Закон ома как звучит и формула. Что такое закон ома
Закон Ома для участка цепи: сила тока I на участке электрической цепи прямо пропорциональна напряжению U на концах участка и обратно пропорциональна его сопротивлению R.
Формула закона: I =. Отсюда запишем формулыU = IR и R = .
Рис.1. Участок цепи Рис.2. Полная цепь
Закон
Ома для полной цепи: сила
тока I полной электрической цепи равнаЭДС
(электродвижущей силе) источника тока Е ,
деленной на полное сопротивление цепи (R
+ r). Полное
сопротивление цепи равно сумме
сопротивлений внешней цепи R и внутреннего r источника тока.Формула
закона I
=
. На
рис. 1 и 2 приведены схемы электрических
цепей.
3. Последовательное и параллельное соединение проводников
Проводники в электрических цепях могут соединяться последовательно и параллельно . Смешанное соединение сочетает оба эти соединения.
Сопротивление,при включении которого вместо всех других проводников, находящихся между двумя точками цепи, ток и напряжение остаются неизменными, называют эквивалентным сопротивлением этих проводников.
Последовательное соединение
Последовательным называется соединение, при котором каждый проводник соединяется только с одним предыдущим и одним последующим проводниками.
Как следует из первого правила Кирхгофа , при последовательном соединении проводников сила электрического тока, протекающего по всем проводникам, одинакова (на основании закона сохранения заряда).
1. При последовательном соединении проводников (рис. 1) сила тока во всех проводниках одинакова: I 1 = I 2 = I 3 = I
Рис. 1.Последовательное соединение двух проводников.
2. Согласно закону Ома, напряженияU 1 иU 2 на проводниках равны U 1 = IR 1 , U 2 = IR 2 , U 3 = IR 3 .
Напряжение при последовательном соединении проводников равно сумме напряжений на отдельных участках (проводниках) электрической цепи.
U = U 1 + U 2 + U 3
Позакону Ома, напряжения U 1, U 2 на проводниках равны
U = U 1 + U 2 = IR 1 + IR 2 = I(R 1 + R 2 )= I·R. Получаем: R = R 1 + R 2
Общее напряжение U на проводниках равно сумме напряжений U 1 , U 2 , U 3 равно: U = U 1 + U 2 +
U 3 = I · (R 1 + R 2 + R 3 ) = IRгде R ЭКВ – эквивалентное сопротивление всей цепи. Отсюда: R ЭКВ = R 1 + R 2 + R 3
При последовательном соединении эквивалентное сопротивление цепи равно сумме сопротивлений отдельных участков цепи: R ЭКВ = R 1 + R 2 + R 3 +…
Этот результат справедлив для любого числа последовательно соединенных проводников.
Из закона Омаследует: при равенстве сил тока при последовательном соединении:
I = , I = . Отсюда = или =, т. е. напряжения на отдельных участках цепи прямо пропорциональны сопротивлениям участков.
При последовательном соединении n одинаковых проводников общее напряжение равно произведению напряжению одного U 1 на их количество n :
U ПОСЛЕД = n · U 1 . Аналогично для сопротивлений: R ПОСЛЕД = n · R 1
При размыкании цепи одного из последовательно соединенных потребителей ток исчезает во всей цепи, поэтому последовательное соединение на практике не всегда удобно.
Причиной написания данной статьи явилась не сложность этих формул, а то, что в ходе проектирования и разработки каких-либо схем часто приходится перебирать ряд значений чтобы выйти на требуемые параметры или сбалансировать схему.
Данная статья и калькулятор в ней позволит упростить этот подбор и ускорить процесс реализации задуманного. Также в конце статьи приведу несколько методик для запоминания основной формулы закона Ома. Эта информация будет полезна начинающим. Формула хоть и простая, но иногда есть замешательство, где и какой параметр должен стоять, особенно это бывает поначалу.В радиоэлектронике и электротехнике закон Ома и формула расчёта мощности используются чаше чем какие-либо из всех остальных формул. Они определяют жесткую взаимосвязь между четырьмя самыми ходовыми электрическими величинами: током, напряжением, сопротивлением и мощностью.
Закон Ома. Эту взаимосвязь выявил и доказал Георг Симон Ом в 1826 году. Для участка цепи она звучит так: сила тока прямо пропорциональна напряжению, и обратно пропорциональна сопротивлению
Так записывается основная формула:
Путем преобразования основной формулы можно найти и другие две величины:
Мощность. Её определение звучит так: мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи.
Формула мгновенной электрической мощности:
Ниже приведён онлайн калькулятор для расчёта закона Ома и Мощности. Данный калькулятор позволяет определить взаимосвязь между четырьмя электрическими величинами: током, напряжением, сопротивлением и мощностью. Для этого достаточно ввести любые две величины. Стрелками «вверх-вниз» можно с шагом в единицу менять введённое значение. Размерность величин тоже можно выбрать. Также для удобства подбора параметров, калькулятор позволяет фиксировать до десяти ранее выполненных расчётов с теми размерностями с которыми выполнялись сами расчёты.
Когда мы учились в радиотехническом техникуме, то приходилось запоминать очень много всякой всячины. И чтобы проще было запомнить, для закона Ома есть три шпаргалки. Вот какими методиками мы пользовались.
Первая — мнемоническое правило. Если из формулы закона Ома выразить сопротивление, то R = рюмка.
Вторая — метод треугольника. Его ещё называют магический треугольник закона Ома.
Если оторвать величину, которую требуется найти, то в оставшейся части мы получим формулу для её нахождения.
Третья. Она больше является шпаргалкой, в которой объединены все основные формулы для четырёх электрических величин.
Пользоваться ею также просто, как и треугольником. Выбираем тот параметр, который хотим рассчитать, он находиться в малом кругу в центре и получаем по три формулы для его расчёта. Далее выбираем нужную.
Этот круг также, как и треугольник можно назвать магическим.
Сила тока в участке цепи прямо пропорциональна напряжению, и обратно пропорциональна электрическому сопротивлению данного участка цепи.
Закон Ома записывается формулой:
Где: I — сила тока (А), U — напряжение (В), R — сопротивление (Ом).
Следует иметь в виду, что закон Ома является фундаментальным (основным) и может быть применён к любой физической системе, в которой действуют потоки частиц или полей, преодолевающие сопротивление. Его можно применять для расчёта гидравлических, пневматических, магнитных, электрических, световых, тепловых потоков.
Закон Ома определяет связь трех фундаментальных величин: силы тока, напряжения и сопротивления. Он утверждает, что сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.
Ток течет из точки с избытком электронов в точку с дефицитом электронов. Путь, по которому следует ток, называется электрической цепью. Все электрические цепи состоят из источника тока , нагрузки и проводников . Источник тока обеспечивает разность потенциалов , которая позволяет течь току. Источником тока может быть батарея, генератор или другое устройство. Нагрузка оказывает сопротивление протеканию тока . Это сопротивление может быть высоким или низким, в зависимости от назначения цепи. Ток в цепи течет через проводники от источника к нагрузке . Проводник должен легко отдавать электроны. В большинстве проводников используется медь.
Путь электрического тока к нагрузке может проходить через три типа цепей: последовательную цепь, параллельную или последовательно-параллельную цепи.Ток электронов в электрической цепи течет от отрицательного вывода источника тока, через нагрузку к положительному выводу источника тока.
Пока этот путь не нарушен, цепь замкнута и ток течет.
Однако если прервать путь, цепь станет разомкнутой и ток не сможет по ней идти.
Силу тока в электрической цепи можно изменять, изменяя либо приложенное напряжение, либо сопротивление цепи. Ток изменяется в таких же пропорциях, что и напряжение или сопротивление. Если напряжение увеличивается, то ток также увеличивается. Если напряжение уменьшается, то ток тоже уменьшается. С другой стороны, если сопротивление увеличивается, то ток уменьшается. Если сопротивление уменьшается, то ток увеличивается. Это соотношение между напряжением, силои тока и сопротивлением называется законом Ома.
Закон Ома утверждает, что ток в цепи (последовательной, параллельной или последовательно-параллельной) прямо пропорционален напряжению и обратно пропорционален сопротивлению
При определении неизвестных величин в цепи, следуйте следующим правилам:
- Нарисуйте схему цепи и обозначьте все известные величины.
- Проведите расчеты для эквивалентных цепей и перерисуйте цепь.
- Рассчитайте неизвестные величины.
Помните: закон Ома справедлив для любого участка цепи и может применяться в любой момент. По последовательной цепи течет один и тот же ток, а к любой ветви параллельной цепи приложено одинаковое напряжение.
История закона Ома
Георг Ом, проводя эксперименты с проводником, установил, что сила тока в проводнике пропорциональна напряжению, приложенному к его концам. Коэффициент пропорциональности назвали электропроводностью, а величину принято именовать электрическим сопротивлением проводника. Закон Ома был открыт в 1826 году.
Ниже приведены анимации схем иллюстрирующих закон Ома. Обратите внимание, что (на первой картинке) Амперметр (А) является идеальным и имеет нулевое сопротивление.
Данная анимация показывает как меняется ток в цепи при изменении приложенного напряжения.
Следующая анимация показывает как меняется сила тока в цепи при изменении сопротивления.
Соединенный проводами с различными электроприборами и потребителями электри-ческой энергии, образует электрическую цепь.
Электрическую цепь принято изображать с помощью схем, в которых элементы электрической цепи (сопротивления , источники тока, включатели, лампы, при-боры и т. д.) обозначены специальными значками.
Направление тока в цепи — это направление от положи-тельного полюса источника тока к отрицательному. Это пра-вило было установлено в XIX в. и с тех пор соблюдается. Перемещение реальных зарядов может не совпадать с ус-ловным направлением тока. Так, в металлах носителями тока являются отрицательно заряжен-ные электроны, и движутся они от отрицательного полюса к положительному, т. е. в обратном направлении. В электролитах реальное перемещение зарядов может совпадать или быть противоположным направлению тока, в зависимости от того, какие ионы являются носителями заря-да — положительные или отрицательные.
Включение элементов в электрическую цепь может быть последовательным или параллельным .
Закон Ома для полной цепи.
Рассмотрим электрическую цепь, состоящую из источника тока и ре-зистора R .
Закон Ома для полной цепи устанавливает связь между силой тока в цепи, ЭДС и полным сопротивлением цепи, состоя-щим из внешнего сопротивления R и внутреннего сопротивления источ-ника тока r .
Работа сторонних сил A ст источника тока, согласно определению ЭДС (ɛ ) равна A ст = ɛq , где q — заряд , перемещенный ЭДС. Согласно определе-нию тока q = It , где t — время, в течение которого переносился заряд. Отсюда имеем:
A ст = ɛ It .
Тепло, выделяемое при совершении работы в цепи, согласно закону Джоуля — Ленца , равно:
Q = I 2 Rt + I 2 rt .
Согласно закону сохранения энергии А = Q . Приравнивая (A ст = ɛ It ) и (Q = I 2 Rt + I 2 rt ), получим:
ɛ = IR + Ir.
Закон Ома для замкнутой цепи обычно записывается в виде:
.
Сила тока в полной цепи равна отношению ЭДС цепи к ее полному сопротивлению.
Если цепь содержит несколько последовательно соединенных ис-точников с ЭДС ɛ 1 , ɛ 2 , ɛ 3 и т. д., то полная ЭДС цепи равна алгебраической сумме ЭДС отдельных источников. Знак ЭДС источника определяется по отношению к направлению обхода контура, который выбирается произвольно, например, на рисунке ниже — против часовой стрелки.
Сторонние силы внутри источника совершают при этом по-ложительную работу . И наоборот, для цепи справедливо следующее уравнение:
ɛ = ɛ 1 + ɛ 2 + ɛ 3 = | ɛ 1 | — | ɛ 2 | -| ɛ 3 | .
В соответствии с сила тока положительна при положительной ЭДС — направление тока во внешней цепи совпадает с направлением обхода контура. Полное сопротивление цепи с несколькими источниками равно сумме внешнего и внутренних сопротивлений всех источников ЭДС, например, для рисунка выше:
R n = R + r 1 + r 2 + r 3 .
Зависит величина воздействия, которое ток может оказывать на проводник, будь то тепловое, химическое или магнитное действие тока . То есть, регулируя силу тока, можно управлять его воздействием. Электрический ток , в свою очередь – это упорядоченное движение частиц под действием электрического поля .
Зависимость силы тока и напряжения
Очевидно, что чем сильнее поле действует на частицы, тем больше будет сила тока в цепи. Электрическое поле характеризуется величиной, называемой напряжением . Следовательно, мы приходит к выводу, что сила тока зависит от напряжения.
И действительно, опытным путем удалось установить, что сила тока связана с напряжением прямо пропорционально. В случаях, когда изменяли величину напряжения в цепи, не меняя всех остальных параметров, сила тока возрастала или уменьшалась во столько же раз, во сколько меняли напряжение.
Связь с сопротивлением
Однако любая цепь или участок цепи характеризуются еще одной немаловажной величиной, называемой сопротивлением электрическому току . Сопротивление связано с силой тока обратно пропорционально. Если на каком-либо участке цепи изменить величину сопротивления, не меняя напряжения на концах этого участка, сила тока также изменится. Причем если мы уменьшим величину сопротивления, то сила тока возрастет во столько же раз. И, наоборот, при увеличении сопротивления сила тока пропорционально уменьшается.
Формула закона Ома для участка цепи
Сопоставив две эти зависимости, можно прийти к такому же выводу, к которому пришел немецкий ученый Георг Ом в 1827 г. Он связал воедино три вышеуказанные физические величины и вывел закон, который назвали его именем. Закон Ома для участка цепи гласит:
Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.
где I – сила тока,
U – напряжение,
R – сопротивление.
Применение закона Ома
Закон Ома – один из основополагающих законов физики . Открытие его в свое время позволило сделать огромный скачок в науке. В настоящее время невозможно себе представить любой самый элементарный расчет основных электрических величин для любой цепи без использования закона Ома. Представление об этом законе – это не удел исключительно инженеров-электронщиков, а необходимая часть базовых знаний любого мало-мальски образованного человека. Недаром есть поговорка: «Не знаешь закон Ома – сиди дома».
U=IR и R=U/I
Правда, следует понимать, что в собранной цепи величина сопротивления некоторого участка цепи есть величина постоянная, поэтому при изменении силы тока будет изменяться только напряжение и наоборот. Для изменения сопротивления участка цепи следует собрать цепь заново. Расчет же требуемой величины сопротивления при проектировании и сборке цепи можно произвести по закону Ома, исходя из предполагаемых значений силы тока и напряжения, которые будут пропущены через данный участок цепи.
09-д. Закон Ома для участка цепи
§ 09-д. Закон Ома для участка цепи
В § 8-и мы начали знакомство с физической величиной «электрическое сопротивление». Продолжим его – проделаем опыт. Нам потребуются источник электроэнергии, амперметр, вольтметр, реостат и два резистора (две нихромовые спирали) с различными сопротивлениями.
Соберём цепь, как показано на рисунке слева или на схеме в конце параграфа. Перемещая движок реостата, поочерёдно установим значения силы тока 0,4 А, 0,6 А, 0,8 А, 1 А. Запишем показания амперметра и вольтметра в таблицу. Повторим опыт, заменив резистор, и дополним таблицу:
Примеры экспериментальных значений силы тока и напряжения на двух различных проводниках: равным силам токов соответствуют различные напряжения.
Первый резистор | Второй резистор | |||||||
I , A | 0,4 | 0,6 | 0,8 | 1,0 | 0,4 | 0,6 | 0,8 | 1,0 |
U , В | 1,6 | 2,4 | 3,2 | 4,0 | 2,4 | 3,6 | 4,8 | 6,0 |
Поделив напряжение на силу тока, обнаружим закономерность: | ||||||||
R = U/I | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 |
Закономерность в том, что вне зависимости от значений напряжения и силы тока их частное остаётся постоянным для каждого резистора. Проверьте: после деления каждого числа строки (U, В) на расположенное над ним число строки (I, А) получаются одинаковые результаты во всех колонках левой половины таблицы: 4 В/А и во всех колонках правой половины таблицы: 6 В/А. Это показывает, что величина R является характеристикой именно изучаемого участка цепи – резистора.
Заметим, что эта закономерность всегда справедлива для металлических проводников в твёрдом или жидком состоянии; для других проводников она справедлива не всегда. Однако величину R, равную отношению U/I, всегда называют электрическим сопротивлением проводника независимо от его материала и состояния, а 1 В/А называют 1 Ом. Следовательно, 1 Ом – сопротивление такого проводника, в котором возникнет ток 1 А, если на концах проводника напряжение 1 В.
Связь между величинами U, I, R обычно записывается в виде формулы, известной как закон Ома для участка цепи:
Закон Ома для участка цепи: сила тока в твёрдом металлическом проводнике прямо пропорциональна приложенному к его концам напряжению и обратно пропорциональна сопротивлению этого проводника.
I = | U | I – сила тока в участке цепи, А | |||
R |
Чтобы выяснить, как следует прочитать эту формулу, вспомним знания по алгебре о видах пропорциональности величин.
Пояснение прямой и обратной пропорциональностей величин в законе Ома для участка цепи.
прямая пропорциональность: | Y = k · X | → | I = 1/R · U |
обратная пропорциональность: | Y = k / X | → | I = U / R |
Из первой строки следует: при постоянном сопротивлении величина 1/R тоже постоянна, поэтому сила тока прямо пропорциональна напряжению на концах участка цепи. Из второй строки: при постоянном напряжении сила тока обратно пропорциональна сопротивлению участка цепи. Объединяя это, получаем формулировку закона Ома для участка цепи: сила тока в участке цепи прямо пропорциональна напряжению на его концах и обратно пропорциональна сопротивлению этого участка.
Примечание. С точки зрения алгебры, формулу закона Ома можно записать в такой форме: U=I·R. Применим её для изучения цепи, изображённой на схеме. Допустим, клеммы A и B присоединены к источнику с напряжением 10 В, однако вольтметр позволяет измерить напряжение не более 6 В (см. рисунок в начале параграфа). Поэтому нам нужно создать падение напряжения на реостате на 4 В или более. Как это сделать? Чем правее мы смещаем движок, тем больше сопротивление реостата, и, согласно формуле U=I·R, больше напряжение на реостате, которое и называют падением напряжения. В результате на резисторе напряжение снижается и может стать менее 6 В, что нам и нужно.
В вашем браузере отключен Javascript.Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!
Источник
Больше интересного в телеграм @calcsbox
3. | Повторение мы начнем с решения №1267
(страница146). По графику зависимости силы тока в проводнике от напряжения (рисунок. 310) определите, чему равна сила тока в проводнике при напряжении 2; 1; 5; 6; 10В. Учитель вызывает ученика к доске. График и таблица заранее нарисованы учителем на доске. Таблица1. 1. Во сколько раз уменьшается напряжение? 2. Что в данном случае произойдет с силой тока? 3. Что представляет собой прямо пропорциональная зависимость? 4.Что является графиком этой зависимости? 5. Каким уравнением в алгебре представляется эта зависимость? 6.В нашем случае, какая физическая величина является осью OY? 7. Какая физическая величина является осью ОХ? 8. Какому числовому значению равен коэффициент k в данном уравнении? 9.Каким уравнением выражается зависимость изучаемого графика? 10. Если напряжение равно 5В, то какому числовому значению равна сила тока? 11. Во сколько раз увеличивается напряжение? 12. Что происходит с силой тока? Парная работа учащихся. Первый ряд выполняет задание для 4В,8В. Второй ряд для 6В,10В. Третий ряд выполняет задание для 4В,8В. Определяют силу тока в проводнике. Через 1 минуту ученики проверяют решения. Учитель еще раз с помощью таблицы разбирает прямо пропорциональную зависимость силы тока от напряжения при постоянном сопротивлении. 2.На доске и на раздаточном материале изображена зависимость силы тока от напряжения для двух проводников. 1.Какой из проводников имеет большую силу тока? 2. Как это утверждение можно доказать? Объяснение нового материала (20 минут) Ребята, мы с вами рассмотрели, как сила тока зависит от напряжения. Давайте вместе попробуем ответить на вопрос. 1.Как сила тока зависит от сопротивления проводника, при постоянном напряжении на его концах? U = 2В Проверим это на опыте. Учитель демонстрирует зависимость силы тока от сопротивления при постоянном напряжении на концах проводника. Обратите внимание на демонстрационную установку. Учитель вместе с учениками раскрывает назначение каждого элемента собранной демонстрационной установки, определяя цену деления электроизмерительных приборов. Включают на магазине сопротивлений 4 Ом, замыкают цепь. Регулируя сопротивление реостата, добиваются на зажимах магазина напряжение 2В; при этом амперметр покажет 0.5А. Подготовленную таким способом установку, демонстрируют учащимся: включают ток и измеряют. Затем (уменьшают) сопротивление магазина и, доводя каждый раз с помощью реостата, напряжение до прежней величины (2В), измеряют силу тока. 4. Какой вывод можно сделать по данным этой таблицы? Давайте построим график обратно пропорциональной зависимости силы тока и сопротивления. 5. Как называется этот график? 6.Как записывается уравнение гиперболы? 7. Какая физическая величина на данном графике выполняет ось ОУ?8. Какая физическая величина выполняет ось Ох? 9. Как записывается уравнение гиперболы для графика зависимости силы тока от сопротивления при постоянном напряжении? 10. Какому числовому значению равен коэффициент К? Давайте, определим коэффициент, подставив значения силы тока и сопротивления. Давайте проверим правильность составленного уравнения. 11. Какой физической величине равен коэффициент К? Если мы в уравнение подставим вместо коэффициента физическую величину напряжение, то, что получим? Учитель объясняет учащимся, что благодаря эксперименту и математическим выкладкам получился закон Ома для участка цепи. Учитель просит сформулировать закон Ома для участка цепи учащихся. Учитель еще раз формулирует закон Ома для участка цепи. 12. Как из закона Ома выразить напряжение? Если учащиеся затрудняются в ответе. Учитель возвращает учащихся к таблице и помогает наводящими вопросами. Давайте подставим вместо цифр физические величины напряжение, силу тока, сопротивление. (Устно) Давайте, выразим из закона Ома для участка цепи сопротивление. В случае затруднения учитель помогает наводящими вопросами. 15. Какую цель мы ставили в начале урока? 16.Справились ли мы с поставленной целью? Учитель ждет ответ учащихся? | При оформлении задачи учащиеся
ответы отмечают на графике и записывают в
таблицу, где третья колонка пока
рассматривается, как значение коэффициента К.
После изучения новой темы учащиеся докажут, что К
это сопротивление. U=2В I=0.5А U=1В I=0.25А График 1. 1. Напряжение уменьшается в 2 раза. 2. Сила тока уменьшается в 2 раза, так как она находится в прямо пропорциональной зависимости от напряжения. 3. Если две физические величины находятся в прямо пропорциональной зависимости, то при увеличении одой физической величины в k раз, другая величина так же увеличивается в k раз и наоборот. 4. Прямая линия. 5.у=kх 6. Роль оси ОУ выполняет на графике напряжение. 7. Роль оси ОХ выполняет на графике сила тока. 8.U=k*I k=U /I k=2/0.5=4 9. I=U\4 Учащиеся с помощью карточек составляют это уравнение. 10. U=5В I=5/4=1.25А 11. В5 раз. 12. Сила тока тоже увеличивается в 5 раз. Учащиеся, не справившиеся с этим заданием, слушают объяснение. В том случае, если ученик у доски не справился с заданием, ему помогает класс.
График 2. Графики перечерчивают в тетрадь. 1. В первом проводнике сила тока больше. 2. Если на оси напряжения взять произвольную точку и провести перпендикуляр к 1и 2 графику, а из точки пересечения перпендикуляра и графиков опустить перпендикуляр на ось силы тока. По рисунку видно, что сила тока в первом проводнике больше силы тока во втором проводнике. График 3. На этом этапе проводится работа с карточками. Каждый учащийся включается в работу, поднимая карточку с ответом. Учащиеся собирают демонстрационную установку на парте с помощью раздаточного материала. Приложение 1. Источник тока – для создания и поддержания электрического поля в проводнике. Амперметр для измерения силы тока в проводнике. Вольтметр для измерения напряжения на концах проводника. Демонстрационный магазин сопротивления – для изменения сопротивления на участке цепи. Ключ – (замыкающее и размыкающее устройство), нужен для включения и выключения в нужное время источника тока. Соединительные провода – доставляют электрическую энергию в электрическую цепь. Ученики следят за показаниями вольтметра. Напряжение на концах проводника во время опыта постоянно. Одновременно, определяют силу тока в цепи и записывают результаты в таблицу 2. 4.Между силой тока и сопротивлением существует обратно пропорциональная связь. Если сила тока увеличивается, то сопротивление уменьшается и наоборот. Один ученик строит график обратно пропорциональной зависимости силы тока и сопротивления у доски. Остальные учащиеся работают в тетради. График 4. 5. Гипербола. 6. У=К/Х 7. Роль оси ОУ выполняет на графике сила тока. 8. Роль оси ОХ выполняет на графике сопротивление. 9. I=К/R К=I*R К=2*1=2 К=2 U=2В Учащиеся в тетради записывают зависимость от трех физических величин силы тока, напряжения, сопротивления. Составляют эту зависимость с помощью карточек I=U/R Учащиеся вводят теоретическую формулировку закона Ома для участка цепи. “Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению”. Учащиеся еще раз проговаривают его про себя. U=I*R Напряжение прямо пропорционально силе тока при постоянном сопротивлении. U=I*R R=U/I Сопротивление обратно пропорционально силе тока при постоянном напряжении. Раскрыть взаимозависимость силы тока, напряжения и сопротивления на участке электрической цепи. | Используется метод синтезирующей
беседы нацеленной на систематизацию знаний и
способов их применения в нестандартных
ситуациях, на перенос их в решении проблем на
межпредметной основе. Форма познавательной деятельности учащихся фронтальная. Использование модели прямоугольной системы координат позволяет учителю сэкономить время при повторении материала, кроме того, у учащихся работает одновременно зрительная и слуховая память, а картинка привлекает внимание, что делает восприятие и закрепление более эффективным. Учебно-воспитательная задача этого этапа: при решении данной задачи повторить и отработать навыки по вычислению силы тока и напряжения, находящихся в прямо пропорциональной зависимости, при постоянном сопротивлении. Учащиеся учатся работать с графиком, определять по известному значению силы тока напряжение, а так же отмечать координаты. Интеграция физики с математикой позволяет на основе алгебраического уравнения прямо пропорциональной зависимости вывести физическое уравнение зависимости силы тока от напряжения при постоянном сопротивлении. Практически они записывают закон Ома для участка цепи, не зная что коэффициент К это и есть сопротивление, но этот момент они раскроют после изучения новой темы.
Используется наглядный метод иллюстраций во взаимосвязи со словесным и практическим методом обучения, а предназначается для наглядно-чувственного ознакомления учащихся в виде символьного изображения. Используется репродуктивный метод. Разработка вопросов позволяет использовать полученные умения и навыки. Актуализируются ранее усвоенные знания, концентрируется внимание, раскрываются потенциальные и реальные возможности учащихся. На основе вводной беседы выясняется степень понимания и готовность учащихся к познанию нового материала. Используется практический метод, способствующий развитию логического мышления, памяти, речи учащихся. Отражается целенаправленная учебная деятельность, когда каждый ученик и класс в целом объединяются одной целью.
Используется проблемный метод, в котором учитель ставит перед учащимися проблему и сам показывает путь ее решения, вскрывая возникающие противоречия. Суть применения этого метода состоит в том, чтобы показать образец решения проблем. Учащиеся получают эталон научного мышления и познания, образец культуры развертывания познавательных действий. Происходит сочетание проблемного метода и наглядного, что позволяет учителю увидеть работу класса и ученика в отдельности. Ученик может ответить на вопрос, а в случае ошибки исправить себя. Опыт проводится с набором приборов, которые позволяют в полной мере раскрыть “ Закон Ома для участка цепи”. Определяет однозначность, определенность, истинность. Создаются условия хорошей видимости. Предусматривает эстетичность, это изящное, красивое оформление установки и рациональное выполнение опыта. Эмоциональность отражает результат воздействия демонстрируемого опыта на психику учащихся, она выражается в том впечатление, которое оказывает демонстрация. Использования графического воспроизводящего упражнения помогает учащимся лучше воспринимать, осмысливать и запоминать учебный материал, способствует развитию пространственного воображения. Применяется метод, беседа-сообщение который предполагает включение ученика в сам процесс активного участия в добывание новых знаний, в поиск способов их получения, формирования собственных ответов на поставленные учителем вопросы. В ходе эвристической беседы учитель, опираясь на имеющиеся знания и практический опыт, подводит их к пониманию и усвоению новых знаний, формированию правил и выводов. В результате такой совместной деятельности учащиеся приобретают новые знания, путем собственных усилий, размышлений. Фронтальный опрос. Отрабатываются основные навыки по “Закону Ома для участка цепи”. Происходит восприятие, осмысление и запоминание учащимися готовых научных выводов. Воспроизведение, систематизация и отработка базовых знаний. Развитие речи учащихся. |
Закон Ома для «чайников»: понятие, формула, объяснение
Закон Ома для участка цепи: сила тока I на участке электрической цепи прямо пропорциональна напряжению U на концах участка и обратно пропорциональна его сопротивлению R.
Формула закона: I =. Отсюда запишем формулыU = IR и R = .
Рис.1. Участок цепи Рис.2. Полная цепь
Закон
Ома для полной цепи: сила
тока I полной электрической цепи равнаЭДС
(электродвижущей силе) источника тока Е ,
деленной на полное сопротивление цепи (R
+ r). Полное
сопротивление цепи равно сумме
сопротивлений внешней цепи R и внутреннего r источника тока.Формула
закона I
=
. На
рис. 1 и 2 приведены схемы электрических
цепей.
3. Последовательное и параллельное соединение проводников
Проводники в электрических цепях могут соединяться последовательно и параллельно . Смешанное соединение сочетает оба эти соединения.
Сопротивление,при включении которого вместо всех других проводников, находящихся между двумя точками цепи, ток и напряжение остаются неизменными, называют эквивалентным сопротивлением этих проводников.
Последовательное соединение
Последовательным называется соединение, при котором каждый проводник соединяется только с одним предыдущим и одним последующим проводниками.
Как следует из первого правила Кирхгофа , при последовательном соединении проводников сила электрического тока, протекающего по всем проводникам, одинакова (на основании закона сохранения заряда).
1. При последовательном соединении проводников (рис. 1) сила тока во всех проводниках одинакова: I 1 = I 2 = I 3 = I
Рис. 1.Последовательное соединение двух проводников.
2. Согласно закону Ома, напряженияU 1 иU 2 на проводниках равны U 1 = IR 1 , U 2 = IR 2 , U 3 = IR 3 .
Напряжение при последовательном соединении проводников равно сумме напряжений на отдельных участках (проводниках) электрической цепи.
U = U 1 + U 2 + U 3
Позакону Ома, напряжения U 1, U 2 на проводниках равныU 1 = IR 1 , U 2 = IR 2 , В соответствии вторым правилом Кирхгофа напряжение на всем участке:
U = U 1 + U 2 = IR 1 + IR 2 = I(R 1 + R 2 )= I·R. Получаем: R = R 1 + R 2
Общее напряжение U на проводниках равно сумме напряжений U 1 , U 2 , U 3 равно: U = U 1 + U 2 + U 3 = I · (R 1 + R 2 + R 3 ) = IR
где R ЭКВ – эквивалентное сопротивление всей цепи. Отсюда: R ЭКВ = R 1 + R 2 + R 3
При последовательном соединении эквивалентное сопротивление цепи равно сумме сопротивлений отдельных участков цепи: R ЭКВ = R 1 + R 2 + R 3 +…
Этот результат справедлив для любого числа последовательно соединенных проводников.
Из закона Омаследует: при равенстве сил тока при последовательном соединении:
I = , I = . Отсюда = или =, т. е. напряжения на отдельных участках цепи прямо пропорциональны сопротивлениям участков.
При последовательном соединении n одинаковых проводников общее напряжение равно произведению напряжению одного U 1 на их количество n :
U ПОСЛЕД = n · U 1 . Аналогично для сопротивлений: R ПОСЛЕД = n · R 1
При размыкании цепи одного из последовательно соединенных потребителей ток исчезает во всей цепи, поэтому последовательное соединение на практике не всегда удобно.
Вся прикладная электротехника базируется на одном догмате – это закон Ома для участка цепи. Без понимания принципа этого закона невозможно приступать к практике, поскольку это приводит к многочисленным ошибкам. Имеет смысл освежить эти знания, в статье мы напомним трактовку закона, составленного Омом, для однородного и неоднородного участка и полной цепи.
Классическая формулировка
Этот простой вариант трактовки, известный нам со школы.
Формула в интегральной форме будет иметь следующий вид:
То есть, поднимая напряжение, мы тем самым увеличиваем ток. В то время, как увеличение такого параметра, как «R», ведет к снижению «I». Естественно, что на рисунке сопротивление цепи показано одним элементом, хотя это может быть последовательное, параллельное (вплоть до произвольного)соединение нескольких проводников.
В дифференциальной форме закон мы приводить не будем, поскольку в таком виде он применяется, как правило, только в физике.
Принятые единицы измерения
Необходимо учитывать, что все расчеты должны проводиться в следующих единицах измерения:
- напряжение – в вольтах;
- ток в амперах
- сопротивление в омах.
Если вам встречаются другие величины, то их необходимо будет перевести к общепринятым.
Формулировка для полной цепи
Трактовка для полной цепи будет несколько иной, чем для участка, поскольку в законе, составленном Омом, еще учитывает параметр «r», это сопротивление источника ЭДС. На рисунке ниже проиллюстрирована подобная схема.
Учитывая «r» ЭДС, формула предстанет в следующем виде:
Заметим, если «R» сделать равным 0, то появляется возможность рассчитать «I», возникающий во время короткого замыкания.
Напряжение будет меньше ЭДС, определить его можно по формуле:
Собственно, падение напряжения характеризуется параметром «I*r». Это свойство характерно многим гальваническим источникам питания.
Неоднородный участок цепи постоянного тока
Под таким типом подразумевается участок, где помимо электрического заряда производится воздействие других сил. Изображение такого участка показано на рисунке ниже.
Формула для такого участка (обобщенный закон) будет иметь следующий вид:
Переменный ток
Если в схема, подключенная к переменному току снабжена емкостью и/или индуктивностью (катушкой), расчет производится с учетом величин их реактивных сопротивлений. Упрощенный вид закона будет выглядеть следующим образом:
Где «Z» представляет собой импеданс, это комплексная величина, состоящая из активного (R) и пассивного (Х) сопротивлений.
Практическое использование
Видео: Закон Ома для участка цепи – практика расчета цепей.
Собственно, к любому участку цепи можно применить этот закон. Пример приведен на рисунке.
Используя такой план, можно вычислить все необходимые характеристики для неразветвленного участка. Рассмотрим более детальные примеры.
Находим силу тока
Рассмотрим теперь более определенный пример, допустим, возникла необходимость узнать ток, протекающий через лампу накаливания. Условия:
- Напряжение – 220 В;
- R нити накала – 500 Ом.
Решение задачи будет выглядеть следующим образом: 220В/500Ом=0,44 А.
Рассмотрим еще одну задачу со следующими условиями:
В этом случае, в первую очередь, потребуется выполнить преобразование: 0,2 МОм = 200000 Ом,после чего можно приступать к решению: 400 В/200000 Ом=0,002 А (2 мА).
Вычисление напряжения
Для решения мы также воспользуемся законом, составленным Омом. Итак задача:
Преобразуем исходные данные:
- 20 кОм = 20000 Ом;
- 10 мА=0,01 А.
Решение: 20000 Ом х 0,01 А = 200 В.
Незабываем преобразовывать значения, поскольку довольно часто ток может быть указан в миллиамперах.
Сопротивление.
Несмотря на то, что общий вид способа для расчета параметра «R» напоминает нахождение значения «I», между этими вариантами существуют принципиальные различия. Если ток может меняться в зависимости от двух других параметров, то R (на практике) имеет постоянное значение. То есть по своей сути оно представляется в виде неизменной константы.
Если через два разных участка проходит одинаковый ток (I), в то время как приложенное напряжение (U) различается, то, опираясь на рассматриваемый нами закон, можно с уверенностью сказать, что там где низкое напряжение «R» будет наименьшим.
Рассмотрим случай когда разные токи и одинаковое напряжение на несвязанных между собой участках. Согласно закону, составленному Омом, большая сила тока будет характерна небольшому параметру «R».
Рассмотрим несколько примеров.
Допустим, имеется цепь, к которой подведено напряжение U=50 В, а потребляемый ток I=100 мА. Чтобы найти недостающий параметр, следует 50 В / 0,1 А (100 мА), в итоге решением будет – 500 Ом.
Вольтамперная характеристика позволяет наглядно продемонстрировать пропорциональную (линейную) зависимость закона. На рисунке ниже составлен график для участка с сопротивлением равным одному Ому (почти как математическое представление закона Ома).
Изображение вольт-амперной характеристики, где R=1 Ом
Изображение вольт-амперной характеристики
Вертикальная ось графика отображает ток I (A), горизонтальная – напряжение U(В). Сам график представлен в виде прямой линии, которая наглядно отображает зависимость от сопротивления, которое остается неизменным. Например, при 12 В и 12 А «R» будет равно одному Ому (12 В/12 А).
Обратите внимание, что на приведенной вольтамперной характеристике отображены только положительные значения. Это указывает, что цепь рассчитана на протекание тока в одном направлении. Там где допускается обратное направление, график будет продолжен на отрицательные значения.
Заметим, что оборудование, вольт-амперная характеристика которого отображена в виде прямой линии, именуется – линейным. Этот же термин используется для обозначения и других параметров.
Помимо линейного оборудования, есть различные приборы, параметр «R» которых может меняться в зависимости от силы тока или приложенного напряжения. В этом случая для расчета зависимости нельзя использовать закон Ома. Оборудование такого типа называется нелинейным, соответственно, его вольт-амперные характеристики не будут отображены в виде прямых линий.
Вывод
Как уже упоминалось в начале статьи, вся прикладная электротехника базируется на законе, составленном Омом. Незнание этого базового догмата может привести к неправильному расчету, который, в свою очередь, станет причиной аварии.
Подготовка электриков как специалистов начинается с изучения теоретических основ электротехники. И первое, что они должны запомнить – это закон составленный Омом, поскольку на его основе производятся практически все расчеты параметров электрических цепей различного назначения.
Понимание основного закона электротехники поможет лучше разбираться в работе электрооборудования и его основных компонентов. Это положительно отразится на техническом обслуживании в процессе эксплуатации.
Самостоятельная проверка, разработка, а также опытное изучение узлов оборудования – все это существенно упрощается, если использовать закон Ома для участка цепи. При этом не требуется проводить всех измерений, достаточно снять некоторые параметры и, проведя несложные расчеты, получить необходимые значения.
Если увеличить в несколько раз напряжение, действующее в электрической цепи, то ток в этой цепи увеличится во столько же раз. А если увеличить в несколько раз сопротивление цепи, то ток во столько же раз уменьшится. Подобно этому водяной поток в трубе тем больше, чем сильнее давление и чем меньше сопротивление, которое оказывает труба движению воды.
Чтобы выразить закон Ома математически наиболее просто, считают, что сопротивление проводника, в котором при напряжении 1 В проходит ток 1 А, равно 1 Ом.
Ток в амперах можно всегда определить, если разделить напряжение в вольтах на сопротивление в омах. Поэтому закон Ома для участка цепи записывается следующей формулой:
Расчеты, выполняемые с помощью закона Ома для участка цепи, будут правильны в том случае, когда напряжение выражено в вольтах, сопротивление в омах и ток в амперах. Если используются кратные единицы измерений этих величин (например, миллиампер, милливольт, мегаом и т. д.), то их следует перевести соответственно в амперы, вольты и омы. Чтобы подчеркнуть это, иногда формулу закона Ома для участка цепи пишут так:
ампер = вольт/ом
Можно также рассчитывать ток в миллиамперах и микроамперах, при этом напряжение должно быть выражено в вольтах, а сопротивление — в килоомах и мегаомах соответственно.
Закон Ома справедлив для любого участка цепи. Если требуется определить ток в данном участке цепи, то необходимо напряжение, действующее на этом участке (рис. 1), разделить на сопротивление именно этого участка.
Рис 1. Применение закона Ома для участка цепи
Приведем пример расчета тока по закону Ома . Пусть требуется определить ток в лампе, имеющей сопротивление 2,5 Ом, если напряжение, приложенное к лампе, составляет 5 В. Разделив 5 В на 2,5 Ом, получим значение тока, равное 2 А. Во втором примере определим ток, который будет протекать под действием напряжения 500 В в цепи, сопротивление которой равно 0,5 МОм. Для этого выразим сопротивление в омах. Разделив 500 В на 500 000 Ом, найдем значение тока в цепи, которое равно 0,001 А или 1 мА.
Часто, зная ток и сопротивление, определяют с помощью закона Ома напряжение. Запишем формулу для определения напряжения
Из этой формулы видно, что напряжение на концах данного участка цепи прямо пропорционально току и сопротивлению . Смысл этой зависимости понять нетрудно. Если не изменять сопротивление участка цепи, то увеличить ток можно только путем увеличения напряжения. Значит при постоянном сопротивлении большему току соответствует большее напряжение. Если же надо получить один и тот же ток при различных сопротивлениях, то при большем сопротивлении должно быть соответственно большее напряжение.
Напряжение на участке цепи часто называют падением напряжения . Это нередко приводит к недоразумению. Многие думают, что падение напряжения есть какое-то потерянное ненужное напряжение. В действительности же понятия напряжение и падение напряжения равнозначны.
Расчет напряжения с помощью закона Ома можно показать на следующем примере. Пусть через участок цепи с сопротивлением 10 кОм проходит ток 5 мА и требуется определить напряжение на этом участке.
Умножив I = 0,005 А на R -10000 Ом, получим напряжение,равное 50 В. Можно было бы получить тот же результат, умножив 5 мА на 10 кОм: U = 50 В
В электронных устройствах ток обычно выражается в миллиамперах, а сопротивление — в килоомах. Поэтому удобно в расчетах по закону Ома применять именно эти единицы измерений.
По закону Ома рассчитывается также сопротивление, если известно напряжение и ток. Формула для этого случая пишется следующим образом: R = U/I.
Сопротивление всегда представляет собой отношение напряжения к току. Если напряжение увеличить или уменьшить в несколько раз, то ток увеличится или уменьшится в такое же число раз. Отношение напряжения к току, равное сопротивлению, остается неизменным.
Не следует понимать формулу для определения сопротивления в том смысле, что сопротивление данного проводника зависит оттока и напряжения. Известно, что оно зависит от длины, площади сечения и материала проводника. По внешнему виду формула для определения сопротивления напоминает формулу для расчета тока, но между ними имеется принципиальная разница. Ток в данном участке цепи действительно зависит от напряжения и сопротивления и изменяется при их изменении. А сопротивление данного участка цепи является величиной постоянной, не зависящей от изменения напряжения и тока, но равной отношению этих величин.
Когда один и тот же ток проходит в двух участках цепи, а напряжения, приложенные к ним, различны, то ясно, что участок, к которому приложено большее напряжение, имеет соответственно большее сопротивление. А если под действием одного и того же напряжения в двух разных участках цепи проходит различный ток, то меньший ток всегда будет на том участке, который имеет большее сопротивление. Все это вытекает из основной формулировки закона Ома для участка цепи, т. е. из того, что ток тем больше, чем больше напряжение и чем меньше сопротивление.
Расчет сопротивления с помощью закона Ома для участка цепи покажем на следующем примере. Пусть требуется найти сопротивление участка, через который при напряжении 40 В проходит ток 50 мА. Выразив ток в амперах, получим I = 0,05 А. Разделим 40 на 0,05 и найдем, что сопротивление составляет 800 Ом.
Закон Ома можно наглядно представить в виде так называемой вольт-амперной характеристики . Как известно, прямая пропорциональная зависимость между двумя величинами представляет собой прямую линию, проходящую через начало координат. Такую зависимость принято называть линейной .
Для электрика и электронщика одним из основных законов является Закон Ома. Каждый день работа ставит перед специалистом новые задачи, и зачастую нужно подобрать замену сгоревшему резистору или группе элементов. Электрику часто приходится менять кабеля, чтобы выбрать правильный нужно «прикинуть» ток в нагрузке, так приходится использовать простейшие физические законы и соотношения в повседневной жизни. Значение Закона Ома в электротехники колоссально, к слову большинство дипломных работ электротехнических специальностей рассчитываются на 70-90% по одной формуле.
Историческая справка
Год открытия Закон Ома — 1826 немецким ученым Георгом Омом. Он эмпирически определил и описал закон о соотношении силы тока, напряжения и типа проводника. Позже выяснилось, что третья составляющая – это не что иное, как сопротивление. Впоследствии этот закон назвали в честь открывателя, но законом дело не ограничилось, его фамилией и назвали физическую величину, как дань уважения его работам.
Величина, в которой измеряют сопротивление, названа в честь Георга Ома. Например, резисторы имеют две основные характеристики: мощность в ваттах и сопротивление – единица измерения в Омах, килоомах, мегаомах и т.д.
Закон Ома для участка цепи
Для описания электрической цепи не содержащего ЭДС можно использовать закон Ома для участка цепи. Это наиболее простая форма записи. Он выглядит так:
Где I – это ток, измеряется в Амперах, U – напряжение в вольтах, R – сопротивление в Омах.
Такая формула нам говорит, что ток прямопропорционален напряжению и обратнопропорционален сопротивлению – это точная формулировка Закона Ома. Физический смысл этой формулы – это описать зависимость тока через участок цепи при известном его сопротивлении и напряжении.
Внимание! Эта формула справедлива для постоянного тока, для переменного тока она имеет небольшие отличия, к этому вернемся позже.
Кроме соотношения электрических величин данная форма нам говорит о том, что график зависимости тока от напряжения в сопротивлении линеен и выполняется уравнение функции:
f(x) = ky или f(u) = IR или f(u)=(1/R)*I
Закон Ома для участка цепи применяют для расчетов сопротивления резистора на участке схемы или для определения тока через него при известном напряжении и сопротивлении. Например, у нас есть резистор R сопротивлением в 6 Ом, к его выводам приложено напряжение 12 В. Необходимо узнать, какой ток будет протекать через него. Рассчитаем:
I=12 В/6 Ом=2 А
Идеальный проводник не имеет сопротивления, однако из-за структуры молекул вещества, из которого он состоит, любое проводящее тело обладает сопротивлением. Например, это стало причиной перехода с алюминиевых проводов на медные в домашних электросетях. Удельное сопротивление меди (Ом на 1 метр длины) меньше чем алюминия. Соответственно медные провода меньше греются, выдерживают большие токи, значит можно использовать провод меньшего сечения.
Еще один пример — спирали нагревательных приборов и резисторов обладают большим удельным сопротивлением, т.к. изготавливаются из разных высокоомных металлов, типа нихрома, кантала и пр. Когда носители заряда движутся через проводник, они сталкиваются с частицами в кристаллической решетке, вследствие этого выделяется энергия в виде тепла и проводник нагревается. Чем больше ток – тем больше столкновений – тем больше нагрев.
Чтобы снизить нагрев проводник нужно либо укоротить, либо увеличить его толщину (площадь поперечного сечения). Эту информацию можно записать в виде формулы:
R провод =ρ(L/S)
Где ρ – удельное сопротивление в Ом*мм 2 /м, L – длина в м, S – площадь поперечного сечения.
Закон Ома для параллельной и последовательной цепи
В зависимости от типа соединения наблюдается разный характер протекания тока и распределения напряжений. Для участка цепи последовательного соединения элементов напряжение, ток и сопротивление находятся по формуле:
Это значит, что в цепи из произвольного количества последовательно соединенных элементов протекает один и тот же ток. При этом напряжение, приложенное ко всем элементам (сумма падений напряжения), равно выходному напряжению источника питания. К каждому элементу в отдельности приложена своя величина напряжений и зависит от силы тока и сопротивления конкретного:
U эл =I*R элемента
Сопротивление участка цепи для параллельно соединённых элементов рассчитывается по формуле:
1/R=1/R1+1/R2
Для смешанного соединения нужно приводить цепь к эквивалентному виду. Например, если один резистор соединен с двумя параллельно соединенными резисторами – то сперва посчитайте сопротивление параллельно соединенных. Вы получите общее сопротивление двух резисторов и вам остаётся сложить его с третьим, который с ними соединен последовательно.
Закон Ома для полной цепи
Полная цепь предполагает наличие источника питания. Идеальный источник питания – это прибор, который имеет единственную характеристику:
- напряжение, если это источник ЭДС;
- силу тока, если это источник тока;
Такой источник питания способен выдать любую мощность при неизменных выходных параметрах. В реальном же источнике питания есть еще и такие параметры как мощность и внутреннее сопротивление. По сути, внутреннее сопротивление – это мнимый резистор, установленный последовательно с источником ЭДС.
Формула Закона Ома для полной цепи выглядит похоже, но добавляется внутренне сопротивление ИП. Для полной цепи записывается формулой:
I=ε/(R+r)
Где ε – ЭДС в Вольтах, R – сопротивление нагрузки, r – внутреннее сопротивление источника питания.
На практике внутреннее сопротивление является долями Ома, а для гальванических источников оно существенно возрастает. Вы это наблюдали, когда на двух батарейках (новой и севшей) одинаковое напряжение, но одна выдает нужный ток и работает исправно, а вторая не работает, т.к. проседает при малейшей нагрузке.
Закон Ома в дифференциальной и интегральной форме
Для однородного участка цепи приведенные выше формулы справедливы, для неоднородного проводника необходимо его разбить на максимально короткие отрезки, чтобы изменения его размеров были минимизированы в пределах этого отрезка. Это называется Закон Ома в дифференциальной форме.
Иначе говоря: плотность тока прямо пропорциональной напряжённости и удельной проводимости для бесконечно малого участка проводника.
В интегральной форме:
Закон Ома для переменного тока
При расчете цепей переменного тока вместо понятия сопротивления вводят понятие «импеданс». Импеданс обозначают буквой Z, в него входит активное сопротивление нагрузки R a и реактивное сопротивление X (или R r). Это связано с формой синусоидального тока (и токов любых других форм) и параметрами индуктивных элементов, а также законов коммутации:
- Ток в цепи с индуктивностью не может измениться мгновенно.
- Напряжение в цепи с ёмкостью не может измениться мгновенно.
Таким образом, ток начинает отставать или опережать напряжение, и полная мощность разделяется на активную и реактивную.
X L и X C – это реактивные составляющие нагрузки.
В связи с этим вводится величина cosФ:
Здесь – Q – реактивная мощность, обусловленная переменным током и индуктивно-емкостными составляющими, P – активная мощность (выделяется на активных составляющих), S – полная мощность, cosФ – коэффициент мощности.
Возможно, вы заметили, что формула и её представление пересекается с теоремой Пифагора. Это действительно так и угол Ф зависит от того, насколько велика реактивная составляющая нагрузки – чем её больше, тем он больше. На практике это приводит к тому, что реально протекающий в сети ток больше чем тот, что учитывается бытовым счетчиком, предприятия же платят за полную мощность.
При этом сопротивление представляют в комплексной форме:
Здесь j – это мнимая единица, что характерно для комплексного вида уравнений. Реже обозначается как i, но в электротехнике также обозначается и действующее значение переменного тока, поэтому, чтобы не путаться, лучше использовать j.
Мнимая единица равняется √-1. Логично, что нет такого числа при возведении в квадрат, которого может получиться отрицательный результат «-1».
Как запомнить закон Ома
Чтобы запомнить Закон Ома – можно заучить формулировку простыми словами типа:
Чем больше напряжение – тем больше ток, чем больше сопротивление – тем меньше ток.
Или воспользоваться мнемоническими картинками и правилами. Первая это представление закона Ома в виде пирамиды – кратко и понятно.
Мнемоническое правило – это упрощенный вид какого-либо понятия, для простого и легкого его понимания и изучения. Может быть либо в словесной форме, либо в графической. Чтобы правильно найти нужную формулу – закройте пальцем искомую величину и получите ответ в виде произведения или частного. Вот как это работает:
Вторая – это карикатурное представление. Здесь показано: чем больше старается Ом, тем труднее проходит Ампер, а чем больше Вольт – тем легче проходит Ампер.
Закон Ома – один из основополагающих в электротехнике, без его знания невозможна бОльшая часть расчетов. И в повседневной работе часто приходится переводить или по сопротивлению определять ток. Совершенно не обязательно понимать его вывод и происхождение всех величин – но конечные формулы обязательны к освоению. В заключении хочется отметить, что есть старая шуточная пословица у электриков: «Не знаешь Ома – сиди дома». И если в каждой шутке есть доля правды, то здесь эта доля правды – 100%. Изучайте теоретические основы, если хотите стать профессионалом на практике, а в этом вам помогут другие статьи из нашего сайта.
Нравится(0 ) Не нравится(0 )
Мы начинаем публикацию материалов новой рубрики “” и в сегодняшней статье речь пойдет о фундаментальных понятиях, без которых не проходит обсуждение ни одного электронного устройства или схемы. Как вы уже догадались, я имею ввиду ток, напряжение и сопротивление 😉 Кроме того, мы не обойдем стороной закон, который определяет взаимосвязь этих величин, но не буду забегать вперед, давайте двигаться постепенно.
Итак, давайте начнем с понятия напряжения .
Напряжение.
По определению напряжение – это энергия (или работа), которая затрачивается на перемещение единичного положительного заряда из точки с низким потенциалом в точку с высоким потенциалом (т. е. первая точка имеет более отрицательный потенциал по сравнению со второй). Из курса физики мы помним, что потенциал электростатического поля – это скалярная величина, равная отношению потенциальной энергии заряда в поле к этому заряду. Давайте рассмотрим небольшой пример:
В пространстве действует постоянное электрическое поле, напряженность которого равна E . Рассмотрим две точки, расположенные на расстоянии d друг от друга. Так вот напряжение между двумя точками представляет из себя ни что иное, как разность потенциалов в этих точках:
В то же время не забываем про связь напряженности электростатического поля и разности потенциалов между двумя точками:
И в итоге получаем формулу, связывающую напряжение и напряженность:
В электронике, при рассмотрении различных схем, напряжение все-таки принято считать как разность потенциалов между точками. Соответственно, становится понятно, что напряжение в цепи – это понятие, связанное с двумя точками цепи. То есть говорить, к примеру, “напряжение в резисторе” – не совсем корректно. А если говорят о напряжении в какой-то точке, то подразумевают разность потенциалов между этой точкой и “землей” . Вот так плавно мы вышли к еще одному важнейшему понятию при изучении электроники, а именно к понятию “земля” 🙂 Так вот “землей” в электрических цепях чаще всего принято считать точку нулевого потенциала (то есть потенциал этой точки равен 0).
Давайте еще пару слов скажем о единицах, которые помогают охарактеризовать величину напряжения . Единицей измерения является Вольт (В) . Глядя на определение понятия напряжения мы можем легко понять, что для перемещения заряда величиной 1 Кулон между точками, имеющими разность потенциалов 1 Вольт , необходимо совершить работу, равную 1 Джоулю . С этим вроде бы все понятно и можно двигаться дальше 😉
А на очереди у нас еще одно понятие, а именно ток .
Ток, сила тока в цепи.
Что же такое электрический ток ?
Давайте подумаем, что будет происходить если под действие электрического поля попадут заряженные частицы, например, электроны…Рассмотрим проводник, к которому приложено определенное напряжение :
Из направления напряженности электрического поля (E ) мы можем сделать вывод о том, что title=»Rendered by QuickLaTeX.com»> (вектор напряженности всегда направлен в сторону уменьшения потенциала). На каждый электрон начинает действовать сила:
Где e – это заряд электрона.
И поскольку электрон является отрицательно заряженной частицей, то вектор силы будет направлен в сторону противоположную направлению вектора напряженности поля. Таким образом, под действием силы частицы наряду с хаотическим движением приобретают и направленное (вектор скорости V на рисунке). В результате и возникает электрический ток 🙂
Ток – это упорядоченное движение заряженных частиц под воздействием электрического поля.
Важным нюансом является то, что принято считать, что ток протекает от точки с более положительным потенциалом к точке с более отрицательным потенциалом, несмотря на то, что электрон перемещается в противоположном направлении.
Носителями заряда могут выступать не только электроны. Например, в электролитах и ионизированных газах протекание тока в первую очередь связано с перемещением ионов, которые являются положительно заряженными частицами. Соответственно, направление вектора силы, действующей на них (а заодно и вектора скорости) будет совпадать с направлением вектора E . И в этом случае противоречия не возникнет, ведь ток будет протекать именно в том направлении, в котором движутся частицы 🙂
Для того, чтобы оценить ток в цепи придумали такую величину как сила тока. Итак, сила тока (I ) – это величина, которая характеризует скорость перемещения электрического заряда в точке. Единицей измерения силы тока является Ампер . Сила тока в проводнике равна 1 Амперу , если за 1 секунду через поперечное сечение проводника проходит заряд 1 Кулон .
Мы уже рассмотрели понятия силы тока и напряжения , теперь давайте разберемся каким образом эти величины связаны. И для этого нам предстоит изучить, что же из себя представляет сопротивление проводника .
Сопротивление проводника/цепи.
Термин “сопротивление ” уже говорит сам за себя 😉
Итак, сопротивление – физическая величина, характеризующая свойства проводника препятствовать (сопротивляться ) прохождению электрического тока.
Рассмотрим медный проводник длиной l с площадью поперечного сечения, равной S :
Сопротивление проводника зависит от нескольких факторов:
Удельное сопротивление – это табличная величина.
Формула, с помощью которой можно вычислить сопротивление проводника выглядит следующим образом:
Для нашего случая будет равно 0,0175 (Ом * кв. мм / м) – удельное сопротивление меди. Пусть длина проводника составляет 0.5 м , а площадь поперечного сечения равна 0.2 кв. мм . Тогда:
Как вы уже поняли из примера, единицей измерения сопротивления является Ом 😉
С сопротивлением проводника все ясно, настало время изучить взаимосвязь напряжения, силы тока и сопротивления цепи .
И тут на помощь нам приходит основополагающий закон всей электроники – закон Ома:
Сила тока в цепи прямо пропорциональна напряжению и обратно пропорциональна сопротивлению рассматриваемого участка цепи.
Рассмотрим простейшую электрическую цепь:
Как следует из закона Ома напряжение и сила тока в цепи связаны следующим образом:
Пусть напряжение составляет 10 В, а сопротивление цепи равно 200 Ом. Тогда сила тока в цепи вычисляется следующим образом:
Как видите, все несложно 🙂
Пожалуй на этом мы и закончим сегодняшнюю статью, спасибо за внимание и до скорых встреч! 🙂
Тема закон ома для участка цепи
Тема: Закон Ома для участка цепи.
Цель. Закрепить знания учащихся, полученные на предыдущих уроках, познакомить учащихся с законом Ома для участка цепи, научить вычислять величины, характеризующие электрические цепи, показать практические применение закона Ома.
Тип урока: Комбинированный.
Оборудование: выпрямитель ВС-4-12; демонстрационный амперметр с шунтом на 3А; демонстрационный вольтметр с добавочным сопротивлением на 5В; магазин сопротивлений на 10 Ом; реостат на 30 Ом; соединительные провода.
Структура урока.
1. Организация начала урока | 1 мин | |
2. Проверка знаний учащихся | 7 мин | |
3. Постановка учебной задачи | 1 мин | |
4. Решение учебной задачи | 23 мин | |
5. Обобщение | 1 мин | |
6. Закрепление материала | 12 мин | |
7. Задание на дом | 2 мин |
1. Организация начала урока.
2. Проверка знаний учащихся: фронтальный опрос.
Учитель: Что характеризует сопротивление проводника?
Ученик: Сопротивление проводника – физическая величина, характеризующая свойства проводника оказывать противодействие прохождению электрического тока.
Учитель: Что принято за единицу сопротивления?
Ученик: За единицу сопротивления принимают 1 Ом — сопротивление такого проводника, в котором при напряжении на концах 1 В сила тока равна 1 А.
Учитель: Как изменится сила тока в проводнике при увеличении напряжения на концах проводника в 2 раза?
Ученик: При увеличении напряжения на концах проводника в 2 раза сила тока также увеличится в 2 раза.
Учитель: Изменится ли при этом сопротивление проводника? Почему?
Ученик: При увеличении напряжения в 2 раза сила тока в проводнике увеличится в 2 раза, а отношение напряжения к силе тока останется прежним, т.е. сопротивление не изменится. Сопротивление-это физическая величина, характеризующая свойства проводника.
3. Постановка учебной задачи.
Любую электрическую цепь можно охарактеризовать силой тока, напряжением и сопротивлением. Между этими величинами существует связь, которую впервые теоретически и экспериментально установил немецкий ученый Георг Ом.
Сегодня на уроке попытаемся повторить эксперименты Ома и вывести закон, который носит его имя.
Тема урока: Закон Ома для участка цепи.
4. Решение учебной задачи.
Учитель: Соберем электрическую цепь, схема которой изображена на доске.
Сначала выясним зависимость между силой тока и сопротивлением участка цепи R1.
Для этого будем изменять сопротивление R1, поддерживая при помощи реостата R напряжение на концах проводника постоянным. Полученные данные занесем в таблицу 1.
Таблица 1.
U=2В | |
R, Ом | I, А |
1 | 2,0 |
2 | 1,0 |
4 | 0,5 |
Изобразим полученную зависимость графически. Как называется такая зависимость между величинами?
Ученик: (строит график). На основании полученных данных можно сказать, что сила тока в цепи обратно пропорциональна сопротивлению участка цепи.
Учитель: Правильно, сила тока обратно пропорциональна сопротивлению участка цепи.
Теперь, оставляя R1 постоянным, будем изменять напряжение на участке цепи и следить за изменением силы тока. Данные занесем в таблицу 2.
Таблица 2.
R1=2 Ом | |
U, В | I, А |
3 | 1,5 |
2 | 1,0 |
1 | 0,5 |
Какова полученная зависимость между силой тока и напряжением на участке цепи?
Ученик: Сила тока прямо пропорциональна напряжению на участке цепи.
У
читель:
Правильно. Мы еще раз показали, что I
пропорционально U.
Изобразите эту зависимость графически.
Ученик: (строит график)
Учитель: Кто попытается обобщить результаты опытов?
Ученик: На основании проведенных опытов мы можем сказать, что сила тока в цепи прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.
Учитель: Зависимость силы тока от напряжения на концах участка цепи и сопротивления этого участка называется законом Ома, который установил его в 1827 году.
Закон Ома читается так: сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.
, где I – сила тока в цепи; U – напряжение на этом участке; R – сопротивление участка.
Этот закон выражает зависимость между тремя величинами, зная две из них всегда можно найти третью неизвестную величину.
Выразите из формулы закона Ома напряжение и сопротивление.
Ученик: .
Учитель: Правильно, запишите эти формулы в тетрадь и запомните их. Мы будем ими пользоваться при решении задач.
А теперь скажите, верно ли утверждение, что сопротивление проводника прямо пропорционально напряжению на этом проводнике и обратно пропорционально силе тока в нем?
Ученик: Сопротивление проводника можно вычислить по формуле , однако, оно постоянно для данного проводника и не зависит ни от напряжения, ни от силы тока в нем.
Учитель: Верно, сопротивление – это физическая величина, характеризующая свойства данного проводника, оно не зависит ни от напряжения, ни от силы тока в проводнике. Изменение напряжения на участке цепи влечет за собой изменение силы тока, но отношение U/I остается для данного проводника постоянным.
5. Обобщение.
Итак, сегодня на уроке мы установили зависимость силы тока в участке цепи от напряжения на нем и его сопротивления. Эту зависимость установил в 1827 году немецкий ученый Георг Ом и в его честь она названа законом Ома.
Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.
6. Закрепление материала.
(Ответы на вопросы, решение задач).
Учитель: О связи каких трех основных электрических величин говорится в законе Ома?
Ученик: В законе Ома говорится о связи силы тока, напряжения и сопротивления участка цепи.
Учитель: Какова зависимость силы тока в проводнике от сопротивления этого проводника?
Ученик: Сила тока обратно пропорциональна сопротивлению проводника.
Учитель: Как формулируется закон Ома?
Ученик: Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.
Учитель: Как записывается закон Ома?
Ученик:
Учитель: Как выразить напряжение на участке цепи, зная силу тока в нем, и сопротивление?
Ученик:
Учитель: Как выразить сопротивление участка цепи, зная напряжение на его концах и силу тока?
Ученик: .
Учитель: Что показывает амперметр, включенный в цепь, схема которой дана на рисунке?
У
ченик:
Запишем формулу закона Ома для участка
цепи
.
Подставим в эту формулу значения
напряжения и сопротивления. Получаем
значение силы тока.
.
Учитель: Что показывает вольтметр, включенный в цепь, схема которой изображена на рисунке?
Ученик: Из формулы для закона Ома выразим напряжение . Подставим данные задачи в формулу и получим:
U=2 A x 6 Ом = 12 В
Учитель: Определите по графику (рис. 69 учебника) сопротивление проводника.
Ученик: Мы знаем, что (закон Ома для участка цепи). Выразим из этой формулы сопротивление: .
По графику определяем, что при напряжении 10 В сила тока равна 2,5 А, тогда
7. Задание на дом. § 14, задачи 45- 48.
Литература.
Физика. Учебник для 9 кл. – М., 2000.
Методика преподавания физики в 7-8 классах средней школы. Пособие для учителя. /Под ред. А.В. Усовой. 4-е изд. – М.: Просвещение, 1990.
Хорошавин С.А. Физический эксперимент в средней школе. 6-7 кл. – М.: Просвещение, 1988.
Оформление доски.
Закон ома в природе. Закон Ома для «чайников»: понятие, формула, объяснение
Если изолированный проводник поместить в электрическое поле \(\overrightarrow{E} \), то на свободные заряды \(q\) в проводнике будет действовать сила \(\overrightarrow{F} = q\overrightarrow{E}\) В результате в проводнике возникает кратковременное перемещение свободных зарядов. Этот процесс закончится тогда, когда собственное электрическое поле зарядов, возникших на поверхности проводника, скомпенсирует полностью внешнее поле. Результирующее электростатическое поле внутри проводника будет равно нулю.
Однако, в проводниках при определенных условиях может возникнуть непрерывное упорядоченное движение свободных носителей электрического заряда.
Направленное движение заряженных частиц называется электрическим током.
За направление электрического тока принято направление движения положительных свободных зарядов. Для существования электрического тока в проводнике необходимо создать в нем электрическое поле.
Количественной мерой электрического тока служит сила тока \(I\) — скалярная физическая величина, равная отношению заряда \(\Delta q\), переносимого через поперечное сечение проводника (рис. 1.8.1) за интервал времени \(\Delta t\), к этому интервалу времени:
$$I = \frac{\Delta q}{\Delta t} $$
Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным .
В Международной системе единиц СИ сила тока измеряется в Амперах (А). Единица измерения тока 1 А устанавливается по магнитному взаимодействию двух параллельных проводников с током.
Постоянный электрический ток может быть создан только в замкнутой цепи , в которой свободные носители заряда циркулируют по замкнутым траекториям. Электрическое поле в разных точках такой цепи неизменно во времени. Следовательно, электрическое поле в цепи постоянного тока имеет характер замороженного электростатического поля. Но при перемещении электрического заряда в электростатическом поле по замкнутой траектории, работа электрических сил равна нулю. Поэтому для существования постоянного тока необходимо наличие в электрической цепи устройства, способного создавать и поддерживать разности потенциалов на участках цепи за счет работы сил неэлектростатического происхождения . Такие устройства называются источниками постоянного тока . Силы неэлектростатического происхождения, действующие на свободные носители заряда со стороны источников тока, называются сторонними силами .
Природа сторонних сил может быть различной. В гальванических элементах или аккумуляторах они возникают в результате электрохимических процессов, в генераторах постоянного тока сторонние силы возникают при движении проводников в магнитном поле. Источник тока в электрической цепи играет ту же роль, что и насос, который необходим для перекачивания жидкости в замкнутой гидравлической системе. Под действием сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему в замкнутой цепи может поддерживаться постоянный электрический ток.
При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу.
Физическая величина, равная отношению работы \(A_{ст}\) сторонних сил при перемещении заряда \(q\) от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой источника (ЭДС):
$$ЭДС=\varepsilon=\frac{A_{ст}}{q}. $$
Таким образом, ЭДС определяется работой, совершаемой сторонними силами при перемещении единичного положительного заряда. Электродвижущая сила, как и разность потенциалов, измеряется в Вольтах (В).
При перемещении единичного положительного заряда по замкнутой цепи постоянного тока работа сторонних сил равна сумме ЭДС, действующих в этой цепи, а работа электростатического поля равна нулю.
Цепь постоянного тока можно разбить на отдельные участки. Те участки, на которых не действуют сторонние силы (т. е. участки, не содержащие источников тока), называются однородными . Участки, включающие источники тока, называются неоднородными .
При перемещении единичного положительного заряда по некоторому участку цепи работу совершают как электростатические (кулоновские), так и сторонние силы. Работа электростатических сил равна разности потенциалов \(\Delta \phi_{12} = \phi_{1} — \phi_{2}\) между начальной (1) и конечной (2) точками неоднородного участка. Работа сторонних сил равна по определению электродвижущей силе \(\mathcal{E}\), действующей на данном участке. Поэтому полная работа равна
$$U_{12} = \phi_{1} — \phi_{2} + \mathcal{E}$$
Величину U 12 принято называть напряжением на участке цепи 1-2. В случае однородного участка напряжение равно разности потенциалов:
$$U_{12} = \phi_{1} — \phi_{2}$$
Немецкий физик Г. Ом в 1826 году экспериментально установил, что сила тока \(I\), текущего по однородному металлическому проводнику (т. е. проводнику, в котором не действуют сторонние силы), пропорциональна напряжению \(U\) на концах проводника:
$$I = \frac{1}{R} U; \: U = IR$$
где \(R\) = const.
Величину R принято называть электрическим сопротивлением . Проводник, обладающий электрическим сопротивлением, называется резистором . Данное соотношение выражает закон Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.
В СИ единицей электрического сопротивления проводников служит Ом (Ом). Сопротивлением в 1 Ом обладает такой участок цепи, в котором при напряжении 1 В возникает ток силой 1 А.
Проводники, подчиняющиеся закону Ома, называются линейными . Графическая зависимость силы тока \(I\) от напряжения \(U\) (такие графики называются вольт-амперными характеристиками , сокращенно ВАХ) изображается прямой линией, проходящей через начало координат. Следует отметить, что существует много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диод или газоразрядная лампа. Даже у металлических проводников при токах достаточно большой силы наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры.
Для участка цепи, содержащего ЭДС, закон Ома записывается в следующей форме:
$$IR = U_{12} = \phi_{1} — \phi_{2} + \mathcal{E} = \Delta \phi_{12} + \mathcal{E}$$
$$\color{blue}{I = \frac{U}{R}}$$
Это соотношение принято называть обобщенным законом Ома или законом Ома для неоднородного участка цепи .
На рис. 1.8.2 изображена замкнутая цепь постоянного тока. Участок цепи (cd ) является однородным.
Рисунок 1.8.2. Цепь постоянного тока |
По закону Ома
$$IR = \Delta\phi_{cd}$$
Участок (ab ) содержит источник тока с ЭДС, равной \(\mathcal{E}\).
По закону Ома для неоднородного участка,
$$Ir = \Delta \phi_{ab} + \mathcal{E}$$
Сложив оба равенства, получим:
$$I(R+r) = \Delta\phi_{cd} + \Delta \phi_{ab} + \mathcal{E}$$
Но \(\Delta\phi_{cd} = \Delta \phi_{ba} = -\Delta \phi_{ab}\).
$$\color{blue}{I=\frac{\mathcal{E}}{R + r}}$$
Эта формула выражает закон Ома для полной цепи : сила тока в полной цепи равна электродвижущей силе источника, деленной на сумму сопротивлений однородного и неоднородного участков цепи (внутреннего сопротивления источника).
Сопротивление r неоднородного участка на рис. 1.8.2 можно рассматривать как внутреннее сопротивление источника тока . В этом случае участок (ab ) на рис. 1.8.2 является внутренним участком источника. Если точки a и b замкнуть проводником, сопротивление которого мало по сравнению с внутренним сопротивлением источника (\(R\ \ll r\)), тогда в цепи потечет ток короткого замыкания
$$I_{кз}=\frac{\mathcal{E}}{r}$$
Сила тока короткого замыкания — максимальная сила тока, которую можно получить от данного источника с электродвижущей силой \(\mathcal{E}\) и внутренним сопротивлением \(r\). У источников с малым внутренним сопротивлением ток короткого замыкания может быть очень велик и вызывать разрушение электрической цепи или источника. Например, у свинцовых аккумуляторов, используемых в автомобилях, сила тока короткого замыкания может составлять несколько сотен ампер. Особенно опасны короткие замыкания в осветительных сетях, питаемых от подстанций (тысячи ампер). Чтобы избежать разрушительного действия таких больших токов, в цепь включаются предохранители или специальные автоматы защиты сетей.
В ряде случаев для предотвращения опасных значений силы тока короткого замыкания к источнику последовательно подсоединяется некоторое внешнее сопротивление. Тогда сопротивление r равно сумме внутреннего сопротивления источника и внешнего сопротивления, и при коротком замыкании сила тока не окажется чрезмерно большой.
Если внешняя цепь разомкнута, то \(\Delta \phi_{ba} = -\Delta \phi_{ab} = \mathcal{E}\), т. е. разность потенциалов на полюсах разомкнутой батареи равна ее ЭДС.
Если внешнее нагрузочное сопротивление R включено и через батарею протекает ток I , разность потенциалов на ее полюсах становится равной
$$\Delta \phi_{ba} = \mathcal{E} — Ir$$
На рис. 1.8.3 дано схематическое изображение источника постоянного тока с ЭДС равной \(\mathcal{E}\) и внутренним сопротивлением r в трех режимах: «холостой ход», работа на нагрузку и режим короткого замыкания (к. з.). Указаны напряженность \(\overrightarrow{E}\) электрического поля внутри батареи и силы, действующие на положительные заряды:\(\overrightarrow{F}_{э}\) — электрическая сила и \(\overrightarrow{F}_{ст}\) — сторонняя сила. В режиме короткого замыкания электрическое поле внутри батареи исчезает.
Для измерения напряжений и токов в электрических цепях постоянного тока используются специальные приборы — вольтметры и амперметры .
Вольтметр предназначен для измерения разности потенциалов, приложенной к его клеммам. Он подключается параллельно участку цепи, на котором производится измерение разности потенциалов. Любой вольтметр обладает некоторым внутренним сопротивлением \(R_{В}\). Для того, чтобы вольтметр не вносил заметного перераспределения токов при подключении к измеряемой цепи, его внутреннее сопротивление должно быть велико по сравнению с сопротивлением того участка цепи, к которому он подключен. Для цепи, изображенной на рис. 1.8.4, это условие записывается в виде:
$$R_{В} \gg R_{1}$$
Это условие означает, что ток \(I_{В} = \Delta \phi_{cd} / R_{В}\), протекающий через вольтметр, много меньше тока \(I = \Delta \phi_{cd} / R_{1}\), который протекает по тестируемому участку цепи.
Поскольку внутри вольтметра не действуют сторонние силы, разность потенциалов на его клеммах совпадает по определению с напряжением. Поэтому можно говорить, что вольтметр измеряет напряжение.
Амперметр предназначен для измерения силы тока в цепи. Амперметр включается последовательно в разрыв электрической цепи, чтобы через него проходил весь измеряемый ток. Амперметр также обладает некоторым внутренним сопротивлением \(R_{А}\). В отличие от вольтметра, внутреннее сопротивление амперметра должно быть достаточно малым по сравнению с полным сопротивлением всей цепи. Для цепи на рис. 1.8.4 сопротивление амперметра должно удовлетворять условию
$$R_{А} \ll (r + R_{1} + R{2})$$
чтобы при включении амперметра ток в цепи не изменялся.
Измерительные приборы — вольтметры и амперметры — бывают двух видов: стрелочные (аналоговые) и цифровые. Цифровые электроизмерительные приборы представляют собой сложные электронные устройства. Обычно цифровые приборы обеспечивают более высокую точность измерений.
Георг Симон Ом начал свои исследования вдохновляясь знаменитым трудом Жана Батиста Фурье «Аналитическая теория тепла». В этой работе Фурье представлял тепловой поток между двумя точками как разницу температур, а изменение теплового потока связывал с его прохождением через препятствие неправильной формы из теплоизолирующего материала. Аналогично этому Ом обуславливал возникновение электрического тока разностью потенциалов.
Исходя из этого Ом стал экспериментировать с разными материалами проводника. Для того, чтобы определить их проводимость он подключал их последовательно и подгонял их длину таким образом, чтобы сила тока была одинаковой во всех случаях.
Важно при таких измерениях было подбирать проводники одного и того же диаметра. Ом, замеряя проводимость серебра и золота, получил результаты, которые по современным данным не отличаются точностью. Так, серебряный проводник у Ома проводил меньше электрического тока, чем золотой. Сам Ом объяснял это тем, что его проводник из серебра был покрыт маслом и из-за этого, по всей видимости, опыт не дал точных результатов.
Однако не только с этим были проблемы у физиков, которые в то время занимались подобными экспериментами с электричеством. Большие трудности с добычей чистых материалов без примесей для опытов, затруднения с калибровкой диаметра проводника искажали результаты тестов. Еще большая загвоздка состояла в том, что сила тока постоянно менялась во время испытаний, поскольку источником тока служили переменные химические элементы. В таких условиях Ом вывел логарифмическую зависимость силы тока от сопротивления провода.
Немногим позже немецкий физик Поггендорф, специализировавшийся на электрохимии, предложил Ому заменить химические элементы на термопару из висмута и меди. Ом начал свои эксперименты заново. В этот раз он пользовался термоэлектрическим устройством, работающем на эффекте Зеебека в качестве батареи. К нему он последовательно подключал 8 проводников из меди одного и того же диаметра, но различной длины. Чтобы измерить силу тока Ом подвешивал с помощью металлической нити над проводниками магнитную стрелку. Ток, шедший параллельно этой стрелке, смещал ее в сторону. Когда это происходило физик закручивал нить до тех пор, пока стрелка не возвращалась в исходное положение. Исходя из угла, на который закручивалась нить можно было судить о значении силы тока.
В результате нового эксперимента Ом пришел к формуле:
Х = a / b + lЗдесь X – интенсивность магнитного поля провода, l – длина провода, a – постоянная величина напряжения источника, b – постоянная сопротивления остальных элементов цепи.
Если обратиться к современным терминам для описания данной формулы, то мы получим, что Х – сила тока, а – ЭДС источника, b + l – общее сопротивление цепи .
Закон Ома для участка цепиЗакон Ома для отдельного участка цепи гласит: сила тока на участке цепи увеличивается при возрастании напряжения и уменьшается при возрастании сопротивления этого участка.
I = U / RИсходя из этой формулы, мы можем решить, что сопротивление проводника зависит от разности потенциалов. С точки зрения математики, это правильно, но ложно с точки зрения физики. Эта формула применима только для расчета сопротивления на отдельном участке цепи.
Таким образом формула для расчета сопротивления проводника примет вид:
R = p ⋅ l / s Закон Ома для полной цепиОтличие закона Ома для полной цепи от закона Ома для участка цепи заключается в том, что теперь мы должны учитывать два вида сопротивления. Это «R» сопротивление всех компонентов системы и «r» внутреннее сопротивление источника электродвижущей силы. Формула таким образом приобретает вид:
I = U / R + r Закон Ома для переменного токаПеременный ток отличается от постоянного тем, что он изменяется с определенными временными периодами. Конкретно он изменяет свое значение и направление. Чтобы применить закон Ома здесь нужно учитывать, что сопротивление в цепи с постоянным током может отличатся от сопротивления в цепи с током переменным. И отличается оно в том случае если в цепи применены компоненты с реактивным сопротивлением. Реактивное сопротивление может быть индуктивным (катушки, трансформаторы, дроссели) и емкостными (конденсатор).
Попробуем разобраться, в чем реальная разница между реактивным и активным сопротивлением в цепи с переменным током. Вы уже должны были понять, что значение напряжение и силы тока в такой цепи меняется со временем и имеют, грубо говоря, волновую форму.
Если мы схематически представим, как с течением времени меняются эти два значения, у нас получится синусоида. И напряжение, и сила тока от нуля поднимаются до максимального значения, затем, опускаясь, проходят через нулевое значение и достигают максимального отрицательного значения. После этого снова поднимаются через нуль до максимального значения и так далее. Когда говорится, что сила тока или напряжение имеет отрицательное значение, здесь имеется ввиду, что они движутся в обратном направлении.
Весь процесс происходит с определенной периодичностью. Та точка, где значение напряжения или силы тока из минимального значения поднимаясь к максимальному значению проходит через нуль называется фазой.
На самом деле, это только предисловие. Вернемся к реактивному и активному сопротивлению. Отличие в том, что в цепи с активным сопротивлением фаза тока совпадает с фазой напряжения. То есть, и значение силы тока, и значение напряжения достигают максимума в одном направлении одновременно. В таком случае наша формула для расчета напряжения, сопротивления или силы тока не меняется.
Если же цепь содержит реактивное сопротивление, фазы тока и напряжения сдвигаются друг от друга на ¼ периода. Это означает, что, когда сила тока достигнет максимального значения, напряжение будет равняться нулю и наоборот. Когда применяется индуктивное сопротивление, фаза напряжения «обгоняет» фазу тока. Когда применяется емкостное сопротивление, фаза тока «обгоняет» фазу напряжения.
Формула для расчета падения напряжения на индуктивном сопротивлении:
U = I ⋅ ωLГде L – индуктивность реактивного сопротивления, а ω – угловая частота (производная по времени от фазы колебания).
Формула для расчета падения напряжения на емкостном сопротивлении:
U = I / ω ⋅ С
С – емкость реактивного сопротивления.
Эти две формулы – частные случаи закона Ома для переменных цепей.
Полный же будет выглядеть следующем образом:
I = U / ZЗдесь Z – полное сопротивление переменной цепи известное как импеданс.
Сфера примененияЗакон Ома не является базовым законом в физике, это лишь удобная зависимость одних значений от других, которая подходит почти в любых ситуациях на практике. Поэтому проще будет перечислить ситуации, когда закон может не срабатывать:
- Если есть инерция носителей заряда, например, в некоторых высокочастотных электрических полях;
- В сверхпроводниках;
- Если провод нагревается до такой степени, что вольтамперная характеристика перестает быть линейной. Например, в лампах накаливания;
- В вакуумных и газовых радиолампах;
- В диодах и транзисторах.
Физический закон , определяющий связь (или электрического напряжения) с силой тока , протекающего в проводнике , и сопротивлением проводника. Установлен Георгом Омом в 1826 году и назван в его честь.
Закон Ома для переменного тока
Вышеприведённые соображения о свойствах электрической цепи при использовании источника (генератора) с переменной во времени ЭДС остаются справедливыми. Специальному рассмотрению подлежит лишь учёт специфических свойств потребителя, приводящих к разновремённости достижения напряжением и током своих максимальных значений, то есть учёта фазового сдвига .
Если ток является синусоидальным с циклической частотой ω {\displaystyle \omega } , а цепь содержит не только активные, но и реактивные компоненты (ёмкости , индуктивности), то закон Ома обобщается; величины, входящие в него, становятся комплексными:
U = I ⋅ Z {\displaystyle \mathbb {U} =\mathbb {I} \cdot Z}- U = U 0 e i ωt — напряжение или разность потенциалов,
- I — сила тока,
- Z = Re −i δ — комплексное сопротивление (электрический импеданс),
- R = √ R a 2 + R r 2 — полное сопротивление,
- R r = ωL − 1/(ωC ) — реактивное сопротивление (разность индуктивного и емкостного),
- R а — активное (омическое) сопротивление, не зависящее от частоты,
- δ = − arctg (R r /R a )
— сдвиг фаз между напряжением и силой тока.{i(\omega t+\varphi)},}
что
Im
U
=
U
.
{\displaystyle \operatorname {Im} \mathbb {U} =U.}
Тогда все значения токов и напряжений в схеме надо считать как
F
=
Im
F
{\displaystyle F=\operatorname {Im} \mathbb {F} }
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ
Кафедра естественнонаучных дисциплин
Реферат
Закон Ома
Выполнил:
Иванов М. А.
Введение
1. Общий вид закона Ома
2. История открытия закона Ома, краткая биография ученого
3. Виды законов Ома
4. Первые исследования сопротивления проводников
5. Электрические измерения
Заключение
Литература, другие источники информации
Введение
Явления, связанные с электричеством были замечены в древнем Китае, Индии и древней Греции за несколько столетий до начала нашей эры. Около 600 года до н.э., как гласят сохранившиеся предания, древнегреческому философу Фалесу Милетскому было известно свойство янтаря, натертого об шерсть, притягивать легкие предметы. Кстати словом “ электрон” древние греки называли янтарь. От него же пошло и слово “электричество”. Но греки всего лишь наблюдали явления электричества, но не могли объяснить.
XIX век был полон открытий связанных с электричеством. Одно открытие порождало целую цепь открытий в течении нескольких десятилетий. Электричество из предмета исследования начало превращаться в предмет потребления. Началось его широкое внедрение в различные области производства. Были изобретены и созданы электрические двигатели, генераторы, телефон, телеграф, радио. Начинается внедрение электричества в медицину.
Напряжение, сила тока и сопротивление — физические величины, характеризующие явления, происходящие в электрических цепях. Эти величины связаны между собой. Эту связь впервые изучил немецкий физик 0м. Закон Ома был открыт в 1826 .
1. Общий вид закона Ома
Закон Ома звучит так: Сила тока на участке цепи прямо пропорциональна напряжению на этом участке (при заданном сопротивлении) и обратно пропорциональна сопротивлению участка (при заданном напряжении): I = U / R, из формулы следует, что U = IЧR и R = U / I. Так как сопротивление данного проводника не зависит ни от напряжения, ни от силы тока, то последнюю формулу надо читать так: сопротивление данного проводника равно отношению напряжения на его концах к силе протекающего по нему тока. В электрических цепях чаще всего проводники (потребители электрической энергии) соединяются последовательно (например, лампочки в елочных гирляндах) и параллельно (например, домашние электроприборы).
При последовательном соединении сила тока в обоих проводниках (лампочках) одинакова: I = I1 = I2, напряжение на концах рассматриваемого участка цепи складывается из напряжения на первой и второй лампочках: U = U1 + U2. Общее сопротивление участка равно сумме сопротивлений лампочек R = R1 + R2.
При параллельном соединении резисторов напряжение на участке цепи и на концах резисторов одинаково: U = U1 = U2. сила тока в неразветвленной части цепи равна сумме сил токов в отдельных резисторах: I = I1 + I2. Общее сопротивление участка меньше сопротивления каждого резистора.
Если сопротивления резисторов одинаковы (R1 = R2) то общее сопротивление участка Если в цепь включено параллельно три и более резисторов, то общее сопротивление может быть —
найдено по формуле: 1/R = 1/R1 + 1/R2 + … + 1/RN. Параллельно соединяются сетевые потребители, которые рассчитаны на напряжение, равное напряжению сети.
Итак, Закон Ома устанавливает зависимость между силой тока I в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника:
Коэффициент пропорциональности R , зависящий от геометрических и электрических свойств проводника и от температуры, называется омическим сопротивлением или просто сопротивлением данного участка проводника.
2. История открытия закона Ома, краткая биография ученого
Георг Симон Ом родился 16 марта 1787 года в Эрлангене, в семье потомственного слесаря. После окончания школы Георг поступил в городскую гимназию. Гимназия Эрлангена курировалась университетом. Занятия в гимназии вели четыре профессора. Георг, закончив гимназию, весной 1805 года приступил к изучению математики, физики и философии на философском факультете Эрлангенского университета.
Проучившись три семестра, он принял приглашение занять место учителя математики в частной школе швейцарского городка Готтштадта.
В 1811 году он возвращается в Эрланген, заканчивает университет и получает степень доктора философии. Сразу же по окончании университета ему была предложена должность приват-доцента кафедры математики этого же университета.
В 1812 году Ом был назначен учителем математики и физики школы в Бамберге. В 1817 году он публикует свою первую печатную работу, посвященную методике преподавания «Наиболее оптимальный вариант преподавания геометрии в подготовительных классах». Ом занялся исследованиями электричества. В основу своего электроизмерительного прибора Ом заложил конструкцию крутильных весов Кулона. Результаты своих исследований Ом оформил в виде статьи под названием «Предварительное сообщение о законе, по которому металлы проводят контактное электричество». Статья была опубликована в 1825 году в «Журнале физики и химии», издаваемом Швейггером. Однако выражение, найденное и опубликованное Омом, оказалось неверным, что стало одной из причин его длительного непризнания. Приняв все меры предосторожности, заранее устранив все предполагаемые источники ошибок, Ом приступил к новым измерениям.
Появляется в свет его знаменитая статья «Определение закона, по которому металлы проводят контактное электричество, вместе с наброском теории вольтаического аппарата и мультипликатора Швейггера», вышедшая в 1826 году в «Журнале физики и химии».
В мае 1827 года «Теоретические исследования электрических цепей» объемом в 245 страниц, в которых содержались теперь уже теоретические рассуждения Ома по электрическим цепям. В этой работе ученый предложил характеризовать электрические свойства проводника его сопротивлением и ввел этот термин в научный обиход. Ом нашел более простую формулу для закона участка электрической цепи, не содержащего ЭДС: «Величина тока в гальванической цепи прямо пропорциональна сумме всех напряжений и обратно пропорциональна сумме приведенных длин. При этом общая приведенная длина определяется как сумма всех отдельных приведенных длин для однородных участков, имеющих различную проводимость и различное поперечное сечение».
В 1829 году появляется его статья «Экспериментальное исследование работы электромагнитного мультипликатора», в которой были заложены основы теории электроизмерительных приборов. Здесь же Ом предложил единицу сопротивления, в качестве которой он выбрал сопротивление медной проволоки длиной 1 фут и поперечным сечением в 1 квадратную линию.
В 1830 году появляется новое исследование Ома «Попытка создания приближенной теории униполярной проводимости». Только в 1841 году работа Ома была переведена на английский язык, в 1847 году — на итальянский, в 1860 году — на французский.
16 февраля 1833 года, через семь лет после выхода из печати статьи, в которой было опубликовано его открытие, Ому предложили место профессора физики во вновь организованной политехнической школе Нюрнберга. Ученый приступает к исследованиям в области акустики. Результаты своих акустических исследований Ом сформулировал в виде закона, получившего впоследствии название акустического закона Ома.
Раньше всех из зарубежных ученых закон Ома признали русские физики Ленц и Якоби. Они помогли и его международному признанию. При участии русских физиков, 5 мая 1842 года Лондонское Королевское общество наградило Ома золотой медалью и избрало своим членом.
В 1845 году его избирают действительным членом Баварской академии наук. В 1849 году ученого приглашают в Мюнхенский университет на должность экстраординарного профессора. В этом же году он назначается хранителем государственного собрания физико-математических приборов с одновременным чтением лекций по физике и математике. В 1852 году Ом получил должность ординарного профессора. Ом скончался 6 июля 1854 года. В 1881 году на электротехническом съезде в Париже ученые единогласно утвердили название единицы сопротивления — 1 Ом.
3. Виды законов Ома
Существует несколько видов закона Ома.
Закон Ома для однородного участка цепи (не содержащего источника тока): сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника:
Закон Ома для полной цепи — сила тока в цепи пропорциональна действующей в цепи ЭДС и обратно пропорциональна сумме сопротивлений цепи и внутреннего сопротивления источника.
где I — сила тока
E — электродвижущая сила
R — внешнее сопротивление цепи (т.е. сопротивление той
части цепи, которая находится за пределами источника ЭДС)
ЭДС — работа сторонних сил (т.е. сил неэлектрического происхождения) по перемещению заряда в цепи отнесенная к величине этого заряда.
Единицы измерения:
ЭДС — вольты
Ток — амперы
Сопротивления (R и r) — омы
Применяя основной закон электрической цепи (закон Ома), можно объяснить многие природные явления, которые на первый взгляд кажутся загадочными и парадоксальными. Например, всем известно, что любой контакт человека с электрическими проводами, находящимися под напряжением, является смертельно опасным. Всего лишь одно прикосновение к оборвавшемуся проводу высоковольтной линии способно убить электрическим током человека или животное. Но в то же время, мы постоянно видим, как птицы спокойно усаживаются на высоковольтные провода электропередач, и ничто не угрожает жизни этих живых существ. Тогда как же найти объяснение такому парадоксу?
А объясняется подобное явление довольно просто, если представить, что находящаяся на электрическом проводе птица — это один из участков электрической сети, сопротивление второго значительно превышает сопротивление другого участка той же цепи (то есть небольшого промежутка между лапками птицы). Следовательно, сила электрического тока, воздействующая на первый участок цепи, то есть на тело птицы, будет совершенно безопасной для неё. Однако полная безопасность гарантирована ей только при соприкосновении с участком высоковольтного провода. Но стоит только птице, усевшейся на линию электропередач, задеть крылом или клювом провод или какой-либо предмет, находящийся вблизи от провода (например, телеграфный столб), то птица неминуемо погибнет. Ведь столб непосредственно связан с землёй, и поток электрических зарядов, переходя на тело птицы, способен мгновенно убить её, стремительно двигаясь по направлению к земле. К сожалению, по этой причине в городах гибнет немало птиц.
Для защиты пернатых от губительного воздействия электричества зарубежными учеными были разработаны специальные устройства — насесты для птиц, изолированные от электрического тока. Такие приспособления размещали на высоковольтных линиях электропередач. Птицы, усаживаясь на изолированный насест, могут без всякого риска для жизни прикасаться клювом, крыльями или хвостом к проводам, столбам или кронштейнам. Наибольшим сопротивлением обладает поверхность верхнего, так называемого рогового слоя кожи человека. Сопротивление сухой и неповреждённой кожи может достигать 40 000 — 100 000 Ом. Роговой слой кожи очень незначителен, всего 0,05 — 0,2 мм. и легко пробивается напряжением 250 В. При этом сопротивление уменьшается в сто раз и падает тем скорее, чем дольше действует на тело человека ток. Резко, до 800 — 1000 Ом, уменьшают сопротивление тела человека повышенная потливость кожного покрова, переутомление, нервное возбуждение, опьянение. Этим объясняется, что порой даже небольшое напряжение может вызвать поражение электрическим током. Если, например, сопротивление тела человека равно 700 Ом, то опасным будет напряжение всего в 35 В. Именно поэтому, например, специалисты-электрики даже при работе с напряжением 36 В применяют изолирующие защитные средства — резиновые перчатки или инструмент с изолированными ручками.
Закон Ома выглядит настолько просто, что трудности, которые пришлось преодолеть при его установлении, упускают из виду и забывают. Закон Ома нелегко проверить, и его нельзя рассматривать как очевидную истину; действительно, для многих материалов он не выполняется.
В чем же все-таки заключаются эти трудности? Разве нельзя проверить, что дает изменение числа элементов вольтова столба, определяя ток при разном числе элементов?
Дело в том, что, когда мы берем разное число элементов, мы меняем всю цепь, т.к. дополнительные элементы имеют и дополнительное сопротивление. Поэтому необходимо найти способ изменять напряжение, не меняя самой батареи. Кроме того, разный по величине ток нагревает проволоку до развой температуры, и этот эффект тоже может влиять на силу тока. Ом (1787—1854) преодолел эти трудности, воспользовавшись явлением термоэлектричества, которое открыл Зеебек (1770—1831) в 1822 г.
Таким образом, Ом показал, что ток пропорционален напряжению и обратно пропорционален полному сопротивлению цепи. Это был простой результат для сложного эксперимента. Так по крайней мере должно казаться нам сейчас.
Современники Ома, в особенности его соотечественники, полагали иначе: возможно, именно простота закона Ома вызывала у них подозрение. Ом столкнулся с затруднениями в cлужебной карьере, испытывал нужду; особенно угнетало Ома то, что не признавались его труды. К чести Великобритании, и в особенности Королевского общества, нужно сказать, что работа Ома получила там заслуженное признание. Ом входит в число тех великих людей, имена которых часто встречаются написанными с маленькой буквы: название «ом» было присвоено единице сопротивления.
4. Первые исследования сопротивления проводников
Что такое проводник? Это чисто пассивная составная часть электрической цепи, отвечали первые исследователи. Заниматься его исследованием — значит попросту ломать себе голову над ненужными загадками, т.к. только источник тока представляет собой активный элемент.
Такой взгляд на вещи объясняет нам, почему ученые, по крайней мере до 1840 г., почти не проявляли интереса к тем немногим работам, которые проводились в этом направлении.
Так, на втором съезде итальянских ученых, состоявшемся в Турине в 1840 г. (первый собирался в Пизе в 1839 г. и приобрел даже некое политическое значение), выступая в прениях по докладу, представленному Марианини, Де ла Рив утверждал, что проводимость большинства жидкостей не является абсолютной, «а скорее относительной и изменяется с изменением силы тока». А ведь закон Ома был опубликован за 15 лет до этого!
Среди тех немногих ученых, которые первыми стали заниматься вопросом проводимости проводников после изобретения гальванометра, был Стефано Марианини (1790—1866).
К своему открытию он пришел случайно, изучая напряжение батарей. Он заметил, что с увеличением числа элементов вольтова столба электромагнитное воздействие на стрелку не увеличивается заметным образом. Это заставило Марианини сразу же подумать, что каждый вольтов элемент представляет собой препятствие для прохождения тока. Он делал опыты с парами «активными» и «неактивными» (т. е. состоящими из двух медных пластинок, разделенных влажной прокладкой) и опытным путем нашел отношение, в котором современный читатель узнает частный случай закона Ома, когда сопротивление внешней цепи не принимается во внимание, как это и было в опыте Марианини.
Георг Симон Ом (1789—1854) признавал заслуги Марианини, хотя его труды и не оказали Ому непосредственной помощи в работе. Ом вдохновлялся в своих исследованиях работой («Аналитическая теория тепла», Париж, 1822 г.) Жана Батиста Фурье (1768—1830)—одной из самых значительных научных работ всех времен, очень быстро получившей известность и высокую оценку среди математиков и физиков того времени. Ому пришла мысль, что механизм «теплового потока», о котором говорит Фурье, можно уподобить электрическому току в проводнике. И подобно тому как в теории Фурье тепловой поток между двумя телами или между двумя точками одного и того же тела объясняется разницей температур, точно так же Ом объясняет разницей «электроскопических сил» в двух точках проводника возникновение электрического тока между ними.
Придерживаясь такой аналогии, Ом начал свои экспериментальные исследования с определения относительных величин проводимости различных проводников. Применив метод, который стал теперь классическим, он подключал последовательно между двумя точками цепи тонкие проводники из различных материалов одинакового диаметра и изменял их длину так, чтобы получалась определенная величина тока. Первые результаты, которые ему удалось получить, сегодня кажутся довольно скромными. закон ом электрический гальванометр
Историки поражаются, например, тем, что по измерениям Ома серебро обладает меньшей проводимостью, чем медь и золото, и снисходительно принимают данное впоследствии самим Омом объяснение, согласно которому опыт проводился с серебряной проволокой, покрытой слоем масла, и это вводило в заблуждение относительно точного значения диаметра.
В то время имелось множество источников ошибок при проведении опытов (недостаточная чистота металлов, трудность калибровки проволоки, трудность точных измерений и т. п.). Важнейшим же источником ошибок была поляризация батарей. Постоянные (химические) элементы тогда еще не были известны, так что за время, необходимое для измерений, электродвижущая сила элемента существенно менялась. Именно эти причины, вызывавшие ошибки, привели к тому, что Ом на основании своих опытов пришел к логарифмическому закону зависимости силы тока от сопротивления проводника, включенного между двумя точками цепи. После опубликования первой статьи Ома Поггендорф посоветовал ему отказаться от химических элементов и воспользоваться лучше термопарой медь — висмут, незадолго до этого введенной Зеебеком.
Ом прислушался к этому совету и повторил свои опыты, собрав установку с термоэлектрической батареей, во внешнюю цепь которой включались последовательно восемь медных проволок одинакового диаметра, но разной длины. Силу тока он измерял с помощью своего рода крутильных весов, образуемых магнитной стрелкой, подвешенной на металлической нити. Когда ток, параллельный стрелке, отклонял ее, Ом закручивал нить, на которой она была подвешена, пока стрелка не оказывалась в своем обычном положении;
сила тока считалась пропорциональной углу, на который закручивалась нить. Ом пришел к выводу, что результаты опытов, проведенных с восемью различными проволоками, «могут быть выражены очень хорошо уравнением
где X означает интенсивность магнитного действия проводника, длина которого равна х, а а и b — константы, зависящие соответственно от возбуждающей силы и от сопротивления остальных частей цепи».
Условия опыта менялись: заменялись сопротивления и термоэлектрические пары, но результаты все равно сводились к приведенной выше формуле, которая очень просто переходит в известную нам, если X заменить силой тока, a —электродвижущей силой и b+x,—общим сопротивлением цепи.
Получив эту формулу, Ом пользуется ею для изучения действия мультипликатора Швейггера на отклонение стрелки и для изучения тока, который проходит во внешней цепи батареи элементов, в зависимости от того, как они соединены — последовательно или параллельно. Таким образом он объясняет (как это делается теперь в учебниках), чем определяется внешний ток батареи,— вопрос, который был довольно темным для первых исследователей. Ом надеялся, что его экспериментальные работы откроют ему путь в университет, чего он так желал. Однако статьи прошли незамеченными. Тогда он оставил место преподавателя в кельнской гимназии и отправился в Берлин, чтобы теоретически осмыслить полученные результаты. В 1827 г. в Берлине он опубликовал свой главный труд «Die galvanische Kette, mathe-matisch bearbeitet» («Гальваническая цепь, разработанная математически»).
Эта теория, при разработке которой он вдохновлялся, как мы уже указывали, аналитической теорией теплоты Фурье, вводит понятия и точные определения электродвижущей силы, или «электроскопической силы», как ее называет Ом, электропроводности (Starke der Leitung) и силы тока. Выразив выведенный им закон в дифференциальной форме, приводимой современными авторами, Ом записывает его и в конечных величинах для частных случаев конкретных электрических цепей, из которых особенно важна термоэлектрическая цепь. Исходя из этого, он формулирует известные законы изменения электрического напряжения вдоль цепи.
Но теоретические исследования Ома также остались незамеченными, а если кто-нибудь и писал о них, то лишь для того, чтобы, высмеять «болезненную фантазию, единственной целью которой является стремление принизить достоинство природы». И лишь лет десять спустя его гениальные работы постепенно начали пользоваться должным признанием: в
Германии их оценили Поггендорф и Фехнер, в России — Ленц, в Англии — Уитстон, в Америке — Генри, в Италии — Маттеуччи.
Одновременно с опытами Ома во Франции проводил свои опыты А. Беккерель, а в Англии — Барлоу. Опыты первого особенно замечательны введением дифференциального гальванометра с двойной обмоткой рамки и применением «нулевого» метода измерения. Опыты же Барлоу стоит упомянуть потому, что они экспериментально подтвердили постоянство силы тока во всей цепи. Этот вывод был проверен и распространен на внутренний ток батареи Фехнером в 1831 г., обобщен в 1851 г. Рудольфом Кольраушем
(180Э—1858) на жидкие проводники, а затем еще раз подтвержден тщательными опытами Густава Нидмана (1826—1899).
5. Электрические измерения
Беккерель применил дифференциальный гальванометр для сравнения электрических сопротивлений. На основе проведенных им исследований он сформулировал известный закон зависимости сопротивления проводника от его длины и сечения. Эти работы были продолжены Пуйе и описаны им в последующих изданиях его известных «Elements de
physique experimentale» («Основы экспериментальной физики»), первое издание которых появилось в 1827 г. Сопротивления определялись методом сравнения.
Уже в 1825 г. Марианини показал, что в разветвляющихся цепях электрический ток распределяется по всем проводникам независимо от того, из какого материала они сделаны, вопреки утверждению Вольты, который полагал, что если одна ветвь цепи образуется металлическим проводником, а остальные — жидкими, то весь ток должен проходить по металлическому проводнику. Араго и Пуйе популяризировали во Франции наблюдения Марианини. Не зная еще закона Ома, Пуйе в 1837 г. воспользовался этими наблюдениями и законами Беккереля, чтобы показать, что проводимость цепи, эквивалентной двум
разветвленным цепям, равна сумме проводимостей обеих цепей. Этой работой Пуйе положил начало изучению разветвленных цепей. Пуйе установил для них целый ряд терминов,
которые живы и до сих пор, и некоторые частные законы, обобщенные Кирхгофом в 1845 г. в его известных «принципах»..
Самый большой толчок для проведения электрических измерений, и в частности измерений сопротивления, был дан возросшими потребностями техники, и в первую очередь проблемами, возникшими с появлением электрического телеграфа. Впервые мысль об использовании электричества для передачи сигналов на расстояние родилась еще в XVIII веке. Вольта описал проект телеграфа, а Ампер еще в 1820 г. предлагал использовать электромагнитные явления для передачи сигналов. Идея Ампера была подхвачена многими учеными и техниками: в 1833 г. Гаусс и Вебер построили в Геттингене простейшую телеграфную линию, соединявшую астрономическую обсерваторию и физическую лабораторию. Но практическое применение телеграф получил благодаря американцу Самуэлу Морзе (1791—1872), которому в 1832 г. пришла удачная мысль создать телеграфный алфавит, состоящий всего из двух знаков. После многочисленных попыток Морзе в 1835 г. наконец удалось построить частным образом первую грубую модель телеграфа в Нью-Йоркском университете. В 1839 г. была проведена экспериментальная
линия между Вашингтоном и Балтиморой, а в 1844 г. возникла организованная Морзе первая американская компания по коммерческой эксплуатации нового изобретения. Это было также первое практическое применение результатов научных изысканий в области электричества.
В Англии изучением и усовершенствованием телеграфа занялся Чарльз Уитстон (1802—1875), бывший мастер по изготовлению музыкальных инструментов. Понимая важность
измерений сопротивления, Уитстон стал искать наиболее простые и точные методы таких измерений. Бывший в то время в ходу метод сравнения, как мы видели, давал ненадежные результаты, главным образом из-за отсутствия стабильных источников питания. Уже в 1840 г. Уитстон нашел способ измерения сопротивления независимо от постоянства электродвижущей силы и показал свое устройство Якоби. Однако статья, в которой это устройство описано и которую вполне можно назвать первой работой в области электротехники, появилась лишь в 1843 г. В этой статье дано описание знаменитого «мостика», названного затем в честь Уитстона. Фактически такое устройство было описано —
еще в 1833 г. Гюнтером Кристи и независимо от него в 1840 г. Марианини; оба они предлагали метод сведения к нулю, но их теоретические объяснения, при которых не учитывался закон Ома, оставляли желать лучшего.
Уитстон же был поклонником Ома и очень хорошо знал его закон, так что данная им теория «мостика Уитстона» ничем не отличается от приводимой сейчас в учебниках. Кроме того, Уитстон, чтобы можно было быстро и удобно изменять сопротивление одной стороны мостика для получения нулевой силы тока в гальванометре, включенном в диагональное плечо мостика, сконструировал три типа реостатов (само это слово было предложено им по
аналогии с «реофором», введенным Ампером, в подражание которому Пекле ввел также термин «реометр»). Первый тип реостата с подвижной скобкой, применяемый и сейчас, был создан Уитстоном по аналогии со схожим приспособлением, применявшимся Якоби в 1841 г. Второй тип реостата имел вид деревянного цилиндра, вокруг которого была намотана часть подключенного в цепь провода, который легко перематывался с деревянного цилиндра на бронзовый. Третий тип реостата был похож на «магазин сопротивлений», который Эрнст
Вернер Сименс (1816—1892), ученый и промышленник, в 1860 г. улучшил и широко распространил. «Мостик Уитстона» дал возможность измерять электродвижущие силы и сопротивления.
Создание подводного телеграфа, пожалуй, еще более, нежели воздушного телеграфа, потребовало разработки методов электрических измерений. Опыты с подводным телеграфом начались еще в 1837 г., и одной из первых проблем, которую предстояло разрешить, было определение скорости распространения тока. Еще в 1834 г. Уитстон с помощью вращающихся зеркал, о чем мы уже упоминали в гл. 8, произвел первые измерения этой скорости, но полученные им результаты противоречили результатам Латимера Кларка, а последние в свою очередь не соответствовали более поздним исследованиям других ученых.
В 1855 г. Уильям Томсон (получивший впоследствии титул лорда Кельвина) объяснил причину всех этих расхождений. Согласно Томсону, скорость тока в проводнике не имеет определенной величины. Подобно тому как скорость распространения тепла в стержне зависит от материала, так и скорость тока в проводнике зависит от произведения его сопротивления на электрическую емкость. Следуя этой своей теории, которая в»»его времена
подверглась ожесточенной критике, Томсон занялся проблемами, связанными с подводным телеграфом.
Первый трансатлантический кабель, соединивший Англию и Америку, функционировал около месяца, но затем испортился. Томсон рассчитал новый кабель, провел многочисленные измерения сопротивления и емкости, придумал новые передающие аппараты, из коих следует упомянуть астатический отражательный гальванометр, замененный «сифонным регистратором» его же изобретения. Наконец, в 1866 г. новый трансатлантический кабель успешно вступил в действие. Созданию этого первого большого электротехнического сооружения сопутствовала разработка системы единиц электрических и магнитных измерений.
Основа электромагнитной метрики была заложена Карлом Фридрихом Гауссом (1777—1855) в его знаменитой статье «Intensitas vis magneticae terrestris ad mensuram absolutam revocata» («Величина силы земного магнетизма в абсолютных мерах»), опубликованной в 1832 г. Гаусс заметил, что различные магнитные единицы измерения несоотносимы между
собой, по крайней мере в большей своей части, и поэтому предложил систему абсолютных единиц, основанную на трех основных единицах механики: секунде (единице времени), миллиметре (единице длины) и миллиграмме (единице массы). Через них он выразил все остальные физические единицы и придумал ряд измерительных приборов, в частности магнетометр для измерения в абсолютных единицах земного магнетизма. Работу Гаусса продолжил Вебер, который построил много собственных приборов и приборов, задуманных еще Гауссом. Постепенно, особенно благодаря работам Максвелла, проводившимся в созданной Британской ассоциацией специальной комиссии по измерениям, которая издавала ежегодные отчеты с 1861 по 1867 г., возникла идея создать единые системы мер, в частности систему электромагнитных и электростатических мер.
Мысли о создании таких абсолютных систем единиц были подробно изложены в историческом отчете за 1873 г. второй комиссии Британской ассоциации. Созванный в Париже в 1881 г. Международный конгресс впервые установил международные единицы измерения, присвоив каждой из них название в честь какого-нибудь великого физика. Большая часть этих названий сохраняется до сих пор: вольт, ом, ампер, джоуль и т. д. После
многих перипетий в 1935 г. была введена международная система Джорджи, или MKSQ, которая принимает за основные единицы метр, килограмм-массу, секунду и ом.
С «системами» единиц связаны «формулы размерностей», примененные впервые Фурье в его аналитической теории тепла (1822 г.) и распространенные Максвеллом, которым и установлены применяемые в них обозначения. Метрология прошлого века, основывавшаяся на стремлении объяснить все явления с помощью механических моделей, придавала большое значение формулам размерностей, в которых она хотела видеть не больше и не меньше как ключ к тайнам природы. При этом выдвигался ряд утверждений почти догматического характера. Так, чуть ли не обязательным догматом было требование, чтобы основных величин было непременно три. Но к концу века начали понимать, что формулы размерностей — это чистая условность, вследствие чего интерес к теориям размерностей стал постепенно падать.
Заключение
О значении исследований Ома хорошо сказал профессор физики Мюнхенского университета Е. Ломмель при открытии памятника ученому в 1895 году:
«Открытие Ома было ярким факелом, осветившим ту область электричества, которая до него была окутана мраком. Ом указал единственно правильный путь через непроходимый лес непонятных фактов. Замечательные успехи в развитии электротехники, за которыми мы с удивлением наблюдали в последние десятилетия, могли быть достигнуты только на основе открытия Ома. Лишь тот в состоянии господствовать над силами природы и управлять ими, кто сумеет разгадать законы природы, Ом вырвал у природы так долго скрываемую ею тайну и передал ее в руки современников».
Список используемых источников
Дорфман Я. Г. Всемирная история физики . М., 1979 Ом Г. Определение закона, по которому металлы проводят контактное электричество. — В кн.: Классики физической науки. М., 1989
Энциклопедия Сто человек. Которые изменили мир. Ом.
Прохоров А. М. Физический энциклопедический словарь, М., 1983
Орир Дж. Физика , т. 2. М., 1981
Джанколи Д. Физика , т. 2. М., 1989
http://www.portal-slovo.ru/
http://www.polarcom.ru/~vvtsv/s_doc9c.html)
Размещено на Allbest.ru
Подобные документы
История открытия Исааком Ньютоном «Закона всемирного тяготения», события, предшествующие данному открытию. Суть и границы применения закона. Формулировка законов Кеплера и их применение к движению планет, их естественных и искусственных спутников.
презентация , добавлен 25.07.2010
Изучение движения тела под действием постоянной силы. Уравнение гармонического осциллятора. Описание колебания математического маятника. Движение планет вокруг Солнца. Решение дифференциального уравнения. Применение закона Кеплера, второго закона Ньютона.
реферат , добавлен 24.08.2015
История открытия закона всемирного тяготения. Иоган Кеплер как один из первооткрывателей закона движения планет вокруг солнца. Сущность и особенности эксперимента Кавендиша. Анализ теории силы взаимного притяжения. Основные границы применимости закона.
презентация , добавлен 29.03.2011
Изучение «Закона Архимеда», проведение опытов по определению архимедовой силы. Вывод формул для нахождения массы вытесненной жидкости и расчета плотности. Применение «Закона Архимеда» для жидкостей и газов. Методическая разработка урока по данной теме.
конспект урока , добавлен 27.09.2010
Биографические сведения о Ньютоне — великом английском физике, математике и астрономе, его труды. Исследования и открытия ученого, эксперименты по оптике и теории цвета. Первый вывод Ньютоном скорости звука в газе, основанный на законе Бойля-Мариотта.
презентация , добавлен 26.08.2015
Изучение причины магнитной аномалии. Методы определения горизонтальной составляющей напряженности магнитного поля Земли. Применение закона Био-Савара-Лапласа. Определение причины поворота стрелки после подачи напряжения на катушку тангенс–гальванометра.
контрольная работа , добавлен 25.06.2015
Описание основных законов Ньютона. Характеристика первого закона о сохранении телом состояния покоя или равномерного движения при скомпенсированных действиях на него других тел. Принципы закона ускорения тела. Особенности инерционных систем отсчета.
презентация , добавлен 16.12.2014
Законы движения планет Кеплера, их краткая характеристика. История открытия Закона всемирного тяготения И. Ньютоном. Попытки создания модели Вселенной. Движение тел под действием силы тяжести. Гравитационные силы притяжения. Искусственные спутники Земли.
реферат , добавлен 25.07.2010
Проверка справедливости соотношений при параллельном соединении резисторов и первого закона Кирхгофа. Особенности сопротивления приемников. Методика расчета напряжения и тока для различных соединений. Сущность закона Ома для участка и для всей цепи.
лабораторная работа , добавлен 12.01.2010
Фундаментальные взаимодействия в природе. Взаимодействие электрических зарядов. Свойства электрического заряда. Закон сохранения электрического заряда. Формулировка закона Кулона. Векторная форма и физический смысл закона Кулона. Принцип суперпозиции.
Закон Ома является одним из основных законов электротехники. Он довольно прост и применяется при расчете практически любых электрических цепей. Но данный закон имеет некоторые особенности работы в цепях переменного и постоянного тока при наличии в цепи реактивных элементов. Эти особенности нужно помнить всегда.
Классическая схема закона Ома выглядит так:
А звучит и того проще – ток, протекающей на участке цепи, будет равен отношению напряжения цепи к ее сопротивлению, что выражается формулой:
Но ведь мы знаем, что помимо активного сопротивления R, существует и реактивные сопротивления индуктивности Х L и емкости X C . А ведь согласитесь, что электрические схемы с чисто активным сопротивлением встречаются крайне редко. Давайте рассмотрим схему, в которой последовательно включена катушка индуктивности L, конденсатор С и резистор R:
Помимо чисто активного сопротивления R, индуктивность L и емкость С имеют и реактивные сопротивления Х L и X C , которые выражены формулами:
Где ω это циклическая частота сети, равная ω = 2πf. f – частота сети в Гц.
Для постоянного тока частота равна нулю (f = 0), соответственно реактивное сопротивление индуктивности станет равным нулю (формула (1)), а емкости – бесконечности (2), что приведет к разрыву электрической цепи. Отсюда можно сделать вывод, что реактивное сопротивление элементов в цепях постоянного напряжения отсутствует.
Если рассматривать классическую электрическую цепь и на переменном токе, то она практически ничем не будет отличаться от постоянного тока, только источником напряжения (вместо постоянного — переменное):
Соответственно и формула для такого контура останется прежней:
Но если мы усложним схему и добавим к ней реактивных элементов:
Ситуация изменится кардинально. Теперь f у нас не равна нулю, что сигнализирует о том, что помимо активного, в цепь вводится и реактивное сопротивление, которое также может влиять на величину тока, протекаемого в контуре и . Теперь полное сопротивление контура (обозначается как Z) и оно не равно активному Z ≠ R. Формула примет следующий вид:
Соответственно немного изменится и формула для закона Ома:
Почему это важно?
Знание этих нюансов позволит избежать серьезных проблем, которые могут возникнуть при неправильном подходе к решению некоторых электротехнических задач. Например, в контур переменного напряжения подключена катушка индуктивности со следующими параметрами: f ном = 50 Гц, U ном = 220 В, R = 0,01 Ома, L = 0,03 Гн. Ток, протекающий через данную катушку будет равен.
Закон Ома для участка цепи в физике с формулами и примерами
Закон Ома для участка цепиСила тока на участке цепи равна отношению напряжения на этом участке к его сопротивлению.
Рис. 94
Закон Ома выражает связь между тремя величинами, характеризующими протекание электрического тока в цепи, — силой тока , напряжением и сопротивлением .Он был установлен в 1826 г. немецким учёным Г. Омом. В приведённой формулировке он называется также законом Ома для участка цепи (рис. 94). Математически закон Ома записывается в виде следующей формулы:
(3.8)Зависимость силы тока от приложенной разности потенциалов на концах проводника называется вольт-амперной характеристикой (ВАХ) проводника.
Для любого проводника существует своя ВАХ. Наиболее простой вид имеет ВАХ металлических проводников, заданная законом Ома (3.8), и растворов электролитов. Знание ВАХ играет большую роль при изучении тока.
Закон Ома — это основа всей электротехники. Из закона Ома (3.8) следует:
1) сила тока на участке цепи с постоянным сопротивлением пропорциональна напряжению на концах участка;
2) сила тока на участке цепи с неизменным напряжением обратно пропорциональна сопротивлению.Эти зависимости легко проверить экспериментально. Полученные с использованием схемы, представленной на рис. 94, графики зависимости силы тока от напряжения при постоянном сопротивлении (см. формулу (3.8)) и силы тока от сопротивления представлены на рис. 95 и 96 соответственно. В первом случае использован источник тока с регулируемым выходным напряжением и постоянное сопротивление , во втором — аккумулятор и переменное сопротивление.
Рис. 95Рис. 96Эта лекция взята со страницы лекций по всем темам предмета физика:
Предмет физика
Возможно эти страницы вам будут полезны:
Законы постоянного тока в физике Сила тока в физике Электрическое сопротивление в физике Электродвижущая сила в физике Закон Ома 9,4 — Университетская физика, Том 2
Цели обучения
К концу этого раздела вы сможете:
- Опишите закон Ома
- Распознавать, когда применяется закон Ома, а когда нет.
До сих пор в этой главе мы обсуждали три электрических свойства: ток, напряжение и сопротивление. Оказывается, многие материалы демонстрируют простую взаимосвязь между значениями этих свойств, известную как закон Ома.Многие другие материалы не демонстрируют эту взаимосвязь, поэтому, несмотря на то, что они называются законом Ома, они не считаются законом природы, как законы Ньютона или законы термодинамики. Но это очень полезно для расчетов с материалами, которые подчиняются закону Ома.
Описание закона Ома
Ток, протекающий через большинство веществ, прямо пропорционален приложенному к нему напряжению В, . Немецкий физик Георг Симон Ом (1787–1854) первым экспериментально продемонстрировал, что ток в металлической проволоке прямо пропорционален приложенному напряжению :
.Это важное соотношение лежит в основе закона Ома.Его можно рассматривать как причинно-следственную связь, в которой напряжение является причиной, а ток — следствием. Это эмпирический закон, который означает, что это экспериментально наблюдаемое явление, подобное трению. Такая линейная зависимость возникает не всегда. Любой материал, компонент или устройство, подчиняющееся закону Ома, где ток через устройство пропорционален приложенному напряжению, называется омическим материалом или омическим компонентом. Любой материал или компонент, который не подчиняется закону Ома, известен как неомический материал или неомный компонент.
Эксперимент Ома
В статье, опубликованной в 1827 году, Георг Ом описал эксперимент, в котором он измерял напряжение и ток через различные простые электрические цепи, содержащие провода различной длины. Аналогичный эксперимент показан на рисунке 9.19. Этот эксперимент используется для наблюдения за током через резистор, возникающим в результате приложенного напряжения. В этой простой схеме резистор включен последовательно с батареей. Напряжение измеряется вольтметром, который необходимо разместить на резисторе (параллельно резистору).Ток измеряется амперметром, который должен быть на одной линии с резистором (последовательно с резистором).
Фигура 9,19 Экспериментальная установка, используемая для определения того, является ли резистор омическим или неомическим устройством. (а) Когда батарея подключена, ток течет по часовой стрелке, а вольтметр и амперметр показывают положительные значения. (b) Когда выводы батареи переключаются, ток течет против часовой стрелки, а вольтметр и амперметр показывают отрицательные показания.
В этой обновленной версии оригинального эксперимента Ома было выполнено несколько измерений тока для нескольких различных напряжений. Когда батарея была подключена, как показано на рис. 9.19 (а), ток протекал по часовой стрелке, и показания вольтметра и амперметра были положительными. Изменится ли поведение тока, если ток течет в обратном направлении? Чтобы заставить ток течь в обратном направлении, выводы батареи можно переключить. При переключении выводов батареи показания вольтметра и амперметра были отрицательными, потому что ток протекал в обратном направлении, в данном случае против часовой стрелки.Результаты аналогичного эксперимента показаны на рисунке 9.20.
Фигура 9.20 В цепь с батареей ставится резистор. Приложенное напряжение изменяется от -10,00 В до +10,00 В с шагом 1,00 В. На графике показаны значения напряжения в зависимости от тока, типичные для случайного экспериментатора.
В этом эксперименте напряжение, приложенное к резистору, изменяется от -10,00 до +10,00 В с шагом 1,00 В. Измеряются ток через резистор и напряжение на резисторе.Построен график зависимости напряжения от тока, и результат будет приблизительно линейным. Наклон линии — это сопротивление или напряжение, деленное на ток. Этот результат известен как закон Ома:
, где В, — напряжение, измеренное в вольтах на рассматриваемом объекте, I — ток, измеренный через объект в амперах, а R — сопротивление в единицах Ом. Как указывалось ранее, любое устройство, которое показывает линейную зависимость между напряжением и током, известно как омическое устройство.Следовательно, резистор — это омическое устройство.
Пример 9,8
Измерение сопротивления
Угольный резистор при комнатной температуре (20 ° C) (20 ° C) подключен к батарее на 9,00 В, и ток, измеренный через резистор, составляет 3,00 мА. а) Какое сопротивление резистора измеряется в Ом? (b) Если температура резистора повышается до 60 ° C60 ° C путем нагрева резистора, каков ток через резистор?Стратегия
(а) Сопротивление можно найти с помощью закона Ома.Закон Ома гласит, что V = IRV = IR, поэтому сопротивление можно найти, используя R = V / IR = V / I.(b) Во-первых, сопротивление зависит от температуры, поэтому новое сопротивление после нагрева резистора можно найти, используя R = R0 (1 + αΔT) R = R0 (1 + αΔT). Ток можно найти с помощью закона Ома в виде I = V / RI = V / R.
Решение
- Используя закон Ома и решив сопротивление, получаем сопротивление при комнатной температуре: R = VI = 9,00 В 3,00 × 10−3A = 3,00 × 103 Ом = 3,00 кОм R = VI = 9,00 В 3,00 × 10−3A = 3,00 × 103 Ом = 3.00кОм.
- Сопротивление при 60 ° C60 ° C можно найти, используя R = R0 (1 + αΔT) R = R0 (1 + αΔT), где температурный коэффициент для углерода α = −0,0005α = −0,0005. R = R0 (1 + αΔT) = 3,00 × 103 (1−0,0005 (60 ° C − 20 ° C)) = 2,94 кОм R = R0 (1 + αΔT) = 3,00 × 103 (1−0,0005 (60 ° C − 20 ° C) ° C)) = 2,94 кОм.
Ток через нагретый резистор равен I = VR = 9,00 В 2,94 × 103 Ом = 3,06 × 10−3A = 3,06 мА I = VR = 9,00 В 2,94 × 103 Ом = 3,06 × 10−3A = 3,06 мА.
Значение
Изменение температуры на 40 ° C40 ° C привело к изменению тока на 2,00%. Это может показаться не очень большим изменением, но изменение электрических характеристик может сильно повлиять на цепи.По этой причине многие электронные устройства, такие как компьютеры, содержат вентиляторы для отвода тепла, рассеиваемого компонентами электрических цепей.Проверьте свое понимание 9,8
Проверьте свое понимание Напряжение, подаваемое в ваш дом, изменяется как V (t) = Vmaxsin (2πft) V (t) = Vmaxsin (2πft). Если к этому напряжению подключен резистор, будет ли по-прежнему действовать закон Ома V = IRV = IR?
Неомные устройства не показывают линейной зависимости между напряжением и током.Одним из таких устройств является элемент полупроводниковой схемы, известный как диод. Диод — это схемное устройство, которое позволяет току течь только в одном направлении. Схема простой схемы, состоящей из батареи, диода и резистора, показана на рисунке 9.21. Хотя мы не рассматриваем теорию диода в этом разделе, диод можно протестировать, чтобы определить, является ли он омическим или неомическим устройством.
Фигура 9.21 Диод — это полупроводниковое устройство, которое позволяет току течь только в том случае, если диод смещен в прямом направлении, что означает, что анод положительный, а катод отрицательный.
График зависимости тока от напряжения показан на рисунке 9.22. Обратите внимание, что поведение диода показано как зависимость тока от напряжения, тогда как работа резистора показана как зависимость напряжения от тока. Диод состоит из анода и катода. Когда анод находится под отрицательным потенциалом, а катод — под положительным потенциалом, как показано в части (а), говорят, что диод имеет обратное смещение. При обратном смещении диод имеет очень большое сопротивление, и через диод и резистор протекает очень небольшой ток — практически нулевой ток.По мере увеличения напряжения, приложенного к цепи, ток остается практически нулевым, пока напряжение не достигнет напряжения пробоя и диод не будет проводить ток, как показано на рисунке 9.22. Когда аккумулятор и потенциал на диоде меняются местами, что делает анод положительным, а катод отрицательным, диод проводит, и ток течет через диод, если напряжение больше 0,7 В. Сопротивление диода близко к нулю. (Это причина наличия резистора в цепи; если бы его не было, ток стал бы очень большим.Из графика на рисунке 9.22 видно, что напряжение и ток не имеют линейной зависимости. Таким образом, диод является примером безомного устройства.
Фигура 9,22 Когда напряжение на диоде отрицательное и небольшое, через диод протекает очень небольшой ток. Когда напряжение достигает напряжения пробоя, диод проводит. Когда напряжение на диоде положительное и превышает 0,7 В (фактическое значение напряжения зависит от диода), диод проводит.По мере увеличения приложенного напряжения ток через диод увеличивается, но напряжение на диоде остается примерно 0,7 В.
Закон Ома обычно формулируется как V = IRV = IR, но первоначально он был сформулирован как микроскопический вид с точки зрения плотности тока, проводимости и электрического поля. Этот микроскопический вид предполагает, что пропорциональность V∝IV∝I обусловлена дрейфовой скоростью свободных электронов в металле, возникающей в результате приложенного электрического поля. Как было сказано ранее, плотность тока пропорциональна приложенному электрическому полю.Переформулировка закона Ома приписывается Густаву Кирхгофу, имя которого мы снова увидим в следующей главе.
Объяснение лаборатории: Лаборатория закона Ома
Вопрос исследования:
Как увеличение напряжения (v) до 5v, 10v, 20v, 35v, а затем 50v повлияет на величину тока (Amps), измеряемую амперметром, сохраняя сопротивление (Ом) при 12 Ом и постоянной длине провода 10 см в последовательной цепи, чтобы доказать закон Ома?
Общая информация о законе Ома:
Закон Ома может использоваться для определения взаимосвязи между напряжением, током и сопротивлением в любой электрической цепи постоянного тока, обнаруженной немецким физиком Георгом Омом.Этот закон гласит, что напряжение равно произведению полного тока на полное сопротивление.
Уравнение этого закона часто представляется в виде треугольника, где напряжение находится вверху, ток и сопротивление внизу, а их разделяет только линия;
Чтобы найти напряжение, вы должны умножить ток и сопротивление, чтобы найти ток или сопротивление, вы должны разделить напряжение либо на ток (чтобы найти сопротивление), либо на сопротивление (чтобы найти ток).
Гипотеза:
Я предсказываю, что чем выше напряжение, тем выше будет сила тока. Я думаю, это потому, что в последовательной цепи будет больше мощности из-за более высокого напряжения, что указывает на то, что ток будет протекать в более быстром темпе даже при сопротивлении 12 Ом.
Если напряжение равно 5, а сопротивление 12 Ом, ток будет двигаться медленнее и уменьшаться, потому что сопротивление вызывает этот более медленный темп в результате использования большего количества энергии от батареи / напряжения.
Переменные:
Независимая переменная: Независимая переменная — это величина напряжения; 5В, 10В, 20В, 35В и 50В.
Зависимая переменная: Зависимая переменная — это величина тока, протекающего в последовательной цепи, измеренная в AMPS или A.Управляемая переменная: