Калькулятор сопротивления для светодиода: Расчет резистора для светодиода, калькулятор расчёта сопротивления

Содержание

Расчет резистора для светодиода, калькулятор расчёта сопротивления

Светодиод имеет очень небольшое внутреннее сопротивление, если его подключить напрямую к блоку питания, то сила тока будет достаточной высокой, чтобы он сгорел. Медные или золотые нити, которыми кристалл подключается к внешним выводам, могут выдерживать небольшие скачки, но при сильном превышении перегорают и питание прекращает поступать на кристалл. Онлайн расчёт резистора для светодиода производится на основе его номинальной рабочей силы тока.

Содержание

  • 1. Онлайн калькулятор
  • 2. Основные параметры
  • 3. Особенности дешёвых ЛЕД

Онлайн калькулятор

Предварительно составьте схему подключения, чтобы избежать ошибок в расчётах. Онлайн калькулятор покажет вам точное сопротивление  в Омах. Как правило окажется, что резисторы с таким номиналом не выпускаются, и вам будет показан ближайший стандартный номинал. Если не удаётся сделать точный подбор сопротивления, то используйте больший номинал. Подходящий номинал можно сделать подключая сопротивление параллельно или последовательно. Расчет сопротивления для светодиода можно не делать, если использовать мощный переменный или подстроечный резистор. Наиболее распространены типа 3296 на 0,5W. При использовании питания на 12В, последовательно можно подключить до 3 LED.

Резисторы бывают разного класса точности, 10%, 5%, 1%. То есть их сопротивление может погрешность в этих пределах в положительную или отрицательную сторону.

Не забываем учитывать и мощность токоограничивающего резистора, это его способность рассеивать определенное количество тепла.  Если она будет мала, то он перегреется и выйдет из строя, тем самым разорвав электрическую цепь.

Чтобы определить полярность можно подать небольшое напряжение или использовать функцию проверки диодов на мультиметре. Отличается от режима измерения сопротивления, обычно подаётся от 2В до 3В.

Основные параметры

Отличие характеристик кристаллов для дешевых ЛЕД

Так же при расчёте светодиодов следует учитывать разброс параметров, для дешевых они будут максимальны, для дорогих они будут более одинаковыми.  Чтобы проверить этот параметр, необходимо включить их в равных условиях, то есть последовательно. Уменьшая тока или напряжение снизить яркость до слегка светящихся точек. Визуально вы сможете оценить, некоторые будут светится ярче, другие тускло.  Чем равномернее они горят, тем меньше разброс. Калькулятор расчёта резистора для светодиода подразумевает, что характеристики светодиодных чипов идеальные, то есть отличие равно нулю.

Напряжение падения для распространенных моделей маломощных до 10W может быть от 2В до 12В. С ростом мощности увеличивается количество кристаллов в COB  диоде, на каждом есть падение. Кристаллы включаются цепочками последовательно, затем они объединяются в параллельные цепи. На мощностях от  10W до 100W снижение растёт с 12В до 36В.

Этот параметр должен быть указан в технических характеристиках LED чипа  и зависит от назначения:

  • цвета синий, красный, зелёный, желтый;
  • трёхцветный RGB;
  • четырёхцветный RGBW;
  • двухцветный, теплый и холодный белый.

Особенности дешёвых ЛЕД

Прежде чем подобрать резистор для светодиода на онлайн калькуляторе, следует убедится в параметрах диодов. Китайцы на Aliexpress продают множество led, выдавая их за фирменные. Наиболее популярны модели  SMD3014, SMD 3528, SMD2835, SMD 5050, SMD5630, SMD5730. Всё самое плохое обычно делается под брендом Epistar.

Например, чаще всего китайцы обманывают на SMD5630 и SMD5730. Цифры в маркировке обозначают лишь размер корпуса 5,6мм на 3,0мм. В фирменных такой большой корпус используется для установки мощных кристаллов на 0,5W , поэтому у покупателей диодов СМД5630 напрямую ассоциируется с мощностью 0,5W. Хитрый китаец этим пользуется, и в корпус 5630 устанавливает дешевый и слабенький кристалл в среднем на 0,1W , при этом указывая потребление энергии 0,5W.

Китайские светодиодные лампы кукурузы

Наглядным примером будут автомобильные лампы и светодиодные кукурузы, в которых поставлено большое количество слабеньких и некачественных ЛЕД чипов. Обычный покупатель считает, чем больше светодиодов чем лучше светит и выше мощность.

Автомобильные лампы на самых слабых лед 0,1W

Чтобы сэкономить денежку, мои  светодиодные коллеги ищут приличные ЛЕД на Aliexpress. Ищут хорошего продавца, который обещает определённые параметры, заказывают , ждут доставку месяц. После тестов оказывается, что китайский продавец обманул, продал барахло. Повезёт, если на седьмой раз придут приличные диоды, а не барахло.

 Обычно сделают 5 заказов, и не добившись результата и идут делать заказ в отечественный магазин, который может сделать обмен.

Калькулятор светодиодов. Расчет ограничительных резисторов для одиночных светодиодов и светодиодных массивов • Электротехнические и радиотехнические калькуляторы • Онлайн-конвертеры единиц измерения

Калькулятор нарисует принципиальную и монтажную схему одного светодиода с ограничительным резистором или светодиодного массива, состоящего из нескольких параллельных ветвей светодиодов, с последовательно включенным ограничительным резистором. Если вы только начинаете изучать электронику или учитесь в техническом университете, вы можете использовать этот калькулятор для изучения светодиодов. Если же вы не в первый раз разрабатываете массив светодиодов, воспользуйтесь им для проверки своих расчетов. И конечно, этот и другие калькуляторы на TranslatorsCafe.com пригодятся всем, кто хочет изучить технический английский, так как все они есть и в английской версии.

Пример: Рассчитать последовательно-параллельный массив, состоящий из 30 красных светодиодов с прямым напряжением 2 В и прямым током 20 мА для напряжения источника 12 В.

Входные данные

Напряжение источника питания

VsВ

Напряжение источника питания должно быть выше прямого напряжения светодиода и менее 250 В.

Прямой ток светодиода

IfмА

Для питания мощных светодиодов необходимо использовать стабилизаторы тока, а не ограничительные резисторы.

Выберите тип светодиода

Выберите тип светодиодаинфракрасныйкрасныйзелёныйжёлтыйоранжевый/янтарныйсинийбелыйдругой

или Прямое напряжение светодиода

VfВ

Количество светодиодов в массиве

Nt

Количество светодиодов в цепи последовательно включенных светодиодов с ограничительным резистором. Если этот параметр не задан, он будет рассчитан автоматически.

Ns

Число светодиодов в цепи последовательно включенных светодиодов не должно быть больше {0} для заданных напряжения источника питания и прямого напряжения светодиода.

Выходные данные

Такая схема имеет слишком низкий КПД из-за большой мощности, рассеиваемой на одном или нескольких ограничительных резисторах.

Массив {0} x {1}, всего светодиодов {2}

Число светодиодов в одной цепи {0}

Принципиальная схема

Монтажная схема

Номинал и максимальная рассеиваемая мощность резистора для последовательной цепи с максимальным для данного напряжения питания количеством светодиодов:

Общая мощность, рассеиваимая на всех ограничительных резисторах:

Общая мощность, рассеиваемая всеми светодиодами:

Общая мощность, потребляемая массивом светодиодов:

Ток, потребляемый от источника питания:

Количество светодиодов в матрице:

Количество последовательных ветвей, соединенных параллельно:

Количество светодиодов в последовательной ветви с макс. количеством светодиодов:

Количество светодиодов в дополнительной ветви с количеством светодиодов, меньшим максимального:

Определения и формулы для расчета

Одиночный светодиод

Светодиод (светоизлучающий диод) — полупроводниковый источник излучения в оптическом диапазоне с двумя или более выводами. Монохромные светодиоды обычно имеют два вывода, двухцветные — два или три вывода, трехцветные снабжены четырьмя выводами. Светодиод излучает свет, если к его вывода приложено определенное прямое напряжение.

Обычный инфракрасный светодиод и его условное обозначение на принципиальных схемах (на российских принципиальных схемах светодиоды изображают без разрыва проводника). Квадратный кристалл светодиода установлен на отрицательном электроде (катоде). К положительному электроду (аноду) кристалл подключается с помощью тонкого проводника.

Для подключения светодиода к источнику питания можно использовать простую схему с последовательно включенным токоограничительным резистором. Резистор необходим в связи с тем, что падение напряжение на светодиоде является постоянным в относительно широком диапазоне рабочих токов.

Цвета светодиодов, материал полупроводника, длина волны и падение напряжения
ЦветМатериал полупроводникаДлина волныПадение напряжения
ИнфракрасныйАрсенид галлия (GaAs)850-940 нм
КрасныйАрсенид-фосфид галлия (GaAsP)620-700 нм1. 6—2.0 В
ОранжевыйАрсенид-фосфид галлия (GaAsP)590-610 нм2.0—2.1 В
ЖелтыйАрсенид-фосфид галлия (GaAsP)580-590 нм2.1—2.2 В
ЗеленыйФосфид алюминия-галлия (AlGaP)500-570 нм1.9—3.5 В
СинийНитрид индия-галлия (InGaN)440-505 нм2.48—3.6 В
БелыйДиоды с люминофором или трехцветные RGBШирокий спектр2.8—4.0 В

Поведение светодиодов и резисторов в схемах отличается. В соответствии с законом Ома, резисторы имеют линейную зависимость падения напряжения от протекающего через них тока:

Вольтамперные характеристики типичных светодиодов различных цветов

Если напряжение на резисторе увеличивается, ток также пропорционально увеличивается (здесь мы предполагаем, что величина сопротивления резистора остается постоянной). Светодиоды ведут себя не так. Их поведение соответствует поведению обычных диодов. Вольтамперные характеристики светодиодов разного цвета приведены на рисунке. Они показывают, что ток через светодиод не прямо пропорционален падению напряжения на светодиоде. Видно, что имеется экспоненциальная зависимость тока от прямого напряжения. Это означает, что при небольшом изменении напряжения ток может измениться очень сильно.

Если прямое напряжение на светодиоде невелико, его сопротивление очень большое и светодиод не горит. При превышении указанного в технических характеристиках порогового уровня светодиод начинает светиться и его сопротивление быстро падает. Если приложенное напряжение превышает рекомендуемую величину прямого напряжения, которое может быть в пределах 1,5—4 В для светодиодов различных цветов, ток через светодиод резко растет, что может привести к выходу его из строя. Для ограничения этого тока, последовательно со светодиодом включают резистор, который ограничивает ток таким образом, что он не превышал рабочий ток, указанный в характеристиках светодиода.

Формулы для расчетов

Светодиод в прямоугольном корпусе с плоским верхом применяется, например, для индикаторов уровня

Ток через ограничительный резистор Rs можно рассчитать по формуле закона Ома, в которой из напряжения питания Vs вычитается прямое падение напряжения на светодиоде Vf:

Здесь Vs напряжение источника питания в вольтах (например, 5 В от шины USB), Vf прямое падение напряжения на светодиоде и I прямой ток через светодиод в амперах. Значения Vf и If приводятся в технических характеристиках светодиода. Типичные значения Vf показаны выше в таблице. Типичный ток индикаторных светодиодов 20 мА.

После расчета сопротивления резистора, из ряда номиналов сопротивлений выбирается ближайшее большее стандартное значение. Например, если расчет показывает, что нужен резистор Rs = 145 ом, мы (и калькулятор) выберем резистор Rs = 150 ом.

Токоограничительный резистор рассеивает определенную мощность, которая рассчитывается по формуле

Оранжевые светодиоды обычно используются в маршрутизаторах для указания скорости обмена 10/100 Мбит/с. Зеленые светодиоды горят при скорости 1000 Мбит/с

Для надежной работы резистора его мощность выбирается вдвое выше расчетой. Например, если по формуле получилось 0,06 Вт, мы выберем резистор на 0,125 Вт.

А теперь рассчитаем эффективность работы нашей схемы (ее КПД), который покажет какой процент мощности, отдаваемой источником питания, потребляется светодиодом. На светодиоде рассеивается такая мощность:

Тогда общее потребление будет равно

КПД схемы включения светодиода с ограничительным резистором:

Для выбора источника питания необходимо рассчитать ток, который он должен отдавать в схему. Это делается по формуле:

Светодиодная лента со светодиодами типа 5050; цифры 50 и 50 означают длину и ширину микросхемы в миллиметрах; токоограничительные резисторы 150 ом уже установлены на ленте последовательно со светодиодами

Светодиодные массивы

Одиночный светодиод можно зажигать с помощью токоограничительного резистора. Однако для питания светодиодных массивов, которые все чаще используются для освещения, подсветки в телевизорах и компьютерных мониторах, в рекламе и для других целей, необходимы специализированные источники питания. Мы все привыкли к источникам, выдающим стабилизированное напряжение питания. Однако, для питания светодиодов нужны источники, в которых стабилизируется ток, а не напряжение. Однако и с такими источниками ограничительные резисторы все равно устанавливают.

Если нужно изготовить светодиодный массив, используют несколько последовательных светодиодных цепей, соединенных параллельно. Для цепи из последовательных светодиодов необходим источник питания с напряжением, которое превышает сумму падений напряжений на отдельных светодиодах. Если его напряжение выше этой суммы, необходимо включить в цепь один токоограничительный резистор. Через все светодиоды течет одинаковый ток, что (до определенной степени) позволяет получить одинаковую яркость.

Однако если один из светодиодов в цепи откажет так, что он будет в обрыве (именно такой отказ чаще всего и происходит), вся цепочка светодиодов погаснет. В некоторых схемах и конструкциях для предотвращения таких отказов вводят особый шунт, например, ставят стабилитрон параллельно каждому диоду. Когда диод сгорает, напряжение на стабилитроне становится достаточно высоким и он начинает проводить ток, обеспечивая работу исправных светодиодов. Этот подход хорош для маломощных светодиодов, однако в схемах, предназначенных для наружного освещения, нужны более сложные решения. Конечно, это приводит к увеличению стоимости и габаритов устройств. Сейчас (в 2018 году) можно наблюдать, что светодиодные фонари на улицах, при планируемом сроке службы в 10 лет служат не более года. То же относится и к бытовым светодиодным лампам, в том числе и производителей с известными именами.

Полоса светодиодов, используемая для подсветки телевизионного ЖК -дисплея. Такая полоска устанавливается с двух сторон панели дисплея. Данная конструкция позволяет делать очень тонкие дисплеи. Отметим, что телевизионные ЖК-дисплеи со светодиодной подсветкой, которые обычно продаются под названием LED TV, то есть «светодиодные телевизоры» таковыми на самом деле не являются. В настоящих светодиодных телевизорах (OLED TV) используются светодиодные графические экраны на органических светодиодах и стоят они значительно дороже телевизоров с ЖК-дисплеем.

При расчете требуемого сопротивления токоограничительного резистора Rs, все падения напряжения на каждом светодиоде складываются. Например, если падение напряжения на каждом из пяти соединенных последовательно горящих светодиодов составляет 2 В, то полное падение напряжение на всех пяти будет 2 × 5 = 10 В.

Несколько идентичных светодиодов можно соединять и параллельно. У параллельно соединенных светодиодов прямые напряжения Vf должны быть одинаковыми — иначе в них не будут протекать одинаковые токи и их яркость будет различной. Если светодиоды соединяются параллельно, очень желательно ставить токоограничительный резистор последовательно с каждым из них. При параллельном соединении отказ одного светодиода, при котором он будет в обрыве, не приведет к выходу из строя всего массива — он будет работать нормально. Другой проблемой параллельного соединения является выбор эффективного источника питания, обеспечивающего большой ток при низком напряжении. Такой источник питания будет стоить намного больше, чем источник той же мощности, но на высокое напряжение и меньший ток.

В этом обычном уличном фонаре 8 параллельных цепей из пяти последовательно соединенных мощных светодиодов питаются от источника питания со стабилизацией тока с высоким КПД. Отметим, что две цепи в этом фонаре (слева вверху и справа внизу), установленном всего несколько месяцев назад, уже сгорели, так как в каждой из них светодиоды соединены последовательно, а схемы для предотвращения отказов отсутствуют или не работают.

Расчет токоограничительных резисторов

Если количество светодиодов в последовательной цепи NLEDs in string (обозначенное Ns в поле ввода) введено, то максимальное количество светодиодов в цепи последовательно соединенных светодиодов NLEDs in string max определяется как

Если количество светодиодов в последовательной цепи NLEDs in string (обозначенное Ns в поле ввода) введено, то максимальное количество светодиодов в цепи последовательно соединенных светодиодов NLEDs in string max определяется как

Светодиоды типа 3014 (3,0 × 1,4 мм) для поверхностного монтажа, используемые для боковой подсветки ЖК-панели телевизора.

Количество цепей с максимальным количество светодиодов в цепи Nstrings:

Количество светодиодов в дополнительной цепи с остатком светодиодов Nremainder LEDs :

Если Nremainder LEDs = 0, то дополнительной цепи не будет.

Определим сопротивление токоограничительного резистора в цепи с максимальным количеством светодиодов:

Определим сопротивление токоограничительного резистора в цепи с количеством светодиодов меньше максимального:

Общая мощность PLED, рассеиваемая всеми светодиодами:

Мощность, потребляемая всеми резисторами:

Гибкие светодиодные дисплеи на железнодорожной станции; в таких дисплеях используются группы светодиодов в качестве отдельных пикселей. В связи с высокой яркостью светодиодов и их хорошей видимостью при ярком солнечном свете, такие дисплеи часто можно увидеть на наружной рекламных щитах и дорожных указателях маршрута. Светодиодные дисплеи также можно использовать для освещения и в этой роли их часто используют в фонарях с регулируемой цветовой температурой для видео и фотосъемки.

Номинальная мощность резисторов определяется с учетом двойного запаса k = 2, который обеспечивает надежную работу резистора. Выбираем из ряда значений мощности : 0.125; 0.25; 0.5; 1, 2, 3, 4, 5, 8, 10, 16, 25, 50 W резистор с мощностью вдвое выше, чем расчетная.

Рассчитаем общую мощность, потребляемую всеми резисторами:

Рассчитаем общую мощность, потребляемую светодиодным массивом:

Рассчитаем ток, который должен обеспечить источник питания:

И наконец, рассчитаем КПД нашего массива:

Возможно, вас заинтересуют конвертеры Яркости, Силы света and Освещенности.

Правильный расчет резистора для светодиода (онлайн калькулятор)

Светодиод является полупроводниковым прибором с нелинейной вольт-амперная характеристикой (ВАХ). Его стабильная работа, в первую очередь, зависит от величины, протекающего через него тока. Любая, даже незначительная, перегрузка приводит к деградации светодиодного чипа и снижению его рабочего ресурса.

Чтобы ограничить ток, протекающий через светодиод на нужном уровне, электрическую цепь необходимо дополнить стабилизатором. Простейшим, ограничивающим ток элементом, является резистор.

Важно! Резистор ограничивает, но не стабилизирует ток.

Расчет резистора для светодиода не является сложной задачей и производится по простой школьной формуле. А вот с физическими процессами, протекающими в p-n-переходе светодиода, рекомендуется познакомиться ближе.

Теория

Математический расчет

Ниже представлена принципиальная электрическая схема в самом простом варианте.

В ней светодиод и резистор образуют последовательный контур, по которому протекает одинаковый ток (I). Питается схема от источника ЭДС напряжением (U). В рабочем режиме на элементах цепи происходит падение напряжения: на резисторе (UR) и на светодиоде (ULED). Используя второе правило Кирхгофа, получается следующее равенство: или его интерпретация

В приведенных формулах R – это сопротивление рассчитываемого резистора (Ом), RLED – дифференциальное сопротивление светодиода (Ом), U – напряжения (В).

Значение RLED меняется при изменении условий работы полупроводникового прибора. В данном случае переменными величинами являются ток и напряжение, от соотношения которых зависит величина сопротивления. Наглядным объяснением сказанного служит ВАХ светодиода.

На начальном участке характеристики (примерно до 2 вольт) происходит плавное нарастание тока, в результате чего RLED имеет большое значение. Затем p-n-переход открывается, что сопровождается резким увеличением тока при незначительном росте прикладываемого напряжения.

Путём несложного преобразования первых двух формул можно определить сопротивление токоограничивающего резистора:

ULED является паспортной величиной для каждого отдельного типа светодиодов.

Графический расчет

Имея на руках ВАХ исследуемого светодиода, можно рассчитать резистор графическим способом. Конечно, такой способ не имеет широкого практического применения. Ведь зная ток нагрузки, из графика можно легко вычислить величину прямого напряжения. Для этого достаточно с оси ординат (I) провести прямую линию до пересечения с кривой, а затем опустить линию на ось абсцисс (ULED). В итоге все данные для расчета сопротивления получены.

Тем не менее, вариант с использованием графика уникален и заслуживает определенного внимания.

Рассчитаем резистор для светодиода АЛ307 с номинальным током 20 мА, который необходимо подключить к источнику питания 5 В. Для этого из точки 20 мА проводим прямую линию до пересечения с кривой LED. Далее через точку 5 В и точку на графике проводим линию до пересечения с осью ординат и получаем максимальное значение тока (Imax), примерно равное 50 мА. Используя закон Ома, рассчитываем сопротивление:

Чтобы схема была безопасной и надёжной нужно исключить перегрев резистора. Для этого следует найти его мощность рассеивания по формуле:

В каких случаях допускается подключение светодиода через резистор?

Подключать светодиод через резистор можно, если вопрос эффективности схемы не является первостепенным. Например, использование светодиода в роли индикатора для подсветки выключателя или указателя сетевого напряжения в электроприборах. В подобных устройствах яркость не важна, а мощность потребления не превышает 0,1 Вт. Подключая светодиод с потреблением более 1 Вт, нужно быть уверенным в том, что блок питания выдаёт стабилизированное напряжение.

Если входное напряжение схемы не стабилизировано, то все помехи и скачки будут передаваться в нагрузку, нарушая работу светодиода. Ярким примером служит автомобильная электрическая сеть, в которой напряжение на аккумуляторе только теоретически составляет 12 В. В самом простом случае делать светодиодную подсветку в машине следует через линейный стабилизатор из серии LM78XX. А чтобы хоть как-то повысить КПД схемы, включать нужно по 3 светодиода последовательно. Также схема питания через резистор востребована в лабораторных целях для тестирования новых моделей светодиодов. В остальных случаях рекомендуется использовать стабилизатор тока (драйвер). Особенно тогда, когда стоимость излучающего диода соизмерима со стоимостью драйвера. Вы получаете готовое устройство с известными параметрами, которое остаётся лишь правильно подключить.

Примеры расчетов сопротивления и мощности резистора

Чтобы помочь новичкам сориентироваться, приведем пару практических примеров расчета сопротивления для светодиодов.

Cree XM–L T6

В первом случае проведем вычисление резистора, необходимого для подключения мощного светодиода Cree XM–L к источнику напряжения 5 В. Cree XM–L с бином T6 имеет такие параметры: типовое ULED = 2,9 В и максимальное ULED = 3,5 В при токе ILED=0,7 А. В расчёты следует подставлять типовое значение ULED, так как. оно чаще всего соответствует действительности. Рассчитанный номинал резистора присутствует в ряду Е24 и имеет допуск в 5%. Однако на практике часто приходится округлять полученные результаты к ближайшему значению из стандартного ряда. Получается, что с учетом округления и допуска в 5% реальное сопротивление изменяется и вслед за ним обратно пропорционально меняется ток. Поэтому, чтобы не превысить рабочий ток нагрузки, необходимо расчётное сопротивление округлять в сторону увеличения.

Используя наиболее распространённые резисторы из ряда Е24, не всегда удаётся подобрать нужный номинал. Решить эту проблему можно двумя способами. Первый подразумевает последовательное включение добавочного токоограничительного сопротивления, который должен компенсировать недостающие Омы. Его подбор должен сопровождаться контрольными измерениями тока.

Второй способ обеспечивает более высокую точность, так как предполагает установку прецизионного резистора. Это такой элемент, сопротивление которого не зависит от температуры и прочих внешних факторов и имеет отклонение не более 1% (ряд Е96). В любом случае лучше оставить реальный ток немного меньше от номинала. Это не сильно повлияет на яркость, зато обеспечит кристаллу щадящий режим работы.

Мощность, рассеиваемая резистором, составит:

Рассчитанную мощность резистора для светодиода обязательно следует увеличить на 20–30%.

Вычислим КПД собранного светильника:

Пример с LED SMD 5050

По аналогии с первым примером разберемся, какой нужен резистор для SMD светодиода 5050. Здесь нужно учесть конструкционные особенности светодиода, который состоит из трёх независимых кристаллов.

Если LED SMD 5050 одноцветный, то прямое напряжение в открытом состоянии на каждом кристалле будет отличаться не более, чем на 0,1 В. Значит, светодиод можно запитать от одного резистора, объединив 3 анода в одну группу, а три катода – в другую. Подберем резистор для подключения белого SMD 5050 с параметрами: типовое ULED=3,3 В при токе одного чипа ILED=0,02 А.

Ближайшее стандартное значение – 30 Ом.

Принимаем к монтажу ограничительный резистор мощностью 0,25 Вт и сопротивлением в 30 Ом ±5%.

У RGB светодиода SMD 5050 различное прямое напряжение каждого кристалла. Поэтому управлять красным, зелёным и синим цветом, придётся тремя резисторами разного номинала.

Онлайн-калькулятор

Представленный ниже онлайн калькулятор для светодиодов – это удобное дополнение, которое произведет все расчеты самостоятельно. С его помощью не придётся ничего рисовать и вычислять вручную. Всё что нужно – это ввести два главных параметра светодиода, указать их количество и напряжение источника питания. Одним кликом мышки программа самостоятельно произведёт расчет сопротивления резистора, подберёт его номинал из стандартного ряда и укажет цветовую маркировку. Кроме этого, программа предложит уже готовую схему включения.

Дополняя вышесказанное стоит отметить, что если прямое напряжение светодиода значительно ниже напряжения питания, то схемы включения через резистор малоэффективны. Вся лишняя энергия впустую рассеивается резистором, существенно занижая КПД устройства.

Расчет резистора для светодиода. Онлайн калькулятор

Светодиод (светоизлучающий диод) — излучает свет в тот момент, когда через него протекает электрический ток. Простейшая схема для питания светодиодов состоит из источника питания, светодиода и резистора, подключенного последовательно с ним.

Такой резистор часто называют балластным или токоограничивающим резистором. Возникает вопрос: «А зачем светодиоду резистор?». Токоограничивающий резистор необходим для ограничения тока, протекающего через светодиод, с целью защиты его от сгорания. Если напряжение источника питания равно падению напряжения на светодиоде, то в таком резисторе нет необходимости.

Расчет резистора для светодиода

Сопротивление балластного резистора легко рассчитать, используя закон Ома и правила Кирхгофа. Чтобы рассчитать необходимое сопротивление резистора, нам необходимо из напряжения источника питания вычесть номинальное напряжение светодиода, а затем эту разницу разделить на рабочий ток светодиода:

где:

  • V — напряжение источника питания
  • VLED — напряжение падения на светодиоде
  • I – рабочий ток светодиода

 Ниже представлена таблица зависимости рабочего напряжения светодиода от его цвета:

Хотя эта простая схема широко используется в бытовой электронике, но все же она не очень эффективна, так как избыток энергии источника питания рассеивается на балластном резисторе в виде тепла. Поэтому, зачастую используются более сложные схемы (драйверы для светодиодов) которые обладают большей эффективностью.

Давайте, на примере выполним расчет сопротивления резистора для светодиода.

Блок питания 0…30 В / 3A

Набор для сборки регулируемого блока питания…

Мы имеем:

  • источник питания: 12 вольт
  • напряжение светодиода: 2 вольта
  • рабочий ток светодиода: 30 мА

Рассчитаем токоограничивающий резистор, используя формулу:

Получается, что наш резистор должен иметь сопротивление 333 Ом. Если точное значение из номинального ряда резисторов подобрать не получается, то необходимо взять ближайшее большее сопротивление. В нашем случае это будет 360 Ом (ряд E24).

Последовательное соединение светодиодов

Часто несколько светодиодов подключают последовательно к одному источнику напряжения. При последовательном соединении одинаковых светодиодов их общий ток потребления равняется рабочему току одного светодиода, а общее напряжение равно сумме напряжений падения всех светодиодов в цепи.

Поэтому, в данном случае, нам достаточно использовать один резистор для всей последовательной цепочки светодиодов.

Пример расчета сопротивления резистора при последовательном подключении.

В этом примере два светодиода соединены последовательно. Один красный светодиод с напряжением 2В и один ультрафиолетовый светодиод с напряжением 4,5В. Допустим, оба имеют номинальную силу тока 30 мА.

Из правила Кирхгофа следует, что сумма падений напряжения во всей цепи равна напряжению источника питания. Поэтому на резисторе напряжение должно быть равно напряжению источника питания минус сумма падения напряжений на светодиодах.

Используя закон Ома, вычисляем значение сопротивления ограничительного резистора:

Резистор должен иметь значение не менее 183,3 Ом.

Обратите внимание, что после вычитания падения напряжений у нас осталось еще 5,5 вольт. Это дает возможность подключить еще один светодиод (конечно же, предварительно пересчитав сопротивление резистора)

Параллельное соединение светодиодов

Так же можно подключить светодиоды и параллельно, но это создает больше проблем, чем при последовательном соединении.

Ограничивать ток параллельно соединенных светодиодов одним общим резистором не совсем хорошая идея, поскольку в этом случае все светодиоды должны иметь строго одинаковое рабочее напряжение. Если какой-либо светодиод будет иметь меньшее напряжение, то через него потечет больший ток, что в свою очередь может повредить его.

И даже если все светодиоды будут иметь одинаковую спецификацию, они могут иметь разную вольт-амперную характеристику из-за различий в процессе производства. Это так же приведет к тому, что через каждый светодиод будет течь разный ток. Чтобы свести к минимуму разницу в токе, светодиоды, подключенные в параллель, обычно имеют балластный резистор для каждого звена.

Онлайн калькулятор расчета резистора для светодиода

Этот онлайн калькулятор  поможет вам найти нужный номинал резистора  для светодиода, подключенного по следующей схеме:

примечание: разделителем  десятых является точка, а не запятая

Формула расчета сопротивления резистора онлайн калькулятора

Сопротивление резистора  = (U UF)/ I

  • U – источник питания;
  • UF – прямое напряжение светодиода;
  • IF – ток светодиода (в миллиамперах).

Примечание:   Слишком сложно найти резистор с сопротивлением, которое получилось при расчете. Как правило, резисторы выпускаются  в стандартных значениях (номинальный ряд). Если вы не можете найти необходимый резистор, то  выберите ближайшее  бо́льшее значение сопротивления, которое вы рассчитали.

Например, если у вас получилось сопротивление 313,4 Ом, то   возьмите ближайшее стандартное значение, которое составляет 330 Ом. Если ближайшее значение является недостаточно близким, то вы можете получить необходимое сопротивление путем последовательного или параллельного соединения нескольких резисторов.

Калькулятор расчета резистора для светодиода

Грамотный расчет резистора для светодиода имеет решающее значение в обеспечении надежности и функциональности электронного компонента. Это объясняется тем, светодиодные элементы очень чувствительны к режиму питания и при превышении им допустимого значения быстро перегорают.

Важно! Следует помнить, что эти полупроводники работают за счет протекающего по ним тока, определяемого прикладываемым к цепочке потенциалом.

Так что при расчете основной показатель – это ток, а напряжение в данной ситуации является вспомогательным параметром. Именно поэтому в питающую цепочку ставится ограничивающий элемент (резистор), к определению величины которого и сводится весь расчет этой схемы.

Наглядная схема для расчета резистора для светодиода

Другими словами, данный подход означает подбор значения сопротивления, достаточного для того, чтобы на нем «падали» излишки напряжения при заданном токе.  Для ознакомления с расчетными параметрами некоторых видов светодиодов следует заглянуть в приведенную рядом таблицу. В ней указываются величины напряжений, при которых элемент будет работать в оптимальных условиях (не сгорая). Путем простейших арифметических операций по закону Ома рассчитывается величина ограничительного сопротивления (R = Uпит- U светодиода/I).

Таблица примерных напряжений светодиодов в зависимости от цвета

Так, при подключении светодиода белого свечения к аккумулятору автомобиля 12-14 Вольт, например, на резисторе должно оставаться 11 Вольт (по максимуму питания). Если учесть, что оптимальный ток для данного светодиода – 0,02 Ампера (смотрите его характеристики), то величина R=11/0,02=500 Ом. Останется лишь подобрать ближайший к полученному результату номинал из стандартного ряда сопротивлений (510 Ом).

 

Если с цифровыми надписями более-менее все понятно – то разобраться с цветовой маркировкой, нанесенной на обычные дискретные резисторы совсем непросто. Она выполняется в виде набора цветных полосок, располагаемых вдоль всего корпуса элемента. Каждая из них означает определенный показатель, используемый при расчете номинала того или иного сопротивления.

Резисторы с цветовой маркировкой

Данные обозначения также отличаются количеством знаков (в данном случае – полосок), указывающих на следующие их особенности:

  • Наличие 3-х колец означает самый низкий класс точности 20%; при этом первые две полоски означают кратность номинала, последняя – множитель (показатель десятичной степени) как и в случае с SMD элементами.
  • Маркировка из 4-х полос применяется при обозначении сопротивлений с допуском 5-10%, причем для информирования о номинале берутся только три полосы.
  • При обозначении в виде 5-ти полос информация о номинале заключена в 3-х кольцах, тогда как 4-ый – это множитель, а 5-ый – допустимое отклонение.
  • Если на резисторе нанесено 6 полос – ко всему рассмотренному добавляется температурный коэффициент, определяющий тепловую устойчивость элемента.

Тройное обозначение очень просто расшифровывается по специальным таблицам, одна из которых приведена ниже.

Цветовая схема резисторов

Нестандартные маркировки из 6-ти колец встречаются крайне редко.

Расчет токоограничивающего резистора для светодиода

В данной статье речь пойдет о

расчете токоограничивающего резистора для светодиода.

Расчет резистора для одного светодиода

Для питания одного светодиода нам понадобится источник питания, например две пальчиковые батарейки по 1,5В каждая. Светодиод возьмем красного цвета, где прямое падение напряжения при рабочем токе 0,02 А (20мА) равно -2 В. Для обычных светодиодов максимально допустимый ток равен 0,02 А. Схема подключения светодиода представлена на рис.1.


Рис.1 – Схема подключения одного светодиода

Почему я использую термин «прямое падение напряжение», а не напряжение питания. А дело в том, что параметра напряжения питания как такового у светодиодов нет. Вместо этого используется характеристика падения напряжения на светодиоде, что означает величину напряжения на выходе светодиода при прохождении через него номинального тока. Значение напряжения, указанное на упаковке, отражает как раз падение напряжения. Зная эту величину, можно определить оставшееся на светодиоде напряжение. Именно это значение нам нужно применять в расчетах.

Прямое падение напряжение для различных светодиодов в зависимости от длины волны представлено в таблице 1.

Таблица 1 — Характеристики светодиодов

Цветовая характеристикаДлина волны, нМНапряжение, В
Инфракрасныеот 760до 1,9
Красные610 — 760от 1,6 до 2,03
Оранжевые590 — 610от 2,03 до 2,1
Желтые570 — 590от 2,1 до 2,2
Зеленые500 — 570от 2,2 до 3,5
Синие450 — 500от 2,5 до 3,7
Фиолетовые400 — 4502,8 до 4
Ультрафиолетовыедо 400от 3,1 до 4,4
Белыеширокий спектрот 3 до 3,7

Точное значение падения напряжения светодиода, можно узнать на упаковке к данному светодиоду или в справочной литературе.

Сопротивление резистора определяется по формуле:

R = (Uн.п – Uд)/Iд = (3В-2В)/0,02А = 50 Ом.

где:

  • Uн.п – напряжение питания, В;
  • Uд — прямое падение напряжения на светодиоде, В;
  • Iд – рабочий ток светодиода, А.

Поскольку такого сопротивления в стандартном ряду нет, выбираем ближайшее сопротивление из номинального ряда Е24 в сторону увеличения — 51 Ом.

Чтобы гарантировать долгую работу светодиода и исключить ошибку в расчетах, рекомендую при расчетах использовать не максимально допустимый ток – 20 мА, а немного меньше – 15 мА.

Данное уменьшение тока никак не скажется на яркости свечения светодиода для человеческого глаза. Чтобы мы заметили изменение яркости свечения светодиода например в 2 раза, нужно уменьшить ток в 5 раза (согласно закона Вебера — Фехнера).

В результате мы получим, расчетное сопротивление токоограничивающего резистора: R = 50 Ом и мощность рассеивания Р = 0,02 Вт (20мВт).

Расчет резистора при последовательном соединении светодиодов

В случае расчета резистора при последовательном соединении, все светодиоды должны быть одного типа. Схема подключения светодиодов при последовательном соединении представлена на рис.2.


Рис.2 – Схема подключения светодиодов при последовательном соединении

Например мы хотим подключить к блоку питания 9 В, три зеленых светодиода, каждый по 2,4 В, рабочий ток – 20 мА.

Сопротивление резистора определяется по формуле:

R = (Uн.п – Uд1 + Uд2 + Uд3)/Iд = (9В — 2,4В +2,4В +2,4В)/0,02А = 90 Ом.

где:

  • Uн.п – напряжение питания, В;
  • Uд1…Uд3 — прямое падение напряжения на светодиодах, В;
  • Iд – рабочий ток светодиода, А.

Выбираем ближайшее сопротивление из номинального ряда Е24 в сторону увеличения — 91 Ом.

Расчет резисторов при параллельно – последовательном соединении светодиодов

Часто на практике нам нужно подключить к источнику питания большое количество светодиодов, несколько десятков. Если все светодиоды подключить последовательно через один резистор, то в таком случае напряжения на источнике питания нам не хватит. Решением данной проблемы является параллельно-последовательное соединение светодиодов, как это показано на рис.3.

Исходя из напряжения источника питания, определяется максимальное количество светодиодов, которые можно соединить последовательно.


Рис.3 – Схема подключения светодиодов при параллельно — последовательном соединении

Например у нас имеется источник питания 12 В, исходя из напряжения источника питания максимальное количество светодиодов для одной цепи будет равно: 10В/2В = 5 шт, учитывая что на светодиоде (красного цвета) падение напряжения — 2 В.

Почему 10 В, а не 12 В мы взяли, связано это с тем, что на резисторе также будет падение напряжения и мы должны оставить, где то 2 В.

Сопротивление резистора для одной цепи, исходя из рабочего тока светодиодов определяется по формуле:

R = (Uн.п – Uд1 + Uд2 + Uд3+ Uд4+ Uд5)/Iд = (12В — 2В + 2В + 2В + 2В + 2В)/0,02А = 100 Ом.

Выбираем ближайшее сопротивление из номинального ряда Е24 в сторону увеличения — 110 Ом.

Количество таких цепочек из пяти светодиодов параллельно соединенных практически не ограничено!

Расчет резистора при параллельном соединении светодиодов

Данное подключение является не желательным и я его не рекомендую применять на практике. Связано это с тем что, у каждого светодиода присутствует технологическое падение напряжения и даже если все светодиоды из одной упаковке – это не является гарантией, что у них падение напряжение будет одинаково из-за технологии производства.

В результате у одного светодиода, ток будет больше чем у других и если он превысить максимально допустимый ток, он выйдет из строя. Следующий светодиод перегорит быстрее, так как через него уже будет проходить оставшийся ток, распределенный между другими светодиодами и так до тех пор, пока все светодиода не выйдут из строя.


Рис.4 – Схема подключения светодиодов при параллельном соединении

Решить данную проблему можно подключив к каждому светодиоду свой резистор, как это показано на рис.5.


Рис.5 – Схема подключения светодиодов и резисторов при параллельном соединении

Всего наилучшего! До новых встреч на сайте Raschet.info.

Расчет сопротивления для светодиода — как подобрать?

Онлайн программа для расчета резистора при подключении светодиодов

Светодиод – нелинейный полупроводниковый прибор, которому для правильной и надежной работы необходим стабильный ток. Перегрузки по току могут вывести светодиод из строя. Самый простой вариант схемы питания в таком случае – ограничительный резистор, включенный последовательно. Расчет номинального сопротивления  и мощности резистора для светодиода не очень сложная задача, если правильно понимать физику процесса. Рассмотрим общие принципы такого расчета, а затем разберем несколько конкретных примеров из практики.

Теория

В общем случае схема выглядит так.

Рисунок 1

Между контактами «+» и «-» прикладывается напряжение. Обозначим его буквой U. Ток через резистор и светодиод будет протекать одинаковый, т.к. соединение последовательное. Согласно закону Ома получаем:

где R – сопротивление резистора;

rLED– сопротивление светодиода (дифференциальное).

Отсюда выражаем формулу, по которой можно произвести расчет сопротивления резистора R при заданном токе I:

Разберемся что такое дифференциальное сопротивление светодиода rLED. Для этого нам потребуется его вольтамперная характеристика (ВАХ).

Рисунок 2

Как видно из графиков ВАХ светодиодов – нелинейна. Говоря простым языком, его сопротивление постоянному току r=U/I есть переменная величина, которая уменьшается с ростом напряжения. Поэтому вводится понятие дифференциального сопротивления rLED=dU/dI, которое характеризует сопротивление диода в отдельно взятой точке кривой ВАХ.

Чтобы произвести расчет резистора для светодиода, определяем по графику прямое напряжение на светодиоде ULED при заданном токе I. Затем подставляем получившееся значение в формулу (2) и получаем

Еще один способ решения задачи – графический.

Допустим необходимо рассчитать сопротивление резистора для обеспечения светодиоду рабочего тока величиной 100 мА при напряжении источника питания – 5 вольт.

Для этого сначала на графике ВАХ светодиода отмечаем точку соответствующую току 100 мА (см. рисунок 3), затем проводим через эту точку и точку соответствующую 5 вольтам на оси абсцисс нагрузочную прямую до пересечения с осью ординат. Определяем значение тока, соответствующее этому пересечению (в нашем случае 250 мА) и по закону Ома производим расчет сопротивления резистора R= U / Iкз= 5 В / 0,25 А =20 Ом. Перед расчетом не забываем осуществлять перевод единиц измерения к надлежащему виду.

Рисунок 3

Следующим шагом будет определение мощности рассеиваемой на резисторе. Формула должна быть знакома всем из школьной физики (как и закон Ома):

P=I2×R.          (4)

Практика

Рассмотрим несколько конкретный пример расчета.

Исходные данные: напряжение питания 12В, белый светодиод XPE (CREE) требуется включить на номинальный ток 350 мА согласно схеме, представленной на рисунке 1.

Находим в data sheet значение прямого падения напряжения при токе 350 мА (рисунок 4).

Рисунок 4

Типовое значение по таблице — 3,2 вольта. Максимальное значение может достигать 3,9 вольт. То есть в результате производственного процесса может получиться как светодиод с прямым напряжением 3,2 В так и 3,9 В (или любым другим промежуточным значением), но вероятность получения 3,2 вольт наиболее высока (если хотите – это «математическое ожидание» этой величины). По этой причине в расчет обычно берется типовое значение.

Используя формулу (3) и калькулятор получаем:

R=(12-3,2)/0,35»25,1 Ом.

Ближайшее значение из ряда Е24 – 24 Ом. Значение тока при этом сопротивлении получится 367 мА, что на 5% превышает требуемое значение. Если учесть еще и допуск на номинал резистора, который для ряда Е24 также 5%, то в худшем случае получается вообще 386 мА. Если такое отклонение не допустимо, то можно добавить в цепь последовательно еще один резистор номиналом 1 Ом. Все эти действия рекомендуется сопровождать реальными измерениями сопротивлений резисторов и получающихся токов, иначе ни о какой точности не может идти и речи. Резистор 24 Ом может иметь погрешность в сторону увеличения до 25,2 Ом, добавив 1 Ом, получим 26, 2 и «перекос» силы тока через светодиод в противоположную сторону.

Предположим, что нам не нужна высокая точность задания тока и резистор 24 Ом нас устраивает.

Определим мощность, которая будет рассеиваться на резисторе по формуле (4):

P=0,3672×24»3,2 Вт.

Номинальная мощность рассеяния резистора должна быть с запасом не менее 30%, иначе он будет перегреваться. А если условия отвода тепла затруднены (например, в корпусе плохая конвекция), то запас должен быть еще больше.

В итоге выбираем резистор мощностью 5 Вт с номинальным сопротивлением 24 Ом.

Для того чтобы оценить эффективность получившегося светотехнического устройства необходимо рассчитать КПД схемы питания:

Таким образом, КПД подобной схемы питания составляет всего 27%. Такая низкая эффективность обусловлена слишком высоким питающим напряжением 12 вольт, а точнее разницей между U и ULED. Получается, что 8,8 вольт мы вынуждены «гасить» на резисторе за счет бесполезного рассеяния мощности в окружающее пространство. Для повышения КПД требуется либо снизить напряжения питания, либо найти светодиод с большим прямым напряжением. Как вариант можно включить несколько светодиодов последовательно, выполнив подбор таким образом, чтобы суммарное падение было ближе к напряжению питания, но ни в коем случае не превышало его.

Необходимое значение сопротивления для резистора можно и подобрать, если имеется в наличии магазин сопротивлений и амперметр. Включаем магазин и амперметр в цепь последовательно светодиоду (на место предполагаемого резистора), устанавливаем максимальное значение сопротивления и подключаем к источнику напряжения. Далее начинаем уменьшать значение сопротивления до тех пор, пока сила тока не достигнет нужного значения или светодиод нужной яркости (в зависимости от того, что будет являться критерием). Останется только считать значение сопротивления с магазина и выполнить подбор ближайшего номинала.

Ремарка

В данных расчетах мы пренебрегли зависимостью прямого напряжения светодиода от его температуры, однако не следует забывать, что такая зависимость существует и характеризуется параметром «температурный коэффициент напряжения» или сокращенно ТКН. Его значения отличается для разных видов светодиодов, но всегда имеет отрицательное значение. Это значит что при повышении температуры кристалла, прямое напряжение на нем становится меньше. Например, для рассмотренного выше белого светодиода XPE значение ТКН (оно приводится производителем в data sheet) составляет -4 мВ/°С. Следовательно при увеличении температуры кристалла на 25°С, прямое напряжение на нем уменьшится на 0,1 В.

Рисунок 5

Многие ведущие производители светодиодов имеют на официальных сайтах специальный сервис – «онлайн калькулятор», предназначенный для вычисления параметров светодиодов в различных режимах эксплуатации (в зависимости от температуры, тока и пр.). Этот инструмент значительно облегчает процедуры расчета и экономит время разработчику.

Извините, эта страница не существует. Пожалуйста, дайте нам знать, где была неправильная ссылка. Спасибо.
Вот наша карта сайта:
  • Контакты
  • Как сделать заказ и другая полезная информация
    • Время выполнения
    • Гарантии на продукцию
    • Как заказать
    • Варианты оплаты
    • Варианты доставки
      • Тарифы на доставку UPS / DHL / TNT
      • Зоны страны доставки
    • Образцы политики
  • Прейскуранты на нашу продукцию
      Прейскурант на светодиодные диоды
    • Прейскурант светодиодной продукции
    • Прейскурант на ЖК-модули
    • Прейскурант на радиаторы
    • Прейскурант болельщиков
    • Прейскурант на модули Пельтье
  • Онлайн-каталог нашей продукции
    1. ЖК-модули
      1. ЖК-модули Буквенно-цифровые Жёлтый ЗЕЛЕНЫЙ
      2. ЖК-модули буквенно-цифровые СИНИЙ
      3. ЖК-модули Графические
      4. Панельные счетчики
      5. Мультиметры
      6. Прейскурант LCM и счетчиков
      7. Упаковка LCM и счетчиков
    2. Охлаждение
      1. Термоэлектрические модули охлаждения Petlier
      2. Радиаторы
      3. Вентиляторы
      4. Подробная информация об упаковке
    3. Сверхяркие светодиоды
      1. 1.Светодиоды 8мм
      2. 3мм светодиоды
      3. Светодиоды 4,8 мм, угол XL
      4. 5 мм светодиодов InGan (белый, синий, чистый зеленый)
      5. 5 мм GaAlInP (красный, желтый) светодиоды
      6. 8мм светодиоды
      7. 10мм светодиоды
      8. Светодиоды 5 мм и 8 мм 100 мА 0,5 Вт
      9. Двухцветные светодиоды 3 мм и 5 мм
      10. Мигающие светодиоды
      11. Плоские светодиоды
      12. Овальные светодиоды
      13. ИК-светодиоды и модуль ИК-приемника
      14. X-type: дешевое светодиодное издание
        • Комплекты для светодиодных меток
      15. 7-сегментный светодиодный дисплей
      16. светодиодов RGB
      17. Светодиоды SMD
      18. COB СВЕТОДИОДЫ
      19. Светодиоды мощности 1Вт, 3Вт, 5Вт, 10Вт, 20Вт
      20. Светодиодные лампы Piranha 0.2 Вт
      21. Детали упаковки светодиодов
      22. Таблица преобразования старых / новых светодиодных номеров
      23. Калькулятор светодиодного резистора
    4. Светодиодная продукция
      1. Светодиодные ленты
      2. Светодиодные ленты — Акционная распродажа
      3. Светодиодные ленты X-типа
      4. Светодиодные модули
      5. Светодиодные лампы
      6. — Распродажа
      7. Светодиодные трубки
      8. Аксессуары для светодиодов
      9. Держатели для светодиодов со сквозным отверстием 3 ~ 10 мм
      10. Подробная информация об упаковке светодиодной продукции
      11. Прейскурант светодиодной продукции
  • Найдите наш сервер в Интернете
  • Акции и акции
  • Производство только для китайского рынка
  • Наши старые страницы * 2001? 003

Калькулятор светодиодного резистора

Используйте этот калькулятор светодиодного резистора, чтобы определить подходящее сопротивление для вашей светодиодной цепи, состоящей из одного или нескольких светодиодов.


Калькулятор работы светодиодного резистора

Каждый светодиод имеет определенный диапазон рабочего тока, превышающий номинальный уровень тока, который он может повредить. Для защиты или ограничения тока мы просто используем последовательно включенный резистор.

Этот калькулятор светодиодных резисторов поможет вам подобрать правильное значение резистора для светодиода в вашей светодиодной цепи, вам просто нужно ввести значения Напряжение источника с ), Прямой ток светодиода (I f ) и Светодиод прямого напряжения (V f ).

Прямое напряжение или падение напряжения на светодиоде заранее определено (показано в таблице ниже), поскольку оно зависит от цвета, излучаемого светодиодом, типичное значение падения напряжения составляет 2 В.

Цвет

Падение напряжения (Vf)

Красный

2

зеленый

2.1

Синий

3,6

Белый

3,6

Желтый

2,1

оранжевый

2,2

Янтарь

2.1

Инфракрасный

1,7

Уравнение

Для математического определения значения вы можете использовать приведенное ниже уравнение:

Где,

В с = Напряжение источника измеряется в вольтах.

В f = прямое напряжение светодиода или падение напряжения. Если вы не знаете падение напряжения светодиода, вы можете использовать 2 В, поскольку это типичное значение для падения напряжения светодиода.

I f = прямой ток светодиода, если вы не знаете прямой ток светодиода вашего светодиода, вы можете использовать 20 мА, поскольку это типичное значение для прямого тока светодиода.

N = количество светодиодов, подключаемых последовательно.

Калькулятор светодиодного резистора

Этот калькулятор светодиодного резистора представляет собой инструмент для определения того, какой резистор следует использовать при создании различных электронных схем со светодиодами. Благодаря этим расчетам вы можете быть уверены, что не повредите диоды чрезмерным током.

Вы можете использовать этот калькулятор светодиодов, чтобы определить необходимое сопротивление и рассеиваемую мощность для одного светодиода, всех светодиодов или резистора.

Светодиодный калькулятор: обзор

Светодиоды, или светодиоды, представляют собой небольшие электронные компоненты. Когда ток подается на светодиоды, они излучают свет различных цветов, например красный, зеленый или синий. Однако, если ток, проходящий через диод, будет слишком большим, это приведет к повреждению светодиода.

Чтобы ограничить ток, проходящий через диод, обычно в схему добавляют резистор, как показано на изображении выше.Этот резистор обычно добавляется последовательно. Несмотря на то, что этот метод прост и решает многие проблемы с базовой схемой, его не следует применять для сильноточных светодиодов.

Что вам нужно знать?

Чтобы рассчитать сопротивление и рассеиваемую мощность, вам необходимо ввести несколько параметров в этот калькулятор светодиодного резистора:

  • Тип цепи. Ваши светодиоды подключены последовательно или параллельно?

  • n — количество подключенных светодиодов.

  • В — напряжение питания вашей цепи. Типичные значения — 5, 7 и 12 В для разъемов Molex и 1,5 или 9 В для батарей.

  • Вₒ — падение напряжения на одном светодиоде. Это значение зависит от цвета светодиода и колеблется от 1,7 В (инфракрасный) до 3,6 (белые или синие диоды).

  • Iₒ — ток через один светодиод. Обычные светодиоды требуют 20 или 30 мА.

Светодиоды в серии

Если вы подключаете несколько диодов последовательно или рассчитываете резистор только для одного диода, вы можете использовать следующие формулы:

  1. Сопротивление: R = (V - n * Vₒ) / Iₒ

  2. Мощность, рассеиваемая одним светодиодом: Pₒ = Vₒ * Iₒ

  3. Мощность, рассеиваемая всеми светодиодами (общая): P = n * Vₒ * Iₒ

  4. Мощность, рассеиваемая на резисторе: Pr = (Iₒ) ² * R

Параллельные светодиоды

Для светодиодов, соединенных параллельно, вычислитель резисторов светодиодов использует следующие уравнения:

  1. Сопротивление: R = (V - Vₒ) / (n * Iₒ)

  2. Мощность, рассеиваемая одним светодиодом: Pₒ = Vₒ * Iₒ

  3. Мощность, рассеиваемая всеми светодиодами (общая): P = n * Vₒ * Iₒ

  4. Мощность, рассеиваемая на резисторе: Pr = (n * Iₒ) ² * R

Хотите знать, откуда взялись эти формулы? Взгляните на калькулятор закона Ома!

Инструмент для расчета резисторов серии

LED — Apogeeweb

В электронике простейшая схема для питания светодиода использует источник напряжения с последовательно включенным резистором и светодиодом.Чтобы найти необходимый последовательный резистор, введите напряжение отдельного светодиода, желаемый ток и общее напряжение питания.

Следующие важные формулы для проектирования электроники:

Закон Ома

Для расчета резистора

где

В S — напряжение источника, измеренное в вольтах (В).
В f — падение напряжения на светодиодах, измеренное в вольтах (В).
I f — ток через светодиод, измеренный в амперах (Ампер / А).
R — сопротивление, измеряемое в Ом (Ом).

Этот калькулятор основан на калькуляторе закона Ома , но учитывает падение напряжения на светодиодах. Кроме того, ток через светодиод равен току резистора, потому что ток постоянный. Таким образом, вы сможете подобрать подходящий резистор для светодиодных светильников.

Люди тоже спрашивают (Q&A)

1. Как рассчитать резистор в серии светодиодов?
Значение правильного резистора для последовательных светодиодов — это напряжение питания (давление) за вычетом общего давления, потребляемого всеми выключенными светодиодами (падение напряжения на одном светодиоде, раз на общее количество светодиодов), этот ответ затем делится на ток светодиода (поток электронов), необходимый для схемы.

2. Должен ли резистор стоять до светодиода?
Неважно! Резистор может быть установлен до или после светодиода, и он все равно будет его защищать.Видите ли … ток, который выходит из батареи, всегда равен току, который течет обратно в батарею. Ток через резистор такой же, как ток через светодиод.

3. Нужен ли резистор для светодиода? Резисторы
в схемах светоизлучающих диодов (СИД): СИД (светоизлучающий диод) излучает свет, когда через него проходит электрический ток. Балластный резистор используется для ограничения тока через светодиод и предотвращения его возгорания. Если источник напряжения равен падению напряжения светодиода, резистор не требуется.

4. Есть ли резисторы на положительной или отрицательной стороне светодиода?
Поскольку этот резистор используется только для ограничения тока в цепи, его можно разместить с любой стороны светодиода. Размещение резистора на положительной (анодной) стороне резистора не будет иметь никакого эффекта, чем размещение резистора на отрицательной (катодной) стороне светодиода.

5. В светодиодные ленты встроены резисторы?
Обычно в светодиодную ленту встроены резисторы, и вы просто обеспечиваете 12 В или 5 В, или что-то еще, на что полоса рассчитана.

6. Светодиоды работают от постоянного или переменного тока?
В большинстве случаев светодиоды работают от источника постоянного тока. Светодиоды потребляют постоянный ток для получения света; при переменном токе светодиод будет гореть только тогда, когда ток течет в правильном направлении. Подача переменного тока на светодиод заставит его мигать и выключаться, а при высокой частоте светодиод будет гореть постоянно.

7. Куда идет резистор на светодиоде?
Резистор может быть по обе стороны от светодиода, но он должен присутствовать. Когда два или более компонента включены последовательно, ток будет одинаковым для всех, поэтому не имеет значения, в каком порядке они находятся.

8. Зачем светодиодам нужны токоограничивающие резисторы?
Токоограничивающий резистор помогает смягчить эффект увеличения напряжения благодаря своей линейной ВАХ. Кроме того, резисторы ведут себя противоположно светодиодам в зависимости от их температуры — с повышением температуры увеличивается и сопротивление.

9. Нужен ли резистор для светодиода на 12 В?
Какой резистор нужен для того, чтобы зажечь светодиод с напряжением 12 В? Обычно вы хотите минимизировать потери, поэтому вы подключаете как можно больше светодиодов последовательно, чтобы потреблять предоставленное напряжение, затем вы используете резистор, чтобы ограничить ток до правильного значения.Белые светодиоды обычно используют 3,0 вольта.

10. Какой резистор мне нужен, чтобы понизить 12В до 5В?
Поместите два резистора последовательно со вторым номиналом резистора (5/7) первого номинала резистора. Поместите резисторы между 12В и землей, и тогда вы получите 5В в точке между ними. Это очень грубый способ сделать это. Он не регулируется, поэтому выходное напряжение будет зависеть от входного напряжения.

11. Резистор какого размера следует использовать со светодиодом?

Основы: Подбор резисторов для светодиодов

12.Как рассчитать резистор для светодиода?

Мы будем использовать следующую формулу для определения номинала резистора: Резистор = (напряжение батареи — напряжение светодиода) / желаемый ток светодиода. Для типичного белого светодиода, потребляющего 10 мА при питании от 12 В, значения следующие: (12–3,4) /. 010 = 860 Ом. Чтобы использовать несколько светодиодов параллельно, просуммируйте текущие значения.

13. Какая формула для резистора?

Уравнение резистора серии

Rtotal = R 1 + R 2 + R 3 +….. Rn и т. Д. Обратите внимание, что полное или эквивалентное сопротивление RT оказывает такое же влияние на схему, как и исходная комбинация резисторов, поскольку представляет собой алгебраическую сумму отдельных сопротивлений.

14. Что произойдет, если не использовать резистор со светодиодом?

При подключении светодиода вы всегда должны использовать токоограничивающий резистор для защиты светодиода от полного напряжения. Если подключить светодиод напрямую к 5 В без резистора, светодиод будет перегружен, некоторое время будет очень ярким, а затем перегорит.

15. Нужны ли резисторы для светодиодных лент?

Помимо светодиодов, также необходим один или несколько токоограничивающих резисторов, чтобы гарантировать, что светодиодная лента не перейдет в режим перегрузки по току. Резистор также включен последовательно со светодиодами, и его значение сопротивления рассчитывается таким образом, чтобы он также потреблял примерно 3 вольта.

16. Как рассчитывается сопротивление светодиода?

Чтобы рассчитать резистор, необходимый для простой цепи светодиода, просто снимите падение напряжения с напряжения источника, а затем примените закон Ома.

17. Как выбрать резистор для светодиода?

В следующем примере светодиод с напряжением 2 вольта и силой тока 20 миллиампер должен быть подключен к источнику питания 12 вольт. Балластный резистор можно рассчитать по формуле: резистор должен иметь сопротивление 333 Ом. Если точное значение недоступно, выберите следующее значение, которое выше.

18. Каков максимальный ток для светодиода?

20 мА

Для светодиодов стандартного диаметра 5 мм максимальный ток обычно составляет 20 мА, поэтому значения 10 мА или 15 мА подходят для многих цепей.

19. Следует ли подключать светодиодные фонари последовательно или параллельно?

Компоненты серии

имеют одинаковый ток, но колеблющееся напряжение. Вообще говоря, в большинстве светодиодных светильников используется последовательно-параллельная комбинация. В идеале, для надежности и согласованности освещения, было бы лучше иметь одну полосу светодиодов, все последовательно подключенные к драйверу постоянного тока.

20. Как рассчитать номинал резистора для серии светодиодов?

В этом видео объясняется, как рассчитать значение сопротивления светодиодов для последовательной и параллельной цепей.Перед использованием светодиодов в цепи очень важно выбрать правильное значение сопротивления, иначе светодиод может перегореть.

AMZ Расчетный резистор для светодиода

AMZ Расчетный резистор для светодиода

Расчет номинала резистора для светодиода


Этот калькулятор используется для определения значения падающего резистора, необходимого для ограничения тока светодиода до выбранных миллиампер.Vf по умолчанию составляет 1,95 В и является типичным для большинства светодиодов, за исключением синего и белого, которые будут немного выше. Значение R1 указывается в омах.

Мощность резистора, используемого для R1, должна быть больше, чем значение, указанное калькулятором. Пример: если в поле «Мощность» отображается 0,07, то можно использовать резистор 0,125 Вт (1/8 Вт) или выше.


Введите ток, при котором светодиод должен работать, и калькулятор найдет значение резистора.В качестве альтернативы вы можно оставить поле тока светодиода пустым, и калькулятор сообщит, сколько миллиампер использует светодиод. Значения напряжения питания и прямого напряжения светодиода необходимо всегда вводить в форму. Мощность для резистор R1 — это минимум, который следует использовать. Выберите резистор следующей более высокой мощности. Резистор 1/4 Вт составляет 0,250 Вт, резистор 1/2 Вт равен 0,500 Вт, резистор 1 Вт равен 1 000 Вт и так далее.

20 мА — типичный максимальный ток для большинства светодиодов. Выберите значение меньше 20, если не используется специальный светодиод.Ток в 5 миллиампер должен быть достаточно ярким для большинства светодиодов, а 2 или 3 мА достаточно для синего индикатора.

Я тестировал светодиоды на 3мА. и записали прямое падение напряжения для использования в калькуляторе. По возможности я использовал светодиоды разных типов для каждого измерения.
Пример: Для красной пары я использовал 5-миллиметровый патрон для первого теста и прямоугольную форму для второго теста. То же самое с зеленым и желтым.
Светодиод прямого напряжения
красный 1.98v 1,96 В
Зеленый 1,94 В 1,92 В
Желтый 1,90 В 1,92 В
Синий 2,76 В 2,78 В
белый 2,78 В 2,76 В
Розовый 2,84 В 2,84 В
Ультрафиолетовый 3,10 В 3.16v
Необходимо преобразовать коэффициент усиления напряжения в децибелы?

AMZ-FX Домашняя страница Главная страница Lab Notebook Блог гитарных эффектов

© 2003,2009,2015 Джек Орман
Все права защищены.

Политика конфиденциальности

Светодиодные калькуляторы

Будучи твердо убеждены в том, что «никогда не бывает слишком много инструментов», мы добавил несколько калькуляторов ниже, чтобы помочь вам быстро вычислить соответствующие информация, необходимая для правильного использования наших светодиодов.

Чтобы использовать эти калькуляторы, ваш веб-браузер должен поддерживать JavaScript. Большинство новых версий Internet Explorer и Netscape должны нет проблем.

Вычислитель LED — РЕЗИСТОР вычисляет номинал резистора (Ом) и размер (Вт) для желаемого тока светодиода, напряжение устройства (Vd) и напряжение питания (Vs).

Калькулятор LED — CURRENT вычисляет ток и мощность резистора для данного сопротивления, а также напряжения устройства / питания.Это удобный инструмент для пересчета тока, если вам нужно оставаться в определенных пределах. спецификация мощности.

Калькулятор LED — MCD вычисляет изменение тока светодиода, необходимого для изменения яркости светодиода (выход mcd). Светодиод — Затем можно использовать калькулятор РЕЗИСТОРА для определения необходимых значений резистора. для этого нового светодиодного тока. Подробности см. Ниже.

ВАЖНО: Если несколько светодиодов должны быть соединены последовательно, сложите напряжения их устройств, чтобы получить значение Vd .

Уровни яркости светового потока светодиодов измеряются в милликанделах. Наши светодиоды должны иметь заданную яркость при заданном номинальном значении. значение тока (мА или миллиампер), которое не приведет к перегрузке светодиода и сокращению это жизнь. Все наши светодиоды указаны с номинальным (рекомендуемым) током. значение 20 мА (двадцать тысячных усилителя).

Если ток, потребляемый светодиодом, изменяется (вверх или вниз), его яркость (значение mcd) изменится. Производители наших светодиодов контролировать свои процессы так, чтобы светодиоды были разумно линейными по этому мкд / току. отношение.По большей части это верно примерно для 2 или 3 мА на всем пути. до примерно 30 мА. Чтобы лучше это понять, воспользуемся нашим 2×3 Супер-белый светодиод в качестве примера. Производитель указывает, что этот светодиод должен иметь выходная яркость 320 мкд при 20 мА. Если уменьшить ток, светодиод потребляет до 10 мА его яркость будет снижена примерно до 160 мкд (примерно наполовину). Если мы спустимся к 5 мА, она упадет примерно до 80 мкд (около 1/4 яркости). Наоборот, если бы мы позволили светодиоду потреблять 25 мА, его выходная мощность увеличилась бы примерно до 400мкд (на 25% ярче).

Несколько слов о сроке службы светодиодов …

При нормальных условиях эксплуатации (не перегреваться при пайке и ограничен током 20 мА), наши светодиоды могут прослужить в среднем, около 80 000 часов, прежде чем яркость начнет существенно уменьшаться. Некоторые производители указывают срок службы своих светодиодов 100000 часов, но если вы посмотрите на мелким шрифтом или поговорите с их инженерами, вот тогда их светодиод полностью погаснет. темный (нет вывода). Кроме того, 80 000 часов — это немногим более 27 лет, если вы должны были использовать устройство по 8 часов каждый божий день! К тому времени, мы, вероятно, все равно захотим переделать наш проект.

Одна вещь, которая прямое влияет на ожидаемый срок службы светодиода, — это ток, который он рисует. Если мы будем использовать светодиод при пониженном токе, мы увеличим это жизнь еще дальше. На значительно пониженных уровнях он может длиться почти бесконечно!

И наоборот, если мы позволим ему видеть ток выше номинального (20 мА), его жизнь будет намного короче. К сожалению, связь между LED срок службы и ток нелинейный как отношение между током и яркость.Эксплуатация светодиода на 50% выше номинального уровня тока или 30 мА, может уменьшить жизнь на 80% . Будет очень ярко, но не на долго … Если вы планируете эксплуатировать наши светодиоды на уровнях тока выше 30 мА, они могут вести себя как лампы-вспышки.

Однако (да, еще один), вы можете подвергать светодиоды невероятно огромные уровни тока (175 мА) при условии, что это импульсный ток на 1/10 рабочий цикл, ширина импульса 0,1 мс (одна десятитысячная секунды).Пульсирующие светодиоды это обсуждение в другой раз. Кроме того, эти уровни яркости (подавляющая яркость) действительно не поддаются приложения в модельном железнодорожном транспорте.

Ладно, зачем вообще возиться с яркостью светодиода? …

Ну, потому что бывают ситуации, когда это может сильно повлиять на визуальный эффект, который вы хотите представить. Вот несколько примеров:

  1. Светофор . С помощью наших микро-светодиодов мы можем создать трафик сигнал, который является полностью функциональным в масштабе N и размером прототипа.Мы может даже включать функцию «ходить / не ходить», которую можно увидеть в большинстве случаев. Наш Микро светодиоды имеют выходную яркость: красный — 20 мкд, желтый — 15 мкд и Зеленый 2мкд. Означает ли это, что красный в 10 раз ярче зеленого? Ну да, но … Мы не видим его в 10 раз ярче, потому что наш глаза гораздо более чувствительны к зеленому спектру, чем к красному. Следовательно, нам нужно уменьшить выход красного светодиода примерно на 50-70% до сбалансированность внешнего вида для реалистичного вида.Мы также хотим уменьшить Желтого изрядное количество. Мы могли бы увеличить зеленый цвет, но мы его сократим. жизнь, и это легко увидеть на стандартном уровне яркости.

Если бы мы вообразили и включили также огни «Ходить / Не ходить», они обычно оранжевые для «Не делать» и белые для «Ходить». Для этого мы бы используйте два Micro (или Nano) супербелых светодиода и тонируйте «Don’t» с помощью Tamiya. Очистите оранжевый цвет, а затем существенно уменьшите его вывод на МКД.Свет «Прогулка» останется белым, но мы бы очень сильно понизили яркость. Таким образом, мы сможем полюбоваться всем сигналом, не отвлекаясь. одной из его особенностей. Довольно круто, да?

  1. Освещенная деталь в окне здания . Предположим, у нас есть витрина в витрине магазина, или телефонная будка в переулке, или свет верстака в гараже с открытой дверью. Микро и нано Сверхбелые светодиоды из-за своего размера идеально подходят для таких приложений, но могут быть слишком ярким.Если вы осветите витрину магазина прожектором интенсивности, это может ослабить тонкое настроение, которое вы пытаетесь передать. Верстак свет, похожий на галогенный фонарь, может закрывать глаза от инструментов на скамейка. В любом случае, вы видите, куда мы идем, иногда лучше меньше, да лучше.
  2. Цветные световые струны в партии подержанных автомобилей . Поскольку наши светодиоды Nano настолько малы, мы можем создавать по-настоящему творческие вещи с ними. Используя две цепочки светодиодов, каждый из которых соединен последовательно, мы сделаем Красная цепочка из четырех светодиодов, расположенных на расстоянии около 3/4 дюйма между каждым светодиодом.Мы используем наш # 38 магнитный провод. Затем мы сделаем еще одну цепочку из трех желтых светодиодов, расположенных между те же 3/4 дюйма. Мы оставим 6-8 дюймов дополнительной проволоки на концах каждой струны. Теперь мы положите две струны, одну поверх другой, чтобы светодиоды чередовались Красный / желтый / красный / желтый / красный / желтый / красный и расположены равномерно. Мы будем крутить две пряди вместе (не слишком туго), удерживая их прямо. Следующий, покрасим скрученные провода Poly-Scale Night Black. Если мы приостановим это монтаж между двумя вертикальными стойками (или наш.018 «НКТ с опорными тросами), у нас будет струна из семи источников света, которая будет охватывать почти 50 футов шкалы N. Следующий мы выберем соответствующий резистор для каждой (красной или желтой) «подстроки» соединение, чтобы убедиться, что одно уравновешивается с другим, и ни то, ни другое не слишком яркий. Две или три таких нити вокруг нескольких автомобилей и грузовиков на небольшой пустырь в центре города действительно привлек бы внимание.

  3. Световые вывески на барах, гостиницах, ресторанах и т. Д. .Примерно с 1930-х годов было обычным явлением видеть деловые знаки с отдельные огни вокруг них. Стрелки, созданные из отдельных лампочек, акцентные цветные огни, стратегически размещенные на знаках и рядом с ними и т. д. что кто-то мог пофантазировать, чтобы привлечь внимание к своему заведению, было сделано с огнями в той или иной форме. С нашими светодиодами Micro и Nano, а также бесконечное количество возможных цветов, которые можно смешивать с помощью прозрачного акрила Tamiya Краски, теперь мы можем воспроизвести практически любую из этих ловушек, чтобы улучшить нашу сцены.Мы можем использовать последовательную, параллельную и последовательную / параллельную проводку для создания практически любое сочетание освещения, которое мы выберем. Добавив возможность регулировки интенсивности, мы можем сбалансировать и усилить создаваемый эффект для достижения абсолютно впечатляющие результаты.

Играйте с числами …

Как только вы почувствуете себя комфортно с калькуляторами, их станет легко использовать. поэкспериментируйте с различными значениями сопротивления / тока / мощности / мкд, чтобы соответствовать конкретным критерии, которые вы ищете.Очень быстро повторно ввести один или два из значения в окнах ввода калькулятора и щелкните, чтобы пересчитать. Конечно легче, чем иметь повторно вводите все в свой настольный калькулятор каждый раз или работайте с этим с карандаш и бумага.

Вот пример некоторых «настроек», которые мы сделали на Като Amtrak Superliner с салоном и EOT фары:

Немного поэкспериментировав, мы выяснили, что при использовании нашего супербелого светодиода 2×3 (выход mcd 320 при токе 20 мА) светоотдача ~ 240-250 мкд была вполне достаточной для полностью осветить салон автомобиля.Автомобиль был бы явно освещен, но не чрезмерно яркий, чтобы не выглядеть прототипом или «игрушечным».

Схема, которую мы разработали для этого проекта (это схема), включает в себя мостовой выпрямитель. Диоды в мостовом выпрямителе, «фильтровать» напряжения переменного или постоянного тока до постоянного постоянного напряжения (необходимого для светодиодов) иметь небольшое падение напряжения около 0,6 вольт. То есть, если мы подключим мост выпрямитель, даже при использовании простого постоянного тока на входе, его выход будет около 0,6 вольт ниже, чем на входе.Это неотъемлемая характеристика большинства кремниевых сигналов. и выпрямительные диоды. В нашем тестовом треке DCC используется контроллер Digitrax DCS100. питание от блока питания MRC Control Master 20 (довольно стандартная штука). Наш мостовой выпрямитель, подключенный через дорожку, имел выходное напряжение 11,4 В постоянного тока, поэтому вход должен был быть на 12 вольт. Используя это как напряжение источника светодиода, мы приступил к испытаниям схемы с различными ограничивающими резисторами. После пробежки Проведя несколько расчетов и несколько тестов, было определено, что резистор 510 Ом подойдет и принесет дополнительную пользу.

Чтобы запустить наш светодиод 2×3 на полном выходе из микроконтроллера, нам понадобится резистор 390 Ом, чтобы дать 20 мА при 11,4 В. С помощью калькулятора тока светодиода и замены 510 Ом резистор для значения 390 дает нам результат 15,3 мА (около 76% от 20 мА). Помните, что светоотдача светодиодов довольно линейна как функция тока (мА). 15,3 мА составляет ~ 76% от 20 мА, поэтому 76% от 320 мкд составляет около 245 мкд. Тестирование доказало это очень удовлетворительный выход для освещения салона автомобиля.

Теперь вот дополнительное преимущество.Если бы мы использовали резистор на 390 Ом на полную Выход светодиода, быстрый расчет определяет, что нам понадобится резистор, способный мощность 156 милливатт. Поскольку это нестандартная мощность, нам потребуется резистор на 1/4 ватта (0,25). Однако при использовании 510 Ом резистор, уменьшенный ток в цепи требует всего 119 милливатт резистор, так что 1/8 ватт (0,125) будет работать нормально. Обычно это резистор перегреется, но мы припаяли его одну сторону к одной ножке мостовой выпрямитель, а другая сторона подключается к проводу №30.Оба действуют как тепло раковины, чтобы помочь отвести излишнее тепло.

Если максимальная яркость светодиода не всегда необходима, у вас будет место для игр с числами и может оказаться полезным сделать это.

Калькулятор резисторов светодиодов

Калькулятор резисторов светодиодов

Таблица цветов и значений резистора

У нас есть удобная таблица, показывающая цвета и значения
резисторов. У нас есть большая версия
шириной 1200 пикселей и огромная версия PDF.Надеемся, это пригодится.

Версия немного больше
1200 PX jpeg версия нажмите, чтобы загрузить
Щелкните правой кнопкой мыши и «Сохранить как»
Огромная версия PDF нажмите, чтобы загрузить
Щелкните правой кнопкой мыши и «Сохранить как»

О нас

Электронная лаборатория Volthaus — это дом для людей, которые любят электронику.

Ознакомьтесь с нашими новыми электронными наборами «сделай сам».

Комплект сигнализации, активируемой движением
$ 9,99 +.99 s & h (мы отправляем в США только из Остина, штат Техас)

Если вы только начинаете свой путь к электронике для хобби, вы не ошибетесь с этим набором. Это просто и весело. Действительно весело. Обучающие, удобные и отличные для розыгрышей

В этот комплект входят:

  • Пассивный инфракрасный датчик движения PIR (1)
  • 9В Активный зуммер (1)
  • Макетная мини-доска (1)
  • Качественная защелка аккумулятора 9 В (1)
  • Перемычки (5) штекер / гнездо
  • Подробная инструкция и схема
  • Цвета могут различаться

Среднее падение напряжения светодиода обычно составляет 1.9 ~ 2,2 В
Ток обычно 20 мА
Добавьте напряжение питания и нажмите кнопку «Рассчитать».


Один светодиод:


Светодиоды в серии:


Светодиоды параллельно:
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *