Как работает VRM на материнской плате и видеокарте компьютера | Материнские платы | Блог
Преобразователи напряжения используются везде и всюду. Будь то огромные многотонные трансформаторы на электроподстанциях, обычные 50-герцовые трансформаторы в домашней аппаратуре или сложные импульсные схемы с умными микроконтроллерами. Любой электроприбор имеет собственные требования к питанию, да и отдельные узлы в этом приборе тоже привередливы к значениям напряжений. Вопрос — почему? Из статьи вы узнаете, зачем вообще нужны преобразователи и как работает DC-DC регулятор напряжения VRM на материнских платах и видеокартах. А еще можно посмотреть материнские платы с мощными схемами питания в каталоге.
Никакого единства…
В розетке 220 вольт, у блока питания 12 вольт, у зарядки телефона 5 вольт… Может сложиться впечатление, что инженерам нравится играть с напряжением, сначала повышая его до миллионов вольт на линиях электропередач, а потом до единиц вольт для питания центрального процессора. Почему люди не придумали какое-то единое значение напряжения и не используют его везде?
Определенно, центральный процессор — да и вообще любой другой микрочип — питать высоким напряжением прямо из розетки нельзя. Двенадцать вольт после блока питания тоже не подойдут. Во-первых, на микроскопическом уровне даже лишние пара десятых вольта могут привести к утечкам тока и повлиять на стабильность схемы. Во-вторых, чем выше напряжение, тем большее энергии расходуется на работу процессора. Поэтому с уменьшением техпроцесса разработчики стараются снизить и рабочий вольтаж. Когда-то процессоры, например, древний Intel 8086 выпуска 70-х годов, питались от 5 вольт, а современные работают всего от 1-1,4 вольта.
youtube.com/embed/Fxv3JoS1uY8?origin=https://club.dns-shop.ru&autoplay=1><img src=https://img.youtube.com/vi/Fxv3JoS1uY8/hqdefault.jpg><svg width=68 height=48><path fill=#f00 d=’M66.52,7.74c-0.78-2.93-2.49-5.41-5.42-6.19C55.79,.13,34,0,34,0S12.21,.13,6.9,1.55 C3.97,2.33,2.27,4.81,1.48,7.74C0.06,13.05,0,24,0,24s0.06,10.95,1.48,16.26c0.78,2.93,2.49,5.41,5.42,6.19 C12.21,47.87,34,48,34,48s21.79-0.13,27.1-1.55c2.93-0.78,4.64-3.26,5.42-6.19C67.94,34.95,68,24,68,24S67.94,13.05,66.52,7.74z’></path><path fill=#fff d=’M 45,24 27,14 27,34′></path></svg></a>» frameborder=»0″ allow=»accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture» allowfullscreen=»»/>
Блоки питания с напряжением 1 вольт на выходе — тоже не вариант, так как сила тока будет чрезмерно высокой — от нескольких десятков до сотен ампер. Ведь, снижая напряжение, растет сила тока при той же мощности. Вычислить силу тока можно, поделив мощность на напряжение.
Большая сила тока вставляет палки в колеса при подборе проводников из-за их сопротивления. Сопротивление — эффект, когда структура проводника мешает беспрепятственному протеканию тока по нему. Заряженные частицы врезаются на полной скорости в атомы проводника, чем и вызывают сопутствующий нагрев, а сами частицы теряют энергию. Это как бег с препятствиями. Вы тоже потеряете энергию, если во время бега по густому лесу будете влетать в деревья.
Сопротивление любого провода не нулевое, причем оно увеличивается с ростом его длины. Толщина провода также влияет на сопротивление. Поэтому, чтобы передать большую мощность при низком значении напряжения и высокой силе тока, придется использовать довольно толстые провода.
К примеру, напряжение на ЛЭП специально увеличивают до сотен тысяч вольт после электростанции, чтобы передавать мегаватты электрической мощности на значительные расстояния с помощью относительно тонких проводов.
И последнее. У любой электроники свое значение рабочего напряжения, а у процессора оно еще и регулируется в зависимости от нагрузки и условий работы. Так что договориться и сделать единую энергосистему с одинаковым значением напряжения попросту нереально.
Нет, без преобразователей ну никак не обойтись.
Устройство DC-DC преобразователя
Для питания микроэлектроники от постоянного напряжения используются DC-DC преобразователи, основанные на принципах широтно-импульсной модуляции — ШИМ. Их еще называют регуляторами напряжения — VRM.
Как это работает? Возьмите обычный вентилятор. Что будет, если вы его включите? Правильно, он будет дуть с одинаковой силой.
Что произойдет, если с равной периодичностью дергать рубильник — включать вентилятор всего на полсекунды, а на следующие полсекунды выключать? Двигатель вентилятора не может мгновенно набрать максимальную скорость вращения, поэтому за такой небольшой промежуток времени он как следует не разгонится. Но и остановиться за то же время он не успеет, так как продолжит крутиться по инерции. Так что вентилятор продолжит дуть, но с гораздо меньшей мощностью. Попробуйте поэкспериментировать со своим домашним вентилятором.
Выходит, если включать и выключать питание вентилятора, то вместо постоянного напряжения мы получим прерывистые импульсы той же амплитуды.
Так и работает простейший ШИМ-регулятор. Но вместо человека с выключателем используется транзистор — он то открывается на некоторое время (ВКЛ), то закрывается (ВЫКЛ). Только делает это с частотой не два раза в секунду (2 Гц), а десятки тысяч раз (10 кГц). Вы так точно не сможете. Такой транзистор называется «ключевым».
Кто-то может возмутиться: «Но, погодите, нам нужно получить напряжение в 1 вольт, а тут хоть и прерывистые, но те же 12 вольт, что и на входе! Кажется, нас обманывают!»
Действительно, таким образом питать процессор по-прежнему нельзя. Так что к ключевому транзистору (VT1) понадобятся еще несколько элементов: катушка индуктивности (L), конденсатор (C) и синхронный транзистор (VT2). Катушка и конденсатор образуют LC-фильтр.
Технически можно разделить цикл преобразования на две стадии: накачка энергии в катушку с конденсатором и стадию разряда.
Первая стадия — накачиваем энергию
Когда транзистор VT1 открыт, его собрат — синхронный транзистор VT2 — закрыт. В катушке L накапливается энергия, плавно нарастает ток и заряжается конденсатор C.
Вторая стадия — стадия разряда
Транзистор VT1 закрывается, открывается синхронный VT2 — он нужен, чтобы соединить вход катушки с отрицательным выводом нагрузки, создавая замкнутую цепь питания. Пусть мы и разорвали на этот краткий миг связь с источником питания, но катушка никуда не делась. Накопленная в катушке энергия теперь играет роль источника питания и поддерживает силу и направление тока, а конденсатор разряжается и питает нагрузку.
Затем транзистор VT1 снова открывается, а VT2 закрывается, и цикл начинается заново. Причем для наибольшей эффективности циклы повторяются с довольно высокой частотой — у современных компьютерных комплектующих миллионы раз в секунду (измеряется в мегагерцах, МГц).
Благодаря этому процессу мы получаем постоянное напряжение на нагрузке ниже, чем входное до ключевого транзистора. Импульсы как бы сглаживаются, образую близкую к прямой линию напряжения.
То, что линия напряжения не совсем прямая — это нормально. В реальных условиях идеальных LC-фильтров не бывает, и всегда присутствуют небольшие пульсации напряжения. И главное, подобрать параметры катушки и конденсатора таким образом, чтобы они не успевали разрядиться полностью к концу цикла. Тогда ток становится неразрывным.
К слову, ток на всей цепи примерно равен. А так как синхронный транзистор VT2 открыт несоизмеримо дольше — работать ему приходиться, что называется, за троих.
Как настраивается преобразователь
Уровень напряжения на нагрузке будет зависеть от длительности первой и второй стадий в рамках одного цикла. Ведь чем дольше открыт транзистор VT1, тем больше энергии успевает накопить катушка и тем выше будет по итогу напряжение после LC-фильтра.
Если мы поделим время первой стадии на длительность полного цикла, то получим коэффициент заполнения (D) от 0 до 100 %.
D = T полн. / T 1
Чтобы узнать выходное напряжение (U out), нужно коэффициент заполнения умножить на входное напряжение (U in).
А чтобы узнать коэффициент заполнения, делим U out на U in.
D = U out / U in
Простой пример: чтобы получить типичное для центрального процессора напряжение в 1,2 вольта, то, поделив на входные 12 вольт (напряжение на выходе блока питания), получим D=0,1.
1,2 / 12 = 0,1 * 100 % = 10 %
Это значит, что первая стадия (накачки энергии) займет всего 10 % времени от общей длительности цикла, а оставшиеся 90 % времени уйдут на стадию разряда.
Когда одной фазы недостаточно
В мощных преобразователях часто используется не один канал с парой транзисторов, одной катушкой и одним конденсатором, а несколько параллельно подключенных каналов.
Как мы уже выяснили, любой проводник имеет ненулевое сопротивление и нагревается. Транзистор в ключевом режиме — тоже проводник, как обычный выключатель. И сопротивление (Rds) между его входом и выходом (сток-исток) не равно нулю. Значит, чем выше ток, тем сложнее будет электронам пробиться через него, что приведет к потерям энергии и нагреву. Чтобы минимизировать этот эффект и применяются несколько фаз — нагрузка распределяется между ними поровну.
Еще один интересный способ повысить эффективность: синхронный транзистор VT2 открыт примерно в семь-восемь раз дольше чем VT1, поэтому VT2 часто дублируют и стараются подобрать более продвинутую и дорогую модель с низким Rds.
Но это еще не все. Такие каналы не просто так называют «фазами». Процесс переключения транзисторов в разных каналах происходит не одновременно, а с небольшим сдвигом по фазе.
На выходе после LC-фильтров все фазы объединяются в одну, и амплитуда пульсаций становится значительно ниже, чем было бы у каждой фазы в отдельности.
Так что даже несколько десятков каналов в преобразователе на материнской плате неправильно называть «избытком». Ведь это не только меньшие потери, но и лучшее качество напряжения. Меньше пульсаций напряжения — меньше выбросов во внутренние узлы процессора — выше стабильность всей схемы, особенно при разгоне.
Те же принципы справедливы и для графического чипа видеокарты, процессора смартфона и любой другой «тонкой» электроники. Но в этом случае разработчики уже за нас рассчитали потребляемую мощность и количество необходимых узлов. А вот при выборе материнской платы пользователь должен сам определить, что ему нужно, учесть потребляемую мощность процессора. Тем более, если в планах серьезный разгон.
youtube.com/embed/gV9vIgi3Liw?origin=https://club.dns-shop.ru&autoplay=1><img src=https://img.youtube.com/vi/gV9vIgi3Liw/hqdefault.jpg><svg width=68 height=48><path fill=#f00 d=’M66.52,7.74c-0.78-2.93-2.49-5.41-5.42-6.19C55.79,.13,34,0,34,0S12.21,.13,6.9,1.55 C3.97,2.33,2.27,4.81,1.48,7.74C0.06,13.05,0,24,0,24s0.06,10.95,1.48,16.26c0.78,2.93,2.49,5.41,5.42,6.19 C12.21,47.87,34,48,34,48s21.79-0.13,27.1-1.55c2.93-0.78,4.64-3.26,5.42-6.19C67.94,34.95,68,24,68,24S67.94,13.05,66.52,7.74z’></path><path fill=#fff d=’M 45,24 27,14 27,34′></path></svg></a>» frameborder=»0″ allow=»accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture» allowfullscreen=»»/>
Как узнать чипсет материнской платы — 3 простых метода
Потребовалось узнать, как точно называется чипсет материнки? Если документов под рукой не нашлось — не страшно: все узнать можно и без бумажек. В этой статье описывается, что вообще такое чипсет, как он устроен и за какие процессы отвечает такой элемент системной платы.
Что такое чипсет в материнской плате
Комплект микросхем, который играет роль «переговорщика» (связующего звена) независимых компонентов материнки — и есть чипсет.
Ведущий чип, расположенный на плате — это ЦПУ. Он руководит остальными элементами. Осуществить это «без посредников» нет возможности. Так что набор микросхем обеспечивает общение процессора и других комплектующих:
- оперативки;
- системы ввода/вывода;
- контроллерами устройств периферийного типа и т.д.
Сам комплект микросхем отвечает только за взаимосвязь элементов в материнке, а потому не оказывает никакого влияния на процесс их работы. Связь же осуществляется с помощью системы шин. Шина — это такая подсистема, которая участвует в передаче информации между разными функциональными отделами ПК.
Смотрите также: 5 лучших процессоров от Intel для NVidia GeForce GTX 1060
Где находится чипсет на материнской плате
На не самых новых, но все еще актуальных платах, чипсетов два.
Их еще именуют мостами, северным (СМ) и южным (ЮМ). Они так называются в соответствии с их географическим местонахождением на системной плате. Северный компонент можно найти немного ниже гнезда для установки ЦП, а на противоположной стороне от него расположен южный элемент.На смену двухмостовым приходят одномостовые варианты, где есть только южный компонент. Куда же дели северный? Этот мост интегрирован в CPU. В современных моделях такое решение — не редкость. Такое решение имеет 3 существенных преимущества:
- Снижается показатель энергопотребления.
- Мощная процессорная система охлаждения способствует улучшению снижению износа моста.
- Дешевеет производство.
Интересно: Как собрать игровой компьютер, какие комплектующие купить: 3 варианта на выбор
Как устроен чипсет
Каждый элемент выполняет свою функцию. Какую, и что это означает, поясняет нижеследующая таблица.
Базой для любого моста является контроллер-концентратор. В качестве основы СМ выступает соединенный с ЦП через системную шину концентратор памяти (FSB — для моделей Intel и HyperTransport — для AMD). Как можно было понять, его функция — обеспечить инфообмен между ЦП и ОЗУ.
Основа ЮМ — концентратор ввода-вывода. Связь с ЦПУ происходит через северный элемент, а не напрямую. «Южанин» отвечает за общение между собой таких комплектующих, как:
- ЦП;
- контроллеры HDD;
- USB и твердотельные накопители.
Нормальная температура материнки и чипсета
Средний показатель температуры материнки в районе 40 градусов с периодическими повышениями до 50 — это норма. При регулярном использовании компьютера для повседневных задач, таких, как серфинг в браузере или даже современные ресурсоемкие игры, не стоит опасаться перегрева. Отметка может достичь показателей значительно выше и стать критической лишь в случае неисправности. Удары, падения и прочие воздействия, которые могут привести к механическим нарушениям, часто становятся причиной поломки мостов, из-за чего температура повышается.
Нужно учесть, что у каждого компонента системы есть свои температурные показатели, как оптимальные, так и пиковые. Обычно они указываются на коробке или в инструкции к комплектующим.
Читайте также: 3 лучших производителя видеокарт NVidia GeForce GTX 1060 + 5 крутых моделей
Как узнать модель чипсета
Определить, какой чипсет у материнки, нетрудно. Обычно он указывается прямо в названии модели. К примеру, Х или AM4 (А) + номер для AMD, или H, B и Z + номер для Intel. Если же коробки и документации под рукой нет, то узнать чипсет можно через диспетчер задач в Виндовс. Всего-то нужно открыть список системных устройств и найти строку со словом Chipset. Сторонний софт тоже может помочь. Ниже — 2 самых удобных представителя.
AIDA64
Популярная утилита, которая отличается дружелюбным интерфейсом. После входа в программу необходимо найти раздел, который называется «системная плата». Там можно узнать основные параметры материнки. Однако определить полную версию устройства в бесплатной вариации софта, увы, не удастся. Но есть и альтернативный вариант, за который не нужно платить.
CPU Z
Практически аналог платной AIDA 64. Находится в свободном доступе. Эту программу также стоит скачивать с официального сайта. Раньше у CPU Z был один существенный минус — отсутствие русскоязычного интерфейса. Теперь же его добавили, так что нареканий программа не вызывает.
Любопытно: Сравнение 2 бюджетных игровых видеокарт — GTX 1050 против GTX 1050 TI
Где взять драйвера для чипсета
Зная о чипсете все нужные данные, можно найти необходимые драйвера двумя способами:
- на сайте производителя, указав соответствующие данные;
- через приложение для автоматического поиска ПО.
Подборка: ТОП-5 лучших HDD на 2 TB – Рейтинг внутренних жестких дисков на 2000 Гб
Понять, как именно обозначается chipset материнки, несложно, хоть через Виндовс, хоть воспользовавшись специальной программкой.
Меня часто спрашивают, как управлять с помощью микроконтроллера мощными потребителями тока — лампами, питающимися от сети 220 В, мощными тенами. В этой статье собран материал по работе электронных ключей — как они устроены, как работают, как их можно применить в радиолюбительской практике (перевод [1]). Сначала стоит разобраться в том, что же такое электронный ключ? В сущности это просто выключатель (или переключатель) который замыкает/размыкает сильноточную цепь по внешнему электрическому сигналу (тоже входной ток, но намного меньшей мощности). Обычно, когда на вход электронного ключа подается слабый ток управления, ключ замыкается и пропускает через себя мощный ток в силовой цепи. Когда ток управления пропадает, то ключ размыкается и мощный потребитель тока отключается. На фото представлены основные представители электронных ключей — реле и транзисторы. 1 — мощный транзистор IRFP450 MOSFET, который можно применять в ключевых источниках питания, в генераторах развертки ЭЛТ-мониторов. 2 — IRF840B, тоже довольно мощный транзистор, собрат IRFP450. Может безопасно, продолжительное время, без использования радиатора (или охлаждающего вентилятора) коммутировать токи до 8A при напряжении 500V. UPD140601: как верно прокомментировал Ross, на самом деле без радиатора IRF840 долго в таких рабочих условиях не протянет, потому что рассеиваемая мощность превысит 50 Вт. Если взять транзистор с сопротивлением канала на 2 порядка меньше, тогда другое дело. 3 — два простых, дешевых транзистора. Слева транзистор структуры PNP, а справа NPN. Эти транзисторы могут управлять током до 0.15A при напряжении 50 .. 90V. Обычно транзисторы могут коммутировать ток от 0.15A до 14A при напряжении от 50V до 500V (см. даташит на каждый конкретный транзистор), так что транзистор может переключить мощность до 7 киловатт, если на вход транзистора приложить совсем маленькую мощность — несколько милливатт. Приведенные на фото реле могут коммутировать токи от 5A до 15A при напряжении до 240V. Не очень правильно будет сравнивать реле с транзисторами MOSFET, но они почти не генерируют тепло и не нуждаются в радиаторах. 4 — самое простое реле, подходящее для большинства случаев. У этого реле 5 ножек, две подключены к обмотке, а еще три — к контактам на переключение. 5 — мощное реле на 20A, вытащенное из микроволновой печи. 6 — два реле, установленные на приемный радиомодуль (может обучаться на срабатывание от нужного приходящего по радио кода). Сам приемник потребляет меньше 5mA, но может при этом переключить ток до 12A при напряжении 36V, что составит 360 ватт! 7 — два мощных 135-ваттных транзистора 2N3055 от старого усилителя звука, со своим родным радиатором. Это устаревшие биполярные транзисторы, и они не настолько эффективны, как современные транзисторы MOSFET. Однако два таких транзистора в некоторых случаях могут заменить один IRFP450, чтобы коммутировать больше 75 ватт мощности. 8 — приемник кода RC от большой детской радиоуправляемой игрушки — автомобиля. Использует два одинаковых реле для прямого и обратного хода двигателя машинки. Странно, что эти реле системы SPDT, что означает, что у них не используются контакты N/C. 9 — два реле системы DPDT, которые эквивалентны 4 отдельным реле (в каждом из этих реле по 2 контактные группы). Электронные ключи применяются в тех случаях, когда использование простых кнопок и выключателей неудобно или невозможно — например, для запуска автомобильного стартера, или для выключения ядерного реактора, или в электронных проектах, которые по радиосигналу могут управлять включением/выключением освещения или приводом гаражной двери. В этом руководстве будет сделана попытка объяснить самым простым языком, как работают такие электронные ключи. И начнем с самого простого — реле. [Что такое электронное реле] Если коротко, то реле представляет из себя электромагнит, который управляет замыканием контактов. Работает это точно так же, как если бы контакты замыкались механическим нажатием кнопки, но в случае реле усилие для замыкания берется от магнитного поля обмотки реле. Выходные контакты реле могут управлять очень большой электрической мощностью — на порядки большей, чем прикладываемая мощность к обмотке электромагнита реле. При этом входная цепь обмотки (где действует слабый управляющий ток) полностью изолирована от выходной мощной цепи, что очень важно для безопасного управления высоковольтными нагрузками (220, 380 V и выше). Чаще всего у реле есть 5 контактов — вход 1 (на анимационном рисунке помечен +), вход 2 (на рисунке помечен как -), COM (COMmon, общий контакт), N/O (Normally Open, по умолчанию разомкнуто, когда обмотка не получает питание), N/C (Normally Closed, по умолчанию замкнуто, когда обмотка не получает питание). Чтобы лучше понять работу реле, вспомним, что эти контакты означают и для чего нужны: Вход 1: один из концов обмотки электромагнита реле, в нашем примере это вход для положительного полюса входного тока для обмотки. Когда на этот контакт приложен плюс напряжения (достаточного, чтобы реле сработало) относительно контакта Вход 2, то реле переключает контакты в активное состояние. Почти все реле нечувствительны к полярности входного тока, поэтому можно на Вход 1 подать +, а на Вход 2 подать минус, и наоборот, на Вход 1 подать -, а на Вход 2 подать +, и в любом случае реле нормально сработает. Некоторые реле, которые имеют массивный инерционный якорь, могут даже срабатывать от переменного входного напряжения (подробности см. в паспорте на реле). Для улучшения токопроводимости и уменьшения искрения поверхности контактов часто покрывают специальными металлами и сплавами на основе серебра, никеля, ванадия, а иногда для покрытия контактов применяется даже золото или платина (если это реле для коммутации сигналов в качественной аудиоаппаратуре или высокочастотной радиотехнике). Если у Вас есть 9V батарейка (например «Крона») и обычное реле, то попробуйте подключить обмотку реле к + и — батарейки. При подключении Вы услышите щелчок, который происходит из-за притягивания якоря реле к сердечнику электромагнита и переключения контактов. При отключении обмотки от батарейки произойдет также щелчок, но слабее. При отключении контакта обмотки от батареи Вы также увидите искру, которая возникает от ЭДС самоиндукции обмотки реле. Если принцип переключения контактов все еще непонятен для Вас, то его можно представить к виде псевдокода и иллюстрирующей процесс анимационной картинки: Если input = on (Power ON, через обмотку течет ток) [Как использовать реле] Как было уже упомянуто, реле используется для того, чтобы маломощные устройства (электронные компоненты, устройства) могли включать и выключать устройства, которые потребляют намного больше энергии. Самый распространенный пример применения — автомобиль. Теперь Вас не должно удивлять, почему Вы слышите щелчки при включении индикаторной лампочки, потому что Вы знаете — это срабатывает электромагнит реле. Мигания лампочки может создавать маленькая микросхема таймера, например 555 timer (NE555, LM555). Таймер 555 часто используется для создания импульсов (для простого включения и выключения) на любую нужную длительность, однако эта микросхема 555 сгорит, если будет пропускать через себя ток больше 200 ма. Так что невозможно просто так, без реле, подключить индикаторные лампочки к таймеру 555, потому что даже самые маломощные лампочки потребляют 700 ма и более. Теперь, если мы будем использовать таймер 555 для включения реле, то контактами реле можно запитывать мощные индикаторные лампочки. В этом случае через микросхему таймера будет течь ток около 50 .. 100 ма, что вполне безопасно, а в силовой цепи, питающей индикаторные лампочки, могут течь токи до 5А. Если у Вас дорогая, новая машина, то мало шансов, что Вы услышите щелчки при мигании индикаторных ламп, поскольку современная тенденция — применять везде, где можно, мощные транзисторы MOSFET, а в качестве индикаторных ламп ставить экономичные светодиоды. На интерактивной flash-анимации показан простой сценарий, в котором используются оба контакта N/O и N/C, чтобы включать либо красную, либо зеленую лампу (в зависимости от того, запитана обмотка реле, или нет). Наведите курсор мыши на серый выключатель, и нажмите левую кнопку мыши. При этом красная лампа погаснет, а зеленая загорится. На следующем рисунке показан пример использования реле вместе с таймером NE555. Кратковременное замыкание кнопки S1 запускает формирование длительной выдержки времени, в течение которого реле включено, и замыкает контакты NO и C. По окончании времени выдержки схема возвращается в исходное состояние, реле обесточивается, и становятся замкнутыми контакты NC и C. Такое устройство можно использовать для включения освещения на лестнице — по истечении заданного времени свет автоматически выключится. RC-цепочка, подключенная к выводам 6 и 7 таймера NE555, определяет выдержку времени. Диод, подключенный параллельно обмотке реле, защищает микросхему таймера NE555 от опасного выброса ЭДС самоиндукции, которое возникает при обесточивании обмотки реле (обмотка обладает значительной индуктивностью). Чтобы схема работала нормально, выбирайте подходящее реле — с током срабатывания не более 200mA (это максимум, который позволяет выход микросхемы таймера) при напряжении от 4.5 до 11 вольт. Напряжение питания схемы подберите в соответствии с параметрами реле — от 5 до 12 вольт. Вместо микросхемы таймера NE555 можно использовать любой микроконтроллер AVR, например ATmega32A или ATtiny85 [4]. Микроконтроллер точно так же, как и таймер 555, может переключать свой выход с 0 на 1. Однако имейте в виду, что выходной допустимый ток у микроконтроллера существенно меньше, а выходное напряжение может меняться только в пределах от 0 до 5V. Например, для ATmega32A выходной ток не может превышать 40mA на один порт. Поэтому в общем случае для усиления порта микроконтроллера используют транзисторные ключи [2]. Вход транзисторного ключа подключен к микроконтроллеру, а выход — к обмотке реле. [Что такое транзистор] В предыдущем разделе мы упомянули транзисторы в качестве усилителя / буфера сигналов от микроконтроллера. Но не успели разобраться, как транзисторы выглядят и по какому принципу работают. На фото показан внешний вид транзисторов различного назначения. Транзистор на сегодняшний день все еще часто используется в электронных схемах, и он является одним из элементарных компонентов радиоэлектроники (наряду с диодами, резисторами и конденсаторами). Несмотря на то, что принцип работы транзистора для новичка трудно понять с первого раза, транзистор по сути очень прост и очень хорошо работает вместе с реле. Как Вы уже наверное заметили, у транзистора 3 ножки, и простые биполярные транзисторы бывают двух типов: PNP и NPN. Самыми первыми появились транзисторы PNP, и они изготавливались на основе полупроводника германия. Потом освоили изготовление транзисторов из кремния, и более распространенными стали транзисторы структуры NPN. Транзисторы обеих структур (PNP и NPN) работают по одинаковому принципу, отличие только в полярности рабочего напряжения питания, и в некоторых параметрах. В настоящее время чаще используют транзисторы NPN. В ключевых схемах назначение транзистора то же самое, что и у реле. Когда слабый открывающий ток течет через эмиттерный переход (между базой Б и эмиттером Э), то канал между коллектором (К) и эмиттером (Э) открывается, и может пропускать ток больше базового в десятки и сотни раз. Эмиттер в этом случае играет роль общего электрода, и для транзисторов NPN в ключевом режиме эмиттер часто подключен к общему отрицательному проводу питания, к земле GND. Транзисторы иногда используют вместо реле, и они переключают большую мощность, как и реле, от слабого сигнала. Но в отличие от реле, скорость переключения транзисторов может быть очень высокой (время перехода из выключенного состояния во включенное и наоборот очень мало), поэтому их применяют для управления звуковыми динамиками и импульсными трансформаторами в ключевых источниках питания. Большинство самых обычных транзисторов могут переключаться со скоростью 1 миллион раз в секунду. Транзисторы также выгодно отличаются от реле малыми габаритами, поэтому они могут использоваться в тех местах, где реле использовать невозможно или непрактично. Однако транзисторы могут быть повреждены сильными электромагнитными полями, статическим электричеством и перегревом, что накладывает определенные ограничения на области применения транзисторов. [Как работает транзистор] Транзистор работает усилителем мощности. На вход прикладывается маленькая управляемая мощность, а на выходе снимается в десятки и даже сотни раз бОльшая мощность. Это происходит за счет изменения сопротивления между выводами коллектора и эмиттера в зависимости от тока, который протекает между базой и эмиттером. К сожалению, расположение выводов базы, эмиттера и коллектора (цоколевка) может меняться от одного типа транзистора к другому, так что для того, чтобы понять, где база, а где эмиттер и где коллектор, обращайтесь к документации на транзистор. Есть способы, позволяющие с помощью тестера определить цоколевку, но это существенно сложнее, чем просто заглянуть в даташит. Транзисторы, в отличие от реле, могут открываться не полностью (иметь некое сопротивления канала эмиттер — коллектор), что прямо пропорционально току, протекающему через базу. Эту пропорцию называют коэффициент усиления тока транзистора, h21Э. Например, если коэффициент усиления транзистора равен 100, то при токе 1mA, протекающем через базу, ток через канал коллектор — эмиттер может достигать 100mA, что на техническом языке называют усилением. Транзистор, также в отличие от реле, может сильно нагреваться при протекании через него тока. Обычно высокий нагрев получается при большой рассеиваемой мощности на сопротивлении канала коллектор — эмиттер, когда транзистор не полностью открыт. Поэтому нагрев и потери мощности минимальные тогда, когда транзистор либо полностью закрыт, либо полностью открыт. Все транзисторы имеют некий порог входного напряжения, по превышении которого транзистор начинает открываться. Для большинства обычных кремниевых биполярных транзисторов это напряжение составляет 0.5 .. 0.8V. Для германиевых транзисторов это напряжение меньше, и составляет около 0.2 .. 0.4V. Иногда этот порог называют напряжением отсечки. Если входное напряжение ниже напряжения отсечки, то ток через каналы база — эмиттер и коллектор — эмиттер не течет, транзистор полностью закрыт. Также все транзисторы имеют максимальный входной ток, после превышения которого эффект усиления перестает проявляться. Т. е. выше этого порога усиление перестает проявляться, выходной ток перестает расти. При этом напряжение между базой и эмиттером близко и даже выше напряжения между коллектором и эмиттером. Такое состояние транзистора называют насыщением, и при этом считается, что транзистор полностью открыт. В этой статье мы рассматриваем применение транзистора в качестве электронного ключа, поэтому будут использоваться только два состояния транзистора — либо он полностью закрыт (состояние отсечки тока), либо полностью открыт (состояние насыщения). Ниже приведена анимация, упрощенно показывающая общий принцип работы транзистора. Обратите внимание, что ток эмиттера равен сумме токов базы и коллектора, причем ток базы в 100 раз меньше тока коллектора (коэффициент усиления тока равен 100). По этой картинке можно проще понять, почему малого тока базы достаточно, чтобы открыть силовой канал проводимости коллектор — эмиттер (потому что маленький входной ток как бы открывает вентиль основного канала). Также можно условно понять состояние насыщения — поток воды переполняет трубу, и труба не может пропустить через себя воды больше, чем позволяет диаметр трубы. Конечно же, такое представление является упрощенным, очень приблизительно отражающим реальные процессы, которые происходят в транзисторе. [Как использовать транзистор] Очень часто транзистор используется как электронный ключ. Когда управляющий ток течет между базой и эмиттером, открывается силовой канал между эмиттером и коллектором, сопротивление между эмиттером и коллектором резко падает. К примеру, можно включать/выключать светодиоды в зависимости от сигнала тока, приходящего от таймера 555 (как на анимации ниже) или от микроконтроллера. Между управляющим выходом таймера 555 (или выходным портом микроконтроллера) и базой транзистора почти всегда ставят токоограничивающий защитный резистор (на этой анимации для упрощения резистор не показан). Для упрощения также не показаны токоограничительные резисторы, которые должны стоять последовательно с каждым светодиодом. Ранее уже упоминалась возможность управлять реле с помощью микроконтроллера. Для этого обычно также применяются транзисторы. Ниже приведена простая схема на транзисторе KT315 (его можно заменить аналогом на BC547), предназначенная для коммутации сетевой нагрузки 220V с помощью реле (это может быть лампа, или нагреватель, или асинхронный двигатель). Диод VD1 нужен для предотвращения повреждения транзистора высоковольтным импульсом ЭДС самоиндукции, который возникает при обесточивании обмотки реле. [Общие замечания по применению реле и транзисторов] Реле бывают с самыми разными параметрами, определяющими его назначение и область применения. Чем реле мощнее (то есть чем больше ток и напряжение, которое реле может коммутировать), тем больше размеры реле из-за увеличения размеров электромагнита и контактной группы. Чем реле больше по размеру, тем оно будет требовать бОльшей мощности для управления. Поэтому старайтесь подобрать реле, наиболее подходящее Вам по параметрам. Важно также подобрать нужное напряжение источника питания для реле. Если напряжение будет слишком низким, то реле не будет надежно срабатывать (или не будет срабатывать вовсе). Если напряжение будет слишком большим, то на обмотке реле будет рассеиваться слишком большая мощность, обмотка будет перегреваться и реле может выйти из строя. Чтобы правильно выбрать напряжение питания обмотки реле, см. параметры реле в его паспорте или даташите. Для управления реле с помощью микроконтроллера применяйте транзисторы в качестве буферных ключей. Вы могли бы задаться вопросом — в чем разница между мощными, обычными биполярными транзисторами и транзисторами MOSFET. Мощные транзисторы могут выдержать бОльшие токи и напряжения, и имеют специальные корпуса (обычно максимальные токи порядка 10 .. 20A, и напряжения до 600V и более). Корпус мощного транзистора рассчитан на крепление к теплоотводящей поверхности (например, радиатору). Обычные транзисторы имеют простые пластмассовые миниатюрные корпуса, и могут обычно выдерживать напряжения до 150V и токи до 2A. Транзистор MOSFET, несмотря на то, что принцип его работы и параметры абсолютно отличаются от традиционных биполярных транзисторов, применяются для тех же целей, что и биполярные транзисторы. Ниже приведен пример схемы для управления реле на транзисторе MOSFET. Под транзисторами MOSFET часто подразумевают мощные транзисторы. Действительно, параметры у MOSFET значительно превышают параметры биполярных транзисторов по току и напряжению. В закрытом состоянии сопротивление канала сток — исток транзисторов MOSFET близко к бесконечности, а в открытом состоянии падает практически до нуля. Поэтому транзисторы MOSFET могут безопасно работать при переключении очень больших мощностей, выделяя при этом малое количество тепла. Транзисторы MOSFET, как и биполярные, могут плавно изменять сопротивление силового канала, однако это сопротивление зависит от входного напряжения, а не от входного тока. Во многих случаях можно с небольшими модификациями схемы заменить биполярный транзистор на транзистор MOSFET. Обратная замена возможна далеко не всегда. Меня наверное можно назвать «радиоэлектронным старьевщиком». Не могу равнодушно мимо любой выброшенной радиоэлектронной железки — хочется забрать домой, починить или хотя бы разобрать на запчасти. В старой аппаратуре можно найти реле и транзисторы, вполне работоспособные и достойные лучшей участи, чем гниение на свалке. Реле могут стоять в микроволновых печах, кондиционерах, телевизорах, холодильниках, источниках бесперебойного электропитания, музыкальных центрах, радиоуправляемых игрушках. Транзисторы встречаются почти в любой электронной аппаратуре, и последнее время все больше встречаются транзисторы с планарным монтажом на плату (SMD), а транзисторы со штыревыми выводами встречаются реже. [Что обозначают аббревиатуры SPDT, SPST, DPST, DPDT]
[Ссылки] 1. How Electronic Switches Work For Noobs: Relays and Transistors site:instructables. com. |
Схема выпрямителя и ККМ инверторного кондиционера
Рекомендуем ознакомиться с предыдущими статьями:
- Структурная схема инверторного кондиционера
- Схема фильтра инверторного кондиционера
После входного помехоподавляющего фильтра идёт выпрямитель, обычно совмещённый с корректором коэффициента мощности.
Выпрямитель и корректор коэффициента мощности
Для питания инверторного модуля необходим постоянный ток. Для выпрямления переменного тока в постоянный используются полупроводниковые диоды включённые по мостовой схеме (иногда другой). Также используются готовые диодные мосты, выполненные в едином корпусе.
Коэффициент мощности — характеристика потребителя электроэнергии, которая показывает насколько больше мощность потребления от сети по сравнению с активной мощностью самого прибора. Для активной нагрузки (например, лампа накаливания, тепловые электроприборы) коэффициент равен 1.
Электрическая нагрузка в кондиционере имеет ёмкостный (конденсаторы) и индуктивный (компрессор) характер, что снижает КМ. По регламентам различных стран КМ должен быть не ниже определённого значения для потребителей различной мощности.
Поэтому во всех инверторных кондиционерах применяют корректоры КМ, рассмотрим наиболее часто применяемые схемы.
Схема пассивного ККМ:
После выпрямительного моста установлен дроссель L1, который корректирует КМ.
Такая схема обеспечивает невысокий коэффициент — 0,7 — 0,85 , в зависимости от нагрузки и имеет существенный недостаток — выбросы напряжения при изменении нагрузки, поэтому конденсаторы должны быть с увеличенным рабочим напряжением.
Пассивные корректоры использовались в очень старых моделях кондиционеров (теперь они не соответствуют ни европейским, ни японским стандартам), также используются и сейчас в дешёвых китайских инверторах.
Схемы активных ККМ
Активные корректоры имеют в своей схеме активные компоненты — транзисторы, работающие в ключевом режиме, управляемые специализированными микросхемами.
Кстати, данная схема в немного видоизменённом виде наиболее часто используется в кондиционерах Daikin малой и средней мощности.
В разных сериях кондиционеров, и у разных производителей используются различные схемы и элементы. Например, транзистор может быть полевым или биполярным с изолированным затвором (IGBT).
На плате это выглядит так:
Встречаются также схемы с двумя дросселями, обычно это кондиционеры мощностью более 5 кВт (потребляемой, а не холодильной), при этом используются и два транзистора, что видно на скриншоте схемы из сервис-мануала:
Также, сейчас выпускается большое количество уже готовых модулей ККМ — все силовые активные элементы, а также управляющие и драйверные микросхемы находятся внутри:
На деталях видны белые следы термопасты — так как все активные элементы при работе греются, для них необходим теплоотвод, обычно это алюминиевый радиатор, который крепится на эти элементы, а термопаста необходима для хорошего теплового контакта.
Трёхфазные выпрямители
Выше мы рассмотрели схемы с однофазным питанием, более мощные установки питаются трёхфазным напряжением.
Трёхфазное напряжение выпрямляется и сглаживается конденсаторами и далее схема не отличается от однофазной.
Очень часто используют модули в которых расположены сразу все силовые детали — выпрямитель, ККМ и IPM.
Ремонт транзистор-тестера или ESR метра
Вот и постигла меня печальная участь.Спалил свой транзистор-тестер, он же ESR метр.
Палится очень просто — не разряженным конденсатором, т.к. входы тестера напрямую приходят в микроконтроллер.
Выглядит мой экземпляр вот так:
На плате обозначение: WEI_M8_NLG_TST_V1.10
Штука это незаменимая в работе.
Последнее время я совсем обленился и стал ей всецело доверять проверку элементов при разного рода ремонтах.
Например: надо проверить полевичок, подцепляем, если тестер показывает картинку — значит целый.
Померить ESR конденсатора — запросто.
А тут такая беда — сгорел. Надо чинить.
Тестер построен на микроконтроллере ATMega328p, точно на таком же как Arduino nano/mini.
Ну вы поняли мысль? 🙂
У меня как раз завалялась одна китайская Arduino pro-mini, которая быстренько этого контроллера лишилась.
Осталась одна платка:
Запаиваем в наш тестер, предварительно сняв экран:
Остаётся всего-то залить прошивку и можно пользоваться.
И вот тут я подзастрял надолго.
И так, структурирую свой тернистый путь долгих поисков и освоения магии прошивки этого чуда прибора.
Суть сводится к следующим действиям:
1. Скомпилировать прошивку, с нужными опциями под свою версию платы тестера.
2. Прошить ATMega328p
3. Profit!
Из статьи товарища elchupanibrei узнаём, что существует и здравствует форк проекта некого Маркуса, с нужными нам исходниками для сборки прошивки.
На портале vrtp.ru находится заметка юзера indman с подробным описанием процесса компиляции прошивки.
Приведу её здесь:
Установка программного обеспечения
1. Установить программу WinAVR-20100110-install.exe (при установке использовать параметры по умолчанию)
2. Распаковать содержимое архива «avr8-gnu-toolchain-installer-3.4.4.24-wi
(в последних релизах прошивки без этих исходников, при прошивке МК m328 возникает ошибка типа «..программа выходит за диапазон памяти МК»).
Компиляция прошивки
1. Скачать с сайта автора по ссылке https://www.mikrocontroller.net/svnbrowser/transistortester/Software/trunk/ текущий дистрибутив прошивок.
Для этого кликнуть внизу страницы на строчку «Download GNU tarball».
2. Распаковать скачанный дистрибутив «transistortester-trunk.tar.gz» в каталог, например С:\Trunk (кирилицу в обозначении имени каталога не использовать).
3. Из каталога C:\Trunk\default удалить всё,кроме каталога «dep«.
4. Скопировать в каталог C:\Trunk\default соответствующий процессору файл «makefile«.
Вот тут нужна ремарочка.
В моей плате, которая WEI_M8_NLG_TST_V1.10, используется дисплей st7565, в дистрибутиве прошивок есть каталог mega328_wei_st7565 — это как раз наш вариант.
Файлик «makefile» можно взять прямо оттуда. Ну или из каталога mega328, но тогда придётся проверять и править больше опций.
Дисплейчик st7565 (разрешением 128×64):
Дальше нужно пробежаться по большому списку опций, проверить, что всё выставлено верно.
Перечень опций можно найти в инструкции Версия 1.12k в разделе Конфигурирование Тестера (стр. 50).
В файле «makefile«, который мы взяли в каталоге mega328_wei_st7565 я поменял только 3 опции:
UI_LANGUAGE = LANG_RUSSIAN
CFLAGS += -DLCD_CYRILLIC
CFLAGS += -DNO_LONG_PINLAYOUT
Захотелось что-то меню на русском, а остальное стояло, на мой взгляд верно 🙂
В принципе можно поиграть со шрифтами, например вместо
CFLAGS += -DFONT_8X12thin
поставить помельче
CFLAGS += -DFONT_8X16thin
но меня вполне устраивает и первый вариант.
5. Запустить редактор WinAVR (C:\WinAVR-20100110\pn\pn.exe)
6. Открыть Makefile.
7. Скомпилировать Makefile, для этого выполнить команды меню: Tools-Make All.
8. Если компиляция завершилась удачно — получаем код выхода равный 0 (Process Exit Code:0).
Скомпилированные файлы прошивки «TransistorTester.eep» и «TransistorTester.hex» будут находиться в том же каталоге C:\Trunk\default.
Для корректной компиляции в среде Win10 необходимо заменить одну библиотеку по адресу: %каталог с установленным WinAVR%\utils\bin\msys-1.0.dll
Библиотека прилагается в архиве в конце этой статьи.
Скомпилировали, получили два файлика: «TransistorTester.eep» и «TransistorTester.hex«.
Теперь нужно как-то прошить нашу ATMega328p.
У кого под рукой есть программаторы типа: TL866, USBasp или даже китай типа:
дальше будет не интересно.
Но у меня ничего подобного не водится, зато водится FTDI FT232RL, который прекрасно справится с ролью прошивки нашего контроллера:
И тут опять мне помогла статья про программатор из FT232R elchupanibrei.
Я до этого и не знал, что им можно прошивать AVR микроконтроллеры.
Прошивается режиме BitBang, через програмку AVRDUDE.
Проблема в том, что официальные версии AVRDUDE не поддерживают BitBang и предлагают самим пользователям, скомпилировать программу, установив необходимые для этого библиотеки.
Но, на radiokot.ru я нашёл статейку, где добрые люди за меня уже скомпилировали и выложили нужную версию AVRDUDE.
Правда без непоняток, и в этот раз необошлось.
В конфиге avrdude.conf, в секции которая нас интерсует, записаны номера пинов miso=1, sck=0, mosi=2, reset=4
programmer
id = «ft232r»;
desc = «FT232R Synchronous BitBang»;
type = «ftdi_syncbb»;
connection_type = usb;
miso = 1; # RxD
sck = 0; # TxD
mosi = 2; # RTS
reset = 4; # DTR
;
В другом конфиге, который я нашёл на каком-то форуме, были другие цифры:
programmer
id = «ft232r»;
desc = «FT232R Synchronous BitBang»;
type = «ftdi_syncbb»;
connection_type = usb;
miso = 3; # CTS X3(1)
sck = 5; # DSR X3(2)
mosi = 6; # DCD X3(3)
reset = 7; # RI X3(4)
;
Долго не мог понять откуда эти цифры, которые совсем не соответствуют реальной распиновке FT232RL:
А разгадка такая:
Распиновочка из таблички 2. 1 официальной PDF-ки FTDI:
Тут я уже отметил пины, которые использовал, красным цветом.
Оказывается, в FT232RL можно переназначать выводы произвольным образом, что как раз и указывается в конфиге avrdude.conf.
В моей платке имеются выводы CTS, TX, RX и DTR (их отметил красным в столбце Pin Number, который соответствует реальной-физический распиновке FT232RL).
Вот на них и будем назначать выводы для программирования нашего контроллера (я назначил выводы, как в столбце Signal, но их можно перетасовать как угодно).
Исходя из таблички, мой конфиг будет выглядеть следующим образом:
programmer
id = «ft232r»;
desc = «FT232R Synchronous BitBang»;
type = «ftdi_syncbb»;
connection_type = usb;
miso = 1; # RxD
sck = 0; # TxD
mosi = 3; # CTS
reset = 4; # DTR
;
Так, с FT232RL разобрались, теперь надо понять, куда подключаться на нашей плате.
Ну тут уже проще.
Впаял разъёмчик на 6 пинов начиная с самого правого:
Подключаем к этим пинам наш адаптер FT232RL и запускаем AVRDUDE.
Кстати, рекомендую использовать GUI AVRDUDESS, лично мне так гораздо нагляднее и удобнее работать:
Тут я уже выставил все необходимые настроечки и фьюзы — fuses.
Пару слов о fuses.
Есть хорошая статья про них на сайте easyelectronics.ru (сайт всячески рекомендую к просмотру, там много чего интересного имеется).
Рекомендую также пользоваться калькулятором фьюзов для AVR.
Конкретно для моей платы WEI_M8_NLG_TST_V1.10 фьюзы расчитаны так:
Extended Fuse установлены как 0xFF не просто так.
Обычно там ставится 0xFC, но на стр. 27 инструкции Версия 1.12k есть информация о том, что может происходить сброс процессора из-за короткого провала напряжения «Brown Out»,
и, чтобы убрать обнаружение этих провалов, нужно сделать небольшую доработку платы или поставить Extended Fuse на 0xFF
Всё, фьюзы поставили, можно прошивать.
После прошивки, тестер попросит сделать калибровочку, после чего можно пользоваться:
Архив с готовыми прошивками и софтом — тут.
КТ3102 цоколевка, КТ3102 параметры | Практическая электроника
КТ3102 один из популярных отечественных биполярных транзисторов с большим коэффициентом усиления, высокочастотный, маломощный с n-p-n структурой. Транзистор КТ3102 (как и его комплементарную пару КТ3107) ещё называют супербета, благодаря малой толщине базы его коэффициент усиления по току может достигать тысячи.
КТ3102 цоколевка
Транзистор КТ3102 выпускался как в металлостеклянном так и в пластиковым КТ-26 (зарубежный аналог ТО92).
Обратите внимание на рисунке показан вид снизу.
В верхней части рисунка показана цоколевка КТ3102 в металическом корпусе, это транзисторы без последный буквы М: КТ3102А, КТ3102Б, КТ3102В, КТ3102Г, КТ3102Д, КТ3102Е, КТ3102Ж, КТ3102И, КТ3102К.
В нижней части рисунка показана цоколевка КТ3102 в пластиковом корпусе, это транзисторы в обозначении которых есть заключительная буква М: КТ3102АМ, КТ3102БМ, КТ3102ВМ, КТ3102ГМ, КТ3102ДМ, КТ3102ЕМ, КТ3102ЖМ, КТ3102ИМ, КТ3102КМ. Ещё говорят что у КТ3102 цоколевка КБЕ.
Маркировался КТ3102 как полным буквенноцифровым обозначением, так и цветными точками.
КТ3102 параметры
- Максимальный ток коллектора IКmax = 0,1 А
- Максимальный импульсный ток коллектора IК и.max = 0,2 А
- Максимальная мощность коллектора без радиатора Pкmax = 0,25 Вт
- Максимальная рабочая частота в схемах с общим эмиттером fгр. ≤ 150 МГц
- Максимальное напряжение коллектор-база Uкбо
- Максимальное напряжение коллектор-эмиттер Uкэо
- Коэффициент усиления в схемах с общим эмиттером h21э
- Обратный ток коллектора Iкбо
- Коэффициент шума транзистора Кш
Тип | Uкбо(и) и Uкэо(и), В | h21э | Iкбо, мкА | Кш, дБ | Аналог |
---|---|---|---|---|---|
КТ3102А, КТ3102АМ | 50 | 100-250 | ≤0,05 | 10 | 2N4123 |
КТ3102Б, КТ3102БМ | 50 | 200-500 | ≤0,05 | 10 | 2N2483 |
КТ3102В, КТ3102ВМ | 30 | 200-500 | ≤0,015 | 10 | 2SC828 |
КТ3102Г, КТ3102ГМ | 20 | 400-1000 | ≤0,015 | 10 | BC546C |
КТ3102Д, КТ3102ДМ | 30 | 200-500 | ≤0,015 | 4 | BC547B |
КТ3102Е, КТ3102ЕМ | 20 | 400-1000 | ≤0,015 | 4 | BC547C |
КТ3102Ж, КТ3102ЖМ | 50 | 100-250 | ≤0,05 | — | — |
КТ3102И, КТ3102ИМ | 50 | 200-500 | ≤0,05 | — | — |
КТ3102К, КТ3102КМ | 20 и 30 | 200-500 | ≤0,015 | — | — |
Ремонт гироскуторов своими руками SW19.
ruЭлектротранспорт начинает приходит на наши улицы, в основном это электровелосипеды и скутеры . Сегодня речь пойдёт гироскутере.
Для примера возьмем зверя с самой распространенной начинкой. И так, у нас на борту батарея на 36 вольт, две платы с датчиками гироскопа и одна основная плата управления моторами. Ещё имеется плата модуля «синий зуб» и шесть плат сигнальных светодиодов. Отцепляем все светодиоды, синий зуб и зарядку, чем меньше проводов — тем проще работать.
Так же для удобства работы следует перевернуть гироскутер и положить центром на подставку, вывесив колёса в воздухе.
Платы с гиродатчиками следует перевернуть и закрепить изолентой, иначе система вывалится в ошибку Е9. С помощью этой ошибки возможно проверить работу датчиков гироскопа, просто переверните плату датчика гироскопа вниз головой и если светодиод на материнской плате даст код E9, значит датчик работает. Затем так же проверьте вторую плату.
Для проверки гиродатчиков, переверните плату
Как обычно всё начинается с питания. Заряженный аккумулятор должен выдать 40 вольт под небольшой нагрузкой. В качестве нагрузки подойдёт обычная лампа накаливания 220 вольт 60 ватт.
На основной плате расположены три стабилизатора по питанию. На элементе Q3 собран импульсный стабилизатор на 12 вольт. Дальше по цепи стоят линейные стабилизаторы U1 — 5 вольт на элементе 78M05 и U2 — 3.3 вольта на элементе CJT1117B.
Платы гироскопов питаются от 12 вольт и имеют свои элементы стабилизации на 5 и 3.3 вольта. Выполнена стабилизация на тех же элементах что и в основной плате 78M05 и AMS1117. С обратной стороны на платах стоят оптические датчики педалей управления. Одна из плат содержит модуль приёма команд с радиопульта. В остальном обе платы идентичны.
С питанием разобрались. Теперь углубимся в работу основной платы. Материнская плата содержит два генератора трехфазного тока с системой контроля и защиты. Всем этим хозяйством управляет центральный процессор U3. На элементе Q1 собран электронный выключатель питания, подающий на материнскую плату напряжение при нажатии кнопки запуска устройства. Роль переключателей в цепи обмоток моторов выполняют полевые ключи. Контроль работы ключей берётся с двух фаз каждого мотора. Сами цепи контроля выполнены на элементах U4, U6. Это сдвоенный операционный усилитель с маркировкой CD06 .
Сигналы с этих усилителей поступают на ноги управляющего процессора U3. Если с силовой частью что-то не так, то процессор увидит неполадки через эту цепь. При замене усилителей CD06 аналогами, возможно потребуется регулировка цепи обратной связи усилителя.
Контроль тока потребляемого моторами выполнен на элементах U5, Q2L, Q2R, RONL, RONR.
Токовые резисторы RON расположены по двум сторонам платы, они выполняют роль шунта, на минусовой шине питания. Микровольты падения напряжения с токовых резисторов усиливаются усилителем U5 (CD06) и поступают на процессор U3. Таким образом процессор отслеживает работу системы по нагрузке. Так же на элементах Q2L,Q2R (BFS20) выполнена пороговая защита по току при активации которой электроника вывалится в ошибку . При превышении порога транзисторы закрываются и подтягивают через резисторы R51L,R51R контрольные ноги процессора к минусу питания. Процессор при этом отключает генераторы, что бы предотвратить выход из строя батареи, моторов и силовых ключей. Правая и левая половины материнской платы идентичны и имеют одинаковые параметры, что упрощает поиск неисправности.
Мотор гироскутера содержит три силовых обмотки и три датчика холла. Датчики холла поочерёдно переключаются при вращении колеса, что можно отследить логическим анализатором или обычным пробником.
Кнопка питания устройства выполняет функцию сброса на заводские настройки с одновременной калибровкой датчиков гироскопа в пространстве. В процессе сброса, платформа гироскутера должна находится в горизонтальной плоскости. На выключенном устройстве зажать кнопку питания и дождаться длинного звукового сигнала. Затем отпустить кнопку, и подождать 10-20 сек. Выключить гироскутер.
Следующее включение гироскутера, будет с новой калибровкой.
Коды ошибок
Гироскутер имеет свою систему диагностики и при неполадках сигнализирует светодиодом на материнской плате в формате десятичного кода.
Если гироскутер развёрнут так, что батарея у вас находится слева как на фото, то коды имеют следующий вид:
- E1- Неисправность цепей управления и контроля левая сторона платы « L» ( управление, мотором возле материнской платы).
- E2 Неисправность цепей управления и контроля правая сторона платы «R» ( управление, мотором возле питающей батареи)
- E3 Проблемы с силовой частью управления моторами или их цепи.
- E4 Правые датчики холла
- E5 Левые датчики холла
- E6 Неисправность аккумулятора или цепи питания на основной плате.
- E7 Неисправность левого модуля гироскопа
- E8 Неисправност правого модуля гироскопа
- E9 Угол наклона гироскутера превышает 80 градусов
Обнаружение неисправностей системой самодиагностики гироскутера делится на два этапа. Первый это тест во время включения. Второй это выход за допустимые пределы во время работы устройства. Например: Утечка в транзисторах Q2L,Q2R при включении питания даст нам соответственно коды E1,E2. Если эти же элементы подадут сигнал во время работы гироскутера, то мы увидим код E3.
Для детального прояснения ситуации, пробегаем вольтметром по плате.
Замеряем напряжение на цепях контроля относительно минуса батареи .
Выходы микросхемы U5 ноги 1 и 7, напряжение 1.8 вольта.
Выходы микросхем U4, U6 ноги 1 и 7 напряжение 1.6 вольта.
На коллекторах транзисторов Q2L,Q2R напряжение 3.3 вольта.
Если напряжения отличаются от указанных, то проверить обвязку элементов защиты и приходящие к ним напряжения.
На других моделях гироскутеров цепи контроля и коды диагностики могут не совпадать с данными приведёнными выше, но принципы работы у них одинаковы.
Транзисторы 101: подробное описание транзисторов
Транзисторы — один из наиболее часто используемых элементов в электронных схемах. Их простота использования и простой принцип работы — вот что делает их популярными среди разработчиков электроники. В основном они выполняют две функции: переключение и усиление. Вам просто нужно несколько вычислений, чтобы внедрить это трехногий прибор в ваш следующий проект и дать ему возможность правильно работать. Итак, давайте подробно рассмотрим транзисторы и посмотрим, как вы можете использовать их в своем предстоящем электронном проекте.К концу этого сообщения в блоге у вас будет четкое представление о внутренней структуре транзистора, его различных типах и способах их включения в электронные схемы.
Насколько важны транзисторы?Транзисторы используются почти во всех электронных схемах. Более того, они используются в интегральных схемах (IC), логических вентилях (AND, OR, NOT, XOR и т. Д.) И многих других электронных компонентах. В среднем ИС содержит 42 миллиона транзисторов, а iPhone 11 — 8.5 миллиардов транзисторов.
Как выглядит внутренняя структура транзистора?Транзисторы изготовлены из полупроводникового материала, такого как кремний, германий и др. Добавление примесей в полупроводниковые пластины позволяет производителям транзисторов создавать области n-типа и p-типа. Этот процесс называется допингом.
Легирование позволяет полупроводниковой пластине, такой как кремний, разделяться на две области; n-тип и p-тип.Что это за регионы и чем они отличаются? Количество положительных и отрицательных зарядов, присутствующих в этой области, — вот что их отличает. Отрицательно заряженные частицы называются электронами, а положительно заряженные области — дырками, потому что отсутствие электрона создает «дырку». В области n-типа основными носителями являются электроны, а в области p-типа основными носителями являются дырки.
Транзистор состоит из области p-типа между двумя областями n-типа, и наоборот.NPN и PNP — это два типа транзисторов, в зависимости от их внутренней структуры. Три вывода транзистора берут начало от каждой из трех легированных областей, находящихся внутри него. Средняя зона — это базовая клемма, а две другие — эмиттерная и коллекторная.
Как работают транзисторы?Транзисторы работают как усилители или переключатели. При работе в качестве усилителя транзистор принимает небольшой входной ток и усиливает его, чтобы получить больший выходной ток.С другой стороны, при работе в качестве переключателя низкий входной ток на входной клемме включается и вызывает больший ток на выходной клемме. Обе конфигурации транзисторов выгодны, что делает их очень популярными в проектировании электронных схем.
Если мы подключим отрицательную клемму батареи к области n-типа (эмиттер), а положительную клемму к базе (область p-типа), ток будет течь от базы к эмиттеру.Точно так же, если мы поместим коллектор (область n-типа) на более высокий положительный потенциал, чем база и эмиттер, ток эмиттера будет генерироваться и течь к коллектору. Ток коллектор-эмиттер I CE регулируется напряжением базы.
Режимы переключения и усиления достигаются за счет обеспечения правильного напряжения базы, коллектора и эмиттера. Давайте рассмотрим некоторые основные схемы транзисторов, чтобы понять, как происходит усиление и переключение.
Конфигурации транзисторовСуществует три основных конфигурации транзисторов, которые широко используются в проектировании электронных схем:
- Общий эмиттер
Конфигурация с общим эмиттером работает как усилитель, а также как переключатель. Входной сигнал подается на базу, а выходной сигнал измеряется на клемме коллектора. Эмиттер является общим для входных и выходных клемм, поскольку входной сигнал подается на клеммы база-эмиттер, а выходной сигнал собирается на клеммах коллектора и эмиттера.На схеме ниже показано, как можно построить схему усилителя с общим эмиттером. В этих примерах схем мы рассматриваем NPN-транзисторы.
- Общий коллектор
В этой конфигурации входной сигнал подается на базу, а выходной — на клемме эмиттера. Коллектор является общим как для входных, так и для выходных клемм; вам необходимо заземлить эту клемму при построении вашей схемы с общим коллектором. Эта конфигурация в основном используется в качестве схемы буфера напряжения, переключателя и схемы согласования импеданса.На схеме ниже показана базовая реализация схемы с общим коллектором.
- Общая база
Как вы, возможно, уже догадались, клемма базы является общей для входных и выходных сигналов. Эмиттер действует как входной терминал, а выходной сигнал генерируется на коллекторе. Базовая клемма заземлена так, что она является общей для обеих других клемм. Конфигурация с общей базой в основном используется для согласования импеданса.На схеме ниже показано, как можно реализовать схему усилителя с общей базой.
Среди трех конфигураций транзисторов наиболее популярной является конфигурация с общим эмиттером. Это в основном из-за его усиления по напряжению, которого достаточно для большинства транзисторных приложений по сравнению с коэффициентом усиления двух других конфигураций.
Транзистор как переключательПереключатель — это электронный компонент, который позволяет включать или отключать соединение в цепи.Разрыв соединения называется разомкнутой цепью (ВЫКЛ), в то время как замкнутая цепь (ВКЛ) — когда соединение установлено. Самым популярным применением транзисторов является их использование в качестве переключателя. Как работают три вывода транзистора, когда он действует как переключатель?
ТранзисторА работает в двух режимах — насыщения и отсечки. Когда он работает как переключатель, он отключается, когда находится в режиме отсечки, поскольку через него не течет ток коллектора, и он включается при работе в режиме насыщения.Ток коллектора генерируется при наличии входного сигнала на базе; это когда транзистор включен. При отсутствии входного сигнала транзистор переходит в режим отсечки и выключается, при этом ток через коллектор не протекает.
Вот базовая схема, в которой транзистор NPN работает как переключатель. На базу подается входное напряжение. Вы должны иметь в виду, что кремниевым устройствам с p-n переходом для работы требуется напряжение выше 0,7 В. Следовательно, ваше напряжение база-эмиттер (V BE ) должно быть выше 0.7В для включения транзистора. Резистор на входе определяет величину напряжения на базе.
Когда V BE больше 0,7 В, переходы база-эмиттер и база-коллектор смещены в прямом направлении, что приводит к максимальному току коллектора. Это когда ваш транзистор находится в режиме насыщения и действует как замкнутая цепь. В результате загорится светодиод на выходе.
Аналогично, когда вход заземлен, напряжение база-эмиттер будет меньше 0.7 В, что приводит к обратному смещению переходов база-эмиттер и база-коллектор. Следовательно, через коллектор не будет протекать ток, и транзистор будет в режиме отсечки, что приведет к выключению выходного светодиода.
Применение транзистора: ОсцилляторОчень распространенная электронная схема — это генератор, который используется в различных приложениях, таких как светодиоды, обработка сигналов и часы генератора микроконтроллера. Используя пару транзисторов, мы можем быстро построить схему генератора, как показано на схеме ниже.
Конденсаторы, присутствующие в цепи генератора, играют наиболее важную роль. Когда один конденсатор заряжается, он включает транзистор до его разрядки. Между тем, второй конденсатор заряжается и включает второй транзистор, когда первый выключается. Это генерирует осциллирующий импульс, поскольку транзисторы соединены в виде зеркала с противоположной полярностью.
Вы можете изменить частоту колебаний, изменив номиналы конденсатора и резистора в соответствии с вашими потребностями.Все, что вам нужно, это пара транзисторов, пара конденсаторов и несколько резисторов для построения многоцелевой схемы генератора.
Хотите узнать ТЗ? Изучите возможности электроники Fusion 360, включая ТЗ и ТЗ, загрузив бесплатную пробную версию.
Autodesk Fusion 360 предлагает множество инструментов для инженеров, включая трехмерное проектирование печатных плат, исчерпывающие наборы данных и многое другое. Чего же ты ждешь? Начните свой следующий проект в области электроники в Fusion 360 уже сегодня.
12 часто используемых компонентов на печатных платах для начинающих
Несмотря на то, что мы живем в мире, полном электронных устройств, электроника по-прежнему сохраняет завесу тайны. Механизмы работы электронных проектов кажутся настолько абстрактными, что нельзя увидеть ничего, что могло бы заставить гаджеты работать. Без перемещения шестерен, валов и тому подобного на печатной плате визуально ничего не происходит. Вы не можете видеть протекающий ток, только его результаты. Таким образом, создание электроники в качестве хобби кажется устрашающим подвигом для многих потенциальных разработчиков электронных проектов.Создание чего-либо без полного понимания теории, лежащей в основе этого, кажется немыслимым.
Но на самом деле можно создавать проекты, не разбираясь в теории. Хотя знание теории электроники окажется более чем полезным, оно не является важной частью создания простых, но полезных проектов. Хороший способ начать — сначала ознакомиться с компонентами, используемыми на печатной плате, и их функциями.
Печатная плата — Город, который никогда не спит
Разве этот вид Нью-Йорка с воздуха не напоминает вам печатные платы?Подобно тому, как работают города, компоненты на печатной плате работают вместе, образуя целостную систему для питания наших устройств.Если подумать в этом направлении, идея наличия такого количества различных компонентов на печатной плате больше не будет казаться слишком чуждой. Чтобы помочь вам начать работу, мы представим 15 наиболее часто используемых электронных компонентов, установленных на печатных платах!
1. Резисторы
Осевые резисторы и их цветные коды цветов резисторов Резисторыявляются одними из наиболее часто используемых компонентов печатных плат и, вероятно, наиболее просты для понимания. Их функция — противодействовать прохождению тока, рассеивая электроэнергию в виде тепла.Они бывают множества различных типов, изготовленных из различных материалов, но классический резистор, наиболее знакомый любителям, — это резисторы «осевого» типа с выводами на обоих длинных концах и корпусом, отмеченным цветными кольцами. Эти кольца представляют собой код, который указывает значение их сопротивления. Если вы не знаете, как это сделать, ознакомьтесь с нашей статьей о расшифровке цветового кода резистора !
Учебное пособие по резисторам
2. Конденсаторы
Радиальные электролитические конденсаторы на печатной плате Конденсаторы— это следующий наиболее распространенный компонент, который вы найдете на печатной плате, и их обычно уступают только резисторам.Функция конденсаторов заключается в том, чтобы временно удерживать электрический заряд и высвобождать его всякий раз, когда требуется больше энергии в другом месте цепи. Обычно это достигается путем сбора противоположных зарядов на двух проводящих слоях, разделенных изолирующим или диэлектрическим материалом. Конденсаторы часто подразделяются на категории в зависимости от материала проводника или диэлектрика, что дает начало множеству типов с различными характеристиками, от электролитических конденсаторов с высокой емкостью, разнообразных полимерных конденсаторов до более стабильных керамических дисковых конденсаторов.Некоторые из них внешне похожи на осевые резисторы, но классический конденсатор представляет собой радиальный конденсатор с двумя выводами, выступающими из одного конца.
3. Катушки индуктивности
Различные типы индукторов(источник: eeweb)
Катушки индуктивности являются последними в семействе линейных пассивных компонентов, наряду с резисторами и конденсаторами. Как и конденсаторы, они также накапливают энергию, но вместо накопления электростатической энергии индукторы накапливают энергию в виде магнитного поля, которое генерируется, когда через них протекает ток.Самый простой индуктор — это катушка с проволокой. Чем больше количество обмоток, тем больше магнитное поле и, следовательно, индуктивность. Вы можете найти их обернутыми вокруг магнитного сердечника, который бывает самых разных форм. Это служит для существенного усиления магнитного поля и, следовательно, накопленной энергии. Индукторы часто используются для фильтрации или блокировки определенных сигналов, например, для блокировки помех в радиооборудовании или используются вместе с конденсаторами для управления сигналами переменного тока в импульсных источниках питания.
4. Потенциометры
Потенциометры представляют собой разновидность переменного резистора. Они обычно доступны в поворотном и линейном исполнении. Вращая ручку поворотного потенциометра, можно изменять сопротивление, поскольку ползунковый контакт перемещается по полукруглому резистору. Классическим примером поворотных потенциометров является регулятор громкости в радиоприемниках, где поворотный потенциометр регулирует величину тока, подаваемого на усилитель. Линейный потенциометр такой же, за исключением того, что сопротивление изменяется линейным перемещением ползункового контакта на резисторе.Они отлично подходят, когда требуется точная настройка в полевых условиях.
5. Трансформаторы
Трансформаторы разныеТрансформаторы предназначены для передачи электрической энергии от одной цепи к другой при повышении или понижении напряжения. Можно сказать, что напряжение «трансформируется». Подобно индукторам, они состоят из сердечника из мягкого железа с как минимум двумя витками проволоки, намотанными вокруг него — первичной катушкой для первой цепи или цепи источника и вторичной катушки для цепи, в которую передается энергия.Возможно, вы видели большие промышленные трансформаторы на телеграфных столбах; они понижают напряжение воздушных линий электропередачи, обычно несколько сотен тысяч вольт, до нескольких сотен вольт, которые обычно требуются для домашнего использования.
6. Диоды
Более длинный вывод указывает на анод на светодиодном устройстве со сквозным отверстиемПодобно улице с односторонним движением, диод — это устройство, которое позволяет току течь только в одном направлении, от анода (+) к катоду (-). Это достигается за счет нулевого сопротивления в одном направлении и высокого сопротивления в другом направлении.Эту функцию можно использовать для предотвращения протекания тока в неправильном направлении, что может привести к повреждению. Самый популярный диод у любителей — это светодиод или светодиод. Как следует из первой части названия, они используются для излучения света, но любой, кто пытался паять их, знает, что это диод, поэтому важно правильно ориентировать его, иначе светодиод не загорится. .
7. Транзисторы
Индивидуально упакованные биполярные переходные транзисторы (BJT)Транзисторы считаются фундаментальными строительными блоками современной электроники.В одной микросхеме ИС можно найти несколько миллиардов. Но транзисторы — это просто усилители и электронные переключатели. Они бывают нескольких типов, из которых наиболее распространен биполярный транзистор. Их можно разделить на версии NPN и PNP. Биполярные транзисторы имеют 3 контакта — база, коллектор и эмиттер. Для типа NPN, когда ток (обычно небольшой ток) протекает от базы к эмиттеру, он включает другую цепь, которая заставляет ток (обычно намного больший) течь от коллектора к эмиттеру.В транзисторе PNP направление меняется на противоположное. Другой тип транзистора, называемый полевыми транзисторами или полевыми транзисторами, использует электрическое поле для активации другой цепи.
8. Кремниевый выпрямитель (SCR)
Также известные как тиристоры, кремниевые управляемые выпрямители (SCR) похожи на транзисторы и диоды — по сути, они представляют собой два транзистора, работающих вместе. У них также есть три вывода, но они состоят из четырех кремниевых слоев вместо трех и работают только как переключатели, а не как усилители.Еще одно важное отличие состоит в том, что для активации переключателя требуется только один импульс, тогда как в случае одного транзистора ток должен подаваться непрерывно. Они больше подходят для переключения большей мощности.
9. Интегральные схемы
ИС, или интегральные схемы — это как раз то, что они представляют собой схемы и компоненты, которые были сжаты на пластинах из полупроводникового материала. Огромное количество компонентов, которые можно уместить на одном кристалле, — вот что привело к появлению первых калькуляторов, а теперь и мощных компьютеров, от смартфонов до суперкомпьютеров.Обычно они мозги более широкого круга. Схема обычно заключена в черный пластиковый корпус, который может быть любой формы и размера и иметь видимые контакты, будь то выводы, выходящие из корпуса, или контактные площадки, например, непосредственно под микросхемами BGA.
10. Кристаллические генераторы
Кварцевые генераторыобеспечивают синхронизацию во многих схемах, требующих точных и стабильных элементов синхронизации. Они производят периодический электронный сигнал, физически заставляя пьезоэлектрический материал, кристалл, колебаться, отсюда и название.Каждый кварцевый генератор разработан для вибрации с определенной частотой, более стабилен, экономичен и имеет небольшой форм-фактор по сравнению с другими методами синхронизации. По этой причине они обычно используются в качестве точных таймеров для микроконтроллеров или, чаще, в кварцевых наручных часах.
11. Переключатели и реле
Основной компонент, на который легко не обращать внимания, переключатель представляет собой просто кнопку питания для управления током в цепи путем переключения между разомкнутой и замкнутой цепью.Они довольно сильно различаются по внешнему виду, начиная от слайдера, поворотного, кнопочного, рычажного, тумблера, клавишных переключателей и этого списка можно продолжать. Точно так же реле — это электромагнитный переключатель, управляемый через соленоид, который становится чем-то вроде временного магнита, когда через него протекает ток. Они функционируют как переключатели, а также могут усиливать малые токи до больших токов.
12. Датчики
Датчики— это устройства, функция которых заключается в обнаружении изменений в условиях окружающей среды и генерировании электрического сигнала, соответствующего этому изменению, который отправляется другим электронным компонентам в цепи.Датчики преобразуют энергию физического явления в электрическую, и поэтому они, по сути, преобразователи (преобразуют энергию из одной формы в другую). Это может быть что угодно, от резистора в резистивном датчике температуры (RTD) до светодиодов, обнаруживающих ошибочные сигналы, например, в телевизионном пульте дистанционного управления. Существует множество датчиков для различных факторов окружающей среды, например, влажности, света, качества воздуха, прикосновения, звука, влажности и датчиков движения.
Теперь, когда вы знаете некоторые основные электронные компоненты, попробуйте свои силы в создании собственного электронного проекта! Вместо того, чтобы начинать со сложного проекта, имеющего какую-то причудливую функцию, займитесь несколькими простыми проектами.Являясь неотъемлемой частью любого хобби, неизбежно будут встречаться вещи, которые вы не поймете на своем пути. Но эти проблемы не являются непреодолимыми. Имея доступное и легкодоступное оборудование для создания электронных проектов для начинающих, такое как Arduino и Seeed Grove System , сообщество производителей приветствует новых участников и новые проекты каждый день. Благодаря изобилию интерактивных руководств по быстрому запуску и видеороликов в Интернете, начать создавать проекты в области электроники для новичков стало еще проще.
Помимо производства печатных плат, Seeed также предоставляет полный комплекс услуг «под ключ», включая закупку запчастей и сборку. Независимо от того, создаете ли вы прототип или масштабируете до массового производства, Seeed Fusion — это универсальный инструмент для беспроблемной и беспроблемной сборки печатных плат.
Мы предлагаем различные спонсорские услуги и дополнительные услуги, чтобы обеспечить непревзойденный опыт работы с PCBA, направленный на минимизацию неудач и максимизацию доходности и эффективности при поддержке разработчиков. Мы включаем проверки дизайна PCB DFM и PCBA DFA и функциональное тестирование для одного бесплатного с каждым заказом PCBA, а также предлагаем бесплатное прототипирование для бизнес-пользователей и дополнительное спонсорство для Raspberry Pi CM4 , Raspberry Pi Конструкции Pico и Wio RP2040 .
Получите мгновенное онлайн-предложение сейчас, мы с нетерпением ждем сотрудничества с вами.
Теперь получите бесплатную сборку для 5 печатных плат с услугой по сборке печатных плат под ключ Seeed Fusion.
Попробовать
Узнайте больше о Seeed Fusion PCBA
Продолжить чтение
Компьютерное оборудование
Компьютерное оборудование
- Компьютеры состоят из двух основных частей: аппаратного и программного обеспечения.
- Как пианино (аппаратное обеспечение) и музыка (программное обеспечение)
- В этом разделе: фурнитура
Компьютер — удивительно полезная технология общего назначения, так что теперь камеры, телефоны, термостаты и многое другое превратились в маленькие компьютеры.В этом разделе представлены основные части и темы работы компьютерного оборудования. «Аппаратное обеспечение» относится к физическим частям компьютера, а «программное обеспечение» относится к коду, который выполняется на компьютере.
Микросхемы и транзисторы
- Транзистор — жизненно важный электронный строительный блок
-Транзисторы «твердотельные» — движущихся частей нет.
-Одно из самых важных изобретений в истории
— «Выключатель», который мы можем включать / выключать с помощью электрического сигнала - Кремниевый чип — кусок кремния размером с ноготь
- Микроскопические транзисторы вытравлены на кремниевые чипы
- Чипы могут содержать миллиарды транзисторов
- Чипы упакованы в пластик, на маленьких металлических ножках
- e.грамм. Микросхемы ЦП, микросхемы памяти, микросхемы флэш-памяти
- Кремний (металлоид) против силикона (мягкое вещество на кухонной посуде)
Вот силиконовый чип внутри пластикового корпуса. Я вытащил это из кучи электронных отходов в здании Stanford CS, так что он, вероятно, немного старый. Это небольшая микросхема с несколькими «контактами» для электрического подключения. Позже мы увидим более крупный чип с сотнями контактов.
Внутри пластикового корпуса находится силиконовый чип размером с ноготь, на поверхности которого выгравированы транзисторы и другие компоненты.Крошечные провода подключают микросхему к внешней стороне. (Авторство под лицензией CC sharealke 3. пользователь Википедии Зефирис)
В современных компьютерах используются крошечные электронные компоненты, которые можно выгравировать на поверхности кремниевого чипа. (См .: чип википедии) Обратите внимание, что силикон (чипы, солнечные панели) и силикон (мягкий резиновый материал) — разные вещи!
Самым распространенным электронным компонентом является «транзистор», который работает как своего рода усилительный вентиль для потока электронов.Транзистор является «твердотельным» устройством, что означает, что у него нет движущихся частей. Это основной строительный блок, используемый для создания более сложных электронных компонентов. В частности, «бит» (см. Ниже) может быть построен на 5 транзисторах. Транзистор был изобретен в начале 1950-х годов на замену электронной лампе. С тех пор транзисторы становились все меньше и меньше, что позволяло наносить все больше и больше из них на кремниевый кристалл.
Закон Мура
- Транзисторы становятся в 2 раза меньше примерно каждые 2 года
— иногда указывается около 18 месяцев - Может вместить в два раза больше транзисторов на чип
- Благодаря улучшенной технологии травления стружки
— Но фабрика по производству новейших микросхем стоит более 1 миллиарда долларов. - Наблюдение vs.научный «закон»
- 2 эффекта:
- а. чипы имеют удвоенную емкость каждые 2 года
— скорость не удваивается, емкость удваивается, что по-прежнему очень полезно - г. или поддерживая постоянную емкость, микросхемы становятся меньше и дешевле каждые 2 года
- (б) — почему компьютеры сейчас в машинах, термостатах, поздравительных открытках
- Пример: емкость MP3-плеера 50 долларов каждые 2 года: 2 ГБ, 4 ГБ, 8 ГБ, 16 ГБ
- Практическое правило: 8-кратная производительность каждые 6 лет
- 8x за 6 лет может соответствовать увеличению емкости вашего телефона
- Закон Мура, вероятно, не будет длиться вечно
Закон Мура (Гордон Мур, соучредитель Intel) гласит, что плотность транзисторов на кристалле удваивается примерно каждые 2 года (иногда указывается каждые 18 месяцев).Увеличение связано с улучшенной технологией изготовления стружки. Это не научный закон, это просто общее предсказание, которое, кажется, продолжает работать. В более широком смысле, он отражает идею о том, что за доллар компьютерные технологии (не только транзисторы) со временем становятся экспоненциально лучше. Это совершенно ясно, если вы посмотрите на стоимость или возможности компьютеров / фотоаппаратов и т. Д., Которыми вы владеете. Закон Мура приводит к появлению более мощных компьютеров (сравните, что может делать iPhone 7 с оригинальным iPhone), а также к более дешевым компьютерам (менее производительные компьютеры появляются повсюду, например, в термостатах и автомобилях).
Компьютеры в жизни: Системы управления
- Система управления: реагирует на внешнее состояние
- например двигатель автомобиля: варьируйте топливную смесь в зависимости от температуры
- например приведение в действие подушки безопасности при высоких перегрузках при столкновении
- Чипы — отличный и дешевый способ построения систем управления
- Предварительно компьютерные системы управления работали не так хорошо
- Одна из причин, по которой сегодня автомобили работают намного лучше
Система управления / Демонстрация фонарика Мура
- В фонарике Maglite XL200 есть микросхема
- Пример системы управления
- Закон Мура делает возможным такое применение микросхемы
- Фонарик преобразует угловое положение в яркость.(1 щелчок)
- Также есть угол для мигалко-скоростного режима. (2 клика)
Компьютерное оборудование — ЦП, ОЗУ и постоянное хранилище
Теперь давайте поговорим о трех основных частях, из которых состоит компьютер — CPU , RAM и Persistent Storage . Эти три присутствуют на всех компьютерах: ноутбуках, смартфонах и планшетах.
1. ЦП
- CPU — Центральный процессор
- Действует как мозг: следует инструкциям в коде
- «общие» — изображения, нетворкинг, математика.. все на CPU
- Выполняет вычисления, например сложить два числа
- по сравнению с ОЗУ и постоянным хранилищем, которые просто хранят данные
- «гигагерц» = 1 миллиард операций в секунду.
- ЦП «2 гигагерца» выполняет 2 миллиарда операций в секунду
CPU — Центральный процессор — неизбежно называют «мозгом» компьютеров. ЦП выполняет активный «запуск» кода, манипулируя данными, в то время как другие компоненты выполняют более пассивную роль, такую как хранение данных.Когда мы говорим, что компьютер может «складывать два числа миллиард раз в секунду» … это процессор. Когда вы нажимаете кнопку «Выполнить», ЦП в конечном итоге «запускает» ваш код. Позже мы завершим картину того, как ваш код Javascript запускается процессором.
В стороне: CPU «Ядра»
- Современные процессорные чипы имеют несколько «ядер»
- Каждое ядро является полунезависимым процессором
- Ключ: наличие 4 ядер не в 4 раза быстрее, чем наличие 1 ядра
- т.е. 4 машины не доставят вас быстрее 1 машины
- Убывающая доходность
- Больше 4 ядер часто бесполезно
Примеры ЦП
- e.грамм. Кнопка «Выполнить» — «распечатать информацию», посчитайте
- например Отправить текстовое сообщение — отформатируйте байты, отправьте байты, убедитесь, что они были отправлены
Вариант ЦП: GPU — Графический процессор
- Как ЦП, но специализированный для обработки изображений
- Компьютерные игры сильно используют графический процессор
- Современные процессоры в основном достаточно быстрые, больше энергии уходит на графические процессоры
2. RAM
- RAM — Оперативная память
- Действует как белая доска
- Байт временного рабочего хранилища
- RAM хранит код и данные (временно)
- e.грамм. открыть изображение в фотошопе
— данные изображения загружены в байты ОЗУ - например добавление 2 к числу в калькуляторе
— манипулирование байтами в ОЗУ - «стойкий»
-RAM не является постоянным. Состояние пропало при отключении питания
-например Вы работаете над документом, затем отключается питание, и вы теряете свою работу (вместо «Сохранить»)
RAM — Оперативная память, или просто «память». ОЗУ — это рабочая оперативная память, которую компьютер использует для хранения кода и данных, которые активно используются.ОЗУ — это фактически область хранения байтов, находящаяся под управлением ЦП. ОЗУ относительно быстро и способно получить значение любого конкретного байта за несколько наносекунд (1 наносекунда составляет 1 миллиардную долю секунды). Другая главная особенность ОЗУ заключается в том, что она сохраняет свое состояние только до тех пор, пока на нее подается питание — ОЗУ не является «постоянным» хранилищем.
Предположим, вы работаете на своем компьютере, и он внезапно теряет питание и экран гаснет. Вы понимаете, что то, над чем вы работали, ушло.Оперативная память была очищена, осталось только то, что вы в последний раз сохраняли на диск (ниже).
Примеры RAM
- В вашем браузере открыто много вкладок
— данные для каждой вкладки находятся в ОЗУ - Программа запущена
— код программы находится в оперативной памяти - Программа манипулирует большим изображением
— данные изображения находятся в ОЗУ - например у вас может закончиться ОЗУ — вы не можете открыть новую вкладку или программу, потому что вся ОЗУ занята
- В сторону: теперь в телефонах 2-4гб ОЗУ… достаточно для большинства целей
3. Постоянное хранилище: жесткий диск, флэш-накопитель
- Постоянное хранение байтов
- «Постоянный» означает сохранение даже при отключении питания
- например Жесткий диск — хранит байты в виде магнитного узора на вращающемся диске.
— он же «жесткий диск»
— Высокий звук вращения, который вы, возможно, слышали - Жесткие диски долгое время были основной технологией постоянного хранения
- НО сейчас все популярнее становится вспышка.
Как работает жесткий диск Видео (Webm — это открытый стандартный видеоформат, работает в Firefox и Chrome). 4:30 в видео, чтобы увидеть чтение / запись битов.
Постоянное хранилище, новая технология: Flash
- «Flash» — это транзисторная технология постоянного хранения.
«твердотельный» — без движущихся частей
-ака «Флешка»
-ака «Флэш-память»
-aka «SSD»: твердотельный диск - Flash лучше , чем жесткий диск во всех отношениях, но по цене — быстрее, надежнее, меньше энергии
- Flash дороже за байт
- Форматы: USB-ключ, SD-карта в камере, флэш-память, встроенная в телефон, планшет или компьютер.
- Флэш-память была очень дорогой, поэтому в большинстве компьютеров использовались жесткие диски.
- Flash дешевеет (закон Мура)
- Однако побайтовые жесткие диски по-прежнему существенно дешевле
- Не путать с «Adobe Flash», проприетарным медиаформатом.
- Предупреждение: вспышка не сохраняется вечно.Он может не хранить биты за последние 10 или 20 лет. Никто не знает наверняка
Постоянное хранилище — долгосрочное хранилище байтов в виде файлов и папок. Постоянный означает, что байты сохраняются даже при отключении питания. Ноутбук может использовать вращающийся жесткий диск (также известный как «жесткий диск») для постоянного хранения файлов. Или он может использовать «флеш-накопитель», также известный как твердотельный диск (SSD), для хранения байтов на флеш-чипах. Жесткий диск считывает и записывает магнитные узоры на вращающийся металлический диск для хранения байтов, в то время как флеш-память является «твердотельной»: никаких движущихся частей, только кремниевые чипы с крошечными группами электронов для хранения байтов.В любом случае хранилище является постоянным в том смысле, что оно поддерживает свое состояние даже при отключении питания.
Флэш-накопитель быстрее и потребляет меньше энергии, чем жесткий диск. Однако из расчета на один байт флэш-память значительно дороже, чем хранилище на жестком диске. Flash становится все дешевле, поэтому он может занять ниши за счет жестких дисков. Флэш-память намного медленнее ОЗУ, поэтому она не является хорошей заменой ОЗУ. Обратите внимание, что Adobe Flash — это не связанное с этим понятие; это проприетарный медиаформат.
Флэш-память — это то, что лежит в основе USB-накопителей, SD-карт для использования в камерах или встроенного хранилища в планшете или телефоне.
Файловая система
- Как организованы байты в постоянном хранилище?
- например Байт на флешке?
- «Файловая система» — упорядочить байты постоянного хранилища, файлов и папок.
- «Файл» — имя, дескриптор блока байтов.
- например «flowers.jpg» — это 48 КБ байтов данных изображения.
Жесткий диск или флэш-накопитель обеспечивает постоянное хранение в виде плоской области байтов без особой структуры.Обычно жесткий диск или флэш-диск отформатирован с использованием «файловой системы», которая упорядочивает байты по знакомому шаблону файлов и каталогов, где каждый файл и каталог имеет несколько полезное имя, например, «resume.txt». Когда вы подключаете диск к компьютеру, компьютер представляет пользователю файловую систему диска, позволяя им открывать файлы, перемещать файлы и т. Д.
По сути, каждый файл в файловой системе относится к блоку байтов, поэтому имя «flowers.jpg» относится к блоку байтов размером 48 КБ, который является данными этого изображения.Фактически файловая система дает пользователю имя (и, возможно, значок) для блока байтов данных и позволяет пользователю выполнять операции с этими данными, например перемещать их, копировать или открывать с помощью программы. Файловая система также отслеживает информацию о байтах: сколько их, время последнего изменения.
Microsoft использует собственную файловую систему NTFS, а Mac OS X имеет собственный эквивалент HFS + от Apple. Многие устройства (камеры, MP3-плееры) используют на своих флеш-картах очень старую файловую систему Microsoft FAT32.FAT32 — старая и примитивная файловая система, но она хороша там, где важна широкая поддержка.
Примеры постоянного хранения
- Это легко понять, поскольку вы использовали файлы и файловые системы.
- например 100 отдельных видеофайлов размером 1 ГБ .. требуется 100 ГБ дискового пространства.
Фотографии оборудования
Ниже представлены изображения недорогого компьютера Shuttle с процессором 1,8 ГГц, 512 МБ ОЗУ и жестким диском на 160 ГБ. Примерно в 2008 году он стоил около 200 долларов.Он сломался и стал классным примером.
Вот плоская «материнская плата», немного меньше листа бумаги 8,5 x 11, к которой подключаются различные компоненты. В центре — центральный процессор. Справа находится оперативная память. Справа от процессора находится пара микросхем поддержки. В частности, одна из микросхем покрыта медным «радиатором», который плотно прижимается к микросхеме, рассеивая тепло от микросхемы в окружающий воздух. У ЦП также был очень большой радиатор, но он был удален, чтобы сделать ЦП видимым.
- Материнская плата
- Металлический корпус процессора, удерживается рычагом
- Медный радиатор
Процессор плотно прижимается к материнской плате с помощью небольшого рычажного механизма. Здесь механизм освобождается, и можно подбирать ЦП. ЦП размером с ноготь упакован под эту металлическую крышку, которая помогает отводить тепло от процессора к его радиатору. Серый материал на металлической крышке микросхемы представляет собой «термопасту», материал, который помогает отводить тепло от корпуса микросхемы к ее (не показан) радиатору.
- Чип процессора в металлическом корпусе
- Радиатор удален
- Нижняя часть упаковки .. много соединений (маленькие провода)
Перевернув ЦП, можно увидеть маленькие золотые полоски на нижней части ЦП. Каждая площадка соединена очень тонким проводом с точкой на кремниевом кристалле.
Вот фотография другого чипа, но со снятой верхней упаковкой. Вы видите кремниевый чип в виде мизинца в центре с выгравированными на нем крошечными деталями транзистора.На краю микросхемы можно увидеть очень тонкие провода, соединяющие части микросхемы с внешними контактными площадками (авторство под лицензией CC sharealke 3. пользователь Википедии Зефирис)
Теперь, если посмотреть сбоку, более отчетливо видны радиатор и карта памяти RAM, торчащая из материнской платы.
- RAM карта памяти
- Подключается к материнской плате
- Карта 512 МБ (4 микросхемы)
Оперативная память состоит из нескольких микросхем, собранных вместе на небольшой карте, известной как DIMM, которая подключается к материнской плате (модуль памяти с двумя встроенными линиями).Здесь мы видим, что RAM DIMM извлечен из разъема на материнской плате. Это модуль DIMM емкостью 512 МБ, состоящий из 4 микросхем. Несколькими годами ранее этот модуль DIMM мог потребовать 8 микросхем для хранения 512 МБ .. Закон Мура в действии.
Это жесткий диск, который подключается к материнской плате с помощью видимого стандартного разъема SATA. Это диск объемом 160 ГБ, 3,5 дюйма, что соответствует диаметру вращающегося диска внутри; весь диск размером с небольшую книгу в мягкой обложке. Это стандартный размер диска для использования внутри настольного компьютера.В портативных компьютерах используются 2,5-дюймовые диски, которые немного меньше по размеру.
- Жесткий диск 160 ГБ (постоянное хранилище)
- т.е. стойкий
- Подключается к материнской плате стандартным кабелем SATA
Это USB-накопитель, который, как и жесткий диск, обеспечивает постоянное хранение байтов. Это также известно как «флэш-накопитель» или «USB-ключ». По сути, это разъем USB, подключенный к микросхеме флэш-памяти с некоторой вспомогательной электроникой:
- Флэш-накопитель (другой тип постоянного хранилища)
- i.е. настойчивый
- Содержит флеш-чип, твердотельный
- SD-карта, аналогичная идея
Здесь он разобран, показывая микросхему флэш-памяти, которая фактически хранит байты. Этот чип может хранить около 1 миллиарда бит .. сколько это байтов? (A: 8 бит на байт, это примерно 125 МБ)
Вот «SD-карта», которая обеспечивает хранение в камере. Он очень похож на флешку, только другой формы.
Микроконтроллер — дешевый компьютерный чип
- Микроконтроллер
- Полный компьютер на одной микросхеме
- Маленький процессор, ОЗУ, хранилище (закон Мура)
- Чип может стоить менее 1 доллара
- Автомобиль, микроволновка, термостат
Компьютер Arduino
- Это плата «ардуино», микросхема микроконтроллера (ЦП, ОЗУ, хранилище все в одном)
— www.arduino.cc - Начиная с 10 долл. США
- Открытый исходный код, бесплатно, не только для Windows, возня
- Арт-проект — выключатели, датчики, фары.
Общие сведения о 5 электронных компонентах, используемых в печатных платах
Процесс сборки печатной платы — сложный процесс, требующий взаимодействия с множеством мелких компонентов и детального знания функций и размещения каждой части. Печатная плата не будет работать без своих электрических компонентов. Кроме того, используются разные компоненты в зависимости от устройства или продукта, для которого они предназначены.Таким образом, важно иметь глубокое понимание различных компонентов, входящих в сборку печатной платы.
В большинстве печатных плат используются следующие общие компоненты:
1. Резисторы
Резисторыконтролируют электрические токи, которые проходят через них, а также напряжение в каждом компоненте, подключенном к ним.Без резисторов другие компоненты могут не справиться с напряжением, что может привести к перегрузке.
2. Транзисторы
Транзисторыимеют решающее значение в процессе сборки печатных плат из-за их многофункциональности. Это полупроводниковые устройства, которые могут как проводить, так и изолировать, а также могут действовать как переключатели и усилители. Они меньше по размеру, имеют относительно более длительный срок службы и могут безопасно работать при более низком напряжении без тока накала.Транзисторы бывают двух типов: транзисторы с биполярным переходом (BJT) и полевые транзисторы (FET).
3. Конденсаторы
Конденсаторы — это пассивные двухполюсные электронные компоненты. Они действуют как аккумуляторные батареи — они могут накапливать электрическую энергию, а затем передавать ее снова, когда это необходимо.
4. Катушки индуктивности
Катушки индуктивности — это пассивные электронные компоненты с двумя выводами, которые накапливают энергию в магнитном поле, когда через них проходит электрический ток.Индукторы используются для блокировки переменных токов, позволяя проходить постоянным токам. Их можно комбинировать с конденсаторами для создания настраиваемых схем, которые используются в радио- и телевизионных приемниках.
5. Диоды
Диоды — это полупроводниковые компоненты, которые действуют как односторонние переключатели для токов. Они позволяют токам легко проходить в одном направлении, но не позволяют токам течь в противоположном направлении.
Понимание этих электрических компонентов, которые составляют лишь одну часть сложной головоломки, помогает нам осознать сложность сборки печатных плат и то, почему так важно работать с уважаемыми компаниями.
Permatech Electronics, являясь одним из крупнейших поставщиков сборок печатных плат в GTA, соответствует всем последним передовым методам обеспечения качества в электронике — свидетельством этого является наша регистрация в качестве компании ISO 9001: 2015. Вы можете быть уверены, что наши процессы и испытания сборки печатных плат соответствуют высочайшим стандартам.
Самый маленький транзистор в мире имеет длину 1 нм, черт возьми, физика
Размер транзистора — важная часть совершенствования компьютерных технологий.Чем меньше у вас транзисторы, тем больше вы можете уместить на микросхеме и тем быстрее и эффективнее может быть ваш процессор. Вот почему это такая большая новость, что команда из Национальной лаборатории Лоуренса Беркли успешно построила функциональный транзисторный затвор длиной 1 нанометр, который, по утверждению лаборатории, является самым маленьким работающим транзистором из когда-либо созданных.
В течение многих лет компьютерная индустрия регулируется законом Мура, который гласит, что количество транзисторов в полупроводниковой схеме удваивается каждые два года.В технологиях нынешнего поколения используется технология шкалы 14 нм, а выпуск полупроводников 10 нм ожидается в 2017 или 2018 годах с такими продуктами, как линейка Intel Cannonlake.
Заглядывая в будущее, закон Мура начинает вызывать проблемы
Но если смотреть в будущее, закон Мура начинает сталкиваться с проблемами. И под проблемой я имею в виду законы физики. Видите ли, хотя 7-нанометровый узел технически возможно изготавливать из кремния, после этого вы сталкиваетесь с проблемами, когда кремниевые транзисторы размером менее 7 нм становятся настолько физически близкими друг к другу, что электроны испытывают квантовое туннелирование.Таким образом, вместо того, чтобы оставаться в намеченном логическом элементе, электроны могут непрерывно перетекать от одного затвора к другому, что по существу делает невозможным для транзисторов состояние выключения.
Суджай Десаи / Калифорнийский университет в Беркли
И хотя такие компании, как Intel первоначально заявили, что они будут изучать другие материалы для производства 7-нм полупроводников и не только, исследовательская группа Berkeley Lab опередила их, используя углеродные нанотрубки и дисульфид молибдена (MoS 2 ) для создания полупроводниковых материалов. суб-7нм транзистор.MoS 2 функционирует как полупроводник, а полая углеродная нанотрубка действует как затвор для управления потоком электронов.
Исследования здесь все еще находятся на очень ранней стадии
Тем не менее, исследования здесь все еще находятся на очень ранней стадии. На 14-нм кристалле находится более миллиарда транзисторов, и команде Berkley Lab еще предстоит разработать жизнеспособный метод массового производства новых 1-нм транзисторов или даже разработать микросхему, использующую их. Но только как доказательство концепции, результаты здесь по-прежнему важны — новые материалы могут по-прежнему позволять использовать транзисторы меньшего размера, а вместе с тем повышать мощность и эффективность компьютеров будущего.
Коммутаторы меньшего и меньшего размера
Как эволюционировали коммутаторы? Прочтите описание Марка Скотта того, как они изменились, чтобы можно было разместить миллиарды из них на печатной плате.
На предыдущих шагах вы узнали, как выполнять вычисления, используя 1
с и 0
с, и что состояние переключателя можно использовать для представления 1
или 0
. Теперь вы посмотрите, как эта концепция превратилась в современный компьютер.
Выключатель — это просто устройство, которое может либо пропускать электричество через него, либо препятствовать прохождению электричества через него.Первые переключатели, используемые в программируемых компьютерах, назывались реле , реле . Это электромеханические устройства, состоящие из движущихся частей.
Реле — это не что иное, как электромагнит, прикрепленный к обычному переключателю. Используя ток для включения и выключения электромагнита, вы можете включать и выключать переключатель. Z3 был первым программируемым компьютером, который был построен в 1941 году, и он содержал 2000 реле. Он был способен выполнять от пяти до десяти инструкций в секунду, что довольно медленно по сравнению с современными компьютерами с тактовой частотой в миллиарды долларов.После релейного переключателя шел триод , или клапан (в Великобритании). У этих устройств не было движущихся частей, а это означало, что они могли действовать как переключатели намного быстрее. Триод состоит из вакуумированной стеклянной трубки, в которую вставлены два электрода, разделенные сеткой. Один из электродов нагревается и испускает электроны. Они притягиваются к другому электроду, который заряжен положительно. Это замыкает цепь и позволяет току течь. Однако, если сетка между ними заряжена отрицательно, она отталкивает часть электронов, не позволяя им достичь второго электрода и прекращая ток.На изображении ниже изображен триод Western Electric VT-1, разработанный в 1917 году: Хотите продолжить обучение ?
Этот контент взят из онлайн-курса
Raspberry Pi Foundation,
Как работают компьютеры: прояснение вычислений
Посмотреть курс
Первым компьютером, который использовал эти клапаны, был Colossus, построенный в 1943 году.Проблема с клапанами заключалась в том, что они, как и лампочки, могли «перегореть» (перестать работать), и их нужно было заменить. Вслед за лампами был изобретен транзистор . Изготовленные из полупроводников, эти компоненты снова могли действовать как переключатели, не имея движущихся частей, и были очень износостойкими. Их также можно было сделать очень маленькими, что означало, что можно было комбинировать множество транзисторов. Транзисторы — основа всех современных компьютеров. Транзистор имеет три вывода — базу, коллектор и эмиттер.Небольшой ток на базе транзистора может позволить большему току течь между эмиттером и коллектором. Это позволяет транзисторам действовать как крошечные переключатели. В этой симуляции вы можете увидеть работающий транзистор.Ссылка на интерактивное моделирование (для просмотра необходимо создать учетную запись Tinkercad) Вам не нужно разбираться в схеме, просто обратите внимание, что транзистор позволяет кнопке делать противоположное тому, что вы обычно ожидаете. Когда кнопка не горит, горит светодиод.При нажатии кнопки светодиод выключается. Подумайте об этом с точки зрения машины Тьюринга, и вы, возможно, начнете понимать, как транзисторы можно использовать для создания компьютеров. Представьте себе машину Тьюринга, где на ленте всего две ячейки. Программа может быть такой:
Государство | Символ | Написать | Move | Следующее состояние |
---|---|---|---|---|
А | 1 | Нет | Правый | B |
0 | Нет | Правый | С | |
B | 0 | 0 | Левый | Остановить |
1 | 0 | Левый | Остановить | |
С | 0 | 1 | Левый | Остановить |
1 | 1 | Левый | Остановить |
0
(кнопка выключена), машина запишет 1
в соседнюю ячейку (включит светодиод).Если первая ячейка — это 1
(кнопка включена), машина запишет 0
в соседнюю ячейку (выключит светодиод).
Это только с одним транзистором, но с большим количеством транзисторов вы можете создавать невероятно сложные инструкции. Машину Тьюринга с двоичным сложением, которую вы рассмотрели ранее, можно создать с помощью нескольких транзисторов. Вопрос в том, сколько транзисторов нужно, чтобы построить современный компьютер?
Сегодня вы все еще можете получить транзисторы обычного размера, которые могут быть размером от нескольких миллиметров до нескольких сантиметров.Однако современные технологии позволили нам уменьшить размер транзистора до микроскопических размеров.Это дополнительное видео, размещенное на YouTube.
Современные компьютеры имеют транзисторы размером 7 нм. Это 7 миллиардных метра! Вы можете разместить около 15000 таких транзисторов по ширине человеческого волоса. В 1971 году наименьший размер транзистора составлял около 10 микрометров, и с тех пор они уменьшаются. Это предсказал Гордон Мур, соучредитель Intel.Он предсказал, что количество транзисторов, которые могут уместиться в процессоре, будет удваиваться каждые 18 месяцев или около того. Такое резкое увеличение вычислительной мощности современных компьютерных чипов привело к нынешней технологической революции, в результате которой многие из нас носят с собой компьютеры в карманах, компьютеры встраиваются в самые приземленные повседневные предметы и суперкомпьютеры, которые могут превзойти люди в невероятно сложных играх, таких как го.Хотите продолжать учиться?
Этот контент взят из онлайн-курса Raspberry Pi Foundation
. Как работают компьютеры: прояснение вычисленийПосмотреть курс
Неисправности транзисторов
Почему выходят из строя транзисторы?
Все полупроводниковые приборы чрезвычайно надежны.При условии, что они эксплуатируются правильно, у них вообще нет причин для отказа; но, конечно, они терпят неудачу, и это может происходить по разным причинам.
Производственные ошибки
Производственные неисправности случаются (очень редко), обычно в новом оборудовании. Если в новом транзисторе есть неисправность, она часто проявляется в первые несколько часов использования. Если он будет работать правильно в течение этого периода, то велика вероятность, что он будет работать и дальше. Большая часть производственных дефектов может быть обнаружена с помощью «испытаний на выдержку» нового оборудования.Это запускает его на испытательном стенде в течение нескольких часов, чтобы убедиться в отсутствии ранних сбоев. Предметы, прошедшие эти испытания, можно с уверенностью использовать в регулярных целях.
Возраст компонентов
Нет реальной причины, по которой транзисторы должны стареть. Срез кремния возрастом 10 лет должен быть таким же, как ломтик годовалого возраста. Однако старые системы, содержащие транзисторы, действительно начинают доставлять больше проблем. Причина этого в том, что другие компоненты, такие как резисторы, могут изменять свои значения с возрастом, особенно если они подвергаются воздействию нагрева, вызванного протеканием тока.В конечном итоге это может привести к тому, что транзистор будет работать за пределами своих нормальных параметров, например, работать при температуре выше допустимой. Именно тогда транзисторы могут выйти из строя. В таких обстоятельствах целесообразно исследовать причины неисправного транзистора, а не просто его заменять. После замены всегда проверяйте напряжение на клеммах транзистора, чтобы убедиться в отсутствии отклонений от нормы.
Внешние причины
Иногда внешние причины могут повредить или даже разрушить транзисторы.Неправильное обращение с полевыми транзисторами может привести к повреждению электростатическим разрядом. Иногда это приводит к тому, что транзистор (или печатная плата) не работает при установке в систему. Это может быть связано с тем, что очень тонкие изолирующие слои внутри устройства полностью вышли из строя из-за высокого напряжения статического электричества, небрежно приложенного к клеммам. Что еще хуже, иногда такие разряды не вызывают немедленного разрушения устройства, но повреждают изоляцию до такой степени, что через некоторое время (часы или годы) устройство выходит из строя.
В оборудовании с питанием от сети (сети) время от времени могут возникать очень короткоживущие импульсы высокого напряжения, вызванные такими событиями, как удары молнии (даже на некотором расстоянии от места повреждения) могут повредить полупроводники. Также скачки напряжения, вызванные локально такими событиями, как индукционное оборудование, такое как запуск или остановка двигателей. Большинство цепей с питанием от сети (и даже некоторые маломощные), подверженные такому повреждению, имеют встроенную защиту, предотвращающую повреждение. В большинстве случаев эта защита работает хорошо, но редко бывает эффективна на 100%.
Схемотехника
Многие неисправности, особенно в оборудовании, производимом для домашнего пользователя, можно найти, обратившись к базам данных повторяющихся неисправностей, опубликованным в технических журналах в Интернете. Причина возникновения этих повторяющихся неисправностей в основном зависит от конструкции. Товары для дома предназначены для производства по выгодной цене и для обеспечения бесперебойной работы в течение некоторого времени. Производители могут производить продукты, соответствующие тщательно разработанным стратегиям. Некоторые неисправности возникают из-за того, что изделие превышает «расчетный срок службы», в то время как другие возникают преждевременно.Разработка электронного продукта для определенного периода жизни в условиях, которые будут очень изменчивыми (например, в наших домах) и над которыми дизайнеры не могут повлиять, — это не точная наука. Однако возникающие неисправности обычно следуют определенной схеме, и тщательная запись предыдущих неисправностей может быть хорошим индикатором будущих неисправностей. Эти сбои могут повлиять на транзисторы так же легко, как и на любой другой компонент.
Мощность против надежности
При рассмотрении единицы неисправного оборудования всегда помните, что надежность любого компонента пропорциональна мощности, которую он рассеивает.Другими словами, «Если обычно становится жарко, то обычно выходит из строя». Такое правило предполагает, что вышедший из строя транзистор с большей вероятностью находится в выходных каскадах схемы, чем в каскадах низкого напряжения и мощности, которые ему предшествуют. Любая схема, в которой используется высокое напряжение, большой ток или и то, и другое, создает гораздо большую нагрузку на полупроводники, чем схемы с низким напряжением и низким током. Хотя устройства, используемые в этих схемах, спроектированы так, чтобы выдерживать такое использование, они справляются с этим хуже, чем устройства, у которых относительно простая жизнь в ситуациях с низким энергопотреблением.Основные проблемные зоны — это блоки питания и выходные каскады. Когда вы сталкиваетесь с неисправной схемой и очень мало информации о ней, быстрая проверка полупроводников на этих этапах может сэкономить много работы.
Неисправности полупроводников
Когда диод или транзистор выходит из строя, обычно происходит одно из двух:
• Переход (или переходы) замыкается накоротко (его сопротивление становится очень низким или нулевым).
• Соединение (или соединения) размыкается (его сопротивление становится очень большим или бесконечным).
Конечно, этот список можно расширить, включив в него те соединения, которые могут стать негерметичными (немного низкое сопротивление), хотя это случается редко. На практике за этим условием довольно скоро следует полное короткое замыкание.
Из вышесказанного следует, что диоды и транзисторы могут быть проверены простым измерением сопротивления, в большинстве случаев это так. Набор тестов на сопротивление может с большой степенью уверенности показать, исправен ли полупроводник или неисправен. Конечно, могут возникать и другие неисправности, и проводятся другие испытания, но они будут обсуждаться после всех важных испытаний на сопротивление.
Начало страницы.>
.