Элемент Пельтье он же термоэлектрический модуль
Чуть чуть теории.
Единичным элементом термоэлектрического модуля (ТЭМ) является термопара, состоящая из двух разнородных элементов с p- и n- типом проводимости. Элементы соединяются между собой при помощи коммутационной пластины из меди. В качестве материала элементов традиционно используются полупроводники на основе висмута, теллура, сурьмы и селена.
Термоэлектрический модуль (Элемент Пельтье) представляет собой совокупность термопар, электрически соединенных, как правило, последовательно. В стандартном термоэлектрическом модуле термопары помещаются между двух плоских керамических пластин на основе оксида или нитрида алюминия. Количество термопар может изменяться в широких пределах — от единиц до сотен пар, что позволяет создавать ТЭМ практически любой холодильной мощности — от десятых долей до сотен ватт.
При прохождении через термоэлектрический модуль постоянного электрического тока между его сторонами образуется перепад температур -одна сторона (холодная) охлаждается, а другая (горячая) нагревается. Если с горячей стороны ТЭМ обеспечить эффективный отвод тепла, например, с помощью радиатора, то на холодной стороне можно получить температуру, которая будет на десятки градусов ниже температуры окружающей среды. Степень охлаждения будет пропорциональной величине тока. При смене полярности тока горячая и холодная стороны меняются местами.
Практика.
Элементы Пельте широко используются в системах охлаждения. Но не многие знают об их другом свойстве – вырабатывать энергию. Изучению этих их возможностей и посвящена данная лабораторная работа.
50*50 мм элемент, установлен между двумя алюминиевыми брусками. Предварительно их поверхности притёрты и смазаны пастой КПТ. В одном из брусков просверлены сквозные отверстия, через которые пропущена медная трубка, для водяного охлаждения. Вот, что получилось:
Подключаем воду к охладителю к одной стороне элемента Пельтье, а другую ставим на конфорку. К выходу элемента подключаем 10Вт 6 вольтовою лампочку. Результат — наш генератор работает !
Опыт доказывает, что элемент Пельтье хорошо вырабатывает электричество. Лампочка горит достаточно ярко, напряжение около 4.5 вольта.
Нагрев до 160 градусов оказался не оптималенлен, при 120 градусах результат был хуже всего на 10%.
Температура охлаждающей жидкости на выходе десять градусов, на входе на один градус меньше. Судя по таким результатам, вода, для охлаждения, не так уж необходима…
При помощи элементов Пельтье можно добывать электричество в экспедиции, в турпоходе, на охотничьем зимовье, словом в любом месте, где это может понадобиться. Естественно, при наличии дров или яркого солнца, ну и обязательно смекалки.
Использование термоэлектрического модуля.
Такой термоэлектрический генератор прекрасно помнят те, кто помнит советские совхозы и колхозы. Говорят, в войну немцы не могли понять, как партизаны могут подолгу вести радиопередачи из осажденного леса.
Да, как говорится — если бы нашим ученым платили деньги, то они бы iphone ещё в `85 изобрели бы ! 🙂
Термоэлектрический холодильник
Термоэлектрический холодильник (вариант 2)
Термоэлектрический холодильник (вариант 3)
Автомобильный охладитель для баночных напитков
Кулер для питьевой воды
Термоэлектрический кондиционер для кабины КАМАЗа
В такой «ковшик» наливается вода, ставится на огонь и, пожалуйста, подзаряжай мобильник. Весь секрет в дне, там «зарыт» Пельтье
Давайте поподробней об этой конструкции.
В настоящее время растет интерес к использованию термоэлектрических генераторных модулей в бытовых устройствах. В первую очередь это касается возможности питания маломощных потребителей электроэнергии — радиоприемники, сотовые и спутниковые телефоны, переносные компьютеры, устройства автоматики и т.п. от имеющихся источников тепла. Термоэлектрический генератор, в котором отсутствуют вращающиеся, трущиеся и какие-либо другие изнашиваемые части, позволяет непосредственно получать электричество из любого источника тепла: выхлопных газов двигателей внутреннего сгорания, горячей воды геотермальных источников, «бросового» тепла ТЭЦ и т.п. Руководствуясь опытом, полученным при создании промышленных термоэлектрических генераторов (ТЭГ) различной мощности — от нескольких Ватт до нескольких килоВатт ИПФ КРИОТЕРМ приступила к серийному производству бытового ТЭГ номинальной мощностью 8 Вт. Конструктивно генератор выполнен в виде алюминиевого ковшика с внутренним объемом около 1 л в донной части которого установлены генераторные модули производства ИПФ Криотерм.
Необходимый для работы генератора перепад температур достигается при разогреве ковшика, например, пламенем костра. Вода, нагреваемая внутри ковшика может идти на приготовление пищи или на другие цели. Данный генератор в первую очередь предназначен для использования в глухих, труднодоступных местах для подзарядки элементов питания индивидуальных средств связи и навигации, освещения и т.п. Он незаменим для охотников, туристов, моряков, сотрудников спасательных и специальных служб, вынужденных долгое время находится вдали от источников центрального энергоснабжения.
Преимуществом генератора является малый вес и объем, высокая удельная генерируемая мощность, функциональность и высокая надежность. Конструкция генератора исключает возможность его перегрева при правильном использовании. В качестве дополнительной опции к генератору предлагается ступенчатый стабилизатор напряжения с диапазонами 3 В — 6 В — 9В -12В и переходники для зарядных устройств.
БЫТОВОЙ ГЕНЕРАТОР ТЕРМОЭЛЕКТРИЧЕСКИЙ 1TG-8
Техническая спецификация
Масса без жидкости , кг, не более 0,55
Габаритные размеры, мм
с ручкой
без ручки 250х130х110 ? 123, h=100
Внутренний объем, дм3 1,0
Номинальная генерируемая мощность, Вт, не менее 8,0
Выходное напряжение, В 3,0 ? 12,0
Ток, мА 660 ? 2660
А вот ещё один пример использования .
Из таких небольших термоэлектрических конденсаторов и состоит генератор.
Уже сейчас термоэлектрические генераторы (TEG) благодаря применению новейших материалов способны вырабатывать электроэнергию мощностью до 1000 Вт.
Термогенератор особенно порадует любителей динамичной езды: ведь чем выше обороты мотора, тем больше вырабатывается электроэнергии, которая в будущем может использоваться в гибридных силовых установках, например, для еще лучшей разгонной динамики.
Почти две трети энергии топлива в современных ДВС «улетает» в атмосферу вместе с теплом. Поэтому инженеры BMW вместе со специалистами американского аэрокосмического агентства NASA активно работают над технологиями превращения тепловой энергии выхлопных газов в электрическую. Такие установки имеют еще один позитивный эффект: дополнительное нагревание непрогретого мотора. Пока TEG «окутывает» отрезок выхлопной трубы, но в будущем планируется интегрировать эту систему в катализатор, используя тем самым его тепловой режим. Для более масштабного внедрения данной технологии в автомобиле придется модернизировать днище, расширив в некоторых местах центральный тоннель. Ожидается, что подобная система уже совсем скоро сможет давать 5-процентную экономию топлива, повышая КПД двигателя внутреннего сгорания.
Вот такой он Элемент Пельтье или термоэлектрический модуль!
sdelaysam-svoimirukami.ru
Что можно сделать из элементов Пельтье и за счет каких механизмов?
Элементы Пельтье – казалось бы, давно уже не новость, однако многие не полностью представляют принцип их работы, и не знают, что можно сделать из модулей и зачем они нужны. Изобретатель Игорь Белецкий покажет несколько наглядных экспериментов, чтобы у вас сложилось понимание того, на что способны эти пластинки.
Их легко приобрести в интернете и заказать доставку по почте. Купить Пельтье лучше всего в этом китайском магазине. Есть и специальный кулер охлаждения.
На фото: Модуль Пельтье
Самый популярный модуль Пельтье TEC1-12706
Самым популярным среди практиков, увлеченных идеями свободной природной энергии и производителей технических устройств является элемент размером 40 на 40 миллиметров с маркировкой TEC1-12706. Это означает, что он состоит из 127 пар малюсеньких термоэлементов – полупроводников разного типа, которые попарно соединены при помощи медных перемычек в последовательную цепь и рассчитаны на постоянный ток до 5 А при напряжении 12 вольт.
Некоторые думают что модули Peltier, это что-то типа солнечных панелей – ведь они такие же плоские, торчат проводки, и те и другие могут генерировать электрический ток. Увы, это не совсем так на самом деле. Чтобы понять, как функционируют загадочные пластинки, посмотрите видео И. Белецкого, описание в текстовом формате ниже.
Эффекты Пельте и Зебека – функции модуля
У этого девайса есть целых два режима работы – 1. выработка холода и тепла; 2 – генерация электрического тока.
1. Итак, знаменитый эффект Пельтье (тепло и холод). Это когда вы подводите к элементу постоянный ток и замечаете, что одна из его сторон стала теплее, а другая холоднее. Таким образом он работает как тепловой насос. Очень полезное свойство. Спору нет.
2. Но оказалось, что имеет место и обратный процесс – так называемой эффект Зебека, а именно возникновение электрического тока при установлении и поддержании определенной разности температур на сторонах самого модуля (пластинки).
Примечание. Никогда не перегревайте элементы, если хотите и далее проводить эксперимент с ними. Полупроводники в модуле спаяны припоем, температура плавления которого может лежать в пределах от восьмидесяти до двухсот градусов. А учитывая, где сегодня производится большинство этих элементов, можно только догадываться на каких соплях их спаяли.
Схема. Как создается электричество при нагреве сторон Пельтье
Вся неприятность в том, что этот элемент будет нормально работать только при эффективном охлаждении.
Тест с получением электричества
Например, мы хотим проверить эффект Зебека. Поставим сверху кружку с кипятком. Тем самым не превышено 100 градусов, допустимых по нагреву.
Наблюдаем появление напряжения. Интересно, что если изменить направление тепловой потока через модуль, то изменится направление постоянного тока. Но со временем на второй стороне благодаря теплопроводности элемента Пельтье температура тоже поднимется и напряжение, естественно, упадет.
Чтобы эффект был постоянным, нужен постоянный отвод тепла. Для этого модуль размещают на массивным радиаторое и желательно с активным охлаждением. Показатели явно лучше, как вы понимаете. Это требует дополнительных энергозатрат.
Допустим, вы хотите сделать из этого элемента походную зарядку для мобильников. Тогда на природе радиатор можно поместить в холодную воду, возможно даже проточную или ледяную, что несомненно еще лучше. Применение этих модулей зимой при хорошем дармовом минусе – наиболее перспективно.
Правда, одного элемента для зарядки телефона явно будет маловато. А вот два – это уже лучше. Естественно, если увеличить нагрев, то выходная мощность тоже возрастет. Но это очень рискованный шаг, который можно сделать только ради эксперимента. Работа такого генератора будет длиться недолго.
Теперь перейдем к эффекту Пельтье, то есть к производству холода.
Холодильник на модулях Пельте – насколько он эффективен?
Для эксперимента будет использован автомобильный холодильник. Полезный объем его 20 литров. Обратите внимание – заявленная мощность – 48 ватт при токе 4 ампера и постоянном напряжении 12 вольт. А это значит, что внутри стоит всего лишь 1 маленький элемент Пельтье. Для тех кто не в теме откроем секрет – такую же мощность имеет обычный домашний холодильник, размеры которого в разы больше. Ну да ладно, сейчас не об этом. Проверим его эффективность. Например поставим ему минимальную задачу охладить стаканчик с водой, имеющей комнатную температуру 26 градусов. Для работы холодильника будем использовать блок питания, идеально подходящий по своим параметрам. Дополнительно в цепь будем помещен ваттметр. Он будет в реальном времени отображать ток, напряжение и мощность. Но самое главное – потребление, так называемый ватт в час. Таким образом мы сможем примерно оценить энергозатраты нашего холодильника.
Включаем и видим, все прекрасно работает. Вот ток 4,29 А. Напряжение 11,15 Вольт. Мощность 47,9 Ватт. 0,1 Ватт-часов.
Пока процесс идет, проведем более наглядный эксперимент, который покажет, что же именно происходит в холодильнике. Когда подадим на элемент постоянный ток, он начнет перекачивать тепло с одной стороны на другую.
Кстати, если поменять направление тока, то изменится и направление перекачки тепла, что весьма удобно. Главное не забываем об активном охлаждении, потому что пятьдесят ватт электрической мощности нагревает элемент мгновенно. Чем эффективнее мы отведем тепло с горячий стороны, чем холоднее на другой.
Как видите, на самой поверхности модуля вода замерзает очень быстро, ну еще бы – столько энергии сжирает.
Но вернемся к нашему холодильнику. Спустя один час работы температура воздуха внутри упала до пятнадцати градусов, а у воды опустилась до 20. Удивило, что за час работы он съел четко 48 ватт. Через два часа у воздуха было 13 градусов, а у воды 17. И наконец, после трех часов работы температура воздуха остановилась на 13-ти градусах, а в стакане с водой была 15 и ниже 12 она уже не опустится. Ну так себе холодильник, учитывая что он был забит напитками не полностью. Но при этом этот монстр потребил 140 Ватт. Для домашней сети может и не много, но для автомобильного аккумулятора это уже весьма ощутимо. Поэтому здесь и стоит всего лишь один элемент. Потому что больше никакой аккумулятор просто не потянет. А это значит, что кпд такого модуля ничтожно мал – буквально считанные проценты, что опять же зависит от производителя. Такой холодильник больше напоминает хороший термос. Если бы взяли из дома холодные продукты, то он бы просто не позволил им быстро нагреться. Делать такие холодильники большими энергетически невыгодно.
В каких случаях Пельтье эффективен?
Кстати это относится и к самодельщикам, пытающихся делать на этом принципе автомобильные кондиционеры. Есть более эффективные технологии, а вот использовать элементы Пельтье для охлаждения чего-то маленького и компактного – просто идеальное решение. Есть целый спектр таких устройств, например охлаждать процессоры или микросхемы различных малогабаритных приборов. В этом скорее всего и есть самый главный плюс таких элементов. Они миниатюрны и минимальны по весу. По сравнению с теми же фотоэлементами у Пельтье минусов конечно больше, ну а самый эффект безусловно заслуживает внимания. В конце концов все зависит от решаемых задач а если энергия халявная, то высокий КПД не так уж и важен.
До скольки градусов можно охладить элемент? Об этом в отдельном видео.
Заключение
Популярные среди радиолюбителей и инженеров модули Пельтье – электронные элементы, активно использующиеся для систем охлаждения и получения электроэнергии. На их основе разрабатываются источники питания для освещения или зарядки девайсов в походных условиях, мобильные компактные холодильники для автомобилей. Существуют попытки применения для охлаждения компьютерных процессоров. Работа устройств основана на 2 механизмах: при нагреве одной стороны пластины Пельтье и охлаждении второй, вырабатывается электроток; при подаче электричества на контакты одна сторона пластины охлаждается, вторая – нагревается.
Элемент Пельтье: характеристики, описание, применение
Справочник
Впервые я столкнулся с элементами Пельтье (ЭП) несколько лет назад, когда разрабатывал устройство охлаждения воды в аквариуме. Сегодня ЭП стали еще более доступными, а сфера их применения существенно расширилась. К примеру, в охладителях воды, которые часто можно встретить в офисах, используются ЭП. Там они в форме квадрата 4×4 см (рис.2)с помощью специальной термопасты и стяжных винтов закреплены между радиатором охлаждения и корпусом водяного резервуара, “холодной” поверхностью к резервуару. Распространены и другие ЭП.
Рис. 2 Элемент Пельтье
В основе работы элемента Пельтье лежит эффект, открытый французским часовщиком Жаном Пельтье. В 1834 г. Пельтье обнаружил, что при протекании постоянного тока в цепи, состоящей из разнородных проводников, в местах контактов (спаях) проводников поглощается или выделяется тепло (в зависимости от направления тока). Степень проявления данного эффекта в значительной мере зависит от материалов выбранных проводников и пропорциональна проходящему току. Элемент Пельтье обратим. Если приложить к нему разность температур, в цепи потечет ток.
Классическая теория объясняет явление Пельтье тем, что электроны, переносимые током из одного металла в другой, ускоряются или замедляются под действием внутренней контактной разности потенциалов между металлами. В первом случае кинетическая энергия электронов увеличивается, а затем выделяется в виде тепла. Во втором случае кинетическая энергия электронов уменьшается, и эта убыль энергии пополняется за счет тепловых колебаний атомов второго проводника. В результате, происходит охлаждение.
Наиболее сильно эффект Пельтье наблюдается в случае использования полупроводников (р- и n-типа проводимости). В зависимости от направления электрического тока через р-n-переходы вследствие взаимодействия зарядов, представленных электронами (n) и дырками (р), и их рекомбинации энергия либо поглощается, либо выделяется.
Рис. 3 Эффект Пельтье
Эффект Пельтье лежит в основе работы термоэлектрического модуля (ТЭМ). Единичным элементом ТЭМ является термопара, состоящая из одного проводника (ветки) p-типа и одного проводника n-типа. При последовательном соединении нескольких таких термопар теплота (Qc), поглощаемая на контакте типа n-р, выделяется на контакте типа p-n (Qh). В результате, происходит нагрев (Тh) или охлаждение (Тс) участка полупроводника, непосредственно примыкающего к р-п-переходу (рис.3), и возникает разность температур (AT=Th-Tc) между его сторонами: одна пластина охлаждается, а другая нагревается. Традиционно сторона, к которой крепятся провода, горячая, и она изображается снизу.
Рис. 4
Термоэлектрический модуль представляет собой совокупность таких термопар (рис.4), обычно соединенных между собой последовательно по току и параллельно по потоку тепла. Термопары помещаются между двух керамических пластин (рис.5). Ветки напаиваются на медные проводящие площадки (шинки), которые крепятся к специальной теплопроводящей керамике, например, из оксида
Рис. 5 Термоэлектрический модуль Пельтье
алюминия. Количество термопар может варьироваться в широких пределах (от нескольких единиц до нескольких сотен), что позволяет создавать ТЭМ с холодильной мощностью от десятых долей ватта до сотен ватт. Наибольшей термоэлектрической эффективностью среди промышленно используемых материалов обладает теллурид висмута, в который для получения необходимого типа и параметров проводимости добавляют специальные присадки (селен и сурьму).
Рис. 6
Типичный модуль (рис.6) обеспечивает значительный температурный перепад, который составляет несколько десятков градусов. При соответствующем принудительном охлаждении нагревающейся поверхности вторая поверхность-холодильник позволяет достичь отрицательных значений температуры. Для увеличения разности температур возможно каскадное включение термоэлектрических модулей Пельтье (рис.7) при обеспечении их достаточного охлаждения. Устройства охлаждения на основе модулей Пельтье часто называют “активными холодильниками Пельтье” или просто “кулерами Пельтье”.
Рис. 7, каскадное включение термоэлектрических модулей Пельтье
Использование модулей Пельтье в активных кулерах делает их более эффективными по сравнению со стандартными кулерами на основе радиаторов и вентиляторов. Однако в процессе конструирования и использования кулеров с модулями Пельтье необходимо учитывать ряд специфических особенностей, вытекающих из конструкции модулей и их принципа работы.
Большое значение имеет мощность модуля Пельтье, которая, как правило, зависит от его размеров. Модуль малой мощности не обеспечит необходимого охлаждения, что может привести к нарушению работы защищаемого элемента вследствие его перегрева. Однако применение модулей слишком большой мощности может вызвать понижение температуры охлаждающего радиатора до
Рис. 8, активный кулер, на основе полупроводникового модуля Пельтье
уровня конденсации влаги из воздуха, что опасно для электронных устройств. Модули Пельтье в процессе работы выделяют сравнительно большое количество тепла. По этой причине следует применять в составе кулера мощный вентилятор. На рис.8 показан активный кулер, в котором использован полупроводниковый модуль Пельтье.
Подаваемое на модуль напряжение определяется количеством пар ветвей в модуле. Наиболее распространенными являются 127-парные модули, максимальное напряжение для которых составляет примерно 16 В. Но на эти модули обычно подается напряжение питания 12 В, т.е. примерно 75% Umax. Такой выбор напряжения питания в большинстве случаев является оптимальным: позволяет обеспечить достаточную мощность охлаждения при приемлемой экономичности. При повышении напряжения питания более 12 В увеличение холодильной мощности незначительно, а потребляемая мощность резко увеличивается. При понижении напряжения питания экономичность растет, поскольку холодильная мощность также уменьшается, но линейно.
Табл.1 элемент Пельтье, характеристики
Тип модуля |
|
Характеристики |
|||
Imax,A |
Umax,B |
Qmax,Bт |
ΔTmax, 0C |
Размеры, мм |
|
А-ТМ8,5-27-1 ,4 |
8,5 |
| 15,4 |
72,0 |
72 |
40x40x3,7 |
А-ТМ8,5-127-1,4HR1 |
8,5 |
15,4 |
72,0 |
71 |
40x40x3,4 |
А-ТМ8,5-127-1,4HR2 |
8,5 |
15,4 |
72,0 |
70 |
140x40x3,7 |
А-ТМб.0-127-1,4 |
6,0 |
15,4 |
53,0 |
72 |
40x40x4,2 |
А-ТМ6,0-127-1.4HR1 |
6,0 |
15,4 |
53,0 |
71 |
40x40x3,8 |
А-ТМ6,0-127-1,4HR2 |
6,0 |
15,4 |
53,0 |
70 |
40x40x4,2 |
А-ТМЗ,9-127-1,4 |
3,9 |
15,4 |
35,0 |
73 |
40x40x5,1 |
А-ТМЗ,9-127-1,4HR1 |
3,9 |
15,4 |
35,0 |
71 |
40x40x4,8 |
А-ТМЗ,9-127-1,4HR2 |
3,9 |
15,4 |
35,0 |
70 |
40x40x5,1 |
A-TM3,9-127-1,4 |
3,9 |
15,4 |
34,0 |
71 |
30x30x3,9 |
А-ТМЗ,9-127-1,4HR1 |
3,9 |
15,4 |
34,0 |
70 |
30x30x3,9 |
А-ТМЗ,9-127-1,4HR2 |
3,9 |
15,4 |
34,0 |
70 |
30x30x3,9 |
А-ТМ37,5-49-3,0 |
37,5 |
5,9 |
130,0 |
71 |
40x40x4,3 |
A-TM37,5-49-3,0HR1 i |
8,5 |
15,4 |
72,0 |
70 |
40x40x4,3 |
A-TM6,0-31-1,4 |
6,0 |
3,75 |
12,5 |
72 |
20x20x4,2 |
A-TM6,0-31-1,4HR1 |
6,0 |
3,75 |
12,5 |
72 |
20x20x4,2 |
Примечание: модули с маркировной HR1 и HR2 отличаются повышенной надежностью.
Для модулей с другим числом пар ветвей (отличным от 127) напряжение можно выбирать по тому же принципу: 75% от Umax, но при этом необходимо учитывать особенности конкретного устройства, прежде всего, условия теплоотвода с горячей стороны и возможности источников питания. Например, на модули серии “ДРИФТ” (199 термоэлектрических пар) рекомендуется подавать напряжение от 12 до 18 В.
При эксплуатации важен надежный термический контакт между теплообменником и радиатором, поэтому ТЭМ крепится с использованием термопроводящей пасты (например, КПТ-8). Если нет специальной термопасты, можно с успехом применить фармакологические средства, купленные в аптеке, например, пасту Лассари или салицилово-цинковую пасту.
Поскольку максимальная температура на горячей стороне ТЭМ достигает +80°С (в высокотемпературных охладителях фирмы Supercool — +150°С), важно, чтобы ЭП охлаждался правильно. Горячая поверхность ТЭМ должна быть обращена к радиатору, с другой стороны которого установлен вентилятор охлаждения (поток воздуха направляется от радиатора). Вентилятор и ТЭМ в соответствии с полярностью подключаются к источнику питания, который может быть простейшим: понижающий трансформатор, выпрямитель на диодах и сглаживающий оксидный конденсатор. Но пульсации питающего напряжения не должны превышать 5%, в противном случае эффективность ТЭМ уменьшается. Лучше, если вентилятор и ТЭМ управляются электронным устройством на основе компаратора и датчика температуры. Как только температура охлаждаемого объекта повышается свыше установленного порога, автоматически включаются охладитель и вентилятор, и начинается охлаждение. Степень охлаждения (или нагрева) пропорциональна проходящегому через ТЭМ току, что позволяет с высокой точностью регулировать температуру “обслуживаемого” объекта.
Термоэлектрические модули загерметизированы, так что их можно применять даже в воде. Керамическая поверхность ТЭМ зашлифована, к ламелям (выводам) припаяны черный (“-”) и красный (“+”) провода. Если ТЭМ (рис.2) расположить выводами к себе так, чтобы черный провод был слева, а красный справа, сверху будет холодная сторона, а снизу — горячая. Маркировка обычно наносится на горячую сторону.
Табл.2
Температура воздействия, 0С |
Место воздействия (сторона 1 или 2)* |
Время воздействия, сек |
Сотротивление (по прошествии времени воздействия), кОм |
19 |
1,2 |
Постоянное |
87 |
36 |
1 |
2 |
64 |
36 |
2 |
2 |
136 |
Нагрев зажигалкой |
1 |
2 |
10 |
Нагрев зажигалкой** |
2 |
2,4 |
>2000 |
-5 (в холодильнике) |
1,2 |
300 |
135 |
-20 (на улице зимой) |
1,2 |
300 |
98 |
36 после охлаждения в холодильнике (-5) |
1 |
2 |
45 |
36 после охлаждения на улице (-20) |
1 |
2 |
404 |
100 (кипящая вода) |
1,2 |
60 |
2 |
Топка русской печи (открытое пламя) |
1,2 |
60 |
0,06 |
Примечания:
* — сторона 1 — сторона с нанесенной маркировкой, сторона 2 — обратная сторона (относительно маркировки).
** При нагреве тыльной стороны в течение 4 с зажигалкой с открытым пламенем, касавшимся поверхности ЗП, на выводах был зафиксирован ток 200 мкА.
Наиболее «ходовые» типы модулей Пельтье — это однокаскадные модули максимальной мощностью до 65 Вт (12 В) и 172 Вт (24 В). Обозначения модулей расшифровываются следующим образом: первое число — это количество термопар в модуле, второе — ширина сторон ветки (в мм), третье — высота ветки (в мм). Например, ТВ-127-1,4-1,5 — модуль, состоящий из 127 пар термоэлектрических веток, размеры которых 1,4×1,4×1,5 мм. Размеры модулей — 40×40 мм, толщина — около 4 мм. Стандартные однокаскадные модули выпускаются с максимальной мощностью до 70 Вт (12 В) и 172 Вт (24 В). Типовые параметры ТЭМ приведены в табл.1.
Табл.3 Параметры термоэлектрического генератора
Параметр |
Значение |
Длина, мм |
252 |
Ширина, мм |
252 |
Высота, мм |
170 |
Масса, кг, не более |
8,5 |
Выходное напряжение, В |
12 |
Максимальная выходная мощность, Вт |
25 |
Температура установочной повехности, °С, не более |
300 |
Рис. 9 термоэлектрический генератор
В экспериментах с ТЭМ я проверил изменение его сопротивления в разных режимах. К выводам (ламелям) модуля подключался тестер М830 в режиме измерения сопротивления. Результаты сведены в табл.2. При температурном воздействии, большем чем комнатная температура, на сторону ТЭМ с маркировкой, его сопротивление уменьшалось, на оборотную сторону — пропорционально увеличивалось (в строках 2 и 3 таблицы показана реакция на прикосновение ребром ладони к поверхности ТЭМ, температура указана приблизительно 36°С).
Учитывая обратимость элементов Пельтье, на их основе можно разрабатывать источники электропитания. Например, термоэлектрический генератор “В25-12(М)” компании “Криотерм” (рис.9) позволяет заряжать аккумуляторы мобильных телефонов, цифровых фотоаппаратов, смотреть телевизор, продолжительное время работать на ноутбуке и пр. Единственное требование — нужна нагретая поверхность размерами 20×25 см. Параметры генератора приведены в табл.3.
А.Кашкаров.
radiopolyus.ru
Эффекту Пельтье — 175 лет
На пластину наносятся проводящие дорожки, формирующие последовательно — параллельное подсоединение полупроводниковых брусочков, которые подпаиваются к контактным площадкам, используя механические шаблоны. При этом не используются оловянные или свинцовые припои, так как эти металлы достаточно агрессивны к полупроводникам и могут диффундировать в них, ухудшая термоэлектрические показатели. Свойства использованного припоя в значительной степени определяют максимальную температуру ТЭМ, которая для модулей «бытового» применения (а это большинство из выпускаемых в мире), обычно находится в диапазоне от 100 до 200°С.
Разумеется, «развертыванием» р-n перехода и соединением двух разнородных проводников посредством контактной дорожки и пайки, вместо одного спая создается два, и на каждом из них будет проявляться свой эффект Пельтье, что в сумме даст худший эффект, чем при непосредственном контакте полупроводников. Кроме того, в случае охлаждающего ТЭМ, электрическое сопротивление такого соединения приведет и к дополнительному паразитному нагреву. Но этих явлений не избежать, поэтому внутренние соединения ТЭМ делаются толстой напайкой из металла или сплава, соответствующего используемым полупроводникам.
Коэффициент Пельтье π связывает количество теплоты от эффекта Пельтье и плотность тока. Хоть Зеебек и не признал открытое им же явление термоэдс, тем не менее, это величина, которую достаточно легко измерить, в отличие от коэффициента Пельтье.
Поэтому коэффициент Пельтье вычисляют по коэффициенту Зеебека. Значения коэффициента Зеебека для некоторых веществ (при 0°С) сведены в таблицу, размерность — микровольт на градус.
Вещество | Коэффициент Зеебека (термоэдс) |
---|---|
Висмут | -72 |
Константан | -35 |
Никель | -15 |
Платина | 0 |
Алюминий | 3.5 |
Германий | 300 |
Кремний | 440 |
Теллур | 500 |
Селен | 900 |
По мере развития термоэлектричества, стало ясно, что свойства ТЭМ сильно зависят от температуры и нужен более универсальный параметр эффективности, чем добротность по Альтенкирху. Было предложено использовать коэффициент ZT, дающий возможность охарактеризовать работу термоэлектриков в широком диапазоне температур. И на многие годы камнем преткновения стали попытки преодоление этим коэффициентом значения единицы. Физическая теория не накладывает ограничений на величину ZT и современная наука находится в поисках таких материалов.
Можно отметить тот факт, что существуют и магнитоэлектрические явления, которые могут существенно усилить термоэлектрические эффекты.
В завершение главы необходимо упомянуть еще об одном термоэлектрическом явлении, эффекте Томсона, открытом в 1856 году, который проявляется в однородной среде и для него не нужны контакты разнородных материалов. Если вдоль проводника, по которому проходит электрический ток, существует перепад температур, то, в дополнение к теплоте Джоуля, в проводнике выделяется или поглощается (в зависимости от направления тока) дополнительное количество теплоты.
Насколько существенна эта теплота, прямых данных обнаружить не удалось, однако Альтенкирх, зная об эффекте Томпсона, ее не учитывал. С другой стороны, современные (2008 года) исследования этот эффект, при рассмотрении термоэлектрических явлений, считают существенным, особенно при низких температурах и приводит к появлению существенных нелинейностей, кроме того, и сама величина теплоты Томсона рассчитывается в современной физике по-другому.
Чтобы не затруднять себе жизнь, эффект Томсона учитывать не будем.
Работа термоэлектрического модуля
Многие вопросы у начинающих пользователей ТЭМ возникают из-за непонимания сути происходящих при его работе явлений. Давайте рассмотрим упрощенную модель ТЭМ, без учета эффекта Томсона, Ричардсона и других, не оказывающих в «бытовом» применении существенного влияния на результат, и считая, что теплопередача не осуществляется через боковые (нерабочие) поверхности термоэлементов. Говоря еще более строго, параметры ТЭМ определяются в вакууме и при поддержании постоянной температуры «горячей» стороны на уровне 300К. Попробуем определить тепловой баланс Q для «холодного» спая, без учета временных параметров (в нестационарных режимах за счет инерционности теплообменных процессов и безынерционности эффекта Пельтье, при подаче импульсов тока, возможно кратковременное получение пиковой холодопроизводительности в несколько раз большей, чем при стационарном режиме).
В этом случае действуют:
собственно эффект Пельтье с отводом теплоты Qпельтье = α *Tхол*I, где α — термоэдс элемента, I — ток через термоэлемент, Tхол — температура «холодного» спая;
эффект Джоуля, с выделением теплоты из-за прохождения электрического тока через ТЭМ, Qджоуля = ½ I² R, где R — электрическое сопротивление термоэлемента, а половина взята, так как вторая половина будет относиться к «горячему» спаю;
эффект теплопроводности, стремящийся устранить разность температур рабочих сторон термоэлемента, с выделением теплоты Qтп = K*(Tхол-Tгор), где К — полная теплопроводность, зависящая от удельной теплопроводности, площади сечения и длины термоэлемента, Tгор – температура «горячего» спая.
Таким образом,
Q = Qпельтье – Qджоуля – Qтп ,
или
Q = α * Tхол * I — ½ I² R — K*(Tгор-Tхол)
В связи с этим существуют два маргинальных случая, когда Q=0 и Q=Q max.
Q=0 соответствует максимальной разнице температур на концах ТЭМ (ΔTmax = Tгор-Tхол), то есть, когда вся теплота (то есть, в данном случае, холод) от эффекта Пельтье расходуется на перемещение теплоты от эффекта Джоуля на «горячий» спай и компенсацию эффекта теплопроводности.
Этот вариант соответствует режиму «холостого хода» и отсутствию тепловой нагрузки, поэтому практического интереса не представляет.
Q=Q max соответствует ситуации, когда разница температур равна нулю, то есть предельный режим работы ТЭМ, при котором дальнейшее увеличение тока не имеет смысла. Этот параметр и соответствующий ему ток и рабочее напряжение указывается в паспортных данных ТЭМ. Поэтому, в отличие, например, от транзисторов, где превышение максимального тока чревато невосстанавливаемым пробоем и перманентным выходом из строя, превышение максимального тока ТЭМ может привести лишь к росту его температуры (она часто ограничена температурой низкоплавкого припоя на основе висмута, используемого при пайке, имея в виду ТЭМ, предназначенные для работы в условиях комнатных температур, надо сверяться с данными по конкретному ТЭМ). Практическую ценность может представлять информация, что максимальная холодопроизводительность составляет около 60% от потребляемой электрической мощности. Но режим работы с максимальным током, соответствующим Q max, является и самым неэкономичным для ТЭМ.
Рабочим режимом является некоторое промежуточное значение холодопроизводительности, ниже максимального, но при котором еще существует определенная разница температур под определенной тепловой нагрузкой.
При желании из приведенных соотношений можно вывести ряд формул, в том числе и для максимального тока.
Для серийно выпускаемых ТЭМ в паспортных характеристиках указываются максимальный ток и при каком напряжении он достигнут, максимальная холодопроизводительность, максимально достижимая разность температур, габаритные размеры и материал корпуса.
КПД ТЭМ
Эквивалентом КПД для ТЭМ, используемого как охладитель, является коэффициент преобразования
ɛ = (Tхол / (Tгор-Tхол)) * (SQR(1+ ½ Z(Tгор+Tхол)) –
— Tгор/Tхол) / (SQR(1+ ½ Z(Tгор+Tхол)) + 1)
SQR означает извлечение квадратного корня из последующего выражения, заключенного в скобки.
В принципе, легко узнается термодинамическая составляющая и функция потерь.
Можно также заметить, что при приближении Tхол к Tгор коэффициент преобразования будет увеличиваться и не видно, как и чем он ограничивается. И хоть такой режим соответствует максимальной холодильной мощности, в практических целях его обычно не применяют, ибо всегда стремятся достичь разницы температур. Конечно, в «рост КПД выше единицы» верится с трудом, но объяснение этому простое — если два контактирующих вещества находятся при близких температурах, энергетические уровни большинства электронов достаточны для совершения работы выхода без внешней подпитки энергией. И термоэлектрический насос, в отличие от механического, который должен физически перекачивать жидкость, не совершает работу по переносу каждого носителя.
Применение термоэлектрических устройств
Эффект Пельтье может использоваться как для охлаждения, так и для нагрева. Достигается это простым изменением полярности питающего напряжения.
Пожалуй, наиболее массово ТЭМ применяются в небольших переносных и автохолодильниках, где тепловая нагрузка — без притока теплоты извне и позволяет решать задачи охлаждения элементами малой мощности.
Далее можно отметить устройства охлаждения радиоэлектронных компонентов и различные устройства термостатирования ввиду легкости прецизионного электронного регулирования
температуры как для нагрева, так и для охлаждения.
Выше говорилось, что максимальная холодопроизводительность ТЭМ получается при определенном значении тока, который при заданном значении напряжения питания показывается как I max. Нестационарный режим питания импульсами тока, в несколько раз превышающими I max, на некоторое время позволит получить холодопроизводительность, намного превышающую паспортную. Это объясняется тем, что сам эффект Пельтье безынерционен, в отличие от распространения теплоты джоуля и явления теплопроводности, и, в течение нескольких секунд, этим можно воспользоваться. Впрочем, нестационарные режимы широкого применения не получили.
Ввиду обратимости термоэлектрических эффектов, ТЭМ может использоваться и в качестве ТЭГ. Вдали от удобств цивилизации это может быть один из немногих доступных источников электрической энергии, например, для подзарядки аккумуляторов или прямого питания радиоэлектронной аппаратуры или других устройств. Естественно, не каждый ТЭМ может быть использован для этих целей. Достаточно широко используются устройства, в которых разница температур создается между наружной металлической оболочкой, нагреваемой открытым огнем (костром), и внутренней оболочкой, охлаждаемой водой. «Холодная» сторона будет ограничена температурой кипения воды, поэтому такой ТЭМ должен быть рассчитан на рабочую температуру 500-600°К.
Следует иметь в виду, что тепловой баланс для ТЭГ качественно отличается от ТЭМ на основе эффекта Пельтье, и этот эффект (вместе с теплотой Джоуля) вносит всего несколько процентов в общий вклад, что требует совершенно других акцентов при конструировании ТЭГ.
ТЭГ широко применяются в космической технике, где температура «горячей» стороны поддерживается радиоизотопным источником.
Впрочем, вживляемые в тело человека кардиостимуляторы также снабжены ТЭГ с радиоизотопным источником для создания разности температур.
Можно упомянуть и возможность каскадирования элементов охлаждения, путем «построения пирамиды» можно добиться разницы температур, не достижимой с помощью одиночного элемента. Правда, за это нужно будет заплатить высокую энергетическую и инженерную цену — каждый следующий каскад должен быть соответствующей мощности, чтобы создавать разницу температур с учетом полезной и полной тепловой нагрузки предыдущего каскада, а на последнем этапе все возросшее в геометрической прогрессии тепло еще надо и отвести.
ТЭМ — за и против
ТЭМ обладает рядом уникальных потребительских свойств, что, в некоторых условиях эксплуатации, делает их просто незаменимыми.
За:
Полная бесшумность
Безынерционность эффекта
Отсутствие движущихся частей
Экологическая безопасность
Отличные массогабаритные данные и высокая удельная мощность
КПД не зависит от габаритов
Конструктивное исполнение практически любого форм-фактора
Способность работать в широком диапазоне температур
Нечувствительность к короткому замыканию
Мгновенная готовность к работе
Минимальные затраты на обслуживание
Против:
Даже при нулевой полезной холодопроизводительности потребляется энергия
Необходим качественный отвод тепла с горячей стороны, причем мощности, в несколько раз превышающей полезную холодопроизводительность
Мини-FAQ
Как правильно подобрать мощность элемента Пельтье для непосредственного охлаждения процессора с TDP ХХ Вт?
Предположим, имеется ТЭМ с холодопроизводительностью XX Вт. Что это означает? То, что, при условии интенсивного охлаждения «горячей» стороны ТЭМ до 27°С, температура процессора будет не ниже 27°С. Какую тепловую мощность при этом нужно будет рассеять на «горячей» стороне ТЭМ?
Суммируем тепловыделение процессора XX Вт и электрическую мощность, потребляемую ТЭМ Qджоуля = XX Вт / (0.5….0.6), что в итоге составляет примерно 3*XX Вт.
Готовы ли вы рассеять такую мощность и поддерживать на «горячей» стороне ТЭМ 27°С?
Если нет, то соответственно и «горячая» сторона, и «холодная» будут иметь одинаково более высокую температуру.
Если требуется понизить температуру процессора по отношению к температуре «горячей» стороны ТЭМ, то необходимо применять модуль, с холодопроизводительностью в несколько раз большей, чем TDP процессора, работающий на пониженной мощности, или не один, а несколько модулей, с суммарной холодопроизводительностью в два-четыре раза выше TDP процессора, или, в необходимых случаях, использовать и каскадное подключение. Но энергетические затраты и необходимость еще более лучшего охлаждения вряд ли обрадуют рядового пользователя.
Многие разочарования от использования систем охлаждения на основе эффекта Пельтье связаны именно с недооценкой количества того тепла, которое придется отводить от «горячей» стороны ТЭМ. Проблема с отводом тепла с помощью ТЭМ от процессора с TDP=125Вт будет очень сложной. В этом случае лучше использовать ТЭМ для вспомогательного охлаждения в контурах СВО, о чем подробно рассказано в соответствующей ветке на форуме overclockers.ru.
Кстати, производители ТЭМ часто предлагают специализированные программы, помогающие правильно спроектировать систему охлаждения.
ТЭМ имеет низкий КПД?
При работе ТЭМ одновременно протекают несколько физических процессов. Говоря о «чистом эффекте Пельтье», то есть о прямом преобразовании электрической энергии в тепловую, то КПД очень высокий, особенно в момент включения. Рассматривая же вопрос с практической точки зрения, надо понимать, что полезному эффекту Пельтье, в случае, если мы занимаемся охлаждением, противостоят, как минимум, два вредных эффекта. К тому же КПД возрастает с уменьшением разницы температур между холодной и горячей стороной. Так что КПД — изменчивая субстанция.
Чем больше модулей, тем выше КПД?
Само по себе число модулей КПД не повышает. Увеличение числа модулей, при правильном расчете, дает возможность получить, например, такую же холодопроизводительность с меньшими затратами энергии на каждый элемент, снижая рабочий ток, и, соответственно, получая пониженные требования к охлаждению «горячей» стороны.
В паспортных данных говорится, что разность температур ХХ, у меня же практически она равна нулю!
С процессором в TDP 125Вт не справляются два модуля по 89 Вт. Почему?
Параметры ТЭМ измеряются в идеальных условиях (вакууме и при постоянной температуре «горячей» стороны в 300К, к тому же максимальная температура достигается при отсутствии тепловой нагрузки на «холодной» стороне. При условии поддержания температуры «горячей» стороны в 300К (27°С) и повышении тепловой нагрузки на «холодной» стороне разность температур будет снижаться вплоть до нуля, а если тепловая мощность на «холодной» стороне будет повышаться и дальше, то «холодная» сторона уже будет теплее «горячей» за счет тепловой инерции и теплового сопротивления модуля.
То есть, в идеальных условиях и при нагрузке, равной максимальной тепловой мощности ТЭМ, разница температур равна нулю! Для получения разности температур нужно уменьшать тепловую нагрузку, при тех же энергетических затратах. Но для повышения энергоэффективности и облегчения условий охлаждения «горячей» стороны, на ТЭМ подается электрическая мощность, на 20-50% менее значения, соответствующего энергопотреблению при максимальной тепловой мощности. В реальных условиях для однокаскадной системы охлаждения достигается разность температур 20-40°.
Приведенные цифры соответствуют модулям с рабочими температурами, близкими к комнатным.
В общем случае, если температура «горячей» стороны не поддерживается и возрастает с тепловой нагрузкой, то максимально достижимая разница температур будет меньше паспортной.
ТЭМ, являясь тепловым насосом, перекачивает тепло от охлаждаемого тела на свою горячую сторону?
Термин «тепловой насос», то есть принудительная «перекачка» теплоты, применим только для внутренних процессов ТЭМ. «Рабочим телом» является электрический ток, создающий разность температур в соответствии с эффектом Пельтье. Тепловая нагрузка — это уже «естественное» явление теплопроводности через ТЭМ.
Без тепловой нагрузки, за счет явления теплопроводности точка «средней температуры» находится примерно посередине (не строго, так как за счет эффекта Томсона она будет смещена). В данном случае «перекачивается» теплота Джоуля от протекания тока по ТЭМ с «холодного» на «горячий» спай и производимым холодом блокируется эффект теплопроводности от «горячего» спая. Появление тепловой нагрузки на «горячем» спае можно рассматривать как теплоту, часть которой путем теплопроводности будет передана на «горячий» конец, повысив его температуру, если одновременно не увеличивать охлаждение «горячего» спая, а вторая половина, приведенная к «холодному» спаю, равносильна уменьшению холодильной мощности (происходит «взаимозачет» тепловых потоков), соответственно температура «холодного» спая повышается. Из-за этого происходит дальнейшее повышение температуры ТЭМ от теплоты Джоуля и за счет меньшего противодействия теплопроводности.
Заметим, что работа, совершаемая током, при этом не меняется (что, на самом деле, не совсем так, поскольку полупроводники и полуметаллы крайне чувствительны к температуре).
Холодильники на ТЭМ работают эффективнее по сравнению с охлаждением электронных компонентов из-за хорошей герметизации корпуса?
Герметизация, безусловно, важна, но она означает только то, что тепловая нагрузка на ТЭМ все время падает, в отличие, например, от охлаждения постоянно выделяющего тепло процессора.
Если используется несколько ТЭМ для охлаждения, как правильно их подключать?
Для нормальной работы ТЭМ необходимо выполнить несколько условий.
Источник питания должен обеспечивать требуемую мощность.
Не превышать допустимые параметры по току и напряжению, иначе придется бесполезно рассеивать дополнительную теплоту. Практически используемые режимы -понижение рабочего напряжения и, соответственно, тока до величин 50% от I max и менее.
К примеру, если нет подходящего источника питания и используется компьютерный блок питания, то 4 ТЭМ на 14-15 вольт, можно подключить параллельно к напряжению 5 вольт, или попарно последовательно-параллельно к напряжению 12 вольт ( два модуля последовательно с тем, чтобы каждый модуль запитывался напряжением 6 вольт, и оба блока параллельно к источнику 12 вольт).
Последовательное соединение можно рекомендовать только для однотипных модулей, при этом желательно их подобрать в пары по максимально близкому сопротивлению.
PS
В честь 175-летия открытия эффекта Пельтье была приобретена горстка ТЭМ для небольших практических опытов.
Для экспериментов потребуется небольшой набор аксессуаров,
Джентельменский набор начинающего пельтьемейкера
в данном случае это источники питания в виде компьютерного блока мощностью 650 Вт (на фото отсутствует), прецизионного регулируемого источника питания PXN-1505D, два цифровых мультиметра с термопарами, блок для измерения температур с 4-мя термодатчиками Zalman MFC2 (нет на фото), ИК термометра DVM8861 (-50..550°C) c двухлучевым лазерным указателем для визуальной индикации размера захватываемого участка и набор различных металлических пластин, радиаторов, крепежных элементов, проводов и силовых резисторов. Также на фото отсутствует 450-ваттный термогенератор (фен) SMD852, тюбик КПТ-8 и прочие мелочи.
Сразу следует сказать, что, для получения максимально эффективной работы ТЭМ как охладителей, для их питания необходимо использовать регулятор напряжения, управляемый температурой охлаждаемого устройства по требуемому графику регулировки. Конечно, для маломощных охлаждаемых устройств, например, для чипсетов материнских плат, можно подобрать требуемый ток и держать ТЭМ постоянно подключенными. Если требуется холодильная мощность более 100 Вт, например, для непосредственного охлаждения процессора, то это потребует рассеивания порядка 300Вт на «горячей» стороне ТЭМ, что вряд ли целесообразно делать постоянно — ведь процессор не все время такой прожорливый.
Но для тех, кто будет экспериментировать, используя компьютерный блок питания, возможно, пригодится следующая информация.
В горстке показанных термоэлементов всего три разновидности: TEC1-12710, TEC1-12706, TES1-12704. В таблицу сведены их паспортные параметры и то, что можно с них выжать (максимальную холодопроизводительность) при питании 12 вольт.
Модуль | U | I | W | I(12) | W(12) |
---|---|---|---|---|---|
TEC1-12710 | 15.6 | 10.5 | 89 | 5.0 | 33 |
TEC1-12706 | 14.9 | 6.4 | 53 | 3.7 | 25 |
TES1-12704 | 14.6 | 4.3 | 36 | 2.5 | 16.5 |
Ради эксперимента была предпринята попытка охладить модулем TEC1-12706 (на фото ниже примерка с TEC1-12710), подключенным к питанию 5 вольт, чипсет на материнской плате M3N72-EM (GF8300), после замены штатного радиатора на теплосъемную пластину (к сожалению, из латуни, так как в тот конкретный момент подходящего куска меди или алюминия под рукой не оказалось.
Примерка на чипсет
На горячую сторону устанавливались различные виды пассивного и активного воздушного охлаждения и затем те же радиаторы без TEC1-12706.
В результате, максимальный выигрыш (8-10° с модулем против 18-21° без, в обоих случаях радиатор с вентилятором). Конечно, можно заменить материал основания, добавить тока, но температуру ниже понижать уже нельзя, чтобы не образовывался конденсат. Пассивный радиатор на элементе приводит к прогреву до 27-30°С (в комнате 23°С), тот же радиатор без элемента обеспечивает температурный режим 57°. К слову, GlacialTech 5700 без кожуха и в пассивном режиме снижает температуру до 46°С.
Таким образом, решено не применять ТЭМ для охлаждения чипсета на этой материнской плате.
Разумеется, то, что модули ТЭМ были куплены в ознаменование 175-летия открытия эффекта Пельтье, это гротеск. На самом деле, все проще — в серии статей «Компьютер будущего» (для тех, кто не читал поясню, что имеется в виду компьютер из ближайшего будущего автора, а не будущего вообще), говорится о компьютере без механически движущихся частей (за исключением BluRay привода).
Полностью пассивное охлаждение — задача нетривиальная, даже для процессоров с TDP 45 Вт. Разумеется, в 2D или под небольшой нагрузкой и без разгона, задача решается относительно легко и красиво — стоит только посмотреть на моноблоки Аpple. Но стресс тест процессоров или просто тяжелые долговременные рабочие режимы быстро приводят к перегреву со всеми вытекающими последствиями.
Поэтому и появилась идея использовать ТЭМ. Конструкция непосредственного контакта ТЭМ с процессором непригодна, так как в таком случае требуется необоснованно большой расход энергии и необходимость рассеивания соответствующего тепла и в случае, когда процессор эффективно охладился бы силами крупного пассивного радиатора без всяких дополнительных затрат энергии. Но вполне возможно встроить ТЭМ во вторичный контур охлаждения, установив дополнительный теплосъемник в верхней точке тепловых трубок пассивного радиатора и охлаждая его, уже по мере необходимости (по сигналам с датчиков температур, а в простейшем случае используя механический термостат с гистерезисом). Радиатор охлаждения ТЭМ может вообще быть вынесен за пределы корпуса (как его декоративный элемент и чтобы повысить общую эффективность системы охлаждения).
Примерка теплосъемника радиатора процессора
На фотографии видно, что медная пластина Г-образной формы (будет) припаяна с помощью сплава Розе к верхним концам тепловых трубок пассивного радиатора, с трубок которого предварительно сняты 3-4 ребра охлаждения. На другом конце пластины (будет) установлено один-два-три ТЭМ. Общий теплосъемник «горячей» стороны ТЭМ через прорезь в корпусе передаст тепло на пассивный радиатор большой площади, находящийся на удалении нескольких миллиметров от боковой стенки корпуса.
Суммарная паспортная мощность 4-х ТЭМ (планируется две пластины) более 210 Вт, что, с учетом первичного пассивного радиатора, должно обеспечить охлаждение, даже в щадящем включении ТЭМ, 45 ваттного процессора.
Можно исхитриться и между боковой стенкой компьютера и большим радиатором ТЭМ поставить ТЭМ в режиме ТЭГ, обеспечив прижим элементов одной стороной к радиатору («горячая»), другой стороной («холодная») к корпусу. Сделав последовательное подключение элементов, можно, без всяких внешних элементов и источников питания, генерируемым напряжением запускать резервный вентилятор, выдувающий теплый воздух из корпуса наружу, или обдувающий пассивный радиатор процессора. Впрочем, экономическая самоокупаемость такого решения явно подкачает, но принципиальная возможность этого есть.
Дополнительные теплосъемники (или, например, один из существующих Г-образных), могут быть выполнены в виде U-образной пластины и дополнительный пассивный радиатор может располагаться и над верхней крышкой корпуса. На вторую боковую крышку планируется вывести просто пассивный радиатор, без ТЭМ, на который передается тепло с активных элементов блока питания, установленных на медный радиатор П-образного профиля с выфрезерованными зубцами для увеличения площади охлаждения.
Радиатор блока питания
Между этим радиатором и радиатором боковой стенки также могут быть установлены ТЭМ. Но рассказ о том, что получилось в итоге, и какие температурные режимы получаются внутри и снаружи, еще впереди.
Обменяться поздравлениями по случаю 175-летия открытия эффекта Пельтье можно здесь .
15 марта 2009 года
zauropod, специально для overclockers.ru
overclockers.ru
Модуль Пельтье: технические характеристики
Термопреобразователь (модуль Пельтье) работает по принципу, обратному действию термопары, — появлению разности температур, когда протекает электрический ток.
Как работает элемент Пельтье?
Довольно просто применять модуль Пельтье, принцип работы которого заключается в выделении или поглощении тепла в момент контакта разных материалов при прохождении через него тока. Плотность энергетического потока электронов перед контактом и после него отличается. Если на выходе она меньше, значит, там выделяется тепло. Когда электроны в контакте тормозятся электрическим полем, они передают кинетическую энергию кристаллической решетке, разогревая ее. Если они ускоряются, тепло поглощается. Это происходит за счет того, что часть энергии забирается у кристаллической решетки и происходит ее охлаждение.
В значительной степени это явление присуще полупроводникам, что объясняется большой разностью зарядов.
Модуль Пельтье, применение которого является темой нашего обзора, используется при создании термоэлектрических охлаждающих устройств (ТЭМ). Простейшее из них состоит из двух полупроводников p- и n-типов, последовательно соединенных через медные контакты.
Если электроны движутся от полупроводника «p» к «n», на первом переходе с металлической перемычкой они рекомбинируют с выделением энергии. Следующий переход из полупроводника «p» в медный проводник сопровождается «вытягиванием» электронов через контакт электрическим полем. Данный процесс приводит к поглощению энергии и охлаждению области вокруг контакта. Аналогичным образом происходят процессы на следующих переходах.
При расположении нагреваемых и охлаждаемых контактов в разных параллельных плоскостях получится практическая реализация способа. Полупроводники изготавливаются из селена, висмута, сурьмы или теллура. Модуль Пельтье вмещает большое количество термопар, размещенных между керамическими пластинами из нитрида или оксида алюминия.
Факторы, влияющие на эффективность ТЭМ
- Сила тока.
- Количество термопар (до нескольких сотен).
- Типы полупроводников.
- Скорость охлаждения.
Больших величин достигнуть пока не удалось из-за низкого КПД (5-8 %) и высокой стоимости. Чтобы ТЭМ успешно работал, надо обеспечить эффективный отвод тепла с нагреваемой стороны. Это создает сложности в практическом воплощении способа. Если изменить полярность, холодная и горячая стороны меняются друг с другом.
Достоинства и недостатки модулей
Потребность в ТЭМ появилась с возникновением электронных устройств, нуждающихся в миниатюрных системах охлаждения. Преимущества модулей следующие:
- компактность;
- отсутствие подвижных соединений;
- модуль Пельтье принцип работы имеет обратимый при смене полярности;
- простота каскадных соединений для повышения мощности.
Главным недостатком модуля является низкий КПД. Это проявляется в больших затратах мощности при достижении требуемого эффекта охлаждения. Кроме того, он обладает высокой стоимостью.
Применение ТЭМ
Пельтье модуль применяется преимущественно для охлаждения микросхем и небольших деталей. Начало было положено для охлаждения элементов военной техники:
- микросхемы;
- инфракрасные детекторы;
- элементы лазеров;
- кварцевые генераторы.
Термоэлектрический модуль Пельтье постепенно стал применяться в бытовой технике: для создания холодильников, кондиционеров, генераторов, терморегуляторов. Главным его назначением является охлаждение небольших объектов.
Охлаждение процессора
Основные компоненты компьютеров постоянно совершенствуются, что приводит к росту тепловыделения. Вместе с ними развиваются системы охлаждения с применением новаторских технологий, с современными средствами контроля. Модуль Пельтье применение в данной сфере нашел прежде всего в охлаждении микросхем и других радиодеталей. С форсированными режимами разгона микропроцессоров традиционные кулеры уже не справляются. А увеличение частоты работы процессоров дает возможность повысить их быстродействие.
Увеличение скорости вращения вентилятора приводит к значительному шуму. Его устраняют за счет использования модуля Пельтье в комбинированной системе охлаждения. Таким путем передовые фирмы быстро освоили производство эффективных охлаждающих систем, которые стали пользоваться большим спросом.
С процессоров тепло обычно отводится кулерами. Воздушный поток может засасываться снаружи или поступать изнутри системного блока. Главная проблема состоит в том, что температура воздуха порой оказывается недостаточной для теплоотвода. Поэтому ТЭМ стали использовать для охлаждения потока воздуха, поступающего в системный блок, тем самым повышая эффективность теплообмена. Таким образом, встроенный воздушный кондиционер является помощником традиционной системы охлаждения компьютера.
С обеих сторон модуля крепятся алюминиевые радиаторы. Со стороны холодной пластины нагнетается воздух на охлаждение к процессору. После того как он заберет тепло, его выдувает другой вентилятор через радиатор горячей пластины модуля.
Современный ТЭМ управляется электронным устройством с датчиком температуры, где степень охлаждения пропорциональна разогреву процессора.
Активизация охлаждения процессоров создает также некоторые проблемы.
- Простые охлаждающие модули Пельтье предназначены для непрерывной работы. При пониженном энергопотреблении также уменьшается тепловыделение, что может вызвать переохлаждение кристалла и последующее зависание процессора.
- Если работа кулера и холодильника не будет должным образом согласована, последний может перейти в режим нагрева вместо охлаждения. Источник дополнительного тепла вызовет перегрев процессора.
Таким образом, для современных процессоров нужны передовые технологии охлаждения с контролем работы самих модулей. Подобные изменения режимов работы не происходят с видеокартами, которые также требуют интенсивного охлаждения. Поэтому для них ТЭМ подходит идеально.
Автохолодильник своими руками
В середине прошлого века отечественная промышленность пыталась освоить выпуск малогабаритных холодильников, основанных на эффекте Пельтье. Существующие технологии того времени не позволили этого сделать. Сейчас сдерживающим фактором преимущественно является высокая цена, но попытки продолжаются, и успехи здесь уже достигнуты.
Широкое производство термоэлектрических устройств позволяет создать своими руками небольшой холодильник, удобный для использования в автомобилях. Его основой является «сэндвич», который делается следующим образом.
- На верхний радиатор наносится слой теплопроводной пасты типа КПТ-8 и приклеивается Пельтье модуль с одной стороны керамической поверхности.
- Аналогично к нему крепится с нижней стороны другой радиатор, предназначенный для помещения в камеру холодильника.
- Все устройство плотно сжимается и просушивается в течение 4-5 часов.
- На обоих радиаторах устанавливаются кулеры: верхний будет отводить тепло, а нижний — выравнивать температуру в камере холодильника.
Корпус холодильника делается с теплоизолирующей прокладкой внутри. Важно, чтобы он плотно закрывался. Для этого можно использовать обычный пластиковый ящик для инструментов.
Питание 12 В подается из системы автомобиля. Его можно сделать и от сети 220 В переменного тока, с блоком питания. Схема преобразования переменного тока в постоянной применяется самая простая. Она содержит выпрямительный мост и сглаживающий пульсации конденсатор. При этом важно, чтобы на выходе они не превышали величину 5 % от номинального значения, иначе эффективность устройства снижается. У модуля имеются два вывода из цветных проводов. К красному всегда подключается «плюс», к черному — «минус».
Мощность ТЭМ должна соответствовать объему бокса. Первые 3 цифры маркировки означают количество пар полупроводниковых микроэлементов внутри модуля (49-127 и более). Сила тока выражается двумя последними цифрами маркировки (от 3 до 15 А). Если мощности недостаточно, надо приклеить на радиаторы еще один модуль.
Обратите внимание! Если сила тока будет превосходить мощность элемента, он будет нагреваться с обеих сторон и быстро выйдет из строя.
Модуль Пельтье: генератор электрической энергии
ТЭМ можно использовать для выработки электроэнергии. Для этого надо создать перепад температуры между пластинами, и расположенные между ними термопары будут вырабатывать электрический ток.
Для практического использования нужен ТЭМ не менее чем на 5 В. Тогда с его помощью можно будет заряжать мобильный телефон. Из-за низкого КПД модуля Пельтье потребуется повышающий преобразователь постоянного напряжения. Для сборки генератора понадобятся:
- 2 модуля Пельтье ТЕС1-12705 с размером пластин 40х40 мм;
- преобразователь ЕК-1674;
- алюминиевые пластины толщиной 3 мм;
- кастрюля для воды;
- термостойкий клей.
Между пластинами помещаются два модуля на клей, а затем вся конструкция фиксируется на дне кастрюли. Если ее заполнить водой и поставить на огонь, получится необходимая разность температуры, вырабатывающая ЭДС порядка 1,5 В. Подключив модули к повышающему преобразователю, можно повысить напряжение до 5 В, необходимых для зарядки аккумулятора телефона.
Чем больше разница температуры между водой и нижней подогреваемой пластиной, тем генератор работает эффективней. Поэтому надо стараться снижать нагрев воды разными способами: сделать ее проточной, почаще заменять свежей и т. п. Действенным средством увеличения разности температур является каскадное включение модулей, когда они накладываются слоями один на другой. Увеличение габаритных размеров устройства позволяет поместить между пластинами больше элементов и тем самым увеличить общую мощность.
Производительности генератора будет достаточно для зарядки небольших аккумуляторов, работы светодиодных ламп или радиоприемника. Обратите внимание! Для создания термогенераторов потребуются модули, способные работать при 300-400 0С! Остальные подойдут только для пробных испытаний.
В отличие от других средств альтернативного получения электроэнергии они могут работать во время движения, если создать что-то типа каталитического нагревателя.
Отечественные модули Пельтье
ТЭМ своего производства появились у нас на рынке не так давно. Они отличаются высокой надежностью и имеют хорошие характеристики. Модуль Пельтье, который пользуется широким спросом, имеет размеры 40х40 мм. Он рассчитан на максимальный ток 6 А и напряжение до 15 В.
Отечественный модуль Пельтье купить можно за небольшую цену. При потребляемой мощности 85 Вт он создает температурный перепад 60 0С. Вместе с кулером он способен защитить от перегрева процессор с рассеиваемой мощностью 40 Вт.
Характеристики модулей ведущих фирм
Зарубежные устройства представлены на рынке в большем разнообразии. Для защиты процессоров ведущих фирм применяется в качестве холодильника РАХ56В модуль Пельтье, цена которого в комплекте с вентилятором составляет $35.
При размерах 30х30 мм он поддерживает температуру процессора не выше 63 0С при выделяемой мощности 25 Вт. Для питания достаточно напряжения 5 В, а ток не превышает 1,5 А.
Хорошо подходит под охлаждение процессора модуль Пельтье РА6ЕХВ, обеспечивающий нормальный температурный режим при мощности рассеивания 40 Вт. Площадь его модуля составляет 40х40 мм, а потребляемый ток — до 8 А. Кроме внушительных размеров — 60х60х52,5 мм (вместе с вентилятором) — устройство требует наличия вокруг него свободного пространства. Цена его составляет $65.
Когда применяется модуль Пельтье, технические характеристики у него должны соответствовать потребностям охлаждаемых устройств. Недопустимо, чтобы у них была слишком низкая температура. Это может привести к конденсации влаги, которая губительно действует на электронику.
Модули для изготовления генераторов, такие как ТЕС1-12706, ТЕС1-12709, отличаются большей мощностью — 72 Вт и 108 Вт соответственно. Их различают по маркировке, всегда наносимой на горячую сторону. Максимальная допускаемая температура горячей стороны у них составляет 150-160 0С. Чем больше температурный перепад между пластинами, тем выше получается напряжение на выходе. Устройство работает при максимальном температурном перепаде 600 0С.
Модуль Пельтье купить можно недорого — порядка $10 и менее за штуку, если хорошо поискать. Довольно часто продавцы значительно завышают цены, но можно найти в несколько раз дешевле, если приобретать на распродаже.
Заключение
Эффект Пельтье нашел применение в настоящее время в создании небольших холодильников, необходимых современной технике. Обратимость процесса дает возможность изготовить микроэлектростанции, востребованные для зарядки аккумуляторов электронных устройств.
В отличие от других средств альтернативного получения электроэнергии, они могут работать во время движения, если установить каталитический нагреватель.
fb.ru
TEC1-12706 термоэлектрический модуль Пельтье
Данный модуль предназначен для охлаждения или нагрева чего-либо с помощью электричества. Подробности читаем далее.Прочитав информацию о том, как работают автомобильные холодильники, я сделал вывод что сложного там нету, и стоит попробовать самому, или хотя бы поэкспериментировать что это за зверь модуль Пельтье.
Заказал я несколько штук для эксперимента. Приехали в коробке целые.
Модуль представляет из себя керамические пластины 40 мм. * 40 мм. * 4 мм., между которыми полупроводники. При прохождении тока, одна пластина нагревается, а вторая охлаждается. Процесс этот мгновенный. По заявленным характеристикам, модуль генерирует разность температур между сторонами пластин в 66*С при этом максимум потребляет 6 ампер. При тесте было замечено, что этот максимум только при старте, спустя пару секунд потребляемый ток падает до 2.2А и это является его рабочее состояние. Существуют модели, которые заявлено потребляют 5, 4, 3 и даже 2 ампера, и я думаю что эти заявленные характеристики также только при старте, а дальше реальный потребляемый ток гораздо меньше, при том же параметре разницы температур в 66*С. Стоит предположить, что такие модули обладают большим КПД, но проверить нету возможности, да и такие модули немного дороже чем 12706.
К сожалению с фотографиями вышла проблема и осталась только одна фотка с теста. Тестировал таким образом: горячую сторону приложил на радиатор от видеокарты (без пасты и прижатия) тем самым охлаждал горячую сторону чтоб холодная остывала. для замера температуры использовал электронный термометр с датчиком. Спустя 20 минут от старта на холодной части модуля был слой льда, датчик также обледенел и показал -4.5 *С. при комнатной температуре ~26.
Поскольку нагрев горячей стороны с радиатором и кулером был не значительным — около 40 *С, то проверял ещё:
Второй тест, от которого фотки пропали был таким: между двумя радиаторами от процессора. горячую сторону охлаждал кулером, а холодная сторона была просто прижата к радиатору. при большой плоскости отдачи холода в комнату, температурный датчик холодного радиатора опустился до 13 *С и был весь покрыт инеем.
Если холодную часть положить в термобокс и дать чтоб холод циркулировался там и не уходил в окружающую среду, то я думаю с одного модуля можно получить хороший результат для маленького объема. Для реального же автохолодильника литров хоть на 15 одним модулем не обойтись, хотя все зависит от термоизоляции самого бокса.
Вывод: чем больше получиться охладить горячую сторону — тем больше у нас будет холода.
Если у кого-то есть опыт работы с этими модулями в разных модификациях — прошу писать свои замечания в комментариях, буду рад ответить на вопросы и выслушать Ваше мнение.
mysku.ru