Как замерить сопротивление изоляции: Измерение сопротивления изоляции: полное руководство

Измерение сопротивления изоляции: полное руководство

Измерение сопротивления изоляции

Для безопасной работы все электрические установки и оборудование должны иметь сопротивление изоляции, соответствующее определенным характеристикам. Независимо от того, идет ли речь о соединительных кабелях, оборудовании секционирования и защиты, трансформаторах, электродвигателях и генераторах – электрические проводники изолируются с помощью материалов с высоким электрическим сопротивлением, которые позволяют ограничить, насколько это возможно, электрический ток за пределами проводников.

Из-за воздействий на оборудование качество этих изоляционных материалов меняется со временем. Подобные изменения снижают электрическое сопротивление изоляционных материалов, что увеличивает ток утечки, который, в свою очередь, приводит к серьезным последствиям, как с точки зрения безопасности (для людей и имущества), так и с точки зрения затрат на остановки производства.

Регулярная проверка изоляции, проводимая на установках и оборудовании в дополнение к измерениям, выполняемым на новом и восстановленном оборудовании во время ввода в эксплуатацию, помогает избегать подобных инцидентов за счет профилактического обслуживания. Данные испытания дают возможность обнаружить старение и преждевременное ухудшение изоляционных свойств прежде, чем они достигнут уровня, способного привести к описанным выше инцидентам.

Содержание

Проверка: испытание или измерение?

На первом этапе полезно прояснить разницу между двумя типами проверки, которые часто путают – испытание электрической прочности изоляции и измерение сопротивления изоляции.

 испытание электрической прочности изоляции

Испытание электрической прочности, также называемое «испытание на пробой», позволяет определить способность изоляции выдерживать выброс напряжения средней длительности без возникновения искрового пробоя. Фактически такой выброс напряжения может быть вызван молнией или индукцией в результате неисправности линии электропередачи. Основной целью этого теста является обеспечение соответствия строительным нормам и правилам, касающимся путей утечки и зазоров. Этот тест часто выполняется с использованием напряжения переменного тока, но также при испытаниях применяется и напряжение постоянного тока. Подобный тип измерений требует использования установок для испытания кабелей повышенным напряжением. Результатом является значение напряжения, обычно выраженное в киловольтах (кВ). Испытания электрической прочности в случае неисправности могут быть разрушительными, в зависимости от уровней тестирования и энергетических возможностей инструмента. Поэтому этот метод используется для типового тестирования на новом или восстановленном оборудовании.

измерение сопротивления изоляции является неразрушающим тестированием.

При нормальных условиях испытаний измерение сопротивления изоляции является неразрушающим тестированием. Этот замер выполняется с использованием напряжения постоянного тока меньшей величины, чем при испытании электрической прочности, и дает результат, выраженный в кОм, МОм, ГОм или ТОм. Значение сопротивления указывает на качество изоляции между двумя проводниками. Поскольку данное испытание является неразрушающим, его особенно удобно использовать для контроле старения изоляции работающего электрического оборудования или установок. Для данного измерения используется тестер изоляции, также называемый мегомметром (доступны мегомметры с диапазоном до 999 ГОм).

Типовые причины неисправности изоляция

Поскольку измерение сопротивления изоляции с помощью мегомметра является частью более широкой политики профилактического обслуживания, важно понимать, по каким причинам возможно ухудшение характеристик изоляции. Только это позволит предпринять правильные шаги для их устранения.

Можно разделить причины неисправности изоляции на пять групп. Однако необходимо иметь в виду, что в случае отсутствия каких-либо корректирующих мер, различные причины будут накладываться друг на друга, приводя к пробою изоляции и повреждению оборудования.

1. Электрические нагрузки

В основном электрические нагрузки связаны с отклонением рабочего напряжения от номинального значения, причем влияние на изоляцию оказывают как перенапряжения, так и понижение напряжения.

2. Механические нагрузки

Частые последовательные запуски и выключения оборудования способны вызвать механические нагрузки. Кроме того, сюда входят проблемы с балансировкой вращающихся машин и любые прямые нагрузки на кабели и установки в целом.

3. Химические воздействия

Присутствие химических веществ, масел, агрессивных испарений и пыли в целом отрицательно влияет на характеристики изоляционных материалов.

4. Напряжения, связанные с колебаниями температуры:

В сочетании с механическими напряжениями, вызванными последовательными запусками и остановками оборудования, также на свойства изоляционных материалов влияют напряжения, возникающие при расширении и сжатии. Работа при экстремальных температурах также приводит к старению материалов.

5. Загрязнение окружающей среды

Плесень и посторонние частицы в теплой, влажной среде также способствуют ухудшению изоляционных свойств установок и оборудования.

В приведенной ниже таблице показана относительная частота различных причин отказа электродвигателя.

Типовые причины неисправности изоляция

Внешние загрязнения:

Внешние загрязнения изоляции

 

В дополнение к внезапным повреждениям изоляции из-за таких чрезвычайных происшествий, как, например, наводнения, факторы, снижающие эффективность изоляции работающей установки объединяются, иногда усиливая друг друга. В конечном итоге в долгосрочной перспективе без постоянного мониторинга это приведет к возникновению ситуаций, которые станут критическими с точки зрения безопасности людей и нормальной эксплуатации. Таким образом, регулярное тестирование изоляции установок или электрических машин является полезным способом контроля состояния изоляции, позволяющим предпринимать необходимые действия еще до того, как возникло повреждение.

Принцип измерения сопротивления изоляции и влияющие на него факторы

Принцип измерения сопротивления изоляции и влияющие на него факторы

Измерение сопротивления изоляции базируется на законе Ома. Подав известное напряжение постоянного тока с уровнем ниже, чем напряжение испытания электрической прочности, а затем измерив значение тока, очень просто замерить значение сопротивления. В принципе, значение сопротивления изоляции очень велико, но не бесконечно, поэтому измеряя малый протекающий ток, мегомметр указывает значение сопротивления изоляции в кОм, МОм, ГОм и даже в ТОм (на некоторых моделях). Это сопротивление характеризует качество изоляции между двумя проводниками и способно указать на риск возникновения тока утечки.

На значение сопротивления изоляции и, следовательно, на значение тока, протекающего, когда к тестируемой цепи приложено напряжение постоянного тока, влияет ряд факторов. К таким факторам относятся, например, температура или влажность, которые способны существенно повлиять на результаты измерений. Для начала давайте проанализируем характер токов, протекающих во время измерения изоляции, используя гипотезу о том, что эти факторы не влияют на проводимое измерение.

Общий ток, протекающий в изоляционном материале, представляет собой сумму трех компонентов:

  • Емкость. Для зарядки емкости тестируемой изоляции необходим ток зарядки емкости. Это переходный ток, который начинается с относительно высокого значения и падает экспоненциально к значению, близкому к нулю, когда тестируемая цепь электрически заряжается. Через несколько секунд или десятых долей секунды этот ток становится незначительным по сравнению с измеряемым током.
  • Поглощение. Ток поглощения, соответствующий дополнительной энергии, которая необходима для переориентации молекул изоляционного материала под воздействием прикладываемого электрического поля. Этот ток падает намного медленнее, чем ток зарядки емкости; иногда необходимо несколько минут, чтобы достичь значения, близкого к нулю.
  • Ток утечки или ток проводимости. Этот ток характеризует качество изоляции и не изменяется со временем.

На приведенном ниже графике эти три тока показаны в зависимости от времени. Шкала времени является условной и может различаться в зависимости от тестируемой изоляции.

Для обеспечения надлежащих результатов тестирования очень больших электродвигателей или очень длинных кабелей сведение к минимуму емкостных токов и токов поглощения может занимать от 30 до 40 минут.

На графике три тока показаны в зависимости от времени

Когда в цепь подается постоянное напряжение, суммарный ток, протекающий в тестируемом изоляторе, изменяется в зависимости от времени. Это предполагает значительное изменение сопротивления изоляции.

Перед подробным рассмотрением различных методов измерения было бы полезно снова взглянуть на факторы, которые влияют на измерение сопротивления изоляции.

Влияние температуры

Температура вызывает квазиэкспоненциальное изменение значения сопротивления изоляции. В контексте программы профилактического технического обслуживания измерения должны выполняться в одинаковых температурных условиях или, если это невозможно, должны корректироваться относительно эталонной температуры. Например, увеличение температуры на 10°C уменьшает сопротивление изоляции ориентировочно наполовину, в то время как уменьшение температуры на 10°C удваивает значение сопротивления изоляции.

Уровень влажности влияет на изоляцию в соответствии со степенью загрязнения ее поверхности. Никогда не следует измерять сопротивление изоляции, если температура ниже точки росы.

Коррекция сопротивления изоляции в зависимости от температуры (источник IEEE-43-2000)

Коррекция сопротивления изоляции в зависимости от температуры

 

Методы тестирования и интерпретация результатов

Кратковременное или точечное измерение

Это наиболее простой метод. Он подразумевает подачу испытательного напряжения на короткое время (30 или 60 секунд) и фиксацию значения сопротивления изоляции на этот момент. Как уже указывалось выше, на такое прямое измерение сопротивления изоляции значительное влияние оказывает температура и влажность, поэтому измерение следует стандартизировать при контрольной температуре и для сравнения с предыдущими измерениями следует фиксировать уровень влажности. С помощью данного метода можно проанализировать качество изоляции, сравнивая текущее измеренное значение с результатами нескольких предыдущих тестов. Со временем это позволит получить более достоверную информацию о характеристиках изоляции тестируемой установки или оборудования по сравнению с одиночным испытанием.

Если условия измерения остаются идентичными (то же самое испытательное напряжение, то же время измерения и т.д.), то при периодических измерениях путем мониторинга и интерпретации любых изменений можно получить четкую оценку состояния изоляции. После записи абсолютного значения, необходимо проанализировать изменение во времени. Таким образом, измерение, показывающее относительно низкое значение изоляции, которое, тем не менее, стабильно во времени, теоретически должно доставлять меньше беспокойства, чем значительное снижение сопротивления изоляции со временем, даже если сопротивление изоляция выше, чем рекомендованное минимальное значение. В общем, любое внезапное падение сопротивления изоляции свидетельствует о проблеме, требующей изучения.

На приведенном ниже графике показан пример показаний сопротивления изоляции для электродвигателя.

пример показаний сопротивления изоляции для электродвигателя

В точке A сопротивление изоляции уменьшается из-за старения и накопления пыли.

Резкое падение в точке B указывает на повреждение изоляции.

В точке C неисправность была устранена (обмотка электродвигателя перемотана), поэтому вернулось более высокое значение сопротивления изоляции, остающееся стабильным во времени, что указывает на ее хорошее состояние.

Методы тестирования, основанные на влиянии времени приложения испытательного напряжения (PI и DAR)

Эти методы включают последовательное измерение значений сопротивления изоляции в указанное время. Их преимуществом является неподверженность особому влиянию температуры, поэтому их можно применять без коррекции результатов, если только испытательное оборудование не подвергается во время теста значительным колебаниям температуры.

Данные методы идеально подходят для профилактического обслуживания вращающихся машин и для мониторинга изоляции.

Если изоляционный материал находится в хорошем состоянии, ток утечки или ток проводимости будет низким, а на начальный замер сильно влияют токи зарядки емкости и диэлектрического поглощения. При приложении испытательного напряжения со временем измеренное значение сопротивления изоляции повышается, так как уменьшаются эти токи помех. Необходимое для измерения изоляции в хорошем состоянии время стабилизации зависит от типа изоляционного материала.

Если изоляционный материал находится в плохом состоянии (поврежден, грязный и влажный), ток утечки будет постоянным и очень высоким, часто превышающим токи зарядки емкости и диэлектрического поглощения. В таких случаях измерение сопротивления изоляции очень быстро становится постоянным и стабилизируется на высоком значении напряжения.

Изучение изменения значения сопротивления изоляции в зависимости от времени приложения испытательного напряжения дает возможность оценить качество изоляции. Этот метод позволяет сделать выводы, даже если не ведется журнал измерения изоляции. Тем не менее, рекомендуется записывать результаты периодических измерений, проводимых в контексте программы профилактического обслуживания.

Показатель поляризации (PI)

При использовании этого метода два показания снимаются через 1 минуту и 10 минут, соответственно. Отношение (без размерностей) 10-минутного значения сопротивления изоляции к 1-минутному значению называется показателем поляризации (PI). Этот показатель можно использовать для оценки качества изоляции.

Метод измерения с использованием показателя поляризации идеально подходит для тестирования цепей с твердой изоляцией. Данный метод не рекомендуется использовать на таком оборудовании, как масляные трансформаторы, поскольку он дает низкие результаты, даже если изоляция находится в хорошем состоянии.

Рекомендация IEEE 43-2000 «Рекомендуемые методы тестирования сопротивления изоляции вращающихся машин» определяет минимальное значение показателя поляризации (PI) для вращающихся машин переменного и постоянного тока в температурных классах B, F и H равным 2.0. В общем случае значение PI, превышающее 4, является признаком превосходной изоляции, а значение ниже 2 указывает на потенциальную проблему.

PI = R (10-минутное измерение изоляции) / R (1-минутное измерение изоляции)

Результаты интерпретируются следующим образом:

Значение PI (нормы)

Состояние изоляции

<2

Проблемное

От 2 до 4

Хорошее

> 4

Отличное

Коэффициент диэлектрической абсорбции (DAR)

Для установок или оборудования, содержащих изоляционные материалы, в которых ток поглощения уменьшается быстро, для оценки состояния изоляции, возможно, будет достаточно провести измерение через 30 секунд и 60 секунд. Коэффициент DAR определяется следующим образом:

DAR = R (60-секундное измерение изоляции) / R (30-секундное измерение изоляции)

Результаты интерпретируются следующим образом:

Значение DAR (нормы)

Состояние изоляции

<1,25

Неудовлетворительное

<1,6

Нормальное

>1,6

Отличное

 

Метод, основанный на влиянии изменения испытательного напряжения (тестирование с помощью ступенчатого напряжения)

Наличие загрязнений (пыль, грязь и т.п.) или влаги на поверхности изоляции обычно четко выявляется с помощью зависящего от времени измерения сопротивления (PI, DAR и т.д.). Однако этот тип тестирования, проводимый с использованием низкого напряжение относительно диэлектрического напряжения испытываемого изолирующего материала, может иногда пропускать признаки старения изоляции или механические повреждения. Значительное же увеличение прикладываемого испытательного напряжения может, со своей стороны, вызвать повреждение в этих слабых точках, что приведет к существенному уменьшению измеренного значения сопротивления изоляции.

Для обеспечения эффективности соотношение между шагами изменения напряжения должно быть 1 к 5, и каждый шаг должен быть одинаковым по времени (обычно от 1 до 10 минут), оставаясь при этом ниже классического напряжения испытания электрической прочности (2Un + 1000 В). Полученные с помощью данного метода результаты полностью независимы от типа изоляции и температуры, потому что он основан не на внутреннем значении измеряемого изолятора, а на эффективном сокращении значения, получаемого по истечении одного и того же времени для двух разных испытательных напряжений.

Снижение значения сопротивления изоляции на 25% или более между первым и вторым шагами измерения является свидетельством ухудшения изоляции, которое обычно связано с наличием загрязнений.

Метод испытания рассеиванием в диэлектрике (DD)

Тест рассеивания в диэлектрике (DD), также известный как измерение тока повторного поглощения, выполняется путем измерения тока рассеивания в диэлектрике на испытуемом оборудовании.

Поскольку все три составляющие тока (ток зарядки емкости, ток поляризации и ток утечки) присутствуют во время стандартного испытания изоляции, на определение тока поляризации или поглощения может влиять наличие тока утечки. Вместо попытки измерить во время тестирования изоляции ток поляризации при тестировании рассеяния в диэлектрике (DD) измеряется ток деполяризации и ток разряда емкости после тестирования изоляции.

Принцип измерения состоит в следующем. Сначала тестируемое оборудование заряжается в течение времени, достаточного для достижения стабильного состояния (зарядка емкости и поляризация завершена, и единственным протекающим током является ток утечки). Затем оборудование разряжается через резистор внутри мегомметра и при этом измеряется протекающий ток. Этот ток состоит из зарядного тока емкости и тока повторного поглощения, которые в совокупности дают общий ток рассеивания в диэлектрике. Данный ток измеряется по истечении стандартного времени в одну минуту. Электрический ток зависит от общей емкости и конечного испытательного напряжения. Значение DD рассчитывается по формуле:

DD = Ток через 1 минуту / (Испытательное напряжение x Емкость)

Тест DD позволяет идентифицировать избыточные токи разряда, когда поврежден или загрязнен один из слоев многослойной изоляции. При точечных испытаниях или тестах PI и DAR подобный дефект можно упустить. При заданном напряжении и емкости ток разряда будет выше, если поврежден один из слоев изоляции. Постоянная времени этого отдельного слоя больше не будет совпадать с другими слоями, что приведет к более высокому значению тока по сравнению с неповрежденной изоляцией. Однородная изоляция будет иметь значение DD, близкое к нулю, а допустимая многослойная изоляция будет иметь значение DD до 2. В приведенной ниже таблице указано состояние в зависимости от полученного значения DD.

DD (нормы)

Состояние

> 7

Очень плохое

От 4 до 7

Плохое

От 2 до 4

Сомнительное

<2

Нормальное

Внимание: Данный метод измерения зависим от температуры, поэтому каждая попытка тестирования должна выполняться при стандартной температуре или, по крайней мере, температура должна фиксироваться вместе с результатом теста.

Тестирование изоляции с высоким сопротивлением: использование гнезда G на мегомметре

Тестирование изоляции с высоким сопротивлением: использование гнезда G на мегомметре

При измерении значений сопротивления изоляции (выше 1 ГОм) на точность измерений могут повлиять токи утечки, протекающие по поверхности изоляционного материала через имеющиеся на ней влагу и загрязнения. Значение сопротивления больше не является высоким, и поэтому пренебрежимо малым по сравнению с сопротивлением оцениваемой изоляции. Для устранения снижающей точность измерения изоляции поверхностной утечки тока на некоторых мегомметрах имеется третье гнездо с обозначением G (Guard). Это гнездо шунтирует измерительную цепь и повторно вводит поверхностный ток в одну из точек тестирования, минуя цепь измерения (смотрите рисунок ниже).

При измерении значений сопротивления изоляции на точность измерений могут повлиять токи утечки

При выборе первой схемы, без использования гнезда G, одновременно измеряется ток утечки i и нежелательный поверхностный ток I1, поэтому сопротивление изоляции измеряется неверно.

Однако при выборе второй схемы измеряется только ток утечки i. Подключение к гнезду G позволяет отвести поверхностный ток I1, поэтому измерение сопротивления изоляции проводится правильно.

 

Подключение к гнезду G позволяет отвести поверхностный ток I1, поэтому измерение сопротивления изоляции проводится правильно

Гнездо G необходимо соединить с поверхностью, по которой протекают поверхностные токи, и которая не относится к таким изоляторам, как изоляционные материалы кабелей или трансформаторов. Знание возможных путей протекания испытательных токов через тестируемый элемент имеет решающее значение для выбора места соединения с гнездом G.

Нормы испытательного напряжения для кабелей/оборудования

Рабочее напряжение кабеля/оборудования

Нормы испытательного напряжения постоянного тока

От 24 до 50 В

От 50 до 100 В постоянного тока

От 50 до 100 В

От 100 до 250 В постоянного тока

От 100 до 240 В

От 250 до 500 В постоянного тока

От 440 до 550 В

От 500 до 1000 В постоянного тока

2400 В

От 1000 до 2500 В постоянного тока

4100 В

От 1000 до 5000 В постоянного тока

От 5000 до 12 000 В

От 2500 до 5000 В постоянного тока

> 12 000 В

От 5000 до 10 000 В постоянного тока

 

В приведенной выше таблице показаны рекомендованные нормы испытательного напряжения в соответствии с рабочими напряжениями установок и оборудования (значения взяты из руководства IEEE 43-2000).

Кроме того, эти значения задаются для электрических приборов в самых разнообразных местных и международных стандартах (IEC 60204, IEC 60439, IEC 60598 и т.д.).

Во Франции, например, стандарт NFC15-100 предусматривает значения испытательного напряжения и минимального сопротивления изоляции для электроустановок (500 В постоянного тока и 0,5 МОм при номинальном напряжении от 50 до 500 В).

Однако вам настоятельно рекомендуется обратиться к изготовителю кабеля/оборудования, чтобы узнать их собственные рекомендации по требуемому испытательному напряжению.

Безопасность при тестировании изоляции

Безопасность при тестировании изоляции

Перед тестированием

A. Чтобы испытательное напряжение не было приложено к другому оборудованию, имеющему электрическое соединение с тестируемой цепью, испытание должно проводиться на отключенной, не проводящей электрический ток установке.

B. Убедитесь, что цепь разряжена. Ее можно разрядить, замкнув накоротко выводы оборудования и/или замкнув их на землю на определенное время (смотрите время разряда).

C. Если тестируемое оборудование находится в огнеопасной или взрывоопасной среде, необходима специальная защита, поскольку, если изоляция повреждена, при разряде изоляции (до и после испытания), а также во время тестирования могут возникать искры.

D. Из-за наличия напряжения постоянного тока, величина которого может быть достаточно высокой, рекомендуется ограничить доступ другого персонала и надевать средства индивидуальной защиты (например, защитные перчатки), предназначенные для работы на электрооборудовании.

E. Используйте только те соединительные кабели, которые подходят для проводимого испытания; убедитесь, что кабели находятся в хорошем состоянии. В лучшем случае неподходящие кабели приведут к ошибкам измерения, но гораздо важнее, что они могут быть опасными.

После тестирования

К концу испытания изоляция накапливает значительную энергию, которую необходимо сбросить до выполнения любых других операций. Простое правило безопасности заключается в том, чтобы предоставить оборудованию возможность разряжаться в течение времени, в пять раз превышающего время зарядки (время последнего теста). Для разрядки оборудования можно накоротко замкнуть его выводы и/или соединить их с землей. Все изготовленные компанией Chauvin Arnoux мегомметры оборудованы встроенными цепями разрядки, которые автоматически обеспечивают требуемую безопасность.

Часто задаваемые вопросы

Результат моих измерений – x МОм. Это нормально?

 

Результат моих измерений – x МОм. Это нормально?

Какое должно быть сопротивление изоляции — на этот вопрос нет единого ответа. Точный ответ на него могут дать производитель оборудования или соответствующие стандарты. Для низковольтных установок минимальным значением можно считать значение 1 МОм. Для установок или оборудования с более высоким рабочим напряжением можно использовать правило, определяющее минимальное значение 1 МОм на кВ, в то время как рекомендации IEEE, касающиеся вращающихся машин, определяют минимальное сопротивление изоляции (n + 1) МОм, где n – рабочее напряжение в кВ.

Какие измерительные провода следует использовать для подключения мегомметра к тестируемой установке?

Используемые на мегомметрах провода должны иметь спецификации, подходящие для выполняемых измерений с точки зрения используемых напряжений или качества изоляционных материалов. Использование несоответствующих измерительных проводов может привести к ошибкам измерения или даже оказаться опасным.

Какие меры предосторожности следует принимать при измерении высокого сопротивления изоляции?

При измерении высоких значений сопротивления изоляции в дополнение к указанным выше правилам безопасности необходимо соблюдать следующие меры предосторожности.

  • Используйте специальное гнездо G (Guard) (описывается в специальном разделе выше).
  • Используйте чистые, сухие провода.
  • Прокладывайте провода на расстоянии друг от друга и без контакта с любыми объектами или с полом. Это позволит ограничить возможность возникновения токов утечки в самой измерительной линии.
  • Не касайтесь проводов и не перемещайте их во время измерения, чтобы избежать возникновения вызывающих помехи емкостных эффектов.
  • Для стабилизации измерения выждите необходимое время.

Почему два последовательных измерения не всегда дают одинаковый результат?

Применение высокого напряжения создает электрическое поле, которое поляризует изоляционные материалы. Важно понимать, что для возвращения изоляционных материалов после завершения тестирования в состояние, в котором они находились до испытания, потребуется значительное время. В некоторых случаях на это может потребоваться больше времени, чем указанное выше время разрядки.

Как протестировать изоляцию, если я не могу отключить установку?

Если невозможно отключить питание тестируемой установки или оборудования, мегомметр использовать нельзя. В некоторых случаях можно провести тестирование без снятия напряжения, используя для измерения тока утечки специальные клещи, но этот метод гораздо менее точен.

Как выбрать измеритель сопротивления изоляции (мегомметр)?

Как выбрать измеритель сопротивления изоляции (мегомметр)

При выборе измерителя сопротивления изоляции необходимо задать следующие ключевые вопросы:

  • Какое максимальное испытательное напряжение необходимо?
  • Какие методы измерения будут использоваться (точечные измерения, PI, DAR, DD, ступенчатое изменение напряжения)?
  • Какое максимальное значение сопротивления изоляции будет измеряться?
  • Как будет подаваться питание на мегомметр?
  • Каковы возможности хранения результатов измерений?

Примеры измерений сопротивления изоляции

Измерение изоляции на электрической установке, электрооборудовании

Измерение изоляции на электрической установке, электрооборудовании

Измерение изоляции на вращающейся машине (электродвигатель)

Измерение изоляции на вращающейся машине (электродвигатель)

Измерение изоляции на электроинструменте

Измерение изоляции на электроинструменте

Измерение изоляции на трансформаторе

Измерение сопротивления изоляции трансформатора производят следующим образом:

Измерение сопротивления изоляции трансформатора

a. Между высоковольтной обмоткой и низковольтной обмоткой и землей

 

Измерение на трансформаторе между низковольтной обмоткой и высоковольтной обмоткой и землей

b. Между низковольтной обмоткой и высоковольтной обмоткой и землей

 

Измерение на трансформаторе между высоковольтной обмоткой и низковольтной обмоткой

c. Между высоковольтной обмоткой и низковольтной обмоткой

 

Измерение на трансформаторе между высоковольтной обмоткой и землей

d. Между высоковольтной обмоткой и землей

 

Измерение на трансформаторе между низковольтной обмоткой и землей

e. Между низковольтной обмоткой и землей

 

Подробнее о приборах для проверки изоляции высоковольтных кабелей смотрите в этом разделе.

 

методика измерения, используемые приборы, как провести, пошаговая инструкция

Сопротивление изоляции — важный параметр, без нормального показателя которого невозможна безопасная работа электроприборов. Что такое замер сопротивления, как проводить эту процедуру, как проверить электропроводку на этот показатель в электролаборатории и многое другое далее.

Что это такое

Сопротивление изоляции — показатель, который влияет на безопасность работы электрических установок. Также это главный параметр во всех кабелях и проводах, поскольку при эксплуатации они всегда подвергаются разным физическим и другим воздействиям. Согласно понятию из учебника физики это соотношение напряжения, которое приложено к диэлектрическому элементу к току, протекающему через этот элемент.

Сопротивление изоляции что это

Несмотря на то, что кабели сделаны из качественного и долговечного материала, он может выйти из строя вследствие:

  • высокого напряжения и солнечного света;
  • механического повреждения и постановки неправильного температурного режима;
  • неблагоприятной среды эксплуатации.

Чтобы точно выяснить причины повреждений в цепи кабеля или проверить возможность в дальнейшем эксплуатировать изоляцию, необходимо сделать замер сопротивления изоляции.

Обратите внимание! В случае визуального обнаружения изоляции, выполнение измерений уже не требуется. Осуществляя проведение замеров сопротивления изоляции мегаомметром, можно убрать неисправность, предотвратить пожар и аварийную ситуацию, убрать чрезмерно изношенное устройство, устранить короткие замыкания с возможными ударами тока людей.

Поврежденный кабель от солнечного света

Как обследовать электропроводку

Сделать обследование электрической проводки можно только после осмотра ее целостности. Так, на проводных изгибах не должно быть поломанных, потресканных и раскрошенных частей. Если после визуального просмотра, не были выявлены предпосылки того, чтобы заменить кабель, необходимо сделать измерение сопротивления изоляции. Для этого нужно воспользоваться мегаомметром.

Исследование проводки

Согласно правилам устройства электрических установок, в сети не должно быть сопротивление меньше 0,5 МОм, чтобы можно было правильно провести испытание с напряжением в тысячу вольт.

Кроме того, исследуется электропроводка в качестве профилактики. К примеру, изоляционное сопротивление нужно проверять каждые три года по правилам технической эксплуатации электрических установок. Где есть особо опасные объекты и наружные установки, проверку делают раз в год.

Обратите внимание! При начале работы необходимо сделать подсчет общей мощности потенциальных установленных электрических приборов. Исходя из данной информации, необходимо вычисление сечения кабели по показателям мощности. Далее необходимо сравнить получившуюся цифру с той, что равна сечению кабеля. Если она меньше, значит нужно в срочном порядке менять всю электрическую проводку.

Потом нужно проверить всю скрытую проводку. На части изоляции не должно быть никаких повреждений. Провода должны иметь специальные клеммы.

Обязательно необходимо осуществить проверку распределительного щита. Он должен быть правильным образом собран. В противном случае, когда будут подключены все электроприборы к щитку, автомат будет выбивать из-за предельной нагрузки.

Просмотр целостности кабеля как необходимость до начала его проверки

Шкала допустимого сопротивления

Как правило, каждая шкала на предприятии своя, в зависимости от оборудования. Далее даны примеры допустимого изоляционного сопротивления электрических установок, аппаратов, цепей и проводок:

  1. Электроустановка 12 ватт = менее 0,5 МОм;
  2. Аппарат напряжения от 42 до 380 ватт = менее 0,5 МОм;
  3. Электрический инструмент ручного типа в виде трансформатора, переносного светильника = менее 0,5МОм, а в напряжении 2 МОм;
  4. Бытовая стационарная электроплита = 1МОм;
  5. Кран и люфт = 0,5МОм;
  6. Силовая и осветительная электропроводка, распределительная установка, щиток и токопровод = 0,5 МОм;
  7. Вторичная управленческая цепь защиты измерения или сигнализации = 1 МОм и выше;
  8. Цепь управления, цепь питания и цепи напряжения — 1 МОм и выше.

Замер сопротивления изоляции кабеля

Замер сопротивления изоляции электропроводки происходит около двух точек электрической установки, характеризующей утечку при подаче напряжения в сети. Результат — показатель, выражаемый в мегаомах. Измерение осуществляется при помощи мегаомметра, который исследует утечку тока, возникающую при действии регулярно поступающего напряжения к электрической установке.

Современными мегаомметрами выдаются разные уровни напряжения, чтобы испытать различное оборудование. В итоге, обязательная часть проверки цепи — изучение изоляционного сопротивления.

Принцип измерения показателя

Приборы для измерений

Сегодня измерением сопротивления изоляции в кабелях занимаются мегаомметры, лучшие из которых М — 4100, ЭСО 202 / 2Г, MIC — 30, MIC — 1000 и MIC-2500. Поскольку электротехника, как и мир, не стоит на месте, появляются новые устройства и обновления старых.

Мегаомметр внешний вид

Мегаомметр

Мегаомметр является специальным прибором, используемым профессиональными электриками, чтобы измерять электросети и приборы. Отличается от омметра тем, что может измерять на более высоком напряжении. Чтобы проверять сопротивление, прибором напряжение генерируется самостоятельно благодаря встроенному механическому генератору или батареи.

Обратите внимание! Конструкция его проста: источник питания, к примеру, генератор переменного тока, имеющий выпрямительный мост, и измерительный механизм.

Применение его широкое. Его используют, чтобы выявить повреждения в электросетях перед тем, как начать эксплуатировать ее, а также обнаружить места, где уже создалась аварийная ситуация. Чтобы проверить изоляцию кабеля в трансформаторной, электродвигательной части и любых устройствах, обладающих электрической обмоткой и изоляцией. Главное предназначение в измерении изоляционного сопротивления кабелей.

Благодаря испытаниям, можно понять, где находятся слабые места в электрических сетях. Показатели, снимаемые с мегаомметра, используются, чтобы определить степень изоляционной изношенности для предотвращения неожиданных и нежелательных случаев возгорания.

Конструкция мегаомметра

Принцип работы устройства прост. Он подает напряжение на кабельный участок, который и проверяется в итоге на наличие нормального поступления тока. При утечках, показатели попадают на панель, откуда пользователь и делает выводы. Если утечка больше допустимого значения, значит, речь идет о повреждении изоляции и появления короткого замыкания, недопустимого для того, чтобы была нормальная эксплуатация электрических сетей. В противном случае, кабели могут загореться.

Укомплектован каждый мегаомметр на 1000 и 2500 вольт гибкими медными проводниками, достигающими в длину до трех метров. Каждый прибор оснащен наконечниками в виде крокодила.

Обратите внимание! Отличаются устройства друг от друга модели дизайном и устройством. Аналоговые измерительные устройства обладают динамо машиной, которая вращением специальной ручки делает выработку напряжения, производящего изоляционные замеры. Также есть приборы с аналоговым табло и механической стрелкой. Современные модели оснащены аккумуляторными батареями и блоком питания, имеют цифровое табло, которое отображает изоляционные показатели с памятью.

Аналоговая модель

Инструкция по технике безопасности

Вся измерительная работа сводится к тому, что используется мегомметр для изучения показателя сопротивления при напряжении до 1000 вольт. При рассмотрении светильников, до работы с ними, отключается напряжение, они выключаются из сети. При применении газоразрядных ламп, можно не выкручивать, а только убрать стартеры.

Инструкция при работе с мегаомметром

Важно до начала контрольных измерений проверить прибор, определив показания при разомкнутом и замкнутом проводнике. В первом случае должно появится бесконечное сопротивление, а во втором случае — значение около нуля.

Затем необходимо обесточить кабель. Чтобы убедиться в том, что напряжение отсутствует, нужно использовать указатель напряжения, испытанный на подключенном к участку цепи электрической установки.

Потом нужно заземлить токоведущие жила кабеля и при измерении его надеть диэлектрического вида резиновые защитные перчатки.

Обратите внимание! Прикасаться к токоведущим элементам запрещено!

Сопротивление можно проверить только по отдельной фазе. Если есть отрицательный результат, необходима проверка изоляции в участке фазы и земли.

Выполняя измерения, необходимо полное следование инструкции, разработанной на предприятии. Воспрещено начинать работу, не убедившись в том, что отсутствует напряжение. Коммутация должна быть осуществлена только в том случае, если обесточены токоведущие части и использованы средства защиты.

Возгорание как следствие отсутствия проверки кабелей

В целом, сопротивление изоляции — параметр, который нужно измерять при выходе из строя кабели или в качестве профилактики при помощи мультиметра и других доступных способов. Важно при этом полностью следовать инструкции и соблюдать технику безопасности, чтобы все измерения проходили без ущерба для здоровья.

Как выполняется замер сопротивления изоляции электропроводки Замер сопротивление изоляции мегаомметром

Замер сопротивление изоляции мегаомметром

Измерение сопротивления изоляции электропроводки должно выполняться во время приемо-сдаточных работ; периодически, согласно нормам и установленным правилам, а также после проведения ремонтов сети освещения. При этом производится не только замер сопротивления изоляции между фазных и нулевых проводов, но и сопротивление изоляции между ними и проводником заземления.

Это позволяет вовремя диагностировать и устранять возможные повреждения изоляции, что снижает риск коротких замыканий и пожаров.

Работа с мегаомметром

Что такое мегаомметр?

Прибор для замера сопротивления изоляции электропроводки называется мегаомметр. Принцип его действия основан на измерении токов утечки между двумя точками электрической цепи. Чем они выше, тем ниже сопротивление изоляции, и, соответственно, данная электроустановка требует повышенного внимания.

Итак:

  • На данный момент на рынке представлены мегаомметры двух основных типов. Приборы, работающие от встроенного в прибор генератора, и более современные мегаомметры с наличием аккумулятора.
На фото изображен универсальный мегаомметр

На фото изображен универсальный мегаомметр

  • По типоразмеру мегаомметры можно разделить на устройства с номинальным напряжением в 100В, 500В, 1000В и 2500В. Самые маленькие мегаомметры применяются для испытания электроустановок до 50В.В зависимости от номинальных нагрузок для цепей напряжением до 660В обычно применяют устройства на 500 или 1000В. Для цепей напряжением до 3кВ — мегаомметры на 1000В, а для электроустановок и проводников большего напряжения приборы на 2500В.

Кто и когда имеет право производить замеры мегаомметром

Приборы замера сопротивления изоляции электропроводки имеют определенные требования по работе с ними. Так для самостоятельной работы мегаомметром в электроустановках до 1000В вам необходима третья группа допуска по электробезопастности.
Итак:

  • Периодичность замеров сопротивления изоляции электропроводки определяется ПТЭЭП (Правила технической эксплуатации электроустановок потребителей) и для электропроводки осветительной сети составляет 1 раз в три года. Такие же нормы действуют для электропроводки офисных помещений и торговых павильонов.

Обратите внимание! Наружная электропроводка и проводка, выполненная в особо опасных помещениях, должна проходить замер сопротивления изоляции ежегодно. Кроме того ежегодно проходит проверку электропроводка кранов, лифтов, детских и оздоровительных учреждений.

  • Периодичность проверки сопротивления изоляции электропроводки электрических печей составляет 1 раз в полгода. При этом замеры должны производиться во время максимально нагретого состояния печи.
    Кроме того раз в полгода следует визуально осматривать состояние заземления печи. Эти же нормы проверки относятся и к сварочным аппаратам.

Как работать с мегаомметром?

Для подключения к электрической сети прибор зaмерa сопротивления изоляции электропроводки имеет два вывода длиной до трех метров. Они дают возможность подключать прибор к электрической цепи.

Схема подключения мегаомметра в трехфазной цепи

Схема подключения мегаомметра в трехфазной цепи

Обратите внимание! Для работы с мегаомметром во всех электроустановках, на которых предстоит производить замеры, следует снять напряжение. Кроме того следует снять напряжение с соседних электроустановок, к которым возможно случайное прикосновение.

Итак:

  • Перед применением мегаомметр должен быть проверен на работоспособность. Для этого сначала закорачиваем выводы прибора накоротко. Затем вращаем ручку генератора и проверяем наличие цепи по показаниям прибора. После этого изолируем выводы друг от друга и проверяем максимально возможные показания на приборе.
  • После этого приступаем непосредственно к замерам. Для замеров трехпроводной однофазной цепи последовательность операций должна быть следующей:
    1. В сети освещения выкручиваем все лампы и отключаем все электроприборы от розеток.
    2. После этого включаем все выключатели сети освещения.
    3. Согласно ПБЭЭ (Правил безопасной эксплуатации электроустановок), все работы с мегаомметром должны выполняться в диэлектрических перчатках. Ведь напряжение на выводах прибора — минимум 500В, поэтому данным требованием не стоит пренебрегать.
    4. Подключаем выводы к фазному и нулевому проводу сети освещения. Производим замер. Согласно ПТЭЭП, он должен показать значение не меньше 0,5 МОм.

Обратите внимание! При выполнении замера должны быть приняты меры по предотвращению повреждения полупроводниковых и микроэлектронных приборов в цепи. Поэтому если в вашей цепи таковые присутствуют, их необходимо «выцепить» до проведения замеров.

  • После выполнения замера фазный провод следует разрядить, прежде чем прикасаться к нему. Вообще емкость проводников освещения не велика и этот пункт можно бы было опустить, но, в случае наличия в вашей сети больших индуктивных или емкостных сопротивлений, снятие заряда с проводника обязательно, ведь цена невыполнения этого действия, может быть очень велика. Кстати по этой же причине мы не измеряем коэффициент абсорбции изоляции.
  • Затем производим такие же замеры по отношению между фазным проводом и заземлением и нулевым проводом и заземлением. Во всех случаях показания должны быть выше 0,5МОм.

  • Если необходимо выполнить замер сопротивления изоляции трехфазной цепи, то последовательность операций такая же. Только количество замеров больше, ведь нам необходимо замерить изоляцию между всеми фазными проводниками, нулевым проводом и землей.

Несколько слов о мультиметре

Мультиметр

Мультиметр

Большинство мультиметров имеют функцию замера сопротивления. Но измеряют они не сопротивление изоляции, а сопротивление электрической цепи.

Поэтому для проведения периодических проверок сопротивления изоляции он не предназначен. Мультиметр позволит вам своими руками отыскать место повреждения провода, найти плохой контакт, проверить целостность заземляющего проводника, а также еще целый ряд необходимых задач. Но замерить сопротивление изоляции он не способен.

Вывод

Надеемся, наша инструкция поможет вам определиться со сроками и методами проведения проверки сопротивления изоляции. Ведь многочисленные видео в сети интернет зачастую дают информацию несоответствующую действительности о возможности использования для этих целей мультиметра.

Недаром в большинстве случаев такими измерениями занимаются специальные высоковольтные лаборатории, которые имеют все необходимое оборудование, специалистов и сертификацию, согласно действующего законодательства.

Как измерить сопротивление изоляции кабеля?

Как измерить сопротивление изоляции кабеля?

Рассмотрение методики измерения сопротивления изоляции кабелей и проводов. Узнайте, как производятся замеры, для чего это нужно и кто должен выполнять работы.


Изоляция – это защита оборудования от прохождения электрического тока через него. При работе электрических установок их изолированность и конструкция подвергается воздействию окружающей среды, старению и износу в результате нагрева. Все это негативно отображается на работоспособности оборудования, поэтому важно время от времени проводить измерение сопротивления изоляции кабеля. Методику проведения замеров мы предоставили ниже. Содержание:

Какие приборы используют?

Прежде чем приступать к работе, нужно замерить температуру воздуха окружающей среды. Для чего это необходимо? Если кабельная линия во время отрицательной температуры будет иметь частицы воды, то они превращаются под действием мороза во льдинки, а лед – это диэлектрик, который не имеет проводимости. Поэтому когда сопротивление будет измеряться при отрицательной температуре, то эти льдинки обнаружены не будут.

Затем для того чтобы осуществит замер изолирующего слоя проводки (ее сопротивление), необходимо обладать специальными приборами и средствами для диагностики. Измерить сопротивление можно специальным прибором, который называется мегаомметром (на фото ниже).

Как измерить сопротивление изоляции кабеля?

Мегаомметром можно замерить сопротивление на напряжение 2500 В (изоляция низковольтных и высоковольтных линий). Измерение происходит на напряжение 500–2500 В контрольных силовых линий (цепи управления, цепи питания, короткозамыкатели и т. д.).

Такие приборы должны каждый год проходить государственную поверку, в результате которой ставится штамп, где указывается серийный номер и дата, когда необходимо пройти следующую поверку. Каждый кабель имеет свои нормы, ГОСТ и ПУЭ, согласно которым проводятся проверки и испытания проводов.

Методика проведения испытаний

Прежде чем осуществить измерение сопротивления изоляции проводов и кабелей следует выполнить следующие действия:

  1. Проверить состояние прибора. Для этого следует проверить направление стрелки при разомкнутых (стрелка показывает на бесконечность) и сомкнутых (показывает на ноль) проводах.
  2. Проверить отсутствие питания. Провод не должен быть под напряжением.
  3. Заземлить кабель, который будут испытывать.

Измерение отличается в зависимости от классификации силовых линий, но эти отличия незначительные. Например, контрольный кабель имеет свою отличительную особенность: для того, чтобы измерить сопротивление, провод не нужно отсоединять от схемы.

Изоляция приборов проверяется с помощью специальных устройств, к которым во время испытаний прикасаться запрещено. Показания следует снимать только тогда, когда стрелка прибора примет устойчивое положение. Измерение осуществляется в течение одной минуты. С электронными приборами дела обстоят быстрее и результат выводится сразу на экран. Все данные следует записать в блокнот.

Как измерить сопротивление изоляции кабеля?

После того как все данные были получены, необходимо составить акт и протокол испытания. В первую очередь следует сравнить полученные значения с существующими нормами и требованиями. Затем сделать вывод: пригоден ли кабель для дальнейшей эксплуатации. И только после этого составить протокол измерения сопротивления изоляции кабеля. Образец протокола предоставлен на фото ниже:

Как измерить сопротивление изоляции кабеля?

Более подробно о том, как пользоваться мегаомметром, вы можете узнать из нашей статьи!

Как часто проводят замеры?

В организациях небольших размеров сопротивление измеряют с периодичностью один раз в три года (согласно ГОСТу и ПТЭЭП). Изоляция электропроводки фиксируется в протоколе, в котором помимо замеров указывается и проверка исправности УЗО.

Измерение сопротивления изоляции на объектах с повышенной опасностью должны проводиться каждый год. Это такие помещения, где присутствует повышенная влажность или высокая температура. На промышленных предприятиях такой замер позволит предотвратить или избежать остановки оборудования. После того как был осуществлен осмотр оборудования составляется специальный отчет, в котором указывается полностью состояние электроустановок.

Измерение следует проводить согласно установленным срокам. Ведь благодаря этому можно заранее избежать различных аварийных ситуаций, которые могут иметь серьезные последствия. Также несвоевременная проверка несет за собой штрафы, которые накладывают соответствующие органы.

Ниже представлена схема периодичности проверок в зависимости от классификации и категории помещения:

Как измерить сопротивление изоляции кабеля?

Кто проводит проверку и зачем это нужно?

Для того чтобы измерить сопротивление необходимо иметь специальное разрешение и доступ. Исходя из этого, кабель могут испытывать только специальные компании и организации, которые имеют квалифицированных сотрудников. Они должны пройти соответствующее обучение и получить требуемый разряд по электробезопасности.

Проводить замер необходимо для того, чтобы заранее выявить повреждения в оборудовании. Ведь изоляция играет значительную роль в безопасности работы с электрооборудованием. Если кабель или провод поврежден, то значит электроустановка становится опасной при работе. Ведь провод или кабель могут загореться и стать причиной пожара. Если заранее проверить кабель на исправность изолирующего слоя, это предотвратит от таких неприятностей, как:

  • преждевременный выход из строя оборудования;
  • короткое замыкание проводки;
  • поражение током работника;
  • аварийные ситуации различного характера.

Именно поэтому очень важно проводить измерение сопротивления изоляции кабеля. Напоследок рекомендуем просмотреть полезное видео по теме:

Теперь вы знаете, как измерить сопротивление изоляции проводов и кабелей. Надеемся, предоставленная инструкция была для вас полезной и интересной!

Наверняка вы не знаете:

  • Методика испытания кабельных линий повышенным напряжением
  • Измерение сопротивления петли фаза-ноль
  • Как правильно пользоваться мультиметром


НравитсяКак измерить сопротивление изоляции кабеля?0)Не нравитсяКак измерить сопротивление изоляции кабеля?0)
Сопротивление изоляции: методика измерения, используемые приборы Что такое измерение сопротивления изоляции и почему это важно

Как любое оборудование, техника, со временем из строя начинают выходить и электрические кабели различных видов. Одной из методик определение запаса прочности кабеля и выявления дефектов является измерение сопротивления изоляции. В этой статье рассказывается о том, что это, когда и как оно проводится.

Обследование электропроводки

Сопротивление измерениеВ каждой организации, в ведении которой находится электроустановки, должен быть ответственный за электрохозяйство. В его обязанности входит составление планово-предупредительных работ по ремонту этого оборудования, а также проведения периодических испытаний и измерений, обследования электропроводки. Периодичность таких измерений, как правило, составляется на основе требований ПТЭЭП. Например, по поводу измерения сопротивления изоляции там сказано, что испытания стоит проводить 1 раз в 3 года.

Что такое измерение сопротивления изоляции

Это измерение специальным прибором (мегаомметром) сопротивления между двумя точками электроустановки, которое характеризует ток утечки между этими точками при подаче постоянного напряжения. Результатом измерения является значение, которое выражается в МОм (мегаОмы). Измерение проводится прибором – мегаомметром, принцип действия которого состоит в измерении тока утечки, возникающего под действием на электроустановку постоянного пульсирующего напряжения. Современные мегаомметры выдают различные уровни напряжения для испытания разного оборудования.

Допустимое сопротивление для различного оборудования

Основным руководящим документом является ПТЭЭП, в котором приводится периодичность испытаний, величина испытательного напряжения и норма значения сопротивления для каждого вида электрооборудования (ПТЭЭП приложение 3.1, таблица 37). Ниже приводится выдержка из документа.

 

Выдержка

Не стоит путать сопротивление электрических кабелей с сопротивлением коаксиального кабеля и волновым сопротивлением кабеля, т.к. это относится к радиотехнике и там действуют другие принципы подхода к допустимым значениям.

Вопрос электробезопасности

Измерение сопротивления изоляции проводится с целью обезопасить человека от поражения током и в целях пожарной безопасности. Отсюда минимальное значение сопротивления – 500 кОм. Оно взято из простого расчета:

Расчетная формула

U – фазное напряжение электроустановки;

RИЗ – сопротивление изоляции электрооборудования;

RЧ – сопротивление тела человека, для расчетов по электробезопасности принимается RЧ =1000 Ом.

Подставляя известные значения (U=220 В, RИЗ=500 кОм), получается ток утечки 0,43 мА. Порог ощутимого тока 0,5 мА. Таким образом, 0,5 МОм – это минимальное сопротивление изоляции, при котором среднестатистический человек не будет чувствовать тока утечки.

При измерении мегаомметром также стоит обратить внимание на безопасность, т.к. аппарат выдает до 2500 В на своих щупах, оно может быть смертельным для человека. Поэтому проводить измерения может только специально обученный персонал. Подключение мегаомметра и измерения должны проводиться на отключенной от электрической сети электроустановке. Необходимо провести проверку электропроводки на отсутствия напряжение. Если проходят испытания для кабеля, следует обезопасить это место от случайного прикосновения к неизолированным частям кабеля на противоположном конце от места испытания.

Методика измерения сопротивления изоляции кабеля

Сначала персонал должен определить отсутствие напряжения на кабеле с помощью указателя напряжения. На противоположном конце жилы кабеля должны быть разведены на достаточное расстояние, чтобы не было случайного замыкания. Затем вывешиваются запрещающие знаки в зоне проведения испытания. Также необходимо провести визуальный осмотр кабеля, если это возможно, чтобы определить, есть ли места перегрева или оголенные участки. После этого можно приступать к измерениям. Необходимо измерить сопротивление изоляции между фазами (А-В, А-С, В-С), между фазами и нулем (А-N. B-N, C-N), между нулем и заземляющим проводом. Время каждого измерения – 1 минута. После каждого испытания необходимо заземлять жилу кабеля, хотя современные мегаомметры могут проводить самостоятельную разрядку. Полученные результаты записываются в протокол. Стоит помнить, что, если полученные данные делаются для какой-то проверяющей комиссии, протокол имеет право делать только специализированная электролаборатория.

Приборы для проведения измерений

Для проведения испытаний именно постоянным пульсирующим напряжением наилучшим выбором является мегаомметр. В приборах старых конструкций для получения напряжений использовался встроенный механический генератор, работающий по принципу динамо-машины. Чтобы выдать необходимое напряжение, надо было усиленно крутить ручку. В настоящее время мегаомметры выполняются в виде электронных устройств, работающих от батарей, они имеют компактный размер и удобное программное обеспечение. Современные мегаомметры имеют память, где хранятся несколько испытаний. При каждом измерении проводится автоматический подсчет коэффициента абсорбции. Его значение определяется отношением тока поляризации к току утечки через диэлектрик — изоляцию обмотки. При влажной изоляции коэффициент абсорбции близок к 1. При сухой изоляции R60 (сопротивление изоляции через 60 сек после начала испытания) на 30-50 % больше, чем R15 (через 15 сек).

Итог

Измерение сопротивления изоляции кабеля – ответственная процедура, от правильности выполнения которой, зависит безопасность, как людей, так и оборудования. Поэтому не стоит пренебрегать этой несложной, но полезной операции. Это поможет сэкономить немало средств.

Измерение сопротивления изоляции кабеля: видео, фото, схема

Изоляция – это защита оборудования от прохождения электрического тока через него. При работе электрических установок их изолированность и конструкция подвергается воздействию окружающей среды, старению и износу в результате нагрева. Все это негативно отображается на работоспособности оборудования, поэтому важно время от времени проводить измерение сопротивления изоляции кабеля. Методику проведения замеров мы предоставили ниже.

Какие приборы используют?

Прежде чем приступать к работе, нужно замерить температуру воздуха окружающей среды. Для чего это необходимо? Если кабельная линия во время отрицательной температуры будет иметь частицы воды, то они превращаются под действием мороза во льдинки, а лед – это диэлектрик, который не имеет проводимости. Поэтому когда сопротивление будет измеряться при отрицательной температуре, то эти льдинки обнаружены не будут.

Затем для того чтобы осуществит замер изолирующего слоя проводки (ее сопротивление), необходимо обладать специальными приборами и средствами для диагностики. Измерить сопротивление можно специальным прибором, который называется мегаомметром (на фото ниже).

Мегаомметр фото

Мегаомметром можно замерить сопротивление на напряжение 2500 В (изоляция низковольтных и высоковольтных линий). Измерение происходит на напряжение 500–2500 В контрольных силовых линий (цепи управления, цепи питания, короткозамыкатели и т. д.).

Такие приборы должны каждый год проходить государственную поверку, в результате которой ставится штамп, где указывается серийный номер и дата, когда необходимо пройти следующую поверку. Каждый кабель имеет свои нормы, ГОСТ и ПУЭ, согласно которым проводятся проверки и испытания проводов.

Методика проведения испытаний

Прежде чем осуществить измерение сопротивления изоляции проводов и кабелей следует выполнить следующие действия:

  1. Проверить состояние прибора. Для этого следует проверить направление стрелки при разомкнутых (стрелка показывает на бесконечность) и сомкнутых (показывает на ноль) проводах.
  2. Проверить отсутствие питания. Провод не должен быть под напряжением.
  3. Заземлить кабель, который будут испытывать.

Измерение отличается в зависимости от классификации силовых линий, но эти отличия незначительные. Например, контрольный кабель имеет свою отличительную особенность: для того, чтобы измерить сопротивление, провод не нужно отсоединять от схемы.

Изоляция приборов проверяется с помощью специальных устройств, к которым во время испытаний прикасаться запрещено. Показания следует снимать только тогда, когда стрелка прибора примет устойчивое положение. Измерение осуществляется в течение одной минуты. С электронными приборами дела обстоят быстрее и результат выводится сразу на экран. Все данные следует записать в блокнот.

Схема проверки электродвигателя

После того как все данные были получены, необходимо составить акт и протокол испытания. В первую очередь следует сравнить полученные значения с существующими нормами и требованиями. Затем сделать вывод: пригоден ли кабель для дальнейшей эксплуатации. И только после этого составить протокол измерения сопротивления изоляции кабеля. Образец протокола предоставлен на фото ниже:

Пример протокола

Более подробно о том, как пользоваться мегаомметром, вы можете узнать из нашей статьи!

Как часто проводят замеры?

В организациях небольших размеров сопротивление измеряют с периодичностью один раз в три года (согласно ГОСТу и ПТЭЭП). Изоляция электропроводки фиксируется в протоколе, в котором помимо замеров указывается и проверка исправности УЗО.

Измерение сопротивления изоляции на объектах с повышенной опасностью должны проводиться каждый год. Это такие помещения, где присутствует повышенная влажность или высокая температура. На промышленных предприятиях такой замер позволит предотвратить или избежать остановки оборудования. После того как был осуществлен осмотр оборудования составляется специальный отчет, в котором указывается полностью состояние электроустановок.

Измерение следует проводить согласно установленным срокам. Ведь благодаря этому можно заранее избежать различных аварийных ситуаций, которые могут иметь серьезные последствия. Также несвоевременная проверка несет за собой штрафы, которые накладывают соответствующие органы.

Ниже представлена схема периодичности проверок в зависимости от классификации и категории помещения:

Сроки проверки изоляции

Кто проводит проверку и зачем это нужно?

Для того чтобы измерить сопротивление необходимо иметь специальное разрешение и доступ. Исходя из этого, кабель могут испытывать только специальные компании и организации, которые имеют квалифицированных сотрудников. Они должны пройти соответствующее обучение и получить требуемый разряд по электробезопасности.

Проводить замер необходимо для того, чтобы заранее выявить повреждения в оборудовании. Ведь изоляция играет значительную роль в безопасности работы с электрооборудованием. Если кабель или провод поврежден, то значит электроустановка становится опасной при работе. Ведь провод или кабель могут загореться и стать причиной пожара. Если заранее проверить кабель на исправность изолирующего слоя, это предотвратит от таких неприятностей, как:

  • преждевременный выход из строя оборудования;
  • короткое замыкание проводки;
  • поражение током работника;
  • аварийные ситуации различного характера.

Именно поэтому очень важно проводить измерение сопротивления изоляции кабеля. Напоследок рекомендуем просмотреть полезное видео по теме:

Теперь вы знаете, как измерить сопротивление изоляции проводов и кабелей. Надеемся, предоставленная инструкция была для вас полезной и интересной!

Наверняка вы не знаете:

Как измерить сопротивление изоляции

Безопасность в процессе эксплуатации электрооборудования и быстрое устранение проблем в проводке невозможны без своевременной и грамотной диагностики. Для этого нужно знать, как измерить сопротивление изоляции по определенной методике. Тестируемая величина относится к главным параметрам состояния защитного слоя.

Для выполнения подобных мероприятий есть несколько способов. Каким прибором измеряют сопротивление изоляции для получения наиболее достоверной информации? Сегодня мы поговорим о применении самых популярных устройств, используемых для этих целей.

Как измерить сопротивление изоляции мультиметром

Большой диапазон вариантов использования мультиметра обусловлен особенностями его конструкции. Устройство с достаточной точностью справится с тестированием самых разных типов деталей и предохранителей, катушек и конденсаторов.

Расположение обозначений на корпусе варьируется в зависимости от модели, но для нашего случая обязательно должен быть символ «Ω», соответствующий измеряемому сопротивлению. На панели указано несколько пределов для проводимого тестирования и переключатель ручного формата. Все обозначения – это буквенные или цифровые символы.

Основные показатели в процессе измерения

Предположим, что ориентировочные параметры измерения составляют 1 кОм. В процессе проверки на дисплее прибора может быть показана единица, что означает для данной детали более высокое значение сопротивления. Переустанавливаем режим позиции тестера на 1 степень выше. На снимке ниже это равняется 20 кОм. В таком положении следует сделать новое измерение.

Приступая к работе, важно учитывать запрет на касание щупов и выводов измеряемых элементов, ведь в таком случае объективные данные будут искажаться по причине показа суммарного сопротивления тестируемой детали и тела человека.

В чем особенности данного процесса

Некоторые аспекты работы влияют на корректность полученной информации:

  • при тестировании впаянных деталей необходимо один вывод отсоединить от платы;
  • проверить щупы на отсутствие дефектов и повреждений способом их прикладывания друг к другу;
  • выполнить демонтаж многовыводных деталей для гарантии правильного определения их исправности;
  • аккумуляторный источник питания в тестере при разрядке искажает данные измерений.

Все указанные в таблицах или маркированные параметры имеют определенный диапазон допусков, обычно в пределах ± 10%. Приведем пример – для элемента с номинальными характеристиками сопротивления 1 Мом хорошими будут все результаты от 990 кОм до 1,1 Мом.

Как происходит проверка изоляции

Такую процедуру выполняют только в помещениях с плюсовой температурой или в теплую погоду. Это обусловлено возможностью появления кристалликов льда во внутренней части оплетки кабеля. Такие образования относятся к не обладающим проводимостью диэлектрикам. Тестеры их просто не учитывают, а ведь после оттаивания появившаяся влага отрицательно сказывается на состояние кабеля.

Цифровые модели мультиметров имеют несколько секций, выбор которых осуществляется вручную. Подбирается нужный предел измерения после ориентировочной оценки параметров проверяемой цепи. Самые популярные модификации T83x, M83x, MAS83x оснащены пятью вариантами тестирования.

Как измерить сопротивление изоляции мегаомметром

В состав любого образца прибора входят генератор в токовыпрямителем и предназначенный для измерений специальный механизм. Мегаомметры классифицируются по категориям согласно номинальным характеристикам напряжения.

Для устройств любого типа необходимо придерживаться определенных условий на подготовительной стадии:

  • контрольная проверка прибора, выполняемая при находящихся в разомкнутом положении концах жил, при этом указатель находится у значка бесконечности. Замыкании проводов сопровождается приближением стрелки к цифре 0;
  • специальным устройством подтверждается отключение напряжения;
  • обязательное заземление токопродника, снимающееся после установки мегаомметра.

Категорически запрещено прикосновение к токоведущим участкам.

Несколько моментов требуют повышенного внимания в отношении изоляционного слоя элементов, предназначенных для эксплуатации в режиме до 1000 В:

  1. Изоляция защитных и рабочих нулевых проводников должна равняться аналогичному показателю фазных элементов.
  2. Выполняется отсоединение нулевых проводников от заземляющих элементов со стороны приемника и источника питания.

Вращение ручки устройства происходит со скоростью 120 об/мин для обеспечения устойчивого положения стрелки.

Для проводников более 1000 В избежать потенциальных неточностей тестирования из-за присутствия на изоляционном слое токов утечки можно способом накладки экранных колец на измеряемый участок.

Устройство подсоединяется со стороны проверки к жилам после завершения мероприятий, предназначенных для снятия напряжения. Согласно рекомендациям ПУЭ с другой стороны нужно развести жилы на определенное правилами расстояние. Для обеспечения безопасности в этой зоне находится один из работников, а по периметру работ вывешиваются предупредительные плакаты.

Затем поочередно проверяется каждая жила подсоединением к ней одного щупа мегаомметра, второй при этом подключен к заземлению. Пара свободных от проверки жил заземляется. Рекомендованная длительность тестирования – 1 минута.

Кабельные контрольные системы

Единственное отличие применяемой в этом случае технологии от вышерассмотренных, заключается в определении наличия напряжения в токопроводнике на предварительном этапе и проверке прибора в диапазоне 500-2500 вольт. Для этого свободные жилы соединяются и подсоединяются к заземлению, а выходы прибора подключаются к концевой части кабеля и заземляющему контуру.

Периодичность проведения проверок соответствует прописанным для оборудования периодам .

Как измерить сопротивление изоляции двигателя

Сопротивление изоляции обмотки

Если двигатель не вводится в эксплуатацию сразу по прибытии, важно защитить его от внешних факторов , таких как влажность, высокая температура и загрязнения, чтобы избежать повреждения изоляции. Перед вводом двигателя в эксплуатацию после длительного хранения необходимо измерить сопротивление изоляции обмотки.

How to measure insulation resistance of a motor How to measure insulation resistance of a motor Как измерить сопротивление изоляции двигателя (фото предоставлено: электр.cc.oita-u.ac.jp)

Если двигатель находится в месте с высокой влажностью, необходимо периодически проверять .

Практически невозможно определить правила для фактического минимального значения сопротивления изоляции двигателя, поскольку сопротивление варьируется в зависимости от метода изготовления, состояния используемого изоляционного материала, номинального напряжения, размера и типа. На самом деле, многолетний опыт определяет, готов ли двигатель к работе или нет.

Общее эмпирическое правило составляет 10 МОм или более.

Значение сопротивления изоляции Уровень изоляции
2 МОм или меньше Плохо
2-5 МОм Критическое
5-10 МОм Ненормальный
10-50 МОм хорошо
50-100 МОм Очень хорошо
100 МОм или более Отлично

Измерение сопротивления изоляции осуществляется с помощью мегомметра — омметра с высоким сопротивлением.Вот как работает тест: постоянного тока напряжением 500 или 1000 В подается между обмотками и землей двигателя.

Ground insulation test of a motor Ground insulation test of a motor Испытание заземления двигателя

Во время измерения и сразу после него некоторые клеммы имеют опасное напряжение, и НЕ ДОЛЖНЫ БЫТЬ ПРИКЛЮЧЕНЫ .

В этой связи стоит упомянуть три момента: Сопротивление изоляции, Измерение и проверка.


1.Сопротивление изоляции


2. Измерение

  • Минимальное сопротивление изоляции обмотки на землю измеряется при 500 В пост. Тока . Температура обмотки должна быть 25 ° C ± 15 ° C .
  • Максимальное сопротивление изоляции должно измеряться при 500 В постоянного тока с обмотками при рабочей температуре 80 — 120 ° C в зависимости от типа двигателя и КПД.

3. Проверка

  • Если сопротивление изоляции нового, очищенного или отремонтированного двигателя, которое хранилось в течение некоторого времени, меньше 10 МОм , причина может заключаться в том, что обмотки влажные и их необходимо высушить.
  • Если двигатель работал в течение длительного периода времени, минимальное сопротивление изоляции может упасть до критического уровня . Пока измеренное значение не падает ниже расчетного значения минимального сопротивления изоляции, двигатель может продолжать работать.

    Однако, если он падает ниже этого предела, двигатель должен быть немедленно остановлен , чтобы избежать травм людей из-за высокого напряжения утечки.

Ссылка: Grudfos — Motor Book

,

Измерение сопротивления изоляции (ИК)

Fluke insulation resistance tester up to 10kV Fluke insulation resistance tester up to 10kV Тестер сопротивления изоляции Fluke до 10 кВ

Продолжение с первой части: Измерение сопротивления изоляции (IR) — Часть 1

Значения сопротивления изоляции (IR) — Индекс

1. IR-значения для электрических устройств и систем
2. IR-значение для трансформатора
3. IR-значение для ответвителя
4. IR-значение для электродвигателя
5. Значение IR для электрического кабеля и проводки
6. Значение IR для линии передачи / распределения
7. Значение IR для шинной панели
8. Значение IR для оборудования подстанции
9. Значение IR для бытового / Промышленная электропроводка
0. Необходимые меры предосторожности

1. ИК-значения для электрических приборов и систем

(PEARL Standard / NETA MTS-1997 Таблица 10.1)

Макс.Номинальное напряжение оборудования Megger Размер Min.IR Значение
250 Вольт 500 Вольт 25 МОм
600 Вольт 1000 Вольт 100 МОм
5 кВ 2500 Вольт 1000 МОм
8 кВ 2500 Вольт 2000 МОм
15 кВ 2500 Вольт 5000 МОм
25 кВ 5000 Вольт 20000 МОм
35 кВ 15000 Вольт 100 000 МОм
46 кВ 15000 Вольт 100 000 МОм
69 кВ 15000 Вольт 100 000 МОм

Правило одного мегагерца для значения ИК для оборудования

На основании рейтинга оборудования:

<1 кВ = 1 МОм минимум
> 1 кВ = 1 МОм / 1 кВ

Согласно правилам IE-1956

При давлении 1000 В, приложенном между каждым проводником под напряжением и землей в течение одной минуты, сопротивление изоляции установок высокого напряжения должно составлять не менее 1 Мегаомметра или в соответствии с указаниями Бюро индийских стандартов.

Установки среднего и низкого напряжения — при давлении 500 В, приложенном между каждым проводником под напряжением и землей в течение одной минуты, сопротивление изоляции установок среднего и низкого напряжения должно составлять не менее 1 Мегаомметра или как указано Бюро Индийские Стандарты] время от времени.

В соответствии со спецификациями CBIP допустимые значения составляют 2 МегаОм на кВ

2. Значение ИК для трансформатора

Испытания сопротивления изоляции проводятся для определения сопротивления изоляции от отдельных обмоток к земле или между отдельными обмотками.Испытания сопротивления изоляции обычно измеряются непосредственно в мегоммах или могут быть рассчитаны на основе измерений приложенного напряжения и тока утечки.

Рекомендуемая практика измерения сопротивления изоляции — это всегда заземлять резервуар (и сердечник). Замкните накоротко каждую обмотку трансформатора на клеммах ввода. Затем проводятся измерения сопротивления между каждой обмоткой и заземлением всех других обмоток.

Insulation resistance testing: HV - Earth and HV - LV Insulation resistance testing: HV - Earth and HV - LV Испытание сопротивления изоляции: ВН — Земля и ВН — НН

Обмотки трансформатора никогда не остаются плавающими для измерения сопротивления изоляции.Тщательно заземленная обмотка должна быть удалена, чтобы измерить сопротивление изоляции заземленной обмотки. Если заземление не может быть удалено, как в случае некоторых обмоток с заземленной нейтралью, сопротивление изоляции обмотки не может быть измерено. Относитесь к нему как к части заземленной цепи.

Нам нужно проверить обмотку на обмотку и обмотку на землю (E). Для трехфазных трансформаторов нам нужно протестировать обмотку (L1, L2, L3) с заменой заземления на дельта-трансформатор или обмотку (L1, L2, L3) с заземлением (E) и нейтральный (N) для тройных трансформаторов.

Значение ИК для трансформатора
(Ссылка: Руководство по техническому обслуживанию трансформатора. JJ. Kelly. S.D Myer)
Трансформатор Формула
1-фазный трансформатор ИК-значение (МОм) = C X E / (√KVA)
3-фазный трансформатор (звезда) ИК-значение (МОм) = C X E (P-n) / (√KVA)
3-фазный трансформатор (Delta) ИК-значение (МОм) = C X E (P-P) / (√KVA)
, где С = 1.5 для T / C, заполненного маслом, с масляным баком, 30 для T / C, заполненного маслом без масляного бака или T / C сухого типа.

Коэффициент поправки на температуру (база 20 ° C):
Коэффициент поправки на температуру
O C O F поправочный коэффициент
0 32 0,25
5 41 0.36
10 50 0,50
15 59 0,720
20 68 1,00
30 86 1,98
40 104 3,95
50 122 7,85

Пример: Для 1600 кВА, 20 кВ / 400 В, трехфазный трансформатор

  • Значение IR на стороне высокого напряжения = (1.5 x 20000) / √ 1600 = 16000/40 = 750 МОм при 20 0 C
  • Значение IR на стороне низкого напряжения = (1,5 x 400) / √ 1600 = 320/40 = 15 МОм при 20 0 C
  • Значение IR при 30 0 C = 15X1,98 = 29,7 МОм

Сопротивление изоляции катушки трансформатора
Катушка трансформатора напряжения Megger Размер Мин.IR Значение Жидкостный T / C Min.IR Value Dry Type T / C
0 — 600 В 1кВ 100 МОм 500 МОм
600 В до 5 кВ 2.5 кВ 1000 МОм 5000 МОм
5 кВ до 15 кВ 5 кВ 5000 МОм 25 000 МОм
15 кВ до 69 кВ 5 кВ 10000 МОм 50000 МОм

Значение ИК трансформаторов
Напряжение Испытательное напряжение (DC) со стороны низкого напряжения Сторона высокого напряжения (DC) HV мин. Значение ИК
415 В 500 В 2.5 кВ 100 МОм
до 6,6 кВ 500 В 2,5 кВ 200 МОм
6,6кВ до 11кВ 500 В 2,5 кВ 400 МОм
11 кВ до 33 кВ 1000 В 5 кВ 500 МОм
33 кВ до 66 кВ 1000 В 5 кВ 600 МОм
66 кВ до 132 кВ 1000 В 5 кВ 600 МОм
от 132 кВ до 220 кВ 1000 В 5 кВ 650 МОм
Шаги для измерения ИК трансформатора:
  • Отключите трансформатор и отсоедините перемычки и молниеотводы.
  • Разрядить емкость обмотки.
  • Тщательно очистите все втулки
  • Короткое замыкание обмоток.
  • Защитите клеммы, чтобы устранить поверхностную утечку через втулки клемм.
  • Запишите температуру.
  • Подсоедините измерительные провода (избегайте стыков).
  • Подайте испытательное напряжение и отметьте показания. ИК. Значение через 60 секунд после приложения испытательного напряжения называется сопротивлением изоляции трансформатора при испытательной температуре.
  • Нейтральный ввод трансформатора должен быть отсоединен от земли во время испытания.
  • Все заземляющие соединения низковольтного разрядника должны быть отключены во время испытания.
  • Из-за индуктивных характеристик трансформаторов показания сопротивления изоляции не должны приниматься до тех пор, пока не стабилизируется испытательный ток.
  • Избегайте мегагермирования, когда трансформатор находится под вакуумом.

Испытательные соединения трансформатора для ИК испытаний (не менее 200 МОм)

Двухобмоточный трансформатор
1.(HV + LV) — GND
2. HV — (LV + GND)
3. LV — (HV + GND)

Трехобмоточный трансформатор
1. HV — (LV + TV + GND)
2. LV — (HV + TV + GND)
3. (HV + LV + TV) — GND
4. TV — (HV + LV + GND)

Автотрансформатор (две обмотки)
1. (ВН + НН) — GND

Автотрансформатор (три обмотки)
1. (HV + LV) — (TV + GND)
2. (HV + LV + TV) — GND
3. TV — (HV + LV + GND)

Для любой установки измеренное сопротивление изоляции должно быть не менее:

  • HV — Земля 200 M Ω
  • LV — Земля 100 M Ω
  • ВН — LV 200 M Ω
Факторы, влияющие на значение ИК трансформатора

На значение ИК трансформаторов влияет

  • Состояние поверхности клеммной втулки
  • Качество масла
  • Качество изоляции обмотки
  • Температура масла
  • Продолжительность приложения и значение испытательного напряжения

3.Значение ИК для Tap Changer

  • ИК между ВН и НН, а также обмотки на землю.
  • Минимальное значение ИК для устройства РПН составляет 1000 Ом на вольт, рабочее напряжение

4. Значение ИК для электродвигателя

Для электродвигателя мы использовали тестер изоляции для измерения сопротивления обмотки двигателя с заземлением (E).

  • Для номинального напряжения ниже 1 кВ, измеренного с помощью мегомметра 500 В постоянного тока.
  • Для номинального напряжения выше 1 кВ, измеренного с помощью мегомметра 1000 В постоянного тока.
  • В соответствии с IEEE 43, пункт 9.3, должна применяться следующая формула.
  • Мин. Значение ИК (для вращающейся машины) = (Номинальное напряжение (В) / 1000) + 1
Insulation resistance (IR) value for electric motor Insulation resistance (IR) value for electric motor Значение сопротивления изоляции (IR) для электродвигателя
Согласно стандарту IEEE 43 1974, 2000
ИК Значение в МОм
ИК (мин) = кВ + 1 Для большинства обмоток, сделанных до 1970 года, все обмотки возбуждения и другие, не описанные ниже
ИК (мин.) = 100 МОм Для большинства якорей постоянного тока и обмоток переменного тока, построенных после 1970 года (образуют намотанные катушки)
ИК (мин.) = 5 МОм Для большинства машин с катушками статора со случайной намоткой и катушками с намоткой с номинальным напряжением ниже 1 кВ

Пример-1: Для трехфазного двигателя 11 кВ.

  • Значение IR = 11 + 1 = 12 МОм, но согласно IEEE43 должно быть 100 МОм
  • Пример 2: для 415 В, трехфазный двигатель
  • Значение IR = 0,415 + 1 = 1,41 МОм, но согласно IEEE43 должно быть 5 МОм.
  • В соответствии с IS 732 мин. ИК-значение двигателя = (20XVoltage (p-p / (1000 + 2XKW))
Значение IR двигателя согласно NETA ATS 2007. Раздел 7.15.1
Заводская табличка двигателя (V) Испытательное напряжение Мин. Значение ИК
250 В 500 В DC 25 МОм
600В 1000 В постоянного тока 100 МОм
1000 В 1000 В постоянного тока 100 МОм
2500 В 1000 В постоянного тока 500 МОм
5000 В 2500 В постоянного тока 1000 МОм
8000 В 2500 В постоянного тока 2000 МОм
15000 В 2500 В постоянного тока 5000 МОм
25000 В 5000 В DC 20000 МОм
34500 В 15000 В постоянного тока 100000 МОм

ИК-значение погружного двигателя:
IR Значение погружного двигателя
Отключение двигателя (без кабеля) ИК-значение
Новый мотор 20 МОм
Подержанный двигатель, который можно переустановить 10 МОм
Двигатель установлен в колодец (с кабелем)
Новый мотор 2 МОм
Подержанный двигатель, который можно переустановить 0.5 МОм

5. Значение ИК для электрического кабеля и проводки

Для проверки изоляции нам необходимо отключиться от панели или оборудования и изолировать их от источника питания. Проводка и кабели должны проверяться друг с другом (фаза-фаза) с помощью кабеля заземления (E). Ассоциация инженеров по изолированным силовым кабелям (IPCEA) предлагает формулу для определения минимальных значений сопротивления изоляции.

R = K x Log 10 (D / d)

R = значение ИК в МОм на 1000 футов (305 метров) кабеля.
K = постоянная изоляционного материала (лакированный кембрик = 2460, термопластичный полиэтилен = 50000, композитный полиэтилен = 30000)
D = наружный диаметр изоляции проводника для одножильного провода и кабеля (D = d + 2c + 2b диаметр одножильного кабеля)
d — диаметр проводника
c — толщина изоляции проводника
b — толщина изоляции оболочки


Тест
HV на новом кабеле XLPE (согласно стандарту ETSA)
Заявка Испытательное напряжение Мин. Значение ИК
Новые кабели — оболочка 1KV DC 100 МОм
Новые кабели — Изоляция 10 кВ постоянного тока 1000 МОм
После ремонта — Ножны 1KV DC 10 МОм
После ремонта — шумоизоляция 5KV DC 1000 МОм

Кабели 11 кВ и 33 кВ между сердечниками и землей (согласно стандарту ETSA)
Заявка Испытательное напряжение Мин. Значение ИК
11KV Новые кабели — оболочка 5KV DC 1000 МОм
11кВ После ремонта — Ножны 5KV DC 100 МОм
33 кВ без подключения TF 5KV DC 1000 МОм
33 кВ с подключенным TF. 5KV DC 15 МОм

11kV and 33kV Cables between Cores and Earth 11kV and 33kV Cables between Cores and Earth 11 кВ и 33 кВ Кабели между сердечниками и землей
Измерение величины ИК (проводники к проводнику (перекрестная изоляция))
  • Первый проводник, для которого измеряется поперечная изоляция, должен быть подключен к клемме линии мегомметра. Остальные проводники соединены петлей (с помощью зажимов «крокодил») i. е. Проводник 2 и далее подключен к клемме заземления мегомметра.Проводники на другом конце остаются свободными.
  • Теперь поверните ручку мегомметра или нажмите кнопку мегомметра. Показание счетчика покажет поперечную изоляцию между проводником 1 и остальными проводниками. Показания изоляции должны быть записаны.
  • Теперь подключите следующий провод к клемме линии мегомметра и подключите оставшиеся проводники к клемме заземления мегомметра и проведите измерения.
Измерение величины ИК (проводник с изоляцией земли)
  • Подключите тестируемый провод к клемме линии мегомметра.
  • Подключите клемму заземления мегомметра к земле.
  • Поверните ручку мегомметра или нажмите кнопку мегомметра. Показание счетчика покажет сопротивление изоляции проводников. Показания изоляции должны регистрироваться после приложения испытательного напряжения в течение примерно минуты, пока не будет получено устойчивое значение.
Измерения ИК значения:
  • Если во время периодических испытаний сопротивление изоляции кабеля находится между 5 и 1 МОм / км при скрытой температуре, соответствующий кабель следует запрограммировать на замену.
  • Если сопротивление изоляции кабеля находится между 1000 и 100 кОм / км , при скрытой температуре кабель должен быть заменен в срочном порядке в течение года.
  • Если сопротивление изоляции кабеля не превышает 100 кОм / км., Соответствующий кабель необходимо немедленно заменить в экстренном порядке.

6. Значение ИК для линии передачи / распределения

Оборудование Megger Размер Мин. Значение ИК
S / S.Оборудование 5 кВ 5000 МОм
EHVLines. 5 кВ 10 МОм
H.T. Линии. 1 кВ 5 МОм
LT / Линии обслуживания. 0,5 кВ 5 МОм

7. Значение ИК для панельной шины

IR Значение для панели = 2 х кВ номинальной мощности панели.
Пример , для панели 5 кВ минимальная изоляция составляет 2 x 5 = 10 МОм.

8. Значение ИК для оборудования подстанции

Как правило, значения мегомметрии оборудования подстанции равны.

Трансформатор
Типичное значение ИК оборудования S / S
Оборудование
Megger Размер ИК значение (мин)
Автоматический выключатель (Фаза-Земля) 5 кВ, 10 кВ 1000 МОм
(фаза-фаза) 5 кВ, 10 кВ 1000 МОм

Схема управления

0.5 кВ 50 МОм

CT / PT

(Pri-Earth) 5 кВ, 10 кВ

1000 МОм

(вторая фаза) 5 кВ, 10 кВ 50 МОм
Цепь управления

0,5 кВ

50 МОм
Изолятор (Фаза-Земля) 5 кВ, 10 кВ 1000 МОм
(фаза-фаза) 5 кВ, 10 кВ 1000 МОм
Цепь управления 0.5 кВ 50 МОм
л.с. (Фаза-Земля) 5 кВ, 10 кВ 1000 МОм
Электродвигатель (Фаза-Земля) 0,5 кВ 50 МОм
LT Распределительное устройство (Фаза-Земля) 0,5 кВ 100 МОм
LT (Фаза-Земля) 0,5 кВ 100 МОм

Значение IR оборудования S / S согласно стандарту DEP
Оборудование Meggering Значение IR во время ввода в эксплуатацию (МОм) Значение IR во время технического обслуживания
Распределительное устройство HV Bus 200 МОм 100 МОм
LV Автобус 20 МОм 10 МОм
LV проводка 5 МОм 0.5 МОм
Кабель (не менее 100 метров) HV & LV (10XKV) / км (кВ) / км
Мотор & Генератор Фаза-Земля 10 (КВ + 1) 2 (КВ + 1)
Трансформаторное масло погружено HV & LV 75 МОм 30 МОм
Трансформатор Сухой Тип HV 100 МОм 25 МОм
LV 10 МОм 2 МОм
Стационарное оборудование / Инструменты Фаза-Земля 5 кОм / вольт 1 кОм / вольт
подвижного оборудования Фаза-Земля 5 МОм 1 МОм
Распределительное оборудование Фаза-Земля 5 МОм 1 МОм
Автоматический выключатель Главная цепь 2 МОм / кВ
Схема управления 5 МОм
реле Д.Цепь-Земля 40 МОм
LT Circuit-Earth 50 МОм
LT-D.C Circuit 40 МОм
LT-LT 70 МОм

9. Значение ИК для внутренней / промышленной проводки

Низкое сопротивление между фазными и нейтральными проводниками или от проводников под напряжением к земле приведет к току утечки.Это приводит к ухудшению изоляции, а также к потере энергии, которая увеличивает эксплуатационные расходы на установку.

Сопротивление между фазой-фазой-нейтралью-землей должно быть и никогда не должно быть меньше 0,5 мОм для обычных напряжений питания.

В дополнение к току утечки из-за сопротивления изоляции, есть еще утечка тока в реактивном сопротивлении изоляции, потому что он действует как диэлектрик конденсатора. Этот ток не рассеивает энергию и не представляет опасности, но мы хотим измерить сопротивление изоляции , поэтому постоянное напряжение используется для предотвращения включения реактивного сопротивления в измерение .


1-фазная проводка

> ИК-тестирование между фазой-природой и землей должно проводиться при полной установке с выключенным главным выключателем, с соединенной фазой и нейтралью, с отключенными лампами и другим оборудованием, но с включенными предохранителями, выключателями и всеми цепями. выключатели замкнуты.

Если используется двусторонняя коммутация, будет проверен только один из двух съемников. Чтобы проверить другое, оба двусторонних переключателя должны быть задействованы, а система проверена повторно.При желании установка может быть испытана целиком, когда должно быть достигнуто значение не менее 0,5 МОм.

1 Phase Wiring 1 Phase Wiring 1-фазная проводка
3-фазная проводка

В случае очень большой установки, где параллельно проходит множество заземлений, показания должны быть ниже. Если это происходит, установка должна быть подразделена и повторно проверена, когда каждая часть должна соответствовать минимальным требованиям.

3 Phase Wiring 3 Phase Wiring 3-фазная проводка

ИК-тесты должны проводиться между фазово-фазово-нейтральной землей с минимально допустимым значением для каждого теста 0.5 мОм

ИК-тестирование низкого напряжения
Напряжение цепи Испытательное напряжение ИК-значение (мин)
сверхнизкое напряжение 250 В DC 0,25 МОм
до 500 В, кроме выше 500 В пост. Тока 0,5 МОм
500 В до 1 кВ 1000 В пост. Тока 1,0 МОм

Мин. Значение ИК = 50 МОм / Нет электрической розетки.(Все электрические точки с фитингами и вилками)
Мин. Значение ИК = 100 МОм / Нет электрической розетки. (Все электрические точки без фитингов и вилок).

Необходимые меры предосторожности

Электронное оборудование, такое как электронные флуоресцентные пусковые переключатели, сенсорные переключатели, диммеры, регуляторы мощности, таймеры задержки, которые могут быть повреждены при приложении высокого испытательного напряжения, должно быть отключено.

Конденсаторы и индикаторные или контрольные лампы должны быть отключены, иначе могут появиться неточные показания теста.

Если какое-либо оборудование отключается для целей тестирования, оно должно подвергаться собственному испытанию на изоляцию с использованием напряжения, которое вряд ли приведет к повреждению. Результат должен соответствовать результату, указанному в соответствующем британском стандарте, или не менее 0,5 мОм, если стандарта нет.

,
Что нужно и что нельзя делать при измерении сопротивления изоляции трансформатора

Измерение сопротивления изоляции

Этот тест проводится при номинальном напряжении или выше, чтобы определить, имеются ли пути с низким сопротивлением для заземления или между обмоткой к обмотке в результате повреждения изоляции .

Do Что нужно и что нельзя делать при измерении сопротивления изоляции трансформатора (фото предоставлено sonel.pl)

На значения тестовых измерений влияют такие переменные, как температура, влажность, тестовое напряжение и размер трансформатора.

Этот тест должен быть проведен до и после ремонта или когда выполняется обслуживание . Данные испытаний должны быть записаны для будущих сравнительных целей. Тестовые значения должны быть нормализованы до 20 ° C для целей сравнения.

Общее практическое правило, которое используется для приемлемых значений безопасного питания, составляет 1 МОм на 1000 В приложенного испытательного напряжения плюс 1 МОм . Примерные значения сопротивления хороших систем изоляции приведены в таблице 1.

ТАБЛИЦА 1 — Типичные значения сопротивления изоляции для силовых и распределительных трансформаторов

Напряжение обмотки трансформатора (кВ) Обмотка заземления (МОм)
22 ° C 30 ° C 40 ° C 50 ° C 60 ° C
6,6 400 200 100 50 25
6,6 — 19 800 400 200 100 50
22 — 45 1000 500 250 125 65
≥ 66 1200 600 300 100 75

Процедуры испытаний //

Процедуры испытаний следующие:

  1. Не отсоединяйте заземление от бака трансформатора и сердечника.Убедитесь, что бак трансформатора и сердечник заземлены.
  2. Отключите все высоковольтные, низковольтные и нейтральные соединения, грозовые разрядники, системы вентиляторов, счетчики или любые низковольтные системы управления, которые подключены к обмотке трансформатора.
  3. Перед началом испытания соедините вместе все высоковольтные вводы, убедившись, что перемычки свободны от всех металлических и заземленных частей. Также соедините все втулки низкого напряжения и нейтрали, убедившись, что на перемычках нет металлических и заземленных частей.
  4. Используйте мегомметр с минимальной шкалой 20000 МОм .
  5. Затем проводятся измерения сопротивления между каждым набором обмоток и землей. Измеряемая обмотка должна быть удалена, чтобы измерить сопротивление изоляции.
  6. Показания мегомметра должны поддерживаться в течение 1 мин. . Сделайте следующие показания для двухобмоточных трансформаторов:
    1. Высоковольтная обмотка к низковольтной обмотке и заземлению
    2. Высоковольтная обмотка на землю
    3. Низковольтная обмотка к высоковольтной обмотке и заземлению
    4. Низковольтная обмотка на землю
    5. Высоковольтная обмотка к низковольтной обмотке

Соединения для этих испытаний показаны на рисунках 1a-e и 2a-e для однофазных и трехфазных трансформаторов соответственно.Показания мегомметра должны быть записаны вместе с температурой испытания (° C).

Показания должны быть с поправкой на 20 ° C с помощью поправочных коэффициентов , показанных в таблице 1.

ПРИМЕЧАНИЕ! Если скорректированные значения полевых испытаний составляют или более половины заводских показаний изоляции или 1000 МОм , в зависимости от того, что меньше, то система изоляции трансформатора считается безопасной для теста hi-pot .

Test connections for insulation resistance of a single-phase transformer. Note: In figure (e) reverse the L and E leads to measure from high-winding to low-winding Test connections for insulation resistance of a single-phase transformer. Note: In figure (e) reverse the L and E leads to measure from high-winding to low-winding Рисунок 1 — Испытательные соединения для сопротивления изоляции однофазного трансформатора.Примечание: на рисунке (e) поменяйте местами L и E, чтобы измерить от сильной обмотки до слабой.

Для трехобмоточных трансформаторов испытание должно быть выполнено следующим образом //

  • Высокий к низкому, третичный и наземный (H-LTG)
  • Высшее, низкое и земное (T-HLG)
  • Низкий до высокого, третичный и заземленный (L-HTG)
  • Высокий, низкий и третичный к земле (HLT-G)
  • Высокий и третичный к низкому и заземленному (HT-LG)
  • Низкий и третичный в высоту и землю (LT-HG)
  • Высокий и низкий к третичному и заземленному (HL-TG)
Не проводите испытания в мегомах обмотки трансформатора без жидкости трансформатора , поскольку значения сопротивления изоляции в воздухе будут намного меньше, чем в жидкости.

Кроме того, не проводите испытания сопротивления изоляции трансформатора, когда он находится под вакуумом, из-за возможности пробоя на землю.

Чаще всего используются тестовые соединения, показанные на рис. 2a, c и e. Тестовые соединения на рисунке 2b и d дают более точные результаты . Показания, полученные в соединениях на рисунках 2a и b, практически равны показаниям в испытательных соединениях на рисунках 2c и d соответственно.

Test connections for insulation resistance of a three-phase transformer Test connections for insulation resistance of a three-phase transformer Рисунок 2 — Испытательные соединения для сопротивления изоляции трехфазного трансформатора

Где:

  1. Соединение для сильной намотки на слабую намотку на землю;
  2. Соединение для защиты от сильной намотки и заземления;
  3. Соединение для слабой обмотки с высокой обмоткой к земле;
  4. Соединение для защиты от слабой обмотки и заземления;
  5. Соединение для сильной и слабой намотки.

Допустимые значения сопротивления изоляции для сухих и составных трансформаторов должны быть сопоставимы со значениями для вращающихся машин класса A, хотя стандартных минимальных значений не имеется.

Масляные трансформаторы

или регуляторы напряжения представляют особую проблему в том, что состояние масла оказывает заметное влияние на сопротивление изоляции обмоток .

При отсутствии более надежных данных предлагается следующая формула:

IR = CE / √ кВА

где //

  • IR — это минимальное сопротивление изоляции 1 мин 500 В постоянного тока в мегоммах от обмотки к земле, при условии защиты других обмоток или обмоток или от обмотки до обмотки с защитой сердечника
  • C является константой для измерений 20 ° C
  • E — номинальное напряжение тестируемой обмотки, кВА — номинальная мощность тестируемой обмотки
Значения С при 20 ° С
60 Гц 50 Гц
Резервуар маслонаполненный тип 1.5 1,0
Необработанный маслонаполненный тип 30,0 20,0
Сухой или составной тип 30,0 20,0

Эта формула предназначена для однофазных трансформаторов. Если испытываемые трансформаторы относятся к одному трехфазному типу, а три отдельные обмотки испытываются как одна, то:

  • E — это номинальное напряжение одной из однофазных обмоток (фаза-фаза для блоков, соединенных треугольником, и фаза-нейтраль или соединенных звездой блоков)
  • кВА — номинальная мощность завершенной испытываемой трехфазной обмотки.

Тестирование силового трансформатора (ВИДЕО)

Измерение сопротивления обмотки постоянного тока и проверка устройства РПН.

Ссылка // Техническое обслуживание и тестирование электрооборудования от Paul Gill (Покупка печатной копии у Amazon)

,

Измерение сопротивления изоляции (ИК)

Дефекты в изоляции

Измерение сопротивления изоляции — это обычное обычное испытание, проводимое на всех типах электрических проводов и кабелей. В качестве производственного испытания этот тест часто используется в качестве приемочного испытания потребителем, при этом минимальное сопротивление изоляции на единицу длины часто указывается заказчиком.

Megger MIT1020 10-kV insulation resistance testers are all designed specifically to assist the user with the testing and maintenance of high voltage equipment Megger MIT1020 10-kV insulation resistance testers are all designed specifically to assist the user with the testing and maintenance of high voltage equipment Мегомметр MIT1020 Тестеры сопротивления изоляции 10 кВ разработаны специально для того, чтобы помочь пользователю в тестировании и обслуживании высоковольтного оборудования.

Результаты, полученные с помощью ИК-теста, не предназначены для определения локализованных дефектов изоляции, как в настоящем тесте HIPOT, а скорее дают информацию о качестве сыпучего материала, используемого в качестве изоляции.

Даже если конечный потребитель этого не требует, многие производители проводов и кабелей используют тест сопротивления изоляции, чтобы отслеживать свои процессы производства изоляции и выявлять возникающие проблемы, прежде чем переменные процесса выходят за допустимые пределы.


Выбор ИК-тестеров (мегомметр):

Доступны тестеры изоляции

с испытательным напряжением 500, 1000, 2500 и 5000 В. Рекомендуемые рейтинги тестеров изоляции приведены ниже:

Уровень напряжения ИК-тестер
650В 500 В постоянного тока
1.1кв 1KV DC
3,3 кВ 2,5 кВ постоянного тока
66 кВ и выше 5 кВ постоянного тока

Испытательное напряжение для переключения:

Когда используется переменное напряжение, практическое правило:
Испытательное напряжение (A.C) = (2X напряжение на паспортной табличке) +1000.

При использовании напряжения постоянного тока (чаще всего используется во всех мегомметрах)
Испытательное напряжение (D.C) = (2X напряжение на паспортной табличке).


Оборудование / Кабельный рейтинг DC Испытательное напряжение
24 В до 50 В 50 В до 100 В
50 В до 100 В 100 В до 250 В
100 В до 240 В 250 В до 500 В
440 В до 550 В 500 В до 1000 В
2400В 1000 В до 2500 В
4100В 1000 В до 5000 В

Диапазон измерения мегомметра:

От От
Испытательное напряжение Диапазон измерений
250 В постоянного тока до 250 Гм
500 В постоянного тока МОм до 500 ГОм
1KV DC 0 МОм до 1 ТОм
2.5KV DC до 2,5Ом
5 кВ постоянного тока 0 МОм до 5 ТОм

Меры предосторожности при меггроминге

До того, как начать:

Убедитесь, что все соединения в тестовой цепи надежны. Перед использованием проверьте мегомметр, выдает ли он значение INFINITY , если он не подключен, и НОЛЬ, когда две клеммы соединены вместе и ручка повернута.


Во время меггринга:

Убедитесь, что при проверке заземления дальний конец проводника не соприкасается, в противном случае проверка покажет дефектную изоляцию, если на самом деле это не так.

Убедитесь, что заземление, используемое при проверке заземления и разомкнутых цепей, является хорошим, иначе тест даст неверную информацию. Запасные проводники не должны включаться, когда другие рабочие провода того же кабеля подключены к соответствующим цепям.


После завершения кабеля Meggering:

  • Убедитесь, что все проводники были правильно подключены.
  • Проверьте правильность реакции функций точек, дорожек и сигналов, подключенных через кабель.
  • В случае сигналов, аспект должен быть проверен лично.
  • В случае точек, проверьте позиции на сайте. Проверьте, случайно ли заземлена какая-либо полярность любого кабеля, проходящего через кабель.

Требования безопасности для мегаггинга:

  • Все проверяемое оборудование ДОЛЖНО быть отключено и отключено.
  • Оборудование должно разряжаться (шунтироваться или замыкаться), по крайней мере, до тех пор, пока испытательное напряжение приложено, чтобы быть абсолютно безопасным для человека, проводящего испытание.
  • Никогда не используйте Megger во взрывоопасной атмосфере.
  • Убедитесь, что все переключатели заблокированы, а концы кабелей помечены правильно для безопасности.
  • Концы кабеля, которые должны быть изолированы, должны быть отсоединены от источника питания и защищены от контакта с источником питания, заземления или случайного контакта.
  • Установка защитных барьеров с предупреждающими знаками и открытый канал связи между персоналом, проводящим испытания.
  • Не мегагерзировать при влажности более 70%.
  • Хорошая изоляция: показания мегомметра сначала увеличиваются, затем остаются постоянными.
  • Плохая изоляция: чтение мегомметра сначала увеличивается, а затем уменьшается.
  • Ожидаемое значение IR для Temp. От 20 до 30 градусов по Цельсию.
  • Если вышеуказанная температура снижается на 10 градусов, значения ИК будут увеличены в два раза.
  • Если температура выше 70 градусов Цельсия, то значение ИК уменьшается в 700 раз.

Как использовать Megger

Мегомметры

оснащены тремя соединительными клеммами линии (L), клеммой заземления (E) и защитной клеммой (G).

Megger connections Megger connections Мегомметровые соединения

Сопротивление измеряется между клеммами линии и земли, где ток будет проходить через катушку 1. Клемма «Guard» предназначена для особых испытаний, когда одно сопротивление должно быть изолировано от другого. Давайте проверим одну ситуацию, в которой сопротивление изоляции должно быть проверено в двухпроводном кабеле.

Чтобы измерить сопротивление изоляции между проводником и внешней стороной кабеля, нам необходимо подключить провод «линии» мегомметра к одному из проводников и подключить провод «заземления» мегомметра к проводу, обмотанному вокруг оболочки кабель.

Megger configuration Megger configuration Мегомметровая конфигурация

В этой конфигурации мегомметр должен считывать сопротивление между одним проводником и внешней оболочкой.

Мы хотим измерить сопротивление между проводником-2 к оболочкам, но фактически измеряем сопротивление мегомметром параллельно с последовательной комбинацией сопротивления проводника-проводника ( R c1-c2 ) и первого проводника в оболочке ( R c1-s ).

Если нас не волнует этот факт, мы можем продолжить тестирование в соответствии с настройками.Если мы хотим измерить только сопротивления между вторым проводником и оболочкой ( R c2-s ), то нам нужно использовать клемму « Guard » мегомметра.

Megger - Connecting guard terminal Megger - Connecting guard terminal Megger — Подключение защитного терминала

При подключении клеммы «Guard» к первому проводнику оба проводника размещаются с практически равным потенциалом .

При небольшом или нулевом напряжении между ними сопротивление изоляции почти бесконечно, и, таким образом, между двух проводников не будет тока .Следовательно, индикация сопротивления мегомметра будет основываться исключительно на токе через изоляцию второго проводника, через оболочку кабеля и на намотанный провод, а не на ток, протекающий через изоляцию первого проводника.

Защитная клемма (если установлена) действует как шунт для удаления подключенного элемента из измерения. Другими словами, это позволяет вам быть избирательным при оценке определенных конкретных компонентов в большом электрическом оборудовании.Например, рассмотрим двухжильный кабель с оболочкой.

Как показано на диаграмме ниже, необходимо учитывать три сопротивления.

Meggering wiring Meggering wiring Мегомметровая проводка

Если мы проводим измерения между сердечником B и оболочкой без подключения к защитному терминалу, некоторый ток пройдет от B к A и от A к оболочке. Наше измерение будет низким. При подключении защитного терминала к A две жилы кабеля будут иметь практически одинаковый потенциал, и, таким образом, эффект шунтирования устраняется.

Продолжение здесь — Измерение сопротивления изоляции (IR). Часть 2.

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *