КАК ПОЛУЧАЮТ ЭЛЕКТРИЧЕСТВО.
- Авторы
- Руководители
- Файлы работы
- Наградные документы
Верходанов И.А. 1
1
Литвиновская Н.Ю. 1
1
Автор работы награжден дипломом победителя III степени
Диплом школьникаСвидетельство руководителя
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF
Электричество имеет большое значение в нашей жизни. Почти все, что нас окружает, работает на электричестве. Например, бытовая техника у нас дома: телевизоры, стиральные машины, холодильники, компьютеры, лампочки для освещения. На улице за счет электрического тока ездят троллейбусы, трамваи, электрички, и, даже машины, используют электричество для управления и освещения дороги фарами. На заводах на электричестве работают станки, печи и другие сложные механизмы.
Так откуда же берется электричество, которое поступает к нам в дом по проводам?
В своей работе я изучу, как вырабатывается электричество на электростанциях: ТЭЦ, АЭС, гидроэлектростанция, ветроэлектростанция. Как по электрическим проводам, закрепленным на специальных опорах, электричество направляется в город, затем в каждый дом, в каждую квартиру.
В экспериментальной части докажу, как «маленький» генератор вырабатывает ток, которого будет достаточно для освещения домика.
Тема «Как получают электричество» мне особенно интересна, потому что, чтобы изготовить макеты, надо паять настоящие схемы.
Цель исследования: изучение возникновения электричества.
Задачи исследования:
Изучить, как появляется электричество за счет преобразования энергии воды, ветра, солнца и газа.
Понять, как устроен генератор, который вырабатывает электричество.
Рассмотреть, как устроена батарейка (переносной источник энергии).
Провести эксперименты: подключить игрушечный домик к генератору, который будет вырабатывать электрический ток, чтобы включить в домике освещение. Затем, таким же образом включить вентилятор.
Изготовить самодельную батарейку из соленой воды и металлических пластинок.
Первое, что необходимо сделать: проанализировать учебную литературу. Из нее я узнал следующее: Электричество вырабатывается на электростанциях, затем по электрическим проводам, закрепленным на специальных опорах, направляется в город, затем в каждый дом, в каждую квартиру.
Электростанции
Электричество вырабатывается на электростанциях за счет преобразования энергии воды, ветра, солнца и газа в электрическую энергию (рис.1).
а б
в г
Рис.1 Электростанции: а – теплоэлектроцентраль (ТЭЦ), б — атомная электростанция, в – гидроэлектростанция, г – ветроэлектростанции.
Теплоэлектроцентраль (рис.1а), одна из самых распространенных станций, дает городу не только электричество, но и тепло для отопления домов зимой. Таких станций построено очень много. Как она работает? В большой печке сжигают газ, тот самый газ, на котором мы готовим еду в кухне, см. схему на рис.2. Газ нагревает котел с водой. Вода, нагреваясь, превращается в пар. Пар вращает турбину, а она в свою очередь вращает генератор, который и вырабатывает электрический ток. Электричество по линиям электропередачи направляется к нам в город. Дым от сгоревшего газа выходит в трубу, а пар охлаждаясь в градирне, превращаясь обратно в воду, возвращается в котел. Зимой эта горячая вода направляется в наши дома, для отопления квартир. Теперь мы видим, что механическая энергия вращения, превращается в электрическую энергию, в генераторе . [1, 4]
Рис.2. Схема работы ТЭЦ
Атомная электростанция (АЭС) сложнее предыдущей электростанции, см. рис.1б. Их меньше у нас в стране. Все дело в том, что в них не сжигают газ, а используют тепло от ядерной реакции (рис. 3). Получение такой ядерной энергии очень сложный процесс. На АЭС внутри реактора циркулирует обычная вода, очищенная от всех примесей. Реактор запускается, когда из его активной зоны извлекаются стержни, поглощающие нейтроны. Во время цепной реакции высвобождается большая тепловая энергия. Вода, циркулируя через активную зону, омывая топливные элементы, нагревается до 320 0С. Проходя внутри теплообменных трубок парогенератора, вода первого контура отдает тепло воде второго контура, не соприкасаясь с ней, что исключает попадание радиоактивных веществ за пределы реакторного зала. В остальном схема точно такая же, как и предыдущая. Вода второго контура превращается в пар. Пар с бешеной скоростью вращает турбину, а турбина приводит в движение электрогенератор, который вырабатывает электрический ток. Электричество по линиям электропередачи направляется к нам в город [1, 4].
Рис. 3 Схема работы АЭС
Гидроэлектростанция есть у нас в Перми (рис.1-в). В таких электростанциях используют энергию падающей воды. Для этого — строят поперек реки плотину. С ее высоты вода падает вниз и вращает турбину, а турбина вращает генератор, который вырабатывает электричество. Схема работы гидроэлектростанции показана на рис.4 [1, 4].
Рис. 4 Схема работы гидроэлектростанции
Ветроэлектростанции используют энергию ветра (рис.1-г). Такие электростанции не очень мощные. Ветер вращает лопасти вентилятора, похожие на лопасти самолета, только очень большие. А они уже вращают генератор (рис.5) [4].
Рис. 5 Схема работы ветроэлектростанции
Есть и другие электростанции, в которых ничего не вращается, и в них нет генератора. Это солнечные электростанции [4]. Энергия солнечного света преобразуется в электрическую в солнечных панелях, изготовленных из специального материала, который под воздействием солнечной энергии начинает вырабатывать электрический ток (рис.6).
Рис. 6 Схема работы солнечной электростанции
Устройство генератора
Так как же устроен генератор, который вырабатывает электричество?
Все мы знаем, что такое магнит, любой с ним сталкивался и играл. Магнит притягивает к себе металлические предметы. Магниты бывают разные: большие и маленькие, сильные и слабые [1].
Если в магнитное поле поместить рамку, сделанную из электрического провода, закрепить ее так, чтобы можно было вращать за ручку, то получится простейший генератор [1, 3]. Если вращать рамку, в ней возникнет электрический ток. И, если ток будет достаточно мощный, то им можно будет зажечь электрическую лампочку (рис.7). В настоящих генераторах используют вместо рамки очень длинный провод, намотанный на специальные катушки и за счет этого, генераторы получаются очень мощные.
Но что будет, если к генератору подвести электрический ток?
Если к генератору подвести электрический ток, то рамка начнет сама вращаться, то есть произойдет обратный эффект (рис. 8). Такие устройства называются электродвигатели [1, 3]. Они так же бываю большими и маленькими, мощными и слабыми.
Рис.8 Схема устройства двигателя
Что делать, если источник энергии нужен переносной, а не связанный с розеткой проводами? Для этого существуют, всем нам знакомые, батарейки.
Батарейки
Батарейка
— это, емкость в которой происходит химическая реакция. Самая простая батарейка состоит из цинкового стаканчика, графитового стержня и электролита между ними (рис.9).Рис.9 Устройство батарейки
В процессе использования батарейки, химическая реакция разрушает ее изнутри и батарейка «садится», то есть разряжается. Чем больше мы нагружаем батарейку, тем сильнее химическая реакция и тем быстрее она разрядится [1, 2].
Самую простую батарейку можно изготовить дома [2]. Для этого необходимо взять два разных «металла»: гвоздик и монетка — это будут электроды (рис.10), а в качестве электролита можно использовать лимон.
Рис.10 Самодельная батарейка
Еще самодельную батарейку можно изготовить из соленой воды и металлических пластинок (рис.11). Ее устройство очень простое. Имеется три баночки, наполненные простой соленой водой. В каждую из них опускаем по два электрода, изготовленных из металлических пластинок. Одна пластинка покрыта медью, а вторая — цинком.
Рис. 11 Самодельная батарейка
Вот такую батарейку я и продемонстрирую в экспериментальной части моей работы. А также проведу другие эксперименты: подключу игрушечный домик к генератору, который будет вырабатывать электрический ток, чтобы включить в домике освещение. И докажу следующее: механическая энергия вращения преобразуется в электрическую энергию, в генераторе.
Экспериментальная часть:
В первом эксперименте я подключу игрушечный домик к маленькой электростанции (рис.12). Буду вращать ручку, и маленький генератор будет вырабатывать ток, которого хватит, чтобы в домике заработало освещение.
Материалы для изготовления макета: картон, деревянные фанерки размером 90х170 мм, 70х165 мм, розетка, механизм от фонарика, провода, вилка, лампочки (5 шт.), клей.
Рис. 12 Первый эксперимент
Во втором эксперименте я подключу к электростанции вентилятор (рис. 13). Мы увидим, как механическая энергии вращения в генераторе, преобразуется в электрическую, бежит по проводам к вентилятору, и в его двигателе, преобразуется обратно в энергию вращения.
Материалы для изготовления макета: картон, деревянные фанерки размером 95х210 мм, 70х165 мм, розетка, провода, вилка, клей, вентилятор, электродвигатель.
Рис.13 Второй эксперимент
В третьем эксперименте я подключу к батарейкам, по-очереди, все тот же домик и вентилятор (рис.14-а,-б).
Материалы для изготовления макета: картон, деревянные фанерки размером 95х210 мм, 70х165 мм, 90х170 мм, розетка, провода, вилка, клей, вентилятор, электродвигатель, лампочки (5 шт.), батарейки.
а б
Рис.14 Третий эксперимент
В следующем – четвертом эксперименте я продемонстрирую самодельную батарейку (рис. 15-а). Берем баночки заполненные соленой водой. В каждую из них опускаем по два электрода, изготовленные из металлических пластинок. Одна пластинка покрыта медью, а вторая цинком.
Материалы для изготовления макета: картон Ø 20 мм, часовой механизм, лампочка (1 шт.), провода, три баночки с соленой водой, деревянная фанерка 75х330 мм для основания, медные и цинковые пластинки длиной 75 мм, клей.
а б
Рис.15 Четвертый эксперимент
Энергии этих трех батареек хватило, чтобы загорелась лампочка и пошли часы (рис.15-б).
Выводы
В своей работе я рассмотрел, как работают: ТЭЦ, АЭС, гидроэлектростанция, ветроэлектростанция. Схема работы ТЭЦ и АЭС в целом похожи: нагревается котел с водой, вода превращается в пар. Пар вращает турбину, а турбина вращает генератор, который и вырабатывает электрический ток. Электричество по линиям электропередачи направляется к нам в город. В одном случае сжигают газ, а, во втором — используют тепло от ядерной реакции. В гидроэлектростанциях используют энергию падающей воды для вращения турбины, а турбина вращает генератор, который вырабатывает электричество. В ветроэлектростанциях ветер вращает лопасти вентилятора, а они уже вращают генератор.
Во всех электростанциях реализуется следующее: механическая энергия вращения превращается в электрическую энергию, в генераторе. Но есть и другие электростанции, в которых ничего не вращается, и, в них нет генератора. Это — солнечные батареи. Они изготовлены из специального материала, и, под воздействием солнца вырабатывают электрический ток.
Далее в работе я рассмотрел устройство батарейки — переносного источника энергии. И как можно самую простую батарейку изготовить дома.
В практической части я провел несколько экспериментов. В первом эксперименте подключил игрушечный домик к «маленькой электростанции». «Маленький» генератор вырабатывает ток, которого достаточно для включения в доме электричества. Во втором — подключил к электростанции вентилятор. Механическая энергия вращения в генераторе, преобразуется в электрическую, бежит по проводам к вентилятору, и в его двигателе, преобразуется обратно в энергию вращения. В третьем эксперименте я подключил к батарейкам, по очереди, все тот же домик и вентилятор. В четвертом эксперименте я продемонстрировал самодельную батарейку. В каждую из трех баночек с соленой водой опустил по два электрода, изготовленные из металлических пластинок из меди и цинка.
В проведенных двух экспериментах, я подтвердил и наглядно продемонстрировал следующее: механическая энергия вращения в генераторе, преобразуется в электрическую. А также изготовил самодельную батарейку, энергии которой хватило, чтобы загорелась лампочка и пошли часы.
Но, у меня остались вопросы, на которые мне предстоит найти ответы:
Как протекает ядерная реакция? Какие АЭС есть у нас в стране? А еще мне интересно почему произошла авария в Чернобыле.
О, сколько нам открытий чудных
Готовит просвещенья дух,
И опыт – сын ошибок трудных,
И гений, парадоксов друг.
А.С. Пушкин
Список литературы
1 Ю.И. Дик, В. А. Ильин, Д.А. Исаев и др. /Физика: Большой справочник для школьников и поступающих в вузы / Издательство «Дрофа», 2000 год.
2 «Энциклопедия для детей от А до Я» / Издательство «Махаон», Москва, 2010.
3 А.А. Бахметьев/ Электронный конструктор «Знаток»/ Практические занятия по физике. 8, 9, 10, 11 классы.// Москва, 2005 год.
4 Получение и использование электрической энергии: [электронный ресурс] // Мир знаний. URL: http://mirznanii.com/info/id-9244
Просмотров работы: 13107
Способы получения электроэнергии: где мир берет силы для развития: Статьи экономики ➕1, 14.04.2022
С каждым годом мировое потребление электричества растет, поэтому приходится задействовать все доступные способы его выработки. Разбираемся, какие технологии получения электроэнергии существуют и как они влияют на окружающую среду.
Тепловая электростанция
Фото: aapsky / iStock
В 2021 году с помощью тепловых электростанций (ТЭС) получено 62% мировой электроэнергии. Они работают на органическом топливе — природном газе, угле, мазуте, торфе, горючих сланцах. Нагретая в котле вода превращается в пар, который подается в паровую турбину. В результате ее вращения механическая энергия преобразуется в электрический ток.
Преимущество ТЭС — сравнительно небольшие затраты на строительство и обслуживание. Но при производстве электроэнергии в атмосферу попадают большие объемы CO2 и других парниковых газов, вызывающих изменения климата, и вредные вещества, такие как оксид углерода, оксид серы, зола, сернистый газ. Они приводят к увеличению риска развития различных заболеваний.
Влияние энергетики на экологию — насколько вредны уголь, нефть и газ
И когда планета и люди вздохнут спокойно
Опасения вызывают и стремительно уменьшающиеся запасы природных ресурсов. По оценкам Минприроды, запасы нефти в России будут исчерпаны через 16-17 лет, а природного газа — через 20. Мировые залежи нефти закончатся позже — примерно через 50 лет.
С учетом вышесказанного многие государства начали активный переход на более безопасную для природы возобновляемую энергию — солнца, ветра и т. д. По-прежнему востребованы атомная и гидроэнергетика. Обеспечение всеобщего доступа к экологически чистым источникам энергии является одной из Целей устойчивого развития (ЦУР) Организации объединенных наций (ООН).
ГЭС «Илья-Солтейра» в Бразилии
Фото: edsongrandisoli / iStock
Около 84% энергии, генерируемой на базе возобновляемых источников, вырабатывают гидроэлектростанции (ГЭС). Это одна шестая всей электроэнергии планеты. Большая часть мировой гидроэлектроэнергии производится в Бразилии, США, КНР, Канаде, России. По оценкам Международного энергетического агентства, в дальнейшем 80% ГЭС будут строиться в развивающихся странах с большим гидропотенциалом.
При работе гидроэлектростанций используется кинетическая энергия потока воды, приводящая в движение турбину. Для создания напора применяются плотины, специальные отводы, расположенные под наклоном (для горных рек), или аккумуляторные насосы, перекачивающие воду из одного резервуара в другой.
Гидроэнергетика использует возобновляемый ресурс и не дает вредных выбросов. Кроме того, мощность этого источника электроэнергии легко отрегулировать путем изменения интенсивности потока воды. С учетом этих преимуществ именно гидроэнергетику рассматривают как наиболее перспективную замену ТЭС.
Но строительство крупных ГЭС также оказывает негативное воздействие на окружающую среду. Так, из-за Иркутской ГЭС уровень воды в озере Байкал повысился на один метр, что вызвало оползни и разрушение берегов. Кроме того, строительство гидроэлектростанций приводит к ухудшению условий обитания растений и животных, в том числе к снижению концентрации кислорода в воде, нарушению путей миграции рыб.
10 причин, почему крупные ГЭС опасны для природы и человека
Что не так с большими гидроэлектростанциями
Природоохранные организации предлагают ограничиться строительством малых и средних ГЭС. Эффективность этого решения уже подтверждена мировым опытом. Так, в Китае работает более 90 тыс. малых ГЭС. Они обеспечивают 30% электроэнергии, потребляемой сельскими регионами.
Солнечная электростанция в Китае
Фото: Jenson / iStock
Согласно данным Европейской ассоциации солнечной энергетики SolarPower Europe, солнечные электростанции (СЭС) обеспечивают выработку 2,6% мировой электроэнергии. В то же время эта отрасль лидирует по объемам инвестиций. Эксперты Института энергетики НИУ ВШЭ отмечают, что в 2019 году прирост мощностей СЭС в 2,5 раза превысил введенные мощности угольных и газовых станций.
СЭС отражают лучи солнца с помощью зеркал, концентрируя их на приемнике, наполненном маслом или водой. Пар, выделяемый при нагреве жидкости, приводит в действие электрогенератор.
Солнечная энергетика обладает огромным потенциалом. Каждый квадратный метр космического пространства содержит около 1,3 тыс. Вт энергии солнца. Две трети этого количества преодолевают атмосферу и достигают поверхности нашей планеты. Ученые подсчитали, что за 18 ясных дней на Землю поступает столько энергии, сколько содержится во всех запасах нефти, угля и природного газа.
Мировыми лидерами по мощностям солнечной энергетики являются Китай, Германия, Япония и США. В нашей стране эта отрасль тоже развивается: уже построено около 80 крупных СЭС общей мощностью более 1,8 ГВт. Кроме того, государство поддерживает микрогенерацию — каждый человек может установить солнечный модуль, например за окном или на крыше, чтобы генерировать электроэнергию и продавать ее ресурсоснабжающим компаниям.
Как солнечные панели экономят плату за электричество
Пять выводов о том, как развивается частная солнечная энергетика в России
Средний срок службы солнечных батарей — 25-30 лет. Все это время обеспечиваются получение и передача электроэнергии потребителям без дополнительных затрат на обслуживание. Достаточно смывать с модулей пыль 3-4 раза в год. Передача электроэнергии осуществляется по электрическим сетям.
Ветроэнергетика развивается быстрее, чем другие технологии ВИЭ. В 2020 году ее мощности увеличились на 95,3 ГВт, в 2021-м — на 93,6 ГВт. Общая мощность ветрогенераторов в мире равна 837 ГВт. К началу 2021 года на ВЭС приходилось 0,13% генерации в России.
Ветроэнергетика не загрязняет атмосферу, но шум и вибрации, создаваемые генераторами, отпугивают животных, обитающих поблизости. Также существует опасность гибели птиц, пролетающих рядом с лопастями. Но действие этих факторов не настолько велико, чтобы всерьез задуматься об отказе от энергии ветра. Так, по данным Европейской ассоциации ветряной энергетики (EWEA), от столкновения с ВЭС гибнет в 3,5 тысячи раз меньше птиц, чем от когтей и зубов кошек. Кроме того, в США создали систему, выключающую генератор при приближении охраняемых пернатых.
Несмотря на активное развитие сектора ВЭС, динамика его роста по-прежнему недостаточна для того, чтобы достичь углеродной нейтральности к 2050 году. По оценкам специалистов из Глобального совета по ветроэнергетике (GWEC), необходимо ежегодно строить в четыре раза больше турбин.
Эксперт: Россия может перейти с угля и газа на ветер
Ветровая электроэнергия в стране уже сопоставима по стоимости с традиционной
Воды Мирового океана занимают около 70% поверхности планеты и накапливают большое количество тепловой энергии cолнца. Эту энергию преобразуют в электричество с помощью специального оборудования. Для его эффективной работы необходима разница температур между поверхностным и глубоким слоями воды не менее 20 °C.
Существует три вида океанических теплоэлектростанций (ОТЭС):
1
В системе открытого цикла прогретая солнцем океаническая вода превращается в пар в камере с низким давлением, снижающим температуру ее кипения. Пар запускает турбину, а на выходе холодная глубинная вода возвращает его в жидкое состояние.
2
В установках закрытого цикла теплая вода испаряет рабочую жидкость (пропан, фреон, аммиак), циркулирующую по замкнутой системе трубок и проходящую через теплообменник. В этом случае океаническая вода должна быть прогрета до нужной температуры.
3
В ОТЭС смешанного типа вода преобразуется в пар, который испаряет рабочую жидкость.
Описанный выше порядок получения электроэнергии при помощи ОТЭС подходит только для тропических регионов. Но планируется построить подобные станции и в Арктике, где они будут работать за счет разницы температур подледного слоя воды и воздуха, превышающей 26 °C.
Увеличение объемов использования тепловой энергии океана включено в национальные программы Индии, США, Швеции, Франции, Японии. Так, президент Франции поставил задачу: к 2030 году полностью перевести остров Реюньон на энергию ОТЭС.
Ростовская атомная электростанция
Фото: Эрик Романенко / ТАСС
В мире функционирует более 400 ядерных реакторов, и еще 475 планируется построить. 98% атомных электростанций (АЭС) сконцентрировано в Европе, Северной Америке и Азиатско-Тихоокеанском регионе. В России АЭС вырабатывают 20% всей электроэнергии страны. Сейчас госкорпорация «Росатом» строит три новых энергоблока, в том числе инновационный реактор БРЕСТ-ОД-300 с замкнутым топливным циклом. Облученное топливо будет перерабатываться и использоваться повторно, благодаря чему система станет практически безотходной.
«Замести под коврик»: как в России утилизируют радиоактивные отходы
Грамотно ли в нашей стране поступают с атомными реакторами и топливом
В недавнем заявлении Еврокомиссии говорится, что ядерная энергетика поможет увеличить долю использования возобновляемых источников энергии и перейти к климатической нейтральности, то есть минимизировать влияние электростанций на климат. Этот способ получения электричества имеет еще одно достоинство: энергоемкость ядерного топлива в 104 раз больше нефти.
Климатолог Джеймс Хансен отметил, что переход на атомную энергетику может спасти 7 млн жизней в год. Именно столько людей умирает от загрязнения воздуха, вызванного выбросами теплоэлектростанций.
У развития атомной энергетики есть одно препятствие — негативные ассоциации, связанные с катастрофами в Чернобыле и Фукусиме. Но надежность современных ядерных реакторов не оставляет поводов для опасений: согласно исследованию медицинского журнала Lancet, атомная энергия по безопасности превосходит даже солнечные панели.
Подписывайтесь на наш канал в Яндекс.Дзен.
Автор
Вера Жихарева
Electricity Mix — Наш мир в данных
Электричество является одним из трех компонентов, составляющих общее производство энергии. Два других – транспорт и отопление.
Как мы более подробно видим в этой статье, разбивка источников – уголь, нефть, газ, атомная энергия и возобновляемые источники энергии – различается для электричества и энергетического баланса. Как правило, низкоуглеродные источники (атомная энергия и возобновляемые источники энергии) составляют большую долю в нашем балансе электроэнергии, чем в нашем общем энергетическом балансе.
Это означает, что важно различать их. На другой странице мы приводим полную разбивку Энергетический микс . Но в этой статье мы сосредоточимся на Electricity Mix .
Откуда мы получаем электричество? В каких странах самые чистые электросети? В этой статье мы рассмотрим разбивку по всему миру.
Электричество — это только часть общей энергии. Декарбонизация электричества — это только один шаг к низкоуглеродной энергетической системе. Это, конечно, хорошая новость, поскольку мы пытаемся перевести наши энергетические системы с ископаемого топлива.
Такой прогресс часто попадает в заголовки газет. Вот один пример из этого года:
→ Впервые в Великобритании больше энергии поступает из чистых источников, чем из ископаемого топлива, National Grid объявляет (Independent, 2020)
На первый взгляд, мы можем подумать, что мы приближается к энергетической системе без ископаемого топлива.
К сожалению, многие из этих заголовков вводят в заблуждение. 1 The Independent допустила ошибку, использовав термины электричество и энергия взаимозаменяемы, хотя на самом деле это не одно и то же.
Электричество (или «мощность») — это лишь один из компонентов общего потребления энергии. Два других компонента – это транспорт и отопление.
Когда мы видим заголовки о нашем прогрессе в декарбонизации, приведенные цифры часто относятся к электроэнергии. Многие страны добиваются прогресса в области экологически чистой электроэнергии, но прогресс в области энергетики в целом идет гораздо медленнее.
Давайте сравним распределение мировой энергетики и электроэнергии — они показаны на диаграмме.
Мы видим большую разницу между долей низкоуглеродных источников. На ядерные и возобновляемые источники энергии приходится более одной трети (36,7%) мирового электричества . Но на их долю приходится менее половины этой цифры (15,7%) в глобальном энергетическом балансе . Это связано с тем, что другие элементы спроса на энергию — транспорт и отопление — в гораздо большей степени зависят от ископаемого топлива.
Но есть еще один аспект, который следует учитывать. Поскольку транспорт и отопление труднее обезуглероживать, чистое электричество будет становиться все более важным. Многие решения полагаются на то, что мы электрифицируем другие части энергетической системы, например, переход на электромобили. Международное энергетическое агентство , например, прогнозирует, что к 2030 году глобальный спрос на электроэнергию для электромобилей вырастет в пять-одиннадцать раз по сравнению с уровнем 2019 года. Если мы хотим воспользоваться экологическими преимуществами электромобилей, эта электроэнергия должна быть максимально низкоуглеродистым.
Но когда мы видим заголовки о прогрессе в обезуглероживании электроэнергетического сектора, мы должны помнить, что это только одна часть энергетической истории. Если мы этого не сделаем, мы рискуем впасть в ложное ощущение прогресса и позволить лидерам, правительствам и компаниям хвастаться целями, которые недостаточно амбициозны.
Откуда у нас электричество?
Какие источники составляют нашу структуру электроэнергии? Сколько приходится на уголь, нефть, газ, а сколько на ядерную, гидроэнергию, солнечную или ветровую энергию?
На интерактивных диаграммах, показанных здесь, мы видим распределение электроэнергии по источникам.
Диаграмма с накоплением площадей показывает производство электроэнергии в абсолютном выражении. Это позволяет вам увидеть, как суммируются эти источники. Линейная диаграмма показывает долю каждого источника в от общего числа и дает лучшее представление о том, как каждый из них меняется с течением времени.
Во всем мире мы видим, что уголь, за которым следует газ, является крупнейшим источником производства электроэнергии. Из низкоуглеродных источников наибольший вклад вносят гидроэнергетика и атомная энергия; хотя ветер и солнечная энергия быстро растут.
Если мы посмотрим на структуру производства электроэнергии в отдельных странах [это можно сделать с помощью кнопки «Изменить страну» в левом нижнем углу диаграммы] , мы увидим резкие изменения с течением времени.
Возьмем, к примеру, Великобританию: там мы наблюдаем резкое снижение роли угля в структуре производства электроэнергии. В конце 1980-х годов на уголь приходится более 60% производства электроэнергии. К 2021 году этот показатель упал до 2%.
Как вы можете взаимодействовать с этими картами
- На этих картах вы видите кнопку Изменить страну в нижнем левом углу – с помощью этой опции вы можете переключить карту на любую другую страну мира.
- Установив флажок «Относительно» в левом нижнем углу диаграммы с накоплением, вы можете переключиться на просмотр доли каждого источника в общей сумме.
На диаграммах здесь мы видим разбивку структуры электроэнергии по странам. Во-первых, с более высокой разбивкой по ископаемому топливу, ядерной энергии и возобновляемым источникам энергии. Затем с конкретной разбивкой по источникам, включая уголь, газ, нефть, ядерную, гидроэнергию, солнечную энергию, ветер и другие возобновляемые источники энергии (включая биоэнергию, энергию волн и приливов).
Приводится в пересчете на потребление на душу населения. Используя переключатель на интерактивных диаграммах, вы также можете увидеть процентную разбивку для каждого источника, установив флажок «Относительно».
Какая часть нашей электроэнергии поступает из низкоуглеродных источников?
Около 16% мировой энергии (15,7%, если быть точным) поступает из низкоуглеродных источников, то есть из ядерной энергии и возобновляемых источников энергии.
Но энергия и электричество — это не одно и то же, несмотря на то, что многие люди используют эти термины как синонимы. Электричество (иногда называемое «мощностью») является лишь частью общего производства энергии, которое также включает отопление и транспорт.
Какая часть нашей электроэнергии поступает из низкоуглеродных источников?
37% мирового производства электроэнергии приходится на низкоуглеродные источники
На диаграмме мы видим процентную долю мирового производства электроэнергии, которая приходится на ядерную или возобновляемую энергию, такую как солнечная, ветровая, гидроэнергия, энергия ветра и приливов и некоторые биомасса.
Во всем мире в 2019 году 36,7% нашей электроэнергии было низкоуглеродным. Более одной трети. Остальные две трети приходятся на ископаемое топливо — в основном уголь и газ.
Это более чем в два раза превышает долю в общем энергетическом балансе, где доля ядерных и возобновляемых источников энергии составляет всего 15,7%. Мы рассмотрели сравнение глобальной энергии и электроэнергии , смешанной здесь . Когда люди приводят высокие цифры доли низкоуглеродной энергии в структуре производства электроэнергии, мы должны помнить о том, что электричество является лишь частью энергетического уравнения. Доля в общем энергетическом балансе намного меньше.
К сожалению, процент электроэнергии, получаемой из низкоуглеродных источников, сегодня практически не изменился по сравнению с серединой 19-го века.80-е годы. На самом деле в начале 2000-х эта доля фактически регрессировала. В следующем разделе мы увидим, что прогресс был медленным, потому что производство атомной энергии снизилось в то время, когда возобновляемые источники энергии росли.
Низкоуглеродное электричество: около 26 % электроэнергии в мире поступает из возобновляемых источников энергии и 10 % из ядерной энергии
Какова структура нашего электроснабжения с точки зрения ископаемого топлива, возобновляемых источников энергии и атомной энергии?
В 2019 году почти две трети (63,3%) мировой электроэнергии приходилось на ископаемое топливо. Из 36,7% низкоуглеродных источников на возобновляемые источники энергии приходилось 26,3%, а на атомную энергию — 10,4%.
Как мы уже отмечали ранее, относительный вклад ископаемого топлива и низкоуглеродной электроэнергии оставался на прежнем уровне в течение десятилетий. Фактически, в начале 2000-х годов ископаемое топливо даже завоевало популярность. За этот период доля атомной энергетики снизилась, а доля возобновляемых источников энергии выросла. Мы видим это на графике. Прогресс, достигнутый в области возобновляемых источников энергии, был компенсирован спадом ядерной энергетики; атомная энергетика сократилась почти на столько же, сколько выросла возобновляемая энергетика.
Некоторые страны получают большую часть электроэнергии из низкоуглеродных источников
Во всем мире чуть более одной трети электроэнергии мы получаем из низкоуглеродных источников. Но некоторые страны получают гораздо больше – некоторые почти все – из источников, не содержащих ископаемого топлива.
На показанной интерактивной карте мы видим эту долю по всему миру. Некоторые страны получают более 90% своей электроэнергии за счет ядерных или возобновляемых источников энергии, например Швеция, Норвегия, Франция, Парагвай, Исландия и Непал.
Здесь вы можете изучить структуру производства электроэнергии с разбивкой по отдельным источникам для стран, участвующих в нашей работе. Почти у всех этих стран есть одна общая черта: они получают много электроэнергии за счет гидроэнергетики и/или ядерной энергии. Солнечные, ветряные и другие возобновляемые технологии быстро развиваются, и мы надеемся, что в будущем на них будет приходиться большая доля производства электроэнергии, но страны, которые сегодня имеют низкоуглеродную структуру электроэнергии, в последние годы в значительной степени полагались на гидроэлектростанции и атомную энергию.
Мы должны взять эти примеры из жизни отдельных стран и извлечь из них уроки. В ближайшие годы ускорение перехода на экологически чистое электричество станет еще более важным, поскольку мы электрифицируем и другие части энергетической системы (например, переходим на электромобили). Нам нужно будет полагаться на низкоуглеродное электричество, и в больших количествах.
Углеродоемкость электроэнергии
Углеродоемкость электроэнергии измеряет количество CO2, которое производится на единицу электроэнергии. Он измеряется в граммах CO2, произведенных на киловатт-час (кВтч).
Страны, которые получают большую часть своей электроэнергии из низкоуглеродных источников (возобновляемых источников энергии и атомной энергии), будут иметь более низкую углеродоемкость.
Эта интерактивная карта показывает углеродоемкость электроэнергии в Европе. Ember — наш ключевой источник данных по электроэнергии — в настоящее время предоставляет данные об углеродоемкости только для стран ЕС-27, а также для Соединенного Королевства.
Производство электроэнергии по источникам
В этом разделе
- Ископаемое топливо: какая доля электроэнергии приходится на ископаемое топливо?
- Уголь: какая доля электроэнергии приходится на уголь?
- Газ: какая доля электроэнергии приходится на газ?
- Атомная энергия: какая доля электроэнергии приходится на атомную энергетику?
- Возобновляемые источники энергии: какая доля электроэнергии приходится на возобновляемые источники энергии?
- Гидроэнергетика: какая доля электроэнергии приходится на гидроэнергетику?
- Солнечная энергия: какая доля электроэнергии приходится на солнечную энергию?
- Ветер: какая доля электричества приходится на ветер?
Ископаемое топливо представляет собой сумму угля, нефти и газа. В совокупности они являются крупнейшим источником глобальных выбросов двуокиси углерода (CO 2 ). Поэтому нам нужно уйти от них.
На этой интерактивной карте показана доля электроэнергии, получаемой за счет ископаемого топлива (угля, нефти и газа вместе взятых) по всему миру. На нефть приходится лишь небольшая доля производства электроэнергии — большая часть приходится на уголь и газ. Долю угля и газа по отдельности можно найти в разделах ниже.
Три совета о том, как взаимодействовать с этой картой
- Нажав на любую страну на карте, вы увидите изменения в этой стране с течением времени.
- Перемещая ползунок времени (под картой), вы можете увидеть, как менялась глобальная ситуация с течением времени.
- Вы можете сосредоточиться на определенном регионе мира, используя раскрывающееся меню в правом верхнем углу карты.
В настоящее время уголь является крупнейшим источником электроэнергии в мире. Для многих стран остается доминирующим источником. Но мы также видим, что в последние годы другие страны стали свидетелями массового отказа от угля — одним из таких примеров является Великобритания.
На этой интерактивной карте показана доля электроэнергии, получаемой из угля в мире.
Газ: какая доля электроэнергии приходится на газ?В настоящее время газ является вторым по величине источником производства электроэнергии в мире.
Его вклад быстро растет во многих странах, поскольку они заменяют им уголь в структуре производства электроэнергии. С точки зрения климата этот переход является положительным, поскольку газ обычно выделяет меньше CO 2 на единицу энергии. Но мы по-прежнему в конечном итоге хотим перейти от газа к низкоуглеродным источникам, таким как возобновляемые источники энергии и ядерная энергия.
На этой интерактивной карте показана доля электроэнергии, получаемой из газа, в мире.
Атомная энергия: какая доля электроэнергии приходится на атомную энергетику?Ядерная энергия десятилетиями играла ключевую роль в производстве электроэнергии с низким уровнем выбросов углерода. В некоторых странах это один из, если не единственный, крупнейший источник электроэнергии.
Например, Франция получает более 70% своей электроэнергии за счет атомной энергетики.
На этой интерактивной карте показана доля электроэнергии, получаемой из газа, в мире.
Нажав на определенную страну, вы можете увидеть, как эта доля менялась с течением времени. В некоторых странах мы наблюдаем резкое снижение роли атомной энергетики по мере отключения электростанций. Япония тому яркий пример.
Возобновляемые источники энергии: какая доля электроэнергии приходится на возобновляемые источники энергии?«Возобновляемые источники» объединяет несколько источников электроэнергии, включая гидроэнергию, солнечную энергию, энергию ветра, геотермальную энергию, биомассу, волны и приливы.
На этой интерактивной карте показана доля электроэнергии, получаемой от возобновляемых источников энергии (сумма всех технологий возобновляемой энергии) во всем мире.
Доля электроэнергии, которую мы получаем от отдельных возобновляемых технологий — например, солнечной или ветровой — указана в разделах ниже.
Гидроэнергетика: какая доля электроэнергии приходится на гидроэнергетику?Гидроэнергетика вносит большой вклад в производство электроэнергии с низким уровнем выбросов углерода во всем мире. В мире на его долю приходится около 17% производства.
На этой интерактивной карте показана доля электроэнергии, вырабатываемой гидроэнергетикой по всему миру.
Солнечная энергия: какая доля электроэнергии приходится на солнечную энергию?На этой интерактивной карте показана доля электроэнергии, получаемой от солнечной энергии во всем мире.
Три совета о том, как взаимодействовать с этой картой
- Щелкнув по любой стране на карте, вы увидите изменения в этой стране с течением времени.
- Перемещая ползунок времени (под картой), вы можете увидеть, как менялась глобальная ситуация с течением времени.
- Вы можете сосредоточиться на определенном регионе мира, используя раскрывающееся меню в правом верхнем углу карты.
На долю ветра приходится от 5% до 6% мирового производства электроэнергии. Но в последние годы ветрогенерация быстро растет во многих странах мира.
На этой интерактивной карте показана доля электроэнергии, вырабатываемой ветром во всем мире.
Узнайте больше о нашей работе в области энергетики
Загрузите наш полный набор показателей энергопотребления на GitHub. Это открытый доступ и бесплатный для всех.
Как мы его сгенерируем? — Банк знаний
All in a SpinЭнергия вырабатывается как из ископаемого топлива, так и из возобновляемых источников энергии.
Производство электроэнергииЭлектроэнергия для питания наших домов, школ и предприятий производится на электростанциях. Вращающиеся турбины вращают большие магниты внутри проволочных катушек — это заставляет электроны двигаться, что приводит к электричеству.
Турбинные генераторы вращаются, вращая гигантские магниты внутри медных катушек для создания энергии.
Как производится электричество?Электричество является вторичным источником энергии – мы получаем его в результате преобразования других источников энергии, таких как уголь, природный газ, нефть, ядерная энергия и другие природные источники. Они называются первичными источниками энергии.
Процесс производства электроэнергии для использования в качестве энергии происходит на электростанциях.
Вот краткий обзор того, как это работает:
- Большие машины, называемые турбинами, вращаются очень быстро – для этого требуется много энергии, такой как тепло, ветер или движущаяся вода.
- Вращающиеся турбины заставляют большие магниты вращаться в катушках из медной проволоки — это генераторы.
- Движущиеся магниты в витке проволоки заставляют электроны (заряженные частицы) двигаться внутри проволоки – это электричество.
От электростанций электричество поступает к крупным линиям электропередач, поддерживаемым огромными опорами. Эти линии несут большое количество электроэнергии на подстанции в городах и поселках.
От подстанций распределительные линии передают меньшее количество электроэнергии в дома и предприятия.
Электроэнергия поступает к потребителям по линиям электропередач и подстанциям.
Существуют ли разные типы генераторов?Да, существует множество различных типов генераторов, используемых для производства электроэнергии.
К ним относятся:
- Паротурбинные генераторы
- Газотурбинные генераторы
- Дизель-генераторы
- Системы альтернативной энергии
- Атомные электростанции
Хотя они могут быть разными, все эти генераторы работают по одному и тому же принципу:
Магниты + медная проволока + вращательное движение = электрический ток
Произведенное электричество одинаково, независимо от источника.
Различные типы генераторов используются для создания энергии.
Электрическая энергия создается движущимися электрическими зарядами, называемыми электронами.
Электричество — вид энергии, получаемый из электрической энергии.
Электростанции — это места, где вырабатывается электроэнергия.
Турбины — это машины для непрерывного производства энергии. На электростанциях турбины вращаются с использованием энергии таких источников, как тепло, ветер и движущаяся вода.
Генераторы — это машины для преобразования энергии движения в электричество.
Электричество распространяется со скоростью света — это почти 300 000 километров в секунду!
Уголь является крупнейшим в мире источником энергии для производства электроэнергии.
На электростанции турбина и генератор преобразуют механическую энергию в электрическую.