Инверторный стабилизатор напряжения схема: Схема стабилизатора напряжения сети | Мастер Винтик. Всё своими руками!

Содержание

Схема стабилизатора напряжения сети | Мастер Винтик. Всё своими руками!

Стабилизатор представ­ляет собой сетевой авто­трансформатор, отводы обмотки которого пере­ключаются автоматичес­ки в зависимости от величины напряжения в электросети.

Стабилизатор позво­ляет поддерживать вы­ходное напряжение на уровне 220V при измене­нии входного от 180 до 270 V. Точность стабили­зации 10V.

Принципиальную схему можно разделить на слаботоковую схему (или схему управления) и сильнотоковую (или схе­му автотрансформатора).

Схема управления пока­зана на рисунке 1. Роль измерителя напряжения возложена на поликомпараторную микросхему с линейной индикацией напряжения, — А1 (LM3914).

 

Сетевое напряжение поступает на первичную обмотку маломощного трансформатора Т1. У этого    трансформатора есть две вторичные обмотки, по 12V на каждой, имеющие один общий вывод (или одна обмотка на 24V с отво­дом от середины).

Выпрямитель на диоде VD1 служит для получения питающего напряжения.

Напряже­ние с конденсатора С1 поступает на цепь пита­ния микросхемы А1 и светодиодов оптопар Н1.1-Н9.1. А так же, он служит для получения образцовых стабильных напряжений мини­мальной и максимальной отметки шкалы. Для их получения используется параметрический стабилизатор на УЗ и Р1. Предельные значения измерения устанавливаются подстроечными резисторами R2 и R3 (резистором R2 — верхнее значение, резистором RЗ -нижнее).

Измеряемое напряжение берется с другой вторичной обмотки трансформатора Т1. Оно выпрямляется диодом VD2 и поступает на резистор R5. Именно по уровню постоянного напряжения на резисторе R5 производится оценка степени отклонения сетевого напря­жения от номинального значения. В процессе налаживания резистор R5 пред­варительно устанавливают в среднее положе­ние, а резистор RЗ в нижнее по схеме.

 Затем, на первичную обмотку Т1 от автотрансфор­матора типа ЛАТР подают повышенное напряжение (около 270V) и резистором R2 выводят шкалу микросхемы на значение, при котором горит светодиод, подключенный к выводу 11 (временно вместо светодиодов оптопар можно подключить обычные свето-диоды).

Затем входное переменное напря­жение уменьшают до 190V и резистором RЗ выводят шкалу на значение когда горит свето­диод, подключенный к выводу 18 А1.

Если вышеуказанные настройки сделать не удается, нужно подстроить немного R5 и повторить их снова. Так, путем последова­тельных приближений добиваются результата, когда изменению входного напряжения на 10V соответствует переключение выходов микро­схемы А1.

Всего получается девять пороговых значе­ний, — 270V, 260V, 250V, 240V, 230V, 220V, 210V, 200V, 190V.

 Принципиальная схема автотрансформатора показана на рисунке 2. В его основе лежит переделанный трансформатор типа ЛАТР. Корпус трансформатора разбирают и удаляют ползунковый контакт, который служит для переключения отводов. Затем по результатам предварительных изме­рений напряжений от отводов делают выводы (от 180 до 260V с шагом в 10V), которые, в дальнейшем переключают при помощи симисторных ключей VS1-VS9, управляемых системой управления посредством оптопар Н1-Н9.

Оптопары подключены так, что при снижении показания микросхемы А1 на одно деление (на 10V) происходит переключение на повышающий (на очередные 10V) отвод автотрансфор­матора. И наоборот, — увеличение пока­заний микросхемы А1 приводит к пере­ключению на понижающий отвод авто­трансформатора. Подбором сопротивления резистора R4 (рис. 1) устанавливают ток через светодиоды оптопар, при котором симис-торные ключи переключаются уверенно. Схема на транзисторах VТ1 и VT2 (рис. 1) служит для задержки включения нагрузки автотрансформатора на время, необходимое на завершение переход­ных процессов в схеме после включе­ния. Эта схема задерживает подключе­ние светодиодов оптопар к питанию.

Вместо микросхемы LM3914 нельзя использовать аналогичные микросхемы LM3915 или LM3916, из-за того, что они работают по логарифмическому закону, а здесь нужен линейный, как у LM3914. Трансформатор Т1 — малогабаритный китайский трансформатор типа TLG, на первичное напряжение 220V и два вто­ричных по 12V (12-0-12V) и ток 300mА. Можно использовать и другой аналогич­ный трансформатор.

Трансформатор Т2 можно сделать из ЛАТРа, как описано выше, или намотать его самостоятельно.

Симисторы можно использовать другие, — все зависит от мощности нагрузки. Можно даже использовать в качестве элементов коммутации элекромагнитные реле.

Сделав другие настройки резисторами R2, RЗ, R5 (рис. 1) и, соответственно, другие отводы Т2 (рис. 2) можно изме­нить шаг переключения напряжения.

Кривошеим Н. Радиоконструктор. 2006г. №6.

Литература:

  1. Андреев С. Универсальный логичес­кий пробник, ж. Радиоконструктор 09-2005.
  2. Годин А. Стабилизатор переменного напряжения, ж. Радио, №8, 2005  

P.S. В нашем «Магазине Мастера» вы можете приобрести готовые модули стабилизаторов, усилителей, индикаторов напряжения и тока, а также различные радиолюбительские наборы для самостоятельной сборки.

 Наш «Магазин Мастера «



ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ



П О П У Л Я Р Н О Е:

  • Способ подключения трёхфазного двигателя к однофазной цепи
  • Трехфазные асинхронные электродви­гатели с короткозамкнутым ротором обыч­но подключают к однофазной сети по схе­ме, показанной на рис. 1. Подробнее…

  • Доработка ночника «Луна».
  • В место батареек используем зарядку от сотового. 

    Сейчас в продаже существует множество различных устройств, работающих на батарейках. Есть и такие, которые в процессе эксплуатации ни куда не переносятся, например, настольные лампы, ночники, светильники и т.д.  Подробнее…

  • Электронный ПРА (балласт). Принцип работы.
  • Преимущества электронных ПРА

    Электронный ПРА — балласт, спасающий лампу. В статье, ниже рассмотрим принцип построения, работу и элементную базу электронных балластов.

    Электромагнитный ПРА (дроссель-стартер) имеет массу недостат­ков: надоедливое жужжание, непроизвольные вспышки и частое мерца­ние, исходящие от светильников использующих ЛЛ.

    Подробнее…


Популярность: 45 780 просм.

Преимущества инверторных стабилизаторов «Штиль»

20. 04.2017

В мае 2015 года группа компаний «Штиль» приступила к серийному выпуску принципиально новых стабилизаторов инверторного типа, обеспечивающих самую лучшую защиту оборудования от помех в электрической сети.

Инверторный стабилизатор напряжения функционально состоит из двух основных блоков выпрямителя и инвертора. Поступающее на вход сетевое переменное напряжение, которое может содержать помехи, броски, искажение формы синусоиды и другие дефекты, преобразуется выпрямителем в постоянное напряжение, которое подается на вход инвертора и преобразуется им в стабилизированное напряжение 220 Вольт с идеальной формой синусоиды. Такой принцип действия называется двойным преобразованием. Данная схема не пропускает на выход стабилизатора никаких помех из первичной сети. Кроме того, теперь стало возможным создание стабилизатора обеспечивающего одновременно широкий диапазон входного напряжения от 90 до 310 Вольт и высочайшую точность стабилизации ±4 Вольта.

Для того, чтобы наглядно продемонстрировать преимущества инверторного стабилизатора напряжения, мы провели мониторинг напряжения в реальной сети на входе и на выходе стабилизатора с помощью специального двухканального прибора, который записывает данные в память каждые 3 секунды. Затем мы построили графики полученных данных. Красным цветом везде показано входное напряжение в сети, а зеленым – напряжение на выходе стабилизатора. Все графики приведены в одном масштабе, по вертикальной оси отложено напряжение, а по горизонтальной – время.

На первом графике показаны результаты мониторинга инверторного стабилизатора напряжения «Штиль» ИнСтаб IS1000 в течение почти 19 часов, которые демонстрируют отсутствие каких-либо флуктуаций напряжения на выходе стабилизатора при значительных колебаниях напряжения сети.


Чтобы убедиться в надежности защиты от колебаний напряжения сети рассмотрим подробно один из участков этого графика длительностью примерно 15 минут, наглядно демонстрирующем качество работы инверторного стабилизатора напряжения «Штиль».

Действительно, стабилизированное выходное напряжение инверторного стабилизатора никак не связано с флуктуациями входного напряжения. Поэтому, для инверторного стабилизатора напряжения теряет смысл понятия время стабилизации напряжения или скорость стабилизации.


Для сравнения рассмотрим аналогичные результаты мониторинга классического стабилизатора напряжения «Штиль» коммутационного типа. В данном стабилизаторе компенсация изменений входного напряжения происходит путем коммутации обмоток автотрансформатора тиристорными ключами, команды на которые подаются микропроцессором, принимающем решение о необходимости повысить или понизить выходное напряжение, чтобы оно оставалась в пределах допустимого отклонения ±5% разрешенного ГОСТом.

На графике представлен мониторинг входного и выходного напряжения стабилизатора «Штиль» R7500. Это один из лучших стабилизаторов, отлично зарекомендовавших себя и выпускаемый группой компаний «Штиль» серийно в течение уже многих лет. Мониторинг проводился приблизительно 23 часа. Как мы видим, стабилизатор неплохо стравляется со своей функцией, удерживая напряжение в рамках определяемых ГОСТом, но флуктуации выходного напряжения на выходе значительно превышают величину флуктуаций на выходе инверторного стабилизатора.


Кроме того, поскольку стабилизатор коммутационного типа в каждый момент времени представляет собой автотрансформатор с тем или иным коэффициентом трансформации, установленным микропроцессором для нормализации выходного напряжения, то форма флуктуаций на выходе в значительной мере повторяет форму флуктуаций напряжения на входе со сдвигом напряжения в область допустимых значений. Это хорошо видно на растянутом графике мониторинга длительностью примерно 160 минут.

Таким образом, графики, приведенные выше, убедительно свидетельствуют, что инверторные стабилизаторы напряжения «Штиль» обеспечивают беспрецедентную защиту оборудования пользователя, недостижимую при использовании других типов стабилизаторов напряжения.

Вернуться к списку статей

описание, устройство, плюсы и минусы

Инверторный стабилизатор еще довольно часто называют стабилизатором двойного напряжения. Бытует мнение, что лучшими в данной сфере являются электронные устройства, в схеме которых используется тиристорное или симисторное оборудование, однако это не так. Аппараты инверторного типа характеризуются тем, что ток, который они подают, отличается одинаковой частотой, а также постоянной величиной напряжения. Максимальное отклонение от нормального находится в пределах 0,5 %.

Строение устройства

Инверторные стабилизаторы не просто так считаются лучшими в настоящее время. Они отличаются своим принципом работы, который основан на том, что у них другое строение внутренних элементов, обеспечивающих стабильные показатели выходящего напряжения.

Классическая модель стабилизатора такого типа состоит из следующих деталей:

  • входные фильтры, обозначающиеся как ВХ;
  • выпрямитель и корректор коэффициента мощности — ККМ-В;
  • блок конденсаторов ВИП;
  • присутствует элемент, преобразовывающий постоянное напряжение в переменное ИНВ;
  • последняя часть устройства — это микроконтроллер МК.

Здесь стоит отметить, что в данной схеме инверторного преобразователя такие детали, как выпрямитель и преобразователь напряжения, относятся также к инверторному типу, выполненному на базе транзисторов IGBT. Другими словами, в структуру встроены транзисторы биполярного типа с изолированным затвором. Вторая отличительная черта — это наличие металл-оксид-полупроводника типа MOSFET.

Как работает оборудование

Инверторный преобразователь во время своей работы выполняет всего две основные функции. Первая из них — это преобразование переменного тока в постоянный, а вторая функция – обратное преобразование постоянного тока в переменный.

Стоит рассмотреть более подробно принцип работы, чтобы понимать, зачем прибор выполняет две противоположные друг другу функции.

Принцип работы агрегата

Что касается первой стадии работы, то в данном случае включатся в работу такие элементы, как выпрямитель, а также корректор коэффициента мощности. Если сказать проще, то переменный нестабильный ток попадает в прибор через фильтр, который выпрямляет его, делая постоянным. Также фильтруются частоты. После этого такой ток будет иметь практически идеальную синусоидальную форму. Преимущество заключается в том, что в данном случае значительно увеличивается мощность. Коэффициент увеличения мощности составляет практически единицу. После прохождения фильтра ток накапливается в блоке конденсаторов, который иногда называют вторичным блоком питания.

После этого схема инверторного преобразователя напряжения работает следующим образом. Выпрямленный и преобразованный постоянный ток движется в сторону инвертора, задача которого — преобразовать его в переменный и оставить ту же синусоидальную форму. Другими словами, инвертор работает таким образом, что переменный ток приобретает напряжение в 220 В и частоту в 50 Гц.

Стоит отметить, что одна из частей инвертора — это кварцевый генератор, который проводит преобразование с большой точностью. Естественно, что каждым составным элементом, из которого состоит инвертор, управляет микроконтроллер устройства. Именно по причине того, что инверторный стабилизатор напряжения проводит два преобразования, он и получил такое название.

Особенности устройства

Если подвести промежуточные итоги, то можно смело сказать, что инверторный стабилизатор на 220 В кардинально отличается от электромеханических, релейных или симисторных стабилизаторов. Основное отличие заключается в том, что в составе отсутствует такой элемент, как автоматический трансформатор. Можно также сравнить процесс двойного преобразования, который осуществляет инвертор, и переключения обмотки трансформатора у остальных видов. Преобразование в два этапа получается гораздо эффективнее, что и делает инвертор более прогрессивным и лучшим среди других приборов.

Стоит сказать и о том, что любые скачки напряжения, которые возможны на входе в инверторные стабилизаторы для дома, нивелируются при помощи конденсатора, входящего в состав аппарата. Это благодаря тому что в данном элементе энергия способна накапливаться и после этого передаваться в виде стабильного переменного тока.

Описание преимуществ устройства

После того как были рассмотрены такие этапы, как принцип работы и устройство самого прибора, стоит больше внимания уделить его положительным и отрицательным сторонам. Что касается плюсов, то они следующие:

  • Стабилизатор инверторного типа может работать с широким спектром напряжения на входе, от 115 до 300 Вольт.
  • Постоянное поддержание стабильного напряжения. Здесь важно добавить, что данный пункт актуален и для повышенного напряжения на входе. Если входной показатель слишком велик, то лишняя часть будет накапливаться в конденсаторе, а на выход будет подаваться ровно столько, сколько необходимо, чтобы обеспечить поддержание 220 В.
  • Во время работы прибор не издает шума.
  • Размеры и вес данного оборудования значительно меньше, чем у других, так как в нем отсутствует автоматический трансформатор, который заменен на небольшие конденсаторы, транзисторы и микроконтроллер.
  • Прибор проводит фильтрацию всех помех и высокочастотных выбросов, которые могут поступать из общей сети.
  • Коэффициент полезного действия находится в пределах 90 % и выше.
  • Скорость регулирования тока достаточно высокая.

Недостатки приспособления

Несмотря на ряд преимуществ и положительных качеств устройства, даже однофазные инверторные стабилизаторы имеют свои недостатки. Основная проблема — это стоимость. Любой прибор такого типа будет стоить намного больше, чем устройства с аналогичными параметрами, но другого типа. Второй недостаток, о котором множество производителей обычно просто умалчивает, это уменьшение такого параметра, как диапазон входных вольт. Чем мощнее приборы, которые подключены к сети с таким стабилизатором, тем меньше будет данный диапазон.

Чтобы было проще понять, можно описать это в цифрах. Если все приборы, подключенные к сети, составят менее 50 % нагрузки, то диапазон будет 115-300 В, как было описано ранее. Если нагрузка увеличится до 50-70 % от максимальной, то диапазон станет равен 140-300 В. Если же превысить нагрузку в 70 % от максимальной, то стабилизатор инверторного типа будет способен выравнивать напряжение лишь в пределах от 160 до 300 В.

Условия использования

Стоит сказать о том, что инверторные стабилизаторы напряжения достаточно неприхотливы к среде своей работы. Это лучше всего заметно на таких параметрах, как окружающая температура и влажность. Множество моделей способно без проблем функционировать при температурном диапазоне от -40 до +40 градусов по Цельсию. Уровень влажности не должен превышать отметку в 95 % процентов. Естественно, что во время работы стабилизатор не должен соприкасаться с водой. Также нужно следить, чтобы она не попала вовнутрь, как и горюче-смазочные материалы. Стоит отметить, что появление конденсата внутри может вывести прибор из строя, а потом стоит следить за разницей температур. Если он все же начал появляться, то прибор стоит отключить до тех пор, пока влага не испарится.

Инверторный стабилизатор «Штиль»

Здесь важно отметить, что данные приспособления были специально разработаны для отечественных сетей. Диапазон входного напряжения данного оборудования по техническому паспорту 90-310 Вольт. Срок службы указывается — 20 лет.

Такая модель, как R500i, к примеру, имеет только естественное охлаждение, что делает работу агрегата полностью бесшумным. Другие модели имеют встроенные вентиляторы, которые издают шум, равный 30 Дб. Человеческий слух распознает такие шумы на расстоянии менее 1 метра. Другими словами, уже в соседней комнате шума слышно не будет. Для установки данных приборов на обычных горизонтальных поверхностях предусмотрены резиновые ножки. Есть также вариант с подвеской на кронштейны. Фиксироваться он должен при помощи двух или же трех саморезов.

Схема автоматической коррекции выходного напряжения инвертора

Общей проблемой многих недорогих инверторов является их неспособность регулировать выходное напряжение в зависимости от условий нагрузки. С такими инверторами выходное напряжение имеет тенденцию увеличиваться с уменьшением нагрузки и падать с увеличением нагрузки.

Идеи схем, описанные здесь, могут быть добавлены к любому обычному инвертору для компенсации и регулирования их изменяющихся условий выходного напряжения в ответ на изменяющиеся нагрузки.

Дизайн № 1: Автоматическая коррекция среднеквадратичного значения с использованием ШИМ

Первую схему, представленную ниже, можно считать, возможно, идеальным подходом для реализации автоматической коррекции выходного сигнала независимо от нагрузки с использованием ШИМ от IC 555.

Схема, показанная выше, может эффективно использоваться в качестве преобразователь среднеквадратичного значения, запускаемый автоматической нагрузкой, и может применяться в любом обычном инверторе по назначению.

IC 741 работает как повторитель напряжения и действует как буфер между выходным напряжением обратной связи инвертора и схемой контроллера ШИМ.

Резисторы, подключенные к выводу №3 микросхемы IC 741, сконфигурированы как делитель напряжения, который соответствующим образом уменьшает высокий выход переменного тока от сети до пропорционально более низкого потенциала, изменяющегося от 6 до 12 В в зависимости от состояния выхода инвертора.

Две схемы IC 555 сконфигурированы для работы как модулированный ШИМ-контроллер. Модулированный вход подается на вывод №5 микросхемы IC2, которая сравнивает сигнал с треугольными волнами на своем выводе №6.

Это приводит к генерации выходного сигнала ШИМ на его выводе №3, который изменяет свой рабочий цикл в ответ на модулирующий сигнал на выводе №5 ИС.

Повышающийся потенциал на этом выводе № 5 приводит к появлению ШИМ или ШИМ поколения с более высокими рабочими циклами, и наоборот.

Это означает, что, когда операционный усилитель 741 реагирует повышением потенциала из-за увеличения выходного сигнала инвертора, на выходе IC2 555 расширяются его импульсы ШИМ, в то время как при падении выходного сигнала инвертора ШИМ пропорционально сужается на выводе # 3 IC2.

Настройка ШИМ с МОП-транзисторами.

Когда вышеупомянутые автокорректирующиеся ШИМ интегрированы с затворами МОП-транзисторов любого инвертора, инвертор будет автоматически управлять своим среднеквадратичным значением в ответ на условия нагрузки.

Если нагрузка превышает ШИМ, выход инвертора будет иметь тенденцию к низкому уровню, что приведет к расширению ШИМ, что, в свою очередь, приведет к более сильному включению МОП-транзистора и приведет к увеличению тока в трансформаторе, тем самым компенсируя избыточный ток, потребляемый от нагрузки

Дизайн № 2: Использование операционного усилителя и транзистора

Следующая идея обсуждает версию операционного усилителя, которая может быть дополнена обычными инверторами для достижения автоматического регулирования выходного напряжения в ответ на изменение нагрузки или напряжения батареи.

Идея проста: как только выходное напряжение пересекает заданный порог опасности, срабатывает соответствующая схема, которая, в свою очередь, последовательно выключает силовые устройства инвертора, что приводит к контролируемому выходному напряжению в пределах этого конкретного порога.

Недостатком использования транзистора может быть проблема гистерезиса, из-за которой переключение может происходить в более широком поперечном сечении, что приводит к не очень точному регулированию напряжения.

Операционные усилители, с другой стороны, могут быть чрезвычайно точными, поскольку они будут переключать регулировку выхода в очень узком диапазоне, сохраняя уровень коррекции жестким и точным.

Простая схема автоматической коррекции напряжения нагрузки инвертора, представленная ниже, может быть эффективно использована для предлагаемого применения и для регулирования выходной мощности инвертора в любых желаемых пределах.

Предложенную схему коррекции напряжения инвертора можно понять с помощью следующих пунктов:

Один операционный усилитель выполняет функцию компаратора и детектора уровня напряжения.

Работа схемы

Высоковольтный переменный ток на выходе трансформатора понижается с помощью сети делителя потенциала примерно до 14 В.

Это напряжение становится рабочим напряжением, а также чувствительным напряжением для схемы.

Пониженное напряжение с использованием делителя потенциала пропорционально соответствует изменению напряжения на выходе.

На выводе 3 операционного усилителя установлено эквивалентное напряжение постоянного тока, соответствующее пределу, который необходимо контролировать.

Это достигается путем подачи на схему желаемого максимального предельного напряжения и последующей настройки предустановки 10k до тех пор, пока выход не станет высоким и не запустит транзистор NPN.

После выполнения вышеуказанных настроек схема становится готовой к интеграции с инвертором для внесения намеченных корректировок.

Как видно, коллектор NPN необходимо соединить с затворами МОП инвертора, которые отвечают за питание инверторного трансформатора.

Эта интеграция гарантирует, что всякий раз, когда выходное напряжение стремится перейти установленный предел, NPN запускает заземление затворов МОП-транзисторов и тем самым ограничивает любое дальнейшее повышение напряжения, запуск ВКЛ / ВЫКЛ продолжается бесконечно, пока выходное напряжение колеблется. вокруг опасной зоны.

Следует отметить, что интеграция NPN будет совместима только с N-канальными МОП-транзисторами. Если инвертор поддерживает МОП-транзисторы с P-каналом, конфигурация схемы потребует полного переключения транзистора и входных выводов операционного усилителя.

Также заземление цепи должно быть общим с минусом батареи инвертора.

Дизайн № 3: Введение

Эта схема была запрошена мне одним из моих друзей г-ном Сэмом, чьи постоянные напоминания

LM317 с внешней схемой повышения тока

Популярная микросхема стабилизатора напряжения LM317 предназначена для доставки не более 1.5 ампер, однако, добавив в схему повышающий транзистор внешнего тока, становится возможным модернизировать схему регулятора для обработки гораздо более высоких токов и до любых желаемых уровней.

Вы, возможно, уже встречали схему фиксированного стабилизатора напряжения 78XX, которая была модернизирована для обработки более высоких токов, добавив к ней внешний силовой транзистор, IC LM317 не является исключением, и то же самое можно применить к этой универсальной схеме переменного регулятора напряжения чтобы обновить его характеристики для обработки большого количества тока.

Стандартная схема LM317

На следующем изображении показана стандартная схема регулируемого стабилизатора напряжения IC LM317 с использованием минимального количества компонентов в виде одного постоянного резистора и потенциометра 10 кОм.

Предполагается, что эта установка предлагает регулируемый диапазон от нуля до 24 В при входном напряжении 30 В. Однако, если мы рассмотрим диапазон тока, он не превышает 1,5 ампер независимо от входного тока питания, поскольку микросхема внутренне оборудована, чтобы допускать только до 1.5 ампер и подавите все, что может потребоваться выше этого предела.

Показанная выше конструкция, которая ограничена максимальным током 1,5 А, может быть модернизирована с помощью внешнего PNP-транзистора, чтобы повысить ток наравне с входным током питания, что означает, что после реализации этого обновления вышеуказанная схема сохранит свою переменную Функция регулирования напряжения, тем не менее, сможет подавать на нагрузку полный входной ток питания, минуя внутреннюю функцию ограничения тока IC.

Расчет выходного напряжения

Для расчета выходного напряжения цепи источника питания LM317 можно использовать следующую формулу

VO = VREF (1 + R2 / R1) + (IADJ × R2)

где = VREF = 1.25

Current ADJ можно фактически игнорировать, поскольку он обычно составляет около 50 мкА и, следовательно, слишком мал.

Добавление внешнего усилителя Mosfet

Это обновление повышения тока может быть реализовано путем добавления внешнего PNP-транзистора, который может быть в форме силового BJT или P-канального MOSFET, как показано ниже, здесь мы используем mosfet, сохраняющий вещи компактны и позволяют значительно улучшить характеристики.

В приведенной выше схеме Rx становится ответственным за обеспечение триггера затвора для МОП-транзистора, так что он может проводить в тандеме с LM317 IC и усиливать устройство дополнительным током, определяемым входным источником питания.

Первоначально, когда входная мощность подается в схему, подключенная нагрузка, которая может быть рассчитана на гораздо более высокий, чем 1,5 А, пытается получить этот ток через LM317 IC, и в процессе этого пропорциональная величина отрицательного напряжения создается на RX, заставляя MOSFET реагировать и включаться.

Как только срабатывает МОП-транзистор, все входное питание имеет тенденцию течь через нагрузку с избыточным током, но, поскольку напряжение также начинает увеличиваться за пределы уставки потенциометра LM317, LM317 получает обратное смещение.

Это действие на время отключает LM317, который, в свою очередь, отключает напряжение на Rx и питание затвора для МОП-транзистора.

Следовательно, МОП-транзистор также имеет тенденцию отключаться на мгновение, пока цикл снова не продлится, позволяя процессу продолжаться бесконечно с заданным регулированием напряжения и высокими требованиями к току.

Расчет резистора затвора МОП-транзистора

Rx можно рассчитать, как указано в:

Rx = 10 / 1A,

, где 10 — оптимальное напряжение срабатывания МОП-транзистора, а 1 ампер — это оптимальный ток через микросхему до появления Rx. это напряжение.

Следовательно, Rx может быть резистором 10 Ом с номинальной мощностью 10 x 1 = 10 Вт

Если используется силовой BJT, цифра 10 может быть заменена на 0,7 В

Хотя вышеупомянутое приложение повышения тока с использованием МОП-транзистор выглядит интересным, у него есть серьезный недостаток, так как эта функция полностью лишает ИС функции ограничения тока, что может привести к срыву или возгоранию МОП-транзистора в случае короткого замыкания на выходе.

Чтобы противостоять этой уязвимости, связанной с перегрузкой по току или коротким замыканием, другой резистор в форме Ry может быть установлен с выводом истока МОП-транзистора, как показано на следующей схеме.

Резистор Ry должен создавать противодействующее напряжение на самом себе всякий раз, когда выходной ток превышает заданный максимальный предел, так что противодействующее напряжение на источнике МОП-транзистора подавляет напряжение срабатывания затвора МОП-транзистора, вызывая полное отключение в течение МОП-транзистор, предотвращая тем самым возгорание МОП-транзистора.

Эта модификация выглядит довольно простой, однако расчет Ry может немного сбить с толку, и я не хочу исследовать его глубже, поскольку у меня есть более приличная и надежная идея, которая, как можно ожидать, также выполнит полный контроль тока для обсуждаемого подвесного двигателя LM317. схема применения повышающего транзистора.

Использование BJT для управления током

Конструкцию для создания вышеуказанной конструкции, оснащенной повышающим током, а также защитой от короткого замыкания и перегрузки, можно увидеть ниже:

Пара резисторов и BC547 BJT — это все, что может потребуются для включения желаемой защиты от короткого замыкания в модифицированную схему повышения тока для LM317 IC.

Теперь вычисление Ry становится чрезвычайно простым и может быть вычислено по следующей формуле:

Ry = 0.7 / ограничение тока.

Здесь 0,7 — это напряжение срабатывания BC547, а «предел тока» — это максимально допустимый ток, который может быть указан для безопасной работы МОП-транзистора, допустим, этот предел установлен равным 10 А, тогда Ry можно рассчитать как :

Ry = 0,7 / 10 = 0,07 Ом.

Вт = 0,7 x 10 = 7 Вт.

Итак, теперь, когда ток имеет тенденцию пересекать вышеуказанный предел, BC547 проводит, заземляя контакт ADJ IC и отключая Vout для LM317

Использование BJT для повышения тока

Если вы не слишком увлечены используя mosfet, в этом случае вы, вероятно, можете применить BJT для требуемого повышения тока, как показано на следующей диаграмме:

Предоставлено: Texas Instruments

Регулируемый регулятор напряжения / тока LM317 High Current Regulator

Следующая схема показывает сильно регулируемый LM317 на основе сильноточный источник питания, который обеспечит выходной ток более 5 ампер и переменное напряжение от 1 до 1.От 2 В до 30 В.

На рисунке выше мы видим, что регулирование напряжения реализовано в стандартной конфигурации LM317 через потенциометр R6, который соединен с выводом ADJ LM317.

Тем не менее, конфигурация операционного усилителя специально включена, чтобы иметь полезную полномасштабную регулировку высокого тока в диапазоне от минимального до максимального 5 ампер.

Сильноточный импульс 5 А, доступный в этой конструкции, может быть дополнительно увеличен до 10 А путем соответствующей модернизации внешнего транзистора MJ4502 PNP.

Инвертирующих входной контакт # 2 из операционного усилителя используются в качестве опорного входного сигнала, который устанавливается на горшке R2. Другой неинвертирующий вход используется как датчик тока. Напряжение, возникающее на R6 через резистор R3 ограничителя тока, сравнивается с опорным значением R2, которое позволяет выходу операционного усилителя становиться низким, как только будет превышен максимальный установленный ток.

Низкий уровень на выходе операционного усилителя заземляет вывод ADJ LM317, отключая его, а также выходной источник питания, который, в свою очередь, быстро снижает выходной ток и восстанавливает работу LM317.Непрерывный режим включения / выключения гарантирует, что ток никогда не может превысить установленный порог, регулируемый R2.

Максимальный уровень тока можно также изменить, настроив значение резистора ограничения тока R3.

О компании Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть запрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

Схемы Подробнее »Электроника

— обзор основ регулятора схем стабилитрона и способ, в котором стабилитрон может быть использован для обеспечения опорного напряжения в качестве источника питания электроники.


Пособие по схемам источника питания и руководство Включает:
Обзор электроники источника питания Линейный источник питания Импульсный источник питания Защита от перенапряжения Характеристики блока питания Цифровая мощность Шина управления питанием: PMbus Бесперебойный источник питания


Самую простую схему регулятора напряжения можно создать с помощью простого последовательного резистора и стабилитрона. Это схема шунтирующего регулятора, состоящая из последовательного резистора и стабилитрона, подключенного к земле через нагрузку.

Цепи стабилитрона

обычно используются для приложений с низким энергопотреблением, где требуется только разумный уровень стабилизации. Схема на стабилитроне сможет обеспечить приемлемый уровень стабилизации, но для более строгих требований требуется более сложная схема.

Основы

Стабилитрон работает при обратном смещении.По мере увеличения напряжения на диоде он сначала не проводит. Однако, когда напряжение достигает определенного уровня, диод начинает проводить, и он будет пытаться поддерживать одинаковое напряжение на диоде почти для всех уровней тока. Таким образом, если нагрузка помещается на стабилитрон, в простой схеме регулятора напряжение будет поддерживаться, несмотря на изменения в требованиях по току для нагрузки. Стабилитрон будет воспринимать изменения тока, необходимые для поддержания постоянного напряжения на диоде.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *