Обозначение автоматов на однолинейной схеме гост: Библиотеки условных обозначений по ГОСТ для AutoCAD 2002/2004.

Содержание

Библиотеки условных обозначений по ГОСТ для AutoCAD 2002/2004.

размещено: 27 Января 2005
Данные библиотеки включают более 800 условных обозначений, которые выполнены в соответствии со
следующими ГОСТами:

ГОСТ 21.205-93 «Условные обозначения элементов санитарно-технических систем «
ГОСТ 21.403-80 «Обозначения условные графические в схемах. Оборудование энергетическое»
ГОСТ 21.406-88 «Проводные средства связи. Обозначения условные графические на схемах и планах»
ГОСТ 21.608-84 «Внутреннее электрическое освещение. Рабочие чертежи»
ГОСТ 21.609-83 «Газоснабжение. Внутренние устройства.

Рабочие чертежи»
ГОСТ 21.611-85 «Централизованное управление энергосбережением. Условные графические и буквенные
обозначения вида и содержания информации «
ГОСТ 21.614-88 «Изображения условные графические электрооборудования и проводок на планах»

Библиотеки разбиты по соответствующим названиям ГОСТов каталогам, которые в свою очередь содержат папки с
названиями таблиц данного ГОСТа.

Для вставки блоков условных обозначений в чертеж необходимо использовать инструмент AutoCAD Design Center
(Центр управления).
Для этого необходимо открыть в AutoCAD окно Design Center и подгрузить в него DWG файл требуемой
таблицы ГОСТа и в палитре Design Center выбрать Блоки (Blocks). Вставку блоков из Design Center в чертеж
удобно производить в режиме Drag&Drop.

Имена блоков.
Принята следующая система маркировки блоков:

Пример маркировки блока : 40680101
первые три цифры (406) — это номер ГОСТа (ГОСТ 21. 406-88)
четвертая цифра (8) – номер таблицы данного ГОСТа ( Таблица 8 )
пятая, шестая и седьмая цифры (010) – номер позиции в таблице (Позиция 10)
восьмая цифра (1) – вариант исполнения условного обозначения . Начиная с нуля и далее.

Соединения, клеммы, разъемы.



Трафарет Visio Соединения, клеммы, разъемы.

 

Символы условных обозначений электрических соединений.

Условные обозначения соединения, представлены тремя отдельными фигурами: соединение неразборное, соединение разборное и соединение клеммное:


Соединение неразборное.
Соединение разборное.
Соединение клеммное.

 

 

Текстовый блок символа соединения, пожно переместить в одно из 8 фиксированных положений. При этом выравнивание текста происходит автоматически.


Примеры расположения текста относительно обозначения соединения.

 Ввод текста производится в таблице данные фигуры или непосредственно, в выделенную фигуру.  В контекстном меню фигуры имеется команда для поворота текста вертикально или горизонтально.

 Посмотреть на видео:

 

Условные обозначения Перемычки контактные.

Переключение типа контактного соединения перемычки, производится в таблице данных фигуры.


Перемычка контактная, соединение неразборное — неразборное.
Перемычка контактная, соединение разборное — разборное.
Перемычка контактная, соединение разборное — неразборное.

 

 

 Используя маркеры изменения размера и маркер управления, можно изменить конфигурацию условного обозначения перемычки:


Различные конфигурации условного обозначения контактной перемычки.

 

Изменение условного обозначения перемычки контактной — видео:

 

Символы прочих соединений разъемных, разъемов и перемычкек.

Разъем:


Разъем, фиксированная и подвижная части.
Разъем, фиксированная часть.
Разъем, подвижная часть.

 

 

Соединение разъемное с защитным контактом:


Соединение разъемное с защитным контактом (гнездо).
Соединение разъемное с защитным контактом (штырь).

 

 

Соединение разъемное коаксиальное:


Разъем коаксиальный (гнездо).
Разъем коаксиальный (штырь).

 

 

Соединительное звено:


Соединительное звено, положение разомкнуто.
Соединительное звено, положение замкнуто.

 

 

Перемычки коммутационные:


Перемычка коммутационная: с выведенным гнездом.
Перемычка коммутационная: с выведенным штырем.
Перемычка коммутационная.

 

 

 Используя маркеры изменения размера и маркер управления, можно изменить конфигурацию условного обозначения перемычек:


Примеры конфигурации перемычек коммутационных.

Поворот всех условных обозначений, в контекстном меню фигуры.


Обозначение обогревателя на электрической схеме

Любые электрические цепи могут быть представлены в виде чертежей (принципиальных и монтажных схем), оформление которых должно соответствовать стандартам ЕСКД.

Эти нормы распространяются как на схемы электропроводки или силовых цепей, так и электронные приборы. Соответственно, чтобы «читать» такие документы, необходимо понимать условные обозначения в электрических схемах.

Нормативные документы

Учитывая большое количество электроэлементов, для их буквенно-цифровых (далее БО) и условно графических обозначений (УГО) был разработан ряд нормативных документов исключающих разночтение. Ниже представлена таблица, в которой представлены основные стандарты.

Таблица 1. Нормативы графического обозначения отдельных элементов в монтажных и принципиальных электрических схемах.

Номер ГОСТа Краткое описание
2.710 81 В данном документе собраны требования ГОСТа к БО различных типов электроэлементов, включая электроприборы.
2.747 68 Требования к размерам отображения элементов в графическом виде.
21. 614 88 Принятые нормы для планов электрооборудования и проводки.
2.755 87 Отображение на схемах коммутационных устройств и контактных соединений
2.756 76 Нормы для воспринимающих частей электромеханического оборудования.
2.709 89 Настоящий стандарт регулирует нормы, в соответствии с которыми на схемах обозначаются контактные соединения и провода.
21.404 85 Схематические обозначения для оборудования, используемого в системах автоматизации

Следует учитывать, что элементная база со временем меняется, соответственно вносятся изменения и в нормативные документы, правда это процесс более инертен. Приведем простой пример, УЗО и дифавтоматы широко эксплуатируются в России уже более десятка лет, но единого стандарта по нормам ГОСТ 2.755-87 для этих устройств до сих пор нет, в отличие от автоматических выключателей.

Вполне возможно, в ближайшее время это вопрос будет урегулирован. Чтобы быть в курсе подобных нововведений, профессионалы отслеживают изменения в нормативных документах, любителям это делать не обязательно, достаточно знать расшифровку основных обозначений.

Виды электрических схем

В соответствии с нормами ЕСКД под схемами подразумеваются графические документы, на которых при помощи принятых обозначений отображаются основные элементы или узлы конструкции, а также объединяющие их связи. Согласно принятой классификации различают десять видов схем, из которых в электротехнике, чаще всего, используется три:

  • Функциональная, на ней представлены узловые элементы (изображаются как прямоугольники), а также соединяющие их линии связи. Характерная особенность такой схемы – минимальная детализация. Для описания основных функций узлов, отображающие их прямоугольники, подписываются стандартными буквенными обозначениями. Это могут быть различные части изделия, отличающиеся функциональным назначением, например, автоматический диммер с фотореле в качестве датчика или обычный телевизор. Пример такой схемы представлен ниже. Пример функциональной схемы телевизионного приемника
  • Принципиальная. Данный вид графического документа подробно отображает как используемые в конструкции элементы, так и их связи и контакты. Электрические параметры некоторых элементов могут быть отображены, непосредственно в док

Обозначение автомата на электрической схеме


Провод — эффективный проводник тока.


Провод без соединения обозначается «методом горба».


Провод с соединением — указывает на физическую связь проводов, которая позволяет проходить току.


Постоянный ток (DC) — электрический ток, который с течением времени не изменяется по величине и направлению.


Переменный ток (AC) — электрический ток, который с течением времени изменяется по величине и направлению.


Батарея — поставка электроэнергии от одной или нескольких батарей.


Ячейка — ограниченная поставка электроэнергии.


Заземление — 0 вт или заземление в зависимости от схемы.


Диод — ограничивает направление тока, чтобы он тёк только в одном направлении.


Светодиод (LED) — полупроводниковый диод, излучающий некогерентный свет при пропускании через него электрического тока.


Фотодиод — полупроводниковый диод, обладающий свойством односторонней фотопроводимости при воздействии на него оптического излучения.


Стабилитрон (диод Зенера) — полупроводниковый прибор, предназначенный для стабилизации напряжения.


Резистор — пассивный элемент электрической цепи, предназначенный для сопротивления электрическому току.


Переменный резистор — переменный резистор в реостатном включении.


Переменный резистор с тремя выводами, используется с целью ограничения тока в электрической цепи.


Подстроечный резистор — подстроечный резистор в реостатном включении.


Термистор — полупроводниковый резистор, в котором используется зависимость электрического сопротивления полупроводникового материала от температуры.


Свето-зависимый Резистор — резистор, сопротивление которого уменьшается или увеличивается в зависимости от интенсивности падающего на него света.


Нагреватель — конвертированная электроэнергия в высокую температуру.


Плавкий предохранитель — простейшее устройство для защиты электрических цепей от перегрузок и токов короткого замыкания.


Лампа световая — электроэнергия конвертированная в свет.


Лампа, Индикатор — электроэнергия конвертированная в свет с целью предупреждения.


Мотор — электроэнергия конвертированная в механическую энергию.


Катушка индуктивности (Катушка, Соленоид) — катушка из свёрнутого изолированного проводника, который создает магнитное поле, когда ток проходит через него.


Осциллограф — прибор, который показывает форму напряжения в течение времени.


Гальванометр — прибор, который замеряет очень маленькие переменные и постоянные токи (меньше чем 1mA).


Вольтметр — прибор для измерения эдс или напряжений в электрических цепях.


Омметр — прибор непосредственного отсчета.

Условные обозначения в электрических схемах (гост 7624-55)

Его главная функция – определение активных сопротивлений электрического тока.


Амперметр — прибор для измерения силы тока в амперах.


И — логическая цепь, которой требуется два входа, если оба высоки, тогда и выход высок, во всех остальных случаях производит низкое. (00=0 01=0 10=0 11=1)


Или — логическая цепь, которой требуется два входа, если любой или оба высоки, тогда и выход высок, во всех остальных случаях производит низкое. (00=0 01=1 10=1 11=1)


НЕ-И — логическая цепь, которой требуется два входа и приводит к противоположным результатам И. (00=1 01=1 10=1 11=0). Интересное примечание, на Вашем компьютере центральный процессор (CPU) построен полностью из ворот.


Не-ИЛИ — логическая цепь, которой требуется два входа и приводит к противоположным результатам ИЛИ. (00=1 01=0 10=0 11=0).


Не — логическая цепь, которой требуется один вход, если он высок, тогда выход низок. (0=1 1=0).


Xor — логическая цепь, которой требуется два входа, если любой, но не оба высоки, тогда и выход высокий, во всех остальных случаях производит низкое. (00=0 01=1 10=1 11=0)


NXOr — логическая цепь, которой требуется два входа и приводит к противоположным результатам XOR. (00=1 01=0 10=0 11=1)


Выключатель (SPST) — электрический коммутационный аппарат, служащий для замыкания и размыкания электрической цепи.


Переключатель Двух Путей (SPDT) — электрический коммутационный аппарат, который позволяет току течь по одному из двух путей.


Выключатель (нажать, чтобы соединить) — выключатель, который позволяет току течь только в замкнутом положении.

Возвратится к разомкнутому положению.


Выключатель (нажать, чтобы разорвать) — выключатель, который позволяет току течь только в замкнутом положении. Возвратится к замкнутому положению.


Выключатель, Двойной вкл\выкл (DPST) — двухполюсный выключатель.


Выключатель, Реверсивный (DPDT) — выключатель, который позволяет току течь от двух проводов по двум различным путям.


Диск — выключатель, который позволяет току течь по многократным путям от одного источника.


Реле — устройство, предназначенное для замыкания и размыкания различных участков электрических цепей при заданных изменениях электрических или неэлектрических входных величин.


Транзистор NPN — биполярный транзистор. Состоит из трёх различным образом легированных полупроводниковых слоёв (эмиттера E, базы B и коллектора C). В данном случае NPN-транзистор пропускает ток от коллектора к эмиттеру.


Транзистор PNP — биполярный транзистор. Состоит из трёх различным образом легированных полупроводниковых слоёв (эмиттера E, базы B и коллектора C). В данном случае PNP-транзистор пропускает ток от эмиттера к коллектору.


Фото Транзистор — используется, как усилитель тока или выключатель, который задействуется светом.


Конденсатор, Постоянный — устройство для накопления заряда и энергии электрического поля.


Конденсатор, Полярный — электролитический конденсатор, у которого имеется полярность подключения.


Конденсатор, Подстроечный — конденсатор переменной ёмкости. По сути, он является переменным конденсатором, не рассчитанным на частое вращение.


Конденсатор, Переменный — его ёмкость может изменяться в заданных пределах.


Преобразователь Пьезо (Piezo) — устройство, которое преобразовывает электроэнергию в звук.


Трансформатор — две или более индуктивных обмотки, предназначенных для преобразования системы (напряжений) постоянного или переменного тока в одну или несколько других систем (напряжений), без изменения частоты.


Громкоговоритель — аппарат, который преобразовывает электроэнергию в звук.


Наушник(и) — аппарат, который преобразовывает электроэнергию в звук.


Микрофон — аппарат, который преобразовывает электроэнергию в звук.


Усилитель — усилитель электрических сигналов.


Звонок — аппарат, который преобразовывает электроэнергию в звук.


Гудок — аппарат, который преобразовывает электроэнергию в звук.


Антенна — передает или получает радио-сигналы.

Буквенно-цифровые обозначения в электрических схемах ГОСТ 2.710-81

На основании ГОСТ 2.710-81. Эта страница не является исходным документом. Перевод может быть неточным.

Элементы электрических схем могут иметь как однобуквенное, так и двухбуквенное обозначение.

1. Буквы наиболее распространенных типов элементов приведены в таблице 1.

9001 2 Q

2.Примеры двухбуквенных кодов приведены в таблице 2

900 18 9001 1 Вольт, стабилитрон -цепной выключатель 9077 Соединения X 9077 Контакты

1.Буквенные коды для обозначения функционального назначения элементов, перечисленных в таблице 1

9001 1
Первая буква кода (обязательно) Групповые виды элементов Примеры видов элементов
А Устройства Усилители, устройства телеуправления, лазеры, мазеры
В Преобразователи неэлектрических величин в электрические (кроме генераторов и источников питания) или наоборот, аналоговые или многозначные преобразователи или датчики для индикации или измерения Громкоговорители, микрофоны, термоэлектрические датчики, детекторы ионизирующего излучения, датчики, сельсины
С Конденсаторы
D Интегральные схемы, микросборки Интегральные аналоговые и цифровые схемы, логические элементы, устройства памяти, задержки приборы
Е Элементы разные Приборы световые, тепловые элементы
F Разрядники, предохранители, защитные устройства Дискретные элементы защиты по току и напряжению, предохранители, разрядники
G Генераторы, источники питания, кварцевые генераторы Аккумуляторы, электрохимические и электротермические источники
Н Устройства индикации и сигнализации Устройства звуковой и световой сигнализации, индикаторы
К Реле, контакторы, пускатели Реле тока и напряжения, электротермические реле, реле времени, контакторы, магнитные пускатели
L Дроссели, дроссели Дроссели для люминесцентного освещения
М Двигатели Двигатели переменного и постоянного тока
Р Приборы, измерительное оборудование Контрольно-измерительные приборы, счетчики , часы
Выключатели и разъединители в силовых цепях Разъединители, закорачивающие выключатели, выключатели (силовые)
R Резисторы Переменные резисторы, потенциометры, варисторы, термисторы
S Коммутационные устройства в цепях управления, сигнализации и измерения Выключатели, переключатели, срабатывающие при различных воздействиях
T Трансформаторы, автотрансформаторы Трансформаторы тока и напряжения, стабилизаторы
U Преобразователи электрических величин в электрические, связи приборы Модуляторы, демодуляторы, дискриминаторы, инверторы, преобразователи частоты, выпрямители
В Электровакуумные, полупроводниковые приборы Электронные лампы, диоды, транзисторы, тиристоры, стабилитроны
Вт Линии и элементы сверхвысокая частота, антенны Волноводы, диполи, антенны
X Соединения контактные Штыри, гнезда, разборные соединения, токосъемники
Y Механические устройства с электромагнитным приводом Электромагнитные муфты, тормоза, картриджи
Z Концевые устройства, фильтры, ограничители Линия моделирования, кварцевые фильтры
Первая буква кода (обязательная) Групповые виды элементов Примеры видов элементов Двухбуквенные коды
А Устройство (общее обозначение)
В Преобразователи неэлектрических величин в электрические (кроме генераторов и источников питания) или наоборот, аналоговые или многозначные преобразователи или датчики для индикации или измерения Громкоговоритель ВА
Магнитострикционный элемент ВВ
Детектор ионизирующего излучения BD
Приемник Selsyn BE
Телефон (капсула) ВF
Датчик Цельсина ВС
Термодатчик ВК
Фотоэлемент BL
Микрофон ВМ
Датчик давления ВР
Пьезоэлемент BQ
Тахогенератор BR
Датчик скорости BS
Датчик скорости
C Конденсаторы
D Интегральные схемы, микросборки Интегральная аналоговая схема DA
Интегральная схема, цифровая, логический элемент DD
Запоминающие устройства DS
Устройство задержки DI
Е Различные элементы Нагревательный элемент ЕК
Осветительные лампы EL
Pyropatron ЕТ
Fters Arres , предохранители, защита Активные устройства Дискретный элемент мгновенной защиты FA
Дискретный элемент защиты от электрического тока, инерционный FP
Предохранитель FU
Дискретный элемент защиты напряжения, разрядник FV
G Генераторы, источники питания Аккумулятор GB
H Устройства индикации и сигнализации Устройство звуковой сигнализации HA
Индикатор символический HG
Световой сигнализатор HL
К Реле, контакторы, пускатели Реле тока КА
Реле индикации КН
Реле электротермическое КК
Контактор, магнитный пускатель КМ 9001 3
Реле задержки времени КТ
Реле напряжения кВ
L Дроссели, дроссели Дроссель люминесцентного освещения LL
М Двигатели
Р Приборы, измерительное оборудование
Примечание.Комбинация ПЭ не допускается
Амперметр РА
Счетчик импульсов ПК
Цимометр PF
Счетчик активной энергии PI
Счетчик реактивной энергии РК
Омметр PR
Регистрирующее устройство PS
Часы, измеритель времени PT
Вольтметр PV
Ваттметр PW
Q Выключатели и разъединители в силовых цепях (электроснабжение, электроснабжение оборудования и др.)) Автоматический выключатель QF
Выключатель короткого замыкания QK
Разъединитель QS
R Резисторы Термистор RK
Потенциометр RP
Измерительный шунт RS
Варистор RU
S Коммутационные аппараты в цепях управления, сигнализации и измерения
Примечание.Обозначение SF используется для устройств, не имеющих силовых контактов
Переключатель SA
Кнопочный переключатель SB
Автоматический переключатель SF
Переключатели, срабатывающие при различных действиях:
Уровень SL
Давление SP
Положение SQ
Скорость вращения SR
Температура SK
Т Трансформаторы, автотрансформаторы Трансформатор тока TA
Электромагнитный стабилизатор TS
Трансформатор напряжения TV
U Устройства связи
Преобразователи электрических величин в электрические
Модулятор UB
Демодулятор UR
Дискриминатор UI
Преобразователь частоты, инвертор, генератор частоты, выпрямитель UZ
В Электровакуумные и полупроводниковые элементы Диод
Электровакуумный элемент VL
Транзистор VT
Тиристор VS
Вт Линии и элементы СВЧ
Антенны
Разветвитель WE
WK
Ventil WS
Трансформатор, фазовращатель WT
Аттенюатор WU
Антенна WA
Текущий co лектор, скользящий контакт XA
Штифт XP
Гнездо XS
Разъемное соединение XT
Высокочастотный разъем XW
Y Механические устройства с электромагнитным приводом Электромагнит YA
Тормоз с электромагнитным приводом YB
Муфта с электромагнитным приводом YC
Электромагнитный картридж YH
Z End приборы, фильтры
Ограничители
Ограничитель ZL
Кварцевый фильтр ZQ
Буквенный код Функциональное назначение Буквенный код Функциональное назначение
А Вспомогательный N Измерительный
В Направление движения (вперед, назад, вверх, вниз, по часовой стрелке, против часовой стрелки) Р Пропорционально
C Подсчет Q Статус (старт, стоп, предел)
D Дифференциация R Возврат, сброс
F Защитный S Запоминание, запись
G Тест T Синхронизация, задержка
Н Сигнал В Скорость (ускорение, замедление)
I Интеграция W Добавление
К Нажатие X Умножение
M Основное Y Аналоговый
Z Цифровой

Одинарный интервал между строками в документе

Быстро разделите весь документ одним интервалом с помощью кнопки Интервал между абзацами на вкладке Design .

Используйте один интервал для документа

  1. Выберите верхнюю часть документа.

  2. Перейти к Дизайн > Расстояние между абзацами .

  3. Выберите Без места для абзаца .

Это отменяет настройки текущего набора стилей.Для возврата к исходным настройкам:

  1. Перейти к Дизайн > Расстояние между абзацами .

  2. Выберите По умолчанию или имя стиля, который вы используете в данный момент.

Часть документа через пробел

  1. Выделите абзацы, которые хотите изменить.

  2. Перейти на главную страницу > Расстояние между строками и абзацами .

  3. Выберите 1.0

Используйте один интервал для документа

  1. Перейти к Дизайн > Расстояние между абзацами .

  2. Выберите Без места для абзаца .

Это отменяет настройки текущего набора стилей. Для возврата к исходным настройкам:

  1. Перейти к Дизайн > Расстояние между абзацами .

  2. Выберите По умолчанию или имя стиля, который вы используете в данный момент.

Часть документа через пробел

  1. Выделите абзацы, которые хотите изменить.

  2. Перейти на главную страницу > Расстояние между строками и абзацами .

  3. Выберите 1.0

  1. Выделите абзацы, которые хотите изменить.

  2. Перейти на главную страницу > Расстояние между строками и абзацами .

  3. Выберите 1.0

Word для Интернета не имеет возможности изменить значение по умолчанию. Это изменяет настройки только для этого документа.

Что такое диаграмма Венна — объясните на примерах

Что такое Диаграмма Венна ?

Термин Диаграмма Венна не является чуждым, поскольку у всех нас была математика, особенно теория вероятностей и алгебра.Теперь для непрофессионала диаграмма Венна представляет собой наглядную демонстрацию всех возможных реальных отношений между коллекцией различных наборов предметов. Он состоит из нескольких перекрывающихся кругов или овальных форм, каждая из которых представляет собой отдельный набор или предмет.

Диаграммы Венна отображают сложные теоретические взаимосвязи и идеи для лучшего и легкого понимания. Эти диаграммы также профессионально используются профессорами для отображения сложных математических концепций, классификации в науке и разработки стратегий продаж в деловой индустрии.

Источник изображения : pinterest.com

Эволюция диаграммы Венна

Развитие диаграммы Венна восходит к 1880 году, когда Джон Венн воплотил их в жизнь в статье под названием «О схематическом и механическом представлении суждений и рассуждений». Она была опубликована в Philosophical Magazine и Journal of Science. Джон Венн провел тщательное исследование этих диаграмм и предвидел их формализацию.Он — тот, кто первоначально обобщил их, неудивительно, как они были названы, т.е. Диаграммы Венна в 1918 году.

Существует небольшой разрыв между диаграммой Венна и диаграммой Эйлера, изобретенной в 18 веке Леонардом Эйлером, который также приложил руку к ее развитию в 1700-х годах. Джон называл диаграммы кругами Эйлера.

Разработка диаграммы Венна продолжалась и в 20 веке. Например, примерно в 1963 году Д. В. Хендерсон обнаружил существование n-графа Венна, состоящего из n-кратной рациональной симметрии, что указывало на то, что n было простым числом.В последующие годы в эту концепцию углубились четыре других интеллекта, которые пришли к выводу, что вращательно-симметричные диаграммы Венна существуют только в том случае, если n — простое число.

С тех пор эти диаграммы стали частью сегодняшней учебной программы и иллюстрируют бизнес-информацию. Диаграммы Венна и Эйлера были включены в качестве компонента обучения теории множеств нового математического движения в 1960 году.

Почему диаграммы Венна важны?

Диаграммы Венна полезны в качестве обучающих и учебных пособий для ученых, учителей и профессоров.Они помогают представлять простые математические концепции в начальных школах, а также теоретические теории и проблемы среди логиков и математиков.

Кроме того, вместе с теорией множеств, диаграмма Венна способствовала более четкому и современному пониманию бесконечных чисел и действительных чисел в математике. Они также способствовали созданию общего языка и системы символов, касающихся теории множеств, среди исследователей и математиков.

Они идеальны для иллюстрации сходства и различий между предметами или идеями, когда круги перекрываются или иначе.Эта функция обычно используется в бизнес-индустрии для поиска и создания ниши на рынке товаров и услуг. Благодаря им предприниматели получают невероятные отчеты о продажах и получают огромную реализованную прибыль.

Вы также можете использовать диаграмму Венна , чтобы принимать важные жизненные решения, например, в какой колледж поступить, в какую школу взять вашего ребенка, какие материалы лучше использовать для конструирования или изготовления одежды, в каком ресторане пообедать и т. Д.

Когда использовать диаграммы Венна?

Вы можете использовать диаграмму Венна , чтобы продемонстрировать взаимосвязи в статистике, логике, вероятности, лингвистике, информатике, организации бизнеса и многих других областях.

  • В математике Диаграммы Венна — это обучающий инструмент, который объясняет такие математические понятия, как множества, объединения и пересечения. Они также решают серьезные задачи по высшей математике. Вы можете подробно прочитать о них в академических журналах в своей библиотеке и поразиться тому, насколько теория множеств является законченным разделом математики.

    Статистики используют идею диаграмм Венна для предсказания вероятности конкретных событий.То же самое и в области прогнозной аналитики. Наборы выборочных данных сравниваются и тщательно исследуются, чтобы выявить их сходства и различия.

Источник изображения : pinterest.com

  • Они также эффективны при определении логических оснований в аргументах и ​​выводах. Как и в дедуктивном рассуждении, если посылки реальны, а форма аргумента оказывается правильной, результат должен быть правильным.Диаграмма, аналогичная диаграмме Венна по логике, — это Таблица истинности. Он помещает переменные в столбцы, чтобы расшифровать то, что логически возможно. Еще одна диаграмма Рэндольфа, также известная как R-диаграмма, использует линии для объяснения множеств.

Источник изображения : youtube.com

  • В лингвистике Диаграммы Венна помогают узнать, как языки различаются или соотносятся друг с другом с точки зрения алфавита, гласных, произношения и т. Д.

Источник изображения : slideshare.net

Источник изображения : kdnuggets.com

  • Диаграммы также полезны в области продаж и маркетинга для сравнения и сопоставления продуктов, услуг, процессов и всего, что происходит при организации бизнеса. Они практичны и эффективны в улучшении продаж и прибылей, а также в расширении деятельности предприятий.

Источник изображения : businessbullet.co.uk

Символы на диаграмме Венна

Когда дело доходит до диаграммы Венна, существует множество символов, но мы рассмотрим три. ꓵ — пересечение двух наборов: показывает элементы, общие для обоих наборов.

Источник изображения : youtube.com

∪ — это представляет собой полная диаграмма Венна.

Источник изображения : math-only-math.com

A ’- обозначает завершение набора A. Он состоит из всего, что не входит в коллекцию.

Источник изображения : mathonline.wikidot.com

Примеры диаграмм Венна

Математика

Первый пример диаграммы Венна относится к математике.Они доступны при освещении тем, посвященных теории множеств и теории вероятностей.

На диаграмме ниже представлены два набора: A = {1, 5, 6, 7, 8, 9, 10, 12} и B = {2, 3, 4, 6, 7, 9, 11, 12, 13}. Раздел, в котором два набора перекрываются, имеет числа, содержащиеся в обоих наборах A и B, называемый пересечением A и B. Два набора, вместе взятые, дают их объединение, которое включает все объекты в A, B, которые являются { 1 2 3 4 5 6 7 8 9 10 11 12 13}.

Источник изображения : bbc.co.uk

Бизнес

В приведенном ниже примере диаграммы Венна анализируются сходства и различия в различных областях работы. Менеджеры по персоналу и специалисты по карьерной лестнице используют его для консультирования людей по вопросам их карьеры.

Источник изображения : pinterest.com

Наука

Ученый использует диаграммы Венна для изучения здоровья человека и лекарств. На иллюстрации ниже вы можете увидеть аминокислоты, жизненно важные для человека.

Источник изображения : researchgate.com

Как создать простую диаграмму Венна за считанные минуты?

Теперь мы будем использовать онлайн-программное обеспечение Edraw Max.В нем есть все основные символы и формы, которые вам нужны, наряду с многочисленными бесплатными шаблонами диаграмма Венна и причудливым и продвинутым интерфейсом, который легко для новичков.

Перед тем, как начать онлайн-диаграмму Венна , вы должны убедиться, что вы:

  • Определите цель, которую вы хотите достичь. Имейте четкое представление о том, что вы хотели бы сравнить и для какой цели это сравнение необходимо. Это облегчает определение множеств.
  • Просмотрите и найдите список предметов, содержащихся в наборах.
  • Просмотрите доступные шаблоны, чтобы получить представление о том, что вы собираетесь нарисовать, а затем создайте свою собственную диаграмму Венна , выполнив следующие действия.

Шаг 1: Войдите на веб-сайт программного обеспечения с https://www.edrawmax.com/online/ . Если вы не создавали учетную запись ранее, войдите в систему, используя действительные учетные данные, подтвердите свою учетную запись, а затем войдите в систему.

Шаг 2: Выберите параметры бизнес-диаграммы на вкладке «Доступные шаблоны» и дважды щелкните значок диаграммы Венна, чтобы отобразить пустую страницу, на которой вы будете рисовать.

Шаг 3: На левой панели экрана вы найдете все необходимые символы и формы диаграммы Венна. Перетащите подходящие и поместите их на холст для рисования, чтобы создать диаграмму Венна.

Шаг 4: Сохраните готовую диаграмму Венна в доступных форматах или экспортируйте или поделитесь ею на других платформах прямо с веб-страницы Edraw.

Шаг 5: Настройка. Большинство встроенных фигур предназначены для изменения размера, редактирования и изменения цвета.

  • Чтобы изменить цвет, коснитесь целевого круга несколько раз и выберите цвет на вкладке быстрого цвета внизу.

  • Чтобы добавить личную тему и стиль, выберите один из доступных шрифтов, эффектов и цветовых схем. Создайте уникальную и профессиональную диаграмму Венна, щелкнув то, что вам больше нравится.

Статьи по теме

Однолинейная электрическая схема

Электрическая однолинейная схема (или однолинейная схема, SLD) — это упрощенный чертеж, используемый для представления энергосистемы предприятия.Назначение однолинейной схемы — схематично показать источники питания, нагрузки электрического оборудования, электрические приводы, детали системы и уровни неисправностей. Однолинейные или однолинейные схемы получили свое название от того факта, что показана только одна фаза трехфазной системы и только одна линия используется для представления любого количества токоведущих проводников.

В процессе проектирования SLD чрезвычайно важен, так как почти каждая электротехническая и проектная документация полагается на одну строку, чтобы точно описать, как система будет работать.

Как и диаграммы трубопроводов и КИПиА, однолинейная диаграмма отражает электрические взаимосвязи и последовательности относительно друг друга и не представляет географических взаимосвязей. Чтобы создать однолинейную схему, P&ID должен быть достаточно хорошо установлен, а исследование электрической нагрузки должно быть выполнено. По мере доработки или обновления оборудования необходимо обновлять одну строку.

На SLD стандартные символы используются для обозначения компонентов энергосистем, таких как трансформаторы, автоматические выключатели, генераторы, предохранители и переключатели.Как и любой схематический рисунок, однолинейная электрическая диаграмма должна включать легенду, в которой подробно описываются различные используемые символы.

Здесь можно найти некоторые из наиболее распространенных символов. << ДОБАВИТЬ ССЫЛКУ >>

Использование однолинейной схемы

На новом или существующем предприятии однолинейная схема представляет собой дорожную карту для электротехнических чертежей и документов, будущих испытаний, обслуживания и технического обслуживания. Как и любой рисунок, однолинейная диаграмма представляет собой моментальный снимок объекта в определенный момент времени.Подобно схеме трубопроводов и КИПиА, по мере внесения изменений в объект ее необходимо обновлять. Кроме того, наличие обновленной однолинейной схемы является требованием NFPA 70E (Стандарт электробезопасности на рабочем месте).

Некоторые из технических и проектных документов, непосредственно затрагиваемых одной строкой:

  • Технические характеристики трансформатора и генератора
  • Расписания и схемы центра управления двигателями
  • Таблицы панелей
  • Конструкция стойки коммутатора
  • Анализ вспышки дуги
  • Размер ИБП
  • Схема подключения двигателя

Электротехнические исследования и проектные мероприятия, затронутые одной линией:

  • Расчеты короткого замыкания
  • Координационные исследования
  • Исследования потока нагрузки
  • Оценка заземления
  • Исследования по оценке безопасности
  • Правила электробезопасности
  • Эффективное планирование и выполнение технического обслуживания

Типичный комплект однолинейной схемы может включать:

  • Источники энергии — Генераторы, трансформаторы
.

Добавить комментарий

Ваш адрес email не будет опубликован.