Какой ток бывает: Какой бывает ток — Всё о электрике

Содержание

Какие существуют токи (электрические). Виды тока (постоянный и переменный), их особенности.

Многие должны были слышать, что электрический ток бывает разный (постоянный, переменный). Те, кто особо не знаком с темой электрики и электроники порой могут путаться в типах тока, когда подают электрическую энергию на то или иное электрооборудование. Для одних устройств нужно именно постоянное напряжение (ток), другие же питаются только от переменного. Поскольку эти виды тока принципиально разные, то ошибка при подаче питания может привести к не работе (в лучшем случае), а в худшем варианте просто вывести электрооборудование из строя.

Итак, напомню, что электрический ток представляет собой упорядоченное движение электрически заряженных частиц (электронов) вдоль проводника. То есть, это простое, однонаправленное перемещение очень маленьких частичек (с огромной скоростью) внутри электрических проводников (в большинстве случаев металлов — медь, алюминий, серебро, золото и различных сплавов, хорошо проводящих ток).

 

Само же движение возникает по причине появления определённой разности электрических потенциалов, называемое напряжением. У электрического источника имеются два полюса, положительный (где сосредотачивается положительный заряд некой величины) и отрицательный (где сосредотачивается отрицательный заряд). Если нет замкнутой цепи между полюсами, то имеется только напряжение (стремление зарядов перейти на противоположный полюс). Как только цепь замыкается, появляется путь для прохождения зарядов в виде электрического проводника, то заряды стремительно начинают своё движение, что и создают их ТОК в проводнике.

Основных видов электрического тока существует два — постоянный и переменный (импульсный, это частичный случай переменного). Постоянный ток — это, не что иное как простое однонаправленное перемещение электрических зарядов в одну сторону. От одного полюса к другому без изменения направления во времени. На деле в твёрдых веществах (проводниках) электрический ток течет от минуса к плюсу (происходит перемещение отрицательных зарядов, электронов). В жидких и газообразных средах постоянный ток бежит, наоборот, от плюса к минусу (движение ионов, положительно заряженных частиц). В теоретической области было принято считать, что постоянный электрический ток всегда течет от плюса к минусу (при работе с принципиальными электрическими схемами).

Постоянный ток имеет постоянную величину своего напряжения (обычно наиболее используемые величины 3, 5, 6, 9, 12, 24 вольт). При работе его величина может изменяться всего на несколько процентов, по причине падения напряжения при динамической работе самой нагрузки (к примеру, постоянный электродвигатель, который может иметь плавающую механическую нагрузку на своём вале, ну и т.д.). Для постоянного напряжения (точнее электрических схем, работающие на постоянном типе тока) важно оставаться неизменным. Если схема рассчитана на постоянное напряжение 12 вольт, то и подаваться на неё должно строго 12 вольт с небольшим отклонением в несколько процентов. Для обеспечения этого используются различные решения начиная от правильно подобранных электрических деталей, компонентов, и заканчивая всевозможными электрическими, электронными схемами различных стабилизаторов, фильтров и т.

д.

Постоянный ток имеет как свои достоинства, так и свои недостатки. Иначе бы использовался только этот тип электрического тока! Практически все электронные схемы нуждаются в питании именно постоянным током. Сам принцип действия и работа электронных элементов основан на этом виде тока. Также электрические аккумуляторы могут работать только с постоянным током, ну и т.д. Основным недостатком этого вида электротока является плохая передача электроэнергии на значительные расстояния (возникают большие потери). Кроме этого для его преобразования нужны более сложные электрические устройства.

Переменный электрический ток представляет собой упорядоченное, плавно изменяющееся (синусоидальное) движение электрических зарядов вдоль проводника, которое периодически меняет свои полюса. Наиболее распространённой частотой переменного тока является 50 Герц. То есть, за одну секунду направление тока в электрической цепи меняется с плюса на минус и наоборот аж 50 раз. Хотя это считается ещё и низкой частотой. Переменный ток может быть однофазным (используются 2 провода и напряжение между ними 220 вольт) или же трёхфазным (используются 3 фазных провода, напряжение между двумя любыми из них 380 вольт и один нулевой).

Переменный вид тока легко преобразуется и передается на большие расстояния с минимальными потерями на самой линии электропередач. Наиболее используемые величины переменного напряжения, от которых питаются конкретные электроприборы, это 220 вольт (напряжение для бытового использования населением) и 380 вольт (для промышленного использования, где важны именно 3 фазы). Для того, чтобы получить из одной величины тока или напряжения другую величину обычно применяют всего одно устройство, которое называется силовым трансформатором. На его вход подают одни значения напряжения или тока, а на выходе получают другие, более высокие или низкие.

P.S. Частным случаем переменного электрического тока можно считать импульсный ток, который может иметь различную форму, отличной от обычной синусоидальной. Данный вид электрического тока обычно используют в различной цифровой технике, в области электроники.

Ток и напряжение. Виды и правила. Работа и характеристики

Ток и напряжение являются количественными параметрами, применяемыми в электрических схемах. Чаще всего эти величины меняются с течением времени, иначе не было бы смысла в действии электрической схемы.

Напряжение

Условно напряжение обозначается буквой

«U». Работа, затраченная на перемещение единицы заряда из точки, имеющей малый потенциал в точку с большим потенциалом, является напряжением между этими двумя точками. Другими словами, это энергия, освобождаемая после перехода единицы заряда от высокого потенциала к малому.

Напряжение еще могут называть разностью потенциалов, а также электродвижущей силой. Этот параметр измеряется в вольтах. Чтобы переместить 1 кулон заряда между двумя точками, которые имеют напряжение 1 вольт, нужно выполнить работу в 1 джоуль. Кулонами измеряются электрические заряды. 1 кулон равен заряду 6х1018 электронов.

Напряжение разделяется на несколько видов, в зависимости от видов тока:
  • Постоянное напряжение. Оно присутствует в электростатических цепях и цепях постоянного тока.
  • Переменное напряжение. Этот вид напряжения имеется в цепях с синусоидальными и переменными токами. В случае синусоидального тока рассматриваются такие характеристики напряжения, как:
    амплитуда колебаний напряжения – это максимальное его отклонение от оси абсцисс;
    — мгновенное напряжение, которое выражается в определенный момент времени;
    — действующее напряжение, определяется по выполняемой активной работе 1-го полупериода;
    — средневыпрямленное напряжение, определяемое по модулю величины выпрямленного напряжения за один гармонический период.

При передаче электроэнергии по воздушным линиям устройство опор и их размеры зависят от величины применяемого напряжения. Величина напряжения между фазами называется линейным напряжением, а напряжение между землей и каждой из фаз – фазным напряжением. Такое правило применимо для всех типов воздушных линий. В России в электрических бытовых сетях, стандартным является трехфазное напряжение с линейным напряжением 380 вольт, и фазным значением напряжения 220 вольт.

Электрический ток

Ток в электрической цепи является скоростью движения электронов в определенной точке, измеряется в амперах, и обозначается на схемах буквой «I». Также используются и производные единицы ампера с соответствующими приставками милли-, микро-, нано и т.д. Ток размером в 1 ампер образуется передвижением единицы заряда в 1 кулон за 1 секунду.

Условно считается, что ток в электрической цепи течет по направлению от положительного потенциала к отрицательному. Однако, из курса физики известно, что электрон движется в противоположном направлении.

Необходимо знать, что напряжение измеряется между 2-мя точками на схеме, а ток течет через одну конкретную точку схемы, либо через ее элемент. Поэтому, если кто-то употребляет выражение «напряжение в сопротивлении», то это неверно и неграмотно. Но часто идет речь о напряжении в определенной точке схемы. При этом имеется ввиду напряжение между землей и этой точкой.

Напряжение образуется от воздействия на электрические заряды в генераторах, батареях, солнечных элементах и других устройствах. Ток возникает путем приложения напряжения к двум точкам на схеме.

Чтобы понять, что такое ток и напряжение, правильнее будет воспользоваться осциллографом. На нем можно увидеть ток и напряжение, которые меняют свои значения во времени. На практике элементы электрической цепи соединены проводниками. В определенных точках элементы цепи имеют свое значение напряжения.

Ток и напряжение подчиняются правилам:
  • Сумма токов, входящих в точку, равняется сумме токов, выходящих из точки (правило сохранения заряда). Такое правило является законом Кирхгофа для тока. Точка входа и выхода тока в этом случае называется узлом. Следствием из этого закона является следующее утверждение: в последовательной электрической цепи группы элементов величина тока для всех точек одинакова.
  • В параллельной схеме элементов напряжение на всех элементах одинаково. Иначе говоря, сумма падений напряжений в замкнутом контуре равна нулю. Этот закон Кирхгофа применяется для напряжений.
  • Работа, выполненная в единицу времени схемой (мощность), выражается следующим образом: Р = U*I. Мощность измеряется в ваттах. Работа величиной 1 джоуль, выполненная за 1 секунду, равна 1 ватту. Мощность распространяется в виде теплоты, расходуется на совершение механической работы (в электродвигателях), преобразуется в излучение различного вида, накапливается в емкостях или батареях. При проектировании сложных электрических систем, одной из проблем является тепловая нагрузка системы.
Характеристика электрического тока

Обязательным условием существования тока в электрической цепи является замкнутый контур. Если контур цепи разрывается, то ток прекращается.

По такому принципу действуют все защиты и выключатели в электротехнике. Они разрывают электрическую цепь подвижными механическими контактами, и этим прекращают течение тока, выключая устройство.

В энергетической промышленности электрический ток возникает внутри проводников тока, которые выполнены в виде шин, кабелей, проводов и других частей, проводящих ток.

Также существуют другие способы создания внутреннего тока в:
  • Жидкостях и газах за счет передвижения заряженных ионов.
  • Вакууме, газе и воздухе с помощью термоэлектронной эмиссии.
  • Полупроводниках, вследствие движения носителей заряда.
Условия возникновения электрического тока:
  • Нагревание проводников (не сверхпроводников).
  • Приложение к носителям заряда разности потенциалов.
  • Химическая реакция с выделением новых веществ.
  • Воздействие магнитного поля на проводник.
Формы сигнала тока:
  • Прямая линия.
  • Переменная синусоида гармоники.
  • Меандром, похожий на синусоиду, но имеющий острые углы (иногда углы могут сглаживаться).
  • Пульсирующая форма одного направления, с амплитудой, колеблющейся от нуля до наибольшей величины по определенному закону.

Виды работы электрического тока:
  • Световое излучение, создающееся приборами освещения.
  • Создание тепла с помощью нагревательных элементов.
  • Механическая работа (вращение электродвигателей, действие других электрических устройств).
  • Создание электромагнитного излучения.
Отрицательные явления, вызываемые электрическим током:
  • Перегрев контактов и токоведущих частей.
  • Возникновение вихревых токов в сердечниках электрических устройств.
  • Электромагнитные излучения во внешнюю среду.

Создатели электрических устройств и различных схем при проектировании должны учитывать вышеперечисленные свойства электрического тока в своих разработках. Например, вредное влияние вихревых токов в электродвигателях, трансформаторах и генераторах снижается путем шихтовки сердечников, применяемых для пропускания магнитных потоков. Шихтовка сердечника – это его изготовление не из цельного куска металла, а из набора отдельных тонких пластин специальной электротехнической стали.

Но, с другой стороны, вихревые токи используют для работы микроволновых печей, духовок, действующих по принципу магнитной индукции. Поэтому, можно сказать, что вихревые токи оказывают не только вред, но и пользу.

Переменный ток с сигналом в форме синусоиды может различаться частотой колебаний за единицу времени. В нашей стране промышленная частота тока электрических устройств стандартная, и равна 50 герцам. В некоторых странах используется частота тока 60 герц.

Для различных целей в электротехнике и радиотехнике используют другие значения частоты:
  • Низкочастотные сигналы с меньшей величиной частоты тока.
  • Высокочастотные сигналы, которые намного выше частоты тока промышленного использования.

Считается, что электрический ток возникает при движении электронов внутри проводника, поэтому он называется током проводимости. Но существует и другой вид электрического тока, который получил название конвекционного. Он возникает при движении заряженных макротел, например, капель дождя.

Электрический ток в металлах

Движение электронов при воздействии на них постоянной силы сравнивают с парашютистом, который снижается на землю. В этих двух случаях происходит равномерное движение. На парашютиста действует сила тяжести, а противостоит ей сила сопротивления воздуха. На движение электронов действует сила электрического поля, а сопротивляются этому движению ионы решеток кристаллов. Средняя скорость электронов достигает постоянного значения, так же как и скорость парашютиста.

В металлическом проводнике скорость движения одного электрона равна 0,1 мм в секунду, а скорость электрического тока около 300 тысяч км в секунду. Это объясняется тем, что электрический ток течет только там, где к заряженным частицам приложено напряжение. Поэтому достигается большая скорость протекания тока.

При перемещении электронов в кристаллической решетке существует следующая закономерность. Электроны сталкиваются не со всеми встречными ионами, а только с каждым десятым из них. Это объясняется законами квантовой механики, которые можно упрощенно объяснить следующим образом.

Движению электронов мешают большие ионы, которые оказывают сопротивление. Это особенно заметно при нагревании металлов, когда тяжелые ионы «качаются», увеличиваются в размерах и уменьшают электропроводность решеток кристаллов проводника. Поэтому при нагревании металлов всегда увеличивается их сопротивление. При снижении температуры повышается электрическая проводимость. При снижении температуры металла до абсолютного нуля можно добиться эффекта сверхпроводимости.

Похожие темы:

Какой ток в розетке - переменный или постоянный, и зачем это нужно знать: сколько ампер, какая его частота и как узнать самостоятельно

Человек, хоть частично знакомый с электричеством, знает какой ток протекает в розетке – переменный или постоянный. Но большинство граждан, которые пользуются благами электричества ежедневно, не задумываются об этом, и зря. Ответ на вопрос прост, ведь практически вся производимая электроэнергия относится к переменному току.

Какой ток в розетках постоянный или переменный?

98% вырабатываемой энергии – это переменный ток, и домашняя проводка не исключение. Переменный ток – это тот, который периодически изменяет величину и направление. Частота измеряется в Герцах (период изменения в секунду). Переменный ток производить намного легче чем постоянный, также не вызывает сложностей передача на большие расстояния. При передачи электроэнергии величина напряжения может как увеличиваться, так и уменьшаться неоднократно, поэтому розетки делаются для переменного значения. Но также существуют электронные приборы, которые питаются постоянным током, и их нужно приводить к одному типу.

Преимущества:

  • легко передавать на большие расстояния;
  • простое генераторное оборудование, упрощение устройства электродвигателей;
  • отсутствие полярности.

Недостатки:

  • расчеты проводятся на максимальное значение, по факту используется не более 70%;
  • электромагнитная индукция, приводящая к неравномерному распределению электричества по сечению проводника;
  • сложность проверки и измерения параметров;
  • увеличивается сопротивление, так как используется не весь кабель.

Для чего нужно знать сколько ампер в розетках в квартире

Сила тока измеряется в Амперах (А). Знать этот показатель необходимо, так как розетки различаются по нему.

Стандартные современные розетки рассчитаны на 6, 10 и 16 А. У советских приборов максимальный номинал равен 6,3 А. Для потребителей с повышенной мощностью выбирают соответствующие розетки, у которых повышенная стойкость к большим значениям.

Знание основ электротехники пригодится при поездке в другую страну. У государств могут различаться стандарты частоты и напряжений, и невозможно будет подключить привезенные с собой приборы к местной сети. Каждая розетка имеет маркировку, на которой указана максимальная сила тока.

Если у прибора указана только мощность в паспорте, вычислить ток можно по простой формуле I=P/U, где U –напряжение сети в Вольтах (220 В для домашних розеток), P – мощность прибора, измеряемая в Ваттах и I – сила тока в Амперах.

Сила тока в розетке

Стандартами частоты в России  и европейских странах является 50 Гц, в Америке – 60 Гц. Сила тока в квартирах ограничивается 16 Амперами, в частных загородных домах это значение может достигать 25 А.

Токовые измерения проводят различными способами. Можно опытным путем – подключить прибор в розетку, и если он функционирует – электроэнергия есть. Существуют мультиметры, которые замеряют значения, контрольные лампы, тестеры и индикаторы напряжения.

220 В

Номинальным напряжением в домашней сети является 220В, но на практике это значение может варьироваться. Отклонения до 20-25 Вольт.

На этот показатель влияют:

  • техническое состояние,
  • нагрузки сети,
  • загруженность электростанций.

Скачки напряжения выводят приборы из строя, поэтому подключение к сети лучше производить через специальные стабилизаторы.

Более 220 В

Для силовой электрической техники используются трехфазные сети, которые питаются напряжением 380 Вольт и выше. Чаще всего их можно встретить в электротранспорте – трамваях, троллейбусах, электричках. Для такого напряжения токовая нагрузка составляет до 32 А.

Сколько ампер в розетке 220В

Домашние розетки делаются на разную силу тока, которую она способна пропустить. Наибольшее значение – 16 А для напряжения в 220 Вольт. Каждая электророзетка промаркирована – если отмечено значение 6 А, то суммарная подключаемая нагрузка не более этого числа.

Нагрузка которую может выдержать соединение определяется по сумме  подключенных электроприборов. Например микроволновая печь, стиральная машина  подключаются через отдельные розетки не менее чем на 16 А, а для осветительных приборов, телефонов требуются устройства с меньшим номиналом.

Электроплита подключается через отдельное УЗО, так как для нее требуется 25 А и более.

Живя в ХХІ веке, используя блага научных открытий, человеку обязательно знать тип и величину тока, протекающего в домашней сети. Без этой информации невозможно купить электророзетку, правильно рассчитать нагрузку для электроприборов. Стандарты различаются для разных стран, и это стоит учитывать при поездке в другое государство.

Полезное видео

Какой ток в розетке

Современные электроприборы сконструированы максимально дружелюбными к пользователю и чтобы их использовать совершенно не обязательно знать какой ток в розетке, куда они подключаются. Подобные познания могут никогда не пригодится в повседневной жизни – обычно достаточно знать, что в розетке есть ток, благодаря которому работают все бытовые приборы.

Где могут пригодиться знания по электричеству

Хорошо если вопросы о принципах работы электроприборов возникают просто из «спортивного интереса». Хуже бывает в случае поездки в другую страну, где неподготовленные путешественники с удивлением обнаруживают розетки незнакомого типа. Если до этого человек обращал внимание на надписи возле «своих» розеток, то в «чужих» может оказаться другая частота и напряжение. Для понимания почему так происходит, надо хотя бы в общих чертах ознакомиться с основами электротехники.

Сразу необходимо оговориться, что все рассказанное ниже дано в очень упрощенном и утрированном виде. Некоторые аналогии могут полностью не отражать все происходящие в электропроводке процессы и даны исключительно для общего их понимания.

Постоянный и переменный ток

Это одна из важнейших характеристик электрического тока. Каждый электроприбор рассчитан под определенный его вид и при неправильном подключении в лучшем случае просто не будет работать.

Любой из этих токов создается электромагнитным полем, что заставляет двигаться свободные электроны в металлах или других проводниках. Но при постоянном они все время летят в одну сторону, а переменный ток дергает их туда-сюда. В любом случае они двигаются и совершают работу, но устройства для преобразования электрической энергии в механическую приходится делать разными. То есть электродвигатель, к примеру, можно сделать как от постоянного, так и от переменного тока, но первый нельзя включать во вторую цепь.

Если большинство электроприборов работает от постоянного тока, то для передачи электроэнергии на большие расстояния выгоднее использовать переменный – он не так чувствителен к сопротивлению проводников. Поэтому не может быть двух мнений по поводу какой ток в бытовой розетке: постоянный или переменный – всегда используется второй вариант.

В этом видео описываются исторические предпосылки использования переменного тока в электросетях:

Фаза и ноль

Эти понятия относятся исключительно к переменному току. Принято считать, что фаза в розетке является аналогом плюса постоянного тока, а ноль – минуса, поэтому ноль «не бьется», если до него дотронуться. На самом деле все несколько сложнее – в переменном токе плюс и минус постоянно меняются местами, поэтому в замкнутой цепи (при подключенной нагрузке) по нолю тоже протекает ток. Но дело в том, что он действительно не бьется, даже если брать его голыми руками – при электромонтажных работах ищут где находится фаза в розетке и в обязательном порядке изолируют этот провод, а остальные без особой опаски оставляют оголенными.

В правильно подключенной и нормально работающей электропроводке ноль не бьет человека током потому что применяется так называемая схема подключения потребителей с глухозаземленной нейтралью. Это значит, что нулевой провод на подстанции и в месте ввода в дом заземлены и ток, если он есть в проводе, проходит «мимо» человека.

Есть ряд условий, при которых нулевой провод может ударить током. Если нет соответствующего опыта обращения с электропроводкой, не стоит рассчитывать на то, что нуль всегда безопасен.

Заземление

Розетка без провода заземления не редкость для старых домов, потому что раньше в быту практически не использовались мощные электроприборы. Современные требования к безопасности электроприборов гораздо жестче, поэтому розетки устанавливаемые без заземления просто не могут быть использованы даже в проекте.

Смысл заземления в дополнительной защите. Если используется розетка без защитного заземления, то в большинстве случаев корпус приборов подключен к рабочему нолю. Как итог – если фаза попадает на корпус устройства (при пробое изоляции), то происходит короткое замыкание и выбивает защитные пробки. Это приводит к порче прибора, и сравнительно безопасно для человека, при одном условии – если он на момент замыкания не касался устройства. В противном случае, пока не сработает защита, человека бьет ток короткого замыкания, который в десятки раз выше номинального.

Розетки с заземлением разделяют ноль на рабочий, необходимый для функционирования устройства, и защитный. Корпус теперь, соединен с заземлением, а ноль работает в штатном режиме. Если на корпус попадает фаза, то розеточный заземляющий контакт «уводит» ее от человека, даже если он на этот момент касается устройства, а защитная автоматика выключает питание. Человека током не бьет, короткого замыкания не происходит и устройство по возможности остается в сохранности. Остается только найти место где повредилась изоляция и устранить неисправность.

Розетка без исправного заземления будет работать точно так же как и с ним, но при возникновении нештатной ситуации не сможет обеспечить должную защиту подключенным устройствам и человеку.

Как итог, вопроса что лучше ставить – розетки работающие без заземления или все-таки с ним, не существует – ПУЭ однозначно требуют поставить устройство второго типа.

Напряжение электрического тока

путь тока от электростанции (кликните для увеличения)

Если не использовать такие научные термины как «напряженность электрического поля» и «разность потенциалов», то понять какое напряжение в сети и почему оно именно такое помогут следующие аналогии:

Потенциальная и кинетическая энергия – пример очень упрощенный, но смысл в том, что напряжение показывает, какие силы могут быть задействованы при перемещении электрического заряда. Главное отличие в том, что потенциальная энергия переходит в кинетическую, а напряжение всегда стабильно. Использовать эту аналогию можно потому, что пока в розетку не включен никакой прибор, то в ней есть напряжение, готовое начать двигать заряженные частицы, но нет электрического тока. Движение электрического тока начинается только при подключении к проводам нагрузки (или при замыкании ноля и фазы).

Чем больше напряжение, тем выше его «проталкивающая» способность – это значит, что при достаточно больших его значениях ток «пробьет» диэлектрик между проводами. В обычных условиях диэлектриком между проводами является воздух, поэтому чем больше напряжение, тем выше вероятность возникновения молнии (замыкания) между ними. Это свойство используется в пьезозажигалках и механизмах розжига промышленных печей, только в первых расстояние между контактами 0,5 мм и напряжение в несколько Вольт, а во втором случае – между контактами 10-15 сантиметров, а напряжение около 10 тысяч Вольт.

От напряжения зависит насколько удобно передавать ток на большие расстояния – чем оно больше, тем меньше потерь.

Для линий электропередач между городами используется напряжение 150-600 тыс. Вольт, в пригороде это 4-30 тыс. Вольт, а у потребителей напряжение в розетке уже 100-380 Вольт. В разных странах действуют свои стандарты, поэтому перед поездкой стоит уточнять этот момент.

Частота электрического тока

Один из параметров переменного тока, показывающий сколько раз за секунду он поменяет направление движения от плюса к минусу. Полный цикл изменений – от ноля к плюсу, затем к минусу и обратно к нолю называется Герц. Во всем мире используется два стандарта частоты – 50 и 60 Герц.

От частоты, как и от напряжения, зависят потери тока при его передаче – чем выше частота, тем меньше потерь. Поэтому первый вариант используется при напряжении сети около 220 Вольт, а второй – при 110.

Частота тока зависит от того, с какой скоростью крутятся генераторы на вырабатывающих электричество станциях. Она всегда остается неизменной – в отличие от напряжения допускается погрешность в 0,5-1 Герц.

Сила тока

розетка на 16а (кликните чтобы увидеть надпись на крышке)

На крышке розетки можно увидеть надпись 6, 10 или 16А. Это не значит, что сила тока в розетке будет достигать таких величин – это максимальные его значения, на которые рассчитаны розеточные контакты. Соответственно, чтобы узнать, какая сила тока, а точнее – сколько ампер в розетке на данный момент, следует установить в электрическую цепь измерительное устройство – амперметр.

Примерно силу тока можно высчитать, если известна мощность устройства – по формуле I=P/U (напряжение в сети известно – на постсоветском пространстве это 220 Вольт).

К примеру, если электрочайник потребляет 2000 Ватт, то надо 2000 разделить на 220. Получается примерно 9 Ампер – сила тока, в 18 раз большая чем нужно, чтобы убить человека.

Сложнее подсчитать ампераж, к примеру, компьютера. Во-первых, при его работе в сеть включено сразу несколько устройств. Во вторых – энергосберегающие технологии используют ресурсы процессора по минимуму, разгоняя его только при решении сложных задач. Поэтому сила тока будет периодически изменяться.

Это все основные характеристики электрического тока, которые достаточно знать, чтобы получить про него хотя бы общее представление. При поездке в другую страну, где могу действовать иные нормативы, достаточно будет выяснить какие там в сети напряжение и частота. Если они отличаются от тех, на которые рассчитана зарядка телефона (или другие устройства, которые могут быть взяты в поездку), то дополнительно придется решать, как быть в этой ситуации.

Какой ток в аккумуляторе постоянный или переменный


В чем разница между постоянным и переменным током

Ток – это движение электронов в определенном направлении. Оно нужно, чтобы в наших устройствах тоже двигались электроны. Откуда берется ток в розетке?

Электростанция преобразует кинетическую энергию электронов в электрическую. То есть, гидроэлектростанция использует проточную воду для вращения турбины. Пропеллер турбины вращает клубок меди между двух магнитов. Магниты заставляют электроны в меди двигаться, из-за этого начинают двигаться электроны в проводах, которые присоединены к клубку меди — получается ток.

Генератор — как насос для воды, а провод — как шланг. Генератор-насос качает электроны-воду через провода-шланги.

Переменный ток — это тот ток, который у нас в розетке. Он называется переменным, потому что направление движения электронов постоянно меняется. У переменного тока из розеток бывает разная частота и электрическое напряжение. Что это значит? В российских розетках частота 50 герц и напряжение 220 вольт. Получается, что за секунду поток электронов 50 раз меняет направление движения электронов и заряд с положительного на отрицательный. Смену направлений можно заметить в флуоресцентных лампах, когда их включаешь. Пока электроны разгоняются, она несколько раз мигает —  это и есть смена направлений движения. А 220 вольт — это максимально возможный «напор», с которым движутся электроны в этой сети.

В переменном токе постоянно меняется заряд. Это значит, что напряжение составляет то 100%, то 0%, то снова 100%. Если бы напряжение было 100% постоянно, то понадобился бы провод огромного диаметра, а с меняющимся зарядом провода могут быть тоньше. Это удобно. По небольшому проводу электростанция может отправить миллионы вольт, потом трансформатор для отдельного дома забирает, например 10000 вольт, и в каждую розетку выдает по 220.

Постоянный ток — это ток, который у вас в телефонном аккумуляторе или батарейках. Он называется постоянным, потому что направление движения электронов не меняется. Зарядные устройства трансформируют переменный ток из сети в постоянный, и уже в таком виде он оказывается в аккумуляторах.

Чем отличается постоянный ток от переменного

Постоянный и переменный ток

В предыдущей статье, что такое электрический ток ты узнал, как происходит упорядоченное движение электронов в замкнутой цепи. Теперь, я расскажу тебе, каким бывает электрический ток. Электрический ток бывает постоянный и переменный.                                                                                                                                    Чем отличается переменный ток от постоянного?                                                       Характеристики постоянного тока.

Постоянный ток

Direct Current или DC так по-английски обозначают электрический ток который на протяжении  любого отрезка времени не меняет направление движения и всегда движется от плюса к минусу. На схеме обозначается как плюс (+) и минус (-), на корпусе прибора, работающего от постоянного тока наносят обозначение в виде одной (-) или (=) полос.                                                                                                                        Важная особенность постоянного электрического тока - это возможность его аккумулирования, т.е. накопления в аккумуляторах или получения его за счет химической реакции в батарейках.                                                                                        Множество современных переносных электрических устройств, работают, используя накопленный электрический заряд постоянного тока, который находится в аккумуляторах или батарейках этих самых устройств. 

 

Переменный ток           

 (Alternating Current) или АС английская аббревиатура  обозначающая ток, который меняет на временном отрезке свое направление и величину. На электрических схемах и корпусах электрических  аппаратов, работающих от переменного тока, символ переменного тока обозначают как отрезок синусоиды «~».                               Если говорить о переменном токе простыми словами, то можно сказать что в случае подключения электрической лампочки к сети переменного тока плюс и минус на ее контактах будут меняться местами с определенной частотой или иначе, ток будет менять свое направление с прямого на обратное.                                                                         На рисунке обратное направление – это область графика ниже нуля.

 Теперь давай разберемся, что такое частота.  Частота это - период времени, в течение которого ток выполняет одно полное колебание, число полных колебаний за 1 с называется частотой тока и обозначается буквой f. Частота измеряется в герцах (Гц) . В промышленности и быту большинства стран используют переменный ток с частотой 50 Гц.                                                                                                                                       Эта ве6личина показывает количество изменений направления тока за одну секунду на противоположное и возвращение в исходное состояние.        Иными словами в электрической розетке, которая есть в каждом доме и куда мы включаем утюги и пылесосы, плюс с минусом на правой и левой клеммах розетки будет меняться местами с частотой 50 раз в секунду - это и есть, частота переменного тока.  Для чего нужен такой “переменчивый “ переменный ток, почему не использовать только постоянный?  Это сделано для того, чтобы получить возможность без особых потерь получать нужное напряжение в любом количестве способом применения трансформаторов.                                                                                                                    Использование переменного тока позволяет передавать электроэнергию в промышленных масштабах на значительные расстояния с минимальными потерями.

Напряжение, которое подается мощными генераторами электростанций, составляет порядка 330 000-220 000 Вольт. Такое напряжение нельзя подавать в дома и квартиры, это очень опасно и сложно с технической стороны. Поэтому переменный электрический ток с электростанций подается на электрические подстанции, где происходит трансформация с высокого напряжения на более низкое, которое мы используем.             

 Преобразование переменного тока в постоянный

Из переменного тока, можно получить постоянный ток, для этого достаточно  подключить сети переменного тока диодный мост или как его еще называют “выпрямитель”.  Из названия “выпрямитель” как нельзя лучше понятно, что делает диодный мост, он выпрямляет синусоиду переменного тока в прямую линию тем самым заставляя двигаться электроны в одном направлении.

   что такое диод  и как работает диодный мост , ты можешь узнать в моих следующих статьях.

Отличие переменного тока от постоянного

Август 20, 2014

49077 просмотров

Электрический ток— это направленное или упорядоченное движение заряженных частиц: электронов в металлах, в электролитах — ионов, а в газах — электронов и ионов. Электрический ток может быть как постоянным, так и переменным.

Определение постоянного электрического тока, его источники

Постоянный ток ( DC, по-английски Direct Current) — это электрический ток, у которого  свойства и направление не меняются с течением времени. Обозначается постоянный ток и напряжение в виде короткой горизонтальной черточки или двух параллельных, одна из которых штриховая.

Постоянный ток используется в автомобилях и в домах, в многочисленных электронных приборах: ноутбуки, компьютеры, телевизоры и т. д. Перемеренный электрический ток  из розетки преобразуется в постоянный при помощи блока питания или трансформатора напряжения с выпрямителем.

Любой электроинструмент, устройство или прибор, работающие от батареек так же являются потребителями постоянного тока , потому что батарея или аккумулятор- это исключительно источники постоянного тока, который при необходимости преобразуется  в переменный с использованием специальных преобразователей (инверторов).

Принцип работы переменного тока

Переменный ток  (AC по-английски Alternating Current)- это электрический ток, который изменяется по величине и направлению с течением времени. На электроприборах условно обозначается отрезком синусоиды « ~ ». Иногда после синусоиды могут указываться характеристики переменного тока — частота, напряжение, число фаз.

Переменный ток может быть как одно- , так и  трёхфазным, для которого мгновенные значения тока и напряжения меняются по гармоническому закону.

Основные характеристики переменного тока — действующее значение напряжения и частота.

Обратите внимание, как на левом графике для однофазного тока меняется направление и величина напряжения с переходом в ноль за период времени Т, а на втором графике для трехфазного тока существует смещение трех синусоид на одну третью периода. На правом графике 1 фаза обозначена буквой «а», а вторая буквой «б». Хорошо известно, что в домашней розетке 220 Вольт. Но мало кто знает, что это действующие значение переменного напряжения, но амплитудное или максимальное значение будет больше на корень из двух, т.е будет равно 311 Вольт.

Таким образом, если у постоянного тока величина напряжения и направление не изменяются в течении времени, то у переменного тока- напряжение постоянно меняется по величине и направлению (график ниже нуля это обратное направление).

И так мы подошли к понятию частота— это отношение числа полных циклов  (периодов) к единице времени периодически меняющегося  электрического тока. Измеряется в Герцах. У нас и в Европе частота равна 50 Герцам, в США- 60 Гц.

Что означает частота 50 Герц? Она означает, что у нас переменный ток меняет свое направление на противоположное и обратно (отрезок Т- на графике) 50 раз за секунду!

Источниками переменного тока являются все розетки в доме и все то, что подключено напрямую проводами или кабелями  к электрощиту. У многих возникает вопрос: а почему  в розетке не постоянный ток? Ответ прост. В сетях переменного тока легко и с минимальными потерями преобразовывается величина напряжения до необходимого уровня при помощи трансформатора в любых объемах. Напряжение необходимо увеличивать для возможности передачи электроэнергии на большие расстояния с наименьшими потерями в промышленных масштабах.  С электростанции, где стоят мощные электрогенераторы, выходит напряжение величиной 330 000-220 000 Вольт, далее возле нашего дома на трансформаторной подстанции оно преобразуется с величины 10 000 Вольт в трехфазное напряжение 380 Вольт, которое и приходит в многоквартирный дом, а к нам в квартиру приходит однофазное напряжение, т. к. между фазой и нулем или землей напряжение равняется 220 В, а между разноименными фазами в электрощите 380 Вольт.

И еще одним из важных достоинств переменного напряжения является то, что асинхронные электродвигатели переменного тока конструктивно проще и работают значительно надежнее, чем двигатели постоянного тока.

Как переменный ток сделать постоянным

Для потребителей, работающих на постоянном токе- переменный преобразуется при помощи  выпрямителей.

  1. Первоначальный этап преобразования— это подключение диодного моста, состоящего из 4 диодов достаточной мощности (на рисунке ниже), который срезает верхние границы переменных синусоид или делает ток однонаправленным.
  2. Второй этап— это подключение параллельно на выход с диодного мостика конденсатора или сглаживающего фильтра, который исправляет провалы между пиками синусоид. Обратите внимание, как выглядит синусоида после прохождения через диодный мост (на рисунке выделена зеленным цветом).

    И как уменьшаются пульсации (изменения напряжения) после подключения конденсатора- на рисунке выделено синим цветом.

  3. Далее при необходимости для уменьшения уровня пульсаций,  дополнительно могут применяются стабилизаторы тока или  напряжения.

Преобразователь постоянного тока в переменный

Если с преобразованием переменного тока в постоянный не возникает сложностей, то со обратным преобразованием все гораздо сложнее. В домашних условиях для этого используется инвертор — это генератор периодического напряжения из постоянного, по форме приближённого к синусоиде.

Инвертор технически сложное устройство, поэтому и цены на него не маленькие. Стоимость зависит напрямую от выходной максимальной мощности переменного тока.

Как правило, преобразование постоянного тока требуется в редких случаях. Например, для подключения от бортовой электросети автомобиля домашних электроприборов, инструмента и т. п. в походе, на даче и т. д.

Что такое фаза, ноль, заземление читайте в следующей нашей статье.

Почему автомобильные генераторы вырабатывают переменный ток?

Задумывались ли вы когда-нибудь о том, что питает все системы вашего автомобиля? За счет чего заводится мотор, горят лампочки на приборной панели, движутся стрелки и работают бортовые компьютеры? Откуда берется электричество на борту? Конечно, их вырабатывает генератор и аккумулирует химический накопитель энергии многоразового действия – электрический аккумулятор. Это знают все. Скорее всего, вы также в курсе, что аккумуляторная батарея вырабатывает постоянный ток, который используется в любом автомобиле для запитывания приборов. Однако во всей этой стройной теории, проверенной практикой, присутствует одно странное звено, не желающее поддаваться логике, – генератор вырабатывает ток переменный, тогда как все механизмы на борту машины потребляют ток постоянный. Это не кажется вам странным? Почему так происходит?

На самом деле это интересный вопрос, потому что в этой истории на первый взгляд нет никакого смысла. Если все потребители электричества в вашем автомобиле работают на 12 вольтах постоянного тока, почему автопроизводители больше не используют генераторы, которые производят постоянный ток? Ведь раньше так и делали. Почему необходимо сперва сгенерировать переменный ток, а затем преобразовывать его в постоянное электричество?

Задавшись такого рода вопросами, мы начали докапываться до истины. Ведь есть же в этом какая-то тайная причина. И вот что мы выяснили.

Во-первых, давайте проясним, что мы подразумеваем под переменным и постоянным током. Автомобили используют постоянный ток, или прямой ток, как его еще называют. В названии скрыта суть феномена. Это тип электричества, который производится батареями, он течет в одном постоянном направлении. Этот же тип электричества производился генераторами, которые ставились на первые автомобили с начала 1900-х годов до 60-х годов прошлого века. На старушках ГАЗ М-20 «Победа» и ГАЗ-69 ставились именно генераторы постоянного тока.

Другой вид электричества – переменный ток – назван так из-за того, что он периодически обращает течение по направлению, а также изменяется по величине, сохраняя свое направление в электрической цепи неизменным. Доступ к этому типу электричества можно получить в любой розетке обычной квартиры по всему миру. Мы используем его для питания электроприборов в частных домах, зданиях, огни больших городов также дают свет благодаря переменному току, потому что его легче передавать на большие расстояния.

Большая часть электроники, в том числе почти вся в вашем автомобиле, использует постоянный ток, преобразуя переменный ток в постоянный для выполнения полезной работы. В бытовых приборах установлены так называемые блоки питания, в которых происходит конвертация одного вида энергии в другой. Побочным результатом работы преобразования является немного тепла на выходе. Чем сложнее бытовая утварь, к примеру компьютер или Smart TV, тем сложнее цепочка преобразований. В некоторых случаях переменный ток частично не изменяется, а лишь корректируется его частота. Поэтому очень важно при замене вышедшего из строя блока питания заменять его на оригинальный, требуемого типа. Иначе технике наступит очень быстрый конец.

Но что-то мы отошли от главных вопросов, поставленных на повестку дня сегодня.

Итак, зачем в автомобилях вырабатывать «неправильный» вид электричества?

В общем, ответ очень прост: таков принцип работы генератора переменного тока. Наиболее высокий КПД при переводе механической энергии вращения двигателя в электрическую энергию происходит именно по такому принципу. Но есть нюансы.

Кратко принцип работы автомобильного генератора таков:

При включении зажигания на обмотку возбуждения подается напряжение через блок щеток и контактные кольца.

Инициируется появление магнитного поля.

Магнитное поле воздействует на обмотки статора, что приводит к появлению электрического переменного тока.

Далее переменный ток отправляется на выпрямительный блок, где происходит его преобразование в постоянный ток.

Завершающая стадия «готовки» правильного тока – регулятор напряжения.

После всего процесса часть электричества запитывает электропотребители, часть идет на подзарядку аккумулятора, некоторая часть уходит обратно на щетки альтернатора (так когда-то называли генератор переменного тока) для самовозбуждения генератора.

Выше был описан принцип работы современного генератора переменного тока, но так было не всегда. Ранние автомобили с двигателями внутреннего сгорания использовали магнето – простейшее приспособление для преобразования механической энергии в электрическую (переменного тока). Внешне, да и внутренне, эти машинки были даже схожи с более поздними генераторами, но использовались на очень простых автомобильных электрических системах без батарей. Все было просто и безотказно. Не зря некоторые сохранившиеся до наших времен 90-летние автомобили заводятся до сих пор.

Индукторы (второе название магнето) впервые были разработаны человеком с неподражаемым именем – Ипполит Пикси.

Смотрите также: Сколько стоит зарядить электромобиль?

На данный момент мы с вами выяснили, что тип вырабатываемого генераторами тока зависит от продуктивности перевода механической энергии в электрическую, но также немаловажную роль во всей этой истории сыграло снижение массы и габаритов устройства по сравнению с аналогичными по мощности устройствами-производителями постоянного тока. Разница в весе и габаритах оказалась почти в три раза! Но есть еще один секрет, почему автомобильные генераторы сегодня вырабатывают переменный ток. Вкратце это более передовой эволюционный путь развития генераторов постоянного тока, которых, признаться честно, по сути, и не существовало в чистом виде.

Историческая справка:

Более того, генераторы постоянного тока на самом деле также производили переменный ток, когда якорь (подвижная часть) вращался внутри статора (внешний «корпус», который имеет постоянное магнитное поле). Разве что частота тока была иной и «сгладить» ее в постоянный ток можно было проще – при помощи коммутатора.

Коммутатором тогда называлось механическое приспособление с вращающимся цилиндром, поделенным на сегменты с щетками для создания электрического контакта.

Система работала, но была неидеальна. В ней было множество механических частей, контактные щетки быстро изнашивались, и общая надежность системы была так себе. Тем не менее это был лучший способ получить постоянный ток, который был нужен вам для зарядки аккумулятора и системы запуска автомобиля.

Так было до конца 1950-х годов, когда начала появляться твердотельная электроника, ставшая решением проблемы преобразования переменного тока в постоянный посредством кремниевых диодных выпрямителей.

Эти выпрямители тока (иногда называемые диодным мостом) показали себя с гораздо лучшей стороны в качестве преобразователей переменного тока в постоянный, что, в свою очередь, позволило использовать более простые, а значит, более надежные генераторы переменного тока в автомобилях.

Первым зарубежным автопроизводителем, который развил эту идею и вывел ее на рынок легковых автомобилей, был Chrysler, имевший опыт работы с выпрямителями и электронными регуляторами напряжения благодаря исследовательской работе, спонсируемой Министерством обороны США. В Википедии отмечается, что американская разработка «…повторяла разработку авторов из СССР», первая конструкция генератора переменного тока была представлена в Советском Союзе за шесть лет до этого. Единственным, но важным улучшением американцев стало применение кремниевых выпрямительных диодов вместо селеновых.

Смотрите также: Разряд автомобильного аккумулятора: причины и как его избежать

В СССР же, хоть и опоздали на 7 лет с введением в серию генераторов переменного тока на легковые автомобили, опередили весь мир в самой разработке новых типов генераторов. Еще в 1955 году на Горьковском автозаводе было выпущено 2.000 машин с альтернаторами вместо магнето.

«Одними из ведущих разработчиков, благодаря которым в СССР и на европейском континенте появилась первая серийная конструкция генераторов переменного тока, были Ю. А. Купеев (НИИ автоприборов) и В. И. Василевский (КЗАТЭ г. Самара)», – говорится на страницах Википедии.

Итог. Почему генераторы на авто вырабатывают переменный ток?

Ну, а мы завершаем наш рассказ. Первым легковым автомобилем, в базовой комплектации которого устанавливался генератор новой конструкции, стал Plymouth 1960 года выпуска. Некоторыми из наиболее очевидных преимуществ генератора было то, что на низкой скорости или на холостом ходу он по-прежнему производил достаточно тока, чтобы заряжать аккумулятор, что большинство генераторов того времени были не в состоянии сделать.

Оказалось, что альтернаторы, после того как был налажен массовый выпуск, производить дешевле, чем генераторы старой конструкции, они надежнее, выносливее и производят больше электричества на разных скоростях вращения коленчатого вала. Они сделали настолько большой шаг вперед, что все их плюсы запросто перекрывали единственный минус – они не могли производить постоянный ток. Позиция закрепилась после того, как инженерами был разработан дешевый и надежный твердотельный выпрямитель.

Видите? В конце концов, в этом есть смысл!

Аккумуляторы постоянного тока тенденции развития.

Под выражением «постоянный ток» понимается движение заряженных частиц в одну сторону — от отрицательного электрода к положительному.

Переменный ток — такое движение заряженных частиц, что и его направление, и получаемое напряжение меняются с определенной периодичностью.

Переменный ток может создаваться генератором или преобразователем.

Разнообразные источники тока, работающие по принципу сохранения и последующей отдачи энергии — то есть аккумуляторы — могут выдавать только постоянный ток.

Выражение «аккумуляторы переменного тока» можно считать оксюмороном.

Впрочем, его иногда используют для обозначения источника бесперебойного питания. Как известно, ИБП применяются в тех случаях, когда важно обезопасить технику от скачков напряжения в сети.

Например, персональный компьютер может быть подключен к сети через индивидуальный ИБП.

Аккумулятор ИБП создает постоянный ток. Однако компьютер работает на переменном токе.

Для того, чтобы обеспечить работоспособность техники в схему ИБП включается инвертор.

Так как на выходе получается переменный ток, создается впечатление, что ИБП и есть аккумуляторы переменного тока.



Какой ток в розетке - переменный или постоянный, и зачем это нужно знать: сколько ампер, какая его частота и как узнать самостоятельно

Различия токов

Конечно же, главным различием переменного и постоянного тока является возможность переправки DC на большое расстояние. При этом, если таким же путем переправить постоянный ток, его просто не останется. По причине разности потенциалов он израсходуется. Так же стоит отметить то, что преобразовать в переменный очень сложно, в то время как в обратном порядке подобное действие вполне легко выполнимо.

Намного экономичнее преобразование электричества в механическую энергию именно при помощи двигателей, работающих от АС, хотя и имеются области, в которых возможно применение механизмов только прямого тока.

Ну и последнее по очереди, но не по смыслу — все-таки переменный ток безопаснее для людей. Именно по этой причине все приборы, используемые в быту и работающие от DC, являются слаботочными. А вот совсем отказаться от применения более опасного в пользу другого никак не получится именно по указанным выше причинам.

Все изложенное приводит к обобщенному ответу на вопрос, чем отличается переменный ток от постоянного — это характеристики, которые и влияют на выбор того или иного источника питания в определенной сфере.

Передача тока на большие расстояния

У некоторых людей возникает вопрос, на который выше был дан поверхностный ответ: почему по линиям электропередач (ЛЭП) приходит очень высокое напряжение? Если не знать всех тонкостей электротехники, то можно согласиться с этим вопросом. Действительно, ведь если бы по ЛЭП приходило напряжение в 380 В, то не пришлось бы устанавливать дорогостоящие трансформаторные подстанции. Да и на их обслуживание тратиться не пришлось бы, разве не так? Оказывается, что нет.


Построение графика переменного тока

Дело в том, что сечение проводника, по которому протекает электричество, зависит только от силы тока и от его потребляемой мощности и совершенно в стороне от этого остается напряжение. А это значит, что при силе тока в 2 А и напряжении в 25 000 В можно использовать тот же провод, как и для 220 В с теми же 2 А. Так что же из этого следует?

Здесь необходимо вернуться к закону обратной пропорциональности — при трансформации тока, т.е. увеличении напряжения, уменьшается сила тока и наоборот. Таким образом, высоковольтный ток отправляется к трансформаторной подстанции по более тонким проводам, что обеспечивает и меньшие потери при передаче.

Особенности передачи

Как раз в потерях и состоит ответ на вопрос, почему невозможно передать постоянный ток на большие расстояния. Если рассмотреть DC под этим углом, то именно по этой причине через небольшой отрезок расстояния электроэнергии в проводнике не останется. Но главное здесь не энергопотери, а их непосредственная причина, которая заключается, опять же, в одной из характеристик AC и DC.

Дело в том, что частота переменного тока в электрических сетях общего пользования в России — 50 Гц (герц). Это означает амплитуду колебания заряда между положительным и отрицательным, равную 50 изменений в секунду. Говоря простым языком, каждую 1/50 с. заряд меняет свою полярность, в этом и заключается отличие постоянного тока — в нем колебания практически либо совершенно отсутствуют. Именно по этой причине DC расходуется сам по себе, протекая через длинный проводник. Кстати, частота колебаний, к примеру, в США отличается от российской и составляет 60 Гц.

График разности постоянного и переменного тока

Генерирование

Очень интересен вопрос и о том, как же генерируется постоянный и переменный ток. Конечно, вырабатывать можно как один, так и другой, но здесь встает проблема размеров и затрат. Дело в том, что если для примера взять обычный автомобиль, ведь куда проще было бы поставить на него генератор постоянного тока, исключив из схемы диодный мост. Но тут появляется загвоздка.

Если убрать из автомобильного генератора выпрямитель, вроде бы должен уменьшиться и объем, но этого не произойдет. А причина тому — габариты генератора постоянного тока. К тому же и стоимость при этом существенно увеличится, потому и применяются переменные генераторы.

Вот и получается, что генерировать DC намного менее выгодно, чем АС, и тому есть конкретное доказательство.

Два великих изобретателя в свое время начали так называемую «войну токов», которая закончилась только лишь в 2007 году. А противниками в ней были Никола Тесла совместно с Джорджем Вестингаузом, ярые сторонники переменного напряжения, и Томас Эдисон, который стоял за применение повсеместно постоянного тока. Так вот, в 2007 году город Нью-Йорк полностью перешел на сторону Теслы, ознаменовав тем самым его победу. На этом стоит немного подробнее остановиться.

Что такое переменный ток и переменное напряжение?

Ноябрь 15th, 2010 Айрат

Что такое переменный ток и переменное напряжение?

Ток бывает двух основных видов — постоянный и переменный. Чтобы разобраться с этими терминами, необходимо вспомнить, что ток — это упорядоченное движение электронов. И вот когда эти электроны все время движутся в одном и том же направлении, то такой ток называется постоянным. Но под понятием упорядоченное движение следует также понимать то что в один момент электроны движутся в одном направлении а во второй момент — в обратном и так без остановки. Вот такой ток уже называется переменным. Если говорят о постоянном и переменном напряжении, то имеется в виду что у постоянного напряжения + и — всегда «находятся на одном месте».

Примером постоянного напряжения может послужить обыкновенная батарейка, на её корпусе вы всегда найдете обозначения + и -. А у переменного + и — меняются через некоторой отрезок времени. Следственно постоянное напряжение создает постоянный ток. и соответственно переменное напряжение — переменный ток. Примером переменного напряжения может послужить обыкновенная электросеть. Постоянный ток обозначается одной прямой линией, а переменный одной волнистой линией.

Я думаю, вам не раз приходилось видеть надписи 220В, перед которой стоит горизонтальная волнистая линия. Это и есть обозначение переменного тока.

Обратите внимание на то, что устройства, в который используется постоянный ток, в подавляющем количестве, не допускают чтобы при подключения к ним питания контакты + и — перепутались между собой, поскольку если их перепутать то прибор может попросту «сгореть»

А вот для переменного напряжения это уже не актуально, припустим, вы включаете в розетку… да что угодно, и не важно какой именно стороной вставить вилку в розетку, прибор все ровно будет работать. Наверняка, вам также приходилось возле надписей 220В замечать и надпись на подобие 50Гц

Это частота переменного тока. И означает она, сколько раз в секунду меняется «плюс с минусом» местами. Надпись 50Гц (Герц) означает, что за одну секунду полярность напряжения меняется 50 раз

Наверняка, вам также приходилось возле надписей 220В замечать и надпись на подобие 50Гц. Это частота переменного тока. И означает она, сколько раз в секунду меняется «плюс с минусом» местами. Надпись 50Гц (Герц) означает, что за одну секунду полярность напряжения меняется 50 раз.

Для того чтобы представить, как именно происходит изменение полярности переменного напряжения необходимо разбираться в графиках, которые показывают напряжение в разные моменты времени. Давайте посмотрим на график, демонстрирующий постоянное напряжение (он слева). Припустим, что этот график показывает напряжение на контактах лампочки фонарика.

Начиная с точки 0 и до точки «а» график показывает, что напряжение равно нулю. Или другими словами говоря его там вообще нет (фонарик выключен). В момент времени «а» (в нашем варианте на контактах лампочки) появляется напряжение равное U1, которое остается без изменений в течении времени от «а» до «б» (фонарик включен). В момент времени «б» Напряжение снова пропадает (стает равным нулю). Если посмотреть на второй график, который отображает переменное напряжение, то думаю, несложно разобраться что именно происходит с переменным напряжением в разные моменты времени. В нулевой точке оно равно нулю. На протяжении времени от «0″ до «а» напряжение плавно возрастает до значения U1 и в этот же момент начинает спадать. В результате чего в момент времени «б» достигает нулевой отметки. Но как видно на графике, напряжение продолжает падать и становится отрицательным. В точке «г» достигает минимума, и снова начинает возрастать. Это явление повторяется на протяжении существования напряжения (пока свет не отключат . Следует заметить, что переменное напряжение может быть не только такой формы. Оно может быть, например, прямоугольной или практически любой другой формы. Теперь еще раз взгляните на этих два графика, и вспомните, как обозначается постоянный и переменный ток (напряжение).

Нет похожих постов.

Краткая история электричества

Кто изобрел электричество? А никто! Люди постепенно понимали, что это такое и как им пользоваться.

Все началось в 7 веке до нашей эры, в один солнечный (а может и дождливый, кто знает) день. Тогда греческий философ Фалес заметил, что, если потереть янтарь о шерсть, он будет притягивать легкие предметы.

Потом были Александр Македонский, войны, христианство, падение Римской империи, войны, падение Византии, войны, средневековье, крестовые походы, эпидемии, инквизиция и снова войны. Как вы поняли, людям было не до какого-то там электричества и натертых шерстью эбонитовых палочек.

В каком году изобрели слово «электричество»? 1600 году английский естествоиспытатель Уильям Гилберт решил написать труд «О магните, магнитных телах и о большом магните — Земле». Именно тогда и появился термин «электричество».

Через сто пятьдесят лет, в 1747 году Бенджамин Франклин, которого мы все очень любим, создал первую теорию электричества. Он рассматривал это явление как флюид или нематериальную жидкость.

Именно Франклин ввел понятие положительного и отрицательного зарядов (до этого разделяли стеклянное и смоляное электричество), изобрел молниеотвод и доказал, что молния имеет электрическую природу.

Бенджамина любят все, ведь его портрет есть на каждой стодолларовой купюре. Помимо работы в точных науках, он был видным политическим деятелем. Но вопреки распространенному заблуждению, Франклин не был президентом США.

Дальше пойдет перечисление важных для истории электричества открытий.

1785 год – Кулон выясняет, с какой силой противоположные заряды притягиваются, а одноименные отталкиваются.

1791 год – Луиджи Гальвани случайно заметил, что лапки мертвой лягушки сокращаются под действием электричества.

Принцип работы батарейки основан на гальванических элементах. Но кто создал первый гальванический элемент? Основываясь на открытии Гальвани, другой итальянский физик Алессандро Вольта в 1800 году создает столб Вольта – прототип современной батарейки.

На раскопках рядом с Багдадом нашли батарейку возрастом больше двух тысяч лет. Какой древний айфон с ее помощью подзаряжали – остается загадкой. Зато известно точно, что батарейка уже «села». Этот случай как бы говорит: может быть, люди знали об электричестве намного раньше, но потом что-то пошло не так.

Уже в 19 веке Эрстед, Ампер, Ом, Томсон и Максвелл совершили настоящую революцию. Был открыт электромагнетизм, ЭДС индукции, электрические и магнитные явления связали в единую систему и описали фундаментальными уравнениями.

Кстати! Если у вас нет времени, чтобы самостоятельно разбираться со всем этим, для наших читателей сейчас действует скидка 10% на любой вид работы

20 век принес квантовую электродинамику и теорию слабых взаимодействий, а также электромобили и повсеместные линии электропередач. Кстати, знаменитый электромобиль Тесла работает на постоянном токе.

Конечно, это очень краткая история электричества, и мы не упомянули очень много имен, которые повлияли на прогресс в этой области. Иначе пришлось бы написать целый многотомный справочник.

Фаза и ноль

Эти понятия относятся исключительно к переменному току. Принято считать, что фаза в розетке является аналогом плюса постоянного тока, а ноль – минуса, поэтому ноль «не бьется», если до него дотронуться. На самом деле все несколько сложнее – в переменном токе плюс и минус постоянно меняются местами, поэтому в замкнутой цепи (при подключенной нагрузке) по нолю тоже протекает ток. Но дело в том, что он действительно не бьется, даже если брать его голыми руками – при электромонтажных работах ищут где находится фаза в розетке и в обязательном порядке изолируют этот провод, а остальные без особой опаски оставляют оголенными.

В правильно подключенной и нормально работающей электропроводке ноль не бьет человека током потому что применяется так называемая схема подключения потребителей с глухозаземленной нейтралью. Это значит, что нулевой провод на подстанции и в месте ввода в дом заземлены и ток, если он есть в проводе, проходит «мимо» человека.

Есть ряд условий, при которых нулевой провод может ударить током. Если нет соответствующего опыта обращения с электропроводкой, не стоит рассчитывать на то, что нуль всегда безопасен.

Сила тока и напряжение в розетке

е. от электрического заряда, протекающего по цепи в 1 с. В этом мы убедились, знакомясь с различными действиями тока (см. § 35). Например, пропуская ток по железной или никелиновой проволоке, мы видели, что чем больше была сила тока, тем выше становилась температура проволоки, т. е. сильнее было тепловое действие тока.

Но не только от одной силы тока зависит работа тока. Она зависит ещё и от другой величины, которую называют электрическим напряжением или просто напряжением.

Напряжение — это физическая величина, характеризующая электрическое поле. Оно обозначается буквой U

Чтобы ознакомиться с этой очень важной физической величиной, обратимся к опыту

На рисунке 64 изображена электрическая цепь, в которую включена лампочка от карманного фонарика. Источником тока здесь служит батарейка. На рисунке 64, б показана другая цепь, в неё включена лампа, используемая для освещения помещений. Источником тока в этой цепи является городская осветительная сеть. Амперметры, включённые в указанные цепи, показывают одинаковую силу тока в обеих цепях. Однако лампа, включённая в городскую сеть, даёт гораздо больше света и тепла, чем лампочка от карманного фонаря. Объясняется это тем, что при одинаковой силе тока работа тока на этих участках цепи при перемещении электрического заряда, равного 1 Кл, различна. Эта работа тока и определяет новую физическую величину, называемую электрическим напряжением.

Рис. 64. Различное свечение ламп при одной и той же силе тока: а — источник тока — батарейка; б — источник тока — городская сеть

Напряжение, которое создаёт батарейка, значительно меньше напряжения городской сети. Именно поэтому при одной и той же силе тока лампочка, включённая в цепь батарейки, даёт меньше света и тепла.

Напряжение показывает, какую работу совершает электрическое поле при перемещении единичного положительного заряда из одной точки в другую.

Зная работу тока А на данном участке цепи и весь электрический заряд q, прошедший по этому участку, можно определить напряжение U, т. е. работу тока при перемещении единичного электрического заряда:

U = A / q

Следовательно, напряжение равно отношению работы тока на данном участке к электрическому заряду, прошедшему по этому участку.

Из предыдущей формулы можно определить:

A = Uq, q = A / U.

Электрический ток подобен течению воды в реках и водопадах, т. е. течению воды с более высокого уровня на более низкий. Здесь электрический заряд (количество электричества) соответствует массе воды, протекающей через сечение реки, а напряжение — разности уровней, напору воды в реке. Работа, которую совершает вода, падая, например, с плотины, зависит от массы воды и высоты её падения. Работа тока зависит от электрического заряда, протекающего через сечение проводника, и от напряжения на этом проводнике. Чем больше разность уровней воды, тем большую работу совершает вода при своём падении; чем больше напряжение на участке цепи, тем больше работа тока. В озёрах и прудах уровень воды всюду одинаков, и там вода не течёт; если в электрической цепи нет напряжения, то в ней нет и электрического тока.

Вводная про подключение амперметра, вольтметра и измерения мультиметром

Следующим пунктом разберемся с нашими измерительными приборами, которыми мы измеряем ток или напряжение.

Для измерения тока используется амперметр. Амперметр включается последовательно с нагрузкой. И это не пустые слова. Сопротивление амперметра ничтожно мало — это необходимо, чтобы не вносить погрешности в измерения тока, потребляемого нашими приборами. Чтобы использовать амперметр для измерения большего тока, можно произвести его шунтирование.

Для измерения напряжения в цепи уже используется вольтметр. Вольтметр подключается параллельно цепи и имеет большое внутреннее сопротивление. Это сопротивление необходимо для того, чтобы уменьшить ток, протекающий через прибор. Ведь по закону Ома мы уже понимаем, что при постоянстве величины напряжения, чем больше сопротивление, тем меньше ток.

Мультиметр — это прибор, которым можно производить различные измерения электрических и не только величин. Так вот, мультиметром можно замерять и ток и напряжение

Важно при этом вставить измерительные концы в нужные гнезда и выставить нужный предел. А далее уже пользоваться им как вольтметром или амперметром

Еще важным пунктом является предел измеряемых величин на приборах. То есть до измерения, желательно знать порядок величины, которая будет замерена.

Как измерить напряжение в розетке

Что мы будем делать дальше? Берем вольтметр или мультиметр, собранный для измерения переменного или постоянного напряжения. Одним концом тыкаем в одну дырку розетки, а вторым в другую дырку розетки. Что у нас получится?

  • прибор сгорит, если у вас выставлен предел меньше 220 вольт, или шкала прибора рассчитана вольт на 50. Это произойдет из-за того, что внутреннее сопротивление прибора окажется мало, и большАя величина тока вызовет порчу прибора (это может быть перегрев, оплавление, перегорание предохранителя и прочие неприятности)
  • прибор покажет примерно 220 В, и тем самым вы произведете нормальное такое измерение электрической величины

Какой величины ток в розетке и как его измерить

Теперь то, что делать нельзя!!! А то вдруг, вы сразу читаете и делаете. Потом претензии. Поэтому чисто теоретически. Берем мультиметр, подготовленный для измерения силы тока, или амперметр и один конец тыкаем в одну дырку розетки, второй во вторую. Что у нас произойдет?

  • Прибор сгорит. Так как его сопротивление мало, нагрузки нет, и ток будет настолько велик, что и прибор спалится и Вам может достаться, вплоть до больничной койки. Не стоит так делать, ей богу. По братски прошу, не стОит.
  • Прибор не сгорит, но только при условии, что у вас обесточена сеть. поэтому скорее достаем концы из розетки, чтобы сохранить материальную ценность от порчи.

Далее берем нагрузку. Нагрузка это любая штука, которая имеет сопротивление (активное, индуктивное, емкостное). Или же это прибор, который имеет свою электрическую схему (которая и есть сопротивление) и для работы ему необходимо подать питание на выходы ноль и фаза или плюс и минус. Схем огромное количество, как и приборов, где они применяются.

Суть вот в чем, у нас есть провод фазы и провод земли. Амперметр нам надо подключить в разрыв провода фазы. То есть либо перекусить его, либо через клеммник. Делать подключение надо при отсутствии напряжения, а то “лясне”. Сначала собираем измерительную схему — потом подаем на неё напряжение. Фаза пойдет через амперметр и прибор. Что получится:

Нагрузка у нас складывается последовательно. Сопротивление амперметра ничтожно мало, и ток, протекающий через прибор, пропорционален суммарному сопротивлению приборов. Стрелка на амперметре отклониться до величины потребляемого тока, или же на экране загориться значение, если измерительный прибор цифровой.
Прибор сгорит, если он предназначен для измерения постоянного тока, а мы включаем в цепь переменного тока, где нагрузка имеет активную и реактивную составляющие. Реактивная допустим большАя, активная — малипусенькая. Прибор постоянного тока видит только активную составляющую. Сопротивление суммарное будет ничтожным, а значит ток будет гигантским и прибор сгорит, да и измерителю может достаться
Прибор сгорит, если у нас выставлен предел на значение допустим 5А, а мы замеряем 20 ампер

Поэтому важно следить за величинами тока, которые мы измеряем.

Самый простой способ измерения силы тока — подключаем нагрузку в цепь, берем токоизмерительные клещи. Цепляем на провод по которому течет ток и замеряем его величину. Саааамый простой способ.

В общем измерение тока и напряжения это занятие, которое требует практической и теоретической подготовки от человека. Всегда лучше перестраховаться и вызвать специалиста, который разбирается в данных вопросах. Или хотя бы проконсультироваться.

Где могут пригодиться знания по электричеству

Хорошо если вопросы о принципах работы электроприборов возникают просто из «спортивного интереса». Хуже бывает в случае поездки в другую страну, где неподготовленные путешественники с удивлением обнаруживают розетки незнакомого типа

Если до этого человек обращал внимание на надписи возле «своих» розеток, то в «чужих» может оказаться другая частота и напряжение. Для понимания почему так происходит, надо хотя бы в общих чертах ознакомиться с основами электротехники

Сразу необходимо оговориться, что все рассказанное ниже дано в очень упрощенном и утрированном виде. Некоторые аналогии могут полностью не отражать все происходящие в электропроводке процессы и даны исключительно для общего их понимания.

Преимущества переменного тока

В наших розетках протекает переменный ток. Но почему именно он, чем он лучше постоянного?

Дело в том, что только величину переменного напряжения можно изменять с помощью преобразовательных устройств – трансформаторов. А делать это приходится многократно.

Теплоэлектростанции, гидроэлектростанции и атомные электростанции находятся далеко от потребителей. Возникает необходимость передачи больших мощностей на расстояния, исчисляемые сотнями и тысячами километров. Провода линий электропередач имеют малое сопротивление, но все же оно присутствует. Поэтому ток, проходя по ним, нагревает проводники. Более того, за счет разности потенциалов в начале и конце линии, к потребителю приходит меньшее напряжение, чем было на электростанции.

Бороться с этим явлением можно, либо уменьшив сопротивление проводов, либо снизив значение тока. Уменьшение сопротивления возможно только с увеличением сечением проводов, а это дорого, а порой – невозможно технически.

А вот уменьшить ток можно, увеличив значение напряжения линии. Тогда при передаче одной и той же мощности ток по проводам пойдет меньший. Уменьшаться потери на нагрев проводов.

Технически это выглядит так. От генераторов переменного тока электростанции напряжение подается на повышающий трансформатор. Например, 6/110 кВ. Далее по линии электропередач напряжением 110 кВ (сокращенно – ЛЭП-110 кВ) электрическая энергия отправляется до следующей распределительной подстанции.

Если эта подстанция предназначена для питания группы деревень в районе, то напряжение понижается до 10 кВ. Если при этом нужно отправить весомую часть принятой мощности энергоемкому потребителю (например, комбинату или заводу), могут использоваться линии напряжением 35 кВ. На узловых подстанциях для разделения напряжения между потребителями, находящихся на разном удалении и потребляющими разные мощности, используются трехобмоточные трансформаторы. В нашем примере это – 110/35/6 кВ.

Теперь напряжение, полученное на сельской подстанции, претерпевает новое преобразование. Его величина должна стать приемлемой для потребителя. Для этого мощность проходит через трансформатор 10/0,4 кВ. Напряжение между фазой и нулем линии, идущей к потребителю, становится равным 220 В. Оно и доходит до наших розеток.

Думаете, что это все? Нет. Для полупроводниковой техники, являющейся начинкой наших телевизоров, компьютеров, музыкальных центров эта величина не подойдет. Внутри них 220 В понижаются до еще меньшего значения. И преобразуется в постоянный ток.

Вот такая метаморфоза: передавать на большие расстояния лучше переменный ток, а нужен нам, в основном – постоянный.

Еще одно достоинство переменного тока: проще погасить электрическую дугу, неизбежно возникающую между размыкающимися контактами коммутационных аппаратов. Напряжение питания изменяется и периодически переходит через нулевое положение. В этот момент дуга гаснет самостоятельно при соблюдении определенных условий. Для постоянного напряжения потребуется более серьезная защита от подгорания контактов. Но при коротких замыканиях на постоянном токе повреждения электрооборудования от действия электрической дуги серьезнее и разрушительнее, чем на переменном.

Постоянный ток. Определение и параметры

Постоянный ток (DC - Direct Current) - электрический ток, не меняющий своей величины и направления с течением времени.

В реальности постоянный ток не может сохранять величину постоянной. Например, на выходе выпрямителей всегда присутствует переменная составляющая пульсаций. При использовании гальванических элементов, батареек или аккумуляторов, величина тока будет уменьшаться по мере расхода энергии, что актуально при больших нагрузках.

Постоянный ток существует условно в тех случаях, где можно пренебречь изменениями его постоянной величины.

Постоянная составляющая тока и напряжения.

DC

Если рассмотреть форму тока в нагрузке на выходе выпрямителей или преобразователей, можно увидеть пульсации - изменения величины тока, существующие, как результат ограниченных возможностей фильтрующих элементов выпрямителя.
В некоторых случаях величина пульсаций может достигать достаточно больших значений, которые нельзя не учитывать в расчётах, например, в выпрямителях без применения конденсаторов.
Такой ток обычно называют пульсирующим или импульсным. В этих случаях следует рассматривать постоянную DC и переменную AC составляющие.

Постоянная составляющая DC - величина, равная среднему значению тока за период.

AVG - аббревиатура Avguste - Среднее.

Переменная составляющая AC - периодическое изменение величины тока, уменьшение и увеличение относительно среднего значения .

Следует учитывать при расчётах, что величина пульсирующего тока будет равна не среднему значению, а квадратному корню из суммы квадратов двух величин - постоянной составляющей (DC) и среднеквадратичного значения переменной составляющей (AC), которая присутствует в этом токе, обладает определённой мощностью и суммируется с мощностью постоянной составляющей.

Вышеописанные определения, а так же термины AC и DC могут быть использованы в равной степени как для тока, так и для напряжения .

Отличие постоянного тока от переменного

По ассоциативным предпочтениям в технической литературе импульсный ток часто называют постоянным, так как он имеет одно постоянное направление. В таком случае необходимо уточнять, что имеется в виду постоянный ток с переменной составляющей.
А иногда его называют переменным, по той причине, что периодически меняет величину. Переменный ток с постоянной составляющей.
Обычно берут за основу составляющую, которая больше по величине или которая наиболее значима в контексте.

Следует помнить, что постоянный ток или напряжение характеризует, кроме направления, главный критерий - постоянная его величина, которая служит основой физических законов и является определяющей в расчётных формулах электрических цепей.
Постоянная составляющая DC, как среднее значение, является лишь одним из параметров переменного тока.

Для переменного тока (напряжения) в большинстве случаев бывает важен критерий - отсутствие постоянной составляющей, когда среднее значение равно нулю.
Это ток, который протекает в конденсаторах, силовых трансформаторах, линиях электропередач. Это напряжение на обмотках трансформаторов и в бытовой электрической сети.
В таких случаях постоянная составляющая может существовать только в виде потерь, вызванных нелинейным характером нагрузок.

Параметры постоянного тока и напряжения

Сразу следует отметить, что устаревший термин "сила тока" в современной отечественной технической литературе используется уже нечасто и признан некорректным. Электрический ток характеризует не сила, а скорость и интенсивность перемещения заряженных частиц. А именно, количество заряда, прошедшее за единицу времени через поперечное сечение проводника.
Основным параметром для постоянного тока является величина тока.

Единица измерения тока - Ампер.
Величина тока 1 Ампер - перемещение заряда 1 Кулон за 1 секунду.

Единица измерения напряжения - Вольт.
Величина напряжения 1 Вольт - разность потенциалов между двумя точками электрического поля, необходимая для совершения работы 1 Джоуль при прохождения заряда 1 Кулон.

Для выпрямителей и преобразователей часто бывает важными следующие параметры для постоянного напряжения или тока:

Размах пульсаций напряжения (тока) - величина, равная разности между максимальным и минимальным значениями.
Коэффициент пульсаций - величина, равная отношению действующего значения переменной составляющей AC напряжения или тока к его постоянной составляющей DC.

Похожие статьи: Параметры переменного тока.


Замечания и предложения принимаются и приветствуются!

Зависимость переменного тока (AC) от постоянного (DC)

Пораженный громом!

Откуда австралийская рок-группа AC / DC получила свое название? Да ведь переменный ток и постоянный ток, конечно же! И переменный, и постоянный ток описывают типы протекания тока в цепи. В постоянного тока (DC) электрический заряд (ток) течет только в одном направлении. Электрический заряд в переменном токе (AC), напротив, периодически меняет направление.Напряжение в цепях переменного тока также периодически меняется на противоположное, потому что ток меняет направление.

Большая часть создаваемой вами цифровой электроники будет использовать постоянный ток. Однако важно понимать некоторые концепции переменного тока. Большинство домов подключены к сети переменного тока, поэтому, если вы планируете подключить проект музыкальной шкатулки Tardis к розетке, вам нужно будет преобразовать переменный ток в постоянный. Переменный ток также обладает некоторыми полезными свойствами, такими как способность преобразовывать уровни напряжения с помощью одного компонента (трансформатора), поэтому переменный ток был выбран в качестве основного средства для передачи электроэнергии на большие расстояния.

Что вы узнаете

  • История создания переменного и постоянного тока
  • Различные способы генерации переменного и постоянного тока
  • Некоторые примеры приложений переменного и постоянного тока

Рекомендуемая литература

и nbsp

и nbsp

Переменный ток (AC)

Переменный ток описывает поток заряда, который периодически меняет направление. В результате уровень напряжения также меняется на противоположный вместе с током.Переменный ток используется для подачи электроэнергии в дома, офисные здания и т. Д.

Генерация переменного тока

переменного тока может производиться с использованием устройства, называемого генератором переменного тока. Это устройство представляет собой особый тип электрического генератора, предназначенного для выработки переменного тока.

Проволочная петля скручена внутри магнитного поля, которое индуцирует ток по проводу. Вращение провода может происходить с помощью любого количества средств: ветряной турбины, паровой турбины, проточной воды и так далее. Поскольку провод вращается и периодически меняет магнитную полярность, напряжение и ток на проводе чередуются.Вот короткая анимация, демонстрирующая этот принцип:


(Видео предоставлено: Хуррам Танвир)

Генератор переменного тока можно сравнить с нашей предыдущей аналогией с водой:

Чтобы генерировать переменный ток в наборе водопроводных труб, мы соединяем механический кривошип с поршнем, который перемещает воду в трубах вперед и назад (наш «переменный» ток). Обратите внимание, что защемленный участок трубы по-прежнему оказывает сопротивление потоку воды независимо от направления потока.

Осциллограммы

AC может быть разных форм, если напряжение и ток чередуются. Если мы подключим осциллограф к цепи переменного тока и построим график ее напряжения с течением времени, мы можем увидеть несколько различных форм сигналов. Наиболее распространенным типом переменного тока является синусоида. Переменный ток в большинстве домов и офисов имеет колеблющееся напряжение, которое создает синусоидальную волну.

Другие распространенные формы переменного тока включают прямоугольную волну и треугольную волну:

Прямоугольные волны часто используются в цифровой и переключающей электронике для проверки их работы.

Треугольные волны используются при синтезе звука и используются для тестирования линейной электроники, такой как усилители.

Описание синусоидальной волны

Мы часто хотим описать форму волны переменного тока в математических терминах. В этом примере мы будем использовать обычную синусоидальную волну. Синусоидальная волна состоит из трех частей: амплитуда, частота и фаза .

Рассматривая только напряжение, мы можем описать синусоидальную волну как математическую функцию:

V (t) - это наше напряжение как функция времени, что означает, что наше напряжение изменяется с изменением времени.Уравнение справа от знака равенства описывает, как напряжение изменяется во времени.

V P - это амплитуда . Это описывает максимальное напряжение, которое наша синусоида может достигать в любом направлении, что означает, что наше напряжение может быть + V P вольт, -V P вольт или где-то посередине.

Функция sin () указывает, что наше напряжение будет в форме периодической синусоидальной волны, которая представляет собой плавные колебания около 0 В.

- это константа, которая преобразует частоту из циклов (в герцах) в угловую частоту (радианы в секунду).

f описывает частоту синусоидальной волны. Это дается в виде герц или единиц в секунду . Частота показывает, сколько раз определенная форма волны (в данном случае один цикл нашей синусоидальной волны - подъем и спад) происходит в течение одной секунды.

t - наша независимая переменная: время (измеряется в секундах).По мере того, как меняется время, наша форма волны меняется.

φ описывает фазу синусоидальной волны. Фаза - это мера того, насколько сдвинута форма сигнала во времени. Часто это число от 0 до 360, которое измеряется в градусах. Из-за периодической природы синусоидальной волны, если форма волны сдвинута на 360 °, она снова становится такой же, как если бы она была сдвинута на 0 °. Для простоты мы предполагаем, что в остальной части этого руководства фаза равна 0 °.

Мы можем обратиться к нашей надежной розетке за хорошим примером того, как работает форма сигнала переменного тока. В Соединенных Штатах в наши дома подается питание переменного тока с размахом 170 В (амплитуда) и 60 Гц (частота). Мы можем подставить эти числа в нашу формулу, чтобы получить уравнение (помните, что мы предполагаем, что наша фаза равна 0):

Мы можем использовать наш удобный графический калькулятор, чтобы построить график этого уравнения. Если графического калькулятора нет, мы можем использовать бесплатную онлайн-программу для построения графиков, такую ​​как Desmos (обратите внимание, что вам может потребоваться использовать «y» вместо «v» в уравнении, чтобы увидеть график).

Обратите внимание, что, как мы и предсказывали, напряжение периодически повышается до 170 В и понижается до -170 В. Кроме того, каждую секунду происходит 60 циклов синусоидальной волны. Если бы мы измеряли напряжение в розетках с помощью осциллографа, мы бы увидели именно это ( ПРЕДУПРЕЖДЕНИЕ: не пытайтесь измерять напряжение в розетке с помощью осциллографа! Это может привести к повреждению оборудования).

ПРИМЕЧАНИЕ: Возможно, вы слышали, что напряжение переменного тока в США составляет 120 В. Это тоже правильно.Как? Говоря об переменном токе (поскольку напряжение постоянно меняется), часто проще использовать среднее или среднее значение. Для этого мы используем метод под названием «Среднеквадратичный корень». (RMS). Часто бывает полезно использовать среднеквадратичное значение для переменного тока, когда вы хотите рассчитать электрическую мощность. Несмотря на то, что в нашем примере у нас было напряжение, изменяющееся от -170 В до 170 В, среднеквадратичное значение составляет 120 В RMS.

Приложения

В розетках дома и в офисе почти всегда есть кондиционер. Это связано с тем, что генерировать и транспортировать переменный ток на большие расстояния относительно просто.При высоких напряжениях (более 110 кВ) при передаче электроэнергии теряется меньше энергии. Более высокие напряжения означают более низкие токи, а более низкие токи означают меньшее тепловыделение в линии электропередачи из-за сопротивления. Переменный ток можно легко преобразовывать в высокое напряжение и обратно с помощью трансформаторов.

AC также может питать электродвигатели. Двигатели и генераторы - это одно и то же устройство, но двигатели преобразуют электрическую энергию в механическую (если вал двигателя вращается, на выводах генерируется напряжение!).Это полезно для многих крупных бытовых приборов, таких как посудомоечные машины, холодильники и т. Д., Которые работают от сети переменного тока.

Постоянный ток (DC)

Постоянный ток немного легче понять, чем переменный. Вместо того, чтобы колебаться вперед и назад, постоянный ток обеспечивает постоянное напряжение или ток.

Генерация постоянного тока

постоянного тока можно создать несколькими способами:

  • Генератор переменного тока, оборудованный устройством, называемым «коммутатор», может производить постоянный ток
  • Использование устройства, называемого «выпрямитель», которое преобразует переменный ток в постоянный ток
  • Батареи обеспечивают постоянный ток, который образуется в результате химической реакции внутри батареи

Используя нашу аналогию с водой снова, DC подобен резервуару с водой со шлангом на конце.

Бак может выталкивать воду только в одном направлении: из шланга. Как и в случае с нашей батареей постоянного тока, когда резервуар пуст, вода больше не течет по трубам.

Описание DC

DC определяется как «однонаправленный» ток; ток течет только в одном направлении. Напряжение и ток могут изменяться с течением времени до тех пор, пока направление потока не меняется. Для упрощения предположим, что напряжение является постоянным. Например, мы предполагаем, что батарея AA обеспечивает 1.5 В, что математически можно описать как:

Если мы построим график с течением времени, мы увидим постоянное напряжение:

Что это значит? Это означает, что мы можем рассчитывать на то, что большинство источников постоянного тока обеспечат постоянное напряжение во времени. В действительности батарея будет медленно терять заряд, а это означает, что напряжение будет падать по мере использования батареи. В большинстве случаев мы можем предположить, что напряжение постоянно.

Приложения

Почти все проекты электроники и запчасти, выставленные на продажу на SparkFun, работают на DC.Все, что работает от батареи, подключается к стене с помощью адаптера переменного тока или использует USB-кабель для питания, зависит от постоянного тока. Примеры электроники постоянного тока включают:

  • Сотовые телефоны
  • D&D Dice Gauntlet на основе LilyPad
  • Телевизоры с плоским экраном (переменный ток переходит в телевизор, который конвертируется в постоянный ток)
  • Фонари
  • Гибридные и электромобили

Битва течений

Почти каждый дом или офис подключен к сети переменного тока.Однако это решение не было мгновенным. В конце 1880-х годов различные изобретения в Соединенных Штатах и ​​Европе привели к полномасштабной битве между распределением переменного и постоянного тока.

В 1886 году электрическая компания Ganz Works, расположенная в Будапеште, электрифицировала весь Рим с помощью переменного тока. Томас Эдисон, с другой стороны, построил 121 электростанцию ​​постоянного тока в Соединенных Штатах к 1887 году. Поворотный момент в битве наступил, когда Джордж Вестингауз, известный промышленник из Питтсбурга, приобрел патенты Николы Теслы на двигатели переменного тока и трансмиссию в следующем году. .

AC против

постоянного тока Томас Эдисон (Изображение любезно предоставлено biography.com)

В конце 1800-х годов постоянный ток было нелегко преобразовать в высокое напряжение. В результате Эдисон предложил систему небольших местных электростанций, которые питали бы отдельные кварталы или участки города. Электроэнергия распределялась по трем проводам от электростанции: +110 вольт, 0 вольт и -110 вольт. Освещение и двигатели могут быть подключены между розеткой + 110 В или 110 В и 0 В (нейтраль). При напряжении 110 В допускается некоторое падение напряжения между установкой и нагрузкой (дома, в офисе и т. Д.).).

Несмотря на то, что падение напряжения на линиях электропередачи было учтено, электростанции необходимо было располагать в пределах 1 мили от конечного пользователя. Это ограничение сделало распределение электроэнергии в сельской местности чрезвычайно трудным, если не невозможным.

Используя патенты Tesla, компания Westinghouse работала над усовершенствованием системы распределения переменного тока. Трансформаторы предоставили недорогой метод повышения напряжения переменного тока до нескольких тысяч вольт и его снижения до приемлемого уровня. При более высоких напряжениях та же мощность могла передаваться при гораздо меньшем токе, что означало меньшие потери мощности из-за сопротивления проводов.В результате крупные электростанции могут быть расположены за много миль от них и обслуживать большее количество людей и зданий.

Кампания Эдисона по выявлению мазков

В течение следующих нескольких лет Эдисон провел кампанию по категорическому противодействию использованию AC в Соединенных Штатах, которая включала лоббирование законодательных собраний штатов и распространение дезинформации о AC. Эдисон также приказал нескольким техникам публично казнить животных переменным током, пытаясь показать, что переменный ток более опасен, чем постоянный ток. Пытаясь показать эти опасности, Гарольд П.Браун и Артур Кеннелли, сотрудники Edison, разработали первый электрический стул для штата Нью-Йорк с использованием переменного тока.

Возвышение AC

В 1891 году Международная электротехническая выставка проводилась во Франкфурте, Германия, и на ней была показана первая передача трехфазного переменного тока на большие расстояния, которая питала фары и двигатели на выставке. Присутствовали несколько представителей того, что впоследствии станет General Electric, и впоследствии они были впечатлены дисплеем. В следующем году была создана компания General Electric, которая начала инвестировать в технологии переменного тока.

Электростанция Эдварда Дина Адамса в Ниагарском водопаде, 1896 г. (Изображение предоставлено teslasociety.com)

Westinghouse выиграл контракт в 1893 году на строительство плотины гидроэлектростанции, чтобы использовать энергию Ниагарского водопада и передавать переменный ток в Буффало, штат Нью-Йорк. Проект был завершен 16 ноября 1896 года, и электроэнергия переменного тока начала снабжать электроэнергией промышленные предприятия в Буффало. Эта веха ознаменовала упадок DC в США. В то время как Европа примет стандарт переменного тока 220–240 В при 50 Гц, стандартом в Северной Америке станет 120 В при 60 Гц.

Высоковольтный постоянный ток (HVDC)

Швейцарский инженер Рене Тюри использовал серию двигателей-генераторов для создания высоковольтной системы постоянного тока в 1880-х годах, которую можно было использовать для передачи энергии постоянного тока на большие расстояния. Однако из-за высокой стоимости и обслуживания систем Thury, HVDC никогда не применялся в течение почти столетия.

С изобретением полупроводниковой электроники в 1970-х годах стало возможным экономичное преобразование между переменным и постоянным током. Для генерации постоянного тока высокого напряжения (иногда до 800 кВ) можно использовать специальное оборудование.Некоторые страны Европы начали использовать линии HVDC для электрического соединения различных стран.

В линиях

HVDC потери меньше, чем в аналогичных линиях переменного тока на очень больших расстояниях. Кроме того, HVDC позволяет подключать различные системы переменного тока (например, 50 Гц и 60 Гц). Несмотря на свои преимущества, системы HVDC более дороги и менее надежны, чем обычные системы переменного тока.

В конце концов, Эдисон, Тесла и Вестингауз могут осуществить свои желания. Переменный ток и постоянный ток могут сосуществовать, и каждый из них служит определенной цели.

Ресурсы и дальнейшее развитие

Теперь вы должны хорошо понимать разницу между переменным и постоянным током. Переменный ток легче преобразовывать между уровнями напряжения, что делает передачу высокого напряжения более возможной. Напротив, постоянный ток присутствует почти во всей электронике. Вы должны знать, что они не очень хорошо сочетаются, и вам нужно будет преобразовать переменный ток в постоянный, если вы хотите подключить большую часть электроники к розетке. С этим пониманием вы должны быть готовы заняться некоторыми более сложными схемами и концепциями, даже если они содержат переменный ток.

Взгляните на следующие учебные пособия, когда будете готовы глубже погрузиться в мир электроники:

и nbsp

Напряжение, ток, сопротивление и закон Ома

Добавлено в избранное Любимый 116

Текущий

Мы можем представить себе количество воды, протекающей по шлангу из бака, как ток.18 электронов (1 кулон) в секунду проходят через точку в цепи. Ампер в уравнениях обозначается буквой «I».

Предположим теперь, что у нас есть два резервуара, каждый со шлангом, идущим снизу. В каждом резервуаре одинаковое количество воды, но шланг одного резервуара уже, чем шланг другого.

Мы измеряем одинаковое давление на конце любого шланга, но когда вода начинает течь, расход воды в баке с более узким шлангом будет меньше, чем расход воды в баке с более узким шлангом. более широкий шланг.С точки зрения электричества, ток через более узкий шланг меньше, чем ток через более широкий шланг. Если мы хотим, чтобы поток через оба шланга был одинаковым, мы должны увеличить количество воды (заряд) в резервуаре с помощью более узкого шланга.

Это увеличивает давление (напряжение) на конце более узкого шланга, проталкивая больше воды через резервуар. Это аналогично увеличению напряжения, которое вызывает увеличение тока.

Теперь мы начинаем видеть взаимосвязь между напряжением и током.Но здесь следует учитывать третий фактор: ширину шланга. В этой аналогии ширина шланга - это сопротивление. Это означает, что нам нужно добавить еще один термин в нашу модель:

.
  • Вода = заряд (измеряется в кулонах)
  • Давление = напряжение (измеряется в вольтах)
  • Расход = ток (измеряется в амперах, или, для краткости, «амперах»)
  • Ширина шланга = сопротивление

Ток - Энергетическое образование

Ток - это количество электрического заряда, протекающего в секунду в проводнике.Это то, что передает электроэнергию от электростанций через систему передачи и систему распределения для промышленного и домашнего использования. Это иначе известно как электричество. Сила тока определяется количеством заряда, протекающего в секунду, и измеряется в амперах, сокращенно A или ампер. Когда электрический заряд течет в одном направлении, это называется постоянным током, а когда электрический заряд колеблется взад и вперед в чередующихся направлениях, это называется переменным током.

Величину постоянного тока можно рассчитать по следующей формуле:

[математика] I = \ frac {\ Delta Q} {\ Delta t} [/ математика]

[math] I [/ math] = ток в амперах,
[math] \ Delta Q [/ math] = заряд в кулонах, проходящий мимо данного места, и
[math] \ Delta t [/ math] = прошедшее время в секундах.

Однако кулоны заряда нельзя измерить напрямую, обычно для измерения тока используется устройство, известное как мультиметр.Переменный ток использует аналогичное уравнение для определения силы тока, но математика становится немного сложнее, поскольку направление движущегося заряда быстро меняется.

По соглашению термин "ток" (также называемый обычным током) определяется как заряды, перемещающиеся от положительного вывода к отрицательному. Также существует термин «поток электронов», который используется для определения зарядов, движущихся от отрицательного вывода к положительному. Обратите внимание, что это противоположности.Обычный ток более популярен, хотя можно использовать любой термин, если это делается последовательно, чтобы избежать путаницы. Популярный веб-комикс о том, как определяются положительные и отрицательные заряды, можно найти на сайте XKCD.

Всякий раз, когда ток проходит через компонент или цепь, часть энергии теряется на нагрев. Некоторые специальные приложения, например тостеры, используют это тепло. Часто это тепло является неэффективностью системы, например, при передаче электроэнергии. Избыточное тепло может быть настоящей неприятностью в некоторых приложениях, таких как настольные компьютеры, которые имеют тенденцию к перегреву и которым требуются вентиляторы, которые циркулируют воздух, чтобы поддерживать их охлаждение.

Переключатели

используются для выключения (или включения) тока почти мгновенно, как только заряду некуда идти (помните, ток перемещается только тогда, когда есть полная цепь), ток прекращается. Если начинает течь слишком большой ток, специальный переключатель действует как мера безопасности для автоматического отключения тока. Эти меры аварийной безопасности включают предохранители и автоматические выключатели.

Ток и магнитные поля

Электрический ток порождает магнитные поля, что было обнаружено Гансом Эрстедом в 1819 году и вскоре после этого расширено Андре-Мари Ампером, [1] Жан-Батистом Био и Феликсом Саваром, которые сформировали первые законы электромагнетизма. [2] Электродвигатели - это обычное применение этого явления, в которых токи и их магнитные поля используются для преобразования электрической энергии в механическую.

Чтобы узнать о физике электрического тока, обратитесь к гиперфизике.

Список литературы

Electric Current - The Physics Hypertextbook

Обсуждение

определения

текущий

Электрический ток определяется как скорость, с которой заряд протекает через поверхность (например, поперечное сечение провода).Несмотря на то, что оно относится ко многим различным вещам, слово ток часто используется само по себе вместо более длинного, более формального «электрического тока». Прилагательное «электрический» подразумевается контекстом описываемой ситуации. Фраза «ток через тостер», несомненно, относится к потоку электронов через нагревательный элемент, а не к потоку ломтиков хлеба через прорези.

Как и все величины, определяемые как скорость, есть два способа записать определение электрического тока - средний ток для тех, кто заявляет о незнании вычислений…

и мгновенный ток для тех, кто не боится вычислений…

I = д = dq
т дт

Единица измерения тока - ампер [А], названная в честь французского ученого Андре-Мари Ампера (1775–1836).В письменных языках без диакритических букв (а именно в английском) принято писать единицу измерения как ампер , а при неформальном общении сокращать это слово до amp . У меня нет проблем с любым из этих вариантов написания. Только не используйте заглавную букву «А» в начале. Ампер относится к физику, а ампер (или ампер, или ампер) относится к единице.

Поскольку заряд измеряется в кулонах, а время измеряется в секундах, ампер равняется кулону в секунду.



А = С

с

Элементарный заряд определяется как ровно…

е = 1,602176634 × 10 −19 С

Число элементарных зарядов в кулонах будет обратной величиной этого числа - повторяющейся десятичной дробью с периодом 778 716 цифр. Я напишу первые 19 цифр, это максимум, что я могу написать (поскольку произвольных долей элементарного заряда не существует).

C ≈ 6,241,509,074,460,762,607 e

А потом напишу еще раз с более разумным количеством цифр, чтобы было легче читать.

C ≈ 6,2415 × 10 18 e

Ток в один ампер - это передача примерно 6,2415 × 10 18 элементарных зарядов в секунду. Для любителей случайностей это примерно десять микромолей.

плотность тока

Когда я визуализирую ток, я вижу, как что-то движется.Я вижу, как они движутся в каком-то направлении. Я вижу вектор. Я вижу не то. Ток не является векторной величиной, несмотря на мою хорошо развитую научную интуицию. Ток - это скаляр. И причина в том ... потому что это так.

Но подождите, становится еще страннее. Отношение силы тока к площади для данной поверхности называется плотностью тока.

Единица измерения плотности тока - ампер на квадратный метр , не имеющая специального названия.



А = А

м 2 м 2

Несмотря на отношение двух скалярных величин, плотность тока является вектором.И причина в том, что это так.

Ну… на самом деле, это потому, что плотность тока определяется как произведение плотности заряда и скорости для любого места в космосе…

Дж = ρ v

Два уравнения эквивалентны по величине, как показано ниже.

Дж = ρ v
Дж = кв DS = с dq = 1 I
В дт SA дт А
Дж = I
А

Есть еще кое-что, что нужно учесть.

I = JA = ρ v A

Читатели, знакомые с механикой жидкостей, могли бы узнать правую часть этого уравнения, если бы оно было написано немного иначе.

I = ρ Av

Это произведение является величиной, которая остается постоянной в уравнении неразрывности массы .

ρ 1 A 1 v 1 = ρ 2 A 2 v 2

Точно такое же выражение применяется к электрическому току с символом ρ, меняющим значение между контекстами.В механике жидкости ρ обозначает массовую плотность, а в электрическом токе - плотность заряда.

Описание микроскопа

Ток - это поток заряженных частиц. Это дискретные сущности, а значит, их можно сосчитать.

n = N / V

q = нкВ

V = Ad = Av t

I = д = nqAv т
т т

I = nqAv

Аналогичное выражение можно записать для плотности тока.Вывод начинается в скалярной форме, но в окончательном выражении используются векторы.

Дж = нк v

твердых

проводимость и валентные электроны, проводники и изоляторы

Дрейфовое движение, наложенное на тепловое движение

Увеличить

Мостовой текст.

Тепловая скорость электронов в проводе довольно высока и случайным образом изменяется из-за столкновений атомов. Поскольку изменения хаотичны, средняя скорость равна нулю.

Когда провод помещается в электрическое поле, свободные электроны равномерно ускоряются в промежутках между столкновениями. Эти периоды ускорения поднимают среднюю скорость выше нуля. (Эффект на этой диаграмме сильно преувеличен.)

тепловая скорость электрона в меди при комнатной температуре (классическое приближение)…

v rms = √ 3 (1.38 × 10 −23 Дж / К) (300 К)
(9,11 × 10 −31 кг)
v rms 100 км / с

ферми-скорость электрона в меди (квантовая величина)…

v fermi = √ 2 E Ферми
м e
v fermi = √ 2 (7.00 эВ) (1,60 × 10 −19 Дж / эВ)
(9,11 × 10 −31 кг)
v fermi 1500 км / с

скорость дрейфа электрона на 10 м медного провода, подключенного к автомобильному аккумулятору 12 В при комнатной температуре (среднее время свободного пробега между столкновениями при комнатной температуре τ = 3 × 10 −14 с)…

v смещение = 1 v = 1 a τ = 1 Факс τ = 1 eE τ
2 2 2 м e 2 м e
v смещение = (1.60 × 10 −19 C) (12 В) (3 × 10 −14 с)
2 (10 м) (9,11 × 10 −31 кг)
v смещение 3 мм / с

Тепловая скорость на несколько порядков превышает скорость дрейфа в обычной проволоке. Время на прохождение круга - около часа.

жидкости

ионы, электролиты

газы

ионов, плазма

  • 14:02 - Отключение линии электропередачи на юго-западе Огайо
    4. Стюарт - Атланта 345 кВ
    Эта линия является частью пути передачи из юго-западного Огайо в северный Огайо. Он отключился от системы из-за возгорания кисти под частью линии. Горячие газы от пожара могут ионизировать воздух над линией электропередачи, заставляя воздух проводить электричество и закорачивать проводники.
    Источник

исторический

Символ I был выбран французским физиком и математиком 19 века Андре-Мари Ампером для обозначения силы тока силы тока.

Увеличить
Pour exprimer en nombre l'intensité d'un courant quelconque, on Concevra qu'on ait choisi un autre courant арбитраж для сравнения терминов…. Désignant donc par i et i ' les rapports des tensités des deux courant donnés à l'intensité du courant pris pour unite…. Чтобы выразить интенсивность тока в виде числа, предположим, что для сравнения выбран другой произвольный ток…. Используем i и i для отношения интенсивностей двух заданных токов к силе опорного тока, взятого за единицу….
Андре-Мари Ампер, 1826 Андре-Мари Ампер, 1826 г. (платная ссылка)

Термин «интенсивность» теперь не имеет никакого отношения к физике. Ток - это скорость, с которой заряд и протекает через поверхность любого размера - например, клеммы аккумулятора или штыри электрической вилки. Интенсивность - это среднее значение мощности, на единицу площади, передаваемое каким-либо явлением излучения - например, звуком оживленного шоссе, светом Солнца или частицами брызг, испускаемыми радиоактивным источником.Ток и интенсивность теперь - разные величины с разными единицами измерения и разным использованием, поэтому (конечно) они используют одинаковые символы.

текущий интенсивность
I = д

А = С

т с
I = P

Вт

А м 2

Начало стола

  • 12 000 А ток через магниты LHC в ЦЕРН

Что такое электрический ток? | Живая наука

Электрический ток - это движущийся электрический заряд.Он может принимать форму внезапного разряда статического электричества, такого как молния или искра между вашим пальцем и пластиной выключателя заземления. Однако чаще, когда мы говорим об электрическом токе, мы имеем в виду более контролируемую форму электричества, вырабатываемую генераторами, батареями, солнечными элементами или топливными элементами.

Большая часть электрического заряда переносится электронами и протонами внутри атома. Протоны имеют положительный заряд, а электроны - отрицательный. Однако протоны в основном иммобилизованы внутри атомных ядер, поэтому перенос заряда из одного места в другое выполняют электроны.Электроны в проводящем материале, таком как металл, в значительной степени могут свободно перемещаться от одного атома к другому по своим зонам проводимости, которые являются высшими электронными орбитами. По словам Серифа Урана, профессора физики в Питтсбургском государственном университете, при достаточной электродвижущей силе (ЭДС) или напряжении возникает дисбаланс заряда, который может заставить электроны перемещаться по проводнику в виде электрического тока.

Хотя сравнивать электрический ток с потоком воды в трубе несколько рискованно, есть некоторые сходства, которые могут облегчить понимание.По словам Майкла Дабсона, профессора физики в Университете Колорадо Болдера, мы можем представить поток электронов в проводе как поток воды в трубе. Предостережение: в этом случае труба всегда заполнена водой. Если мы откроем клапан на одном конце, чтобы вода попала в трубу, нам не нужно ждать, пока вода дойдет до конца трубы. Мы получаем воду из другого конца почти мгновенно, потому что поступающая вода выталкивает воду, которая уже находится в трубе, к концу.Вот что происходит в случае электрического тока в проводе. Электроны проводимости уже присутствуют в проводе; нам просто нужно начать толкать электроны на одном конце, и они почти сразу же начнут течь на другом конце.

Согласно веб-сайту HyperPhysics Государственного университета Джорджии, фактическая скорость электрона в проводе составляет порядка нескольких миллионов метров в секунду, но он не движется прямо по проводу. Он подскакивает почти наугад и движется только со скоростью несколько миллиметров в секунду.Это называется дрейфовой скоростью электрона. Однако скорость передачи сигнала, когда электроны начинают выталкивать другой конец провода после того, как мы щелкаем переключателем, почти равна скорости света, которая составляет около 300 миллионов метров в секунду (186 000 миль в секунду). В случае переменного тока, когда ток меняет направление 50 или 60 раз в секунду, большая часть электронов никогда не выходит из провода.

Несбалансированность начислений может быть создана несколькими способами.Первым известным способом было создание статического заряда путем трения друг о друга двух разных материалов, например, протирания кусочка янтаря мехом животных. Затем можно создать ток, прикоснувшись янтарем к телу с меньшим зарядом или к земле. Однако этот ток имел очень высокое напряжение, очень низкую силу тока и длился всего долю секунды, поэтому его нельзя было заставить выполнять какую-либо полезную работу.

Постоянный ток

Следующим известным способом создания дисбаланса зарядов была электрохимическая батарея, изобретенная в 1800 году итальянским физиком Алессандро Вольта, в честь которого названа единица электродвижущей силы - вольт (В).Его «гальваническая куча» состояла из стопки чередующихся цинковых и медных пластин, разделенных слоями ткани, пропитанной соленой водой, и создавал устойчивый источник постоянного тока (DC). Он и другие улучшили и усовершенствовали свое изобретение в течение следующих нескольких десятилетий. По данным Национального музея американской истории, «батареи привлекли внимание многих ученых и изобретателей, и к 1840-м годам они обеспечивали током новые электрические устройства, такие как электромагниты Джозефа Генри и телеграф Сэмюэля Морса."

Другие источники постоянного тока включают топливные элементы, которые объединяют кислород и водород в воду и вырабатывают электрическую энергию в процессе. Кислород и водород можно подавать в виде чистых газов или из воздуха и химического топлива, такого как спирт. Другой источник постоянного тока ток - это фотоэлектрический или солнечный элемент. В этих устройствах фотонная энергия солнечного света поглощается электронами и преобразуется в электрическую энергию.

Переменный ток

Большая часть электроэнергии, которую мы используем, поступает в виде переменного тока (AC) от электрического Энергосистема.Переменный ток вырабатывается электрическими генераторами, которые работают по закону индукции Фарадея, с помощью которого изменяющееся магнитное поле может индуцировать электрический ток в проводнике. В генераторах есть вращающиеся катушки из проволоки, которые проходят через магнитные поля при их вращении. Когда катушки вращаются, они открываются и закрываются относительно магнитного поля и производят электрический ток, который меняет направление на противоположное каждые пол-оборота. Ток проходит полный прямой и обратный цикл 60 раз в секунду, или 60 герц (Гц) (50 Гц в некоторых странах).Генераторы могут работать от паровых турбин, работающих на угле, природном газе, масле или ядерном реакторе. Они также могут приводиться в действие ветряными турбинами или водяными турбинами на плотинах гидроэлектростанций.

Из генератора ток проходит через серию трансформаторов, где он повышается до гораздо более высокого напряжения для передачи. Причина этого в том, что диаметр проводов определяет величину тока или силы тока, которую они могут проводить без перегрева и потери энергии, но напряжение ограничивается только тем, насколько хорошо линии изолированы от земли.Интересно отметить, что ток передается только по одному проводу, а не по двум. Две стороны постоянного тока обозначены как положительная и отрицательная. Однако, поскольку полярность переменного тока меняется 60 раз в секунду, две стороны переменного тока обозначаются как горячая и заземленная. В линиях электропередачи на большие расстояния провода проходят через горячую сторону, а земля проходит через землю, замыкая цепь.

Поскольку мощность равна напряжению, умноженному на силу тока, вы можете послать больше мощности по линии при той же силе тока, используя более высокое напряжение.Затем высокое напряжение понижается по мере того, как оно распределяется по сети подстанций, пока не достигает трансформатора рядом с вашим домом, где оно, наконец, понижается до 110 В. (В Соединенных Штатах настенные розетки и лампы работают от 110 В. при 60 Гц. В Европе почти все работает от 230 В при 50 Гц.)

Как только ток достигает конца линии, большая часть его используется одним из двух способов: либо для обеспечения тепла и света через электрическое сопротивление. , или механическое движение за счет электрической индукции.Есть еще несколько приложений - на ум приходят люминесцентные лампы и микроволновые печи - которые работают на разных принципах, но львиная доля энергии идет на устройства, основанные на сопротивлении и / или индуктивности. Фен, например, использует и то, и другое одновременно.

Это подводит нас к важной особенности электрического тока: он может выполнять работу. Он может освещать ваш дом, стирать и сушить одежду и даже поднимать гаражные ворота одним щелчком выключателя. Однако все более важной становится способность электрического тока передавать информацию, особенно в виде двоичных данных.Хотя для подключения к Интернету вашего компьютера требуется лишь небольшая часть электрического тока, скажем, электрического обогревателя, он становится все более и более важным для современной жизни.

Дополнительные ресурсы

Physics Tutorial: Series Circuits

Как упоминалось в предыдущем разделе Урока 4, два или более электрических устройства в цепи могут быть соединены последовательным или параллельным соединением. Когда все устройства соединены последовательным соединением, схема называется последовательной схемой .В последовательной цепи каждое устройство подключается таким образом, что существует только один путь, по которому заряд может проходить через внешнюю цепь. Каждый заряд, проходящий через контур внешней цепи, будет последовательно проходить через каждый резистор.

Краткое сравнение и контраст между последовательными и параллельными цепями было сделано в предыдущем разделе Урока 4. В этом разделе было подчеркнуто, что добавление большего количества резисторов к последовательной цепи приводит к довольно ожидаемому результату - увеличению общего сопротивления. .Поскольку в цепи есть только один путь, каждый заряд встречает сопротивление каждого устройства; поэтому добавление большего количества устройств приводит к увеличению общего сопротивления. Это увеличенное сопротивление служит для уменьшения скорости протекания заряда (также известной как ток).

Эквивалентное сопротивление и ток

Заряд течет вместе через внешний контур со скоростью, которая везде одинакова. В одном месте ток не больше, чем в другом.Фактическое количество тока обратно пропорционально общему сопротивлению. Существует четкая взаимосвязь между сопротивлением отдельных резисторов и общим сопротивлением набора резисторов. Что касается батареи, которая нагнетает заряд, наличие двух последовательно соединенных резисторов с сопротивлением 6 Ом было бы эквивалентно наличию в цепи одного резистора с сопротивлением 12 Ом. Наличие трех последовательно соединенных резисторов сопротивлением 6 Ом эквивалентно наличию в цепи одного резистора сопротивлением 18 Ом.И наличие четырех последовательно соединенных резисторов 6 Ом было бы эквивалентно наличию в цепи одного резистора 24 Ом.

Это концепция эквивалентного сопротивления. Эквивалентное сопротивление схемы - это величина сопротивления, которая потребуется одному резистору, чтобы сравняться с общим эффектом от набора резисторов, присутствующих в схеме. Для последовательных цепей математическая формула для вычисления эквивалентного сопротивления ( R eq ) составляет

. рэндов экв. = 1 + 2 + 3 +...

, где R 1 , R 2 и R 3 - значения сопротивления отдельных резисторов, соединенных последовательно.

Создавайте, решайте и проверяйте свои собственные проблемы с помощью виджета Equivalent Resistance ниже. Создайте себе проблему с любым количеством резисторов и любыми номиналами. Решать проблему; затем нажмите кнопку «Отправить», чтобы проверить свой ответ.

Ток в последовательной цепи везде одинаковый.Заряд НЕ накапливается и не начинает накапливаться в любом заданном месте, так что ток в одном месте больше, чем в других местах. Заряд НЕ расходуется резисторами, так что в одном месте его меньше по сравнению с другим. Можно представить, что заряды движутся вместе по проводам электрической цепи и везде движутся с одинаковой скоростью. Ток - скорость, с которой течет заряд - везде одинаков. То же самое на первом резисторе, как на последнем резисторе, как в батарее.Математически можно написать

I аккумулятор = I 1 = I 2 = I 3 = ...

, где I 1 , I 2 и I 3 - значения тока в отдельных местах резистора.

Эти значения тока легко вычислить, если известно напряжение аккумулятора и известны отдельные значения сопротивления. Используя значения отдельных резисторов и приведенное выше уравнение, можно рассчитать эквивалентное сопротивление.А используя закон Ома (ΔV = I • R), ток в батарее и, следовательно, через каждый резистор можно определить, найдя соотношение напряжения батареи и эквивалентного сопротивления.

I аккумулятор = I 1 = I 2 = I 3 = ΔV аккумулятор / R экв

Разность электрических потенциалов и падения напряжения

Как обсуждалось в Уроке 1, электрохимическая ячейка цепи подает энергию на заряд, чтобы перемещать его через ячейку и устанавливать разность электрических потенциалов на двух концах внешней цепи.Элемент с напряжением 1,5 В создает разность электрических потенциалов во внешней цепи 1,5 В. Это означает, что электрический потенциал на положительной клемме на 1,5 В больше, чем на отрицательной клемме. Когда заряд движется по внешней цепи, он теряет 1,5 вольт электрического потенциала. Эта потеря электрического потенциала обозначается как падение напряжения . Это происходит, когда электрическая энергия заряда преобразуется в другие формы энергии (тепловую, световую, механическую и т. Д.).) внутри резисторов или нагрузок. Если электрическая цепь, питаемая от элемента на 1,5 В, оснащена более чем одним резистором, то совокупная потеря электрического потенциала составляет 1,5 В. Для каждого резистора существует падение напряжения, но сумма этих падений составляет 1,5 В - то же самое, что и номинальное напряжение источника питания. Математически эту концепцию можно выразить следующим уравнением:

ΔV аккумулятор = ΔV 1 + ΔV 2 + ΔV 3 +...

Чтобы проиллюстрировать этот математический принцип в действии, рассмотрим две схемы, показанные ниже на диаграммах A и B. Предположим, вас попросили определить два неизвестных значения разности электрических потенциалов между лампочками в каждой цепи. Чтобы определить их значения, вам нужно будет использовать приведенное выше уравнение. Батарея обозначается обычным схематическим символом, а рядом с ней указывается ее напряжение. Определите падение напряжения для двух лампочек, а затем нажмите кнопку «Проверить ответы», чтобы убедиться, что вы правы.

Ранее в Уроке 1 обсуждалось использование диаграммы электрических потенциалов. Диаграмма электрических потенциалов - это концептуальный инструмент для представления разности электрических потенциалов между несколькими точками электрической цепи. Рассмотрим приведенную ниже принципиальную схему и соответствующую диаграмму электрических потенциалов.

Схема, показанная на схеме выше, питается от источника энергии 12 В.В цепи последовательно соединены три резистора, каждый из которых имеет собственное падение напряжения. Отрицательный знак разности электрических потенциалов просто означает потерю электрического потенциала при прохождении через резистор. Обычный ток направляется по внешней цепи от положительной клеммы к отрицательной. Поскольку схематический символ источника напряжения использует длинную полосу для обозначения положительного вывода, точка A на схеме находится на положительном выводе или выводе с высоким потенциалом.В точке A электрический потенциал 12 вольт, а в точке H (отрицательный вывод) - 0 вольт. Проходя через батарею, заряд приобретает электрический потенциал 12 вольт. А при прохождении через внешнюю цепь заряд теряет 12 вольт электрического потенциала, как показано на диаграмме электрических потенциалов, показанной справа от принципиальной схемы. Эти 12 вольт электрического потенциала теряются в три этапа, каждый из которых соответствует прохождению через резистор. При прохождении через соединительные провода между резисторами происходит небольшая потеря электрического потенциала из-за того, что провод оказывает относительно небольшое сопротивление потоку заряда.Поскольку точки A и B разделены проводом, они имеют практически одинаковый электрический потенциал 12 В. Когда заряд проходит через свой первый резистор, он теряет 3 В электрического потенциала и падает до 9 В в точке C. точка D отделена от точки C простым проводом, она имеет практически тот же электрический потенциал 9 В, что и C. Когда заряд проходит через второй резистор, он теряет 7 В электрического потенциала и падает до 2 В в точке E. Поскольку точка F отделена от точки E простым проводом, она имеет практически тот же электрический потенциал 2 В, что и E.Наконец, когда заряд проходит через свой последний резистор, он теряет 2 В электрического потенциала и падает до 0 В в точке G. схема снова. Прирост энергии обеспечивается аккумулятором при перемещении заряда с H на A.

В Уроке 3 закон Ома (ΔV = I • R) был введен как уравнение, которое связывает падение напряжения на резисторе с сопротивлением резистора и током на резисторе.Уравнение закона Ома можно использовать для любого отдельного резистора в последовательной цепи. При объединении закона Ома с некоторыми принципами, уже обсужденными на этой странице, возникает большая идея.

В последовательных цепях резистор с наибольшим сопротивлением имеет наибольшее падение напряжения.

Поскольку в последовательной цепи ток везде одинаковый, значение I ΔV = I • R одинаково на каждом из резисторов последовательной цепи. Таким образом, падение напряжения (ΔV) будет изменяться с изменением сопротивления.Где бы сопротивление ни было наибольшим, падение напряжения будет наибольшим у этого резистора. Уравнение закона Ома можно использовать не только для прогнозирования того, что на резисторе в последовательной цепи будет наблюдаться наибольшее падение напряжения, но и для расчета фактических значений падения напряжения.

Δ В 1 = I • R 1 Δ В 2 = I • R 2 Δ В 3 = I • R 3

Математический анализ последовательных цепей

Приведенные выше принципы и формулы могут быть использованы для анализа последовательной цепи и определения значений тока и разности электрических потенциалов на каждом из резисторов в последовательной цепи.Их использование будет продемонстрировано математическим анализом схемы, показанной ниже. Цель состоит в том, чтобы использовать формулы для определения эквивалентного сопротивления цепи (R eq ), тока в батарее (I до ), а также падений напряжения и тока для каждого из трех резисторов.

Анализ начинается с использования значений сопротивления отдельных резисторов для определения эквивалентного сопротивления цепи.

R экв. = R 1 + R 2 + R 3 = 17 Ом + 12 Ом + 11 Ом = 40 Ом

Теперь, когда известно эквивалентное сопротивление, ток в батарее можно определить с помощью уравнения закона Ома.При использовании уравнения закона Ома (ΔV = I • R) для определения тока в цепи важно использовать напряжение батареи для ΔV и эквивалентное сопротивление для R. Расчет показан здесь:

I до = ΔV аккумулятор / R eq = (60 В) / (40 Ом) = 1,5 А

Значение тока 1,5 А - это ток в месте расположения батареи. В последовательной цепи без точек разветвления ток везде одинаковый.Ток в месте расположения батареи такой же, как ток в каждом месте расположения резистора. Следовательно, 1,5 ампер - это значение I 1 , I 2 и I 3 .

I батарея = I 1 = I 2 = I 3 = 1,5 А

Осталось определить три значения - падение напряжения на каждом из отдельных резисторов. Закон Ома снова используется для определения падения напряжения для каждого резистора - это просто произведение тока на каждом резисторе (вычисленное выше как 1.5 ампер) и сопротивление каждого резистора (указано в постановке задачи). Расчеты показаны ниже.

ΔV 1 = I 1 • R 1

ΔV 1 = (1,5 A) • (17 Ом)

ΔV 1 = 25,5 В

ΔV 2 = I 2 • R 2

ΔV 2 = (1,5 A) • (12 Ом)

ΔV 2 = 18 В

ΔV 3 = I 3 • R 3

ΔV 3 = (1.5 А) • (11 Ом)

ΔV 3 = 16,5 В

В качестве проверки точности выполненных математических расчетов целесообразно проверить, удовлетворяют ли вычисленные значения принципу, согласно которому сумма падений напряжения для каждого отдельного резистора равна номинальному напряжению батареи. Другими словами, ΔV батареи = ΔV 1 + ΔV 2 + ΔV 3 ?

Является ли ΔV батареи = ΔV 1 + ΔV 2 + ΔV 3 ?

Это 60 В = 25.5 В + 18 В + 16,5 В?

60 В = 60 В?

Да !!

Математический анализ этой последовательной схемы включал смесь концепций и уравнений. Как это часто бывает в физике, отделение понятий от уравнений при принятии решения физической проблемы является опасным актом. Здесь необходимо учитывать концепции, согласно которым ток везде одинаков и что напряжение батареи эквивалентно сумме падений напряжения на каждом резисторе, чтобы завершить математический анализ.В следующей части Урока 4 параллельные цепи будут проанализированы с использованием закона Ома и концепций параллельных цепей. Мы увидим, что подход сочетания концепций с уравнениями будет не менее важен для этого анализа.

Мы хотели бы предложить ... Зачем просто читать об этом и когда можно с этим взаимодействовать? Взаимодействие - это именно то, что вы делаете, когда используете одну из интерактивных функций The Physics Classroom.Мы хотели бы предложить вам совместить чтение этой страницы с использованием нашего интерактивного средства построения цепей постоянного тока. Вы можете найти его в разделе Physics Interactives на нашем сайте. Построитель цепей постоянного тока предоставляет учащемуся набор для построения виртуальных цепей. Вы можете легко перетащить источники напряжения, резисторы и провода на рабочее место, расположить и подключить их так, как вам нужно. Вольтметры и амперметры позволяют измерять падение тока и напряжения. Нажатие на резистор или источник напряжения позволяет изменять сопротивление или входное напряжение.Это просто. Это весело. И это безопасно (если вы не используете его в ванне).


Проверьте свое понимание

1. Используйте свое понимание эквивалентного сопротивления, чтобы заполнить следующие утверждения:

а. Два резистора сопротивлением 3 Ом, включенные последовательно, обеспечат сопротивление, эквивалентное сопротивлению одного резистора _____ Ом.

г. Три резистора сопротивлением 3 Ом, включенные последовательно, обеспечат сопротивление, эквивалентное сопротивлению одного резистора _____ Ом.

г. Три резистора 5 Ом, включенные последовательно, обеспечат сопротивление, эквивалентное одному резистору _____ Ом.

г. Три резистора с сопротивлением 2 Ом, 4 Ом и 6 Ом включены последовательно. Они обеспечили бы сопротивление, эквивалентное одному резистору _____ Ом.

e. Три резистора с сопротивлением 5 Ом, 6 Ом и 7 Ом включены последовательно. Они обеспечили бы сопротивление, эквивалентное одному резистору _____ Ом.

ф. Три резистора с сопротивлением 12 Ом, 3 Ом и 21 Ом включены последовательно. Они обеспечили бы сопротивление, эквивалентное одному резистору _____ Ом.

2. По мере увеличения количества резисторов в последовательной цепи общее сопротивление __________ (увеличивается, уменьшается, остается прежним) и ток в цепи __________ (увеличивается, уменьшается, остается прежним).


3. Рассмотрим следующие две схемы последовательных цепей. На каждой диаграмме используйте стрелки, чтобы указать направление обычного тока. Затем сравните напряжение и ток в обозначенных точках для каждой диаграммы.


4. Три одинаковые лампочки подключены к D-ячейке, как показано справа.Какое из следующих утверждений верно?

а. Все три лампочки будут иметь одинаковую яркость.

г. Лампа между X и Y будет самой яркой.

г. Лампа между Y и Z будет самой яркой.

г. Лампочка между Z и батареей будет самой яркой.

5. Три одинаковые лампочки подключены к батарее, как показано справа.Какие настройки можно было бы внести в схему, чтобы увеличить ток, измеряемый в точке X? Перечислите все подходящие варианты.

а. Увеличьте сопротивление одной из лампочек.

г. Увеличьте сопротивление двух лампочек.

г. Уменьшите сопротивление двух лампочек.

г. Увеличьте напряжение аккумулятора.

e. Уменьшите напряжение аккумулятора.

ф. Удалите одну из луковиц.


6. Три одинаковые лампочки подключены к батарее, как показано справа. W, X, Y и Z обозначают места на трассе. Какое из следующих утверждений верно?

а. Разница потенциалов между X и Y больше, чем между Y и Z.

г. Разница потенциалов между X и Y больше, чем между Y и W.

г. Разность потенциалов между Y и Z больше, чем между Y и W.

г. Разность потенциалов между X и Z больше, чем между Z и W.

e. Разность потенциалов между X и W больше, чем на батарее.

ф. Разница потенциалов между X и Y больше, чем между Z и W.


7.Сравните схему X и Y ниже. Каждый питается от 12-вольтовой батареи. Падение напряжения на резисторе 12 Ом в цепи Y равно ____ падению напряжения на единственном резисторе в цепи X.

а. меньше чем

г. больше

г. то же, что

8. Аккумулятор на 12 В, резистор на 12 Ом и лампочка подключаются, как показано на схеме X ниже.Резистор на 6 Ом добавлен к резистору на 12 Ом и лампочке, чтобы создать цепь Y, как показано. Лампочка появится ____.

а. диммер в контуре X

г. диммер в контуре Y

г. одинаковая яркость в обеих цепях


9. Три резистора включены последовательно. Если поместить в цепь с источником питания 12 В.Определите эквивалентное сопротивление, полный ток цепи, падение напряжения и ток на каждом резисторе.

Виды электрического тока | Sciencing

Электрический ток бывает двух видов: переменного тока и постоянного тока, сокращенно AC и DC. Оба типа имеют свое собственное применение с точки зрения выработки и использования электроэнергии, хотя переменный ток является более распространенным типом электрического тока в доме.Разница в том, что постоянный ток течет только в одном направлении, а переменный ток быстро меняет направление.

Электричество - это поток электронов

Электричество - это результат движения электронов. Во всех веществах отрицательно заряженные электроны в атомах перемещаются беспорядочно. Когда электроны начинают течь в определенном направлении внутри вещества или от одного объекта к другому, в результате возникает электричество. Движение электронов можно использовать для получения энергии.Движение электронов происходит, когда два объекта трутся друг о друга и электроны переносятся друг на друга, что является статическим электричеством. Когда электроны протекают в токе, например, через проводник, такой как медный провод, электричество называется электрическим током.

Как на самом деле течет ток?

Электрический ток - это поток электронов, но электроны не прыгают непосредственно от точки происхождения тока к месту назначения. Вместо этого каждый электрон перемещается на небольшое расстояние к следующему атому, передавая свою энергию электрону в этом новом атоме, который перескакивает на другой атом, и так далее.Отдельные электроны движутся не быстро, но сам ток движется со скоростью света. Ток нагревает проводник. Этот механик производит свет в лампочках и тепло в электрических плитах.

Постоянный ток и переменный ток

Постоянный ток - это электрический ток, который течет только в одном направлении. Обычное место, где можно найти постоянный ток, - это батареи. Аккумулятор сначала заряжается постоянным током, который затем преобразуется в химическую энергию. Когда аккумулятор используется, он превращает химическую энергию обратно в электричество в форме постоянного тока.Аккумуляторы нуждаются в постоянном токе для зарядки, и они будут производить только постоянный ток.

Вам нужен индукционный генератор для выработки переменного тока. Английский физик Майкл Фарадей открыл электромагнитную индукцию, а Никола Тесла в сотрудничестве с Westinghouse Company разработал большие индукционные генераторы, которые питают сегодня цивилизацию. Поскольку индукционный генератор имеет вращающийся ротор, вырабатываемое им электричество меняет направление один раз и обратно с каждым циклом ротора.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *