Измерение показателей качества электроэнергии в действующей распределительной сети
По материалам статьи “Power quality indices measurement in real distribution network”.
Автор: Велимир Стругар, дипломированный инженер, магистр электроинженерии,
Черногорское электрическое предприятие,
Отдел по распределению электроэнергии
В статье представлена информация о влиянии различных устройств, эксплуатируемых в распределительной системе Черногорского электрического предприятия, а точнее, распределительной сети в городе Тивате. Измерения в Тивате проводились более года (с 16 апреля 2004 года по конец июля 2005 года).
Быстрая навигация по статье:
1. Введение
2. Что такое качество электроэнергии?
2.1. Происхождение высших гармоник в электрической сети
2.1.1. Источники гармонических возмущений
2.1.2. Влияние на оборудование заказчиков
4. Результаты по контрольной точке «высоковольтная линия «Лепетан» 10 кВ»
5. Результаты по контрольной точке ТС 10/04 кВ «Селяново Б»
6. Результаты по контрольной точке ТС 10/04 кВ «Селяново СИЗ»
7. Результаты по контрольной точке ТС 10/04 кВ «Плавда»
8. Имитационная модель
9. Оборудование для анализа качества электроэнергии
10. Заключение
В этой статье мы проанализировали некоторые контрольные точки в распределительной сети города Тиват в Республике Черногория. Здесь также представлены результаты анализа данных точек.
Для начала, мы можем посмотреть результаты для контрольной точки под названием высоковольтная линия «Лепетан» 10 кВ. Процесс измерения охватывал вторичные токи и напряжения измерительных трансформаторов тока и напряжения, эти значения записывались и анализировались. Результаты измерений были обработаны и представлены в MS Excel.
В данном случае использовалось следующее измерительное оборудование: ручной анализатор «FLUKE 430» и устройство для непрерывной записи измерительных данных «Анализатор качества электроэнергии MI 2192».
После проведения измерений, когда благодаря им проблема была подтверждена, водопроводно-канализационной организации пришлось принять меры, так как именно она является главным виновником того, что результаты не соответствуют требованиям.
Полученные результаты измерений иногда превышали предел предусмотренный стандартами (EN 50160). Превышение возникало, когда запускали насосы.
Фактические данные легли в основу разработки имитационной модели. Полученную модель использовали для разработки фильтра для подавления паразитных гармоник в электрических сетях. Представлены результаты применения фильтра. К счастью, водопроводно-канализационная организация установила у себя пассивный фильтр для компенсации соответствующих гармоник.
Существует множество определений качества электроэнергии, в зависимости от точки зрения человека. Простое определение, принятое среди большинства клиентов — качество электроэнергии хорошее, если приборы, подключенные к электросети, работают удовлетворительно. Как правило, плохое или низкое качество поставляемой электроэнергии проявляется в необходимости несколько раз перезагружать компьютер, чувствительные устройства блокируются, свет мигает, электронные приводы и контрольно-измерительное оборудование работают неправильно. С другой стороны, для электроэнергетических компаний энергосистем общего назначения качество электроэнергии определяется параметрами напряжения, которые влияют на чувствительное оборудование.
Другое определение качества электроэнергии основывается на принципе ЭМС и является следующим: термин «качество электроэнергии» относится к широкому спектру электромагнитных явлений, которые характеризуют напряжение и ток в определенный момент времени в определенной точке энергосистемы (IEEE 1159:1995 «Методические указания IEEE для мониторинга качества электроэнергии»).
МЭК 61000-4-30 «Методы испытаний и измерений — методы измерения качества электроэнергии» (при подготовке) определяют качество электроэнергии как «характеристики электричества в определенной точке электрической системы, в сравнении с набором контрольных технических параметров».
Мы можем описать уровень качества электроэнергии значениями коэффициента нелинейных искажений THDU, THDI и других параметров, основанных на высших гармониках напряжения и токов.
Происхождение высших гармоник в электрической сети
На рисунке 1 объясняется принцип образования гармоник в электрических сетях. С позиции пользователя, сеть энергоснабжения можно представить как генератор G и расчетное полное сопротивление Xs. Напряжение генератора считается чистым синусоидальным напряжением с номинальным среднеквадратичным значением.
Напряжение в точках подключения потребителей отличается от напряжения генератора из-за падения напряжения на расчетном полном сопротивлении. В случае линейной нагрузки (в этом примере используется резистор, но данный пример подходит для любой комбинации RLC) текущее и последующее падение напряжения также будет синусоидальным. Накапливаемое в точках подключения напряжение будет чисто синусоидальным с пониженной амплитудой и фазовым сдвигом на напряжение генератора.
Рисунок 1. Принцип образования гармоник в электрических сетях
Нелинейные нагрузки (выпрямители тока, частотно-регулируемые приводы, люминесцентные лампы, ПК, ТВ…) потребляют ток с высоким коэффициентом THDI (несинусоидальная форма волны). В аналитических целях, нелинейные нагрузки можно смоделировать с линейными нагрузками и источником гармоник (тока). Гармоники тока вызывают несинусоидальное падение напряжения на расчетном полном сопротивлении и искаженное напряжение на клеммах питания. Нелинейные нагрузки искажают питающее напряжение таким образом, что с помощью измерительного прибора можно обнаружить только нечетные гармоники. Если нагрузка контролируется несимметрично, положительные и отрицательные полупериоды тока различаются по форме и среднеквадратичному значению, в результате чего появляются четные гармоники и постоянные составляющие тока. Данная ситуация приводит к насыщению и перегреву магнитных систем трансформаторов. В некоторых регионах, значительные постоянные составляющие тока могут появляться в результате геомагнитных бурь.
Другим источником гармоник является сама сеть энергоснабжения. Намагничивание магнитной системы трансформатора и ее насыщение вызывают несинусоидальные токи, которые проявляются как коэффициент нелинейных искажений THDU на клеммах питания. На рисунке 2 показано, как распространяется гармоническое возмущение. Форма сигнала напряжения в конкретной точке измерения искажается под влиянием тока, создаваемого всеми генераторами помех (преобразователями частоты, сварочными аппаратами, ПК, силовыми трансформаторами…) в системе.
Рисунок 2. Распространение гармонического возмущения
Источники гармоник:
- однофазные выпрямители — 3-я гармоника, THDI 80%;
- трехфазные нагрузки — 5-я, 7-я, 11-я, 13-я, 17-я гармоника;
- несимметрично-контролируемое питание — четные гармоники и постоянный ток;
- число импульсов выше — коэффициент THDI ниже;
- последовательная индуктивность снижает коэффициент THDI;
- низковольтная сеть питания — коэффициент THDU 1,5 ÷ 4,5%, в основном, 5-я гармоника.
Влияние на оборудование заказчиков
:- снижается общая энергоэффективность;
- преждевременный износ компонентов системы;
- тройные гармоники могут создавать сильный ток в нейтральной линии, что приводит к перегреву и потерям;
- повышенный нагрев, шум и вибрации в трансформаторах и двигателях;
- ток в батарее конденсаторов увеличивается с порядком гармоники, вызывая сбои;
- наличие гармоники увеличивает вероятность резонанса;
- проблемы с частотами подачи сигналов;
- автоматическое отключение предохранительных устройств;
- если коэффициент THDU поднимается выше 8%, частота отказов электронных приводов и выключателей повышается.
Методы измерения качества электроэнергии основаны на цифровой обработке входных сигналов. Каждый входной сигнал (3 напряжения и 3 тока) отбирается 128 раз в каждом входном цикле. Продолжительность данного входного цикла зависит от частоты на входе синхронизации (один из трех вводов напряжения или токовый ввод). При 50 Гц период входного цикла составляет 20 мсек. Основные измеренные значения рассчитываются в конце каждого периода выборки, результаты отображаются на дисплее или записываются. Результаты, основанные на быстром преобразовании Фурье (БПФ), рассчитываются только каждый 8 -й входной цикл (каждые 160 мсек, 50 Гц). Для вычисления данных величин используются следующие уравнения.
Таблица 1. Основные расчеты
Таблица 2. Дополнительные расчеты (с использованием основных значений)
Таблица 3. Дополнительные расчеты (с использованием БПФ)
Таблица 4. Общие значения
В 3ϕ системах с обычным 3-проводным соединением, следующие значения недоступны для отображения и записи:
- ток в нулевом проводнике;
- фазовый угол напряжения-тока;
- фазовый коэффициент мощности.
Измерения резких перепадов напряжения: согласно МЭК / 61000-4-15.
Высоковольтная линия 10 кВ «Лепетан» подает электроэнергию с нескольких трансформаторных подстанций 10/04 кВ на очень разные нагрузки: агротехнические комплексы, административные здания, многоквартирные дома, школы, детские сады, супермаркеты, склады, водопроводно-канализационная организация, казармы и др. На одной из трансформаторных станций 10/04 кВ была обнаружена проблема с качеством электроэнергии, поскольку у одного из потребителей форма кривой тока была очень нелинейной. Это трансформаторная станция 10 /0,4 кВ под названием «Plavda». Нелинейным потребителем является водопроводная станция, оборудованная насосом с мощными асинхронными двигателями. Конкретно этот замер в контрольной точке высоковольтной линии 10 кВ «Лепетан» проводился с марта по июль 2005 года. На рисунке 4 приведено расположение трансформаторной подстанции рассматриваемой высоковольтной линии.
Рисунок 4. Расположение трансформаторной станции высоковольтной линии 10 кВ «Лепетан»
Общая длина высоковольтной линии «Лепетан» составляет около 1,4 км. На следующих рисунках представлены диаграммы форм сигналов напряжений и токов и гармонические спектры.
Рисунок 5. Форма сигнала напряжения высоковольтной линии 10 кВ «Лепетан»
Рисунок 6. Гармонический спектр напряжений высоковольтной линии 10 кВ «Лепетан»
Рисунок 7. Форма кривой тока высоковольтной линии 10 кВ «Лепетан»
Таблица 5. Показатели качества электроэнергии высоковольтной линии 10 кВ «Лепетан»
На рисунке 6 представлен гармонический спектр напряжений с преобладанием 5-й и 7-й гармоник напряжения. Наибольшее влияние на коэффициент THDU, если рассматривать состояние качества электроэнергии в начале высоковольтной линии «Лепетан» (на электрической шине 10 кВ в ТС 35/10 кВ Тиват), оказывала 5-я гармоника напряжений. Главным виновником данного уровня 5-й гармоники была водопроводно-канализационная организация, подключенная к ТС 10/04 кВ «Plavda». Эта проблема была устранена после того, как местная водопроводно-канализационная компания в городе Тиват установила правильное оборудование для устранения гармоник высокого порядка в электрических сетях.
Таблица 6. Численные значения составляющих качества электроэнергии
Основной рабочей характеристикой высоковольтной линии «Лепетан» был плохой коэффициент мощности (таблица 5). Частота была в допустимых пределах. В таблице 6 представлены численные значения качества электроэнергии для напряжений и токов компонентов высоковольтной линии «Лепетан».
Данная подстанция является первой на высоковольтной линии «Лепетан». Установленная мощность силового трансформатора составляет 630 кВА. Данная трансформаторная станция, в основном, снабжает электроэнергией частные подворья, несколько административных зданий, школу и детские ясли. А также, эта станция обеспечивает освещение общественных мест. Информация о зарегистрированных напряжениях представлены на следующем рисунке.
Рисунок 8. Изменение напряжений в контрольной точке
ТС 10/04 кВ «Селяново Б»
Одна часть изменений коэффициента THDU представлена на рисунке 9. Максимальное значение коэффициента THDU составило 7,53% и было зарегистрировано 6 июня 2005 г. в 20:07. Данное значение было абсолютно недопустимым.
Рисунок 9. Изменения коэффициента THDU в контрольной точке
ТС 10/04 кВ «Селяново Б»
Рисунок 10. Изменения 5-й гармоники напряжений в контрольной точке
ТС 10/04 кВ «Селяново Б»
Мы можем увидеть очевидное сходство на рисунках 9 и 10. В один и тот же момент, коэффициенты THDU и 5-й гармоники напряжений имеют максимальное значение. Ясно, что 5-я гармоника напряжения имеет доминирующее влияние на форму кривой коэффициента THDU. Значение 5-й гармоники напряжения (4,9%) превысило предельно допустимое (согласно государственным стандартам Венгрии и Австралии). Согласно IEEE-519, это значение незначительно ниже предельно допустимого.
Это вторая трансформаторная подстанция на высоковольтной линии «Лепетан». Установленная мощность силового трансформатора составляет 630 кВА. Данная трансформаторная подстанция снабжает электроэнергией, в основном, здания, несколько частных домов и освещение общественных мест. Зарегистрированные данные представлены на следующих рисунках.
Рисунок 11. Изменения коэффициента THDU в контрольной точке
ТС 10/04 кВ «Селяново СИЗ»
Рисунок 12. Изменения 5-й гармоники напряжений в контрольной точке
ТС 10/04 кВ «Селяново СИЗ»
И вновь, мы видим очевидное сходство между коэффициентом THDU и формой кривой 5-й гармоники напряжений.
Данная трансформаторная подстанция снабжает электроэнергией несколько частных подворий рядом с водопроводно-канализационной организацией в Тивате. Установленная мощность силового трансформатора составляет 1000 кВА. Зарегистрированные данные представлены на следующих рисунках.
Рисунок 13. Изменения напряжений в точке ТС «Plavda»
Рисунок 14. Изменения коэффициента THDU в точке ТС «Plavda»
Рисунок 15. Изменения 3-й гармоники напряжений в контрольной точке
ТС 10/04 кВ «Plavda»
Рисунок 16. Изменения 5-й гармоники напряжений в контрольной точке
ТС 10/04 кВ «Plavda»
В данном случае, доминирующее влияние на форму кривой коэффициента THDU имеет 3-я гармоника напряжения (рисунок 15). Наибольшее значение 3-й гармоники напряжения бывает рано утром (4,03%). У водопроводно-канализационной организации имеются несколько небольших однофазных асинхронных двигателя и два трехфазных асинхронных двигателя с частотной регулировкой.
Имитационная модель была разработана в специальном программном обеспечении — SuperHarm®. Было достигнуто надлежащее соответствие между результатами измерений и результатами моделирования. Моделирование проводилось для двух эксплуатационных условий — низкой и высокой нагрузки. А также, рассматривалось использование пассивного фильтра.
На рисунках 17 и 18 показан спектр гармоник тока до и после подключения фильтра для 7-й гармоники. Достигнуто достаточное снижение искажения тока и напряжения. Фильтр размещался в точке измерения на уровне напряжения 10 кВ. Самые высокие значения коэффициентов THDU и THDI отмечены в период низкой ежедневной нагрузки, поэтому данный режим представлен на верхних рисунках. Ситуация стала лучше после установки фильтра в режиме высокой нагрузки. Улучшение качества напряжения видно на рисунках 19 и 20, а также представлено в таблице 1. Примечательно, что 7-я гармоника, значения коэффициентов THDU и THDI уменьшаются после установки фильтра (нижняя часть таблицы 7).
Рисунок 17. Спектр гармоник тока до установки фильтра в точке измерения
Рисунок 18. Спектр гармоники тока после установки фильтра в точке измерения
Рисунок 19. Спектр гармоник напряжения до установки фильтра в точке измерения
Рисунок 20. Гармонический спектр напряжения после установки фильтра в точке измерения
Таблица 7. Коэффициенты THDI и THDU в точке измерения до и после установки фильтра — режим низкой нагрузки
TS 10/0.4kV Harmonic Current Phase A & C Low Load |
||||||
Name |
Freq |
Fund |
% THD |
h4 |
H5 |
H7 |
BUS0.4.A |
50 |
20.0003 |
10.5573 |
0.38219 |
0.77426 |
1.92686 |
BUS0.4.C |
50 |
20.9483 |
7.26388 |
0.466255 |
1.02319 |
1.02525 |
TS 10/0.4kV Harmonic Current Phase A & C Low Load Filter Applied |
||||||
Name |
Freq |
Fund |
% THD |
h4 |
H5 |
H7 |
BUS0.4.A |
50 |
19.7251 |
6.30617 |
0.398267 |
0.953288 |
0.692753 |
BUS0.4.C |
50 |
21.2563 |
6.58458 |
0.485869 |
1.25978 |
0.368601 |
Voltage Harmonic Content Phase A & C Low Power |
||||||
Name |
Freq |
Fund |
% THD |
h4 |
H5 |
H7 |
BUS0.4.A |
50 |
19713.6 |
2.9338 |
77.4364 |
195.141 |
538.906 |
BUS0.4.C |
50 |
20067.3 |
2.85104 |
85.0342 |
276.725 |
493.481 |
Voltage Harmonic Content Phase A & C Low Power |
||||||
Name |
Freq |
Fund |
% THD |
h4 |
H5 |
H7 |
BUS0.4.A |
50 |
19987.4 |
1.22174 |
34.492 |
83.1519 |
226.994 |
BUS0.4.C |
50 |
20145.8 |
1.26372 |
37.8745 |
122.594 |
219.887 |
Для диагностики, оценки качества электроэнергии, прогнозирования и устранения проблем в сети электропитания используются анализаторы Fluke 430 серии II (Series II).
Рисунок 21. Анализаторы качества электроэнергии Fluke 434-II, 435-II и 437-II
Благодаря запатентованной технологии анализаторы Fluke 434, 435 и 437 серии II, рассчитывая дисбаланс и мощности гармоник, определяют истинные потери электроэнергии, а уникальный алгоритм Fluke показывает их в денежном выражении.Модели различаются по функционалу, области применения и задачам и ориентированы на специалистов разного уровня подготовки:
- Fluke 434-II ориентирован на пользователей с базовыми знаниями в области оценки качества электроэнергии. Прибор определяет базовые значения параметров качества электроэнергии: напряжение, сила тока, частота, мощность, провалы, выбросы, гармоники, нарушение баланса;
- Fluke 435-II обладает аналогичными с Fluke 434-II функциями, но ориентирован для более опытных пользователей в области оценки качества электроэнергии. Модель обладает функцией PowerWave, которая осуществляет высокоскоростной сбор данных по среднеквадратичным значениям, показывает полупериод и форму сигнала, характеризующие динамику электросистем и с высокой детализацией отображаются на экране. Это позволяет увидеть какое сочетание вызывает потенциальные проблемы;
- Fluke 437-II — идеальное решение для специалистов области ВПК, авиации и промышленности, а также в других областях, связанных с транспортировкой. В модели 437-II которой присутствуют все функции модели 435-II, включая PowerWave, но также присутствует возможность проведения измерений на частоте до 400 Гц.
Подробнее об анализаторах качества электроэнергии Fluke 430 серии II читайте на отдельной странице.
Идеальным прибором для анализа работы электродвигателей является портативный анализатор Fluke 438-II. Он упрощает выполнение работ по обнаружению, прогнозированию, предотвращению и устранению проблем качества электроэнергии в трехфазных и однофазных электрораспределительных системах, предоставляя техническим специалистам информацию о механических и электрических параметрах, необходимую для эффективной оценки работы электродвигателя.
Рисунок 22. Анализатор качества электроэнергии и работы электродвигателей Fluke 438-II. Подробнее читайте здесь.
При доминирующей нагрузке, такой как эта промышленная установка, качество электроэнергии усугубляется на шинах муфтовых соединений высоковольтных линий. В данной ситуации, потребитель из одной распределительной системы отрицательно влияет на соседнюю распределительную систему. Возникают вопросы, кто и каким образом должен на это реагировать. Такие негативные воздействия, отмеченные в пункте А, также влияют и на самого потребителя, что приводит к частым производственным неполадкам и увеличению производственных расходов. Прежде чем направлять претензию компании — поставщику электроэнергии, данный тип потребителей должен проверить динамические характеристики их собственных электрических устройств. Для них важно определить, оказывает ли какое-либо устройство негативное влияние на другие устройства. И только после этого, претензия компании — поставщику электроэнергии будет иметь свои основания. Это особенно важно в случае приватизации промышленных потребителей в нашей стране.
Проблема может быть решена путем установки фильтров в нужных местах. Моделирование показало, что подключение фильтра приводит к значительному снижению гармонических искажений.
Следующим открытым вопросом является возмещение убытков потребителям одной сетевой компании если данные убытки возникли из-за другого потребителя другой сетевой компании. Компания, поставляющая электроэнергию должна разработать соответствующие правила, определяющие условия для подключения нелинейных потребителей. При переходе на нерегулируемый рынок, ясно, что поставщик отвечает за качество электроэнергии. В этом смысле, крупнейших потребителей, которые, в значительной степени, являются источником нелинейной нагрузки, необходимо обязать снижать уровень гармонических искажений в точках общего подключения.
Если вам нужна профессиональная консультация по вопросам анализа качества электроэнергии, просто отправьте нам сообщение!
Смотрите также:
Статья про измерение качества электрической энергии
- Измерение качества электрической энергии
- Государственные стандарты
- Принцип работы анализатора качества электроэнергии
- Кто проводит исследования?
- Цели проверки
- Классификация проверок
- Многофункциональные измерительные приборы
- Показатели частоты
- Медленные отклонения в напряжении
- Колебания в напряжении сети
- Быстрые одиночные отклонения напряжения
- Несинусоидальность
- Коэффициент несимметрии
Измерение качества электрической энергии
Измерение качества электрической энергии осуществляется с помощью специальных устройств и приборов. Во время исследования фиксируется значения трансформаторов, вторичных токов и напряжения сети. Существуют различные виды анализаторов электроэнергии. В процессе проверки выявляются параметры энергосистемы, которые анализируются на соответствие ГОСТам и нормативной документацией.
Государственные стандарты
ГОСТ определяет ряд показателей качества электрической энергии:
- отклонения частоты;
- провалы напряжения и колебания;
- напряжение импульсивное;
- несимметричность внутри трехфазных систем;
- несинусоидальность кривой.
Отклонения от установленных значений указывает на проблемы в работе оборудования. В таких ситуациях наблюдается снижение мощности и надежности оборудования, повышение расхода энергии и нерациональности использования ресурсов.
Принцип работы анализатора качества электроэнергии
Прибор выполняет функцию проверки величин и уровень соответствия требованиям. Принцип его работы основан на измерителе электрических величин. Аппарат фиксирует значения тока и напряжения за короткие интервалы времени.
Современные технологии позволяют получить исчерпывающую информацию о работе системы:
- постоянное отклонение напряжения;
- пиковые нагрузки и токи;
- природа переходных процессов в сети;
- фиксация времени с наибольшими потреблениями электрической энергии;
- искажения кривых тока;
- падения и провалы.
Анализаторы выпускаются в мобильной и стационарной форме. Они могут использоваться систематически или эпизодически, в зависимости от поставленной цели. Комплексная проверка корректности работы оборудования – это залог длительной и эффективной работы техники на предприятии. Своевременное выявление неполадок позволяет устранить неисправность до возникновения серьезных проблем.
Контроль за работой техники осуществляется с целью выявления дефектов в электрической сети и их устранения. Для выполнения задания требуется подсоединить анализатор к системе. Места контроля – это точки подключения к потребительской сети. При работе с простыми системами допускается подсоединение в местах, расположенных максимально близко к этим точкам.
Полученная информация обрабатывается с помощью математических алгоритмов. Это позволяет достигнуть ряда целей:
- рассчитать параметры работы;
- проанализировать качество электроэнергии;
- установить количество энергии.
Показатели измеряются на определенном отрезке времени. Низкое напряжение – это самая частая причина плохого качества энергии. Это значение анализируется дважды в год. Другие нормы определяются один раз в 12 месяцев.
Кто проводит исследования?
Право проводить измерения имеют лаборатории с аттестатами Ростехнадзор. В службах квалифицированные работники, использующие сертифицированное оборудование. Точность результатов гарантируется высоким качеством используемой измерительной техники.
Оборудование проходит многочисленные проверки, перед началом эксплуатации. Класс точности, определяется соответствующими специалистами и технологами.
Цели проверки
Полученные результаты позволяют добиться соблюдения заданных в договоре поставщика параметров. Анализ обеспечивает получение данных для составления развернутого отчета о работе системы. Экспертиза выявляет перечень отклонений или их отсутствие. Полученный документ дает основания, для предъявления поставщику обоснованных претензий о несоответствии качества энергии общепринятым нормам. В результате вторая сторона договора устранит все проблемы, и выявленные нарушения в оговоренный промежуток времени.
Измерения обеспечивают расчет коэффициента рациональности использования электричества. Благодаря этому производство выходит на технологичный уровень работы с минимальным расходом ресурсов. При необходимости, из электрической сети устраняются объекты, работающие неэффективно или во вред всей системе.
Проводить исследования стоит для реальных и запланированных систем энергоснабжения. Экспертизу приурочивают к энергетическому аудиту промышленного объекта. Итоги проверки, дают данные для повышения уровня энергетической эффективности в промышленной сфере.
Полученные значения сохраняются и используются при проведении следующего аудита. Специалисты сравнивают данные и делают соответствующие выводы о работе системы.
Классификация проверок
В зависимости от цели контроль качества распределяется на 4 вида:
- оперативный;
- инспекционный;
- диагностический;
- коммерческий учет.
Виды анализа имеют свои особенности, характеристики и целевое назначение. Необходимость проведения той или иной инспекции определяется узкими специалистами на основе общепринятых стандартов работы электрических сетей.
Диагностический вид контроля, предназначен для решения спорных вопросов между поставщиком и потребителем. Он проводится в местах распределения электричества между двумя сторонами договора. На основе полученных данных, создается официальный отчет, позволяющий доказать невыполнение правил соглашения. После рассмотрения отчета, виновная сторона будет обязана устранить нарушения и повысить качество электроэнергии.
Инспекционный контроль проводится сертифицированными службами с целью выявления отклонений от официальных требований и нормативов. Аудит является обязательным для всех сторон договора и проводится с определенной периодичностью.
При возникновении дефектов проводится оперативный контроль. Он выявляет реальные и потенциальные угрозы понижения качества электричества в сети. В результате проверки проводятся мероприятия по устранению нарушений работы и профилактические процедуры.
Коммерческий учет, предназначен для рассмотрения ставок и тарифов поставщика. Анализ осуществляется в местах раздела электросети между двумя сторонами договора. Исследование назначается при необходимости определения уровня надбавок и скидок за предоставленное качество ресурса.
Многофункциональные измерительные приборы
Современные многофункциональные приборы обеспечивают получение результатов не только в цифровом формате, но и в денежном эквиваленте. Модели отличаются рядом показателей:
- задачи;
- область применения;
- функционал.
Модели нового поколения ускоряют процесс получения значений по прогнозированию, фиксации, устранению и предотвращению возникновения новых проблем в работе системы. С помощью специальных аппаратов, специалисты определяют механические и электрические параметры.
Отсутствие контроля приводит к частым неполадкам, сбоям энергосистемы и чрезмерным расходам электричества. Общего показателя эффективности работы сети недостаточно для проведения глубинного анализа. Большие предприятия обращаются в сертифицированные службы для осуществления контроля над всеми компонентами рабочей зоны.
Важно анализировать нагрузки в динамике. Это позволит выявить уровень износа электросети и своевременно провести мероприятия по устранению потенциальных угроз. При выявлении вины поставщика, потребитель будет лишен необходимости брать на себя обязанность по решению проблем.
Показатели частоты
Отклонения в диапазоне от 50 Гц и выше допускаются при серьезных авариях. По нормативам, показатель не должен превышать 0,4 Гц во время работы сети. При использовании автономных генераторов требования смягчаются (±1 Гц и ±5 Гц).
Эти сети не способны поддерживать высокую стабильность. В процентном соотношении предельно допустимое значение составляет 10%. Нормальный показатель не превышает 5%.
Медленные отклонения в напряжении
Интервал изменений превышает 1 минуту. При анализе определяется промежуток времени, на протяжении которого напряжение отклонялось на 10% от номинального показателя (220 и 380 для бытовых сетей). Дискретность при этом составляет 10 минут. Замеры проводятся на протяжении недели.
Колебания в напряжении сети
Основу оценки этого значения составляет понятие фликера. Он характеризует то, как человек воспринимает мерцания света от источника. Выделяют длительную и кратковременную фазу – 2 часа и 10 минут соответственно. Обе величины не должны превышать 1,38 и 1,0 в разрезе недельных измерений. Для расчета показателей применяются сложные формулы.
Быстрые одиночные отклонения напряжения
Одиночные колебания – это случайные изменения. Возникновения отклонений свидетельствуют о переключении электроустановок или незначительных нарушениях в работе сети (сбои или далекие короткие замыкания в системе). Эти колебания относят к провалам перенапряжения и напряжения. В таблице определены общепринятые нормативные показатели.
Несинусоидальность
Наличие импульсивного тока в сети, приводит к ряду изменений в системе параметров. Наблюдается изменение кривой напряжения, которая раскладывается на основную и частотную. Возникновение гармоник может нарушить работы полупроводниковых приборов. Для устранения такой угрозы следует контролировать уровень этого параметра.
Коэффициент несимметрии
Это один из основных параметров при оценке качества работы в трехфазных и двухфазных сетях. Превышение коэффициента, наблюдается при неравномерном распределении нагрузки по фазам. Параметр регламентирован ГОСТом и используется при проведении любых проверок сети.
Не все процессы происходят систематически. Существует ряд характеристик, которые фиксируются в случайных ситуациях. Для их возникновения требуются определенные условия и совпадения по сопутствующим изменениям.
Прерывание напряжения случается во время аварий или плановых ремонтных работ. Провалы возникают при подключении оборудования высокой мощности, или коротких замыканиях. Перенапряжения фиксируются по ряду причин:
- короткие замыкания;
- резкое снижение нагрузки;
- обрывы нейтральных проводников;
- замыкания на землю.
При воздействии молний происходят импульсивные перенапряжения.
Минимальный интервал измерений составляет неделю. За 7 дней прибор собирает достаточное количество информации для подготовки точных результатов. Математический алгоритм исключает риск ошибки и позволяет автоматизировать процесс измерений. В результате пользователь получает усредненные значения и определяет основные проблемы в работе сети.
назад к списку
что это такое, основные показатели
В типовом договоре энергоснабжения детально прописаны обязательства поставщика. Одно из них касается показателей качества электроэнергии. Будет полезным узнать, что конкретно подразумевается под этим термином, о каких показателях идет речь, а также получить информацию о действующих нормативных документах. Эти сведения позволят грамотно составить претензию к поставщику, если качество электроэнергии не отвечает установленным требованиям стандарта ГОСТ.
Что такое качество электроэнергии?
Для каждого типа электрической сети установлены определенные характеристики (параметры качества). Соответствие между ними и действительными значениями определяет качество электрической энергии.
Изменения ПКЭ могут возникнуть вследствие потерь электроэнергии при передаче на расстояние, увеличением потребляемой нагрузки, электромагнитных явлений и т.д.
Для оценки качества электричества осуществляются замеры основных показателей КЭ. Подробно они расписаны в нормах ГОСТа 13109-97, а также в его новой редакции 13109 99, приведем выдержки с кратким описанием каждого показателя.
Основные показатели качества электроэнергии
Поскольку идеального соответствия номинальным параметрам добиться невозможно, в нормировании показателей предусмотрены отклонения. Они могут быть допустимыми и предельно допустимыми. Ниже перечислены основные показатели качества и указаны приемлемые нормы для каждого из них
Отклонение напряжения
Данный показатель определяется при помощи специального коэффициента, характеризующего установившиеся отклонения по отношению к номинальным. Для расчета используется следующая формула: δUуст = 100% * (Uт — Uн)/Uн , где Uт – текущий показатель , Uн – номинальный. Измерения показателей качества производится на приемниках электроэнергии. Осцилограмма данного процесса представлена ниже.
Рис. 1. Установившееся отклонение и колебания напряженияТакие отклонения качества характерны при существенных изменениях нагрузки или больших потерях в процессе передачи электроэнергии. Допустимыми считаются показатели при Uуст не более 5,0%, предельно допустимые – 10,0%.
Колебания напряжения
Данный параметр характеризует временные отклонения амплитуды колебаний электротока. Осцилограмма процесса представлена на рисунке 1. Это составной параметр качества электроэнергии, поскольку для характеристики колебаний напряжения необходимо учитывать:
- размах изменений;
- дозу колебаний (частоту повторений) ;
- длительность отклонений.
Для первых двух пунктов необходимо дать небольшие пояснения.
Размах изменения напряжения.
Данный параметр качества электроэнергии описывается разностью между максимальными и минимальными отклонениями. Коэффициент размаха определяется следующей формулой: (UPmax — UPmin)/Uном , где UPmax – максимальная величина размаха, UPmin – минимальная, Uном – номинальное значение. Допустимое значение для коэффициента размаха – не более 10%.
Доза колебаний напряжения.
Данный критерий служит для описания частоты, с которой происходят отклонения. Следует учитывать, что если временной период между колебаниями меньше 30,0 миллисекунд, то их необходимо рассматривать как одно отклонение.
Для расчета используется следующее выражение: Fповт = m/T , при этом m определяет количество изменений за определенный временной период измерений – Т, равный 10-ти минутам. Нормы этого показателя напрямую связаны с дозой фликера, она будет описана ниже.
Отклонение частоты
В системах общего назначения для этого параметра установлено значение 50,0 Гц. Нормы стандарта допускают увеличение или уменьшение частоты на 2,0% или 4,0% (допустимые и предельные показатели, соответственно). Превышение допустимых отклонений частоты приводит выходу из строя импульсных БП, сбоям в работе электрогенераторов.
Доза фликера
Данный параметр описывает влияние на человека, производимое мерцанием источников света по причине изменения амплитуды электротока. Измерения производятся при помощи специальных приборов, определяющих допустимое мерцание.
Коэффициент временного перенапряжения
Эта характеристика определяет насколько текущая амплитуда выше предельно допустимого порога. Такие отклонения характерны при КЗ или коммутационных процессах. Случайный характер отклонений не позволяет нормировать показатель, но собранная статистика используется при определении качества электроэнергии однофазной или трехфазной сети.
Осцилограмма перенапряжения и провала напряженияПровал напряжения
Под этим параметром подразумевается значительное снижение амплитуды (более 10,0% от номинального), с последующим восстановлением. Причиной провалов напряжения может быть КЗ, резкое увеличение нагрузки.
Характеристики для данного показателя качества электроэнергии описываются следующими составляющими:
- Глубина «проседания» напряжения, в некоторых случаях она может стремиться к нулю.
- Количеством отклонений за определенный промежуток времени.
- Продолжительностью.
Последнее требует пояснения.
Длительность провала напряжения.
По этому критерию можно судить как о качестве, так и надежности электроснабжения. «Проседание» с минимальной продолжительностью может не вызвать сбоев в работе электрических и электронных устройств. При длительности в несколько секунд, велика вероятность отключения оборудования с электрическими или электронными схемами управления. Помимо этого возрастает реактивная составляющая электродвигателей, что приводит к снижению коэффициента мощности.
В связи со случайной природой явления, его нормирование не предусмотрено.
Импульсное напряжение
Проявляется в виде краткосрочного (до 10-ти миллисекунд) увеличения амплитуды электроэнергии. Вызвать такой резкий скачок могут коммутационные процессы или грозовые разряды. Поскольку такие состояния сети носят случайный характер, нормирование импульсов не предусмотрено.
Импульс высокого напряженияДля описания высокочастотных импульсов используются следующие характеристики:
- Параметр максимальной амплитуды. В сетях до 1-го кВ, при прямом попадании разряда молнии, амплитуда выброса может достигать 6-ти кВ.
- Длительность. Продолжительность высокоамплитудного (грозового) импульса, как правило, не превышает нескольких миллисекунд.
Несимметрия напряжений в трехфазной системе
К такому явному ухудшению качества электроэнергии может привести неправильно распределенная нагрузка между фазами одной цепи, КЗ на землю, обрыв нейтрали, подсоединение потребителя с несимметричной нагрузкой.
Характерный перекос фазВ связи с этим установлено требование, согласно которому разница нагрузки между фазами одной цепи не должна быть более 30,0% в пределах одного электрощита и 15,0% в начальной точке питающей линии.
Для определения показателей несимметрии используются коэффициенты нулевой и обратной последовательностей. Первый рассчитывается по формуле: Кнп = 100% * Uнп / Uном, второй: Коп = 100% * Uоп / Uном, где Uнп – амплитуда нулевой последовательности, Uоп — обратной.
Согласно установленным нормам регулирования напряжения в сетях до 1-го кВ значение Uнп и Uоп должны быть не более 2% и 4% (допустимое и предельное значения).
Несинусоидальность формы кривой напряжения
Данный вид некачественной электроэнергии связан с наличием сторонних гармоник. Чем выше частотность паразитной составляющей, тем больше величина искажения. Это видно если сравнить гармонику тока высокого (см. рис. 5) и третьего порядка (рис. 6).
Рис 5. Гармоника высокого порядкаПричина такого отклонения – подключение к сети потребителя с нелинейной ВАХ. Характерный пример – преобразователь на тиристорах.
Рис. 6. Гармоника третьего порядкаДля описания данного отклонения от качественных показателей используется коэффициент синусоидальных искажений, который определяется формулой Kи = ⎷∑UN2 / Uном * 100%, где U – амплитуда гармоник.
Допустимые и предельно допустимые нормы, характеризующие качественную или некачественную электроэнергию для различных сетей, приведены в таблице ниже.
Допустимые коэффициент искажения синусоидальности для различных электросетейКак проверить и измерить качество электрической энергии?
Прежде, чем приступать к измерениям, определяющим качество электрсети, следует принять во внимание, что ПКЭ должны быть зафиксированы представителями поставщика электроэнергии. По результатам проверки составляется акт, на основании которого можно предъявлять претензию.
Для проверки всех характеристик электроэнергии на соответствие требованиям ГОСТ 53144-2013, ГОСТ Р 54149-2010 и другим нормативным документам, потребуется специальная измерительная техника. Но часть основных показателей можно измерить, используя обычный мультиметр или определить несоответствие по косвенным признакам.
Как самостоятельно выявить снижение качества электроэнергии?
Перечислим показатели, которые можно проверить, используя мультиметр в режиме измерения переменного напряжения:
- Устоявшееся отклонение.
- Перенапряжение (включая перекос фаз).
- Провалы.
Второй и третий пункт довольно условны, длительность искажения может быть недостаточной для реакции прибора, а перепады напряжения будет сложно отличить от перенапряжений и провалов.
К косвенным методам определения качества электроэнергии относится анализ состояния сети по работе лампы с нитью накала. Слишком яркое свечение укажет на повышенное напряжение, тусклое – будет свидетельствовать о «проседании», мигание засвидетельствует перепады.
Нехарактерная работа электрооборудования также свидетельствует о недостаточном качестве электроэнергии. Например, компрессор холодильника постоянно функционирует, нестабильная работа электроники, самопроизвольное отключение бытовой техники, все это указывает на недостаточное напряжение в бытовой сети. Превышение напряжения вызовет срабатывание реле защиты, если оно было установлено.
Измерение качества электроэнергии, параметры качества, влияние, нормы
Электрическая энергия является таким же товаром, как и продукты в магазине. А поэтому требует оценки собственного качества.
К чему может привести потребление некачественной электроэнергии? Электроприборы могут преждевременно выйти из строя, если для их питания используется напряжение повышенной или пониженной величины. А мерцание осветительных приборов в итоге скажется на вашем зрении.
Нормативная документация
Все виды продукции выпускаются в соответствии с государственными стандартами. Электрическая энергия не является исключением, для нее существует ГОСТ 32144-2013 под названием «Нормы качества электрической энергии в системах электроснабжения общего назначения».
Стандарт этот дает понятие о том, какие процессы и события нужно анализировать, чтобы дать качеству количественную оценку.
Такой величиной, измеряемой и анализируемой, является напряжение. Точнее – его величина, частота и форма кривой, которая, как известно, в сетях переменного тока представляет собой синусоиду.
Отклонение частоты
Здесь сразу следует отметить, что в единой системе энергоснабжения какие-либо серьезные отклонения частоты от 50 Гц возможны только в результате масштабных аварий. Но, тем не менее, ГОСТом предусмотрен критерий: в течение недели 95% времени отклонение не должно быть более ±0,2 Гц, а за весь этот интервал — ±0,4 Гц.
Но при питании потребителя от автономных генераторов, не имеющих средств для столь точного поддержания частоты в сети, требования смягчаются: ±1 Гц и ±5 Гц соответственно.
Медленные изменения напряжения
Медленными называют изменения, длительность которых происходят на время, более 1 минуты. Это как раз вписывается в концепцию включенного чайника. Закипел, отключился – возмущение прекратилось, свет снова горит ярко. Знакомая картина?
При измерениях определяется количество времени, в которое напряжение было выше или ниже 10% от стандартного номинального. Для бытовых сетей это 220 или 380 В. Данные усредняются с дискретностью в 10 минут, а измерения производят в течение недели.
Колебания напряжения
Этот параметр тоже характеризует изменения величины напряжения, но только те, которые происходят за интервал менее 1 минуты.
Для оценки качества напряжения по этому параметру используют понятие фликера. Физический смысл в его в том, что он характеризует зрительные ощущения человека от восприятия мерцания источника света.
Различают кратковременную (измеренную в интервале времени 10 минут) и длительную (в интервале 2 часов) дозу фликера. Их величины, наблюдаемые в интервале в 1 неделю, не должны быть соответственно больше 1,38 и 1,0. Расчет ведется по довольно сложным формулам.
Одиночные быстрые изменения напряжения
Если колебания, характеризующиеся понятием фликера, носят периодический характер, то одиночные колебания – случайный. Связаны эти изменения с переключениями в электроустановках или с какими-то неисправностями, например, далекими короткими замыканиями в системе энергоснабжения.
Относят их к провалам напряжения или перенапряжениям.
Несинусоидальность
Мы все больше обрастаем электроникой. Вот и источники света стали светодиодными. Но полупроводниковые приборы потребляют не синусоидальный, а импульсный ток. Что не может не сказаться на форме кривой напряжения во всей сети.
В результате в ней появляются гармоники – общая форма кривой напряжения раскладывается на основную с частотой 50 Гц, и дополнительные – с частотами, большими 50 в 1, 2, 3 и более раз.
Работа электрооборудования не рассчитана на наличие гармоник. При превышении их уровня те же самые полупроводниковые электроприборы, из-за которых появляются гармоники, от них же и страдают.
Несимметрия напряжений
Наши бытовые приборы потребляют, в основном, напряжение 220 В, то есть – являются однофазными потребителями. Но сети снабжения все трехфазные. И если нагрузка по фазам распределена неравномерно, то напряжения в этих фазах оказывается разное.
А вот для трехфазных потребителей такие перекосы не допустимы. Поэтому значение такого параметра, как коэффициент несимметрии, регламентирован ГОСТом и оценивается при измерении параметров качества.
Случайные события
Все описанные выше характеристики происходят систематически. Но есть ряд процессов, которые случаются редко. К ним относятся:
-Прерывание напряжения. Напряжение может исчезнуть из-за аварий или быть отключено при проведении плановых ремонтных работ.
— Провалы напряжения. Связаны с короткими замыканиями, подключениями мощных нагрузок.
— Перенапряжения. Причина – переключения, резкие отключения нагрузки, замыкания на землю, обрывы нейтральных проводников.
— Импульсные перенапряжения. В основном – воздействие молний.
Измерения качества электроэнергии
Измерения производятся на протяжении интервала не менее недели. При этом накапливаемая информация сохраняется, а затем – анализируется специалистами. Приборы для реализации этой задачи называются анализаторами качества и стоят неплохих денег. А сам процесс измерения и заключение о его результатах проводят специально обученные люди из электротехнических лабораторий.
«ЭлектроЗамер» — замеры параметров качества электроэнергии
Замеры качества электроэнергии — это комплекс измерений производимых для проверки соответствия параметров электрической энергии, которую мы покупаем у производителей и поставщиков электроэнергии (МОЭСК, ОЭК, Мосэнерго и т.д.) тем требованиям, которые предъявляются к этим параметрам ГОСТ 32144-2013 «Нормы качества электрической энергии в системах электроснабжения общего назначения».К сожалению, качество электроэнергии поставляемой потребителям не всегда соответствует требованиям ГОСТ, вследствие чего может некорректно работать или выходить из строя электрооборудование, что особенно чувствительно для промышленных объектов, где простой линии в течении часа может создавать миллионные убытки.
ГОСТ 32144-2013 регламентирует и нормирует следующие параметров качества электроэнергии (ПКЭ):
— отклонение частоты;
— отрицательное и положительное отклонения напряжения;
— кратковременная доза фликера;
— длительная доза фликера;
— коэффициенты гармонических составляющих напряжения до 50 порядка;
— суммарный коэффициент гармонических составляющих напряжения;
— коэффициент несимметрии напряжений по обратной последовательности;
— коэффициент несимметрии напряжений по нулевой последовательности.
Есть также параметры электроэнергии, не регламентированные и не нормированные ГОСТ 32144-2013, но используемые при анализе её качества:
— действующее значение тока;
— суммарный коэффициент гармонических составляющих тока;
— коэффициенты гармонических составляющих тока до 50 порядка;
— фазовый угол сдвига между напряжением и током основной частоты, нулевой, прямой и обратной последовательности;
— активная, реактивная и полная мощность;
— активная и реактивная энергия;
— cos φ (коэффициент мощности).
Как правило, замеры параметров качества электроэнергии проводятся, когда работники, отвечающие за эксплуатацию электроустановки отмечают какие-либо негативные явления (скачки или провалы напряжения, частый отказ или выход из строя оборудования или осветительных приборов и т.д.) или аварийные режимы работы электроустановки.
Измерение параметров качества электроэнергии / Статьи и обзоры / Элек.ру
Практика эксплуатации энергохозяйства предприятия подтверждает, что с целью организации на предприятии энергоэффективного электроснабжения, необходимо регулярно (не реже раза в год) производить контроль параметров качества поступающей электроэнергии.
Не секрет, что существующие распределительные электрические сети имеют большой физический износ, большая часть трансформаторных подстанций перегружена. Эти и другие факторы приводят к отклонению параметров поступающей в нашу сеть электроэнергии от нормируемых, что приводит к различным негативным факторам в электрической сети. Среди таких факторов — увеличение реактивных токов, снижение уровня питающего напряжения (равно как и чрезмерное увеличение), искажение синусоиды, повышенные гармоники и т.д.
Значительное отклонение параметров качества электроэнергии питающей сети не позволяет эксплуатировать должным образом подключенные к ней электроустановки, а в ряде случаев это вообще запрещено. Так, например, снижение питающего напряжения на обмотках трехфазного электродвигателя приводит к повышению токов, протекающих в его обмотках, что в свою очередь приведет к повышенному нагреву изоляции, и к преждевременному выходу из строя оборудования или к сокращению его номинальной службы.
Снижение питающего напряжения на обмотках трехфазного электродвигателя приводит к повышению токов, протекающих в его обмоткахДля решения этой задачи, с помощью измерительного приборного комплекса необходимо произвести измерение токов и напряжений питающей сети на головном участке схемы, а в дальнейшем, при выявлении значительных отклонений, на всех отходящих фидерах.
Таким образом, в распоряжении энергетической службы предприятия, будут находится как протокол измерений, с указанием всех нормируемых параметров электроэнергии, так и непосредственно интервальные графики нагрузок и мгновенных значений токов и напряжений. Данная информация позволяет принять своевременные как организационные, так и технические мероприятия, позволяющие предотвратить ненормальные (аварийные и предаварийные) режимы работы электрооборудования, а также позволяет снизить величину технических потерь электроэнергии, разгрузить питающие линии электропередач.
Комплекс измерения параметров качества электроэнергии, включает в себя:
- измерение и регистрация основных показателей качества электроэнергии (ПКЭ), установленных ГОСТ Р 54149-2010;
- измерение и регистрация электроэнергетических величин, таких как коэффициент мощности (cos φ), провалы напряжения, размах изменений напряжений, параметры временных перенапряжений, действующее значение тока по трем фазам, установившееся значение напряжений и отклонения.
На основании измеренных амплитудных и мгновенных значений напряжений и токов по трем фазам рассчитываются значения полной мощности, активной мощности, коэффициента мощности и ряда других параметров:
- Действующее значение фазного напряжения (TRMS).
- Действующее значение линейного напряжения (TRMS).
- Действующее значение токов (TRMS).
- Полная мощность.
- Активная мощность.
- Коэффициент мощности, по соотношению мощностей или из ряда Фурье.
- Действующее значение напряжения 1-ой гармоники.
- Действующее значение токов 1-ой гармоники.
- Активная мощность первой гармоники.
- Коэффициент мощности.
- Коэффициент искажения напряжения.
- Коэффициент искажения тока.
- Значения 3,5,7,9-40 гармоник в процентах от U1.
- Значения 3,5,7,9-40 гармоник в процентах от I1.
- Провалы.
- Перенапряжения.
- Импульсы.
- Коэффициент несимметрии по обратной последовательности.
- Частота напряжения
Итогом проведения измерений является протокол показателей качества электроэнергии по полученным данным, в соответствии с ГОСТ, а также график электрических нагрузок с приложением базы данных поинтервальных значений измеренных параметров.
Результатом работ по измерению показателей качества электроэнергии являются графики нагрузок (токовых значений, коэффициентов мощности, напряжения, синусоидальности), а также «Протокол параметров качества электроэнергии».
Пример формы грозовых импульсовС помощью программного обеспечения измерительного комплекса проводится анализ параметров работы системы электроснабжения, выявляется приближение параметров к границе опасной зоны, что дает возможность эксплуатирующей организации своевременно принять необходимые меры, или обратиться в свою энергоснабжающую организацию с требованием устранить выявленные несоответствия.
Кандидат технических наук С.В. Добров.
Качество электрической энергии — Википедия
Материал из Википедии — свободной энциклопедии
Качество электрической энергии — степень соответствия параметров электрической энергии их установленным значениям[1]. В свою очередь, параметр электрической энергии — величина, количественно характеризующая какое-либо свойство электрической энергии. Под параметрами электрической энергии понимают напряжение, частоту, форму кривой электрического тока. Качество электрической энергии является составляющей электромагнитной совместимости, характеризующей электромагнитную среду[2][3].
Качество электрической энергии может меняться в зависимости от времени суток, погодных и климатических условий, изменения нагрузки энергосистемы, возникновение аварийных режимов в сети и т.д.
Снижение качества электрической энергии может привести к заметным изменениям режимов работы электроприёмников и в результате уменьшению производительности рабочих механизмов, ухудшению качества продукции, сокращению срока службы электрооборудования, повышению вероятности аварий.
В России показатели и нормы качества электрической энергии в электрических сетях систем электроснабжения общего назначения переменного трёхфазного и однофазного тока частотой 50 Гц в точках, к которым присоединяются электрические сети или электроустановки потребителей устанавливаются Межгосударственным стандартом ГОСТ 32144-2013 «Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения» (от 22 июля 2013 г. N 400-ст).
В связи с развитием рыночных отношений в электроэнергетике электроэнергию следует рассматривать не только как физическое явление, но и как товар, который должен соответствовать определённому качеству и требованиям рынка. Федеральный закон «Об электроэнергетике» определяет ответственность энергосбытовых организаций и поставщиков электроэнергии перед потребителями за надёжность обеспечения их электрической энергией и её качество в соответствии с техническими регламентами и иными обязательными требованиями.
- ↑ ГОСТ Р 54130-2010. Национальный стандарт Российской Федерации. Качество электрической энергии. Термины и определения.
- ↑ Управление качеством электроэнергии / И. И. Карташев, В. Н. Тульский, Р. Г. Шамонов и др.; под ред. Ю. В. Шарова. — М. : Издательский дом МЭИ, 2006. — 320 с.: ил.
- ↑ Управление качеством электроэнергии при несинусоидальных режимах / А. В. Агунов. — СПб., СПбГМТУ, 2009. — 134 с.