замеры-расчеты потеряете. Малоактуальная темка, уж извините.
Вот, лучше вам бородатого в тему, задумайтесь:
… Шерлок Холмс и доктор Ватсон заблудились в тумане, путешествуя на воздушном шаре. Когда туман немного рассеялся, а шар опустился ниже, они увидели поле, а на нем человека. — Простите, сэр, вы не подскажите, где мы находимся? – спросил Холмс.
– В небе… – ответил человек.
– Видите, Ватсон, это был математик: его ответ столь же точен, сколь БЕСПОЛЕЗЕН, – сказал Холмс.
Отправлено 11 Август 2010 – 20:32
Василий, Вы привыкли оперировать домашними системами, а тут речь идет об автомобильных, поэтому цобель – меньшее из зол, хотя бы исходя из того, что он может быть не просто цобель:
http://cxem.net/soun…cs/dinamic9.php
Совет
в полемику с Вами постараюсь не вступать, каждый из нас останется при своем мнении, даже если Ваше правильное
p.s. извините, не удержусь: расскажите пожалуйста, чем с точки зрения “убивания динамики” цобель отличается от фильтров высоких (2-й и выше) порядков? ведь и в ФНЧ 2-го (и выше) порядка и в цобеле конденсатор в параллель катушке динамику, а ведь именно конденсатор и мажет фронт импульса, убивая динамику, не так ли?с уважением, ВадимОтправлено 11 Август 2010 – 22:43
Что-то не врубаюсь… Это автомобильный форум? Дык и я акустику car audio имел в виду. Эспэшелли фор ю такими буковками на Ваши глаза наехал.
А не расскажу!Можете ликовать: позорно убЁг от ответа. Здесь (и от флейма заодно). А вот в гости заглянете, я злопамятный, там обстоятельно побеседуем.
И схемки АС кое-какие (секретные, здесь нельзя – от именитых производителей) покажу. Посмотрите, как они к цобелю относятся, на какие частоты его считают и для чего ставят (если ставят вообще). А если найдется свободное время, попробуйте такой несложный эксперимент: сваяйте два полосовых (для СЧ-динамика) фильтра.
Один классический – последовательный L-C, а второй просто C-C, когда один конденсатор последовательно с динамиком (HPF), а второй параллельно динамику (LPF).
А теперь вопрос: сравнив звучание среднечастотника с этими двумя (одинаковыми по полосе пропускания, считаются легко, времени занимают мало) фильтрами, скажите пожалуйста, почему с фильтром C-C так сильно упала динамика?(может, и на цобеля тогда другим глазом взглянете?)С уважением,Василий.
Отправлено 12 Август 2010 – 04:12
“просто С-С” это не фильтр, а емкостная нагрузка для усилителя, на которую он (усилитель) может отреагировать возбуждением, и каким образом у этих цепочек (L-C и C-C) будет одинаковая АЧХ чтобы их сравнивать?По поводу цобеля приведу собственную цитату: “Цепь цобеля это еще и резистор последовательно с конденсатором, поэтому в отличие от фильтра второго порядка конденсатора включенного параллельно головке нет – значит цобель не мешает измениться напряжению на клеммах головки скачком ( я надеюсь Вы знаете один из законов коммутации – напряжение на емкости, как и ток через индуктивность не могут измениться мгновенно)”
из ветки FAQ не помог….фриайр, которая, надеюсь, будет интересна топикстартеру.
Отправлено 12 Август 2010 – 05:51
БМ всегда был форумом по звуку с уклоном в сторону звука в автомобиле, и Вы это прекрасно знаете, не лукавьте.в схематехнике кроссов АС нет никаких секретов, все уже давным давно придумано, понимание, расчеты и измерения – ключ к успеху.
цобель, которого использовал я – очень далек от расчетного, рассказаьть вам на какие частоты я его применял?неужели Вы считаете, что я не пробовал С-С?если не хотите отвечать про цобеля, ответьте, чем С-С отличается от ФНЧ в котором L и С и при этом С в параллель динамику? тоже не хотите отвечать?тогда я: любой ФНЧ высоких порядков убивает динамику.
при этом будет там потом цобель или не будет – уже не важно, динамики уже нет
а по Вашему выходит, что использовать фильтры высоких порядков это благо, а цобель значит ни-ни?
Отправлено 12 Август 2010 – 12:00
С катушками, емкостями и прочими активами для пассива и действительно можно играть по-всякому, например так- http://www.avtozvuk….008/01/084.html, я и точно хотел сделать цобеля без выкрутасов, но убедившись, что мультиметр не помощник, сунулся в формулы и увидел неувязочку.
Обратите внимание
Разглядывая АЧХ разных акустик, у многих видел характерные выбросы слегка выше частоты раздела- вот и решил допросить с пристрастием. Теория и практика-не всегда одно и то же, в теории, чтобы летать, достаточно просто махать руками, а на практике проще построить самолет.
Отправлено 12 Август 2010 – 15:33
Эээ… приходится с небес до уровня маслопупов опускаться…Да фильтр это, самый настоящий фильтр первого порядка, с крутизной спада 6 дБ/окт. Учите матчасть.
Точно вам говорю: учите матчасть.
Отправлено 12 Август 2010 – 15:46
“Заметьте! Не я первым начал!”:D(с) к/ф “Покровские ворота”
А теперь посмотрите, кто меня упрекнул в “домашнем” уклоне, хотя я вел беседу (вот такими буквами!) ИСКЛЮЧИТЕЛЬНО об автомобильной акустике.
Ошибаетесь, есть. Потому-то серьезные разработчики и держат свои схемы и расчеты в секрете. Не будь это – из прЫнципа выложил бы здесь один кроссик и ткнул бы Вас в него.
Не надо, верю и очень рад этим Вашим словам: сам хотел при встрече показать подобные примеры.
Угу. Приедете – покажу наличие динамики в фильтрах 4 порядка. Если не приедете – придется бросать клич на форуме, что-то вроде: “Ау, отзовитесь те, кто бывал у меня и слушал мою акустику! Скажите уважаемому vvv, была там динамика, аль нет?!”:DНу, как-то так…С уважением,Василий.
Отправлено 12 Август 2010 – 19:24
ок, договорились, Вы правыабсолютно все цепи и сочетания в любых сочетаний R, C и L известны. вопрос лишь в месте применения.я очень плотно увлекался этим вопросом, выводы сделал.да я верю, что покажете.
на форуме есть человек, который был у Вас дома и слушал мою автомобильную систему, с цобелями(в том числе), можете у него спросить, была ли там динамика.
продемонстрировать, к сожалению, не могу, может быть в след. авто.с Уважением,Вадим
Отправлено 12 Август 2010 – 23:31
Василий, помница цитата звучит иначе – “Заметьте! Не я это предложил!”(с) к/ф “Покровские воротаэто в сцене, когда Мюллерупредложили опрокинуть по рюмашке
Не всё очевидное по теории, верно на практике если применять в слепую….
Отправлено 13 Август 2010 – 11:56
Уели, FIL!Сдаюсь, стою с поднятыми руками и покрасневшим лицом!
Отправлено 13 Август 2010 – 18:27
И есть так же тот, кто не были у Василия, но слышали динамику в твоем авто с цобелями. А позже повторил и в своем с ними же. За что – спасибо!ПОМНИ!!! ГОРДИСЬ!!! ЦЕНИ!!!
Источник: http://www.bluesmobil.ru/board/showthread.php?t=34543
Расчёт и намотка катушки динамика
Как отремонтировать динамик самому? FAQ Часть5
В этой части руководства речь пойдёт о расчёте и намотке катушки громкоговорителя.
Навигация по FAQ-у.
Страницы 1 2 3 4 5 6 7 8
Как рассчитать диаметр провода при перемотке динамика?
Подобный расчёт может понадобиться тогда, когда Вам в руки попал уже разобранный динамик, из которого удалили катушку, а исходный диаметр провода неизвестен.
Также, в некоторых случаях, может понадобиться изменить сопротивление динамика. Например, динамики 25ГДН-3, 35ГДН-1 и 75ГДН-1(3) выпускались с сопротивлением как 4 Ома, так и 8 Ом.
Пригодиться это даже тогда, когда утрачена не только катушка, но и гильза. Тогда можно принять длину катушки в полтора раза больше толщины переднего фланца.
Данная формула позволяет рассчитать диаметр медного провода для намотки двухслойной катушки виток к витку. Нужно только учитывать, что в технических данных динамиков, указывается сопротивление не постоянному, а переменному току, измеренное на частоте 1000Гц, если не указано другое. Поэтому в формулу лучше сразу подставить величину сопротивления на 10-15% меньше паспортной.
d = ³√ (14*10-5 * L * D / R)
D – внешний диаметр гильзы в мм.
L – длина катушки в мм.
R – требуемое сопротивление катушки постоянному току.
d – диаметр медного провода без изоляции.
Эта же формула для алюминиевого провода:
d = ³√ (22*10-5 * L * D / R)
Пример расчёта диаметра медного провода.
Исходные данные.
Длина катушки (L) – 20мм.
Диаметр гильзы (D) – 25мм.
Сопротивление (R) – 3,6 Ом.
d = ³√ (14*10-5 * 20 * 25 / 3,6) ≈ 0,27(мм).
Как измерить с высокой точностью диаметр провода, не имея микрометра, описано здесь.
Вернуться наверх к “Навигации”.
Как намотать катушку динамика?
Намотка катушек динамиков производится виток к витку до получения заданной длины катушки. Количество витков при этом, как правило, не считают.
- Катушка.
- Гильза.
- Прокладка.
- Шаблон.
При намотке следует поддерживать постоянное натяжение провода и тщательно укладывать витки. Особенно тщательно укладываются витки второго слоя, когда каждый виток должен быть строго уложен между витками первого слоя.
Чтобы было удобно осуществлять такую точную работу, позаботьтесь об упоре для руки.
Катушку с обмоточным проводом можно закрепить любым удобным для Вас способом и установить на полу.
Подробнее о самом простом станке для намотки динамиков можно прочесть здесь.
Важно
Другой полезный инструмент, который понадобится для намотки катушек, это вот такая прищепка с грузиком.
Далее я расскажу о том, как намотать катушку, и зафиксировать её витки клеем «БФ-2» или «БФ-4».
Необходимую вязкость клея можно обеспечить добавлением небольшого количества спирта с тщательным перемешиванием.
Разверните плеер на весь экран, чтобы увидеть видео в полном разрешении.
Перед основной намоткой, на гильзу наматывается несколько лишних витков, для того, чтобы надёжно закрепить провод и гильзу на поверхности шаблона. Затем во время очередного лишнего витка на гильзу кисточкой наносится равномерный слой клея.
После этого, быстро мотается первый слой катушки. Затем к проводу цепляется грузик, который позволяет сохранить необходимое натяжение провода и освободить до этого занятую руку. Затем, первый слой катушки покрывается клеем.
Через пятнадцать-двадцать минут, когда клей подсохнет, можно приступать к намотке второго слоя.
Сначала мотается один два витка второго слоя, а затем первый слой катушки покрывается клеем. Это делается для того, чтобы свежий клей не растворил клей, нанесённый ранее, и первый виток второго слоя не провалился в образовавшуюся щель между крайними витками первого слоя.
После намотки второго слоя провода, катушка подсушивается в течение 10-15 минут, а затем снова покрывается клеем.
Совет
Когда клей хорошо подсохнет, можно, либо снять с оправки катушку вместе с гильзой, если она уже вклеена в диффузор, либо вклеить её в диффузор прямо на шаблоне.
Однако в некоторых случаях гильзу вклеивают в диффузор уже во время сборки динамика.
Чтобы снять гильзу с шаблона, то место прокладки, где была нанесена фиксирующая капля клея, отрезается, и гильза снимается с оправки вместе с катушкой и прокладкой.
Если прокладка не скользит по оправке, значит, натяжение провода при намотке было слишком велико. Нужно отметить, что чрезмерное натяжение провода может уменьшить зазор между гильзой и керном и сделать сборку динамика невозможной. Это обусловлено тем, что медный провод может растягиваться и сжиматься, как и любой другой металл.
Так как в гильзе имеется щель, то во время намотки катушки в неё проникает клей и гильза приклеивается к прокладке.
Для того чтобы отделить прокладку от гильзы достаточно при помощи кисточки слегка смочить ацетоном или спиртом место, где прокладка склеилась с гильзой.
Вот наша катушка и готова. Теперь её следует досушить до конца.
Для окончательного отверждения клея, на катушку подаётся электрический ток. Силу тока подбирают для достижения оптимального режима отверждения.
Температуру в процессе сушки можно измерить электронным термометром.
Если нет подходящего блока питания, то катушку можно подключить к УНЧ и подать на его вход
Катушка индуктивности: история, конструкция, параметры
Катушка индуктивности – элемент электрических цепей, способствующий накоплению энергии магнитного поля. С использованием изделий изготавливаются колебательные резонансные контуры. Катушка называется потому, что вокруг бобины-сердечника обматывается нить проволоки. Часто в радиотехнике элементы именуют индуктивностями. Подходит случаю, конструкции иной раз мало напоминают катушку.
История создания катушки индуктивности
Катушки индуктивности наматываются фиксированным числом проводов. Этот факт скрывают на уроках физики, избегая забивать ученикам мозги. Потом догадываются бедняги, пытаясь уловить смысл термина бифилярная обмотка двигателя. Нитей бывает больше, выделяют катушки индуктивности:
- трифилярные;
- тетрафилярные;
- пентафилярные.
Обычные катушки индуктивности называют унифилярными – нить проволоки одна. Сразу возникает справедливый вопрос – зачем конструкции? Изобретатель катушку индуктивности неизвестен. Ответы дают, виноват Тесла… Далеко от истины.
Дроссель
Один знаток Майл.ру – не исключено, админ ресурса – ответил: отцом катушек индуктивности является Майкл Фарадей, якобы, открыл магнитную индукцию (согласно англоязычной страничке Википедии). Напрашивается вывод, историковед не владеет вопросом. Главная причина критики “Ответов” Майл – некомпетентность. Фарадей открыл индукцию, применив тороидальный трансформатор с двумя изолированными обмотками. Намного сложнее конструкция, нежели катушка, явление заключалось сопровождалось выходом скачка тока при изменении магнитного поля сердечника.
Произошло описанное в 1831 году, первый электромагнит сконструирован малоизвестным в России Уильямом Стердженом. Знаете, как выглядел прибор? Правильно – катушка индуктивности из 18 витков оголенной медной проволоки с хорошим лакированным ферромагнитным сердечником формы лошадиной подковы. При пропускании по обмотке тока железо в округе притягивалось устройством. Годом выхода первого электромагнита в свет историки считают 1824. Раньше, нежели Фарадей начал эксперименты.
Наставник Хампфри Дэви счел работу плагиатом. Ученик не решался продолжить, конфликтовать открыто. Получилось, в 1829 году безвременно Хампфри Дэви ушел из жизни, благодаря чему Майкл Фарадей возобновил работу. Не потому считаем неверными скудные сведения рунета по рассматриваемому вопросу. Вторая причина кроется в гальванометрах: первый сконструирован 16 сентября 1820 года Иоганном Швейггером. Годом позже великий Ампер усовершенствовал прибор, угадайте, что входило в состав новинки? Правильно – катушка индуктивности, составленная несколькими витками проволоки.
В 1826 году Феликс Савари разряжал лейденскую банку через несколько витков проволоки, обмотанной вокруг стальной иглы. Наблюдая остаточную намагниченность металла. Фактически Савари создал первый колебательный контур, правильно сделав выводы о происходящих процессах.
Майкл Фарадей бессилен стать изобретателем индуктивности. Скорее ученый работал в этом направлении, вел некоторые исследования, получил новый закон касательно электромагнетизма. В результате вопрос об изобретателе катушки индуктивности оставляем открытым. Рискнем предположить, у субъекта темы два отца:
Лаплас и Швейггер
- Лаплас на основе доклада Эрстеда высказал предположение: действие тока на магнитную стрелку можно усилить, изогнув провод.
- Швейггер реализовал услышанное на практике, создав первый в мире гальванометр, использовав доклады Ампера о зависимости угла отклонения стрелки от силы тока.
Конструкция катушки индуктивности
Вокруг прямолинейного проводника с постоянным током создается круговое магнитное поле. Линии напряженности напоминают спираль. Некто догадался свернуть провод кольцом, чтобы вклад элементарных сегментов сложился в центре. В результате внутри конструкции магнитное поле намного выше, нежели снаружи. Линии визуально наблюдаем на железных опилках. На Ютуб множество роликов, где через индуктивность пропускают ток, дем
Как использовать измерительные приборы для измерения индуктивности
Любое проводящее тело имеет определенную конечную индуктивность. Эта индуктивность является внутренним свойством проводящего тела и всегда одинакова, независимо от того, находится ли этот проводник или устройство под напряжением в электрической цепи или находится на полке на складе.
Индуктивность сегмента прямого провода можно значительно увеличить, намотав его в виде спиральной катушки, после чего магнитные поля, установленные вокруг соседних витков, объединяются, чтобы создать единое более сильное магнитное поле.Индуктивность катушки зависит от квадрата количества витков.
Индуктивность катушки также значительно увеличивается, если катушка построена вокруг сердечника, который состоит из материала, имеющего высокую проницаемость для магнитного потока. (Поток — это произведение среднего магнитного поля на перпендикулярную площадь, которую оно пересекает. Поток в магнитной цепи аналогичен току в электрической цепи.) Это ситуация с силовыми трансформаторами, принадлежащими коммунальным предприятиям, и другими катушками, предназначенными для работы при 50 или 60 Гц.Индуктивные эффекты более выражены на более высоких частотах, поэтому для ВЧ-индуктора обычно достаточно воздушного сердечника.
Одним из определяющих качеств катушки является то, что при снятии приложенного напряжения, прерывая ток, магнитное поле схлопывается, и электрическая энергия, ранее использовавшаяся для создания магнитного поля, внезапно возвращается в цепь. Это просто проявление того факта, что магнитное поле и проводник, движущиеся друг относительно друга, индуцируют в проводнике ток.
Скорость изменения тока в катушке индуктивности пропорциональна приложенному к ней напряжению, как определено известным уравнением:
В = L dI / dt
Где L — индуктивность в генри, V — напряжение, I — ток, а t — время. Подобно конденсатору и в отличие от резистора, сопротивление катушки индуктивности зависит от частоты. Импеданс — это векторная сумма сопротивления (когда и если в цепи есть резистор или эквивалент) и индуктивного или емкостного реактивного сопротивления. В конденсаторе более высокая частота означает меньшее емкостное реактивное сопротивление.В катушке индуктивности более высокая частота соответствует более высокому индуктивному сопротивлению. Катушка не препятствует прохождению постоянного тока, за исключением:
• Небольшое сопротивление из-за допустимой нагрузки провода
• Мгновенное индуктивное сопротивление при первом включении катушки из-за работы, необходимой для установления магнитного поля . (Во время нарастания постоянный ток по существу является переменным.)
Уравнение емкостного реактивного сопротивления:
X С = 1 / 2πfC
Где X C = емкостное реактивное сопротивление в Ом; f = частота в герцах; C = емкость
Уравнение индуктивного сопротивления:
X L = 2πfL
Где X L = индуктивное реактивное сопротивление в Ом; f = частота в герцах; L = индуктивность
Эти уравнения обладают поразительной симметрией.Одно является зеркальным отображением другого, разница заключается в роли частоты. В емкостном реактивном сопротивлении f находится в знаменателе, а в индуктивном реактивном сопротивлении — в числителе. Емкостное и индуктивное реактивное сопротивление, а также общий импеданс выражаются в омах, как и в сопротивлении постоянному току, и полностью соответствуют закону Ома, при том понимании, что эти свойства меняются в зависимости от частоты.
Мультиметры высшего класса часто имеют емкостной режим. Чтобы провести это измерение, просто исследуйте провода исследуемого устройства.В интересах безопасности и точности может потребоваться разрядка устройства с высокой емкостью, такого как электролитический конденсатор, с использованием разумного сопротивления в течение соответствующего периода времени. Шунтирование его отверткой не является хорошей практикой, потому что электролит может быть пробит из-за сильного тока, не говоря уже о вспышке дуги в больших единицах. После разряда проверьте, проверив напряжение.
Конденсаторы, измеренные с помощью мультиметра в режиме измерения емкости, могут показывать низкие значения на целых 10%.Этой точности достаточно для многих применений, таких как пусковая цепь для электродвигателя или для фильтрации источника питания. Более высокая точность достигается при динамическом испытании. Одна из стратегий прецизионных измерений — создать схему, которая преобразует емкость в частоту, которую затем можно определить с помощью счетчика.
Для измерения индуктивности устройства, собственной индуктивности цепи или более распространенной распределенной индуктивности лучше всего подходит измеритель LCR. Он подвергает тестируемое устройство (надлежащим образом разряженное и изолированное от любых внешних цепей, которые могли бы возбудить его или создать несущественный параллельный импеданс) переменным напряжением известной частоты, обычно равным среднеквадратичному напряжению в один вольт на частоте одного килогерца. Измеритель одновременно измеряет напряжение на устройстве и ток через него. Из отношения этих величин алгебраически вычисляется импеданс.
Затем современные измерители измеряют фазовый угол между приложенным напряжением и результирующим током.Они используют эту информацию для отображения эквивалентной емкости, индуктивности и сопротивления рассматриваемого устройства. Измеритель работает в предположении, что обнаруживаемые им емкость и индуктивность существуют в параллельной или последовательной конфигурации.
Конденсаторыимеют некоторую непредусмотренную индуктивность и сопротивление из-за их выводов и пластин. Точно так же у катушек индуктивности есть некоторое сопротивление из-за их выводов, и у них есть определенная емкость, потому что их выводы приравниваются к пластинам. Точно так же резисторы, как и полупроводники на высоких частотах, приобретают емкостные и индуктивные свойства.
Как правило, измеритель предполагает, что подразумеваемые устройства подключены последовательно, когда он выполняет измерения LR. Точно так же предполагается, что они параллельны, когда проводятся измерения CR, из-за последовательной геометрии катушки и параллельной геометрии конденсатора.
Многие измерители LCR подают выходной сигнал источника сигнала через истоковый резистор на неизвестное устройство Z X и резистор диапазона R r .Усилитель заставляет тот же ток, который течет через неизвестное устройство, течет через R r , приводя соединение неизвестного устройства и R r к 0 В. Напряжения V 1 и V 2 через неизвестное устройство и R r соответственно подключены к селекторному переключателю. Выход коммутатора подключен к дифференциальному усилителю. Действительная и мнимая составляющие сигналов напряжения и тока получаются путем умножения этих напряжений на прямоугольную волну, когерентную со стимулом (в фазовом детекторе). Это дает выходной сигнал, пропорциональный синфазной или квадратурной составляющей напряжения. Выходной сигнал поступает на аналого-цифровой преобразователь с двумя характеристиками, который считывает MCU. Комплексное отношение напряжения к току равно комплексному сопротивлению. Другие параметры, такие как L и C, вычисляются математически из скорректированного значения импеданса.Портативные и настольные измерители LCR в более продвинутых моделях позволяют пользователю выбирать частоту подаваемого переменного напряжения. Обоснование заключается в том, что тестируемый индуктор или конденсатор будет реагировать более характерным образом в пределах дискретной полосы частот.
Настольные измерители LCRтакже обычно имеют четырехпроводную схему (Кельвина), которая значительно повышает стабильность и точность измерений с низким импедансом, когда контакт наконечника пробника может нарушить показания.
Индуктивность, емкость или сопротивление можно измерить с помощью мостовой схемы. Для этого измерения переменные калиброванные элементы обнуляются на детекторе, в отличие от измерения фазового угла, как в обычном измерителе LCR.
Когда измеритель LCR недоступен, существуют различные методы измерения индуктивности с помощью осциллографа.Один из методов измерения индуктивности в зависимости от наклона вольт-амперной характеристики включает подключение катушки индуктивности к импульсному источнику напряжения с рабочим циклом менее 50%. С помощью токового пробника осциллографа считайте пиковый ток в амперах и время между импульсами в микросекундах. Умножьте эти суммы и разделите произведение на пиковый ток. Это величина индуктивности тестируемого устройства.
Другой метод измерения индуктивности с помощью осциллографа заключается в последовательном подключении резистора известного номинала к проверяемой катушке индуктивности и подаче сигнала.Частота регулируется таким образом, чтобы на обоих устройствах было одинаковое напряжение.
Третий метод определения индуктивности устройства состоит в размещении катушки индуктивности параллельно с известной емкостью. Результирующий контур резервуара затем включается последовательно с резистором, и резонансная частота определяется с помощью осциллографа. Исходя из этого, можно рассчитать индуктивность.
Эти методы, хотя и являются жизнеспособными, требуют некоторых схемотехнических работ и обширных вычислений, в то время как измеритель LCR обеспечивает прямые показания с достаточной точностью для большинства приложений.
ИндуктивностьПример: Метод конечных элементов Magnetics
Дэвид Микер
Сопутствующий файл: index1a.fem
Введение
Распространенной задачей, к которой можно применить FEMM, является расчет индуктивности индуктора с зазором. Хотя индуктивность можно оценить с помощью простого магнитного Теория схем, схемный подход обычно игнорирует утечку потока и эффекты окантовки. Чтобы решить эти неидеальные эффекты более подробно анализ методом конечных элементов может быть заняты.Цель настоящего пример — показать, как рассчитывается индуктивность в моделировании FEMM, и сравните этот результат с приближением, полученным через магнитную цепь подход.
Пример геометрии
Примерная геометрия состоит из ламинированного EI с зазором. сердечник с поперечным сечением, как показано на Рисунке 1. Сердечник E с центральным полюсом шириной 0,5 дюйма и внешними полюсами Ширина 0,25 дюйма отделена от I-образного возвратного канала воздушным зазором. Толщина 0,025 дюйма.
Рисунок 1: Пример геометрииОбмотка, которая лежит в пазах E, состоит из 66 витки толстой изоляции провода 18 AWG для примерно 66% меди заполните фракцию в окне змеевика.это Предполагается, что ядро расширяется на 1 дюйм в направлении страницы. Для целей этой модели материал считается линейным ферромагнитным материалом с относительной проницаемостью из 2500.
Теория цепей Индуктивность
Для приблизительной оценки индуктивности мы можем предположить, что нет подтеков и окантовки, и что вклад железа сечения к сопротивлению магнитной цепи тривиально по сравнению с вклады с воздуха.Потом, поток, протекающий в магнитной цепи, получается путем решения уравнения цепи:
для φ , полный поток, связанный катушкой. R представляет собой сопротивление магнитной цепи, которое согласно нашим предположениям можно записать как:
где g = 0,025 «, a полюс = 0,5 в 2 и μ o = 4 π (10 -7 ) H / м. Поскольку общий поток, связывающий катушку, тогда составляет:
, а общая самоиндукция равна потоку, умноженному на общее количество витков:
так, чтобы самоиндукция была:
Так как в нашем случае витков 66, индуктивность получается равной:
L = 1.39 мГнМы ожидаем, что индуктивность получена из конечных элементов. вычисления должны быть в районе 1,39 мГн.
Индуктивность конечного элемента (I)
Для создания решения методом конечных элементов индуктор помещается в центр коробки размером 2 на 2,5 дюйма. На границах области граница условие A = 0 определено. Для Для выполнения анализа методом конечных элементов ток 1 А является несколько произвольно применяется к катушкам. Достаточно грубая плотность сетки с ограничением размера ячейки больше 0.05 «определяется везде. Сетка проблемной области изображена на рисунке 2.
Рисунок 2: Проблемная область, нарисованная в FEMM. После выполнения анализа и запуска постпроцессора,
индуктивность можно определить, нажав кнопку «Свойства схемы» в
постпроцессор:
Появляется диалоговое окно с рядом свойств
обмотки, если смотреть со стороны выводов обмотки. Диалог свойств цепи
для этого примера показано ниже на рисунке 3.
При отсутствии постоянных магнитов или других катушек результат «Поток / Ток» можно интерпретировать напрямую как самоиндукцию:
л = 1,73 мГнЭтот результат выше, чем 1,39 мГн, предсказанный простой подход теории цепей, потому что эффекты утечки и окантовки пренебрежение схемным подходом приводит к небольшому увеличению индуктивности.
Индуктивность конечных элементов (II)
Альтернативный подход — получение энергии через Интеграл «Энергия магнитного поля». Для этого подхода энергия получается через:
, где этот интеграл взят по всей задаче домен, а не просто над катушками. Чтобы выполнить эту интеграцию в постпроцессор, переключитесь в режим интегрального блока, нажав кнопку на панели задач. Затем выберите каждый регион в проблеме с помощью щелчки левой кнопкой мыши. Когда выделена вся проблемная область, нажмите кнопку Integral и выберите Интеграл «Энергия магнитного поля» из выпадающего списка объемных интегралов.Если W представляет собой интегральный результат, результирующая индуктивность:
Для примера задачи результат из энергии интеграция:
Вт = 0,000865042 ДжоулейЧто при подстановке в формулу дает то же результат как метод (I):
л = 1,73 мГнВыводы
Был представлен простой пример, демонстрирующий, как FEMM можно использовать для получения индуктивности. Рассмотрена двумерная плоская задача, и индуктивность получается из двух методы сравнивались друг с другом и с «проверкой работоспособности» оценка индуктивности по теории магнитной цепи.
Хотя результаты двух подходов конечных элементов для получения одинаковых индуктивностей в этом случае обычно лучше использовать метод (I). Причина в том, что некоторые граничные условия ( т.е. асимптотическое граничное условие, используемое для аппроксимации «открытой граничной» задачи) подразумевают, что некоторая энергия хранятся вне смоделированной проблемной области. Внутренне FEMM вычисляет поток связь с использованием метода, который учитывает эту дополнительную энергию, тогда как интегрирования B × H по всем элементам нет.
Строго говоря, единственный коэффициент индуктивности означает линейная зависимость между приложенным током и результирующим потоком. По этой причине пример проблемы с учитывались только линейные материалы.
Если проблема связана с нелинейными материалами и есть значительная насыщенность, больше нет линейной зависимости между ток и поток. Однако есть много ситуаций, в которых применяется синусоидальный ток, и хотелось бы знать амплитуду основной гармоники потока, соответствующую приложенному текущий.В этом случае гармонический анализ может быть запущен в FEMM (, т.е. , когда частота отличная от нуля указанные в Определении проблемы). FEMM реализует нелинейную формулировку гармоники времени, которая вычисляет амплитуда и фаза основной части магнитного поля для времени гармонические задачи с нелинейными задачами материалов. Для нелинейных задач гармоники по времени свойство Circuit Properties диалоговое окно можно снова использовать для сбора различных оконечных свойств катушки.
вопросов с множественным выбором по индукторам
0 из 20 завершенных вопросов
Вопросы:
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
Информация
Вы уже прошли тест раньше.Следовательно, вы не можете запустить его снова.
Вы должны войти в систему или зарегистрироваться, чтобы начать викторину.
Вы должны пройти следующую викторину, чтобы начать эту викторину:
0 из 20 вопросов ответил правильно
Ваше время:
Прошло времени
Вы набрали 0 из 0 баллов, (0)
Средний балл | |
Ваша оценка |
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20