Как выбрать стабилизатор напряжения для дома и какой лучше
Прежде чем идти в магазин за стабилизатором напряжения, необходимо выяснить какое количество потребителей электрической энергии у Вас дома имеется, возможно еще предстоит приобрести в ближайшем будущем и какую суммарную мощность потребления они составляют. Ведь цена приобретения стабилизатора напрямую зависит от нагрузки, которую он сможет удерживать на уровне 220 вольт, без последствия для себя. То-есть параметры должны быть подобраны не впритык по мощности потребления, а с запасом, чтобы устройство не работало постоянно на максимуме, а в случае аварийных ситуациях с легкостью переносило их. В этой статье мы расскажем, как выбрать стабилизатор напряжения для дома и какой лучше по мощности и производителю в 2017 году.
Определяем мощность
Для определения мощности нужно выяснить максимально вероятное количество одновременно работающих электроприборов. После этого сложить их Ватты вместе. Как узнать мощность потребителей мы рассказали в одной из наших статей.
Этот параметр учитывает кроме активных потребителей электроэнергии (это ТЭН-ы в нагревателях и лампы накаливания), еще и реактивных потребителей. К ним относятся всевозможные двигатели, вентиляторы, трансформаторы, дроссели, конденсаторы в электроприборах.
Параметр S нам необходим, ведь именно его производители стабилизаторов указывают в паспортных данных своего устройства. Для того, чтобы найти S, в паспорте прибора смотрим потребление и параметр cos (φ). Если нет паспорта под рукой, можете выбрать стандартное значение из таблицы:
Если данный параметр отсутствует, берем приблизительное значение 0.7.
Также при расчете стабилизатора надобно внести запас прочности для таких устройств, которые во время запуска потребляют ток, превосходящий паспортные данные в несколько раз. Например, для того чтобы двигатель тронулся с места, в обмотках электрической машины возникает импульс тока и постепенно уменьшается до номинального, с возрастанием оборотов ротора.
Кондиционеры, стиральные машины, система вентиляции, насосы, пылесосы, подъемные механизмы — все эти агрегаты имеют у себя в механизме электродвигатель.Прикинув реальную нагрузку своих девайсов, необходимо при выборе стабилизатора для частного дома либо квартиры добавить еще около 20-30%. Так рекомендуют сами производители, поскольку при стабилизации на низком входном напряжении устройство работает в режиме, близком к экстремальному.
В большинстве случаев, опираясь на данные производителей и дистрибьюторов, для среднестатистической городской квартиры, с учетом вышеизложенного, будет достаточно устройства мощностью 7500 ВА. Для частного домовладения с договорными 15 кВт нагрузки, потребуется агрегат на 22000 ВА.
Можно существенно сэкономить на покупке стабилизатора меньшего ценового диапазона, если группу потребителей уменьшить до обоснованно нужных. Через защитное устройство подключать отдельной линией такие потребители как холодильник, компьютер, бойлер и прочее. Оставшуюся не стабилизированную линию в этом случае лучше защитить с помощью реле напряжения.
На что еще обратить внимание?
Помимо мощности, которая является одним из главных критериев выбора стабилизатора напряжения, существуют еще и дополнительные параметры, на которые нужно обратить внимание. Итак, чтобы выбрать оптимальный по цене и качеству аппарат, учитывайте следующие нюансы:
- Для дома, квартиры и дачи лучше всего подобрать релейный тип устройства. В крайнем случае, если ищите недорогую модель, рассматривайте электромеханические СН. Более подробно о типах стабилизаторов напряжения мы рассказывали в соответствующей статье.
- Входное напряжение должно соответствовать состоянию вашей электросети. Если у вас постоянно низкое напряжение в доме, нужно выбрать модель, которая работает в диапазоне от 140 Вольт. Если же наблюдается перенапряжение в сети, лучше подобрать модель, работающую при более высоком входном напряжении.
- Точность стабилизации должна быть как можно меньше. Этот параметр является погрешностью выходного напряжения. Оптимальным считается диапазон от 8 до 5%. Точность стабилизации более 8% является плохим показателем, которого стоит избегать. Если вы хотите выбрать стабилизатор для холодильника и прочих чувствительных приборов, советуем найти модель с точностью стабилизации в 5%.
- КПД или как вы понимаете эффективность работы. 90% считается хорошим показателем, хотя на рынке сейчас можно встретить множество моделей с КПД 97%.
- Тип установки может быть напольным или настенным. Для квартиры лучше выбрать настенный вариант монтажа, чтобы сэкономить пространство. На даче и в частном доме напольный стабилизатор не станет помехой.
- Защищенность корпуса от влаги, степень защиты IP может быть 20, если установка подразумевается в сухом обогреваемом помещении и IP24, если есть вероятность попадания влаги на корпус.
- Дополнительная безопасность. Хорошо, если стабилизатор напряжения, который вы решили выбрать, оснащен системой автоматического отключения при коротком замыкании, перегреве либо перегрузке. Также не помешает наличие дисплея, на котором будет отображать вольтаж и световая индикация вероятных ошибок в работе устройства.
Также рекомендуем изучить информацию о том, как выбрать генератор для дома и дачи! Полезные советы экспертов помогут вам подобрать подходящий вариант по цене и качеству!
Лучшие производители
Ну и конечно же немаловажно сделать правильный выбор в пользу производителя стабилизатора напряжения. От этого будет зависеть многое, начиная от качества работы и заканчивая продолжительностью службы защитного аппарата.
Итак, на сегодняшний день лучшими производителями стабилизаторов напряжения считаются:
- APC by Schneider Electric. Французское качество и приемлемая цена. Линейка СН от Шнайдер Электрик больше направлена на защиту отдельных чувствительных приборов, поэтому и мощность у них, как правило, 600-1500 ВА.
- RUCELF. Достаточно хорошее качество от отечественного производителя защитной аппаратуры.
В интернет-магазинах можно найти достаточно количество недорогих, но хороших стабилизаторов, которые можно выбрать для частного дома либо квартиры. - РЕСАНТА. Известная на российском рынке фирма, которая производит недорогие стабилизаторы, имеющие достаточно много положительных отзывов от покупателей. Ценовой сегмент и среднее качество сборки делают их одним из лучших вариантов при выборе для дома и дачи.
- Lider. Страна производитель — Россия. Фирма больше специализируется на электронных стабилизаторах напряжения. В целом качество хорошее, цены средние по рынку, модельный ряд достаточно большой, есть из чего выбрать.
- Энергия. Завершает наш рейтинг лучших производителей защитных устройств. Много хороших отзывов об устройствах данной фирмы. Цена и качество приемлемые. Отдельно хотелось бы обратить внимание на стильный черный цвет корпуса и наличие дисплея, на котором отображаются все важные параметры.
Помимо этих производителей, хотелось бы еще отметить, что спросом пользуются устройства от таких фирм, как Sven, IEK и Штиль, однако отзывы о данной продукции достаточно неоднозначные, поэтому мы решили не включать их в рейтинг, чтобы не вводить вас в заблуждение.
Также возможно вам будут интересны советы по выбору источника бесперебойного питания для дома!
Рейтинг моделей
Ну и последнее, о чем хотелось бы рассказать, какие модели стабилизаторов напряжения являются лучшими в 2017 году. Итак, рекомендуем выбрать один из подходящих вариантов из предоставленного ниже списка.
Для квартиры подойдет однофазный аппарат на 5-8 кВт:
- Энергия Classic 9000;
- SVEN AVR PRO LCD 10000;
- RUCELF SRWII-9000-L;
- РЕСАНТА ACH-5000/1-Ц;
- RUCELF СтАР-10000.
На весь дом, чтобы не прогадать, лучше выбрать стабилизатор мощностью от 10 до 15 кВт:
- РЕСАНТА LUX АСН-10000Н/1-Ц;
- RUCELF SRFII-12000-L;
- РЕСАНТА ACH-10000/1-Ц;
- RUCELF SDWII-12000-L;.
Вот и все, что мы хотели рассказать о выборе стабилизатора напряжения. Напоследок рекомендуем просмотреть полезное видео по теме:
Теперь вы знаете, как выбрать стабилизатор напряжения для частного дома, квартиры и дачи. Надеемся, предоставленные рекомендации и список лучших моделей пригодились вам в выборе подходящего варианта устройства для собственных нужд!
Будет полезно прочитать:
Как выбрать стабилизатор напряжения (2018) | Стабилизаторы напряжения | Блог
Вместо привычного с детства числа 220 в маркировке современных электроприборов все чаще попадается 230. С недавних пор именно 230 В является стандартным напряжением в России и многих других странах. Впрочем, для большинства электроприборов разницы между 230 и 220 В нет никакой. Стандартом допускаются отклонения напряжения сети на ±10%, т.е. от 207 до 253 В. Производители бытовой техники ориентируются именно на эти показатели.
Однако в реальности напряжение в этих рамках удерживается не всегда. В новых микрорайонах, в деревнях и поселках часто к старой подстанции, рассчитанной на определенную нагрузку, подключается много новых потребителей. Это приводит к падению напряжения до 190 В и даже ниже, что бывает хорошо заметно по горящим в полнакала лампочкам. К сожалению, снижением яркости лампочек проблема не исчерпывается. Возрастают токи в обмотках электродвигателей насосов, холодильников, стиральных машин, посудомоек и пр. Это может привести к выходу двигателя из строя.
Бывает в сети и повышенное напряжение, также довольно частое в загородных домах – иногда подстанции намеренно подстраиваются на выдачу повышенного напряжения, чтобы на удаленных потребителях оно поднялось до нормального. При этом на потребителях, близких к подстанции, оно может быть около 250 В. Если при этом еще и нулевой провод окажется не заземлен, то из-за перекоса фаз напряжение может подняться еще выше – до 260 В и даже больше. Ну и не так уж редки случаи, когда электрики случайно подключают в щитке вместо нулевого провода – еще одну фазу, выдавая потребителям 400 В вместо 230. Повышенное напряжение вредно всем потребителям без исключения, поскольку ведет к увеличению выделения тепла, перегреву деталей, выходу их из строя и даже воспламенению.
Можно защитить все электроприборы в доме, установив во входном щитке реле напряжения, но это не решит проблему полностью – при выходе напряжения за установленные рамки оно просто обесточит потребителей. Чтобы защититься от длительных просадок или повышений напряжения, следует ставить стабилизатор.
Конечно, можно поставить мощный стабилизатор на входе в дом и защитить всю технику скопом, но это будет стоить весьма недешево. Тем более что особой надобности в этом и нет – различные электроприборы по-разному реагируют на повышенное или пониженное напряжение. Вполне возможно, что не всей вашей технике нужна защита стабилизатором.
Защита электроприборов
Холодильники, морозильники и кондиционеры требуют защиты в первую очередь – пониженное напряжение в сети может стать причиной поломки компрессора и дорогостоящего ремонта.
Но еще одна особенность этой техники в том, что многие модели могут выйти из строя при быстром выключении-включении. Дело в том, что при выключении компрессора давление в системе выравнивается в течение некоторого времени (1-3 минуты). Если запустить компрессор раньше, его двигатель будет работать с повышенной нагрузкой (или вообще не сможет запуститься), что может привести к поломке. Современные холодильники и кондиционеры большей частью имеют встроенное реле задержки, но если у вас есть сомнения, или в руководстве указано, что перед повторным пуском следует выждать некоторое время, то стабилизатор обязательно должен иметь функцию задержки запуска минимум на 1 минуту.
Насосы, как погружные, так и поверхностные также требуют защиты от пониженного/повышенного напряжения и им тоже нужна задержка запуска. При пуске двигатель насоса в течение 1-2 секунд потребляет ток, в несколько раз превышающий номинальный. При этом обмотка двигателя нагревается. При обычном пуске излишки тепла снимаются прокачиваемой водой, но если напряжение в сети пропадает и появляется, то пусковые токи длятся дольше, а двигатель не успевает раскрутиться и прокачать воду. Контактирующая с насосом вода перегревается вплоть до закипания, что приводит к поломке насоса и перегоранию обмоток двигателя. Поэтому стабилизатор, защищающий насосы, должен также иметь задержку запуска в 5-10 секунд.
СВЧ-печь не выйдет из строя при падении напряжения, но эффективность её при этом снизится многократно. Если отвезенная на дачу «микроволновка» перестала греть, не спешите везти её в ремонт – возможно, дело в низком напряжении сети. Стабилизатор легко устранит эту проблему.
Электроника (компьютеры, современные телевизоры, аудиотехника), оснащенная импульсными блоками питания, пониженного напряжения не боится. Обычно это указывается в руководстве или прямо на блоке питания: «INPUT: 100-240 V». Так что, если ваша проблема состоит в пониженном напряжении, стабилизатор такой технике не нужен. Другое дело, если оно повышенное – при длительном воздействии напряжения от 240 В и выше, нагрузка (как тепловая, так и электрическая) на электронику БП сильно возрастает, что довольно быстро приводит к выходу его из строя.
Энергосберегающие лампы (как люминесцентные, так и светодиодные) к пониженному напряжению довольно лояльны, а вот повышенного не любят. Если всплески напряжения в вашей сети не редкость, то их лучше защитить стабилизатором. Тем более что потребляют они немного, и одного недорогого стабилизатора мощностью в 300-500 ВА хватит на освещение частного дома.
Нагревательным приборам, лампам накаливания, электрочайникам, утюгам и прочей подобной технике падения напряжения вообще не опасны – у них просто снизится эффективность. Повышенное напряжение может ускорить их износ, но в целом, напряжение, на 10-20% превышающее номинал, для большинства подобных приборов неопасно. Эти приборы можно включать в «проблемную» сеть без стабилизатора. Правда, это не относится ко многим современным моделям, оснащенным сложными электронными устройствами управления.
Определившись с тем, какие приборы следует защитить, следует определиться с характеристиками стабилизатора.
Характеристики стабилизаторов
Тип стабилизатора напряжения
Релейные стабилизаторы напряжения представляют собой трансформатор с несколькими отводами входной или выходной обмотки, коммутируемыми силовыми реле.
При нормальном входном напряжении трансформатор работает как разделительный – не повышая и не понижая напряжение. При выходе входного напряжения за установленные границы, электроника включает соответствующее реле, превращая трансформатор в понижающий или повышающий.
Преимущества релейных стабилизаторов:
– Низкая цена.
– Высокая перегрузочная способность – даже самые простые модели выдерживают 200% перегрузки в течение нескольких секунд. Модели же с мощными силовыми реле, рассчитанные на высокие пусковые токи, выдерживают непродолжительные десятикратные перегрузки.
– Малое время переключения – напряжение полностью стабилизируется через 20-100 мс после выхода его за нормальные границы.
Недостатки:
– Ступенчатость регулирования. Трансформатор имеет ограниченное число отводов на обмотке, поэтому изменять напряжение может только ступенчато – по 5, 10, а на недорогих моделях – по 20 вольт на одну ступень регулирования. В целом это для техники неопасно, но на граничных напряжениях частые переключения реле, сопровождающиеся мерцанием ламп накаливания, могут раздражать.
– Шумность. Реле при переключении щелкает довольно громко.
– Износ контактов реле. Основной недостаток этого вида стабилизаторов – опасность прогара или пригара контактов реле. Если в первом случае напряжение на выходе стабилизатора просто пропадет, то второй вариант намного неприятнее. Если пригар случится во время пониженного входного напряжения, то при возврате напряжения в норму, реле останется включенным. Трансформатор продолжит работать, как повышающий и напряжение на выходе станет повышенным! Спокойный за свою электротехнику владелец стабилизатора даже не будет подозревать, что именно в этот момент он сжигает её высоким напряжением. Поэтому не стоит выбирать релейный стабилизатор, если в сети случаются частые перепады напряжения – чем чаще реле срабатывает, тем быстрее снижается его ресурс.
Электромеханические (сервоприводные) стабилизаторы напряжения представляют собой тороидальный трансформатор с передвигающимся над внешней обмоткой токосъемником, контактирующим с обмоткой с помощью угольной щетки. При падении или превышении входного напряжения сервопривод перемещает токосъемник, нормализуя выходное.
Преимущества электромеханических стабилизаторов:
– Высокая перегрузочная способность – 200% перегрузки в течение 4-х секунд.
– Плавность регулирования.
– Высокая точность регулирования.
– Низкий уровень шума при регулировании.
Недостатки:
– Большое время переключения – токосъемник движется по обмоткам довольно медленно. Чем больше перепад напряжения, тем медленнее стабилизатор его отрабатывает. Это может привести к появлению импульсных помех на выходе стабилизатора, вызывающих сбои в работе электротехники.
– Износ токосъемника. Токосъемник желательно периодически смазывать графитовой смазкой. Но даже своевременная смазка не предотвращает полностью износа трущихся деталей.
– Высокая цена.
Инверторный стабилизатор сделан на основе инвертора – ток сначала выпрямляется, потом, с помощью инвертора, вновь преобразуется в переменный.
Это позволяет достичь высокой точности регулирования и позволяет добиться полного отсутствия возмущений на выходе. Благодаря отсутствию движущихся контактов, у них низкий уровень шума, ресурс выше и опасности пригара контактов они лишены.
Недостатки инверторных стабилизаторов:
– Недорогие инверторы дают на выходе не чистую синусоиду, а ступенчатую. Некоторые электронные приборы (измерительные приборы, газовые котлы, аудио- и видеотехника) могут начать сбоить или вообще откажутся работать с такой синусоидой.
– Низкая перегрузочная способность. Допускается перегрузка 25-50% от номинала, в течение 1-4 секунд. Для защиты приборов, имеющих высокий пусковой ток, стабилизатор такого типа потребуется брать с большим запасом по мощности.
– Высокая чувствительность к мощным импульсным помехам. Впрочем, в бытовых сетях такие помехи — явление маловероятное.
Ступенчатые электронные стабилизаторы конструктивно схожи с релейными, однако коммутирование обмоток в них производится не с помощью реле, а с помощью мощных полупроводниковых приборов.
Это позволяет добиться высочайшей скорости регулирования (5-40 мс на переключение) при достаточно низкой цене. Эти стабилизаторы тоже не имеют движущихся контактов, бесшумны и обладают высоким ресурсом.
Но свои недостатки есть и у этого вида стабилизаторов:
– Низкая перегрузочная способность. Допускается перегрузка 20-40% от номинала, и то весьма непродолжительное время.
– Ступенчатость регулирования.
– Высокая чувствительность к мощным импульсным помехам. Если в сети нередки сильные кратковременные всплески напряжения, прослужит такой стабилизатор недолго.
Необходимая полная выходная мощность стабилизатора рассчитывается исходя из мощностей всех подключенных к нему электроприборов. При подсчете полной мощности следует иметь в виду, что та мощность (в Ваттах), которая приводится в паспорте на электроприбор – это его активная мощность, т.е., выделяющаяся в виде тепла или света.
Нагревательные приборы и лампы накаливания имеют полную мощность, равную активной. Но некоторые потребители, содержащие в себе электродвигатели или трансформаторы, создают вдобавок к активной еще и реактивную нагрузку. Для определения их полной мощности следует активную мощность поделить на коэффициент мощности (cos(φ)), обычно указанный в паспорте на электроприбор. Если найти это значение не удается, можно воспользоваться таблицей:
Полные мощности всех потребителей следует сложить и добавить к получившейся сумме 30% — дело в том, что мощность стабилизатора приводится для напряжения 220В. При выходе напряжения за пределы нормального, мощность стабилизатора падает на 20-30%. Именно это падение и следует компенсировать.
Но это еще не все – теперь полную мощность каждого потребителя следует помножить на пусковой коэффициент, также взяв его из паспорта или из таблицы. Сумма получившихся чисел (не забываем про 30%) – это пусковая мощность, и перегрузочная способность стабилизатора должна её обеспечивать.
Например, нам следует защитить холодильник мощностью 150 Вт, погружной насос мощностью 500 Вт и линию освещения со светодиодными лампочками суммарной мощностью 500 Вт. Необходимая полная мощность в ВА будет равна:
- 150/0,8=187,5
- 500/0,7=714,3
- 500/0,95=526,3
Суммируем полученные данные и прибавляем 30%. Итого 1857 ВА.
Пусковая мощность будет равна:
- 187,5*3=562,5
- 714,3*7=5000
- 526,3*1,5=790
Также суммируем, прибавляем 30%, получается 8258 ВА. Таким образом, нам нужен стабилизатор на 3000 ВА, способный выдержать перегрузку в три раза больше (релейный с усиленными реле), либо стабилизатор на 4500 ВА, способный выдержать в два раза больше перегрузки (релейный или электромеханический), либо электронный (ступенчатый или инверторный) на 9000 ВА.
Если такой подбор выглядит слишком сложным, то можно просто сложить активные мощности электроприборов (в Ваттах) и подобрать стабилизатор также по активной выходной мощности. Но такой подбор будет грубее: во-первых, этот метод не учитывает индивидуальных особенностей электроприборов, во-вторых, все производители по-разному рассчитывают зависимость полной и активной мощностей. И здесь также следует быть уверенным, что перегрузочная способность стабилизатора поможет ему выдержать пусковую мощность потребителей.
Разъем для подключения нагрузки может быть в виде клемм, либо в виде розеток. Если стабилизатор планируется использовать для защиты какой-либо линии электропитания (например, осветительной) предпочтительнее разъем в виде клемм.
Если же защищать планируется отдельных потребителей, то удобнее подключать их напрямую в евророзетки (СЕЕ 7), обратите внимание, чтобы количество розеток соответствовало количеству потребителей.
Некоторые стабилизаторы оснащены компьютерными розетками IEC 320 C13 – как правило, эти стабилизаторы предназначены для защиты персональных компьютеров и учитывают низкий коэффициент мощности этого вида техники.
Задержка запуска, как указывалось выше, может потребоваться для защиты некоторых видов техники, не приемлющих частых включений-выключений: холодильников, кондиционеров, насосов и пр.
Варианты выбора стабилизаторов
Для защиты отдельного маломощного потребителя – газового котла или циркуляционного насоса – будет достаточно стабилизатора полной мощностью до 1000 ВА.
Для защиты электроприборов, наиболее сильно подверженных влиянию пониженного или повышенного напряжения, будет достаточно стабилизатора в 3000-6000 ВА.
С защитой всех домашних электроприборов справится мощный стабилизатор.
Для защиты компьютера и периферии удобно использовать специализированный стабилизатор с компьютерными розетками.
Релейные и электромеханические стабилизаторы обладают высокой перегрузочной способностью и хорошо подходят для защиты электроприборов с высокими пусковыми токами.
Стабилизатор напряжения — типы и принцип работы, характеристики и устройство.
Феррорезонансные стабилизаторы напряжения. Были разработаны в середине 60 годов прошлого века, их принцип работы основано на использовании явления магнитного насыщения ферромагнитных сердечников трансформаторов или дросселей. Применялись такие устройства для регулировки напряжения питания бытовой техники (телевизор, радиоприёмник, холодильник и т.
п.).Феррорезонансный стабилизатор напряжения
Их преимущество заключается в высокой точности 1-3% и быстрой (для того времени) скорость регулирования. Недостаток — повышенный уровень шума и зависимость качества стабилизации от величины нагрузки. Современные устройства лишены этих недостатков, но стоимость их равна или выше стоимости ИБП (Источника Бесперебойного Питания) на такую же мощность, вследствие чего они широкого распространения в качестве бытовых не получили.
Электромеханические стабилизаторы напряжения. В 60-80-е годы прошлого века для регулирования напряжения применялись автотрансформаторы с ручной корректировкой (ЛАТР), вследствие чего приходилось постоянно следить за вольтметром (стрелочный или светящаяся линейка) и, при необходимости, вручную крутить ползунок с токосъёмными щётками. В настоящее время принцип работы автоматизирован с помощью электродвигателя с редуктором (сервопривода).
Электромеханический стабилизатор напряжения
Единственные достоинства электромеханических стабилизаторов напряжения — низкая цена и хорошая точность регулировки 2-3%. Недостатков много — низкая скорость регулирования из-за инерционности двигателя и повышенный уровень шума: шумит электродвигатель и редуктор, и практически постоянно, т.к. отслеживаются изменения с шагом 2-4 вольта. Плюс к этому, добавляется повышенный износ механический частей и недолгий общий ресурс работы устройства в целом, что подтверждается сроком гарантии всего в 1 год. Также при резком увеличении значений сети часто кратковременно отключается нагрузка, т.к. стабилизатор не успевает погасить этот скачок, и напряжение на ней превышает максимально допустимое значение.
Вследствие всего вышесказанного получили распространение как дешёвые стабилизаторы для питания недорогой домашней электротехники.
Электронные стабилизаторы напряжения. Наиболее широкий класс устройств ступенчатого регулирования, обеспечивающих исключительное постоянство электропитания нагрузки с заданной точностью в широких пределах изменения входной сети. Принцип работы основан на автоматическом переключении секций автотрансформатора с помощью силовых ключей (реле, тиристоры, симисторы).
Структурная схема электронного стабилизатора напряжения
К их достоинствам можно отнести: высокое быстродействие, очень широкий входной диапазон, отсутствие искажения формы напряжения, высокий КПД, низкий уровень шума (только от вентиляторов охлаждения). Точность стабилизации определяется количеством ступеней регулирования и, в зависимости от модели, может составлять от 5 до 0.5%, а некоторые модели даже имеют возможность коррекции в пределах 210-230 вольт для лучшей адаптации к импортному оборудованию. Необходимо особо отметить высокую надёжность 3-х фазных конфигураций, где каждую фазу в отдельности регулирует независимый однофазный блок.
Электронный стабилизатор напряжения
Несмотря на высокую стоимость, электронные стабилизаторы напряжения — это оптимальное соотношение цена/качество, и они заслуженно нашли наибольшее распространение на рынке высококачественных электроприборов.
Инверторные стабилизаторы напряжения. Самый молодой тип регуляторов, начал выпускаться во второй половине 10-х годов нашего столетия. Как и ИБП (источник бесперебойного питания), принцип работы основан на двойном преобразовании сетевого напряжения: сначала оно выпрямляется а затем заново преобразуется в переменное. Их достоинства, в общем, такие же, как и у электронных стабилизаторов, но есть два существенных положительных отличия. Во-первых, они не содержат трансформаторов и поэтому имеют небольшой вес и габариты, а во-вторых, они ещё стабилизируют и частоту тока! К недостаткам можно отнести то, что в трёхфазных моделях при неполадках в любом контуре регулирования фазы два остальных тоже отключаются.
Инверторный стабилизатор напряжения
В общем, у инверторных стабилизаторов напряжения есть определённое будущее и существенный сектор применения
Как выбрать стабилизатор напряжения
Определяем характеристики стабилизатора напряжения:
- Количество фаз. Трехфазные стабилизаторы выбираем при наличии трехфазного напряжения и оборудования. В остальных случаях приобретаем однофазные стабилизаторы.
- Определяем диапазон входящего напряжения. Определите какое напряжение у вас на объекте – низкое или высокое, стабильное или бывают скачки.
- Номинальная мощность стабилизатора должна быть не меньше суммарной мощности оборудования. При расчете учитываем коэффициент мощности и пусковые токи.
- При установке в дом или квартиру номинальный ток стабилизатора не должен быть меньше номинала входного автомата.
- Если напряжение в сети сильно занижено, берем дополнительный запас мощности. При этом обращаем внимание на диапазон напряжений, при которых данная модель может работать.
- В зависимости от характера изменения напряжения в сети, выбираем тип стабилизатора. Релейные и электромеханические типы не подходят там, где бывают частые и резкие скачки напряжения, для этого больше подходят электронные и инверторные стабилизаторы.
- При наличии потребителей с высокими требованиями к электросети (Hi-Fi техника и другое высокоточное оборудование) выбираем модели с наименьшей погрешностью напряжения на выходе.
- Если стабилизатор устанавливается в неотапливаемом помещении, выбираем морозостойкую модель, способную работать при низких температурах.
- Далее делаем выбор между настольным, напольным или настенным исполнением.
Теперь рассмотрим порядок и принципы подбора более подробно.
Электросети не всегда выдают нам стабильное напряжение. Особенно это проявляется за городом. Расстояния от подстанций до потребителей большие, линии перегружены, персонала не хватает. В таких условиях потребителям приходится самостоятельно решать эти проблемы с помощью стабилизаторов напряжения.
При выборе следует определиться по ряду вопросов:
- Количество фаз.
Если на вашем объекте однофазная сеть 220В, и, соответственно однофазные потребители, ответ очевиден – для однофазной сети необходим однофазный стабилизатор напряжения на 220В. Если вам нужен стабилизатор на 220В для загородного дома или для дачи и вы не знаете какой лучше выбрать — на нашем сайте есть специальная подборка — стабилизаторы напряжения 220В для дома и дачи.
В случае, если на объекте трехфазная сеть 380В, а также есть трехфазные потребители, то мы встаем перед выбором — один трехфазный стабилизатор (моноблок) или три однофазных стабилизатора (по одному на фазу). Трехфазный стабилизатор следит не только за напряжением в каждой фазе, но и за межфазными напряжениями, поддерживая в норме одновременно шесть величин. Поэтому трехфазный аппарат приобретаем только для трехфазного оборудования, в остальных случаях останавливаем выбор на однофазных моделях (для подключения по схеме «звезда» по одному на фазу).
Этот вопрос усложняется тем, что в характеристиках стабилизатора указывается полная мощность, выраженная в киловольтамперах (кВА), когда мы привыкли к киловаттам, характеризующим активную мощность. Не вдаваясь в подробности, отметим, что для большинства бытовых электроприборов коэффициент мощности (отношение активной мощности к полной) равен 0.8. Грубо говоря, предельная нагрузка для стабилизатор мощностью 1000 ВА будет 800 Вт. Исключение составляют лампы накаливания и нагревательные приборы — для них коэффициент мощности равен 1. У промышленного оборудования значение коэффициента мощности указывается в паспортных данных. Поэтому мы рекомендуем подбирать стабилизатор по мощности в кВт (лучше иметь запас по мощности, чем иметь её недостаток).
* Таким образом, 1 кВА=0,8кВт.
* Для расчета мощности в кВт используем формулу: 1кВАх0,8=0,8кВт.
* А для расчета мощности в кВА используем формулу: 1кВт/0,8=1,25кВА.
Если вам известен ток, потребляемый вашими электроприборами, то задача упрощается. Выбирайте стабилизатор, номинальный ток которого не меньше потребляемой величины. Как быть, когда потребителей много, например, при выборе стабилизатора для всего дома или квартиры? Очень просто — смотрим номинал вводного автомата и выбираем стабилизатор напряжения, номинальный ток которого не меньше данной величины.
Не всегда рационально ставить общий стабилизатор на всё электрооборудование (на весь объект в целом – дом или квартиру). Зачастую, его приобретают для стабилизации какого-то конкретного оборудования:
- Для газового котла. Мощность здесь небольшая – как правило, до 3 кВт. Таким образом, определяем мощность котла, прибавляем некоторый запас — на пусковой ток насоса и т.д.. и получаем необходимую мощность стабилизатора.
- Для холодильника тоже надо учитывать пусковые токи компрессора, которые могут в 5-7 раз превышать номинальные.
- Стиральные (посудомоечные) машины отличаются тем, что имеют мощные ТЭНы, имеющие коэффициент мощности, равный единице. Для обычной бытовой стиральной машины эта мощность составляет порядка 1800 Вт. Плюс блок электроники 100 Вт и плюс двигатель около 200 Вт. Делаем поправки на коэф. мощности блока и двигателя, не забываем про пусковой ток последнего. В результате получаем, что мощность стабилизатора должна быть не менее 3 кВА.
Все вышесказанное справедливо лишь в том случае, когда напряжение в сети не опускается ниже 170-180 В. Когда же напряжение сильно занижено, входной ток стабилизатора возрастает настолько, что он уже не может работать на полную мощность, начинает перегреваться и уходит в защиту. Поэтому, если у вас сильно заниженное напряжение, нужно делать на это поправку. Так, при напряжении в сети 100 вольт, мощность стабилизатора рекомендуется брать в три раза выше. Также нужно учитывать, что далеко не каждый стабилизатор способен работать на сильно заниженном напряжении. Этот параметр указывается в паспортных данных.
Еще один важный аспект — характер изменения напряжения в сети. Если оно не скачет, а просто хронически завышено или занижено, то можно обойтись медленно реагирующим стабилизатором — электромеханическим или релейным. В том случае, когда напряжение может быстро изменяться за короткие промежутки времени, когда много всплесков и провалов, тогда нужны быстродействующие электронные аппараты на полупроводниковых силовых ключах (тиристорные, симисторные, транзисторные и т.д.) или инверторные (у них реагирование на изменения входного напряжения мгновенное).
Также, вы всегда можете обратиться за помощью в подборе и за консультацией к нашим специалистам по телефону 8(495)722-0-321.
Какой стабилизатор напряжения выбрать: электромеханический или электронный
Стабилизатор напряжения – прибор, защищающий оборудование от аварий при перегрузке сети путем сглаживания выходного напряжения. Перегрузки могут быть вызваны перенапряжением, бросками питающего напряжения или высоковольтными импульсами.
Для бытовых целей, в малом бизнесе, промышленности и медицине нужны разные по своим техническим параметрам и степени защищенности стабилизаторы. Главное отличие – мощность и точность коррекции.
Существует два вида стабилизаторов напряжения: электромеханические и электронные.
Также стабилизаторы напряжения подбирают по типу сети: однофазный или трехфазный, и по мощности подключаемого оборудования (кВт или кВА).
Широко используются бытовые стабилизаторы напряжения – при отоплении газовыми котлами в коттедже, даче или частном доме, для защиты бытовой и оргтехники.
Сравнение типов стабилизаторов напряжения или в чем разница между электромеханическим и электронным стабилизатором.
Если вы столкнулись с проблемой перепадов напряжения в сети, то вы уже озадачились вопросом подбора стабилизатора напряжения. И наверняка пришли в замешательство от ассортимента представленных моделей, производителей и диапазона цен на стабилизаторы. Разобраться в таком количестве информации достаточно трудно. Эта статья поможет вам найти качественный стабилизатор напряжения. Чем же отличаются стабилизаторы и как из десятков названий выбрать тот, который действительно защитит вашу технику?
Стабилизаторы различаются принципом работы: релейные, электромеханические (сервомоторные, сервоприводные), электронные (симисторные, тиристорные), мощностью, эксплуатационными характеристиками, страной производства (Россия), стоимостью и самое главное — качеством, от которого зависит срок службы.
Как выбрать подходящий стабилизатор напряжения, который не только будет надежно выполнять свои функции, но и не заставит вас переплачивать?
В первую очередь необходимо сформулировать проблемы, характерные непосредственно для вашей сети. Обычно это постоянное завышенное, заниженное напряжение, или их резкие скачки. Для выбора стабилизатора желательно знать точные значения сети.
Далее необходимо выбрать стабилизатор напряжения по наиболее значимым параметрам.
Значимые параметры стабилизатора
1. Соответствие стабилизатора и сети
Тип стабилизатора должен соответствовать типу сети. Однофазной сети нужен однофазный стабилизатор, трехфазной сети – трехфазный. Если в сети есть хотя бы один трехфазный прибор, необходим трехфазный стабилизатор. Он устанавливается также в том случае, когда в трехфазной сети используются однофазные приборы.
2. Мощность стабилизатора
Мощность стабилизатора подбирается исходя из суммы мощностей приборов и оборудования, которые будут к нему подключены.
Нужно определить полную мощностью нагрузки (ВА) – это сумма активной (Вт) и реактивной нагрузки (ВАр). Для расчета мощности можно использовать формулу: кВт/cos ф = кВа. Значение cos ф разное у разных потребителей. Cos ф бытовых приборов можно принять за 0,8; cos ф электродвигателей – за 0,7.
При этом покупать стабилизатор завышенной мощности не требуется, так как наши стабилизаторы имеют высокую перегрузочную способность. Считаем важным напомнить, что в момент запуска многие электроприборы (такие как асинхронные двигатели, насосы, компрессоры) имеют высокие пусковые токи, то есть потребляют больше электроэнергии, чем в ходе работы в целом. Оптимальным решением для работы с самой требовательной техникой будет электромеханический стабилизатор, который выдерживает перегрузку в 1000%. Определить потребляемую мощность того или иного устройства вы можете, ознакомившись с техпаспортом или инструкцией по эксплуатации.
3. Уровень надежности
Выбирая стабилизатор напряжения, важно обращать внимание на частоту его отказов при тех или иных условиях, ведь именно этот показатель и говорит об уровне его надежности. В настоящее время наиболее надежными считаются 2 вида стабилизаторов:
- Ступенчатого типа – регулировка при помощи реле, обеспечивающих высокую помехоустойчивость и значительный КПД.
- Электромеханического типа, где основной элемент – автотрансформатор, обеспечивающий высокую перегрузочную способность, плавную коррекцию напряжения и высокую точность стабилизации.
4. Точность стабилизатора напряжения
Разным типам оборудования соответствует свой показатель рабочего напряжения, то есть напряжения, которое будет поступать от стабилизатора к технике. Диапазон изменения напряжения на выходе стабилизатора называется точностью коррекции стабилизатора и измеряется в %. Чем этот показатель меньше, тем напряжение ближе к 220 В.
- Для точных измерительных приборов и сложной медицинской аппаратуры с особыми требованиями по безопасности и надежности подойдет высокоточный стабилизатор напряжения с точностью ±1%. На производстве такой стабилизатор необходим для защиты станков и оборудования, дома – при наличии дорогостоящей техники и аппаратуры.
- Большая часть бытовых и офисных электроприборов успешно работает при напряжении 210-230 В, значит, для них подойдут стабилизаторы с точностью не более 5%.
Можно ли купить дешевый стабилизатор напряжения?
Дешевый стабилизатор — в 80% случаев китайского производства, а как все мы знаем качество китайской техники оставляет желать лучшего. Если вам нужен стабилизатор только на пару лет и с весьма сомнительной гарантией защиты оборудования, то вы конечно в праве выбрать китайский. Но если вы дорожите своей техникой, вам дорого ваше время, спокойствие, и вы не хотите переплачивать за покупку новой техники, к выбору стабилизатора стоит подойти более вдумчиво.
Цель данной статьи помочь вам разобраться в основных видах стабилизаторов и выбрать наиболее подходящий для вас.
Итак: Какой же тип стабилизатора необходим именно вам?
Как мы ранее уже говорили существует несколько основных типов стабилизаторов: релейного типа, электромеханические (сервомоторные, сервоприводные), электронные (симисторные, тиристорные).
Мы обсудим два самых надежных вида стабилизаторов: электромеханические и электронные на примере стабилизаторов напряжения российского производства Сатурн и Каскад торговой марки «Полигон».
Электромеханические стабилизаторы напряжения Сатурн
Эти приборы иначе называют сервомоторными или сервоприводными. Принцип работы электромеханических стабилизаторов напряжения заключается в том, что при изменении входного напряжения по обмотке трансформатора перемещаются графитовые щетки, изменяя выходное значение. Этот процесс осуществляется при помощи регулируемого автотрансформатора (латр), который и перемещает щетку по катушке. Он является коммутационным элементом и регулирует напряжение на первичной обмотке вольтодобавочного трансформатора. Латр входит в качестве основного силового элемента в состав конструкции электромеханического трансформатора. В стабилизаторах Сатурн используется высококачественный автотрансформатор (латр) немецкой компании Thalheimer Transformatorenwerke GmbH (TTW).
Среди достоинств электромеханических стабилизаторов Сатурн нужно выделить высокую точность коррекции ±1%, которая не зависит от подключенной мощности и входного напряжения. Стабилизатор будет работать и защищать всю подключенную технику во всем диапазоне входных напряжений и нет необходимости переплачивать и брать стабилизатор с запасом по мощности. Регулировка напряжения плавная, стабилизаторы выдерживают перегрузки 200% в течение 100 секунд, 400% за 10 секунд и 1000% – 2 секунд.
Также среди плюсов присутствует минимальный износ механический частей за счет отсутствия щеточного узла трансформатора именно в цепи нагрузки и его работе с малыми токами. Низкая шумность стабилизатора достигается благодаря естественной вентиляции, отсутствию вентилятора и благодаря сервоприводу.
Рекомендуется для эксплуатации в тяжелых промышленных сетях, так как коммутационный элемент (щетка) не воспринимает помехи и искажения формы тока и напряжения.
Электронные стабилизаторы напряжения Каскад
Принцип работы электронных стабилизаторов напряжения заключается в переключении при помощи симисторов или тиристоров между обмотками. В электронном стабилизаторе напряжения при изменении параметров входного напряжения, микропроцессор посылает знак на закрытие одной и открытие другой ступени. Именно так осуществляется регулировка количества задействованных витков трансформатора, что влияет на выходные показатели напряжения.
Среди достоинств электронных стабилизаторов выделяют низкий уровень шума, так как используется естественное охлаждение, быстродействие, небольшие габариты устройства. Регулирование выходного напряжения происходит без искажения и разрыва фазы.
В преимущества электронных стабилизаторов Каскад можно включить точность коррекции +/-2,5%, которая не зависит от подключенной мощности и входного напряжения. Такие стабилизаторы работают без потери мощности во всем диапазоне входных напряжений. Плавная отработка всплесков и просадок напряжения. Регулирование выходного напряжения без искажения и разрыва фазы. Как и электромеханические стабилизаторы работают с нулевыми нагрузками, а использование естественного охлаждения избавляет от шума вентилятора. За счет использования собственных трансформаторов не требуется учитывать запас по мощности. Качественная элементная база обеспечивает долгие годы работы.
Стабилизаторы напряжения должны подходить для российских сетей, а это значит, что они должны быть изготовлены с запасом по мощности и выдерживать большие перегрузки. «Сатурн» и «Каскад» выдерживают перегрузку в 1000%.
Ниже приведено видео, которое поможет осуществить выбор типа стабилизатора.
Стабилизаторы напряжения различных видов производства АО «ПФ «Созвездие» можно приобрести в розничных магазинах или через основной завод в Санкт-Петербурге.
Контактные данные: 8-800-333-00-68 (бесплатно по России), (812) 327-07-06 (Санкт-Петербург), 8 (495) 665-54-39 (Москва), e-mail: [email protected].
Если вы затрудняетесь при выборе стабилизатора напряжения, то специалисты нашей компании грамотно вас проконсультируют.
Что такое регуляторы напряжения | Статьи
T&D Guardian Соединенные Штаты АмерикиПерейти на глобальный веб-сайт Siemens
английский DeutschSiemens в вашей стране / регионе
- Алжир
- Ангола
- Аргентина
- Австралия
- Австрия
- Азербайджан
- Бахрейн
- Бангладеш
- Беларусь
- Бельгия
- Боливия
- Босния и Герцеговина
- Бразилия
- Болгария
- Камбоджа
- Канада
- Чили
- Китай
- Колумбия
- Коста-Рика
- Црна-Гора
- Хорватия
- Кипр
- Чехия
- Дания
- Доминиканская Респблика
- Эквадор
- Египет
- Эль Сальвадор
- Эстония
- Эфиопия
- Финляндия
- Франция
- Грузия
- Германия
- Гана
- Греция
- Гватемала
- Гондурас
- Гонконг, Китай
- Венгрия
- Индия
- Индонезия
- Иран
- Ирак
- Ирландия
- Израиль
- Италия
- Кот-д’Ивуар
- Япония
- Казахстан
- Кения
- Корея
- Косово
- Кувейт
- Латвия
- Лесото
- Литва
- Люксембург
- Малави
- Малайзия
- Маврикий
- MEA
- Мексика
- Марокко
- Мозамбик
- Мьянма
- Нидерланды
- Новая Зеландия
- Никарагуа
- Нигерия
- Северная Македония
- Норвегия
- Оман
- Пакистан
- Панама
- Перу
- Филиппины
- Польша
- Португалия
- Катар
- Румыния
- Россия
- Саудовская Аравия
- Сербия
- Сингапур
- Словакия
- Словения
- Южная Африка
- Испания
- Судан
- Свазиленд
- Швеция
- Швейцария
- Тайвань
- Танзания
- Таиланд
- Тунис
- индюк
- ОАЭ
- Уганда
- Украина
- Соединенное Королевство
- Уругвай
- Соединенные Штаты Америки
- Узбекистан
- Венесуэла
- Вьетнам
IC
Рис. 2.3.1 Типовые пакеты серии LM78xx
- Изучив этот раздел, вы должны уметь:
- Распознавать часто используемые I.C. Регуляторы напряжения.
- По отношению к регуляторам напряжения серии 78xx:
- • Выберите соответствующие компоненты развязки.
- • Разберитесь с термином «отсев».
- • Узнайте о возможных причинах отказа ИС и их предотвращении.
- • Изучите методы производства положительных, отрицательных и двойных расходных материалов.
Диапазон интегральных схем (I.C.) LM78Xxx
Наличие схем регулятора в I.C. form значительно упростил конструкцию источников питания, и с момента их появления разнообразие конструкций, их мощность и надежность постоянно улучшались. Стабилизаторы на интегральных схемах доступны с различными номинальными значениями тока и напряжения для шунтирующих или последовательных приложений, а также для полных типов с переключением. В настоящее время довольно редко можно найти регуляторы в действительно дискретных формах, описанных в модулях блока питания с 2.1 по 2.3, но популярные типы регуляторов 78Xxx (где X указывает подтип, а xx представляет собой выходное напряжение) используют почти те же принципы с улучшенной схемой , в интегрированном виде.
Существуют различные диапазоны в нескольких типах корпусов от многих производителей компонентов, некоторые из которых показаны на рис. 2.4.1. Выбор пакета зависит от требований к пространству и производительности.Типичные диапазоны приведены в таблице 1.
Таблица 1 | ||||
---|---|---|---|---|
Диапазон | Выходные напряжения (V OUT ) | Максимальный ток | Максимальное входное напряжение | Типичное падение напряжения |
LM78Lxx | 5,0 В, 6,2 В, 8,2 В, 9,0 В, 12 В, 15 В | 100 мА | 35V | В ВЫХ + 1,7 В |
LM78Mxx | 5 В, 12 В, 15 В | 500 мА | 35V | В ВЫХ + 2 В |
LM78xx | 5. 0 В, 5,2 В, 6,0 В, 8,0 В, 8,5 В, 9,0 В, 12,0 В, 15,0 В, 18,0 В, 24,0 В | 1A | 35 или 40 В в зависимости от типа | В ВЫХ + 2,5 В |
Падение напряжения
Одна из важных частей данных, опубликованных в технических паспортах линейных I.C. регуляторами напряжения питания устройства. В любом линейном регуляторе, состоящем из дискретных компонентов или интегрированном, таком как серия 78, выходное напряжение поддерживается стабильным для различных протеканий тока за счет изменения сопротивления регулятора (фактически, путем изменения проводимости транзистора, как описано в модуле источников питания. 2.2).
По этой причине должны выполняться две вещи:
1. Выходное напряжение всегда должно быть ниже входного.
2. Чем больше разница между входным и выходным напряжениями (при одинаковом токе), тем больше мощности должно рассеиваться в цепи регулятора, поэтому тем сильнее она становится.
Падение напряжения для любого регулятора указывает минимально допустимую разницу между выходным и входным напряжениями, если выходной сигнал должен поддерживаться на правильном уровне.Например, если регулятор LM7805 должен обеспечивать 5 В на своем выходе, входное напряжение должно быть не ниже 5 В + 2,5 В = 7,5 В.
Однако падение напряжения не является абсолютным значением, оно может изменяться примерно на 1 В в зависимости от тока, потребляемого на выходе, и температуры, при которой работает регулятор. Поэтому кажется разумным обеспечить комфортный запас между минимально возможным входным напряжением и минимально допустимым напряжением (выходное напряжение + падение напряжения).
Максимальное входное напряжение, указанное в таблице 1, показывает, что существует значительная допустимая разница между максимальным и минимальным входным напряжением, однако следует помнить, что чем выше входное напряжение для данного выхода, тем больше мощности необходимо рассеять через регулятор. Слишком высокое входное напряжение и потери мощности плохо сказываются на сроке службы батарей в портативном оборудовании и плохо для надежности мощного оборудования, поскольку большее количество тепла означает большую вероятность неисправностей.
Например, LM7805, подающий 1 А при 5 В на нагрузку, означает, что нагрузка потребляет 5 Вт. Если входное напряжение составляет 8 В, ток через регулятор по-прежнему составляет 1 А, что составляет 8 Вт; поэтому регулятор рассеивает 8 Вт — 5 Вт = 3 Вт. Однако, если входное напряжение составляет, например, 20 В, то избыточная мощность, которая должна рассеиваться регулятором, теперь составляет 20 В x 1 А = 20 Вт минус 5 Вт, потребляемые нагрузкой = 15 Вт.
В современном линейном I.C. Однако регуляторы, а также защита от перегрузки по току и защита от перенапряжения, как описано в модуле 2.3 блока питания, есть дополнительные схемы термического отключения для предотвращения сбоя из-за перегрева, так что если мощность слишком велика, вместо того, чтобы разрушать ИС, выход будет упадет до 0 В, пока ИС не остынет.
Даже при более разумных входных напряжениях стабилизатор I.Cs. действительно выделяют значительное количество тепла, поэтому важно, чтобы избыточное тепло эффективно рассеивалось за счет использования соответствующих радиаторов.Критерии использования радиаторов те же, что и для силовых транзисторов, обсуждаемые в Модуле 5.1 усилителей.
Дополняет серию 78xx серия 79, которая предлагает I.Cs. для обычно используемых отрицательных напряжений питания в том же диапазоне характеристик, что и серия 78, но с отрицательным выходным напряжением.
Рис. 2.3.2 Базовая схема блока питания с использованием линейного регулятора 7805 I.C.
Уменьшение пульсаций переменного тока
На рис. 2.3.2 показан регулятор серии I.C. и его связи.Обратите внимание, что C1 и C2 намного меньше, чем в источнике питания дискретных компонентов. Большой накопительный конденсатор не требуется, поскольку регулирующее действие I.C. уменьшит амплитуду любых пульсаций переменного тока (в пределах максимального диапазона входного напряжения) до нескольких милливольт на выходе.
Обеспечение стабильности
C2 больше не является традиционным фильтрующим конденсатором, но предназначен для улучшения переходной характеристики, защиты от внезапных изменений в сети или условиях нагрузки e.г. скачки. Использование этих конденсаторов с указанными значениями будет поляризованного танталового типа и, хотя это не является строго обязательным для всех схем, рекомендуется для обеспечения максимальной стабильности, предотвращая любую тенденцию к ИС. колебаться. Они должны быть установлены как можно ближе к регулятору, а I.C. заземляющее соединение должно быть подключено к 0 В как можно физически ближе к заземлению нагрузки. Эти проблемы лучше всего решить, если регулятор I.C. используется в качестве регулятора «точки нагрузки», а не (или как) главный регулятор для всей системы электропитания.
Надежность
Применение линейного регулятора I.Cs. значительно повысило надежность источников питания, но поскольку эти ИС часто располагаются на подключаемых субпанелях с системой, существует опасность повреждения ИС регулятора. (а также к другим компонентам), если панели вставляются или удаляются, пока основной источник питания все еще находится под напряжением. Это может быть связано либо с тем, что система все еще подключена к электросети, либо потому, что конденсаторы основного источника питания не полностью разряжены.
Причина в том, что при отсоединении или подключении многоходовых разъемов нет гарантии, в каком порядке отдельные штыри подключаются или отключаются, и это может привести к неожиданному короткому замыканию или разомкнутой цепи, возникающим на мгновение во время процесса подключения или отключения.
Рис. 2.3.3 Защитный диод, используемый с 7805 и большими конденсаторами
Чтобы предотвратить такую возможность, можно разработать несколько дополнительных мер безопасности вокруг схемы регулятора для защиты I.С.
В некоторых схемах электролитические конденсаторы могут использоваться для C1 и C2 в качестве альтернативы использованию танталовых или полиэфирных конденсаторов, но в этом случае использование емкости будет значительно больше, 25 мкФ или более. Однако в схемах, где C2 составляет 100 мкФ или более, существует вероятность того, что, если вход закорочен на землю, временно (или постоянно из-за неисправности) заряд на C2 вызовет протекание большого тока обратно в I.C. выходной терминал, повредив I.C. Чтобы предотвратить это, диод, такой как 1N4002, может быть подключен через I.C. как показано на рис. 2.3.3, так что, если в любой момент времени на входной клемме будет более низкий потенциал, чем на выходе, диод будет проводить любой заряд на выходной клемме на землю, вместо того, чтобы пропускать ток через I.C.
Рис. 2.3.4 Влияние разомкнутой цепи заземления на IC 7812
Если коммутационная панель отключена при подаче напряжения, возможно, что заземление заземлено на I.C. может быть отключен на мгновение перед вводом, как показано на рис. 2.3.4. В таком случае выходная клемма может подняться до уровня напряжения нерегулируемого входа, что может вызвать повреждение компонентов, питаемых от регулятора. Также, если панель подключена к уже имеющемуся питанию, такая же ситуация с мгновенным размыканием цепи заземления, а затем повреждение I.C. похоже.
Так как регуляторы напряжения обычно питаются от основного источника питания, они могут быть восприимчивы к любым скачкам сетевого напряжения, а также к обратному току.м.ф. скачки напряжения от других частей схемы. Любые положительные всплески напряжения, превышающие максимально допустимое входное напряжение (около 35 В или 40 В), или любые отрицательные всплески выше -0,8 В, которые имеют достаточную энергию для протекания значительных токов, могут повредить ИС. Некоторая защита может быть обеспечена за счет использования конденсатора большой емкости на входной клемме и / или обеспечения минимизации вероятных причин переходных процессов за счет использования ограничителей переходных процессов на входе сети и предотвращения обратного тока.m.fs. как описано в модуле 3.2 теории переменного тока.
Двойные и отрицательные расходные материалы
Линейные стабилизаторыI.C. могут также использоваться для обеспечения регулируемого отрицательного напряжения с помощью регуляторов серии LM79xx, доступных в том же диапазоне напряжений, что и серии 78xx, но с отрицательными выходами. Их можно использовать для регулирования шин отрицательного или двойного питания.
Что такое регулятор напряжения? Определение, типы и работа регулятора напряжения
Определение : Регулятор напряжения — это устройство, которое поддерживает постоянное выходное напряжение постоянного тока независимо от изменений входного напряжения или условий нагрузки.Пульсации переменного напряжения , которые не удаляются фильтрами, также отклоняются регуляторами напряжения .
Комбинации элементов, присутствующие в конструкции регулятора напряжения, обеспечивают постоянное выходное напряжение с переменным входным питанием.
Когда возникает потребность в стабильном и надежном выходном напряжении , тогда наиболее предпочтительными схемами являются регуляторы напряжения.
Регуляторы напряжения также отображают защитные функции , такие как защита от перенапряжения, защита от короткого замыкания, тепловое отключение, ограничение тока и т. Д.Это может быть линейный регулятор или импульсный стабилизатор, но самый простой и доступный тип регулятора напряжения — линейный.
Взглянем на принципиальную схему стабилизатора напряжения на стабилитроне-
.Стабилитрон используется в качестве регулятора напряжения , который обеспечивает постоянное напряжение от источника, напряжение которого существенно меняется.
Как видно из рисунка выше, в начале цепи установлен резистор.Чтобы ограничить обратный ток через диод до более безопасного резистора, в цепи используются резисторы R s .
Напряжение источника V s и резистор R s выбраны таким образом, чтобы диод работал в области пробоя. Напряжение на R L известно как напряжение Зенера V z , а ток диода известен как I z .
Постоянное напряжение поддерживается на нагрузке R L , поскольку колебания выходного напряжения поглощаются резистором R s .Входное напряжение, изменения которого необходимо регулировать, включает стабилитрон в обратном состоянии.
Диод не проводит ток, если напряжение на R L не меньше напряжения пробоя стабилитрона V z , а R s и R L составляют делитель потенциала на V s .
Когда напряжение питания V s увеличивается, в этом случае падение напряжения на R L будет больше по сравнению с напряжением пробоя стабилитрона.Таким образом, заставляя стабилитрон проводить в области его пробоя.
Ток стабилитрона I z ограничен резистором серии R s от превышения максимального номинального значения I zmax .
Ток через R S подается от источника, ток разделяется на Iz и I L на переходе-
Напряжение на стабилитроне V z остается постоянным до тех пор, пока он не работает в области пробоя, поскольку ток стабилитрона I D может значительно изменяться.
Если здесь входное напряжение увеличивается, увеличивается ток через диод и нагрузка. По мере того, как сопротивление на диоде уменьшается, через диод будет протекать больший ток.
В результате падение напряжения на R s будет больше, поэтому напряжение на выходе будет иметь значение, близкое к входному или питающему напряжению.
Следовательно, мы можем сказать, что стабилитрон поддерживает равномерное напряжение на нагрузке, если только напряжение питания не превышает напряжение стабилитрона .
Дискретный транзисторный регулятор напряжения
Если говорить о транзисторных регуляторах напряжения, то в основном это 2 типа —
Используя любой из вышеупомянутых типов, мы можем получить постоянное выходное напряжение постоянного тока заданного значения. Это значение не зависит от изменения напряжения питания или нагрузки на выходе.
Давайте теперь подробно обсудим каждый тип —
Регулятор напряжения серииНа рисунке ниже показана блок-схема последовательного регулятора напряжения
.Здесь величина входа, на который поступает выходное напряжение, регулируется последовательными элементами управления.Схема, которая измеряет выходное напряжение, обеспечивает обратную связь, которая сравнивается с опорным напряжением.
В случае, если напряжение на выходе увеличивается на , компаратор отправляет управляющий сигнал на элемент управления так, чтобы уменьшал величину выхода . Точно так же, если выходное напряжение уменьшается, компаратор отправляет управляющий сигнал, так что величина выходного сигнала может быть увеличена до желаемого уровня.
Работа стабилизатора напряжения последовательного транзистора
Он также известен как регулятор напряжения с эмиттерным повторителем .На схеме ниже показан простой последовательный стабилизатор напряжения, который сформирован с использованием NPN-транзистора и стабилитрона.
В приведенной выше схеме выводы коллектора и эмиттера транзистора включены последовательно с нагрузкой, поэтому его называют последовательным стабилизатором. Транзистор Q известен как проходной транзистор серии .
Когда на входную клемму подается питание постоянного тока, на нагрузочном резисторе R L появляется регулируемое выходное напряжение. Транзистор, используемый в схеме служит переменное сопротивление и диод Зенера подает опорное напряжение.
Его работа основана на том принципе, что на входе транзистора возникают большие колебания, поэтому выходное напряжение имеет тенденцию быть постоянным.
Здесь V out = V z — V BE
Базовое напряжение остается почти постоянным, значение которого примерно равно напряжению на стабилитроне V z .
Двигаясь дальше, рассмотрим случай, когда выходное напряжение увеличивается из-за увеличения напряжения питания.Это увеличение V из приведет к уменьшению V BE , поскольку V z зафиксирован на определенном уровне.
Это уменьшение V BE автоматически снижает проводимость. Из-за этого увеличивается сопротивление коллектор-эмиттер R CE , что приводит к увеличению V CE , что в конечном итоге снижает выходное напряжение.
А что насчет влияния изменения нагрузки на выходное напряжение.
Предположим, что сопротивление нагрузочного резистора R L уменьшается, что приводит к увеличению тока через него.В таком состоянии V из начинает уменьшаться, в результате чего V BE увеличивается. В конечном итоге уровень проводимости транзистора увеличивается, что снижает R CE .
Это уменьшение сопротивления немного увеличивает ток, что компенсирует уменьшение R L .
Таким образом, выходное напряжение остается постоянным, поскольку оно равно I L R L .
Ограничения
- При комнатной температуре поддержание абсолютно постоянного выходного напряжения затруднено, потому что повышение температуры в помещении автоматически вызовет уменьшение V BE и V Z.
- Хорошее регулирование не достигается при большом токе.
Шунтирующий регулятор напряжения
Блок-схема шунтирующего регулятора напряжения представлена ниже —
В регуляторе напряжения этого типа, чтобы обеспечить соответствующее регулирование , ток отводится от нагрузки . Чтобы поддерживать постоянный ток, с помощью элемента управления часть тока отводится от нагрузки.
Предположим, что происходит изменение нагрузки, что приводит к изменению выходного напряжения.Таким образом, сигнал обратной связи отправляется в схему компаратора, которая обеспечивает управляющий сигнал для изменения величины тока, шунтируемого от нагрузки.
Работа транзисторного шунтирующего стабилизатора напряжения
Взглянем на электрическую схему шунтирующего стабилизатора напряжения —
Здесь R SE подключен последовательно к источнику питания, а транзистор подключен к выходу. Напряжение питания уменьшается из-за падения напряжения на R SE , это снижение напряжения зависит от тока, подаваемого на R L .
V выход = V z + V BE
V выход = V вход — IR SE
Предположим, что входное напряжение увеличивается, что приводит к увеличению V из и V BE , что приводит к увеличению I B и I C . Таким образом, с этим увеличением напряжения питания увеличивается ток питания I, что создает большее падение напряжения на R SE , тем самым уменьшая выходное напряжение.Таким образом, выходное напряжение остается практически постоянным.
Ограничения
- Это заставляет большую часть тока течь через транзистор, а не загружать.
- Защита от перенапряжения иногда является проблемой в цепях такого типа.
Приложения
Они используются в компьютерных источниках питания , где они регулируют напряжение постоянного тока. В распределительной системе регуляторы напряжения используются вдоль распределительных линий, чтобы обеспечить постоянное напряжение потребителям.
Регуляторы напряженияSAM L10 / L11 — Справка разработчика
Переключить навигацию
- Инструменты разработки
- Какие инструменты мне нужны?
- Программные инструменты
- Начни здесь
- MPLAB® X IDE
- Начни здесь
- Установка
- Введение в среду разработки MPLAB X
- Переход на MPLAB X IDE
- Переход с MPLAB IDE v8
- Переход с Atmel Studio
- Конфигурация
- Плагины
- Пользовательский интерфейс
- Проектов
- файлов
- Редактор
- Редактор
- Интерфейс и ярлыки
- Основные задачи
- Внешний вид
- Динамическая обратная связь
- Навигация
- Поиск, замена и рефакторинг
- Инструменты повышения производительности
- Инструменты повышения производительности
- Автоматическое форматирование кода
- Список задач
- Сравнение файлов (разница)
- Создать документацию
- Управление окнами
- Сочетания клавиш
- Отладка
- Контроль версий
- Автоматизация
- Язык управления стимулами (SCL)
- Отладчик командной строки (MDB)
- Создание сценариев IDE с помощью Groovy
- Поиск и устранение неисправностей
- Работа вне MPLAB X IDE
- Другие ресурсы
- Улучшенная версия MPLAB Xpress
- MPLAB Xpress
- MPLAB IPE
- Программирование на C
- Компиляторы MPLAB® XC
- Начни здесь
- Компилятор MPLAB® XC8
- Компилятор MPLAB XC16
- Компилятор MPLAB XC32
- Компилятор MPLAB XC32 ++
- Кодовое покрытие MPLAB
- Сборщики
- Компилятор IAR C / C ++
- Конфигуратор кода MPLAB (MCC)
- MPLAB Harmony версии 2
- MPLAB Harmony версии 3
- среда разработки Atmel® Studio
- Atmel СТАРТ (ASF4)
- Advanced Software Framework v3 (ASF3)
- Начни здесь
- ASF3 Учебники
- ASF Audio Sine Tone Учебное пособие
- Интерфейс LCD с SAM L22 MCU Учебное пособие
- Блоки устройств MPLAB® для Simulink®
- Утилиты
- Инструменты проектирования FPGA
- Аналоговый симулятор MPLAB® Mindi ™
- Аппаратные средства
- Начни здесь
- Сравнение аппаратных средств
- Средства отладки и память устройства
- Исполнительный отладчик
- Демо-платы и стартовые наборы
- Внутрисхемный эмулятор MPLAB® REAL ICE ™
- Эмулятор SAM-ICE JTAG Внутрисхемный эмулятор
- Atmel® ICE
- Power Debugger
- Внутрисхемный отладчик MPLAB® ICD 3
- Внутрисхемный отладчик MPLAB® ICD 4 Внутрисхемный отладчик
- PICkit ™ 3
- Внутрисхемный отладчик MPLAB® PICkit ™ 4
- MPLAB® Snap
- MPLAB PM3 Универсальный программатор устройств
- Принадлежности
- Заголовки эмуляции и пакеты расширения эмуляции
- Пакеты расширения процессора и отладочные заголовки
- Начни здесь Обзор
- PEP и отладочных заголовков
- Требуемый список заголовков отладки
- Таблица обязательных отладочных заголовков
- AC162050, AC162058
- AC162052, AC162055, AC162056, AC162057
- AC162053, AC162054
- AC162059, AC162070, AC162096
- AC162060
- AC162061
- AC162066
- AC162083
- AC244023, AC244024
- AC244028
- AC244045
- AC244051, AC244052, AC244061
- AC244062
- Дополнительный список заголовков отладки
- Дополнительный список заголовков отладки — устройства PIC12 / 16
- Дополнительный список заголовков отладки — устройства PIC18
- Дополнительный список заголовков отладки — устройства PIC24
- Целевые следы заголовка отладки
- Подключения заголовка отладки
- SEGGER J-Link
- Сетевые инструменты K2L
- Рекомендации по проектированию средств разработки
- Ограничения отладки — микроконтроллеры PIC
- Инженерно-технические примечания (ETN) [[li]] Встраиваемые платформы chipKIT ™
- Функции
- Интеграция встроенного программного обеспечения
- Начни здесь
- Программирование на C
- Программирование на языке ассемблера MPASM ™
- MPLAB® Harmony v3
- Начни здесь
- Библиотеки гармонии MPLAB®
- MPLAB® Harmony Configurator (MHC)
- Проекты и учебные пособия MPLAB Harmony
- Периферийные библиотеки в SAM L10
- Начало работы с Периферийными библиотеками Harmony v3
- Периферийные библиотеки с низким энергопотреблением на SAM L10
- Периферийные библиотеки на SAM C2x
- Начало работы с периферийными библиотеками Harmony v3
- Приложение с низким энергопотреблением с периферийными библиотеками Harmony v3
- Периферийные библиотеки на SAM D21
- Периферийные библиотеки на SAM D5x / E5x
- Начало работы с периферийными библиотеками Harmony v3
- Приложение с низким энергопотреблением с периферийными библиотеками Harmony v3
- Периферийные библиотеки на SAM E70
- Периферийные библиотеки на SAM L2x
- Приложение с низким энергопотреблением с Harmony v3 с использованием периферийных библиотек
- Периферийные библиотеки в SAM L10
- Интеграция встроенного программного обеспечения