Измерение конденсаторов мультиметром: Измерение емкости | Fluke

Содержание

Измерение емкости | Fluke

Чтобы провести измерение емкости, мультиметр выполняет зарядку конденсатора от известного источника тока, измеряет результирующее напряжение, а затем вычисляет емкость.

Предупреждение! Исправный конденсатор сохраняет электрический заряд и может оставаться под напряжением после отключения питания. Прежде чем коснуться его, а также перед выполнением измерений: а) отключите питание, б) с помощью мультиметра убедитесь, что питание отключено, в) осторожно разрядите конденсатор, подключив резистор к выводам (как указано в следующем абзаце). Обязательно используйте соответствующие средства индивидуальной защиты.

Для безопасной разрядки конденсатора: После отключения питания подключите резистор на 20 000 Ом, 5 Вт к клеммам конденсатора на пять секунд. С помощью мультиметра убедитесь, что конденсатор полностью разряжен.

  1. С помощью цифрового мультиметра (DMM) убедитесь, что в контуры не поступает питание. Если конденсатор встроен в цепь переменного тока, настройте мультиметр на измерение напряжения переменного тока. Если конденсатор встроен в цепь постоянного тока, настройте цифровой мультиметр на измерение напряжения постоянного тока.
  2. Осмотрите конденсатор. При наличии утечек, трещин, вздутий или других признаков износа замените конденсатор.
  3. Переведите поворотный переключатель в положение измерения емкости ( ). Этот символ на переключателе часто совмещен с символом другой функции. Для начала измерения обычно требуется не только перевести переключатель в нужное положение, но и нажать функциональную кнопку. Инструкции см. в руководстве пользователя мультиметра.
  4. Для правильного измерения необходимо отсоединить конденсатор от цепи. Разрядите конденсатор, как описано выше в предупреждении.

    Примечание. У некоторых мультиметров предусмотрен режим относительных измерений (REL). При измерении малых значений емкости можно использовать режим относительных измерений для устранения емкости измерительных проводов. Чтобы перевести мультиметр в режим относительных измерений, оставьте измерительные провода разомкнутыми и нажмите кнопку REL. Таким образом вы устраните остаточную емкость измерительных проводов.

  5. Подсоедините измерительные провода к клеммам конденсатора. Удерживайте измерительные провода подключенными в течение нескольких секунд, чтобы мультиметр автоматически выбрал подходящий диапазон.
  6. Прочитайте отображаемые значения. Если значение емкости находится в пределах диапазона измерения, мультиметр показывает значение емкости конденсатора. Символ OL отображается на экране в следующих случаях: a) значение емкости выше диапазона измерения или б) конденсатор неисправен.

Общая информация об измерении емкости

Поиск и устранение неисправностей в однофазных электродвигателях является одним из наиболее распространенных способов использования функции измерения емкости.

Невозможность запуска однофазного электродвигателя с конденсатором является признаком неисправности конденсатора. Такие электродвигатели продолжают работать после включения, что усложняет поиск и устранение неисправностей. Хорошим примером такой проблемы является неисправность конденсатора для жесткого запуска на компрессорах системы ОВКВ. Двигатель компрессора может запуститься, но вскоре он перегревается, что приводит к срабатыванию выключателя.

Для проверки состояния конденсатора на однофазных электродвигателях с такими проблемами и шумами требуется мультиметр. Почти на всех конденсаторах электродвигателей указано значение емкости в микрофарадах.

Трехфазные конденсаторы для коррекции коэффициента мощности обычно защищены предохранителями. В случае отказа одного или нескольких конденсаторов эффективность системы снижается, что с большой долей вероятности приводит к увеличению расходов на коммунальные услуги и произвольному отключению оборудования. В случае перегорания предохранителя необходимо измерить емкость в микрофарадах на предположительно неисправном конденсаторе и убедиться, что полученное значение находится в пределах диапазона, указанного на конденсаторе.

Полезно знать некоторые дополнительные обстоятельства, связанные с емкостью.

  • Конденсаторы имеют ограниченный срок службы и часто являются причиной неисправности.
  • Неисправность конденсатора может быть связана с коротким замыканием, разрывом цепи или физическим ухудшением состояния до точки отказа.
  • Короткое замыкание конденсатора может вызвать перегорание предохранителя или повреждение других компонентов.
  • В случае разрыва цепи или ухудшения состояния конденсатора возможен отказ цепи или ее компонентов.
  • Износ также может изменить значение емкости конденсатора и стать причиной неисправности.

Ссылка: Digital Multimeter Principles by Glen A. Mazur, American Technical Publishers.

Подберите подходящий мультиметр

Работаем с цифровым мультиметром. Часть 3

Добрый день, друзья!
Не так давно мы с вами учились работать с  цифровым мультиметром и ознакомились с тем, как измерять ток и напряжение. Это две величины, с которыми чаще всего имеют дело. Но есть и другие параметры, которые могут измеряться цифровыми приборами.

Хорошо бы научиться измерять и их. Вы же хотите стать экспертом в измерениях, правда? Тогда давайте с вами посмотрим

Как измерить емкость конденсатора

Конденсаторы широко применяются в качестве накопителей энергии в источниках питания.

В компьютерном блоке питания их может быть более десятка.

И на материнской плате компьютера их натыкано видимо-невидимо.

За измерение емкости отвечает отдельная группа позиций (внизу слева, левее группы измерения тока). На корпусе вблизи этой области нанесена буква F (Farade, фарада, единица измерения емкости). Емкость измеряют в 5 поддиапазонах: 0 — 2 nF (нанофарад, нФ), 0 — 20 nF, 0 — 200 nF, 0 — 2 мкФ (микрофарад) , 0 — 20 мкФ.

Напомним, что 1 нФ = 1000 пФ (пикофарад), 1 мкФ = 1000 нФ. Отметим, что емкость в 1 Фарад очень велика. Электролитические конденсаторы в блоках питания и на материнской плате имеет емкость в сотни и тысячи микрофарад. Керамические блокировочные конденсаторы имеют емкость в десятки и сотни нанофарад.

Конденсатор при измерении емкости присоединяют не к щупам, а вставляют выводами в специальное гнездо. Это не всегда удобно, так как конденсатор (особенно выпаянный), часто имеет короткие выводы.

Если вставить в гнезда короткие металлические пластинки, удобство пользования тестером возрастает.

Теперь при измерении емкости достаточно коснуться выводами конденсатора металлических пластинок.

Отметим, что хорошо было бы в таких мультиметрах расширить пределы измерения в верхнюю сторону. Большинство электролитических конденсаторов, устанавливаемых в компьютерные блоки питания или на материнские платы, имеет гораздо большую емкость.

Существуют специальные измерители не только емкости, но и ESR (Equivalent Series Resistance, эквивалентное последовательное сопротивление) конденсаторов. Они позволяют оценить емкость в десятки и сотни тысяч микрофарад.

Измерения сопротивления

Следующая группа позиций — для измерения сопротивления (на 7 поддиаазонах): 0 — 200 Ом, 0 — 2 кОм, 0 — 20 кОм, 0 — 200 кОм, 0 — 2 МОм, 0 — 20 МОм, 0 — 200 МОм . Вблизи этой группы нанесен специальный значок (греческая буква Омега).

Деление на поддиапазоны обусловлено стремлением точнее измерить величину сопротивления.

Например, сопротивление в несколько Ом лучше  измерять на поддиапазоне 0 – 200 Ом, а не на верхних.

На верхних диапазонах будет либо пониженная точность, либо вообще «0» кОм (Мом). Если измерять большие значения сопротивления на нижних диапазонах, то прибор покажет превышение значения (минус и единицу в самом левом разряде).

На младшем поддиапазоне есть возможность «прозвонки» цепей, если их сопротивление не превышает некоей величины (для данного прибора — около 50 Ом).

При этом прибор издает звуковой сигнал. Это очень удобно, в частности, при поиске жил в кабельных соединениях. При этом можно не смотреть на табло прибора, что экономит время.

При измерении сопротивления на самом нижнем поддиапазоне надо учитывать, что щупы прибора также имеют некоторое сопротивление.

Если их замкнуть между собой, прибор покажет не «0» Ом, а некоторую небольшую величину (в диапазоне примерно 0,5 – 1 Ом). Эту величину надо вычесть из измеренного значения.

Отметим, что проводники из металлов имеют небольшое сопротивление. Лучшими проводниками являются медь и серебро. Поэтому, например, обмотки трансформаторов выполняют из медных проводов, а сильноточные контакты покрывают слоем серебра. Чем меньше сопротивление проводника, тем меньше он греется.

Сплавы металлов имеют повышенное сопротивление, соответственно, они сильнее греются, поэтому из них изготавливают различные нагреватели. Кстати сказать, в паяльниках, которые используют при пайке часто используется нихром (сплав НИкеля и ХРОМа).

Изоляторы, наоборот, имеют очень большое сопротивление, поэтому при прикладывании к ним напряжения ток через них практически не протекает. Пример изолятора – стеклотекстолит, из которого изготовлена материнская плата компьютера.

Заканчивая тему измерения сопротивления, отметим, что сопротивление тела человека лежит в пределах от нескольких килоом до нескольких десятков или сотен килоом и зависит от состояния его здоровья и кожных покровов.

Теперь вы знаете, как выполнять измерения и можете оценить сопротивление своего тела. И похвастаться этой величиной и своим умением перед товарищами :yes:

В заключение расскажем, как выполнить

Измерение температуры

Мультиметр может измерять и температуру.

При этом переключатель ставится напротив зеленой метки «Temp».

В гнездо выше переключателя ставится термопара типа К. Термопара — это два проводника из разных сплавов, спаянные в одной точке. При этом на противоположных концах возникает термоЭДС (электродвижущая сила).

Чем сильнее нагрето место спая, тем больше термоЭДС. Прибор измеряет это значение и выводит сразу температуру в привычных нам градусах Цельсия. Отметим, что термопара обладает некоторой инерционностью, особенно при измерении больших температур.

Термопарой можно измерить температуру жала паяльника. При этом важно обеспечить надежный тепловой контакт между нею (шариком спая) и жалом. Отметим, что паяльник в паяльных станциях имеет встроенный датчик, при этом температура жала показывается на специальном табло.

У нас осталась не рассмотренной важная тема – как проверять с помощью цифрового мультиметра полупроводниковые приборы. Этим мы займемся в следующих постах.

Всего наилучшего!

С вами бы Виктор Геронда. До встречи на блоге!


Как расширить диапазон измерения ёмкости конденсаторов мультиметра

Имеем мультиметр Mastech MS8222H, который умеет измерять ёмкость конденсаторов (и индуктивность катушек; т. е. является LC-метром):

Фото 1. Мультиметр Mastech MS8222H с LC-метром на борту

Здесь переключатель режимов установлен в положение измерения ёмкости конденсаторов, диапазон до 20 мкФ. И это первая проблема — в электронной технике дохнут как правило электролитические конденсаторы больших ёмкостей, порядка 4700 мкФ, а тут только до 20…

Вторая проблема — это две щёлки возле меток диапазонов ёмкостей; это гнездо для всовывания туда выводов конденсатора, причём контакты там находятся глубоко; т. е. не только чип-конденсаторы так не измерить, но и короткие выводы конденсатора — проблема; а также ещё хотелось бы иметь здесь щупы, чтобы производить измерение конденсаторов на плате без отпаивания их.

Ну, так вот, пацан задумал — пацан сделал… приспособление:

Фото 2. Самодельное приспособление для удобства измерения ёмкости конденсаторов

С обратной стороны:

Фото 3. Обратите внимание на необходимую длину контактов!

Что здесь? Снизу — длинные (16 мм) лепестки контактов из бронзовых пластин (контакты от какого-то большого прибора), чтобы достать до контактов в глубине гнезда. Контактные площадки 1 и 2 предназначены для измерения конденсаторов, ёмкость которых менее 20 мкФ. Длинная контактная площадка 2 позволяет измерять конденсаторы с короткими и широко расставленными выводами:

Фото 4. Измерение конденсатора с широко расставленными выводами

Два конденсатора [спаяны параллельно, суммарная ёмкость 19.1 мкФ] между контактом 1 и 3 соединяются последовательно с измеряемым конденсатором, который прикладывается к контактам 2 и 3, и далее по показанию мультиметра (D) и таблице снизу (значения рассчитаны на калькуляторе по формуле 1/D= 1/X+1/19.1) находим значение X ёмкости испытуемого. Например, если дисплей кажет 18.35, значит ёмкость испытуемого 470 мкФ.

Расстояние между площадками 1 и 2 (да и 2 и 3 на всякий случай) всего 1 мм для измерения ёмкости чип-конденсаторов:

Фото 5. Измеряем ёмкость чип-конденсатора

Как такое сделать: выпилить кусочек платы текстолита с медью -> просверлить отверстия под 3 пина -> вытравить лишнюю медь хлорным железом -> залудить -> припаять выводы и конденсаторы.

Торчащие из выводов 1, 2, и 3 игольчатые пины нужны для подсоединения щупов следующим образом:

Фото 6. Подключение щупов к пинам приспособления

Теперь можно измерять ёмкость любых кондеров прямо на плате исследуемого/ремонтируемого устройства, не выпаивая их.

Как показала практика и опыт использования сей самоделки — страшно полезная штука оказалась. Прям жуть как удобно и необходимо по жизни. Это просто кошмар какой-то было жить без неё. Только покупка транзистор-тестера GM328A остановила весь этот ужас.


Мультиметр перестал измерять емкость конденсаторов

Иногда, когда на конденсаторе отсутствует маркировка или нет доверия к указанным на его корпусе параметрам, требуется как-то узнать реальную емкость. Но как это сделать, не имея специального оборудования?

Безусловно, если под рукой есть мультиметр с возможностью измерения емкости или C-метр с подходящим диапазоном измерения емкостей, то проблема перестает быть таковой. Но что же делать, если в наличии только простой бытовой мультиметр и какой-нибудь блок питания, а измерить емкость конденсатора необходимо здесь и сейчас? На помощь в этом случае придут известные законы физики, которые позволят с достаточной степенью точности измерить емкость.

Рассмотрим сначала простой способ измерения емкости электролитического конденсатора подручными средствами. Как известно, при заряде конденсатора от источника постоянного напряжения через резистор, имеет место закономерность, по которой напряжение на конденсаторе станет экспоненциально приближаться к напряжению источника, и в пределе когда-нибудь, наконец, его достигнет.

Но чтобы долго не ждать, можно задачу себе упростить. Известно, что за время, равное 3*RC, напряжение на конденсаторе в процессе зарядки достигнет 95% напряжения, приложенного к RC-цепочке. Значит, зная напряжение блока питания, номинал резистора, и вооружившись секундомером, можно легко измерить постоянную времени, а точнее – троекратную постоянную времени для большей точности, и вычислить затем емкость конденсатора по известной формуле.

Для примера рассмотрим далее эксперимент. Допустим, есть у нас электролитический конденсатор, на котором присутствует какая-то маркировка, но мы ей не особо доверяем, так как конденсатор давно валялся в закромах, и мало ли высох, в общем нужно измерить его емкость. Например, на конденсаторе написано 6800мкф 50в, но нужно узнать точно.

Шаг №1. Берем резистор номиналом 10кОм, измеряем его сопротивление мультиметром, поскольку своему мультиметру в этом эксперименте мы будем изначально доверять. Например, получилось сопротивление 9840 Ом.

Шаг №2. Включаем блок питания. Поскольку мультиметру мы доверяем больше, чем калибровке шкалы (если таковая имеется) блока питания, переводим мультиметр в режим измерения постоянного напряжения, и подключаем его к выводам блока питания. Выставляем напряжение блока питания на 12 вольт, чтобы мультиметр точно показал 12,00 В. Если напряжение блока питания не регулируется, то просто замеряем его и записываем.

Шаг №3. Собираем RC-цепочку из резистора и конденсатора, емкость которого нужно измерить. Конденсатор закорачиваем на время так, чтобы его легко можно было раскоротить.

Шаг №4. Подключаем RC-цепочку к блоку питания. Конденсатор все еще закорочен. Измеряем мультиметром еще раз напряжение, подаваемое на RC-цепочку, и фиксируем это значение для верности на бумаге. К примеру, оно так и осталось 12,00 В, или таким же, каким было в начале.

Шаг №5. Вычисляем 95% от этого напряжения, например если 12 вольт, то 95% – это 11,4 вольта. Теперь мы знаем, что за время, равное 3*RC, конденсатор зарядится до 11,4 В.

Шаг №6. Берем в руки секундомер, и раскорачиваем конденсатор, начинаем одновременно отсчет времени. Фиксируем время, за которое напряжение на конденсаторе достигло 11,4 В, это и будет 3*RC.

Шаг №7. Производим вычисления. Получившееся время в секундах делим на сопротивление резистора в омах, и на 3. Получаем значение емкости конденсатора в фарадах.

Например: время получилось 220 секунд (3 минуты и 40 секунд). Делим 220 на 3 и на 9840, получаем емкость в фарадах. В нашем примере получилось 0,007452 Ф, то есть 7452 мкф, а на конденсаторе написано 6800 мкф. Таким образом, в допустимые 20% отклонение емкости уложилось, поскольку составило примерно 9,6%.

Но как быть с неполярными конденсаторами малых емкостей? Если конденсатор керамический или полипропиленовый, то здесь поможет переменный ток и знание о емкостном сопротивлении.

К примеру, есть конденсатор, емкость его предположительно несколько нанофарад, и известно, что в цепи переменного тока работать он может. Для выполнения измерений потребуется сетевой трансформатор со вторичной обмоткой, скажем, на 12 вольт, мультиметр, и все тот же резистор на 10 кОм.

Шаг №1. Собираем RC-цепь, и подключаем ее ко вторичной обмотке трансформатора. Затем включаем трансформатор в сеть.

Шаг №2. Измеряем мультиметром переменное напряжение на конденсаторе, затем — на резисторе.

Шаг №3. Производим вычисления. Сначала вычисляем ток через резистор, – делим напряжение на нем на значение его сопротивление. Поскольку цепь последовательная, то переменный ток через конденсатор точно такой же величины. Делим напряжение на конденсаторе на ток через резистор (ток через конденсатор такой же), получаем значение емкостного сопротивления Хс. Зная емкостное сопротивление и частоту тока (50 Гц), вычисляем емкость нашего конденсатора.

Например: на резисторе 7 вольт, а на конденсаторе 5 вольт. Мы посчитали, что ток через резистор в этом случае 700 мкА, следовательно и через конденсатор — такой же. Значит емкостное сопротивление конденсатора на частоте 50 Гц составляет 5/0,0007 = 7142,8 Ом. Емкостное сопротивление Xc = 1/6,28fC, следовательно C = 445 нф, то есть номинал 470 нф.

Описанные здесь способы являются весьма грубыми, поэтому применять их можно только тогда, когда других вариантов просто нет. В иных случаях лучше пользоваться специальными измерительными приборами.

Одной из наиболее распространенных причин неисправности радиоэлектронной техники является поломка одного или нескольких конденсаторов, которые составляют неотъемлемую часть ее платы. И чтобы выяснить, какой же именно конденсатор оказался слабым звеном, необходимо проверить их работоспособность. В этой статье описывается, как прозванивают конденсатор. Независимо от того, занимаетесь ли вы электронной аппаратурой профессионально или вы просто любитель, вам это вполне под силу. Для этого вам понадобится мультиметр. Ниже мы рассмотрим, как проверить конденсатор мультиметром самостоятельно.

Виды конденсаторов и их проверка

Прежде чем разобраться, как мультиметром прозвонить конденсатор, давайте выясним, какие виды конденсаторов существуют. Все конденсаторы делятся на полярные и неполярные. Разница между ними заключается в том, что полярные, как можно догадаться из названия, имеют полярность. Проверять их нужно строго соответствующим образом: «плюс» к «плюсу», «минус» к «минусу», так как в противном случае они придут в негодность и могут взорваться. Все полярные конденсаторы являются электролитическими. Если конденсатор еще советского производства, то при взрыве электролит может попасть вам на кожу. В современных конденсаторах для таких случаев предусмотрено специальное сечение на поверхности, которое разрывается в определенном направлении и не дает проводящему веществу разбрызгаться в разные стороны.

Пробой конденсатора

Наиболее распространенной проблемой конденсаторов является пробой диэлектрика. Диэлектрик – это слой материала между двумя проводниками внутри конденсатора, который имеет большое сопротивление, чтобы не допустить протекания тока между проводниками.

В исправном конденсаторе допускается небольшое пропускание тока через этот изолятор, это называется «ток утечки», и он ничтожно мал. При пробое диэлектрика его сопротивление резко падает, и, по сути, он превращается в обыкновенный проводник. Причиной такого пробоя, как правило, является резкий перепад напряжения в сети, к которой подключено оборудование. К характерным признакам пробоя относятся вздутие корпуса конденсатора, его потемнение и появление черных пятен. Перед тем как проверить конденсатор на исправность, осмотрите его визуально на предмет внешних дефектов.

Проверка неполярного конденсатора в режиме омметра

Проверка мультиметром сопротивления диэлектрика в конденсаторе осуществляется в режиме омметра. В неполярных конденсаторах диэлектрик может быть выполнен из стекла, керамики, бумаги или даже в виде воздушной прослойки. Таким образом обеспечивается крайне высокое сопротивление, и в исправном конденсаторе цифровой мультиметр покажет фактически бесконечную величину. Если же электрический пробой имеет место, то уровень сопротивления будет в пределах нескольких Ом, максимум нескольких десятков.

Помните о технике безопасности и не держитесь одновременно и за щупы прибора и за выводы конденсатора, так как из-за меньшего сопротивления электрический ток пойдет через ваше тело.

Проверка полярного конденсатора в режиме омметра

По сравнению с неполярными конденсаторами в полярных сопротивление диэлектрика на порядок меньше, поэтому максимум сопротивления на мультиметре нужно выставлять соответствующее. Большинство таких конденсаторов имеют не менее 100 кОм сопротивления, особо мощные и до 1 мОма. Перед тем как мультиметром прозвонить конденсатор, замкните выводы накопителя, чтобы разрядить его полностью.

Как мультиметром прозвонить конденсатор (аналоговый измеритель)

Как мультиметром прозвонить конденсатор: инструкция по проверке емкости накопителя

Прежде чем проверять таким образом электролитический конденсатор, его обязательно необходимо полностью разрядить. Заряженный конденсатор может попросту испортить ваш мультиметр. Особенно это касается полярных накопителей с высоким рабочим напряжением и большой емкостью. Как правило, такие конденсаторы используются в импульсных блоках в качестве фильтрующих накопителей.

Разрядка конденсатора

Обрыв конденсатора

Обрыв – довольно редкая для конденсаторов неисправность. Как правило, он возникает при механических повреждениях накопителя. В результате обрыва конденсатор полностью теряет свою накопительную функцию и имеет нулевую емкость. Фактически он превращается в два изолированных друг от друга проводника. Обнаружить обрыв при помощи омметра практически невозможно. Своеобразным симптомом обрыва в полярных электролитических конденсаторах при измерении сопротивления является отсутствие какого-либо изменения в показаниях прибора. Так как исправный неполярный конденсатор малой емкости имеет высокое сопротивление, проверить его на обрыв, таким образом, не представляется возможным. Единственный выход – измерение емкости.

Потеря емкости конденсатора

Для того чтобы определить, потерял ли конденсатор свою емкость, как ни странно, нужно замерить эту самую емкость. Выставьте на мультиметре соответствующий предел измеряемой емкости, разрядите проверяемый конденсатор, подключите щупы измерителя к соответствующим гнездам на нем, соблюдая правильную полярность, и наконец, прикоснитесь щупами к выводам конденсатора. Очевидно, что разобраться, как мультиметром проверить конденсатор кондиционера или любого другого бытового прибора на предмет потери емкости, не столь сложно.

Измерение напряжения конденсатора

Учтите, что при проверке накопитель теряет свой заряд и напряжение, соответственно, будет быстро падать, поэтому важно увидеть цифру, которая появилась в самом начале.
Есть и более простой способ проверки, но он действенен только для конденсаторов с достаточно большой емкостью. Зарядив накопитель полностью, возьмите обыкновенную отвертку с изолированной рукояткой, поднесите ее металлическую часть к его выводам и замкните их. Если в результате проскочила яркая искра, значит, элемент рабочий. Если же искра очень слабая или вовсе отсутствует, значит, конденсатор не держит заряд.

Заключение

В данной статье мы попытались разобрать все наиболее часто встречающиеся поломки конденсаторов, а также способы их проверки. Важный момент: многие начинающие мастера думают, как прозвонить конденсатор мультиметром, не выпаивая его из платы, однако в таком случае в процессе измерений будет иметь место очень большая погрешность. Единственный способ в таком случае – это визуальный осмотр на предмет наличия внешних признаков, таких как взбухание, потемнение или изменение цвета поверхности.

Чаще всего конденсаторы «летят» в таких видах бытовой техники, как стиральные машины, телевизоры, микроволновые печи и др. Поэтому если перед вами стала проблема, как прозвонить конденсатор кондиционера мультиметром, можете смело использовать нашу инструкцию.

Мультиметр – это электроизмерительное устройство с различными функциями. С его помощью можно проверять напряжение, силу тока, а также производные от этих величин – сопротивление и емкость. С помощью мультиметра можно проверить и работоспособность различных электронных компонентов. В этой статье мы с вами узнаем, как проверить мультиметром конденсатор и его емкость.

Конденсатор и емкость

Конденсаторы используются практически во всех микросхемах и являются частой причиной ее неработоспособности. Так что в случае неисправности устройства следует проверять в первую очередь именно этот элемент.

Виды конденсаторов по типу диэлектрика:

  • вакуумные;
  • с газообразным диэлектриком;
  • с неорганическим диэлектриком;
  • с органическим диэлектриком;
  • электролитические;
  • твердотельные.

Обычно используются электролитические конденсаторы

Основные неисправности конденсаторов:

  • Электрический пробой. Обычно вызван превышением допустимого напряжения.
  • Обрыв. Связан с механическими повреждениями, встрясками, вибрациями. Причиной может служить некачественная конструкция и нарушение эксплуатационных условий.
  • Повышенные утечки. Сопротивление между обкладками изменяется, и это приводит к низкой емкости конденсатора, которая не способна сохранять заряд.

Все эти причины приводят к тому, кто конденсатор становится непригодным для дальнейшего использования.

В данном случае присутствует протечка электролита

Перед проверкой конденсатора

Т.к. конденсаторы накапливают электрический заряд, перед проверкой их следует разряжать. Это можно сделать отверткой – жалом нужно прикоснуться к выводам, чтобы образовалась искра. Затем можно прозванивать компонент. Проверку конденсатора можно сделать как мультитестером, так и при помощи лампочек и проводов. Первый способ является более надежным и дает более точные сведения об электронном элементе.

До начала проверки следует осмотреть конденсатор. Если он имеет трещины, нарушение изоляции, подтеки или вздутие, поврежден внутренний электролит и прибор сломан. Его нужно поменять на работающее устройство. При отсутствии внешних повреждений придется использовать мультиметр.

Перед проведением измерений нужно определить вид конденсатора – полярный или неполярный. У первого обязательно должна соблюдаться полярность, иначе прибор выйдет из строя. Во втором случае определение плюсового и минусового выходов не требуется, но измерения будут проводиться по другой технологии.

Определить полярность можно по метке на корпусе. На детали должна быть черная полоса с обозначением нуля. Со стороны этой ножки расположен отрицательный контакт, а с противоположной – положительный.

Измерение емкости в режиме сопротивления

Переключатель мультиметра следует установить в режим сопротивления (омметра). В этом режиме можно посмотреть, есть ли внутри конденсатора обрыв или короткое замыкание. Для проверки неполярного конденсатора выставляется диапазон измерений 2 МОм. Для полярного изделия ставится сопротивление 200 Ом, так как при 2 МОм зарядка будет производиться быстро.

Сам конденсатор нужно отпаять от схемы и поместить его на стол. Щупами мультиметра нужно коснуться выводов конденсатора, соблюдая полярность. В неполярной детали соблюдать плюс и минус не обязательно.

Измерение в режиме сопротивления

Когда щупы прикоснутся к ножкам, на дисплее появится значение, которое будет возрастать. Это вызвано тем, что мультитестер будет заряжать компонент. Через некоторое время значение на экране достигнет единицы – это значит, что прибор исправен. Если при проверке сразу же загорается 1, внутри устройства произошел обрыв и его следует заменить. Нулевое значение на дисплее говорит о том, что внутри конденсатора произошло короткое замыкание.

Если проверяется неполярный конденсатор, значение должно быть выше 2. В ином случае прибор является не рабочим.

Аналоговое устройство

Вышеописанный алгоритм подходит для цифрового тестера. При использовании аналогового устройства проверка производится еще проще – нужно наблюдать лишь за ходом стрелки. Щупы подключаются так же, режим – проверка сопротивления. Плавное перемещение стрелки свидетельствует о том, что конденсатор исправен. Минимальное и максимальное значение при подключении говорят о поломке электронной детали.

Важно отметить, что проверка в режиме омметра производится для деталей с емкостью выше 0Ю25 мкФ. Для меньших номиналов используются специальные LC-метры или тестеры с высоким разрешением.

Измерение емкости конденсатора

Емкость является основной характеристикой конденсатора. Она указывается на внешней оболочке прибора, и при наличии тестера можно замерить реальное значение и сравнить его с номиналом.

Переключатель мультиметра переводится в диапазон измерений. Значение ставится равное или близкое к номиналу, указанному на компоненте. Сам конденсатор устанавливается в специальные отверстия –CX+ (если они есть на мультиметре) или с помощью щупов. Подключаются щупы так же, как и при измерении в режиме сопротивления.

При подключении щупов на мониторе должно появиться значение сопротивления. Если оно близко к номинальной характеристике, конденсатор исправен. Когда расхождение полученного и номинального значений отличаются более чем на 20% , устройство пробито, и его нужно поменять.

Измерение емкости через напряжение

Проверка работоспособности детали может производиться и при помощи вольтметра. Значение на мониторе сравнивается с номиналом, и из этого делается вывод об исправности устройства. Для проверки нужен источник питания с меньшим напряжением, чем у конденсатора.

Соблюдая полярность, нужно подключить щупы к выводам на несколько секунд для зарядки. Затем мультиметр переводится в режим вольтметра и проверяется работоспособность. На дисплее тестера должно появиться значение, схожее с номинальным. В ином случае прибор сломан.

Другие способы проверки

Можно проверить конденсатор, не выпаивая его из микросхемы. Для этого нужно параллельно подключить заведомо исправный конденсатор с такой же емкостью. Если устройство будет работать, то проблема в первом элементе, и его следует поменять. Такой способ применим только в схемах с небольшим напряжением!

Иногда проверяют конденсатор на искру. Его нужно зарядить и металлическим инструментом с заизолированной рукояткой замкнуть выводы. Должна появиться яркая искра с характерным звуком. При малом разряде можно сделать вывод, что деталь пора менять. Проводить данное измерение нужно в резиновых перчатках. К этому методу прибегают для проверки мощных конденсаторов, в том числе пусковых, которые рассчитаны на напряжение более 200 Вольт.

Использовать способы проверки без специальных приборов нежелательно. Они небезопасны – при малейшей неосторожности можно получить электрический удар. Также будет нарушена объективность картины – точные значения не будут получены.

Сложности проверки

Основной сложностью при определении работоспособности конденсатора мультиметром является его выпаивание из схемы. Если оставить компонент на плате, на измерение будут влиять другие элементы цепи. Они будут искажать показания.

В продаже существуют специальные тестеры с пониженным напряжением на щупах, которые позволяют проверять конденсатор прямо на плате. Малое напряжение сводит к минимуму риск повреждения других элементов в цепи.

Как проверить емкость – видео ролики в Youtube

Отличное видео с описанием процесса проверки конденсаторов и поиска неисправностей от популярных ютуб-блогеров.

Измерение ёмкости электролитического конденсатора мультиметром

Использование режима «Cx»

После того, как контакты закоротили, можно осуществлять определение сопротивления. Если элемент исправлен, то сразу после подключения он начнет заряжаться постоянным током. В этом случае сопротивление отобразиться минимальное и будет продолжать расти.

В случае если конденсатор неисправен, то мультиметр будет сразу указывать бесконечность или будет указывать нулевое сопротивление и при этом пищать. Такая проверка осуществляется, если конструкция полярная.

Для того чтобы узнать емкость необходимо иметь мультиметр с функцией измерения параметра «Сх».

Определить емкость с помощью такого мультиметра просто: установить его в режим «Сх» и указать минимальный предел измерения, которым должен обладать данный конденсатор. В таких мультиметрах есть специальные гнезда с определенными пределами измерения. В эти гнезда вставляется конденсатор согласно его пределу измерения и происходит определение его параметров.

Если в тестере таких гнезд нет, то определить емкость можно с помощью измерительных щупов, как показано на фото ниже:

Важно! В отдельной статье мы рассказывали о том, как проверить исправность конденсатора. Рекомендуем также ознакомиться с этим материалом!

Применение формул

Что делать, если под рукой нет такого мультиметра с гнездами измерения, а есть только обычный бытовой прибор? В таком случае необходимо вспомнить законы физики, которые помогут определить емкость.

Для начала вспомним, что в случае, когда конденсатор заряжается от источника неизменного напряжения через резистор, то существует закономерность, согласно которой напряжение на устройстве будет подходить к напряжению источника и в конечном итоге сравняется с ним.

Но для того чтобы этого не ожидать, можно процесс упростить. Например, за определенное время, которое равняется 3*RC, во время заряжения элемент достигает напряжения 95% примененного к RC цепи. Таким образом, по току и напряжению можно определить константу времени. А правильнее, если знать вольтаж в блоке питания, номинал самого резистора, происходит определение постоянной времени, а затем и емкости устройства.

Например, есть электролитический конденсатор, узнать емкость которого можно по маркировке, где прописывается 6800 мкф 50в. Но что если устройство давно лежало без дела, а по надписи сложно определить его рабочее состояние? В этом случае лучше проверить его емкость, чтобы знать наверняка.

Для этого необходимо выполнить следующее:

  1. С помощью мультиметра измерить сопротивление резистора в 10 кОм. Например, оно получилось равно 9880 Ом.
  2. Подключаем блок питания. Мультиметр переводим в режим замера постоянного напряжения. Затем подключаем его к блоку питания (через его выводы). После этого в блоке устанавливается 12 вольт (на мультиметре должна появиться цифра 12,00 В). Если же не удалось отрегулировать напряжение в блоке питание, то тогда записываем те результаты, которые получились.
  3. С помощью конденсатора и резистора собираем электрическую RC-цепь. На схеме ниже указана простая RC-цепочка:
  4. Закоротить конденсатор и подключить цепь к питанию. С помощью прибора еще раз определить напряжение, которое подается на цепь, и записать это значение.
  5. Затем необходимо высчитать 95% от полученного значения. К примеру, если это 12 Вольт, то это будет 11,4 В. То есть, за определенное время, которое равняется 3*RC, конденсатор получит напряжение в 11,4 В. Формула выглядит следующим образом:
  6. Осталось определить время. Для этого устройство раскорачиваем и с помощью секундомера производим отсчет. Определение 3*RC будет вычисляться таким образом: как только напряжение на устройстве будет равно 11,4 В, то это и будет означать нужное время.
  7. Производим определение. Для этого полученное время (в секундах) делим на сопротивление в резисторе и на три. Например, получилось 210 секунд. Эту цифру делим на 9880 и на 3. Получилось значение 0,007085. Это величина указывается в фарадах, или 7085 мкф. Допустимое отклонение может быть не более 20%. Если учитывать, что на изделии указано 6800 мкф, наши расчеты подтверждаются и укладываются в норматив.

А как определить емкость керамического конденсатора? В этом случае можно сделать определение с помощью сетевого трансформатора. Для этого RC-цепочку подсоединяем ко вторичной обмотке трансформатора, и его подсоединяют в сеть. Далее с помощью мультиметра осуществляется замер напряжения на конденсаторе и на резисторе. После этого необходимо сделать подсчеты: высчитывается ток, что проходит через резистор, затем его напряжение делится на сопротивление. Получается емкостное сопротивление Хс.

Если есть частота тока и Хс, можно определить емкость по формуле:

Другие методики

Также емкость можно определить и с помощью баллистического гальванометра. Для этого используется формула:

  • Cq — баллистическая постоянная гальванометра;
  • U2 — показания вольтметра;
  • a2 — угол отклонения гальванометра.

Определение значения методом амперметра вольтметра осуществляется следующим образом: измеряется напряжение и ток в цепи, после чего значение емкости определяется по формуле:

Напряжение при таком методе определения должно быть синусоидальным.

Измерение значения возможно и при помощи мостиковой схемы. В этом случае схема моста переменного тока указывается ниже:

Здесь одно плечо моста образуется за счет элемента, который необходимо измерить (Cx). Следующее плечо состоит из конденсатора без потерь и магазина сопротивлений. Оставшиеся два плеча состоят из магазинов сопротивлений. Подключаем в одну диагональ источник питания, в другую – нулевой индикатор. И рассчитываем значение по формуле:

Напоследок рекомендуем просмотреть полезное видео по теме:

Это все, что мы хотели рассказать вам о том, как определить емкость конденсатора мультиметром. Надеемся, предоставленная информация была для вас полезной и интересной!

Наверняка вы не знаете:

Одной из самых распространённых причин неисправности электронной техники, это выход из строя конденсатора. Любая электроника, бытовая техника и цифровые процессоры все имеют в своем оборудовании конденсаторы и достаточно одной незначительной неисправности конденсатора, что бы весь механизм прекратил выполнять свои функции.

Как проверить конденсатор мультиметром

Я рад снова видеть все вас на страницах сайта «Электрик в доме». Сегодня мы познакомимся и изучим одну из самых используемых деталей в электронике – конденсатор. История создания первого конденсатора относит нас назад в 1745 год («лейденская банка»).

В наше время, в век технологий нас со всех сторон окружает электротехнические машины и оборудование. Вы конечно хорошо знакомы с конденсатором и если не сталкивались технически, то слышали о нем однозначно.

Одной из самых распространённых причин неисправности электронной техники, это выход из строя конденсатора. Любая электроника, бытовая техника и цифровые процессоры все имеют в своем оборудовании конденсаторы и достаточно одной незначительной неисправности конденсатора, что бы весь механизм прекратил выполнять свои функции.

Вот почему, в случае неисправности оборудования, первым делом необходимо обратить ваше внимание на работоспособность в схеме конденсаторов. И сделать это можно только при помощи электронного прибора, так как визуально определить состояние невозможно, если нет внешних повреждений.

Для этих целей и предназначен недорогой прибор мультиметр, выполняющий многие функции. Об одной из них — проверки сопротивления, я уже знакомил вас в своей предыдущей статье. Этот же материал предназначен для изучения методики проверки конденсатора мультиметром.

С этой проблемой ко мне обратился один из моих подписчиков. Следуя уже своей традиции, я как всегда, буду излагать материал просто и доступно для легко понимания всем желающим.

Проверка конденсатора мультиметром

Для лучшего усвоения материала, начнем с небольшой теории:

  • Устройство и принцип работы мультиметра;
  • Виды и особенности конденсаторов.

Устройство (прибор) предназначенное для накопления электрического заряда – это основное определение конденсатора. Конструктивно он состоит из определенного корпуса, внутри которого расположены две параллельные металлические пластины. Между пластинами установлена прокладка (диэлектрик). Площадь пластин напрямую влияет на величину электрического заряда. Чем больше площадь пластин, тем больше величина накопленного заряда.

Конденсаторы могут быть двух видов: полярными и неполярными.

Конденсаторы полярные.

Определить какой вид конденсаторов достаточно не сложно, уже название вам дает подсказку, что «полярные» должны иметь полярность, то есть иметь (+ плюс) и (- минус). Их подключение в электросхему строго регламентировано в соответствие полярности. Плюс подключается к плюсу, минус к минусу. При нарушении этого правила — конденсатор не будет работать, а вместе с ним и вся схема.

Все полярные конденсаторы заполнены электролитом (твердым или жидким), поэтому их классифицируют как электролитические. Их физические параметры (емкость) находится в следующих параметрах 0.1 ÷ 100000 мкФ.

Конденсаторы неполярные

Неполярные конденсаторы, как вы уже поняли, не имеют полярности и не требуют строгого соблюдения условий подключений. У них нет ни плюса, ни минуса. Роль диэлектрика у них могут выполнять: бумага, стекло, керамика и слюда. Их физические параметры (емкость) незначительна и находится в следующем диапазоне (от нескольких микрофарад до нескольких пикофарад).

Забегая вперед, сразу хочу ответить на ваши вопросы, зачем нам с вами необходимо знать эти технические тонкости. Это очень важно, так как к каждому типу конденсаторов применима своя методика проверки мультиметром. И пред началом проверки, мы должны первым делом, установить тип конденсатора. Это очень важный момент. Прошу вас обратить на это внимание!

Как проверить конденсатор с помощью приборов

Любую проверку конденсаторов необходимо начинать с внешнего осмотра, на наличие внешних признаков повреждений корпуса (трещин, вздутия). Достаточно часто происходит повреждение электролита, что приводит к повышению давления на внутреннюю поверхность оболочки и последующее ее вздутие.

После того как визуальный осмотр окончен и мы не установили внешних повреждений конденсатора, необходимо продолжить проверку специальным прибором, в нашем случае мультиметром. Этот простейший прибор поможет нам установить емкость конденсатора и обрывы внутри.

Перед проверкой незабываем, установить тип конденсатора, более подробно об этом написано выше. Продолжаем процесс проверки с соблюдением полярности, для этого подключаем плюсовой щуп к плюсовому контакту конденсатора и соответственно минусовой щуп к контакту минус.

Проверяя неполярный конденсатор, подключение мультиметра проводим произвольно без соблюдения правила полярности. Единственное, что здесь необходимо выполнить, это выставить переключатель мультиметра на отметку 2 Мом. Это важно, так как при меньшем значении дисплей прибора отобразит — «1» (единицу), что укажет на неисправность конденсатора.

Проверяем конденсатор мультиметром в режиме омметра

Для примера мы свами выполним проверку четырех конденсаторов: два полярных (диэлектрических) и два неполярных (керамических).

Но перед проверкой мы должны обязательно разрядить конденсатор , при этом достаточно замкнуть его контакты при помощи любого металла.

Для того чтобы перейти в режим (омметра) сопротивления, мы перемещаем переключатель в группу измерения сопротивления, для того чтобы установить наличие обрыва или короткого замыкания.

Итак, первым делом проверим полярные кондиционеры (5.6 мкФ и 3.3 мкФ), установленных ранее у неработающих энергосберегающих лампочек

Разряжаем конденсаторы путем замыкания их контактов обычной отверткой. Вы можете использовать, удобный для вас, любой другой металлический предмет. Главное чтобы к нему плотно прилегали контакты. Это позволит нам получить точные показания прибора.

Следующим шагом выставляем переключатель на шкалу 2 МОм и соединяем контакты конденсатора и щупы прибора. Далее наблюдаем на дисплее быстро увиливающие параметры сопротивления.

Вы спросите меня, в чем дело и почему на дисплее мы наблюдаем «плавающие показатели» сопротивления? Это объяснить довольно просто, поскольку питание прибора (батарейка) имеет постоянное напряжение и за счет этого происходит зарядка конденсатора.

С течением времени конденсатор все больше и больше накапливает заряд (заряжается), тем самым увеличивая сопротивление. Емкость конденсатора влияет на скорость зарядки. Как только конденсатор получит полную зарядку, значение его сопротивления будет соответствовать значению бесконечности, а мультиметр на дисплее покажет «1». Это параметры рабочего конденсатора.

Нет возможности показать картинку на фотографии. Так для следующего экземпляра емкостью 5.6 мкФ, показатели сопротивления начинаются с 200 кОм и плавно возрастают до тех пор, пока не преодолеют показатель 2 МОм. Эта процедура не занимает более -10 сек.

Для следующего конденсатора емкостью 3.3 мкФ происходит все аналогично, но время процесса занимает менее — 5 сек.

Проверить следующую пару неполярных конденсаторов можно точно также по аналогии с предыдущими конденсаторами. Соединяем щупы прибора и контакты, следим за состоянием сопротивления на дисплее прибора.

Рассмотрим первый «150nК». Вначале его сопротивление несколько снизится примерно до 900 кОм, затем следует его плавное увеличение до определенной отметки. Время процесса занимает — 30 сек.

При этом на мультиметре модели МБГО переключатель устанавливаем на шкалу 20 МОм (сопротивление приличное, очень быстро идет зарядка)

Процедура классическая, снимаем заряд при помощи замыкания контактов отверткой:

Смотрим на дисплей, отслеживая показатели сопротивления:

Делаем вывод, что в результате проверки все представленные конденсаторы исправны.

Как проверить емкость конденсатора

Главный показатель, основная характеристика всех конденсаторов — это «емкость». Измеряя эту характеристику и сравнивая ее с указанными параметрами на корпусе, мы сможем выяснить, исправен кондиционер или нет. Есть приборы, которые легко позволят вам выполнить эту проверку.

Но можно ли проверить емкость конденсатора, как в нашем случае, мультиметром . Если вы будет проверять емкость при помощи щупов, вы не получите желаемого результата. Как же быть?

В этом нам помогут разъемы «гнезда» -CX+(«-» и «+» — это полярность подключения)

Для этого примера мы будем использовать кондер «150нФ». Маркировка 150nK:

Устанавливаем переключатель на отметку – ближайшее большее значение. В нашем случае это 200 нФ. Следующим шагом вставляем ножки конденсатора в разъемы -CX+. (не обращаем внимание на полярность, наш кондер неполярный). Дисплей показывает значение емкости– 160.3 нФ, что совпадает с номинальными показателями.

Продолжаем проверку конденсатора с емкостью 4700 пФ. Устанавливаем переключатель на шкале в положение 20 n.

Теперь вставляем ножки в разъёмы прибора и наблюдаем на дисплее параметры 4750 пФ. Вы это можете увидеть на фото. Параметры точно соответствуют параметрам заявленным производителем.

Запомните, если показатели сильно отличаются от номинальных параметров или вообще равны нулю, это говорит нам, что конденсатор не рабочий и его необходимо заменить.

Как проверить конденсатор при помощи прибора ESR-METR

Недавно я приобрел ESR-METR и я решил выполнить им ту же самую проверку.

Методика проверки очень проста. Прибор необходимо откалибровать, в моем случае в комплекте идет специальная перемычка, при помощи которой замыкается нужная группа контактов на колодке 1-4. Нажимаем кнопку и прибор автоматический калибруется, сообщив нам об этом на своем экране. После калибровки не забываем разрядить конденсатор и подключаем его к нужным нам разъемам. и производим измерение.

Каждый конденсатор обладает и паразитными свойствами, например сопротивлением. Из фото видно, что емкость конденсатора соответствует заявленным характеристикам, а также присутствует паразитное последовательное сопротивление номиналом 1.2 Ом, из за этого потери на данном конденсаторе составляют 0,5%.

В нашем случает этот показатель великоват, что говорит о высыхании конденсатора, устанавливать его в схему не рекомендуется.

На этом все. Если у Вас есть замечания или предложения по данной статье, прошу написать администратору сайта.

Основной характеристикой конденсатора является его емкость. Очень часто замеры емкости требуется проводить в электролитическом конденсаторе. В отличие от керамических и оксидных конденсаторов, которые редко выходят из строя (разве что в результате пробоя диэлектрика), электролитическим деталям свойственна потеря ёмкости из-за высыхания электролита. Поскольку работа электронных схем сильно зависит от емкостных характеристик, то необходимо знать, как определить емкость конденсатора.

Существуют разные способы определения ёмкости:

  • по кодовой или цветной маркировке деталей;
  • с помощью измерительных приборов;
  • с использованием формулы.

Измерить емкость проще всего с помощью измерителя C и ESR. Для этого контакты измерительных щупов подсоединяют к выводам конденсатора, соблюдая полярность электролитических деталей. При этом результаты измерений выводятся на дисплей. (Рисунок 1). Радиолюбители, которым часто приходится делать измерения, приобретают такой прибор или изготавливают его самостоятельно.

Рис. 1. Измерение ёмкости с помощью измерителя C и ESR

С использованием мультиметра и формул

Если в вашем распоряжении есть мультиметр с функцией измерения параметра «Cx», то измерить ёмкость конденсатора довольно просто: следует переключить прибор в режим «Сх», после чего выбрать оптимальный диапазон измерения, соответствующий параметрам конденсатора. Ножки конденсатора вставляем в соответствующее гнездо (соблюдая полярность подключения) и считываем его параметры.

Режим «Сх» в мультиметре

Менее точно можно определить ёмкость с помощью тестера, у которого нет режима «Сх». Для этого потребуется источник питания, к которому подключают конденсатор по простой схеме (рис. 2).

Рис. 2. Схема подключения конденсатора

Алгоритм измерения следующий:

  1. Измерьте напряжение источника питания щупами контактов измерительного прибора.
  2. Образуйте RC-цепочку с конденсатором и выводами резистора номиналом 1 – 10 кОм.
  3. Закоротите выводы конденсатора и подключите RC-цепочку к источнику питания.
  4. Замерьте напряжение образованной цепи с помощью мультиметра.
  5. Если напряжение изменилось, необходимо подогнать его до значения, близкого к тому, которое вы получили на выходе источника питания.
  6. Вычислите 95% от полученного значения. Запишите показатели измерений.
  7. Возьмите секундомер и включите его одновременно с убиранием закоротки.
  8. Как только мультиметр покажет значение напряжения, которое вы вычислили (95%), остановите секундомер.
  9. По формуле С = t/3R, где t – время падения напряжения, вычисляем ёмкость конденсатора в фарадах, если единицы измерения сопротивление резистора выразили в омах, а время в секундах.

Рис. 3. Измерение с помощью тестера. Проверка

Подчеркнём ещё раз, что точность измерения ёмкости данным способом не слишком высока, но определить работоспособность радиоэлемента на основании такого измерения вполне возможно. Некоторые узлы электронных приборов исправно работают, если есть небольшие отклонения от номинальных емкостей, главное, чтобы не было электрического пробоя.

Таким же методом можно вычислить параметры керамического радиоэлемента. Для этого необходимо подключить RC-цепочку через трансформатор и подать переменное напряжение. Значение ёмкости в данном случае определяем по формуле: C = 0.5*π*f*Xc , где f частота тока, а Xc ёмкостное сопротивление.

Осциллографом

С приемлемой точностью можно определить ёмкость конденсатора с помощью цифрового или обычного электронного осциллографа. Принцип похож на метод измерения ёмкости тестером. Разница только в том, что не потребуется секундомер, так как с высокой точностью время зарядки конденсатора отображается на экране осциллографа. Если применить генератор частоты и последовательную RC-цепочку (рис. 4), то ёмкость можно рассчитать по простой формуле: C = UR / UC* ( 1 / 2*π*f*R ).

Рис. 4. Простая схема

Алгоритм вычисления простой:

  1. Подключите осциллограф к электрической схеме. При подключении щупов прибора к электролитам соблюдайте полярность электрического тока.
  2. Измерьте амплитуды напряжений на конденсаторе и на резисторе.
  3. Путём подстройки частоты генератора добивайтесь, чтобы значения амплитуд на обоих элементах сравнялись (хотя бы приблизительно).
  4. Подставьте полученные значения в формулу и вычислите ёмкость конденсатора.

При измерении ёмкостей неполярных конденсаторов часто вместо RC-цепочки собирают мостовую схему с частотным генератором (показано на рис. 5), а также другие сборки. Сопротивления резисторов подбирают в зависимости от параметров номинальных напряжений измеряемых деталей. Ёмкость вычисляют из соотношения: r4 / Cx = r2 / C.

Рисунок 5. Мостовая схема

Гальванометром

При наличии баллистического гальванометра также можно определить ёмкость конденсатора. Для этого используют формулу:

C = α * Cq / U , где α – угол отклонения гальванометра, Cq – баллистическая постоянная прибора, U – показания гальванометра.

Из-за падения сопротивления утечки ёмкость конденсаторов уменьшается. Энергия теряется вместе с током утечки.

Описанные выше методики определения ёмкости позволяют определить исправность конденсаторов. Значительное отклонение от номиналов говорит, что конденсаторы неисправны. Пробитый электролитический радиоэлемент легко определяется путём измерения сопротивления. Если сопротивление стремится к 0 – изделие закорочено, а если к бесконечности – значит, есть обрыв.

Следует опасаться сильного электрического разряда при подключениях щупов к большим электролитам. Они могут накапливать мощный электрический заряд от постоянного тока, который молниеносно высвобождается током разряда.

По маркировке

Напомним, что единицей емкости в системе СИ является фарада ( обозначается F или Ф). Это очень большая величина, поэтому на практике используются дольные величины:

  • миллифарады (mF, мФ ) = 10 -3 Ф;
  • микрофарады (µF, uF, mF, мкФ) = 10 -3 мФ = 10 -6 Ф;
  • нанофарады (nF, нФ) = 10 -3 мкФ =10 -9 Ф;
  • пикофарады (pF, mmF, uuF) = 1 пФ = 10 -3 нФ = 10 -12 Ф.

Мы перечислили название единиц и их сокращённое обозначение потому, что они часто встречаются в маркировке крупных конденсаторов (см. рис. 6).

Рис. 6. Маркировка крупных конденсаторов

Обратите внимание на маркировку плоского конденсатора (второй сверху): после трёхзначной цифры стоит буква М. Данная буква не обозначает единицы измерения «мегафарад» – таких просто не существует. Буквами обозначены допуски, то есть, процент отклонения от ёмкости, обозначенной на корпусе. В нашем случае отклонение составляет 20% в любую сторону. Надпись 102М на большом корпусе можно было бы написать: 102 нФ ± 20%.

Теперь расшифруем надпись на корпусе третьего изделия. 118 – 130 MFD обозначает, что перед нами конденсатор, ёмкость которого находится в пределах 118 – 130 микрофарад. В данном примере буква М уже обозначает «микро». FD – обозначает «фарады», сокращение английского слова «farad».

На этом простом примере видно, какая большая путаница в маркировке. Особенно запутана кодовая маркировка, применяемая для крохотных конденсаторов. Дело в том, что можно встретить конденсаторы, маркировка которых выполнена старым способом и детали с современной кодировкой, в соответствии со стандартом EIA. Одни и те же символы можно по-разному интерпретировать.

По стандарту EIA:

  1. Две цифры и одна буква. Цифры обозначают ёмкость, обычно в пикофарадах, а буква – допуски.
  2. Если буква стоит на первом или втором месте, то она обозначает либо десятичную запятую (символ R), либо указывает на название единицы измерения («p» – пикофарад, «n» – нанофарад, «u» – микрофарад). Например: 2R4 = 2.4 пФ; N52 = 0,52 нФ; 6u1 = 6,1 мкф.
  3. Маркировка тремя цифрами. В данном коде обращайте внимание на третью цифру. Если её значение от 0 до 6, то умножайте первые две на 10 в соответствующей степени. При этом 10 0 =1; 10 1 = 10; 10 2 = 100 и т. д. до 10 6 .

Цифры от 7 до 9 указывают на показатель степени со знаком «минус»: 7 условно = 10 -3 ; 8 = 10 -2 ; 9 = 10 -1 .

  • 256 обозначает: 25× 10 5 = 2500 000 пФ = 2,5 мкФ;
  • 507 обозначает: 50 × 10 -3 = 50 000 пФ = 0, 05 мкФ.

Возможна и такая надпись: «1B253». При расшифровке необходимо разбить код на две части – «1B» (значение напряжения) и 253 = 25 × 10 3 = 25 000 пФ = 0,025 мкФ.

В кодовой маркировке используются прописные буквы латинского алфавита, указывающие допуски. Один пример мы рассмотрели, анализируя маркировку на рис. 6.

Приводим полный список символов:

  • B = ± 0,1 пФ;
  • C = ± 0,25 пФ;
  • D = ± 0,5 пФ или ± 0,5% (если емкость превышает 10 пФ).
  • F = ± 1 пФ или ± 1% (если емкость превышает 10 пФ).
  • G = ± 2 пФ или ± 2% (для конденсаторов от 10 пФ»).
  • J = ± 5%.
  • K = ± 10%.
  • M = ± 20%.
  • Z = от –20% до + 80%.

Изделия с кодовой маркировкой изображены на рис. 7.

Рис. 7. Пример кодовой маркировки

Если в кодировке отсутствует символ из приведённого выше списка, а стоит другая буква, то она может единицу измерения емкости.

Важным параметром является его рабочее напряжение конденсатора. Но так как в данной статье мы ставим задачу по определению ёмкости, то пропустим описание маркировки напряжений.

Отличить электролитический конденсатор от неполярного можно по наличию символа «+» или «–» на его корпусе.

Цветовая маркировка

Описывать значение каждого цвета не имеет смысла, так как это понятно из следующей таблицы (рис. 8):

Рис. 8. Цветовая маркировка

Запомнить символику кодовой и цветовой маркировки довольно трудно. Если вам не приходится постоянно заниматься подбором конденсаторов, то проще пользоваться справочниками или обратиться к информации, изложенной в данной статье.

Как прозвонить конденсатор мультиметром: инструкция и методы проверки

Что такое конденсатор?

Если взглянуть на статистику, то больше половины рекомендаций по ремонту оборудования связано с неисправностью такого элемента, как конденсатор. Этот прибор составляет большое количество различных электросхем. Принцип функционирования сводится к поэтапному накоплению электроэнергии с различным потенциалом между обкладками и последующим быстрым разрядом.


Существует большое количество конденсаторов, которые отличаются между собой по габаритам и другим параметрам

Выделяют два наиболее известных типа конденсаторов, которые устанавливаются в современных схемах:

  1. Полярные (электролитические). Такое название они получили потому, что при подключении в схему требуется задать определенную полярность: «плюс» к «плюсу», а «минус» к «минусу».
  2. Неполярные. К этой группе относятся любые другие варианты конденсаторов.

Общепринятое обозначение этого элемента на схемах отчетливо показывает его принцип работы.


Расположенные на расстоянии обкладки (пластинки) обладают свойством накопления зарядов

Строение этого электронного компонента простое – он состоит из двух покрытых изоляционным слоем обкладок, которые проводят ток. С целью изоляции используют всевозможные материалы и компоненты, которые не проводят электричество: кислород, пластинки из керамики, специальную целлюлозу, фольгу.

По внешнему виду такие элементы отличаются миниатюрным размером при внушительной емкости, поэтому в процессе работы с ними следует соблюдать технику безопасности.

Принцип функционирования

Работа такого элемента, как конденсатор, основывается на том, что находясь в электрической схеме, он способствует накоплению зарядов. Это необходимо только в тех схемах, где происходит распределение составляющих тока (переменный ток). В то время как в схемах с постоянным током конденсатор не сможет накапливать энергию.

Где применяется?

Устанавливают конденсаторы различных видов в радиосхемы и бытовые приборы. Как правило, эти устройства имеют небольшую емкость, поэтому их неисправность не провоцирует тяжелых последствий.


Конденсаторы имеются в электросхемах различных приборов

Крупногабаритные конденсаторы составляют различные электрические двигатели, где являются элементами пуска. В данном случае они отличаются большим номиналом и такой же емкостью.

Цены на различные виды конденсаторов

Видео – Для чего нужен конденсатор?

Полярные и неполярные разновидности

Среди огромного количества конденсаторов, выделяют два основных типа: полярные (электролитические), неполярные. Как диэлектрик в этих устройствах применяют бумагу, стекло, воздух.

Особенности полярных конденсаторов

Название «полярные» говорит само за себя — они обладают полярностью и являются электролитическими. При включении их в схему, необходимо точное ее соблюдение — строго «+» к «+», а «-» к «-». Если проигнорировать это правило, работать элемент не только не будет, но может и взорваться. Электролит бывает жидким или твердым.

Диэлектриком здесь служит пропитанная электролитом бумага. Емкость элементов колеблется в пределах от 0,1 до 100 тысяч мкФ.


Предназначение полярных конденсаторов — фильтрация и выравнивание сигналов. Вывод «плюс» имеет несколько большую длину. Метка «минус» нанесена на корпус

Когда происходит замыкание пластин, выходит тепло. Под его воздействием электролит испаряется, происходит взрыв.

Современные конденсаторы сверху имеют небольшое вдавливание и крестик. Толщина вдавленного участка меньше, чем остальной поверхности крышки. При взрыве его верхняя часть раскрывается наподобие розочки. По этой причине можно наблюдать на торцах корпуса неисправного элемента вспучивание.

Отличия неполярных конденсаторов

Неполярные пленочные элементы имеют диэлектрик в виде стекла, керамики. По сравнению с конденсаторами электролитическими, у них меньший самозаряд (ток утечки). Объясняется это тем, что у керамики сопротивление выше, чем у бумаги.


Соблюдение полярности при включении неполярного конденсатора в схему необязательно. Часто они бывают просто микроскопическими, и в некоторых проектах применяются в больших количествах

Все конденсаторы делят на детали общего назначения и специального, которые бывают:

  1. Высоковольтными. Используют в высоковольтных приборах. Их выпускают в различных исполнениях. Существуют керамические, пленочные, масляные, вакуумные ВВ конденсаторы. От обычных деталей они значительно отличаются и доступ к ним ограничен.
  2. Пусковыми. Применяют в электродвигателях для обеспечения их надежной работы. Они повышают стартовый момент двигателя, например, насосной станции или компрессора при запуске.
  3. Импульсными. Предназначены для создания сильного скачка напряжения и его транзакции на принимающую панель прибора.
  4. Дозиметрическими. Созданы для функционирования в цепях, где уровень токовых нагрузок небольшой. У них очень малый саморазряд, высокое сопротивление изоляции. Чаще всего это элементы фторопластовые.
  5. Помехоподавляющими. Они смягчают электромагнитный фон в большой частотной вилке. Характеризуются незначительной собственной индуктивностью, что позволяет поднять резонансную частоту и расширить полосу сдерживаемых частот.

В процентном соотношении самое большое число выходов деталей из рабочего строя приходится на случаи, когда подают напряжение, превышающее нормативное. Ошибки в проектировании также могут стать причиной неисправности.

Если диэлектрик меняет свои свойства, при этом тоже возникает сбой в работе конденсатора. Это происходит, когда он вытекает, высыхает, растрескивается. Емкость при этом сразу меняется. Измерить ее можно только посредством измерительных приборов.

Что делать в случае пробоя

Самая распространенная проблема, которая возникает с конденсаторами – это появление пробоя на диэлектрике. Диэлектрики являются своеобразным слоем изоляционного материала с большим сопротивлением, расположенного между одним и вторым проводником, препятствующего протеканию тока между ними.

У исправных элементов допускается небольшое просачивание тока сквозь изоляционное покрытие, именуемое как «ток утечки». Если в диэлектрике возникает пробой, то происходит резкое снижение сопротивления, и он становится обыкновенным проводником. Пробой может возникнуть в результате резкого перепада напряжения в электросети, от которой работает техника. Характерный признак пробоя: вздувшийся корпус устройства, потемневшая поверхность и черные пятна на нем. Перед тем, как проверить конденсаторы мультиметром на факт исправности, стоит осмотреть его визуальным методом, чтобы определить возможные внешние дефекты.

Как прозвонить мультиметром неполярный конденсатор

Чтобы проверить сопротивление диэлектрика с помощью мультиметра, необходимо перевести устройство в режим омметра. Для изготовления диэлектриков в неполярных моделях могут использоваться различные материалы и формы: стекло, керамика, бумага, воздушная прослойка. В результате этого можно достичь крайне высокого сопротивления, которое в исправных устройствах будет отображаться в виде бесконечной величины на мультиметре.  При наличии электрических пробоев, сопротивление будет находится на уровне нескольких десятков Ом.

До того момента, как прозванивать конденсаторы мультиметром, на приборе нужно выбрать специальный режим, который предусматривает максимально возможное измерение уровня сопротивления.

Для этого достаточно подвести к каждому выводу щуп тестера и посмотреть на дисплее прибора следующее:

  1. Если элемент исправен, то на экране отобразится единица, свидетельствующая о том, что сопротивление выше, нежели установленный максимум.
  2. Если же высвечивается определенный показатель, который ниже измерительного максимума, то это говорит про неисправность проверяемых устройств.

При этом, не стоит забывать про технику безопасности, чтобы случайно не взяться за щуп устройства и вывод конденсатора, поскольку меньшее сопротивление электрического тока у тела спровоцирует прохождение тока через него.

Как прозвонить полярный конденсатор тестером

В сравнении с неполярным типом в полярном сопротивление у диэлектриков в разы ниже, в связи с этим максимальное значение сопротивления на мультиметре должно быть выставлено соответствующем диапазоне. У большинства устройств сопротивление составляет около 100 кОм, у более мощных до 1 мОм. Прежде чем, померить конденсатор мультиметром, нужно замкнуть вывод накопителя, таким образом, чтобы он полностью разрядился.

Далее нужно установить соответствующие пределы измерений, и подключить щуп тестера к конденсатору, с учетом соблюдения полярности. У электролитических конденсаторов имеется достаточно большая емкость, в связи с чем в процессе их подключения сразу же начинается зарядка. На протяжении периода пока длится зарядка, значение сопротивления будет увеличиваться в прямой пропорции, что будет указываться на дисплее устройства.

Конденсаторы считаются исправными, в том случае если показатель сопротивления превышает значение в 100 кОм.

Как разрядить конденсатор

Чтобы разрядить низковольтные конденсаторы необходимо лишь закоротить каждый вывод. Однако для высоковольтных и тех, которые имеют большую емкость, к выводу следует подключать 5-10-килоомные резисторы. Резисторы необходимы, чтобы препятствовать возникновению искр при замыкании.

В процессе работы важно помнить про безопасность. Нельзя прикасаться к выводу на конденсаторе, поскольку это может спровоцировать замыкание через ваше тело.

Выявление обрыва конденсаторов

Неисправность в виде обрыва случается достаточно редко. Такое нарушение обусловлено механическими повреждениями на накопителе. После подобной поломки у устройства в полной мере теряется накопительная функция, его емкость становится равна нулю. Целостный элемент после повреждения оказывается в виде двух проводников, которые изолированы друг от друга. Выявить такие повреждения конструкции посредством омметра не представляется возможным.

Своеобразные симптомы обрыва у полярного электролитического конденсатора проявляются в том, что в случае изменения сопротивления никакие изменения на экране прибора не проявляются. Что касается неполярных типов, стоит отметить что он имеет малую емкость и обладает высоким сопротивлением, поэтому проверить его также невозможно. Единственным правильным выходом является возможность измерения емкости.

Проверка на короткое замыкание

Есть три способа сделать это.

Способ №1: определение КЗ в режиме прозвонки

Как прозванивать конденсаторы мультиметром? Нужно включить мультиметр в режим прозвонки или измерения сопротивления и приложить щупы к выводам конденсатора. В зависимости от емкости мультиметр либо сразу же покажет бесконечное сопротивление, либо через какое-то время (от нескольких секунд до десятков секунд). Если же прибор постоянно пищит в режиме прозвонки (или показывает очень низкое сопротивление в режиме измерения сопротивления), то конденсатор можно смело выкидывать.

Способ №2: определение КЗ конденсатора с помощью светодиода и батарейки

Если нет мультиметра (и даже старой советской “цешки” нету), то можно попробовать подключить светодиод или лампочку к батарейке через исследуемый конденсатор. Т.к. исправный конденсатор имеет ооочень большое сопротивление постоянному току, лампочка гореть не должна.

Хотя, если емкость конденсатора достаточно большая, лампочка может вспыхнуть на короткое время (пока конденсатор не зарядится). Если же светодиод горит постоянно, конденсатор 100% неисправен. Если при проверке конденсатора наблюдается эффект постепенного роста сопротивления вплоть до бесконечности (ну или светодиод на какое-то время вспыхивает и гаснет) то конденсатор совершенно точно имеет какую-то емкость.

Следовательно, проверку на обрыв можно не делать.

Способ №3: проверка конденсатора лампочкой на 220В

Подходит для высоковольтных неполярных конденсаторов (например, пусковые конденсаторы из стиральных машин, насосов, различных станков и т.п.). Все что нужно сделать – просто подключить лампу накаливания небольшой мощности (25-40 Вт) через конденсатор.

Проверка на отсутствие внутреннего обрыва

Обрыв – распространенный дефект конденсатора, при котором один из его электродов теряет электрическое соединение с обкладкой и фактически превращается в короткий, ни с чем не соединенный (висящий в воздухе), проводник. Чаще всего обрыв происходит из-за превышения рабочего напряжения конденсатора. Этим грешат не только электролитические конденсаторы, но и специальные помехоподавляющие конденсаторы типа Y (они, кстати говоря, специально так спроектированы, чтобы уходить в отрыв, а не в КЗ).

Конденсатор с внутренним обрывом внешне ничем не отличается от исправного, кроме случаев, когда ножку физически оторвали от корпуса. Разумеется, в случае отрыва одного из выводов от обкладки конденсатора, емкость такого конденсатора становится равной нулю. Поэтому суть проверки на обрыв состоит в том, чтобы уловить хоть малейшие признаки наличия емкости у проверяемого конденсатора.


Таблица характеристик надежности конденсаторов.

Способ №1: исключение обрыва через звуковой сигнал в режиме прозвонки

Включить мультиметр в режим прозвонки, прикоснуться щупами к выводам конденсатора и в этот момент мультиметр должен издать непродолжительный писк. Иногда звук настолько короткий (зависит от емкости конденсатора), что больше похож на щелчок и нужно очень постараться, чтобы его услышать. Небольшой лайфхак: чтобы увеличить продолжительность звукового сигнала при прозвонке совсем маленьких конденсаторов, нужно предварительно зарядить их отрицательным напряжением, приложив щупы мультиметра в обратном порядке.

Тогда при последующей прозвонке мультиметру сначала придется перезарядить конденсатор от какого-то отрицательного напряжения до нуля, и только потом – от нуля до момента отключения пищалки. На все это уйдет значительно больше времени, а значит сигнал будет звучать дольше и его проще будет расслышать. Из своей практике могу сказать, что с помощью уловки, описанной выше, мне удавалось уловить реакцию мультиметра на конденсатор емкостью всего лишь 0.1 мкФ (или 100 нФ)!

Способ №2: увеличение сопротивления постоянному току как признак отсутствия обрыва

Если предыдущий способ не помог и вообще не понятно, как проверить конденсатор тестером, то вот вам более чувствительный метод проверки. Необходимо переключить мультиметр в режим измерения сопротивления. Выбрать максимально доступный предел измерения (20 или лучше 200 МОм). Приложить щупы к выводам конденсатора и наблюдать за показаниями мультиметра.

По мере заряда конденсатора от внутреннего источника мультиметра, его сопротивление будет постоянно расти до тех пор, пока не выйдет за пределы диапазона измерения. Если такой эффект наблюдается, значит обрыва нет. Кстати говоря, может так оказаться, что рост сопротивления остановится на значении от единиц до пары десятков МОм – для конденсаторов с жидким электролитом (кроме танталовых) это абсолютно нормально. Для остальных конденсаторов сопротивление утечки должно быть больше, как минимум, на порядок.

При измерении таких высоких сопротивлений необходимо следить за тем, чтобы не касаться пальцами сразу обоих измерительных щупов. Иначе сопротивление кожи внесет свои коррективы и исказит все результаты. С помощью измерения сопротивления на пределе 200 МОм мне удавалось однозначно определить отсутствие обрыва в конденсаторах емкостью всего 0.001 мкФ (или 1000 пФ).

Способ №3: измерение остаточного напряжения для исключения внутреннего обрыва

Это самый чувствительный способ, позволяющий убедиться в отсутствии обрыва конденсатора даже тогда, когда все предыдущие способы не помогли. Берется мультиметр в режиме прозвонки или в режиме измерения сопротивления (не важно в каком диапазоне) и на пару секунд прикладываем щупы к выводам испытуемого конденсатора. В этот момент конденсатор зарядится от мультиметра до какого-то небольшого напряжения (обычно 2.8 В).

Затем мы быстро переключаем мультиметр в режим измерения постоянного напряжения на самом чувствительном диапазоне и, не мешкая слишком долго, снова прикладываем щупы к конденсатору, чтобы измерить на нем напряжение. Если у кондера есть хоть какая-нибудь вразумительная емкость, то мультиметр успеет показать напряжение, до которого был заряжен конденсатор. Этим способом мне удавалось с помощью обычного цифрового мультиметра M890D отловить емкость вплоть до 470 пФ (0.00047 мкФ)!

Это очень маленькая емкость. Вообще говоря, это наиболее эффективный метод прозвонки конденсаторов. Таким способ можно проверять кондеры любой емкости – от малюсеньких до самых больших, а также любого типа – полярные, неполярные, электролитические, пленочные, керамические, оксидные, воздушные, металло-бумажные и т.д. Правда, если конденсатор имеет совсем маленькую емкость, до 470 пФ, то, увы, проверить его на обрыв без специального прибора, вроде упомянутого ранее LC-метра, никак не получится.

Порядок проверки мультиметром

Проверку конденсаторов лучше выполнять с изъятием их из электрической схемы. Так можно обеспечить более точные показатели.


Простые детали, обладающие переменной или постоянной емкостью очень редко выходят со строя. Здесь можно только механически повредить токопроводящие пластины. Чаще всего поломке подвержены электролитические диэлектрические элементы

Основным свойством всех конденсаторов является пропуск тока исключительно переменного характера. Постоянный ток конденсатор пропускает только в самом начале в течение очень короткого времени. Сопротивление его зависит от емкости.

Как проверить полярный конденсатор?

При проверке элемента мультиметром, нужно соблюсти условие: емкость должна быть больше 0,25 мкФ.

Технология измерения конденсатора для выявления неисправностей мультиметром следующая:

  1. Берут конденсатор за ножки и закорачивают каким-нибудь металлическим предметом, пинцетом, например, или отверткой. Это действие необходимо для того, чтобы разрядить элемент. О том, что это произошло, засвидетельствует появление искры.
  2. Устанавливают переключатель мультиметра на прозвонку или замер показателей сопротивления.
  3. Касаются щупами до выводов конденсатора с учетом полярности — к плюсовой ножке подводят щуп красного цвета, к минусовой — черного. При этом вырабатывается постоянный ток, следовательно, через какой-то временной промежуток сопротивление конденсатора станет минимальным.

Пока щупы находятся на вводах конденсатора, он заряжается, а его сопротивление продолжает расти до достижения максимума.


Проверку лучше делать аналоговым мультиметром. В этом случае можно наблюдать за поведением стрелки, а не за мельканием цифр на цифровом приборе. Это намного удобней.

Если при контакте со щупами мультиметр начнет пищать, а стрелка остановится на нулевой отметке, это указывает на короткое замыкание. Оно и стало причиной неисправности конденсатора. Если сразу же стрелка на циферблате показывает 1, значит, в конденсаторе случился внутренний обрыв.

Такие конденсаторы считаются неисправными и подлежат замене. Если «1» высветится лишь через некоторое время — деталь исправна.

Важно выполнять измерения так, чтобы неправильное поведение не отразилось на качестве измерений. Нельзя в процессе к щупам прикасаться руками. Тело человека обладает очень малым сопротивлением, а соответствующий показатель утечки превышает его во много раз.

Ток пойдет по пути меньшего сопротивления в обход конденсатора. Следовательно, мультиметр покажет результат, к конденсатору не имеющий никакого отношения. Разрядить конденсатор можно и при помощи лампы накаливания. В этом случае процесс будет происходить более плавно.

Такой момент, как разрядка конденсатора, является обязательным, особенно, если элемент высоковольтный. Делают это из соображений безопасности и для того, чтобы не вывести со строя мультиметр. Повредить его может остаточное напряжение на конденсаторе.

Обследование неполярного конденсатора

Конденсаторы неполярные проверить мультиметром еще проще. Сначала на приборе выставляют предел измерения на мегаомы. Далее прикасаются щупами. Если сопротивление будет меньше 2 Мом, то конденсатор, скорей всего, неисправен.


При проверке неполярных конденсаторов полярность не соблюдают. Для наглядности лучше взять два конденсатора, один из которых исправный, а другой неисправный. Сравнив результаты, можно более точно сделать вывод о работоспособности детали

Во время зарядки элемента от мультиметра возможно проверить его исправность, если  емкость начинается от 0,5 мкФ. Если этот параметр меньше, изменения на приборе незаметны. Если все же необходимо проверить элемент меньше 0,5 мкФ, то при помощи мультиметра это возможно сделать, но только на короткое замыкание между обкладками.

Если необходимо обследовать неполярный конденсатор с напряжением свыше 400 В, это можно сделать при условии его зарядки от источника, защищенного от к.з. автоматического выключателя. Последовательно с конденсатором подсоединяют резистор, рассчитанный на сопротивление более 100 Ом. Такое решение ограничит первичный токовый бросок.

Существует и такой метод определения работоспособности конденсатора, как проверка на искру. При этом его заряжают до рабочей величины емкости, затем закорачивают вывода металлической отверткой, имеющей изолированную ручку. О работоспособности судят по силе разряда.


Проверяя элемент, предназначенный для функционирования в сети от 220 В, нельзя забывать о мерах безопасности. Емкость нужно разряжать посредством резистора 10 Ком

Сразу после зарядки и через некоторое время замеряют напряжение на ножках детали. Важно, чтобы заряд сохранялся долго. После нужна разрядка конденсатора посредством резистора, через который он заряжался.

Измерение емкости конденсатора

Емкость — одна из ключевых характеристик конденсатора. Ее необходимо измерять для уверенности, что элемент накапливает, и хорошо удерживает заряд.

Чтобы убедиться в работоспособности элемента, необходимо измерить этот параметр и сопоставить его с тем, который обозначен на корпусе. Перед тем как проверить любой конденсатор на работоспособность, нужно учесть некоторую специфику этой процедуры.

Пытаясь выполнить измерение посредством щупов, можно не получить желаемых результатов. Единственное, что удастся сделать — определить, рабочий этот конденсатор или нет. Для этого выбирают режим прозвона и касаются щупами ножек.

Услышав писк, меняют местами щупы, звук должен повториться. Слышно его при емкости 0,1 мкФ. Чем больше это значение, тем звук дольше.

Если нужны точные результаты, лучший выход в этой ситуации — использование модели, имеющей специальные контактные площадки и возможность регулировки вилки для определения емкости элемента.


Контактные площадки — это специальные разъемы, обозначенные буквосочетанием «-СХ+». Минус и плюс перед буквенными символами — это полярность подключения

Прибор переключают на номинальное значение, указанное на корпусе конденсатора. Вставляют последний в посадочные «гнезда», предварительно разрядив его при помощи металлического предмета.

На экране должна высветиться величина емкости, равная примерно номинальной. Когда этого не происходит, делают вывод о том, что элемент поврежден. Нужно проследить за тем, чтобы в приборе находилась новая батарейка. Это обеспечит более точные показания.

Измерение напряжения мультиметром

Узнать о работоспособности конденсатора можно и путем замера напряжения и сравнения полученного результата с номиналом. Чтобы выполнить проверку, потребуется источник питания. Напряжение у него должно быть несколько меньшим, чем у проверяемого элемента.

Так, если у конденсатора 25 В, то достаточно 9-вольтового источника. Щупы подключают к ножкам, учитывая полярность, и выжидают некоторое время — буквально несколько секунд.


Если на конденсатор имеется гарантия, она обозначает, что за какое-то время его параметры не выйдут за пределы, превышающие 20% от номинальных значений

Бывает, время истекло, а просроченный элемент все еще работоспособный, хотя характеристики у него другие. В этом случае его необходимо постоянно контролировать.

Мультиметр настраивают на режим измерения напряжения и выполняют проверку. Если почти сразу же на дисплее появится значение идентичное номиналу, элемент пригоден к дальнейшему использованию. В противном случае конденсатор придется заменить.

Как проверить работоспособность конденсатора альтернативными методами

Проверку конденсатора можно выполнить, не выпаивая его из рабочей платы. Просто параллельно сомнительному нужно подключить заведомо исправный. Если всё заработает, значит, сомнительный действительно неисправен, его нужно менять. Этим методом проверяется наличие обрыва. Метод можно применять в схемах с невысоким рабочим напряжением.

Вместо светодиода можно взять обычную маломощную электролампу, а в качестве источника использовать розетку 220 В. Если всё в порядке, то лампа будет светиться вполнакала. При пробое она загорится полным светом, а при обрыве вообще не будет гореть.


Схема для проверки конденсатора прозвонкой с лампочкой
Проверка работоспособности конденсатора электролампой

Схемы для проверки светодиодом и электролампой одинаковые, только в случае использования диода источником служит батарейка, а для электролампы – сеть 220 В.

Можно проверить работоспособность конденсатора «на искру». Если при замыкании выводов искра яркая, с хорошим звуком, то элемент можно считать исправным.

Возможные поломки

Поломка радиосхемы или электрического двигателя свидетельствует о неисправности элементов. В то время, как неисправность самого конденсатора часто бывает вызвана следующими причинами:

  1. Замыканием двух обкладок. Происходит это в результате повышенного напряжения на выводах. Получается, что фрагмент цепи, который должен «разорваться» конденсатором, остается замкнутым.
  2. Нарушение целостности внутренней цепочки компонента. Произойти это может при сильном ударе или напряжении, из-за чего случится вибрация. Тем не менее, часто причиной является брак во время производства. Получается, что в радиосхеме отсутствует конденсатор, а имеется только разорванная цепочка.
  3. Утечка тока в недопустимых пределах. Происходит это из-за нарушения целостности изоляционного слоя пластинок. Это приводит к тому, что они не могут сохранять заряд.
  4. Резкое падение номинальной емкости. Причиной такой проблемы тоже является утечка тока или же брак во время производства. В итоге, радиосхема работает с перебоями или не функционирует совсем.

Видео – Проверка неисправностей конденсаторов

Электролитические компоненты еще отличаются другим недостатком – превышением  преобразования сопротивления. Получается, что во время работы в радиосхемах такие конденсаторы не улавливают импульсивные сигналы.

Вывод

Среди многих начинающих мастеров-радиолюбителей бытует мнение, что можно прозвонить конденсатор мультиметром не выпаивая его, но мало кто знает, что такие измерения имеют очень большую погрешность. Единственным наиболее правильным методом проверки элемента является визуальная оценка его состояния, на наличие потемнения, взбухания и других дефектов.

Примечательно, что поломка такого характера зачастую происходит в стиральных машинах, телевизорах, микроволновых печах и других видах бытовой техники. В связи с этим, столкнувшись с подобной проблемой вы самостоятельно сможете прозвонить конденсаторы мультиметром, благодаря описанной выше инструкции.


Источники

  • https://remont-book.com/kak-proverit-kondensator-multimetrom-na-rabotosposobnost/
  • https://sovet-ingenera.com/elektrika/provodka/kak-proverit-kondensator-multimetrom.html
  • https://pro-instrymenti.ru/elektronika/kak-proverit-kondensator-multimetrom/
  • https://ElectroInfo.net/praktika/kak-proverit-kondensator-pri-pomoshhi-multimetra.html
  • https://homius.ru/kak-proverit-kondensator-multimetrom.html

[свернуть]

Как проверить мультиметром конденсатор самому

На данный момент практически каждый человек может столкнуться с поломкой конденсатора. Чтобы определить его исправность вам не потребуется изучать основы электротехники. Достаточно будет просто знать, как проверить мультиметром конденсатор.

Благодаря этому можно восстановить работоспособность микроволновки или холодильника. Перед тем, как выполнить ремонт необходимо определить, какая именно деталь неисправна. Для проверки конденсатора отлично подойдет цифровой мультиметр.

Как измерить емкость

Во время проверки вам необходимо помнить, что не все неисправности будут поддаваться тестированию в режиме омметра. Если мультиметр будет показывать бесконечно большое сопротивление полярного элемента, тогда это будет считаться признаком его неисправности. Проверить потерю номинальной емкости в режиме омметра у вас не получится. Чтобы измерить эту характеристику необходимо использовать цифровой мультиметр. Это устройство поможет проводить тестирование в пределах от 20 нф до 200 мкф.

Благодаря мультиметрам с подобной функцией появится возможность тестировать любые конденсаторы, даже электролитические. Если вы желаете выполнить проверку электролитического конденсатора, тогда необходимо соблюдать полярность.

На фото выше вы видите, что для проверки емкости конденсатора необходимо вставить выводи детали в гнезда Сх, а ручку необходимо установить в положение необходимого диапазона измерений. После этого все параметры емкости будут отображаться на дисплее.

Основные неисправности и причины их возникновения

Неважно, какой тип конденсатора вы используете. Любой конденсатор может выйти из строя в связи со следующими проблемами:

  1. Снижение номинальной емкости, которая будет происходить в процессе высыхания.
  2. Ток утечки будет превышать необходимо значение.
  3. Возрастание активных потерь цепи.
  4. Возникло короткое замыкание обкладок.
  5. Потеря контакта, которая произошла между обкладкой и выводом детали.

Все неисправности, которые мы описали выше чаще всего могут возникнуть в результате нарушения температурного режима или превышения порога допустимого напряжения. Специалисты уверяют, что благодаря понижению рабочей температуры можно значительно продлить срок службы радиоэлемента.

На практике чаще всего неисправность конденсатора может быть вызвана коротким замыканием. Теперь мы решили подробно рассказать о том, как выполнить диагностику конденсатора.

Диагностика неисправностей

Выявить пробой конденсатора также можно благодаря визуальному осмотру. Если произошел пробой, тогда на конденсаторе могут образоваться трещины или вздутие. На фотографии ниже вы можете увидеть признаки пробоя конденсатора.

В большинстве случаев обнаружить пробой во время визуального осмотра не всегда возможно. Если внешний вид детали действительно нормальный, тогда возможно проблема произошла из-за внутреннего короткого замыкания. Перед тем как начать проверять мультиметром неполярный пленочный, керамический, электролитический, smd или sbb конденсатор необходимо будет снять его с платы. Отпаивать конденсатор не всегда обязательно. В некоторых случаях можно проверить сопротивление цепи прямо на плате. Но вам необходимо помнить, что для этого потребуется карта сопротивлений.

Проведение диагностики устройств неполярного типа

Для проверки устройства с помощью мультиметра вам не потребуется замерять емкость конденсатора неполярного типа. В этом случае будет достаточно просто измерить его сопротивление. Оно в обязательном порядке должно быть бесконечно большим. Если произошел пробой, тогда мультиметр покажет незначительную величину. Для тестирования, вам потребуется выполнить следующий алгоритм действий:

  1. Следует выставить максимальный режим измерений в режиме омметра.
  2. Щупами прибора, вам потребуется прикоснуться к выводам радиодетали.
  3. Если на табло вы увидите цифру «1», тогда это укажет на то, что сопротивление будет больше 2 мегаом. Если мультиметр покажет другую величину, тогда в этом случае произошло короткое замыкание.

Важно знать! Во время проведения измерений помните, что нельзя держать щупы прибора за неизолирование места. В этом случае показания могут быть просто недостоверные.

При необходимости вести тестирование вы также можете в режиме проверки диодов. Если в этом случае будет присутствовать пробой, тогда мультиметр издаст характерный сигнал. У нас вы также можете воспользоваться калькулятором для расчета запасаемой энергии в конденсаторе.

Диагностика полярных конденсаторов

Проверять конденсаторы полярного типа необходимо подобным образом. Единственной особенностью считается то, что порог измерения должен быть больше 100 ком. Перед проведением диагностики вам потребуется разрядить радиодеталь. Для этого можете просто соединить выводы. Если вы используете высоковольтный конденсатор, тогда его необходимо «закорачивать» через нагрузку.

Если вы не уберете заряд, тогда можете испортить мультиметр. Кроме этого, следует помнить о том, что, если вы дотронетесь одним из выводов до тела, тогда можете провести разряд через себя. Если во время разрядки вы увидите искры, тогда это будет говорить о том, что устройство исправно.

Для проверки мультиметром конденсатора необходимо подсоединить щупы. В результате этого электрический ток, который поступает с прибора будет накапливаться в тестируемой детали. Если мультиметр будет показывать увеличение сопротивления, тогда это говорит об исправности. Наиболее детально этот процесс можно будет изучить в аналоговых измерительных приборах.

Метод проверки в режиме омметра считается косвенным. Для получения более точно оценки необходимо воспользоваться цифровым мультиметром. Для проведения измерения вы можете использовать мультиметр DT890B+.

Ремонт бытовых приборов

Если конденсаторы выходят из строя, тогда соответственно и бытовая техника постепенно перестает функционировать. Наши советы помогут просто определить исправность конденсатора. После проведения анализа необходимо заменить конденсатор и техника вновь заработает.

Перед тем, как приступать к ремонту бытовых приборов необходимо убедиться в том, что они отключены от электропитания. Теперь вы знаете как проверить конденсатор мультиметром своими руками. Надеемся, что эта информация была полезной и интересной.

Читайте также: как пользоваться мультиметром.

Как проверить конденсатор цифровым мультиметром

Конденсаторы играют важную роль в электрической системе, поскольку они выполняют множество важных задач в схемотехнике.

От предоставления гибких вариантов фильтра до защиты чувствительных микрочипов от шума до ограничения скачков напряжения до накопления энергии, развязки и, что более важно, поддержания постоянного источника питания — конденсаторы в цепи можно использовать по-разному.

Конденсаторы могут быть повреждены из-за старения, нагрева, высокого напряжения, влажности, химического загрязнения и влаги. Поскольку выходящие из строя конденсаторы являются одной из распространенных причин электрических и электронных неисправностей, вам, как владельцу бизнеса, необходимо вовремя выявить неисправный конденсатор, проверив его с помощью цифрового мультиметра.

Но как узнать, исправен конденсатор или неисправен? Как быстро и качественно проверить конденсатор с помощью цифрового мультиметра?

Вы можете определить, неисправен ли конденсатор, выполнив простую визуальную проверку.Одним из явных признаков неисправного конденсатора является вздутый или выпуклый верх или низ. Проверьте корпус конденсатора и печатную плату, чтобы убедиться, что он не изменился в цвете или не поврежден. Еще один показатель неисправности конденсатора — наличие протекающего электролита.

Немедленно замените конденсаторы, если вы заметите какие-либо из этих видимых признаков.

Выполните следующие пять шагов, чтобы проверить конденсаторы цифровым мультиметром:

1. Убедитесь, что конденсатор разряжен: одна из основных функций конденсатора — накапливать энергию; поэтому, если вы не разрядите конденсатор должным образом перед тем, как использовать его для тестирования, он может вызвать ожоги или травмы.Вам понадобится инструмент для разряда конденсатора, например лампочка для высоковольтного конденсатора или металлический предмет, например винт, для разряда меньшего конденсатора.

2. Установите цифровой мультиметр на высокий диапазон сопротивления: Следующим шагом является установка показания измерителя на высокий диапазон сопротивления. Идеальное показание измерителя должно быть выше 1000 Ом = 1 кОм.

3. Подключите выводы измерителя к клеммам конденсатора: Для поляризованного конденсатора подключите красный щуп к положительной клемме, а черный щуп к отрицательной клемме.Неполяризованный конденсатор можно подключить любым способом. Не касайтесь щупов пальцами, поскольку электрическое сопротивление человеческого тела может привести к неточным показаниям.

4. Обратите внимание на цифровое показание сопротивления: цифровой мультиметр начнет показывать с нуля и будет двигаться в сторону бесконечности. Затем он остановится на значении цифрового сопротивления и вернется к открытой линии. Запишите показания и проверьте, приближается ли показание к значению сопротивления, указанному на конденсаторе.

5. Повторите шаги 2–4: Если тест показывает тот же результат при повторении, то конденсатор является исправным. Однако, если разница между фактическим значением и измеренным показанием значительно велика, то конденсатор плохой. Если показание равно нулю, значит, конденсатор мертв. В обоих случаях вам необходимо немедленно заменить конденсатор.

Конденсаторы

выполняют различные функции в электронных и электрических системах и важны для достижения надежности в приложениях.

Как проверить конденсатор с помощью мультиметра Май 2021 г.

Конденсаторы

нашли свое применение практически в любом электронном оборудовании, а также в системах стабилизации энергии, накоплении энергии, импульсной энергии и оружии. Как правило, при поиске и устранении неисправностей или ремонте таких приборов часто возникает вопрос: как проверить и проверить конденсатор ?

Итак, не имеет значения, новичок вы или профессионал, вот полное руководство, которое поможет вам проверить конденсатор с помощью мультиметра.

Типы конденсаторов

Вот несколько типов конденсаторов , которые вы найдете в своих электроприборах:

Электролитический конденсатор

Эти конденсаторы поляризованы и могут использоваться только в цепях постоянного тока. Как правило, алюминиевые электролитические конденсаторы в основном используются в нескольких приложениях, таких как источники питания, развязывающие конденсаторы, материнские платы компьютеров и многие бытовые приборы.

Итак, если вы хотите проверить электролитический конденсатор своего устройства, мультиметр тоже может это сделать.

Керамические дисковые конденсаторы

Эти конденсаторы имеют небольшие размеры и идеально подходят для высоких частот. Вы найдете их почти в каждом электрическом оборудовании. Кроме того, такие конденсаторы не имеют полярности, поэтому их можно подключать на плате в любом направлении. Это делает их более безопасными в использовании и измерении.

Итак, если вы измеряете частоту своего радио или какого-либо аудиоприложения, то на самом деле вы проверяете керамический дисковый конденсатор с помощью мультиметра.

Танталовые конденсаторы

Эти тоже небольшие по размеру, но имеют большую емкость. Кроме того, они обеспечивают долгосрочную стабильность и надежность, поэтому они дороги по сравнению с другими конденсаторами.

Однако они обычно используются в бытовых цепях, медицинской электронике, усилителях звука и для фильтрации источников питания на материнских платах компьютеров и сотовых телефонах. Более того, ваш высококачественный мультиметр может легко измерить емкость этих устройств и поможет вам в их устранении.

Конденсаторы SMD

Конденсаторы для устройств поверхностного монтажа (SMD) имеют наименьший размер по сравнению с вышеуказанными. Они широко используются в современных печатных платах для изготовления электронного оборудования. Кроме того, они намного быстрее и надежнее, когда дело касается построения схем.

Конденсаторы SMD

теперь широко используются во многих устройствах, которые помогают вам в повседневных задачах. А если они не работают должным образом, они могут мешать вашей деятельности.Итак, чтобы проверить состояние вашего конденсатора, вам понадобится мультиметр .

Как можно проверить конденсатор цифровым мультиметром?

Цифровые мультиметры — лучшие устройства для проверки конденсаторов. Итак, возьмите мультиметр и выполните следующие простые шаги:

  1. Сначала отключите конденсатор от устройства и убедитесь, что конденсатор полностью разряжен.
  2. Проверьте значение емкости, записанное на конденсаторе, а затем выберите режим емкости на мультиметре .
  3. Теперь вам нужно соединить измерительные щупы с выводами конденсатора. Итак, для этого подключите положительный красный щуп к аноду конденсатора, а отрицательный черный щуп к катоду конденсатора.
  4. Проверьте показания мультиметра — если измерение, показанное вашим мультиметром, близко к измеренному на самом конденсаторе, то это хороший конденсатор, но если оно равно нулю или значительно меньше этого, то это означает, что конденсатор мертв, и он время изменить это.

Теперь вы, должно быть, задаетесь вопросом: что такое хороший или плохой конденсатор?

Что ж, хороший конденсатор — это тот, который сначала показывает низкое сопротивление, а затем постепенно увеличивается до бесконечности. В то время как короткий конденсатор показывает очень низкое сопротивление, а открытый конденсатор не будет двигаться.

Как проверить конденсатор с помощью цифрового мультиметра без емкостного режима?

Однако, если ваш мультиметр очень простой и не имеет расширенных функций для проверки того, что происходит с конденсаторами, то этот простой мультиметр в режиме сопротивления тоже может справиться с этой задачей.

Должно быть любопытно узнать, как?

Тогда давайте поделимся несколькими простыми шагами, и вы не ошибетесь с ними:

  1. Выньте конденсатор из цепи и убедитесь, что он разряжен.
  2. Выберите режим сопротивления на вашем мультиметре. этот параметр может быть отмечен символом Ω или словом «ом» на вашем мультиметре. Более того, если ваш мультиметр не выполняет автоматический выбор диапазона, вам нужно выбрать диапазон, и мы бы сказали, что установите диапазон сопротивления на 1000 Ом = 1 кОм или выше.
  3. Подключите выводы мультиметра к клеммам конденсатора. Обязательно подключите положительный красный щуп к аноду конденсатора, а отрицательный черный щуп к катоду конденсатора.
  4. Ваш цифровой мультиметр в течение некоторого времени будет показывать показания, обратите внимание на них, прежде чем они исчезнут и вернутся к OL (открытая линия).
  5. Теперь отключите и снова подключите мультиметр к конденсатору. Если вы наблюдаете то же значение, что и первое, то конденсатор в порядке.Однако, если значение сопротивления не изменилось ни в одном из тестов, конденсатор неисправен.

Как можно проверить конденсатор аналоговым мультиметром?

Если у вас есть аналоговый мультиметр , вы все равно можете измерить с его помощью емкость. Просто выполните следующие действия:

  1. Убедитесь, что подозреваемый конденсатор разряжен и отключен от цепи.
  2. Установите мультиметр на значения сопротивления , помеченные символом Ω или словом «ом», как в цифровом.
  3. Подключите выводы мультиметра к клеммам конденсатора, красный провод к положительной клемме, а черный провод к отрицательной клемме.
  4. В случае аналоговых мультиметров показания отображаются с помощью стрелки. Итак, если стрелка показывает низкое значение сопротивления, а затем движется вверх до бесконечности, то конденсатор в порядке. Но, если стрелка показывает низкое сопротивление и не двигается, это означает, что конденсатор закорочен и его необходимо заменить.Хотя, если стрелка не показывает никакого движения или какого-либо значения сопротивления, то это открытый конденсатор.

Последние мысли

Теперь вы, наверное, знаете, как проверить конденсатор, и, если он плохой или мертвый, заменить его. Это убережет вас от больших счетов, которые приходят, когда какой-либо бытовой прибор или какое-либо устройство ремонтируется.

Надеюсь, вы нашли эту статью полезной и с легкостью можете протестировать и проверить конденсаторы. Только не забудьте прочитать руководство пользователя перед тем, как начать.

Измерение емкости с использованием различных измерительных приборов.

Емкость измеряется с помощью мультиметра, измерителя LCR и осциллографа.

Обычно конденсаторы снабжены метриками — емкостью и рабочим напряжением — напечатанными на компоненте или имеют цветовую маркировку. Емкость, указанная на этикетке, обычно имеет разумный допуск. Для большинства приложений широкий диапазон значений будет работать должным образом. Что касается рабочего напряжения, вы никогда не узнаете, пока не станет слишком поздно, и единственный способ проверить его — разрушить.

Есть несколько способов проверить емкость. Если у вас есть мультиметр с режимом проверки конденсаторов, это то, что вам нужно. В противном случае вам придется использовать режим измерения сопротивления, с помощью которого можно получить определенный объем информации, но не точное значение емкости.

Мультиметр Fluke 287 True RMS, очень качественный прибор. Для измерения конденсатора подключите черный щуп к общему порту, а красный щуп — к комбинированному порту диод-конденсатор. Когда прибор включен, нажмите F1, что, как вы можете видеть на дисплее, соответствует меню.Используйте стрелку вверх или вниз, чтобы выделить диод-конденсатор. Затем нажмите F2, что соответствует конденсатору. В конденсаторном режиме прибор автоматически выбирает диапазон, поэтому он сам позаботится о себе.

Теперь мы готовы провести несколько измерений емкости. Вот несколько примеров.

Это умножитель розетки переменного тока, обычно называемый кубом. Можно ожидать, что у него есть измеримая емкость, потому что есть два электрода на конечном расстоянии друг от друга, а воздух между ними составляет слой электролита.Поскольку пластины маленькие и относительно далеко друг от друга, а электролитическая постоянная воздуха не очень высока, емкость будет довольно маленькой. И, как видите, это даже не считывание.

Другой эксперимент — обернуть один из датчиков бумагой и привести его в контакт с другим датчиком, расположив их параллельно друг другу. И здесь есть определенное прочтение.

Электролитические конденсаторы можно проверить мультиметром в режиме Ом. Если измеритель не имеет автоматического выбора диапазона, установите его на мегомный диапазон и подключите щупы к проводам.Если устройство закорочено или разомкнуто, конечно, оно неисправно. В противном случае, в зависимости от полярности подключения, сопротивление в омах будет либо повышаться, либо понижаться определенным образом. Скорость кажется сначала очень стабильной, заметно замедляясь только по мере приближения к конечной точке. Происходит то, что конденсатор заряжается или разряжается из-за внутренней батареи измерителя, которая через делитель напряжения подает что-то вроде трехвольтового смещения, которое используется для измерения сопротивления. Электрики, проверяющие конденсатор двигателя, называют это странное явление «счетом», и это говорит о том, что конденсатор исправен.

Если этих типов измерений недостаточно для вашего приложения, следующим шагом будет измеритель LCR. Процедура использования этого прибора такая же, как и для мультиметра в режиме измерения емкости. Просто закрепите провода и снимите показания.

Измеритель LCR — очень сложный прибор. Во-первых, он может измерять индуктивность в компоненте, в электронном оборудовании или распределенной по сети связи или электросети.

Измеритель LCR работает путем подачи переменного напряжения на рассматриваемое устройство.Затем измеряются напряжение и ток через компонент. Кроме того, в приборах высокого класса измеритель LCR вычисляет фазовый угол между напряжением и током, тем самым отображая емкость или индуктивность с высокой степенью повторяемости.

Осциллограф также можно использовать для измерения емкости. Для этого прямоугольная волна от генератора произвольной функции прикладывается к известному сопротивлению последовательно с неизвестной емкостью.

Используйте курсоры, чтобы найти истекшее время.Курсор Y расположен на уровне 63,2 процента от пикового значения формы сигнала, которое по определению является амплитудой, соответствующей постоянной времени цепи, состоящей из последовательно соединенных резистора и конденсатора. Затем курсор X опускается вниз, чтобы пересечь ось X, и расстояние между этой точкой и пересечением осей X и Y (известное как начало координат) является истекшим временем.

Прошедшее время вместе с известным сопротивлением подставляется в известное уравнение:

C = R / т

Где C — емкость, R — номинал резистора, а t — прошедшее время.Чтобы упростить вычисления, следует выбрать резистор 1 кОм, а для прямоугольной волны в генераторе произвольных функций следует установить размах в один вольт, что для прямоугольной волны равно среднеквадратичному значению.

Существуют и другие методы определения емкости или индуктивности с помощью осциллографа. Например, резонансный контур может быть построен с использованием известных и неизвестных устройств, а пиковая частота может быть измерена.

Спасибо за просмотр. Новые видео добавляются периодически, поэтому проверяйте их почаще.

Тестовые конденсаторы

Конденсатор HVACR можно проверить после выключения питания, отсоединения проводки и сброса оставшегося напряжения перед тестированием. Это можно сделать с помощью мультиметра с настройкой мкФ или МФД.

На рабочем конденсаторе большая часть напряжения будет стекать с конденсатора во время цикла выключения двигателя. Это связано с тем, что рабочий конденсатор прикреплен к двигателю, когда он все еще вращается после отключения напряжения.

В случае пускового конденсатора напряжение все равно будет накапливаться в конденсаторе, если между двумя выводами конденсатора не будет постоянно установлен спускной резистор.Если нет спускного резистора, пусковой конденсатор будет накапливать напряжение, потому что такой компонент, как потенциальное реле, термистор PTC или пусковое реле тока, выбил конденсатор из электрической цепи в течение первой доли секунды времени работы, в то время как в нем все еще есть напряжение.

Рабочий конденсатор обычно имеет круглую или овальную форму, серебристый или серый, но он также может иметь форму прямоугольника и черный. Пусковые конденсаторы обычно круглые и черные.

Конденсаторы можно визуально проверить перед измерением мкФ / мкФ.Конденсатор считается плохим, если он имеет одну из следующих визуальных подсказок:

1. утечка диэлектрической жидкости из конденсатора

2. верхняя крышка конденсатора влажная от масла

3. наблюдается рост грибов верхней крышки конденсатора

4. Корпус конденсатора выглядит расширенным

Конденсатор может быть плохим, даже если он не показывает явных признаков проблемы. Чтобы проверить конденсатор, выключите питание устройства, отметьте, к каким клеммам подключены провода, и отсоедините провода.Завершите разряд конденсатора, используя резистор от 10 000 до 20 000 Ом между клеммами от C к Herm и C к Fan. (Если клеммы заржавели, можно использовать напильник, чтобы обнажить оголенный металл на контактах.) Если резистор недоступен, конденсатор может закоротиться, удерживая отвертку за пластиковую часть и поместив неокрашенный металлический край отверткой от C к Herm и от C к Fan. Если конденсатор не является конденсатором двойного хода с тремя ответвлениями, то это стандартный одинарный конденсатор только с двумя выводами.Просто поместите резистор между двумя выводами, чтобы разрядить напряжение. Если напряжение не разряжено, мультиметр не сможет считывать емкость в мкФ MFD.

Чтобы определить, исправен ли конденсатор, мкФ MFD должен быть в пределах 5–6% от номинальной емкости накопителя uF MFD, указанной на стороне конденсатора. Если конденсатор плохой визуально или измерения выходят за пределы 5–6% номинальной емкости, конденсатор следует заменить. Конденсатор следует заменить новым, имеющим тот же номинал мкФ MFD, что и старый.Номинальное напряжение должно быть таким же или выше старого.

Если номинальные параметры конденсатора изношены по сравнению со старым конденсатором, поищите номинал мкФ MFD на стороне вентилятора конденсатора и компрессора.

Компрессор всегда выше МФД вентилятора. Чтобы измерить герметизирующую часть конденсатора, поместите один щуп мультиметра на клемму C и один щуп на клемму Herm. Подождите десять секунд для получения точных показаний. Чтобы измерить вентиляторную часть конденсатора, поместите один датчик на клемму вентилятора, а другой — на клемму C.Если конденсатор представляет собой всего лишь один конденсатор, то есть только две клеммы. Неважно, какой датчик подключен к какому терминалу. Также при подключении нового конденсатора не важно, какая сторона конденсатора является входом, а какая — выходным напряжением.

Чтобы узнать больше о конденсаторах HVACR, просмотрите эти видеоролики:

https://www.youtube.com/watch?v=ObTpixRWzyQ&list=PLxnHR5_D2ojwj2amJSXUKVkv4KV4Az5_Y

«Процедуры заправки хладагента и процедуры проверки состояния воздуха». .

Полный текст доступен по адресу https://www.acservicetech.com/the-book

Если вы уже купили нашу книгу, обязательно расскажите местным инструкторам по HVACR о нашей книге и о том, что вы о ней думаете. Нам бы очень хотелось, чтобы книга попала в руки следующего поколения технических специалистов по HVACR!

Опубликовано: 18.04.2019

Автор: Крейг Миглиаччио

Об авторе: Крейг является владельцем компании AC Service Tech LLC и автором книги «Заправка хладагента и процедуры обслуживания для кондиционирования воздуха».Крейг — лицензированный преподаватель HVACR, листового металла и обслуживания зданий в штате Нью-Джерси, США. Он также является владельцем подрядного бизнеса HVACR с 15-летним стажем и имеет основную лицензию NJ HVACR. Крейг создает обучающие статьи и видеоролики о HVACR, которые размещаются на https://www.acservicetech.com и https://www.youtube.com/acservicetechchannel

Как использовать мультиметр

Мультиметр — важный инструмент для поиск и устранение неисправностей и измерение общей производительности электрической цепи или машины.Чтобы использовать его правильно, важно изучить каждую из общих настроек функции мультиметра.

Функции и настройки мультиметра

Циферблат мультиметра имеет следующие настройки:

  • T температура
  • Ом
  • -I I- Емкость
  • -I> — Тестирование диодов
  • A мпераже
  • В Напряжение

Некоторые более продвинутые мультиметры могут иметь кнопку, которая позволяет вам получить доступ ко второму меню, которое может включать в себя значения постоянного тока, микроампер, миллиампер и другие измерения.

Все мультиметры имеют положительный и общий щуп. Для обеспечения точности выводы датчиков должны быть подключены к соответствующим входам на мультиметре.

Амперметр клещевой

Токоизмерительные клещи используются для измерения A мпеража; А мпераж — это электрический ток, протекающий по проводнику. Зажимы измерителя будут воспринимать электрические колебания, вызываемые электрическим током, когда они зажаты на одном проводе, давая показание измерителя в A м / с.

RMS и True RMS Meter

Когда вы используете мультиметр для измерения напряжения переменного тока или силы тока, показания измерителя представляют собой «среднеквадратичное значение» или «среднеквадратичное значение». Иногда мы называем среднеквадратичное значение «действующим значением» переменного напряжения или силы тока. Под этим мы подразумеваем, что среднеквадратичное значение переменного напряжения или силы тока имеет тот же эффект, что и напряжение постоянного тока или сила постоянного тока того же значения. В большинстве недорогих измерителей для определения среднеквадратичного значения используется метод усреднения.

При работе с современными цепями предпочтительнее использовать приборы с истинным среднеквадратичным значением

.При измерении напряжения или силы тока сигналов переменного тока, которые не являются чистыми синусоидальными волнами, например, когда вы измеряете выходной сигнал регуляторов двигателя с регулируемой скоростью или регулируемого регулятора нагрева, вам понадобится измеритель «истинного среднеквадратичного значения». Истинный измеритель среднеквадратичного значения работает, возводя в квадрат мгновенное значение входного напряжения или тока, усредняя это значение с течением времени, а затем отображая квадратный корень из этого среднего.

Номинальные значения счетчиков

Мультиметры

— это не универсальный прибор.Например, мультиметр, используемый для устранения неполадок с компьютером или радио, не подходит для работы с системами отопления, вентиляции и кондиционирования воздуха. Мультиметры классифицированы по рейтингу:

.
  • CAT I: изолированные устройства (например, радио, упомянутое выше) или внутренние, изолированные, защищенные электронные устройства
  • CAT II: электроинструменты, приборы, розетки для дома
  • CAT III: промышленное оборудование, внутренние панели электроснабжения, розетки для бытовой техники возле служебных входов, оборудование HVAC
  • CAT IV: трансформаторы, опоры электросети, колодезные насосные линии, блоки HVAC

Счетчики категорий III и IV способны измерять до 1000 вольт и достаточно надежны для этих сильноточных и высоковольтных цепей.

Как измерить напряжение с помощью мультиметра

  • Вставьте выводы двух щупов в соответствующие входы на передней панели мультиметра.
  • Поверните шкалу измерителя на переменное напряжение.
  • Используйте щупы (или зажимы типа «крокодил») для измерения напряжения на нагрузке, убедившись, что щупы входят в контакт с правильными клеммами.

При измерении постоянного напряжения убедитесь, что шкала мультиметра повернута в положение постоянного напряжения (на некоторых мультиметрах это может быть во вторичном меню измерителя).

Кроме того, полярность должна быть правильной; Многие новые мультиметры имеют коррекцию полярности, которая может регулировать правильность показаний, если щупы подключены не к тем клеммам, а в старых — нет. Показания при обратной полярности могут быть неточными.

Как измерить сопротивление и целостность

Сопротивление в омах — это степень, в которой поток электронов в цепи противодействует. Вы можете ожидать, что сопротивление будет встроено в обмотки двигателя или лампочку.

  • Вставьте выводы ваших щупов в соответствующие гнезда на мультиметре.
  • Убедитесь, что ваш измеритель настроен на сопротивление (возможно, во вторичном меню).
  • Подключите щупы к клеммам на нагрузке и включите цепь.
  • Ваш глюкометр должен отображать показания в омах или миллиомах.
  • Обрыв цепи (например, обрыв обмотки в двигателе) покажет 0.L или бесконечное сопротивление.

Измерение силы тока с помощью клещевого амперметра

Перед запуском выводы щупов должны быть в соответствующих гнездах на передней панели мультиметра.На приборе есть отдельный разъем с маркировкой A мпераж. Важно знать, что любая сила тока, превышающая 10 ампер, должна измеряться с помощью клещей, а не щупов.

  • Поверните шкалу мультиметра на A мпераж.
  • Убедитесь, что выводы подключены к нагрузке последовательно, защищая сам мультиметр; Другими словами, подключите один вывод к переключателю, а другой к нагрузке, сделав мультиметр частью самой схемы.
  • Включите выключатель и измерьте силу тока.

При использовании токоизмерительных клещей вы можете использовать множитель, обернутый вокруг зажимов, просто взяв кусок провода и намотав его на 10 витков, а затем разделив показание на 10. Например, если вы используете множитель, и ваш амперметр покажет 1,5 ампера, затем вы можете разделить его на 10 и получить 0,15 ампера. Это полезно при малых, дробных показаниях силы тока.

Как проверить диоды с помощью мультиметра

Диод может выполнять множество функций в схеме, работая как выпрямитель, который переключает переменный ток на постоянный, ограничители сигналов, регуляторы напряжения, переключатели, модуляторы или генераторы.Среди всех этих функций диод имеет одно свойство — он будет проводить электрический ток (силу тока) только в одном направлении.

Правильно установленный диод называется «смещенным в прямом направлении», тогда как диод, установленный в обратном направлении, имеет «обратное смещение» и не проводит электрический ток (сила тока). При проверке диодов особенно важна правильная полярность пробников.

  • Положительный вывод диода является анодом, а отрицательный вывод — катодом.
  • Подключите выводы щупов к диодному разъему (с четкой маркировкой) и общему разъему.
  • Поверните шкалу измерителя на Ом и нажмите кнопку «Селектор» для вторичного меню.
  • Щелкните переключатель второй раз для диода -I> -, и вы увидите на экране V .

Чтобы проверить короткое замыкание диода, поменяйте местами щупы. Показание должно быть нулевым вольт. Нормальное чтение снова укажет на короткое замыкание. Неисправный диод покажет нулевое значение независимо от того, как подключены провода. Это будет означать, что диод не проводит ток ни в одном направлении.

Как измерить емкость конденсатора с помощью мультиметра

Конденсаторы — это пассивное устройство, которое накапливает электрическую энергию в цепи электростатически. Его влияние в цепи называется емкостью; Представьте себе резиновую мембрану в трубе, которая не пропускает воду, но может растягиваться, чтобы за ней в трубе оставалось больше воды.

  • Вставьте выводы щупов в соответствующие гнезда на мультиметре.
  • Поверните шкалу измерителя на символ конденсатора.
  • Разрядите конденсатор с помощью двухваттного резистора с сопротивлением 20 кОм на клеммах или специального приспособления для разряда конденсатора, в противном случае вы рискуете получить удар электрическим током, даже если цепь отключена.
  • Используйте щупы или зажимы вашего измерителя на клеммах конденсатора, и ваши показания должны отображаться в микрофарадах. В случае рабочего конденсатора ваше показание должно составлять плюс / минус 10% от номинала конденсатора (пусковые конденсаторы обычно имеют более высокий номинал).

Имейте в виду, что в некоторых установках HVAC вы можете встретить двойной конденсатор, который используется для экономии места.Двойной конденсатор вмещает два отдельных конденсатора в одном корпусе; у них будет одна и та же общая (заземляющая) клемма, но с двумя отдельными горячими клеммами.

Использование мультиметра для измерения температуры и проверки сигналов пламени в газовой печи

Пламя газовой печи само проводит электричество. Пламя и пилот контролируются IFC, печатной платой в нижней части устройства. Пламя охватывает датчик, и через него проходит сигнал, при этом переходя в постоянный ток; это известно как исправление пламени.Изолированный зеленый провод от горелки затем возвращается к IFC, информируя его о наличии пламени.

Сигнал пламени измеряется в микроамперах (миллионная часть ампера) и измеряется с помощью следующих шагов:

  • Подключите красный провод к разъему с маркировкой для микроампер / миллиампер, а черный провод к общему разъему.
  • Поверните циферблат в положение микроампер, затем перейдите во вторичное меню, чтобы изменить его на микроампер постоянного тока.
  • Отсоедините датчик пламени и подсоедините красный провод к проводу, питающему датчик, с черным проводом на датчике.Это сделает мультиметр частью схемы, включенной последовательно.
  • Зажгите конфорки и посмотрите значение на мультиметре.

Сигнал от одного до восьми микроампер указывает на исправный датчик, но на проблему с IFC. Более слабые показания указывают на проверку целостности заземляющего провода и проверку сопротивления датчика.

Для получения дополнительных сведений о том, как использовать мультиметр, а также о трехмерном моделировании, которое поможет вам разобраться в реальных сценариях, ознакомьтесь с курсом SkillMill ™ «Как пользоваться мультиметром».

Чад Суси

Interplay Learning Электротехнический эксперт

Чад — специалист по электрике Interplay и старший электрик. На протяжении всей своей карьеры Чад продвигался в качестве специалиста-электрика, с самого начала занимаясь ремонтом / электромонтажом домов на предприятиях обеспечения качества / вводом в эксплуатацию, попутно оттачивая свои навыки во всех аспектах торговли электроэнергией. Он перешел в свою карьеру через жилые, коммерческие и промышленные объекты, а в 2012 году расширил свою миссию и стал обучаться на протяжении всей жизни, став инструктором по электрике.Он продолжил свой путь в качестве разработчика онлайн-курсов и твердо привержен принципам электробезопасности и здравым теориям обучения взрослых.

Как проверить конденсатор с помощью мультиметра [Учебное пособие]

Мультиметр — это электрическое измерительное устройство с различными функциями. Его можно использовать для проверки напряжения, силы тока, а также производных от этих значений — сопротивления и емкости. Вы также можете использовать мультиметр для проверки работы различных электронных компонентов.В этой статье мы узнаем, как проверить конденсатор и его емкость с помощью мультиметра.

Конденсатор и емкость

Конденсаторы

используются практически во всех микросхемах и являются частой причиной их неработоспособности. Так что в случае выхода из строя устройства необходимо сначала проверить этот элемент.

Типы конденсаторов по типу диэлектрика:

  • конденсаторы вакуумные;
  • с газообразным диэлектриком;
  • с неорганическим диэлектриком;
  • диэлектрик органический;
  • Конденсаторы электролитические
  • ;
  • твердотельный.

Неисправности главного конденсатора:

  • Электрический пробой . Обычно это вызвано превышением допустимого напряжения.
  • Обрыв . Это связано с механическими повреждениями, тряской, вибрацией. Причина может заключаться в плохой конструкции и условиях эксплуатации.
  • Чрезмерная утечка . Сопротивление между крышками меняется, что приводит к низкой емкости конденсатора, который не может удерживать свой заряд.

Все эти причины приводят к тому, что конденсатор становится непригодным для дальнейшего использования.

Перед испытанием конденсатора

Поскольку конденсаторы накапливают электрический заряд, перед проверкой их необходимо разрядить. Сделать это можно отверткой — нужно дотронуться до выводов жало, чтобы образовалась искра. Затем вы можете вызвать компонент. Проверить конденсатор можно мультиметром или лампочками и проводами. Первый способ более надежен и дает более точную информацию об электронном элементе.

Перед началом проверки следует осмотреть конденсатор.Если на нем есть трещины, нарушенная изоляция, протечки или вздутие, внутренний электролит поврежден, и устройство сломано. Его следует заменить исправным устройством. Если внешних повреждений нет, понадобится мультиметр.

Перед проведением измерений необходимо определить, полярный или неполярный конденсатор. Необходимо соблюдать полярность первого конденсатора; в противном случае устройство выйдет из строя. Во втором случае нет необходимости определять положительный и отрицательный выходы, но измерения будут производиться по другой технологии.

Полярность можно определить по метке на корпусе. На детали должна быть черная полоса с нулевыми отметками. На одной стороне этой ступни имеется отрицательный контакт, а на противоположной ступне — положительный.

Измерение емкости в режиме сопротивления

Переключатель мультиметра должен быть установлен в режим сопротивления (омметр). Вы можете увидеть, есть ли в конденсаторе обрыв цепи или короткое замыкание в этом режиме. Для проверки неполярного конденсатора диапазон измерения установлен на 2 МОм .Для полярного изделия установлено сопротивление 200 Ом, т.к. на уровне 2 МОм, и зарядка будет быстрой.

Сам конденсатор необходимо вынуть из схемы и поставить на стол. Щупами мультиметра прикоснуться к клеммам конденсатора, соблюдая полярность. В неполярных запчастях соблюдать все «за» и «против» нет необходимости.

Когда щупы соприкасаются с ножками, на дисплее отображается значение, которое увеличивается. Это связано с тем, что мультитестер будет заряжать компонент.Через некоторое время значение на экране достигнет единицы, что означает, что устройство исправно. Если на тесте сразу загорается 1, значит внутри прибора поломка, и его нужно заменить. Нулевое значение на дисплее указывает на то, что внутри конденсатора произошло короткое замыкание.

Если тестируется неполярный конденсатор, значение должно быть выше 2 . В противном случае агрегат не работает.

Описанный выше алгоритм подходит для цифрового тестера.При использовании аналогового устройства проверка еще проще — нужно только наблюдать за ходом стрелки. Датчики подключаются аналогично, режим — проверка сопротивления. Плавное движение стрелки указывает на то, что конденсатор исправен. Минимальное и максимальное значение при подключении говорят о поломке электронной части.

Важно отметить, что режим проверки омметра производится для деталей емкостью более 0,25 мкФ . Для меньших номиналов используются специальные LC-метры или тестеры с высоким разрешением.

Измерение емкости конденсатора

Конденсатор — главная особенность конденсатора. Он указан на внешней оболочке устройства, и при наличии тестера вы можете измерить реальное значение и сравнить его с номинальным значением.

Переключатель мультиметра преобразуется в диапазон измерения. Значение устанавливается равным или близким к номинальному значению, указанному на компоненте. Сам конденсатор устанавливается в специальные отверстия -CX + (если они есть на мультиметре) или с помощью щупов.Щупы подключаются так же, как при измерении в режиме сопротивления.

При подключении щупов значение сопротивления должно отображаться на мониторе. Если она близка к номинальной характеристике, конденсатор исправен. Когда разница между полученным и номинальным значением больше 20% , прибор прокалывается и его необходимо заменить.

Измерение емкости сквозного напряжения

Вольтметр также можно использовать для проверки работоспособности детали.Значение на мониторе сравнивается с номиналом, и на основании этого делается вывод об исправности устройства. Для проверки нужен блок питания с более низким напряжением, чем конденсатор.

Соблюдая полярность, необходимо подключить щупы к выводам на несколько секунд для зарядки. Затем мультиметр переводят в режим вольтметра, и проверяют работоспособность. На дисплее тестера должно появиться значение, аналогичное номинальному. В противном случае устройство сломается.

Важный!

Напряжение проверяется в самом начале измерения. Это связано с тем, что конденсатор при подключении начинает терять заряд.

Другие способы тестирования

Проверить конденсатор можно, не отпаивая его от микросхемы. Для этого нужно подключить параллельно конденсатор такой же емкости. Если устройство будет работать, проблема в первом элементе, и его следует поменять. Этот метод можно использовать только в цепях низкого напряжения!

Иногда проверяют конденсатор на искры.Вам нужно зарядить его и использовать металлический инструмент с изолированной ручкой, чтобы закрыть провода. Должна появиться яркая искра с характерным звуком. При малом разряде можно сделать вывод, что деталь пора менять. Это измерение необходимо производить в резиновых перчатках. Этот метод используется для проверки конденсаторов большой емкости, в том числе пусковых конденсаторов, которые рассчитаны на напряжения выше 200 вольт .

Нежелательно использовать методы испытаний без специальных приборов. Они небезопасны — малейшая неосторожность может вызвать поражение электрическим током.Также будет нарушена объективность картинки — точных значений получить не удастся.

Трудности тестирования

Основная сложность при определении работоспособности конденсатора мультиметра — его отпайка от цепи. Если компонент оставить на плате, на измерение будут влиять другие элементы схемы. Они исказят показания.

На пробниках есть специальные тестеры минимального напряжения, позволяющие проверять конденсатор прямо на плате.Низкое напряжение сводит к минимуму риск повреждения других элементов схемы.

Как проверить емкость — Полезное видео на Youtube

Отличное видео с описанием процесса проверки конденсаторов.

Planet Analog — Измерение емкости: понимание и использование правильной техники для значительного улучшения результатов

Конденсатор, измеренный портативным мультиметром за 100 долларов, может дать существенно другой результат, чем тот же конденсатор, измеренный с помощью измерителя LCR за 10 000 долларов.Тот же самый конденсатор, измеренный двумя разными портативными мультиметрами, также может давать результаты, которые различаются на несколько процентов в зависимости от диэлектрического материала конденсатора и используемого алгоритма измерения. Чтобы знать факторы, которые способствуют этому изменению, и, что еще более важно, знать, когда следует перейти на измеритель LCR за 10 000 долларов, важно понимать принципы, лежащие в основе алгоритмов измерения, используемых для измерения емкости.

Анализ измерения емкости лучше всего понять, исследуя способ измерения резисторов.Когда цифровой мультиметр измеряет сопротивление, он использует источник постоянного тока некоторого известного значения, чтобы генерировать напряжение на тестируемом резисторе. Это приводит к постоянному напряжению, которое легко преобразуется в значение сопротивления АЦП и встроенным программным обеспечением обработки сигналов. Ошибки, присущие измерению сопротивления, легко понять, и их можно избежать. Термическая ЭДС, сопротивление выводов, токи утечки и самонагрев являются одними из наиболее значительных источников ошибок, и ими можно управлять с помощью надлежащих методов измерения и встроенных функций мультиметра, таких как компенсация смещения.

Даже в приборах по умеренной цене измерения сопротивления с точностью лучше 30 ppm и могут быть выполнены без особых проблем. Совершенно другое дело — произвести достаточно точное измерение пассивного компонента другого типа, такого как конденсатор. В этой статье описываются различные методы измерения емкости и сравнивается эффективность их точности.

Высокоточные измерения емкости
Очевидным распространением измерения сопротивления на конденсаторы является стимуляция тестируемого конденсатора источником переменного тока.В высокопроизводительных измерителях LCR для этого используется один метод — определение емкости конденсатора. Сигнал переменного тока известной частоты подается через внутренний резистор малого номинала и тестируемый конденсатор в последовательной конфигурации. Переменный ток, протекающий в конденсатор, также должен протекать через резистор, создавая переменное напряжение на резисторе.

Величину и фазу этого напряжения можно измерить и сравнить с исходным сигналом переменного тока, а также вычислить емкость.Такие методы, как это измерение в частотной области, могут быть очень точными и могут дать информацию о дополнительных параметрах, таких как коэффициент рассеяния; однако инструменты, реализующие эти методы, являются специализированными, они измеряют только пассивные сети и стоят более 3500 долларов.

Инструменты более общего назначения имеют ограничения по стоимости, которые не позволяют им включать в себя источник сигнала переменного тока; однако они по-прежнему реализуют емкостную функцию. Они делают это с помощью того же источника постоянного тока, который используется для измерения сопротивления.

Недорогие измерения емкости
Как обсуждалось ранее, цифровые мультиметры содержат точный внутренний источник тока, который используется для создания постоянного напряжения на резисторе. Тот же самый точный источник тока можно использовать для создания напряжения на конденсаторе. Идеальный конденсатор, заряжаемый идеальным источником постоянного тока, будет создавать линейное изменение, характеризуемое уравнением I = C dV / dt .

Следовательно, значение емкости C можно вычислить во временной области, применив источник постоянного тока и наблюдая за скоростью изменения напряжения на конденсаторе.Многие недорогие настольные и портативные мультиметры проводят измерения емкости в предположении, что источник тока и конденсатор идеальны.

Однако идеальных конденсаторов не бывает. Конденсаторы демонстрируют неидеальные факторы, такие как диэлектрическое поглощение, утечка, коэффициент рассеяния и эквивалентное последовательное сопротивление (ESR). Эти члены могут внести существенную ошибку в методику измерения во временной области, описанную выше. Поэтому большинство недорогих приборов для измерения емкости имеют сноску, в которой говорится, что их «спецификации применимы только к пленочным конденсаторам».”

Пленочные конденсаторы

, такие как конденсаторы с полиэфирным и полипропиленовым диэлектриками, имеют достаточно низкие параметры потерь, поэтому этот метод измерения во временной области может давать результаты с точностью до 1%. Однако ошибки, вносимые непленочными диэлектриками, не обязательно требуют использования высокопроизводительного измерителя LCR. В настольных мультиметрах недавно были внедрены и другие методы, которые могут уменьшить погрешность, вызванную непленочными диэлектриками, без затрат на измеритель LCR.

Лучшие недорогие измерения емкости
Потери конденсатора, заряжаемого источником постоянного тока, лучше всего моделировать как параллельное сопротивление.Эта модель изображена на рис. 1 :

.

Рис. 1. Модель измерения емкости во времени.

Источник постоянного тока, подключенный к параллельной RC-цепи, дает кривую напряжения, которая изменяется со временем и представлена ​​как:



при условии, что на конденсаторе нет начального напряжения. В этом уравнении — постоянная времени, равная R , умноженная на C , а I — значение источника постоянного тока.И эта кривая, и идеальная прямолинейная кривая показаны на Рис. 2 .


(Щелкните, чтобы увеличить изображение)
Рисунок 2: Напряжение конденсатора, с потерями и без них.

Обратите внимание, что параллельное сопротивление имеет тенденцию сгибать прямую вниз экспоненциально. Площадь между прямой линией и кривой обусловлена ​​потерями, которые создают ошибку в измерениях. Поскольку это трансцендентное уравнение, его довольно сложно решить без использования итерационной техники.Производная этого уравнения,



могут быть решены в закрытом виде. Если постоянная времени RC-цепочки известна, значение емкости C можно найти, подставив ее в это уравнение способом, аналогичным алгоритму измерения емкости во временной области без исключения потерь. Таким образом, существенное улучшение измерений заключается в нахождении величины постоянной времени RC-цепочки .

Чтобы найти постоянную времени RC, тестируемый конденсатор сначала разряжается путем параллельного подключения резистора или изменения полярности источника тока.Включается постоянный ток, и высокоскоростные показания снимаются аналого-цифровым преобразователем (АЦП) мультиметра. Для этих показаний выполняется экспоненциальная аппроксимация, и, используя как сами показания, так и наклон линии между соседними показаниями, вычисляется постоянная времени RC. К этому алгоритму предъявляются строгие требования, которые делают его непригодным для любого цифрового мультиметра:

  • Первое и самое важное, АЦП в цифровом мультиметре должен производить выборку достаточно быстро, чтобы захватывать несколько точек на кривой заряда тестируемого конденсатора и не вносить значительных шумов в измерения.
  • Во-вторых, источник постоянного тока мультиметра не должен демонстрировать неидеальное поведение, например, тепловой хвост при включении.
  • В-третьих, внутренняя емкость мультиметра и емкость выводов пробников должны быть откалиброваны, что может быть так же просто, как использование функции «Math Null» для вычитания текущего показания из всех последующих показаний.
  • Наконец, внутренняя емкость мультиметра должна иметь относительно высокий коэффициент качества, чтобы избежать ошибок из-за собственной постоянной времени RC.

Если все эти требования соблюдены, пользователи могут значительно повысить точность считывания. (Измерение емкости в Agilent 34410A основано на методе, очень похожем на метод, описанный выше.)

Для описанного выше измерения требуется источник тока только одной полярности, так как внутреннее сопротивление может использоваться для разряда проверяемого конденсатора. С немного большей стоимостью в текущем источнике может быть реализован другой метод отклонения потерь.Если доступен прецизионный источник тока, который может одновременно потреблять и истощать ток, то прямоугольный сигнал переменного тока может быть создан путем изменения его полярности с заданным интервалом. Этот источник переменного тока будет создавать треугольную форму волны напряжения, когда он подключен к конденсатору. Если конденсатор демонстрирует потери, наклон треугольной волны будет содержать экспоненциальные члены, показанные на рисунке 2.

Эти экспоненциальные члены изменяют величину гармоник в частотном спектре формы волны напряжения.Изучая гармоники, можно удалить член с потерями. Мультиметр National Instruments NI 4072 использует аналогичный метод, в котором быстрое преобразование Фурье (БПФ) используется для определения частотного спектра, а первая и третья гармоники сравниваются для удаления термов.

Ошибки при измерении емкости по времени
Есть несколько существенных проблем с любой реализацией измерения емкости по времени. Во-первых, значение емкости может существенно изменяться с частотой.Измерители LCR, такие как Agilent 4263B, могут измерять емкость на нескольких частотах с помощью внутреннего переменного источника переменного тока. Для алюминиевого электролитического конденсатора емкость может варьироваться до нескольких процентов в диапазоне частот от 100 Гц до 1 кГц.

Менее затратный алгоритм обычно работает на одной частоте и поэтому не дает дополнительной информации о производительности на более высоких частотах. Хотя измерения в мультиметрах не могут быть неправильными, они будут отличаться от тех, которые делает измеритель LCR, просто из-за разницы в частоте измерения.

Еще одна характеристика неидеального поведения конденсаторов, которая может привести к неверной интерпретации результатов при более дешевом измерении, — это эквивалентное последовательное сопротивление конденсатора или ESR. Предположим на момент, что положительный ток используется для зарядки тестируемого конденсатора во время цикла измерения. Если резистор, подключенный между конденсатором и землей, используется для разряда конденсатора, чтобы подготовить его к следующему циклу измерения, то минимально возможное напряжение на конденсаторе будет 0 В.

Поскольку постоянный ток создает на конденсаторе линейное изменение напряжения, среднее напряжение за несколько циклов измерения будет больше 0 В. Этот термин смещения постоянного тока не создает значительных ошибок для пленочных и керамических конденсаторов; однако для алюминиево-электролитических конденсаторов это может иметь большое влияние на результат. Это связано с тем, что ESR изменяется нелинейно при подаче постоянного тока.

Самый простой способ решить эту проблему — сохранить смещение постоянного тока на конденсаторе как можно меньшим, что достигается за счет использования источника переменного тока, разрядки ниже 0 В или уменьшения амплитуды колебаний напряжения на конденсаторе. .Любой из этих методов может дать точные результаты. В некоторых случаях значение конденсатора с приложенным смещением постоянного тока может быть желательным, если конденсатор должен использоваться в цепи, которая будет помещать смещение постоянного тока на него при нормальной работе (например, при развязке источника питания). Измерители, которые используют источник переменного тока, такие как измерители LCR, обычно предоставляют опцию смещения постоянного тока для измерения значения в этих условиях.

Этот анализ показал, что при измерении емкости конденсатора необходимо учитывать множество свойств.Для общего лабораторного поиска неисправностей или для измерения высококачественных пленочных конденсаторов более чем достаточно простой и недорогой методики, основанной на времени, встроенной в универсальные мультиметры. Для измерений, требующих чрезвычайно высокой точности и дополнительных параметров, лучше всего подойдет высокопроизводительный измеритель LCR. Как показано выше, между этими двумя крайностями существует некоторая золотая середина, которая сокращает сроки потерь с использованием относительно недорогих методов. Эти методы не позволят вычислить такие свойства, как коэффициент рассеяния, но улучшат точность измерений на конденсаторах более низкого качества.

Об авторах
Билл Коли окончил Технологический институт Джорджии (Технологический институт Джорджии) в 1999 году со степенью BEE и MSEE, специализируясь на проектировании аналоговых схем. Он потратил шесть лет на разработку схем формирования сигналов и аналого-цифровых преобразователей для высокопроизводительных цифровых мультиметров, включая Agilent 34410A и 34411A. Он также был разработчиком алгоритма измерения емкости в этих измерителях. Билл упоминается в нескольких патентах, связанных с его опытом в разработке цифровых мультиметров.( Билл в настоящее время работает в Linear Technology Corp. (www.linear.com) в качестве разработчика аналоговых ИС .)

Conrad Proft имеет степени BSEE и MSCS. Конрад проработал в Hewlett-Packard / Agilent (www.agilent.com) в течение 27 лет и примерно половину этого времени провел между исследованиями и разработками и маркетингом, специализируясь на контрольно-измерительных приборах общего назначения для стендовых и системных измерений. Карьера Конрада включает в себя обширный опыт работы с множеством успешных проектов, от разработки приложений и написания технических статей по маркетингу до руководителя проекта по исследованиям и разработкам в области генераторов функций и цифровых мультиметров.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *