Условные знаки в электрических схемах
Чтобы понять, что конкретно нарисовано на схеме или чертеже, необходимо знать расшифровку тех значков, которые на ней есть. Это распознавание еще называют чтением чертежей. А чтоб облегчить это занятие почти все элементы имеют свои условные значки. Почти, потому что стандарты давно не обновлялись и некоторые элементы рисуют каждый как может. Но, в большинстве своем, условные обозначения в электрических схемах есть в нормативны документах.
Условные обозначения в электрических схемах: лампы,трансформаторы, измерительные приборы, основная элементная база
Нормативная база
Разновидностей электрических схем насчитывается около десятка, количество различных элементов, которые могут там встречаться, исчисляется десятками если не сотнями. Чтобы облегчить распознавание этих элементов, введены единые условные обозначения в электрических схемах. Все правила прописаны в ГОСТах. Этих нормативов немало, но основная информация есть в следующих стандартах:
Нормативные документы, в которых прописаны графические обозначения элементной базы электрических схем
Изучение ГОСТов дело полезное, но требующее времени, которое не у всех есть в достаточном количестве. Потому в статье приведем условные обозначения в электрических схемах — основную элементную базу для создания чертежей и схем электропроводки, принципиальных схем устройств.
Обозначение электрических элементов на схемах
Некоторые специалисты внимательно посмотрев на схему, могут сказать что это и как оно работает. Некоторые даже могут сразу выдать возможные проблемы, которые могут возникнуть при эксплуатации. Все просто — они хороша знают схемотехнику и элементную базу, а также хорошо ориентируются в условных обозначениях элементов схем. Такой навык нарабатывается годами, а, для «чайников», важно запомнить для начала наиболее распространенные.
Обозначение светодиода, стабилитрона, транзистора (разного типа)
Электрические щиты, шкафы, коробки
На схемах электроснабжения дома или квартиры обязательно будет присутствовать обозначение электрического щитка или шкафа.
В квартирах, в основном устанавливается там оконечное устройство, так как проводка дальше не идет. В домах могут запроектировать установку разветвительного электрошкафа — если из него будет идти трасса на освещение других построек, находящихся на некотором расстоянии от дома — бани, летней кухни, гостевого дома. Эти другие обозначения есть на следующей картинке.Обозначение электрических элементов на схемах: шкафы, щитки, пульты
Если говорить об изображениях «начинки» электрических щитков, она тоже стандартизована. Есть условные обозначения УЗО, автоматических выключателей, кнопок, трансформаторов тока и напряжения и некоторых других элементов. Они приведены следующей таблице (в таблице две страницы, листайте нажав на слово «Следующая»)
Элементная база для схем электропроводки
При составлении или чтении схемы пригодятся также обозначения проводов, клемм, заземления, нуля и т.д. Это то, что просто необходимо начинающему электрику или для того чтобы понять, что же изображено на чертеже и в какой последовательности соединены ее элементы.
Пример использования приведенных выше графических изображений есть на следующей схеме. Благодаря буквенным обозначениям все и без графики понятно, но дублирование информации в схемах никогда лишним не было.
Пример схемы электропитания и графическое изображение проводов на ней
Изображение розеток
На схеме электропроводки должны быть отмечены места установки розеток и выключателей. Типов розеток много — на 220 В, на 380 в, скрытого и открытого типа установки, с разным количеством «посадочных» мест, влагозащищенные и т.д. Приводить обозначение каждой — слишком длинно и ни к чему. Важно запомнить как изображаются основные группы, а количество групп контактов определяется по штрихам.
Обозначение розеток на чертежах
Розетки для однофазной сети 220 В обозначаются на схемах в виде полукруга с одним или несколькими торчащими вверх отрезками. Количество отрезков — количество розеток на одном корпусе (на фото ниже иллюстрация).
Если в розетку можно включить только одну вилку — вверх рисуют один отрезок, если два — два, и т.д.Условные обозначения розеток в электрических схемах
Если посмотрите на изображения внимательно, обратите внимание, что условное изображение, которое находится справа, не имеет горизонтальной черты, которая отделяет две части значка. Эта черта указывает на то, что розетка скрытого монтажа, то есть под нее необходимо в стене сделать отверстие, установить подрозетник и т.д. Вариант справа — для открытого монтажа. На стену крепится токонепроводящая подложка, на нее сама розетка.
Также обратите внимание, что нижняя часть левого схематического изображения перечеркнута вертикальной линией. Так обозначают наличие защитного контакта, к которому подводится заземление. Установка розеток с заземлением обязательна при включении сложной бытовой техники типа стиральной или посудомоечной машины, духовки и т.д.
Обозначение трехфазной розетки на чертежах
Ни с чем не перепутаешь условное обозначение трехфазной розетки (на 380 В). Количество торчащих вверх отрезков равно количеству проводников, которые к данному устройству подключаются — три фазы, ноль и земля. Итого пять.
Бывает, что нижняя часть изображения закрашена черным (темным). Это обозначает что розетка влагозащищенная. Такие ставят на улице, в помещениях с повышенной влажностью (бани, бассейны и т.д.).
Отображение выключателей
Схематическое обозначение выключателей выглядит как небольшого размера кружок с одним или несколькими Г- или Т- образными ответвлениями. Отводы в виде буквы «Г» обозначают выключатель открытого монтажа, с виде буквы «Т» — скрытого монтажа. Количество отводов отображает количество клавиш на этом устройстве.
Условные графические обозначения выключателей на электрических схемах
Кроме обычных могут стоять проходные выключатели — для возможности включения/выключения одного источника света из нескольких точек. К такой же небольшой окружности с противоположных сторон пририсовывают две буквы «Г». Так обозначается одноклавишный проходной переключатель.
Как выглядит схематичное изображение проходных выключателей
В отличие от обычных выключателей, в этих при использовании двухклавишных моделей добавляется еще одна планка, параллельная верхней.
Лампы и светильники
Свои обозначения имеют лампы. Причем отличаются лампы дневного света (люминесцентные) и лампы накаливания. На схемах отображается даже форма и размеры светильников. В данном случае надо только запомнить как выглядит на схеме каждый из типов ламп.
Изображение светильников на схемах и чертежах
Радиоэлементы
При прочтении принципиальных схем устройств, необходимо знать условные обозначения диодов, резисторов, и других подобных элементов.
Условные обозначения радиоэлементов в чертежах
Знание условных графических элементов поможет вам прочесть практически любую схему — какого-нибудь устройства или электропроводки. Номиналы требуемых деталей иногда проставляются рядом с изображением, но в больших многоэлементных схемах они прописываются в отдельной таблице. В ней стоят буквенные обозначения элементов схемы и номиналы.
Буквенные обозначения
Кроме того, что элементы на схемах имеют условные графические названия, они имеют буквенные обозначения, причем тоже стандартизованные (ГОСТ 7624-55).
Название элемента электрической схемы | Буквенное обозначение | |
---|---|---|
1 | Выключатель, контролер, переключатель | В |
2 | Электрогенератор | Г |
3 | Диод | Д |
4 | Выпрямитель | Вп |
5 | Звуковая сигнализация (звонок, сирена) | Зв |
6 | Кнопка | Кн |
7 | Лампа накаливания | Л |
8 | Электрический двигатель | М |
9 | Предохранитель | Пр |
10 | Контактор, магнитный пускатель | К |
11 | Реле | Р |
12 | Трансформатор (автотрансформатор) | Тр |
13 | Штепсельный разъем | Ш |
14 | Электромагнит | Эм |
15 | Резистор | R |
16 | Конденсатор | С |
17 | Катушка индуктивности | L |
18 | Кнопка управления | Ку |
19 | Конечный выключатель | Кв |
20 | Дроссель | Др |
21 | Телефон | Т |
22 | Микрофон | Мк |
23 | Громкоговоритель | Гр |
24 | Батарея (гальванический элемент) | Б |
25 | Главный двигатель | Дг |
26 | Двигатель насоса охлаждения | До |
Обратите внимание, что в большинстве случаев используются русские буквы, но резистор, конденсатор и катушка индуктивности обозначаются латинскими буквами.
Есть одна тонкость в обозначении реле. Они бывают разного типа, соответственно маркируются:
- реле тока — РТ;
- мощности — РМ;
- напряжения — РН;
- времени — РВ;
- сопротивления — РС;
- указательное — РУ;
- промежуточное — РП;
- газовое — РГ;
- с выдержкой времени — РТВ.
В основном, это только наиболее условные обозначения в электрических схемах. Но большую часть чертежей и планов вы теперь сможете понять. Если потребуется знать изображения более редких элементов, изучайте ГОСТы.
Графические
Что касается графического обозначения всех элементов, используемых на схеме, этот обзор мы предоставим в виде таблиц, в которых изделия будут сгруппированы по назначению.
В первой таблице Вы можете увидеть, как отмечены электрические коробки, щиты, шкафы и пульты на электросхемах:
Следующее, что Вы должны знать – условное обозначение питающих розеток и выключателей (в том числе проходных) на однолинейных схемах квартир и частных домов:
Что касается элементов освещения, светильники и лампы по ГОСТу указывают следующим образом:
В более сложных схемах, где применяются электродвигатели, могут указываться такие элементы, как:
Также полезно знать, как графически обозначаются трансформаторы и дроссели на принципиальных электросхемах:
Электроизмерительные приборы по ГОСТу имеют следующее графические обозначение на чертежах:
А вот, кстати, полезная для начинающих электриков таблица, в которой показано, как выглядит на плане электропроводки контур заземления, а также сама силовая линия:
Помимо этого на схемах Вы можете увидеть волнистую либо прямую линию, «+» и «-», которые указывают на род тока, напряжение и форму импульсов:
В более сложных схемах автоматизации Вы можете встретить непонятные графические обозначения, вроде контактных соединений. Запомните, как обозначаются этим устройства на электросхемах:
Помимо этого Вы должны быть в курсе, как выглядят радиоэлементы на проектах (диоды, резисторы, транзисторы и т. д.):
Вот и все условно графические обозначения в электрических схемах силовых цепей и освещения. Как уже сами убедились, составляющих довольно много и запомнить, как обозначается каждый можно только с опытом. Поэтому рекомендуем сохранить себе все эти таблицы, чтобы при чтении проекта планировки проводки дома либо квартиры Вы могли сразу же определить, что за элемент цепи находится в определенном месте.
Интересное видео по теме:
Буквенные
Мы уже рассказывали Вам, как расшифровать маркировку проводов и кабелей. В однолинейных электросхемах также присутствуют свои буквы, которые дают понять, что включено в сеть. Итак, согласно ГОСТ 7624-55, буквенное обозначение элементов на электрических схемах выглядит следующим образом:
- Реле тока, напряжения, мощности, сопротивления, времени, промежуточное, указательное, газовое и с выдержкой по времени, соответственно – РТ, РН, РМ, РС, РВ, РП, РУ, РГ, РТВ.
- КУ – кнопка управления.
- КВ – конечный выключатель.
- КК – командо-контроллер.
- ПВ – путевой выключатель.
- ДГ – главный двигатель.
- ДО – двигатель насоса охлаждения.
- ДБХ – двигатель быстрых ходов.
- ДП – двигатель подач.
- ДШ – двигатель шпинделя.
Помимо этого в отечественной маркировке элементов радиотехнических и электрических схем выделяют следующие буквенные обозначения:
На этом краткий обзор условных обозначений в электрических схемах закончен. Надеемся, теперь Вы знаете, как обозначаются розетки, выключатели, светильники и остальные элементы цепи на чертежах и планах жилых помещений.
Также читают:
Чтение чертежей по электрике требует определенных знаний, которые можно почерпнуть из нормативных документов. Своеобразным «языком» чтения являются условные обозначения в электрических схемах – система знаков и символов, преимущественно графических и буквенных. Кроме них иногда цифрами проставляются номиналы.
Сгласитесь, понимание стандартных обозначений просто необходимо для любого домашнего мастера. Эти знания помогут прочесть электросхему, самостоятельно составить план разводки в квартире или в частном доме. Предлагаем разобраться во всех тонкостях написания проектной документации.
В статье описаны основные виды электрических схем, а также приведена подробная расшифровка базовых изображений, символов, значков и буквенно-цифровых маркеров, используемых при составлении чертежей по устройству электросети.
Какие виды электросхем могут пригодиться?
Рассмотрим проектную информацию с точки зрения электромонтажника-любителя, желающего своими руками поменять проводку в доме или составить чертеж подключения дачи к электрокоммуникациям.
Сначала нужно понять, какие знания будут полезными, а какие не понадобятся. Первый шаг – это знакомство с видами электрических схем.
Вся информация о видах схем изложена в новой редакции ГОСТ 2.702-2011, которая носит название «ЕСКД. Правила выполнения электрических схем».
Это дубликат более раннего документа – ГОСТ 2.701-2008, в котором как раз подробно говорится о классификации схем. Всего выделяют 10 видов, но на практике может потребоваться только одна – электрическая.
Кроме видовой классификации, существует и типовая, которая подразделяет все чертежные документы на структурные, общие и пр., всего 8 пунктов.
Домашнему мастеру будут интересны 3 типа схем: функциональная, принципиальная, монтажная.
Тип #1 – функциональная схема
Функциональная схема не содержит детализации, в ней указываются основные блоки и узлы. Она дает общее представление о работе системы. Для устройства электроснабжения частного дома не всегда есть смысл составлять такие чертежи, так как они обычно типовые.
А вот при описании сложного электронного устройства или для оснащения электрикой цеха, студии или пункта управления они могут пригодиться.
Тип #2 – принципиальная схема
Принципиальная схема, в отличие от функциональной – это набор условных обозначений, без знания которых сложно разобраться в устройстве сети в целом. На чертеже указываются все устройства и связи между ними.
Если нужно отразить только силовые линии, достаточно начертить линейную схему, а для изображения всех видов цепей с приборами контроля и управления понадобится полная.
Тип #3 – монтажная схема
Монтажная схема – документ, которым удобно пользоваться при установке сетей. По ней можно узнать, какие устройства следует подключать, где именно и как далеко друг от друга они находятся.
Указано расположение таких элементов, как выключатели и розетки, светильники, автоматы защиты. Прямо в схеме можно расставить номиналы и длину цепей.
Требования по всем видам схематической документации изложены в ГОСТ 2.702-2011, именно им и следует в дальнейшем руководствоваться при составлении собственных проектов.
Здесь же можно найти в полном объеме ссылки на другие полезные документы, в которых размещены таблицы графических и буквенных обозначений различных элементов, использующихся на электрических схемах, а также правила их использования.
Графические изображения в электросхемах
Чертеж электросети представляет собой набор графических элементов, которые в совокупности образуют неразрывную систему. На практике это комплект устройств, соединенных проводами.
Большая часть обозначений – графические. Буквы и цифры применяются для символьного обозначения отдельных элементов, их номиналов и расстояний между объектами.
Основные базовые изображения
Электрические цепи ведут к устройствам и установкам, которые оборудованы контактами, способными разорвать или соединить эти цепи.
Самый простой пример – обыкновенный выключатель. Все контакты делятся на замыкающие, размыкающие и переключающие – именно они и отображаются в схемах.
Перечисленные графические изображения являются обязательными при составлении принципиальных схем и обычно понятны даже начинающему электрику.
Символика однолинейных схем
Для сборки электрощитов также используют чертежи. Обычно они представляют собой однолинейную схему с обозначением УЗО, автоматических выключателей, контакторов и другого защитного оборудования.
Некоторые графические символы похожи между собой, поэтому при составлении схемы требуется особое внимание. Например, контактор и рубильник обозначаются одинаково, разница – в небольшом элементе на неподвижном контакте.
Специальными символами обозначаются катушки реле – во всех изображениях за основу взят прямоугольник.
Для запоминания значков часто используют ассоциации или буквенно-графические подсказки. Например, мотор-привод изображается кружком, внутри которого находится буква «М».
При составлении схемы следует учитывать, что для обозначения некоторых символов также важно количество.
Например, если нужно указать 4-контактный клеммник, то следует начертить четыре перечеркнутых кружочка в ряд, а не один. Парные галочки при изображении розеток – это количество проводов.
Как изображаются шины и провода?
Для обозначений шин, кабелей и проводов используется линейная графика – практически все символы состоят из прямых линий.
Соединения проводников указываются точками. Если в месте соединения двух линий никакой пометки нет, то это простое пересечение.
Провода бывают разные по виду, назначению, нагрузке, способу прокладки. Все это также можно отобразить схематически.
Дополнительные характеристики облегчают подбор материалов и монтаж электросети. В дальнейшем благодаря указанным на схеме характеристикам можно судить о потенциальных возможностях уже установленной электросистемы.
Розетки и выключатели на схемах
Обозначение выключателей разбито на несколько групп – по степени защиты, способу установки (скрытой или открытой). Отдельно вынесены переключатели на два направления. 2- и 3-клавишные выключатели обозначаются по-разному.
Для некоторых устройств управления источниками света обозначений нет – например, для кнопочных устройств и диммеров.
Сейчас для экономии электроэнергии в больших помещениях часто устанавливают проходные переключатели, которыми управляют с 2 или 3 точек. Для них также можно найти соответствующие значки.
Розетки, как и выключатели, поделены на группы по степени защиты. Внутри групп устройства делятся по количеству полюсов, наличию защиты. Для обозначения блоков используются буквенно-цифровые подписи, указывающие на количество и назначение установок в одном блоке.
При запоминании обозначений различных электрических элементов на схемах следует каждое условно изображенное устройство соотносить с реальным изделием.
Например, популярные виды розеток выглядят следующим образом:
На деле же электромонтажные устройства выглядят так:
Выключатели и розетки – одни из самых «востребованных» элементов в схемах для домашнего применения, поэтому их следует запомнить в первую очередь. Подробнее об обозначении таких устройств на чертежах и схемах читайте в этой статье.
Обозначение источников света
Для различных видов ламп и светильников также предусмотрены отдельные символы. Удобно то, что для светодиодных и люминесцентных лампочек есть специальные значки.
Стандартные изображения разного рода светильников часто применяют для составления монтажных схем.
Если использовать одинаковые значки, придется включать дополнительные уточнения, а с типовыми символами можно нарисовать схему намного быстрее.
Элементы для составления принципиальных электросхем
Базовые символы для принципиальных схем отличаются мало, но кроме них есть еще специальные значки для обозначения всевозможных радиоэлементов: тиристоров, резисторов, диодов и пр.
Существуют отдельные обозначения для радиоустройств, но при проектировании домашней электросети они обычно не требуются.
Буквенные обозначения на электросхемах
Чтобы дать более полную информацию об устройстве, его подписывают сокращенным буквенным обозначением. Количество букв – 2 или 3. Иногда буквенное обозначение превращается в буквенно-цифровое, если рядом поставить порядковый номер устройства.
Наряду с международными есть и российские стандарты. Они перечислены в ГОСТ 7624-55, но этот документ признан недействующим.
В статье приведена информация не обо всех условных обозначениях. Полные материалы о графических символах можно отыскать в ГОСТ 2.709-89, 2.721-74, 2.755-87.
Выводы и полезное видео по теме
От рисунка – до принципиальной электрической схемы:
Пример чтения схем электроустройств (часть 1):
Продолжение, а точнее, часть 2 о тонкостях чтения схем электроустройств (часть 2):
Подробно о самостоятельном составлении схем:
Владение информацией по чтению и составлению электросхем может пригодиться и для монтажных работ по благоустройству жилья, и для ремонта электроприборов. Ни к чему придумывать собственную символику, когда есть профессиональная система условных обозначений, выучить которую не так уж и сложно.
Есть, что дополнить, или возникли вопросы по составлению и прочтению электрических схем? Можете оставлять комментарии к публикации, участвовать в обсуждениях и делиться собственным опытом разработки чертежей. Форма для связи находится в нижнем блоке.
Было дело – занимался электромонтажом, в основном, по осветительным сетям. Монтажная схема дает представление о количестве розеток, выключателей, светильников и прочего и их примерном расположении. Но способ их соединения, то есть, варианты устройства разводки в распределительных коробках – это уже знания электромонтажника. А высота закладки провода и установки приборов зависит от применяемого ГОСТа.
Добрый день, Владимир.
Чтобы не дезориентировать читателей статьи, вынужден несколько подкорректировать вашу трактовку монтажной схемы.
Прежде всего, монтажная схема задает способ подключение потребителей электроэнергии к распределительному щитку.
Среди «популярных» для многоквартирных домов – схема, предусматривающая проброску питающей магистрали через все комнаты квартиры с последующим обустройством распределительных коробок, от которых запитываются светильники, розетки, прочие.
Кардинально отличается и практически не применяется схема электроснабжения «звездой» – от распредщита через автоматы подключаются отдельные токоприемники.
Следующий вариант – смешанная схема: все потребители делятся на категории и от щита их запитывают отдельными защищенными линиями, от которых через распредкоробки идут ответвления.
Могут быть и другие варианты, предлагаемые заказчику проекта подрядчиком-разработчиком схемы электроснабжения. То есть, творчество электромонтажника – это ваша фантазия.
Обозначения в электронике схемах — Морской флот
Чтобы можно было собрать радиоэлектронное устройство, необходимо знать обозначение радиодеталей на схеме и их название, а также порядок их соединения. Для осуществления этой цели и были придуманы схемы. На заре радиотехники радиодетали изображались трехмерными. Для их составления требовались опыт художника и знания внешнего вида деталей. Со временем изображения упрощались, пока не превратились в условные знаки.
Чтение электрической схемы
Сама схема, на которой нарисованы условные графические обозначения (УГО), называется принципиальной. Она не только показывает, каким образом соединяются те или иные элементы схемы, но и объясняет, как работает все устройство, показывая принцип его действия. Чтобы добиться такого результата, важно правильно показать отдельные группы элементов и соединение между ними.
Помимо принципиальной, существуют и монтажные. Они предназначены для точного отображения каждого элемента относительно друг друга. Арсенал радиоэлементов огромен. Постоянно добавляются новые. Тем не менее УГО на всех схемах почти одинаково, а вот буквенный код существенно отличается. Существует 2 вида стандарта:
- государственный, в этот стандарт может входить несколько государств;
- международный, пользуются почти во всем мире.
Но какой бы стандарт ни применялся, он должен четко показать обозначение радиодеталей на схеме и их название. В зависимости от функционала радиодетали УГО могут быть простыми или сложными. Например, можно выделить несколько условных групп:
- источники питания;
- индикаторы, датчики;
- переключатели;
- полупроводниковые элементы.
Этот перечень неполный и служит лишь для наглядности. Чтобы легче было разобраться в условных обозначениях радиодеталей на схеме, необходимо знать принцип действия этих элементов.
Источники питания
К ним относятся все устройства, способные вырабатывать, аккумулировать или преобразовывать энергию. Первый аккумулятор изобрел и продемонстрировал Александро Вольта в 1800 году. Он представлял собой набор медных пластин, проложенных влажным сукном. Видоизмененный рисунок стал состоять из двух параллельных вертикальных прямых, между которыми стоит многоточие. Оно заменяет недостающие пластины. Если источник питания состоит из одного элемента, многоточие не ставится.
В схеме с постоянным током важно знать, где находится положительное напряжение. Поэтому положительную пластину делают выше, а отрицательную ниже. Причем обозначение аккумулятора на схеме и батарейке ничем не отличается.
Также нет отличия и в буквенном коде Gb. Солнечные батареи, которые вырабатывают ток под влиянием солнечного света, в своем УГО имеют дополнительные стрелки, направленные на батарею.
Если источник питания внешний, например, радиосхема питается от сети, тогда вход питания обозначается клеммами. Это могут быть стрелки, окружности со всевозможными добавлениями. Возле них указывается номинальное напряжение и род тока. Переменное напряжение обозначается знаком «тильда» и может стоять буквенный код Ас. Для постоянного тока на положительном вводе стоит «+», на отрицательном «-«, а может стоять знак «общий». Он обозначается перевернутой буквой Т.
Полупроводниковые диоды
Полупроводники, пожалуй, имеют самую обширную номенклатуру в радиоэлектронике. Постепенно добавляются все новые приборы. Все их можно условно разделить на 3 группы:
В полупроводниковых приборах используется р-п-переход, схемотехника в УГО старается показывать особенности того или иного прибора. Так, диод способен пропускать ток в одном направлении. Это свойство схематически показано в условном обозначении. Оно выполнено в виде треугольника, у вершины которого стоит черточка. Эта черточка показывает, что ток может идти только по направлению треугольника.
Если к этой прямой пририсован короткий отрезок и он обращен в обратную сторону от направления треугольника, то это уже стабилитрон. Он способен пропускать небольшой ток в обратном направлении. Такое обозначение справедливо только для приборов общего назначения. Например, изображение для диода с барьером Шоттки нарисован s-образный знак.
Некоторые радиодетали имеют свойства двух простых приборов, соединенных вместе. Эту особенность также отмечают. При изображении двустороннего стабилитрона рисуются оба, причем вершины треугольников направлены друг к другу. При обозначении двунаправленного диода изображаются 2 параллельных диода, направленных в разные стороны.
Другие приборы обладают свойствами двух разных деталей, например, варикап. Это полупроводник, поэтому он рисуется треугольником. Однако в основном используется емкость его р-п—перехода, а это уже свойства конденсатора. Поэтому к вершине треугольника пририсовывается знак конденсатора — две параллельные прямые.
Признаки внешних факторов, влияющих на прибор, также нашли свое отражение. Фотодиод преобразует солнечный свет в электрический ток, некоторые виды являются элементами солнечной батареи. Они изображаются как диод, только в круге, и на них направлены 2 стрелки, для показа солнечных лучей. Светодиод, напротив, излучает свет, поэтому стрелки идут от диода.
Транзисторы полярные и биполярные
Транзисторы также являются полупроводниковыми приборами, но имеют в основном два p-n-p-перехода в биполярных транзисторах. Средняя область между двумя переходами является управляющей. Эмиттер инжектирует носители зарядов, а коллектор принимает их.
Корпус изображен кружком. Два p-n-перехода изображены одним отрезком в этом кружке. С одной стороны, к этому отрезку подходит прямая под углом 90 градусов — это база. С другой стороны, 2 косые прямые. Одна из них имеет стрелку — это эмиттер, другая без стрелки — коллектор.
По эмиттеру определяют структуру транзистора. Если стрелка идет по направлению к переходу, то это транзистор p-n-p типа, если от него — то это n-p-n транзистор. Раньше выпускался однопереходный транзистор, его еще называют двухбазовым диодом, имеет один p-n-переход. Обозначается как биполярный, но коллектор отсутствует, а баз две.
Похожий рисунок имеет и полевой транзистор. Отличие в том, что переход у него называется каналом. Прямая со стрелкой подходит к каналу под прямым углом и называется затвором. С противоположной стороны подходят сток и исток. Направление стрелки показывает тип канала. Если стрелка направлена на канал, то канал n-типа, если от него, то p-типа.
Полевой транзистор с изолированным затвором имеет некоторые отличия. Затвор рисуется в виде буквы г и не соединяется с каналом, стрелка помещается между стоком и истоком и имеет то же значение. В транзисторах с двумя изолированными затворами на схеме добавляется второй такой же затвор. Сток и исток взаимозаменяемые, поэтому полевой транзистор можно подключать как угодно, нужно лишь правильно подключить затвор.
Интегральные микросхемы
Интегральные микросхемы являются самыми сложными электронными компонентами. Выводы, как правило, являются частью общей схемы. Их можно разделить на такие виды:
На схеме они обозначаются в виде прямоугольника. Внутри стоит код и (или) название схемы. Отходящие выводы пронумерованы. Операционные усилители рисуются треугольником, выходящий сигнал идет из его вершины. Для отсчета выводов на корпусе микросхемы рядом с первым выводом ставится отметка. Обычно это выемка квадратной формы. Чтобы правильно читать микросхемы и обозначения знаков, прилагаются таблицы.
Прочие элементы
Все радиодетали соединяются между собой проводниками. На схеме они изображаются прямыми линиями и чертятся строго по горизонтали и вертикали. Если проводники при пересечении друг с другом имеют электрическую связь, то в этом месте ставится точка. В советских схемах и американских, чтобы показать, что проводники не соединяются, в месте пересечения ставится полуокружность.
Конденсаторы обозначаются двумя параллельными отрезками. Если это электролитический, для подключения которого важно соблюдать полярность, то возле его положительного вывода ставится +. Могут встречаться обозначения электролитических конденсаторов в виде двух параллельных прямоугольников, один из них (отрицательный) окрашивается в черный цвет.
Для обозначения переменных конденсаторов используют стрелку, она по диагонали перечеркивает конденсатор. В подстроечных вместо стрелки используется т-образный знак. Вариконд — конденсатор, меняющий емкость от приложенного напряжения, рисуется, как и переменный, но стрелку заменяет короткая прямая, возле которой стоит буква u. Емкость показывается цифрой и рядом ставится мкФ (микроФарада). Если емкость меньше — буквенный код опускается.
Еще один элемент, без которого не обходится ни одна электрическая схема — это резистор. Обозначается на схеме в виде прямоугольника. Чтобы показать, что резистор переменный, сверху рисуют стрелку. Она может быть соединена либо с одним из выводов, либо являться отдельным выводом. Для подстроечных используют знак в виде буквы т. Как правило, рядом с резистором указывается его сопротивление.
Для обозначения мощности постоянных резисторов могут использоваться знаки в виде черточек. Мощность в 0,05 Вт обозначается тремя косыми, 0,125 Вт — двумя косыми, 0,25 Вт — одной косой, 0,5 Вт — одна продольная. Большая мощность показывается римскими цифрами. Из-за многообразия невозможно провести описание всех обозначений электронных компонентов на схеме. Чтобы определить тот или иной радиоэлемент, пользуются справочниками.
Буквенно-цифровой код
Для простоты радиодетали разделяются на группы по признакам. Группы делятся на виды, виды — на типы. Ниже приведены коды групп:
- A — устройства;
- B — преобразователи;
- C — конденсаторы;
- D — микросхемы;
- E — элементы разные;
- F — защитные устройства;
- G — источники питания;
- H — индикаторы;
- K — реле;
- L — катушки;
- M — двигатели;
- P — приборы;
- Q — выключатели;
- R — резисторы;
- S — выключатели;
- T — трансформаторы;
- U — преобразователи;
- V — полупроводники, электровакуумные лампы;
- X — контакты;
- Y — электромагнит.
Для удобства монтажа на печатных платах указываются места для радиодеталей буквенным кодом, рисунком и цифрами. У деталей с полярными выводами у положительного вывода ставится +. В местах для пайки транзисторов каждый вывод помечается соответствующей буквой. Плавкие предохранители и шунты отображаются прямой линией. Выводы микросхем маркируются цифрами. Каждый элемент имеет свой порядковый номер, который указан на плате.
Чтение чертежей по электрике требует определенных знаний, которые можно почерпнуть из нормативных документов. Своеобразным «языком» чтения являются условные обозначения в электрических схемах – система знаков и символов, преимущественно графических и буквенных. Кроме них иногда цифрами проставляются номиналы.
Сгласитесь, понимание стандартных обозначений просто необходимо для любого домашнего мастера. Эти знания помогут прочесть электросхему, самостоятельно составить план разводки в квартире или в частном доме. Предлагаем разобраться во всех тонкостях написания проектной документации.
В статье описаны основные виды электрических схем, а также приведена подробная расшифровка базовых изображений, символов, значков и буквенно-цифровых маркеров, используемых при составлении чертежей по устройству электросети.
Какие виды электросхем могут пригодиться?
Рассмотрим проектную информацию с точки зрения электромонтажника-любителя, желающего своими руками поменять проводку в доме или составить чертеж подключения дачи к электрокоммуникациям.
Сначала нужно понять, какие знания будут полезными, а какие не понадобятся. Первый шаг – это знакомство с видами электрических схем.
Вся информация о видах схем изложена в новой редакции ГОСТ 2.702-2011, которая носит название «ЕСКД. Правила выполнения электрических схем».
Это дубликат более раннего документа – ГОСТ 2.701-2008, в котором как раз подробно говорится о классификации схем. Всего выделяют 10 видов, но на практике может потребоваться только одна – электрическая.
Кроме видовой классификации, существует и типовая, которая подразделяет все чертежные документы на структурные, общие и пр., всего 8 пунктов.
Домашнему мастеру будут интересны 3 типа схем: функциональная, принципиальная, монтажная.
Тип #1 – функциональная схема
Функциональная схема не содержит детализации, в ней указываются основные блоки и узлы. Она дает общее представление о работе системы. Для устройства электроснабжения частного дома не всегда есть смысл составлять такие чертежи, так как они обычно типовые.
А вот при описании сложного электронного устройства или для оснащения электрикой цеха, студии или пункта управления они могут пригодиться.
Тип #2 – принципиальная схема
Принципиальная схема, в отличие от функциональной – это набор условных обозначений, без знания которых сложно разобраться в устройстве сети в целом. На чертеже указываются все устройства и связи между ними.
Если нужно отразить только силовые линии, достаточно начертить линейную схему, а для изображения всех видов цепей с приборами контроля и управления понадобится полная.
Тип #3 – монтажная схема
Монтажная схема – документ, которым удобно пользоваться при установке сетей. По ней можно узнать, какие устройства следует подключать, где именно и как далеко друг от друга они находятся.
Указано расположение таких элементов, как выключатели и розетки, светильники, автоматы защиты. Прямо в схеме можно расставить номиналы и длину цепей.
Требования по всем видам схематической документации изложены в ГОСТ 2.702-2011, именно им и следует в дальнейшем руководствоваться при составлении собственных проектов.
Здесь же можно найти в полном объеме ссылки на другие полезные документы, в которых размещены таблицы графических и буквенных обозначений различных элементов, использующихся на электрических схемах, а также правила их использования.
Графические изображения в электросхемах
Чертеж электросети представляет собой набор графических элементов, которые в совокупности образуют неразрывную систему. На практике это комплект устройств, соединенных проводами.
Большая часть обозначений – графические. Буквы и цифры применяются для символьного обозначения отдельных элементов, их номиналов и расстояний между объектами.
Основные базовые изображения
Электрические цепи ведут к устройствам и установкам, которые оборудованы контактами, способными разорвать или соединить эти цепи.
Самый простой пример – обыкновенный выключатель. Все контакты делятся на замыкающие, размыкающие и переключающие – именно они и отображаются в схемах.
Перечисленные графические изображения являются обязательными при составлении принципиальных схем и обычно понятны даже начинающему электрику.
Символика однолинейных схем
Для сборки электрощитов также используют чертежи. Обычно они представляют собой однолинейную схему с обозначением УЗО, автоматических выключателей, контакторов и другого защитного оборудования.
Некоторые графические символы похожи между собой, поэтому при составлении схемы требуется особое внимание. Например, контактор и рубильник обозначаются одинаково, разница – в небольшом элементе на неподвижном контакте.
Специальными символами обозначаются катушки реле – во всех изображениях за основу взят прямоугольник.
Для запоминания значков часто используют ассоциации или буквенно-графические подсказки. Например, мотор-привод изображается кружком, внутри которого находится буква «М».
При составлении схемы следует учитывать, что для обозначения некоторых символов также важно количество.
Например, если нужно указать 4-контактный клеммник, то следует начертить четыре перечеркнутых кружочка в ряд, а не один. Парные галочки при изображении розеток – это количество проводов.
Как изображаются шины и провода?
Для обозначений шин, кабелей и проводов используется линейная графика – практически все символы состоят из прямых линий.
Соединения проводников указываются точками. Если в месте соединения двух линий никакой пометки нет, то это простое пересечение.
Провода бывают разные по виду, назначению, нагрузке, способу прокладки. Все это также можно отобразить схематически.
Дополнительные характеристики облегчают подбор материалов и монтаж электросети. В дальнейшем благодаря указанным на схеме характеристикам можно судить о потенциальных возможностях уже установленной электросистемы.
Розетки и выключатели на схемах
Обозначение выключателей разбито на несколько групп – по степени защиты, способу установки (скрытой или открытой). Отдельно вынесены переключатели на два направления. 2- и 3-клавишные выключатели обозначаются по-разному.
Для некоторых устройств управления источниками света обозначений нет – например, для кнопочных устройств и диммеров.
Сейчас для экономии электроэнергии в больших помещениях часто устанавливают проходные переключатели, которыми управляют с 2 или 3 точек. Для них также можно найти соответствующие значки.
Розетки, как и выключатели, поделены на группы по степени защиты. Внутри групп устройства делятся по количеству полюсов, наличию защиты. Для обозначения блоков используются буквенно-цифровые подписи, указывающие на количество и назначение установок в одном блоке.
При запоминании обозначений различных электрических элементов на схемах следует каждое условно изображенное устройство соотносить с реальным изделием.
Например, популярные виды розеток выглядят следующим образом:
На деле же электромонтажные устройства выглядят так:
Выключатели и розетки – одни из самых «востребованных» элементов в схемах для домашнего применения, поэтому их следует запомнить в первую очередь. Подробнее об обозначении таких устройств на чертежах и схемах читайте в этой статье.
Обозначение источников света
Для различных видов ламп и светильников также предусмотрены отдельные символы. Удобно то, что для светодиодных и люминесцентных лампочек есть специальные значки.
Стандартные изображения разного рода светильников часто применяют для составления монтажных схем.
Если использовать одинаковые значки, придется включать дополнительные уточнения, а с типовыми символами можно нарисовать схему намного быстрее.
Элементы для составления принципиальных электросхем
Базовые символы для принципиальных схем отличаются мало, но кроме них есть еще специальные значки для обозначения всевозможных радиоэлементов: тиристоров, резисторов, диодов и пр.
Существуют отдельные обозначения для радиоустройств, но при проектировании домашней электросети они обычно не требуются.
Буквенные обозначения на электросхемах
Чтобы дать более полную информацию об устройстве, его подписывают сокращенным буквенным обозначением. Количество букв – 2 или 3. Иногда буквенное обозначение превращается в буквенно-цифровое, если рядом поставить порядковый номер устройства.
Наряду с международными есть и российские стандарты. Они перечислены в ГОСТ 7624-55, но этот документ признан недействующим.
В статье приведена информация не обо всех условных обозначениях. Полные материалы о графических символах можно отыскать в ГОСТ 2.709-89, 2.721-74, 2.755-87.
Выводы и полезное видео по теме
От рисунка – до принципиальной электрической схемы:
Пример чтения схем электроустройств (часть 1):
Продолжение, а точнее, часть 2 о тонкостях чтения схем электроустройств (часть 2):
Подробно о самостоятельном составлении схем:
Владение информацией по чтению и составлению электросхем может пригодиться и для монтажных работ по благоустройству жилья, и для ремонта электроприборов. Ни к чему придумывать собственную символику, когда есть профессиональная система условных обозначений, выучить которую не так уж и сложно.
Есть, что дополнить, или возникли вопросы по составлению и прочтению электрических схем? Можете оставлять комментарии к публикации, участвовать в обсуждениях и делиться собственным опытом разработки чертежей. Форма для связи находится в нижнем блоке.
Было дело – занимался электромонтажом, в основном, по осветительным сетям. Монтажная схема дает представление о количестве розеток, выключателей, светильников и прочего и их примерном расположении. Но способ их соединения, то есть, варианты устройства разводки в распределительных коробках – это уже знания электромонтажника. А высота закладки провода и установки приборов зависит от применяемого ГОСТа.
Добрый день, Владимир.
Чтобы не дезориентировать читателей статьи, вынужден несколько подкорректировать вашу трактовку монтажной схемы.
Прежде всего, монтажная схема задает способ подключение потребителей электроэнергии к распределительному щитку.
Среди «популярных» для многоквартирных домов – схема, предусматривающая проброску питающей магистрали через все комнаты квартиры с последующим обустройством распределительных коробок, от которых запитываются светильники, розетки, прочие.
Кардинально отличается и практически не применяется схема электроснабжения «звездой» – от распредщита через автоматы подключаются отдельные токоприемники.
Следующий вариант – смешанная схема: все потребители делятся на категории и от щита их запитывают отдельными защищенными линиями, от которых через распредкоробки идут ответвления.
Могут быть и другие варианты, предлагаемые заказчику проекта подрядчиком-разработчиком схемы электроснабжения. То есть, творчество электромонтажника – это ваша фантазия.
Графические обозначения электронных компонентов в векторе.
Под каждой картинкой есть кнопка для скачивания графических обозначений в векторе.
С обозначениями электронных ламп я уж не стал заморачиваться.
К некоторым нашим обозначениям полупроводников я добавил буржуйские символы — они представлены во вторую очередь как вариант к ГОСТовскому обозначению.
На странице представлены растровые изображения графических обозначений (все картинки кликабельны). Под каждой картинкой есть ссылка, по которой можно скачать тот или иной упакованный в архив файл в векторном формате svg. Пользуйтесь на здоровье.
При масштабировании элементов не забывайте включать режим «При изменении размеров объекта менять в той же пропорции толщину обводки».
Как научится читать электронные схемы
Рубрика: Статьи обо всем Опубликовано 28.01.2020 · Комментарии: 0 ·
На чтение: 10 мин ·
Просмотры:
Принципиальные схемы — это основа радиолюбительства и электроники. Схемы помогают собирать устройства и разбираться в работе радиодеталей. Без них была бы полная неразбериха, если бы детали рисовали на схемах так, как они выглядят на самом деле.
Особенности чтения схем
В принципиальных схемах проводники (или дорожки) обозначаются линиями.
А вот так они выглядят, если между ними есть соединение. Черная точка — это узел в схеме. Узел — это соединение нескольких проводников или деталей вместе. Они электрически друг с другом связаны.
Общая точка
Часто у начинающих радиолюбителей возникает вопрос — что это за символ на схеме?
Это общая точка (GND, земля). Раньше ее называли общим проводом. Так обозначается единый провод питания. Обычно это минус питания. Раньше на схемах могли сделать общим проводом и плюс питания. В данном случае схема без общей точки выглядела бы вот так:
Общая точка с однополярным питанием визуально лучше и компактнее выглядит, чем если просто сделать единую линию между ними.
Почему она может называться землей (GND)? Раньше в качестве общего провода могло использоваться шасси корпуса прибора. Из-за этого возникла путаница между заземлением и землей. Оно интерпретируется в контексте схемы. Та схема, что была разобрана выше — общая точка (земля) это просто минус питания. Другое дело это двуполярные источники тока и заземление.
Двуполярное питание и общая точка
Заземление
Иногда в блоках питания вместо корпуса помехи с конденсатора идут на общую точку. Это все зависит от конструкции и схемотехники. В этом случае помех будет больше, чем с заземлением.
Номиналы радиодеталей
Вообще, в этом плане есть разногласия. Согласно ГОСТУ на текущий момент, номиналы деталей на принципиальных схемах не указывается. Это сделано ради того, чтобы не нагромождать схему информацией.
К принципиальной схеме прилагается список деталей, монтажная и структурные схемы, а также печатная плата.
Рассмотрим на схеме два конденсатора.
В данном случае C5 это неполярный конденсатор с емкостью 0,01 мкФ. Микрофарады могут обозначаться как мкФ, так и uF. А конденсатор С6 полярный и электролитический. На это указывает знак плюс возле УГО. Емкость С6 равна 470 мкФ. Номинальное рабочее напряжение указывается в вольтах. Здесь для С6 это 16 В.
Нанофарады обозначаются как nF.
Если на схеме нет приставки микрофарад (мкФ, uF), или нанофарад (нФ, nF) то емкость этого конденсатора измеряется в пикофарадах (пФ, pF). Такое условие не общепринятое, поэтому тщательно изучите схему, которую вы собираетесь читать или собирать. В фарадах (F) емкостей мало, поэтому используются мкФ, нФ и пФ.
Что такое даташит и для чего он нужен
Даташит (Datasheet) — это техническая спецификация, в которой указывается полная информация о радиодетали. Вся техническая информация, основная схема включения, параметры и типы корпусов указываются именно в этом документе.
Даташиты бывают на разных языках, в основном на английском. Есть и переведенные варианты.
Такая документация есть на любую деталь. Это очень удобно и информативно, особенно при поиске аналогов. А помощью интернета поиск аналога деталей или схемы стал еще проще.
Еще даташит позволяет опознать неизвестную деталь или микросхему. Достаточно написать ее название в поисковике, добавить слово даташит, и в результатах поиска будет вся документация.
Как научиться читать принципиальные схемы
На самом деле есть только несколько способов. Это теория и практика. Если вы выучите обозначение радиодеталей, это еще не значит, что вы выучили схемотехнику. Это все равно, что выучить азбуку, но без грамматики и практики вы не выучите язык.
Теория — это схемотехника, книги, описание принципа работы схемы. Практика — это сборка устройств, ремонт и пайка.
Например простая схема усилителя на одном транзисторе.
Вход X1 плюс (левый или правый канал), X2 минус. Звуковой сигнал поступает на электролитический конденсатор C1. Он защищает транзистор VT1 от замыкания, поскольку транзистор VT1 постоянно открыт при помощи делителя напряжения на R1 и R2.
Делитель напряжения устанавливает рабочую точку на базе транзистора VT1, и транзистор не искажает входной сигнал. Резистор R3 и конденсатор C2, которые подключены к эмиттеру транзистора VT1, выполняют функцию термостабилизации рабочей точки при повышении температуры транзистора.
Электролитический конденсатор C3 накапливает и фильтрует питающее напряжение. Динамическая головка BF1 служит выходом звукового сигнала.
Можно ли это понять, только выучив обозначения радиодеталей без схемотехники и теории? Навряд-ли.
Еще сложнее дело обстоит с цифровой техникой.
Что это за микроконтроллер, какие он функции выполняет, какая прошивка и какие фьюзы в нем установлены? А вторая микросхема, какой это усилитель? Без даташитов и описания к схеме не получится понять ее работу.
Изучайте схемотехнику, теорию и практику. Просто выучив название деталей не получится разобраться в схемотехнике.
Обозначение радиодеталей выучиться само по себе по мере практики и накопления знаний. Еще все зависит от выбранной отрасли. У связистов одна схемотехника, у ремонтников мобильной техники другая. А те, кто занимается звуком, не очень поймут электриков. Как и наоборот.
Чтобы понять другую отрасль, ее схемотехнику и принципы работы нужно в нее погрузиться.
Принципиальные схемы это своего рода язык, у которого есть разные диалекты.
Поэтому, не следует строить иллюзии. Изучайте схемотехнику и собирайте схемы.
Принципиальные схемы помогают собирать устройства, и при изучении теории, понимать работу устройства. Без знаний и опыта, схема это просто схема.
Обозначения радиодеталей на принципиальных схемах
УГО — это условно графическое изображения радиодетали на схеме. Некоторые УГО различаются друг от друга.
- Например, в США обозначение резисторов отличается от СНГ и Европы.
- Из-за этого меняется восприятие схемы.
Однако внешне и по обозначениям они похожи. Или например, транзисторы. Где-то они чертятся с кругами, а где-то без. Могут различаться размеры и угол стрелок.
В таблице представлены УГО отечественных радиодеталей. Это далеко не все детали. И зубрить их особого смысла нет. Такие таблицы пригодятся в виде справочника.
Можно опознать что за деталь представлена на схеме во время ее изучения или сборки устройства.
Какими буквами обозначаются радиодетали на схемах
Буквенное обозначение на схеме | Радиодеталь |
R | Резисторы (переменный, подстроечный и постоянный) |
VD | Диоды (стабилитрон, мост, варикап и т.д.) |
C | Конденсаторы (неполярный, электролитический, переменный и т.д.) |
L | Катушки и дроссели |
SA | Переключатели |
FU | Предохранители |
FV | Разрядники |
X | Разъемы |
K | Реле |
VS | Тиристоры (тетродные, динисторы, фототиристоры и т. п.) |
VT | Транзисторы (биполярные, полевые) |
HL | Светодиоды |
U | Оптопары |
Читаем электрические схемы с транзистором
В прошлой статье мы рассматривали схему без биполярного транзистора. Для того, чтобы понять, как работает транзистор, мы с вами соберем простой регулятор мощности свечения лампочки накаливания с помощью двух резисторов и транзистора.
Управление мощностью с помощью транзистора
Итак, я буду делать схему регулятора мощности свечения лампочки накаливания с помощью советского транзистора КТ815Б. Она будет выглядеть следующим образом:
На схеме мы видим лампу накаливания, транзистор и два резистора. Один из них переменный. Итак, главное правило транзистора: меняя силу тока в цепи базы, мы тем самым меняем силу тока в цепи коллектора, а следовательно, мощность свечения самой лампы.
Как в нашей схеме будет все это выглядеть? Здесь я показал две ветви. Одну синим цветом, другую красным.
Как вы видите, в синей ветке цепи последовательно друг за другом идут +12В—-R1—-R2—-база—-эмиттер—-минус питания.
А как вы помните, если резисторы либо различные потребители (нагрузки) цепи идут друг за другом последовательно, то через все эти нагрузки, потребители и резисторы протекает одна и та же сила тока. Правило делителя напряжения.
То есть в данный момент для удобства объяснения, я назвал эту силу тока, как ток базы Iб . Все то же самое можно сказать и о красной ветви. Ток пойдет по такому пути: +12В—-лампочка—-коллектор—-эмиттер—-минус питания. В ней будет протекать ток коллектора Iк.
Итак, для чего мы сейчас разобрали эти ветви цепи? Дело в том, что через базу и эмиттер протекает базовый ток Iб , который протекает также и через переменный резистор R1 и резистор R2. Через коллектор-эмиттер протекает ток коллектора Iк , который также течет и через лампочку накаливания.
Ну и теперь самое интересное: коллекторный ток зависит от того, какая сила тока в данный момент течет через базу-эмиттер. То есть прибавив базовый ток, мы тем самым прибавляем и коллекторный ток.
А раз коллекторный ток у нас стал больше, значит и через лампочку сила тока стала больше, и лампочка загорелась еще ярче. Управляя слабым током базы, мы можем управлять большим током коллектора.
Это и есть принцип работы биполярного транзистора.
Как нам теперь регулировать силу тока через базу-эмиттер? Вспоминаем закон Ома: I=U/R. Следовательно, прибавляя или убавляя значение сопротивления в цепи базы, мы тем самым можем менять силу тока базы! Ну а она уже будет регулировать силу тока в цепи коллектора. Получается, меняя значение переменного резистора, мы тем самым меняем свечение лампочки 😉
И еще один небольшой нюанс.
Как вы заметили в схеме есть резистор R2. Для чего он нужен? Дело все в том, что может случится пробой перехода база-эмиттер. Или, простым языком, он выгорит.
Если бы его не было, то при изменении сопротивления на переменном резисторе R1 до нуля Ом, мы бы махом выжгли P-N переход базы-эмиттера.
Поэтому, чтобы такого не было, мы должны подобрать резистор, который бы при сопротивлении на R1 в ноль Ом, ограничивал бы силу тока на базу, чтобы ее не выжечь.
Получается, мы должны подобрать такую силу тока на базу, чтобы лампочка светилась на полную яркость, но при этом переход база-эмиттер был бы целым. Если сказать языком электроники – мы должны подобрать такой резистор, который бы вогнал транзистор в границу насыщения, но не более того.
Такой резистор я подбирал с помощью магазина сопротивления. Его также можно подобрать с помощью переменного резистора. Резистор в базе часто называют токоограничительным.
Регулятор свечения лампочки на транзисторе
- Ну а теперь дело за практикой. Собираем схему в реале:
- Кручу переменный резистор и добиваюсь того, чтобы лампочка горела на весь накал:
- Кручу еще чуток и лампочка светит в пол накала:
- Выкручиваю переменный резистор до упора и лампочка тухнет:
Вместо лампочки можно взять любую другую нагрузку, например, вентилятор от компьютера. В этом случае, меняя значение переменного резистора, я могу управлять частотой вращения вентилятора, тем самым убавляя или прибавляя силу потока воздуха.
- Здесь вентилятор не крутится, так как я на переменном резисторе выставил большое сопротивление:
- Ну а здесь, покрутив переменный резистор, я уже могу регулировать обороты вентилятора:
- Можно сказать, что получилась готовая схема, чтобы обдувать себя жарким летним деньком ;-). Стало холодно – убавил обороты, стало слишком жарко – прибавил 😉
Прошаренные чайники-электронщики могут сказать: “А зачем так сильно все было усложнять? Не проще ли было просто взять переменный резистор и соединить последовательно с нагрузкой?
Да, можно.
Но должны соблюдаться некоторые условия. Предположим у нас лампа накаливания большой мощности, а значит и сила тока в цепи тоже будет приличная.
В этом случае переменный резистор должен быть большой мощности, так как при выкручивании до упора в сторону маленького сопротивления через него побежит большой ток.
Вспоминаем формулу выделяемой мощности на нагрузке: P=I2R. Переменный резистор сгорит (проверено не раз на собственном опыте).
В схеме с транзистором весь груз ответственности, то бишь всю мощность рассеивания, транзистор берет на себя. В схеме с транзистором переменный резистор спалить уже будет невозможно, так как сила тока в цепи базы в десятки, а то и в сотни раз меньше (в зависимости от беты транзистора), чем сила тока через нагрузку, в нашем случае через лампочку.
Греться по-максимуму транзистор будет только тогда, когда мы регулируем мощность нагрузки наполовину. В этом случае половина отсекаемой мощности в нагрузке будет рассеиваться на транзисторе. Поэтому, если вы регулируете мощную нагрузку, то для начала поинтересуйтесь таким параметром, как мощность рассеивания транзистора и при необходимости не забывайте ставить транзисторы на радиаторы.
Резюме
Главное предназначение транзистора – управление большой силой тока с помощью малой силы тока, то есть с помощью маленького базового тока мы можем регулировать приличный коллекторный ток.
Есть критического значение базового тока, которые нельзя превышать, иначе сгорит переход база-эмиттер. Такая сила тока через базу возникает, если потенциал на базе будет более 5 Вольт в прямом смещении. Но лучше даже близко не приближаться к такому значению. Также не забывайте, чтобы открыть транзистор, на базе должен быть потенциал больше, чем 0,6-0,7 Вольт для кремниевого транзистора.
Резистор в базе служит для ограничения протекающего тока через базу-эмиттер. Его значение выбирают в зависимости от режима работы схемы. В основном это граница насыщения транзистора, при котором коллекторный ток начинает принимать свои максимальные значения.
При проектировании схемы не забываем, что лишняя мощность рассеивается на транзисторе. Самый щадящий режим – это режим отсечки и насыщения, то есть лампа либо вообще не горит, либо горит на всю мощность. Самая большая мощность будет выделяться на транзисторе в том случае, если лампа горит в пол накала.
Как читать электрические схемы. Виды электрических схем
Здравствуйте, уважаемые читатели сайта sesaga.ru. Любое радиотехническое или электротехническое устройство состоит из определенного количества различных электро- и радиоэлементов (радиодеталей). Возьмем, к примеру, самый обычный утюг: в нем есть регулятор температуры, лампочка, нагревательный элемент, предохранитель, провода и штепсельная вилка.
Утюг представляет собой электротехническое устройство, собранное из специального набора радиоэлементов, обладающих определенными электрическими свойствами, где работа утюга основана на взаимодействии этих элементов между собой.
Для осуществления взаимодействия радиоэлементы (радиодетали) соединяются друг с другом электрически, а в некоторых случаях их размещают на небольшом расстоянии друг от друга и взаимодействие происходит путем образованной между ними индуктивной или емкостной связи.
Самый простой способ разобраться в устройстве утюга — это сделать его точную фотографию или рисунок. А чтобы представление было исчерпывающим можно сделать несколько фотографий внешнего вида крупным планом с разных ракурсов, и несколько фотографий внутреннего устройства.
Однако, как Вы заметили, этот способ представления об устройстве утюга нам вообще ничего не дает, так как на фотографиях видна только общая картинка о деталях утюга. А из каких радиоэлементов он состоит, какое их назначение, что они представляют, какую функцию в работе утюга выполняют и как связаны между собой электрически нам не понятно.
Вот поэтому, чтобы иметь представление, из каких радиоэлементов состоят подобные электрические устройства, разработали условные графические обозначения радиодеталей. А чтобы понимать, из каких деталей составлено устройство, как эти детали взаимодействуют друг с другом и какие при этом протекают процессы, были разработаны специальные электрические схемы.
Электрическая схема представляет собой чертеж, содержащий в виде условных изображений или обозначений составные части (радиоэлементы) электрического устройства и соединения (связи) между ними. То есть электрическая схема показывает, как осуществляется соединение радиоэлементов между собой.
Радиоэлементами электрических устройств могут являться резисторы, лампы, конденсаторы, микросхемы, транзисторы, диоды, выключатели, кнопки, пускатели и т.д., а соединения и связи между ними могут быть выполнены монтажным проводом, кабелем, разъемным соединением, дорожками печатных плат и т.д.
Читать электросхему будет просто
Когда Вам предстоит заглянуть внутрь Вашего ‘заболевшего’ автомобиля, не включающегося телевизора, плеера или найти место возможной неисправности домашней электропроводки, Ваши мысли направляют Ваши действия на поиск схемы, изображающей принцип работы или действия устройства или агрегата.
Хорошо, когда есть принципиальная электрическая схема и хоть малейший опыт в её чтении. А как быть тому, кто не имеет даже представления об этом? Приходиться ломать голову над решением проблемы или обращаться к знатокам и к специалистам.
Электричество на схеме
Наука говорит, что электрический ток — это упорядоченное движение электрических зарядов. Электрический заряд одного электрона ничтожно мал, но если бо́льшее количество электронов заставить двигаться внутри тела в одну сторону, получится то, что мы называем электрическим током.
Что бы доставить заряд энергии в определённую точку, применяются проводники — такие материалы, которые способны передать электричество к потребляющему объекту без потерь и внутренних помех.
Пешеход пользуется дорогой, для перемещения по воде пользуются лодкой, птица летает по воздуху, вода в кран подаётся по трубам, а наши электроприборы получают электричество по электрическим проводникам. Эти примеры показывают, что для перемещения определённого элемента существует и определённый путь.
В сборках электроустройств используются металлические проводники: монтажные шины, провода, проводники на печатном монтаже сборных конструкций. Между проводниками находятся соединения.
Это сварные(сюда входит спаивание или сварка проводников) и контактные, которые могут коммутироваться механизмом, смыкающим или размыкающим между собой проводники, электронным коммутатором или быть связанными между собой болтовым соединением.
Совокупность всех элементов устройства с соединяющими их проводниками можно изобразить графически в виде условных значков, символов, обозначений и линий.
Графические электрические схемы делятся на принципиальные, структурные и функциональные.
Структурная электросхема — отображает основные функциональные части изделия (группы, элементы и устройства). Рядом на карте схемы в таблице указываются расшифровки состава электросхемы с указанием их обозначений. Могут размещаться диаграммы, формы величины импульсов, формулы математической зависимости.
Соединения указываются стрелками, указывающие направление действующих величин тока или обработки сигнала. Элементы схемы обозначаются кубиками или цифрами.
Функциональная электросхема — отображает только функциональные части изделия и электрической связи между ними или самого изделия в целом. Элементы обозначаются условными обозначениями либо прямоугольниками, обозначенными внутри своей позицией в группе, узле или изделия.
Принципиальная электрическая схема — отображает полностью все электрические соединения блоков, модулей, дополнительных устройств и принцип их взаимодействия в общей схеме главного, основного устройства (телевизор, автомобиль, квартира, станки, компьютер) или механизма. Такая схема является основной и главной для изделия.
И совсем не факт, что здесь выложена точная формулировка видов электросхем, главное, получить начальный опыт в чтении электросхем.
Что бы иметь возможность читать все типы, нам необходимо ознакомиться с обозначениями, используемые в схемах.
Учимся читать электросхемы
Любая причина неработающего электроустройства — это лишний контакт или его отсутствие.
Проводники в электросхемах имеют вид линии, соединяющей определённый элемент. Соединение элементов между собой проводниками называется электрической цепью или участком цепи, входящим в единую общую схему. В замкнутой электрической цепи всегда течёт электрический ток. В разомкнутой — электрический ток не течёт, то есть устройство не работает.
Изображение проводников на принципиальных схемах всегда одинаково. Разница может быть в обозначении цепей, участвующих в обработке сигнала, размещением указателей на них или цветовой маркировкой. Отличие лишь составляет линейная схема, на которой одной линией может указываться целая группы проводников, задействованных в одной функции и изображается жирной или цветной линией.
- Когда схема в себе содержит большое количество элементов, проводники не изображаются полностью, а отрезками и разрывами, с указанием места подключения или соединения, имеющими символьные обозначения точки подключаемого участка, модуля , блока или элемента.
- Соединения проводников в принципиальных электрических схемах изображаются точкой или разомкнутой(сомкнутой) линией на коммутирующем устройстве.
- Обозначения на электрической схеме будут для Вас легкочитаемы, когда встречаемые знаки и символы в ней будут представлять Вам всю функциональность электрического прибора, аппарата или узла.
Ваша оценка!
[Всего: 1 В среднем: 5]
Как научиться читать электрические схемы?
Электрическая схема представляет собой детальный рисунок с указанием всех электронных компонентов и комплектующих, которые взаимосвязаны между собой проводниками.
Знание принципа функционирования электрических цепей является залогом грамотно собранного электроприбора. То есть сборщик должен знать, как обозначаются на схеме электронные элементы, какие значки, буквенные или цифровые символы им соответствуют.
В материале разберемся в ключевых обозначениях и основах, как научиться читать электрические принципиальные схемы.
Любая электрическая схема включается ряд деталей, состоящих из более мелких элементов. Приведем в качестве примера электрический утюг, который содержит внутри нагревательный элемент, датчик температуры, лампочки, предохранители, а также имеет провод с вилкой.
В прочих бытовых приборах предусмотрена усовершенствованная конфигурация с автоматическими выключателями, электромоторами, трансформаторами, а между ними имеются соединители для полноценного взаимодействия компонентов прибора и выполнения предназначения каждого из них.
Поэтому часто возникает проблема, как научиться расшифровывать электрические схемы, в которых содержатся графические обозначения. Принципы чтения схем важны для тех, кто занимается электромонтажом, ремонтом бытовой техники, подключением электрических устройств. Знание принципов чтения электросхем необходимо, чтобы понимать взаимодействие элементов и функционирования приборов.
Виды электрических схем
Все электрические схемы представлены в виде изображения или чертежа, где наряду с оборудованием указаны звенья электроцепи. Схемы отличаются по назначению, на основании чего разработана классификация разных электрических схем:
- первичные и вторичные цепи.
Первичные цепи создаются для подачи основного электрического напряжения от источника тока к потребителям. Они генерируют, трансформируют и распределяют при передаче электроэнергию. Такие цепи предполагают наличие основной схемы и цепей для различных нужд.
Во вторичных цепях напряжение не выше 1 кВт, они используются для обеспечения задач автоматики, управления и защиты. Благодаря вторичным цепям выполняется контроль расхода и учета электроэнергии;
- однолинейные, полнолинейные.
Полнолинейные схемы разработаны для применения в трехфазных цепях, они отображают подсоединенные по всем фазам устройства.
Однолинейные схемы показывают только приборы на средней фазе;
- принципиальные и монтажные.
Принципиальная общая электрическая схема подразумевает указание только ключевых элементов, на ней не указываются второстепенные детали. Благодаря этому схемы просты и понятны.
На монтажных схемах нанесено более детальное изображение, поскольку именно такие схемы используются для фактического монтажа всех элементов электросети.
Развернутые схемы с указанием второстепенных цепей помогают выделить вспомогательные электрические цепи, участки с отдельной защитой.
Обозначения в схемах
Электрические схемы состоят из элементов и комплектующих, обеспечивающих протекание электрического тока. Все элементы разделяются на несколько категорий:
- устройства, генерирующие электроэнергию — источники питания;
- преобразователи электротока в иные виды энергии – выступают потребителями;
- детали, ответственные за передачу электроэнергии от источника к приборам. Также в данную категорию включены трансформаторы и стабилизаторы, обеспечивающие стабильность напряжения в сети.
Для каждого элемента предусмотрено конкретное графическое обозначение на схеме. Помимо ключевых обозначений, на схемах указываются линии передачи электроэнергии. Участки электроцепи, по которым идет одинаковый ток, называются ветвями, а в местах их соединения на схеме ставятся точки для обозначения соединительных узлов.
Контур электроцепи предполагает замкнутый путь движения электротока по нескольким ветвям. Наиболее простая схема состоит из одного контура, а для более сложных приборов предусмотрены схемы с несколькими контурами.
На электрической схеме каждому элементу и соединению соответствует значок или обозначение. Для отображения выводов изоляции применяются однолинейные и многолинейные схемы, число линий в которых определяется числом выводов. Иногда для удобства чтения и понимания схем применяются смешанные рисунки, к примеру, изоляция статора описана развернуто, а изоляция ротора – в общем виде.
Обозначения трансформаторов в электрических схемах рисуются в общем или развернутом виде, однолинейным и многолинейным методами.
Непосредственно от детализации изображения зависит метод отображения на схеме приборов, их выводов, соединений и узлов. Так, в трансформаторах тока первичная обмотка отражается толстой линией с точками.
Вторичная обмотка может отображаться окружностью при стандартной схеме или двумя полуокружностями в случае развернутой схемы.
Прочие элементы отображаются на схемах следующими обозначениями:
- контакты разделяются на замыкающие, размыкающие и переключатели, которые обозначаются разными знаками. При необходимости контакты могут быть указаны в зеркальном отражении. Основание подвижной части указывается как незаштрихованная точка;
- выключатели – их основанию соответствует точка, а для автоматических выключателей прорисовывается категория расцепителя. Выключатель для открытой установки, как правило, имеет отдельное обозначение;
- предохранители, резисторы постоянного сопротивления и конденсаторы. Предохранительные элементы изображаются в виде прямоугольника с отводами, постоянные резисторы могут быть обозначены с отводами или без. Подвижный контакт рисуется стрелкой. Электролитические конденсаторы обозначаются в зависимости от полярности;
- полупроводники. Простые диоды с р-п-переходом показываются в виде треугольника и перекрестной линией электроцепи. Треугольник обозначает анод, а линия – катод;
- лампу накаливания и другие осветительные элементы обычно обозначают
Понимание данных значков и обозначений делает чтение электрических схем простым. Поэтому прежде чем приступать к электромонтажу или разборке бытовых приборов, рекомендуем ознакомиться с основными условными обозначениями.
Как правильно читать электрические схемы
Принципиальная схема электроцепи отображает все детали и звенья, между которыми протекает ток через проводники. Такие схемы являются базой для разработки электрических приборов, поэтому чтение и понимание электрических схем является обязательным для любого электрика.
Грамотное понимание схем для начинающих дает возможность понять принципы их составления и правильного соединения всех элементов в электрической цепи для достижения ожидаемого результата.
Чтобы правильно читать даже сложные схемы, необходимо изучить основные и второстепенные изображения, условные знаки элементов.
Условные знаки обозначают общую конфигурацию, специфику и назначение детали, что позволяет составить полноценную картину прибора при чтении схемы.
Начинать ознакомление со схемами можно с небольших приборов, таких как конденсаторы, динамики, резисторы. Более сложны для понимания схемы полупроводниковых электронных деталей в виде транзисторов, симисторов, микросхем.
Так в биполярных транзисторах предусмотрены как минимум три вывода (базовый, коллектор и эмиттер), что требует большего количества условных обозначений. Благодаря большому количеству разных знаков и рисунков можно выявить индивидуальные характеристики элемента и его специфику.
В обозначениях зашифрована информация, позволяющая выяснить структуру элементов и их особые характеристики.
Какие виды классов энергопотребления существуют
Часто условные обозначения имеют вспомогательные уточнения – возле значков имеются латинские буквенные обозначения для детализации. С их значениями также рекомендуется ознакомиться перед началом работы со схемами. Также возле букв часто имеются цифры, отображающие нумерацию или технические параметры элементов.
Итак, чтобы научиться читать и понимать электрические схемы, нужно ознакомиться с условными обозначениями (рисунками, буквенными и цифровыми символами). Это позволит получать информацию из схемы касательно структуры, конструкции и назначения каждого элемента. То есть для понимания схем нужно изучить основы радиотехники и электроники.
Основные элементы электроники
В подавляющем большинстве случаев электронные устройства, которые выполняют те или иные функции, являются не монолитными, а составленными из целого ряда отдельных деталей, которые соединены между собой по определенной, разработанной конструкторами, принципиальной схеме. То, какие именно электронные компоненты в том или ином устройстве применяются, зависит от целого ряда факторов, среди которых ведущую роль играет его функциональное назначение, сложность конструкции и та среда, в которой оно будет использоваться.
Те, кто изучал основы электроники, отлично знают, что под радиоэлектронной аппаратурой понимаются такие устройства или же их совокупности, для изготовления которых применяются разнообразные электронные компоненты. При этом среди них центральное место занимают функциональные элементы электроники, которые есть в абсолютно любой конструкции такого рода.
Все электронные компоненты, которые применяются в каких-либо устройствах, чаще всего изготавливаются в заводских условиях на основе определенных стандартов и технических условий, а также обладают законченной формой и определенным видом.
Конструктивные элементы
Те элементы, которые присутствуют в конструкции различного рода специализированных электронных устройств и применяются для того, чтобы механически соединять их отдельные элементы, а также направлять и передавать движение (например, планки, скобы, оси, шестерни, валы, колеса, подшипники и т.п.) принято именовать конструктивными элементами (или же конструктивными деталями).
Вспомогательные элементы
Существуют также и так называемые вспомогательные элементы электроники. Их главной отличительной особенностью является то, что они сочетают выполнение электрических операций с механическими. Основы электроники гласят о том, что к таковым относятся реле, переключатели, штепсельные разъемы, электродвигатели. Строго говоря, вспомогательные элементы являются изделиями, относящимися к сфере точной механики.
Элементы электрических схем
Очень многие электронные компоненты относятся к третьей категории компонентов, которые являются составными частями различных электрических схем. Специалисты нередко именуют их элементами схемы, а относятся к ним разнообразные электронные и полупроводниковые приборы, трансформаторы, катушки индуктивности, конденсаторы и резисторы. Следует заметить, что они могут иметь довольно сложную конструкцию, однако при этом разделение на отдельные части, которые имеют самостоятельное функциональное назначение, не допускается.
Компоненты общего применения
Основы электроники гласят также о том, что в этой сфере широко распространены и так называемые компоненты общего применения, к которым относят конденсаторы, резисторы, а также отдельные виды моточных изделий.
Типовые элементы электроники
Поскольку элементы общего применения в силу своей высокой востребованности производятся в массовом порядке, они тщательно стандартизованы и нормализованы. Разработанная для их конструирования и изготовления нормативная документация содержит в себе размеры, качественные и технико-экономические показатели, которым эти изделия в обязательном порядке должны соответствовать. Эти электронные компоненты конструкторы подбирают по характеристикам и параметрам, описывающим их свойства при различных условиях эксплуатации, в том числе и при неблагоприятных механических, климатических и температурных воздействиях.
Специальные элементы
Электронные компоненты, проектирование которых производится со строгим учетом особенностей тех электрических схем, в которых им придется функционировать, называются специальными. Они не подвергаются стандартизации и широкой нормализации.
Все элементы электроники характеризуются целым набором различных электрических параметров. Среди них основными специалисты считают следующие: те, которые характеризуют стабильность, надежность и потери; те, которые позволяют оценить способность переносить длительные воздействия электрических нагрузок; те, которые определяют пределы допускаемых отклонений и номинальные значения их величин.
2. УСЛОВНЫЕ ГРАФИЧЕСКИЕ ОБОЗНАЧЕНИЯ ЭЛЕМЕНТОВ ЭЛЕКТРИЧЕСКИХ…
Привет, Вы узнаете про условные графические обозначения, Разберем основные ее виды и особенности использования. Еще будет много подробных примеров и описаний. Для того чтобы лучше понимать что такое условные графические обозначения, элементов электрических схем,уго , настоятельно рекомендую прочитать все из категории Электроника, Микроэлектроника , Элементная база
- 2.0 . Дополнительные символы обозначения коппусов. заземлений. экранироаний
- 2.1. Символы общего применения (ГОСТ 2.721-74)
- 2.2. Резисторы (ГОСТ 2.728-74)
- 2.3. Конденсаторы (ГОСТ 2.728-74)
- 2.4. Катушки индуктивности, дроссели и трансформаторы (ГОСТ 2.723-69)
- 2.5. Устройства коммутации (ГОСТ 2.755-74, ГОСТ 2.756-76)
- 2.6. Полупроводниковые приборы (ГОСТ 2.7З0-73)
- 2.7. Электровакуумные приборы (ГОСТ 2.731-81)
- 2.8. Электроакустические приборы (ГОСТ 2.741-68*)
- 2.9. Пьезоэлектрические устройства, измерительные приборы, источники питания (ГОСТ 2.736-68, ГОСТ 2.729-68, ГОСТ 2.742-68, ГОСТ 2.727-68)
- 2.10. Электрические машины (ГОСТ 2.722-68*)
- Вопросы для самопроверки
С 1 февраля 2016 года, введен в действие новый ГОСТ Р МЭК 60617-DB-12M-2015 «Графические символы для схем», который является переведенной на русский язык копией стандарта IEC, определяющего требования к символам условных обозначений для использования в электротехнических схемах.
2.0 . Дополнительные символы обозначения коппусов. заземлений. экранироаний
1 Экранирование.
(электростатическое или электромагнитное) под изображением линии экранирования проставляют буквенные обозначения соответственно: а) электростатическое
Символ электростатического экранирования (проставляют под изображением линии экранирования).
б) электромагнитное
Символ электромагнитного экранирования (проставляют под изображением линии экранирования).
2 Экранирование группы элементов. ( Экранирование допускается изображать с любой конфигурацией контура)
3 Экранирование группы линий электрической связи
4 Индикатор контрольной точки.
5. Прибор, устройство
6. Баллон (электровакуумного и ионного прибора), корпус (полупроводникового прибора).
Примечание. Комбинированные электровакуумные приборы при раздельном изображении систем электродов
7 Линия для выделения устройств, функциональных групп, частей схемы
8 Фигуры символов заземления.Фигуры для обозначения заземления и возможных повреждений изоляции:
Заземление, общее обозначение.
Бесшумное заземление (чистое).
Защитное заземление.
Электрическое соединение с корпусом (массой).
Эквипотенциальность.
Возможность повреждения изоляции.
Каждая из фигур обозначения заземления, имеет текстовое поле и управляющий маркер изменения символа для его расположения снизу, справа или слева от заземляемого объекта.
Пример расположения символа обозначения заземления справа от заземляемого объекта.
2.1. Символы общего применения (ГОСТ 2.721-74)
Для построения уго с уточнением особенностей элементов схем используют базовые символы и различные знаки. Большое распространение в схемах радиоустройств, электротехнических изделий имеют знаки регулирования – различные стрелки, пересекающие исходный символ или входящие в него, пересекающие исходный символ под углом 45°, указывающие на переменный параметр элемента схемы (рис . Об этом говорит сайт https://intellect.icu . 2.1, а).
Стрелка может быть дополнена знакоцифровым символом. Так, на рис. 2.1, б, в, г показан характер регулирования: линейный, ступенчатый, 8-ступенчатый. На рис. 2.1, д стрелка дополнена условием регулирования. Стрелка с изломом на рис. 2.1, е, ж, и и надпись указывают, что параметр регулирования изменяется по определенному закону. Стрелки на рис. 2.1, к, л, м указывают на подстроечное регулирование. В верхней части стрелки возможно присутствие символа, указывающего на расположение регулирующего элемента в данном изделии: на лицевой панели, задней панели или внутри. Символы общего применения составляют знаки, указывающие направление движения: механических перемещений, магнитных, световых потоков и т. д.
а б в г д е |
ж и к л м |
Рис. 2.1. Знаки регулирования
На рис. 2.2 показаны обозначения вращательного (рис. 2.2, а), качательного (рис. 2.2, б), сложного (рис. 2.2, в) движений, направление восприятия магнитного сигнала (рис. 2.2, г) и светового потока (рис. 2.2, д).
а б в г д
Рис. 2.2. Знаки, указывающие направление движения
Составной частью символов некоторых элементов является знак, указывающий на способ управления подвижными элементами схемы. На рис. 2.3 приведены обозначения ручного нажатия (рис. 2.3, а) или вытягивания (рис. 2.3, б), поворота (рис. 2.3, в), ножного привода (рис. 2.3, г) и фиксации движения (рис. 2.3, д).
а б в г д
Рис. 2.3. Знаки, указывающие на способ управления
УГО элементов электрических схем выделены в группы и сведены в таблицы для лучшего восприятия. В таблицах даны рекомендуемые размеры УГО для выполнения схем радиоустройств и электротехнических изделий. При выполнении чертежей – плакатов – в курсовом и дипломном проектировании следует обратиться к литературе , в которой даны построения УГО по основным фигурам А и В, показывающим пропорциональные отношения элементов.
2.2. Резисторы (ГОСТ 2.728-74)
Основное назначение резисторов – оказывать активное сопротивление в электрической цепи. Параметром резистора является активное сопротивление, которое измеряется в омах, килоомах (1000 Ом) и мегаомах (1000000 Ом).
Резисторы подразделяются на постоянные, переменные, подстроечные и нелинейные (табл. 2.1). По способу исполнения различают резисторы проволочные и непроволочные (металлопленочные).
Буквенно-цифровое позиционное обозначение резисторов состоит из латинской буквы R и порядкового номера по схеме.
Таблица 2.1
УГО резисторов
2.3. Конденсаторы (ГОСТ 2.728-74)
Конденсаторы – это радиоэлементы с сосредоточенной электрической емкостью, образуемой двумя и более электродами, разделенными диэлектриком. Различают конденсаторы постоянной емкости, переменной (регулируемые) и саморегулируемые. Конденсаторы постоянной большой емкости чаще всего оксидные и, как правило, имеют полярность подключения к электрической цепи. Емкость их измеряется в фарадах, например, 1 пФ (пикофарада) = 10–12 Ф, 1нФ (нанофарада) = 10-9Ф, 1мкФ (микрофарад) = 10-6 Ф (табл. 2.2). Буквенно-цифровое позиционное обозначение конденсаторов состоит из латинской буквы С и порядкового номера по схеме.
Таблица 2.2
УГО конденсаторов
2.4. Катушки индуктивности, дроссели и трансформаторы (ГОСТ 2.723-69)
Буквенно-цифровое позиционное обозначение катушек индуктивности и дросселей состоит из латинской буквы L и порядкового номера по схеме. При необходимости указывают и главный параметр этих изделий – индуктивность , измеряемую в генри (Гн), миллигенри (1 мГн = 10-3 Гн) и микрогенри (1 мкГн = 10-6 Гн). Если катушка или дроссель имеет магнитопровод, УГО дополняют его символом – штриховой или сплошной линией. Радиочастотные трансформаторы могут быть с магнитопроводами или без них и иметь обозначение L1, L2 и т. д. Трансформаторы, работающие в широкой полосе частот, обозначают буквой Т, а их обмотки – римскими цифрами (табл. 2.3).
Таблица 2.3
УГО катушек индуктивности и трансформаторов
2.5. Устройства коммутации (ГОСТ 2.755-74, ГОСТ 2.756-76)
УГО устройств коммутации – выключатели, переключатели, электромагнитные реле – построены на основе символов контактов: замыкающих, размыкающих и переключающих (табл. 2.4). Стандартом предусматривается в УГО таких устройств отражение конструктивных особенностей:неодновременность срабатывания контактов в группе; отсутствие (наличие) фиксации в одном из положений; способ управления коммутационным устройством; функциональное назначение.
Таблица 2.4
УГО устройств коммутации
Окончание табл. 2.4
2.6. Полупроводниковые приборы (ГОСТ 2.7З0-73)
2.6.1. Диоды, тиристоры , оптроны
Диод – самый простой полупроводниковый прибор, обладающий односторонней проводимостью благодаря электронно-дырочному переходу
(р–n-переход, см. табл. 2.5).
Таблица 2.5
УГО полупроводниковых приборов
В УГО диодов – туннельного, обращенного и диода Шотки – введены дополнительные штрихи к катодам. Свойство обратно смещенного р–n-переходавести себя как электрическая емкость использовано в специальных диодах-варикапах. Более сложный полупроводниковый прибор – тиристор , имеющий, как правило, три р–n-перехода. Обычно тиристоры используются в качестве переключающих диодов. Тиристоры с выводами от крайних слоев структуры называют динисторами. Тиристоры с дополнительным третьим выводом (от внутреннего слоя структуры) называют тринисторами. УГО симметричного (двунаправленного) тринистора получают из символа симметричного динистора добавлением третьего вывода.
Большую группу составляют полупроводниковые приборы – фотодиоды, светодиоды и светодиодные индикаторы. Особо необходимо остановиться на оптронах – изделиях, основанных на совместной работе светоизлучающих и светопринимающих полупроводниковых приборов. Группа оптронов постоянно пополняется.
Большое пополнение происходит и в группе полевых транзисторов, условные графические обозначения которых пока никак не отмечены в отечественных стандартах.
2.6.2. Транзисторы
Транзисторы – полупроводниковые приборы, предназначенные для усиления, генерирования и преобразования электрических колебаний.
Большую группу этих приборов составляют биполярные транзисторы , имеющие два р–n-перехода: один из них соединяет базу с эмиттером (эмиттерный переход), другой – с коллектором (коллекторный переход).
Транзистор , база которого имеет проводимость типа n, обозначают формулой р–n–р, а транзистор с базой типа р имеет структуру n–р–n (табл. 2.6). Несколько эмиттерных областей имеют транзисторы, входящие в интегральные сборки. Допускается изображать транзисторы по ГОСТ 2.730-73 без символа корпуса для бескорпусных транзисторов и транзисторных матриц.
Таблица 2.6
УГО транзисторов
Окончание табл. 2.6
2.7. Электровакуумные приборы (ГОСТ 2.731-81)
Электровакуумными называют приборы, действие которых основано на использовании электрических явлений в вакууме. Система УГО этих приборов построена поэлементным способом. В качестве базовых элементов приняты обозначения баллона, нити накала (подогревателя), сетки, анода и др.Баллон герметичен и может быть стеклянным, металлическим, керамическим, металлокерамическим. Наличие газа в баллоне в газоразрядных приборах показывают точкой внутри символа (табл. 2.7).
Таблица 2.7
УГО электровакуумных приборов
2.8. Электроакустические приборы (ГОСТ 2.741-68*)
Электроакустическими называют приборы, преобразующие энергию звуковых или механических колебаний в электрические, и наоборот. Основ-ной буквенный код (кроме приборов сигнализации) – латинская буква В.
Таблица 2.8
УГО электроакустических приборов
2.9. Пьезоэлектрические устройства, измерительные приборы,
источники питания (ГОСТ 2.736-68, ГОСТ 2.729-68,
ГОСТ 2.742-68, ГОСТ 2.727-68)
В радиоэлектронной аппаратуре (РЭА) широко используются приборы, действие которых основано на так называемом пьезоэлектрическом эффекте (piezo – давлю). Существует прямой пьезоэффект, когда возникают электрические заряды на поверхности тела, подвергнутого деформации, и обратный. Применение резонаторов в РЭА основано на использовании прямого пьезоэффекта. Буквенный код пьезоэлементов и резонаторов –латинские буквы ВQ. На основе пьезоэлектрических резонаторов изготовляют различные полосовые фильтры (буквенный код Z и ZQ). Пьезоэлементы находят широкое применение в пьезоэлектрических преобразователях (подразд. 2.8). Пьезоэлектрические преобразователи используют также в ультразвуковых линиях задержки. Стандартом не установлен буквенный код этих устройств, рекомендуется обозначать латинской буквой Е.
Для контроля электрических и неэлектрических величин в технике используют всевозможные приборы, их буквенный код – латинская буква Р, а общее УГО приборов – кружок с двумя разнонаправленными линиями – выводами.
Для автономного питания РЭА используются электрохимические источники тока – гальванические элементы и аккумуляторы (код – буква G).
Для защиты от перегрузок по току и коротких замыканий в нагрузке
в приборах с питанием от сети используют плавкие предохранители (табл. 2.9). Код таких изделий – латинская буква F.
Таблица 2.9
УГО устройств, приборов, источников питания
Окончание табл. 2.9
2.10. Электрические машины (ГОСТ 2.722-68*)
В устройствах автоматики и телемеханики, в конструкциях промышленных станков и строительно-дорожных машин для привода различных механизмов используют электрические машины. Базовое обозначение статора и ротора электродвигателя имеет форму окружности (табл. 2.10).
Таблица 2.10
Базовые элементы УГО электрических машин
ГОСТ 2.722-68* предусматривает УГО, поясняющие конструкцию электрических машин (табл. 2.11), УГО электрических машин в двух формах (табл. 2.12). Внутри окружности допускается указывать следующие надписи латинскими буквами: G – генератор; М – двигатель; В – возбудитель; ВR – тахогенератор. Разрешается также указывать род тока, число фаз, вид соединения обмоток.
Таблица 2.11
УГО, поясняющие конструкцию электрических машин (ГОСТ 2.722-68*)
Таблица 2.12
УГО электрических машин (форма 1 и 2)
Вопросы для самопроверки
1. Перечислите типы знаков общего применения на схемах.
2. Назовите буквенный код обозначения резисторов.
3. Назовите буквенный код обозначения конденсаторов.
4. Назовите буквенный код обозначения катушек индуктивности.
5. Назовите буквенный код обозначения трансформаторов промышленной частоты.
6. Назовите буквенный код обозначения реле.
7. Назовите буквенный код обозначения тиристоров .
8. Назовите буквенный код обозначения диодов.
9. Назовите буквенный код обозначения транзисторов?
10. Назовите буквенный код обозначения звонков, зуммеров и гидрофонов.
11. Назовите буквенный код обозначения аналоговых измерительных приборов.
12. Перечислите буквенные коды электрических машин.
13. Преобразуйте значение 100 нФ в микрофарады (мкФ).
14. Укажите рекомендуемые размеры УГО резисторов.
15. Укажите рекомендуемые размеры УГО транзисторов.
Я хотел бы услышать твое мнение про условные графические обозначения Надеюсь, что теперь ты понял что такое условные графические обозначения, элементов электрических схем,уго и для чего все это нужно, а если не понял, или есть замечания, то нестесняся пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Электроника, Микроэлектроника , Элементная база
Схемотехника ЭВМ (стр. 4 из 6)
Таблица П.4.2
ПРИЛОЖЕНИЕ 5
УСЛОВНЫЕ ГРАФИЧЕСКИЕ ОБОЗНАЧЕНИЯ В СХЕМАХ
Примеры построения наиболее используемых графических обозначений приведены в табл. П.5.1.
Коммутационные устройства на схемах должны быть изображены в положении, принятом за начальное, при котором пусковая система контактов обесточена.
На схемах рядом с УГО резистора (по возможности сверху или справа) указывают его условное буквенно-цифровое позиционное обозначение и номинальное сопротивление.
В непосредственной близости от УГО на схеме указывают условное буквенно-цифровое позиционное обозначение конденсатора и его номинальную емкость.
Условные графические обозначения функциональных частей устройств связи построены на основе квадрата, внутри которого изображают знаки, характеризующие их конструктивные особенности.
Таблица П.5.1
Элементы цифровой техники. УГО элементов цифровой техники строят на основе прямоугольника. В самом общем виде УГО может содержать основное и два дополнительных поля, расположенных по обе стороны от основного (рис. П.5.1).
Рис. П.5.1
Размер прямоугольника по ширине зависит от наличия дополнительных полей и числа помещенных в них знаков (меток обозначения функции элемента), по высоте — от числа выводов, интервалов между ними и числа строк информации в основном и дополнительных полях. При изображении УГО элементов цифровой техники следует руководствоваться
ГОСТ 2.743-91. Рекомендуемая ширина основного поля должна быть не менее 10, дополнительных — не менее 5 мм, между выводами и горизонтальной стороной обозначения (или границей зоны) — не менее 2,5 мм и кратно этой величине. При разделении групп выводов интервалом величина последнего должна быть не менее 10 и кратна 5 мм.
Обозначение выводов (табл. П.5.2). Вывод элемента должен иметь условное обозначение, которое выполняют в виде указателей и меток. Размер указателя должен быть не более 3 мм (при выполнении схем вручную). Указатели проставляют на линии контура УГО или на линии связи около линии контура УГО со стороны линии вывода.
Указатель нелогических выводов не проставляют на выводах УГО в том случае, если он проставлен перед символом функции.
Функциональное назначение элементов цифровой техники указывают в верхней части основного поля УГО. Обозначения основных функций дано в табл. П.5.3.
В дополнительных полях указывают информацию о функциональных назначениях выводов — указатели, метки, обозначения (табл. П.5.4).
Таблица П.5.2
Таблица П.5.3
Открытое образование — Цифровая схемотехника
- 10 weeks
- from 3 to 4 hours per week
- 2 credit points
About
Цифровая схемотехника — это курс, посвященный изучению методов и средств построения устройств для автоматической обработки информации представленной в цифровой форме.
В курсе рассматриваются основные принципы и приемы проектирования инвариантные к технологической реализации.
Course program
Темы 1. Введение. Краткая история развития цифровой схемотехнической базы различных поколений. Классификация элементной базы. Электрические характеристики элементов.
Тема 2. Представление информации в цифровой форме. Представление логических переменных электрическими сигналами в потенциальной и импульсной системе. Параметры элементов и их связь с характеристиками.
Тема 3. Элементная база. ГОСТы и ЕСКД в цифровой схемотехнике. Условные графические и условные буквенные обозначения. Типы логик и их связь с условными графическими изображениями. Прямые и инверсные входы и выходы.
Тема 4. Логические основы цифровой схемотехники. Функции Алгебры Логики (ФАЛ). Способы задания функций. Понятие Базиса. СДНФ, СКНФ. Переход из одного базиса в другой. Комбинационная Схема. Минимизация ФАЛ методом Квайна Мак-Класски. Графические методы минимизации ФАЛ. Не полностью определенные функции. Минимизация не полностью определенных функций.
Тема 5. Комбинационные схемы. Постановка задачи, этапы анализа и синтеза комбинационных схем на базе аппарата ФАЛ. Реализация булевых функций на элементах. Синтез и функциональные узлы комбинационных схем: исключающие ИЛИ, мультиплексор, дешифратор, Использование мультиплексоров и дешифраторов для реализации логических функций. Увеличение разрядности комбинационных схем. Классификация сумматоров. Построение комбинационных сумматоров, быстродействие сумматора. Увеличение разрядности сумматора, организация цепей ускоренного переноса.
Тема 6. Временные параметры. Модель логического элемента. Временные параметры. Построение временных диаграмм комбинационных схем методом ранжирования. Построение временных диаграмм схем с памятью событийным методом. Анализ критического пути.
Тема 7. Состязания сигналов. Состязания сигналов в цифровых схемах: причины появления состязаний, переходные процессы в цифровых схемах. Классификация состязаний сигналов: примеры статических и динамических состязаний. Анализ цифровых схем на состязания. Устранение состязаний сигналов в комбинационных схемах. Способы синтеза цифровых схем, свободных от состязаний.
Тема 8. Схемы с памятью. Элементарные триггерные схемы на элементах И-НЕ, ИЛИ-НЕ. Классификация триггерных схем. Таблицы внешних переходов. Асинхронные и синхронные триггерные схемы. Триггерные схемы со статическим и динамическим управлением записью, двухступенчатые триггерные схемы. Примеры двухступенчатых триггеров типа RS, JK, DV, D, T. Примеры триггеров с прямым и инверсным динамическим управлением записью типов RS, JK, DV, D, T.
Тема 9. Проектирование триггера. Проектирование триггера с заданной таблицей перехода. Построение временных диаграмм работы триггера, определение динамических параметров: время переключения, время предварительной установки, время удержания, длительность импульса.
Тема 10. Разработка произвольного счетчика. Классификация счетчиков. Синхронные и асинхронные счетчики. Двоично-десятичные счетчики. Реверсивные счетчики. Увеличение разрядности счетчиков и организация цепей переноса, динамические параметры. Счетчики по модулю М. Проектирование счетчиков с заданным модулем пересчета.
Тема 11. Проектирование многофункционального регистра. Классификация регистров. Регистры хранения и сдвига. Многофункциональные регистры. Организация цепей ввода и вывода информации. Основные принципы проектирования регистров. Примеры регистров. Динамические параметры регистров. Распределители сигналов, формирователи импульсов.
Тема 12. Запоминающие устройства. Схемотехника запоминающих устройств: параметры и классификация ЗУ, временные диаграммы работы и динамические параметры; статические, динамические и постоянные ЗУ. Двух портовая память. Организация буферной (FIFO) и стековой (LIFO) памяти.
Тема 13. Особенности передачи сигналов в цифровых схемах. Типы выходных каскадов: логический выход, элементы с тремя состояниями, выход с открытым коллектором. Элементы индикации, оптоэлектронные развязки, генераторы импульсов, элементы задержки. Организация цепей питания: фильтрация питающих напряжений. Линии передачи сигналов, длинные линии, отражения, согласованная нагрузка.
Тема 14. Программируемая логика. ПЛМ и ПЛИС FPGA. Программируемые логические матрицы (ПЛМ), программируемая матричная логика (ПМК), базовые матричные кристаллы (БМК): базовые структуры, схемные и конструктивные особенности, примеры реализации функций. Программируемые логические интегральные схемы (ПЛИС). Классификация ПЛИС (FPGA, CPLD, FLEX, SOC и др.). Архитектура и топология ПЛИС. Основные элементы: конфигурируемые логические элементы (логическая таблица, триггер, мультиплексор, схемы ускоренного переноса), блоки ввода-вывода, блоки линий межсоединений, «теневое ЗУ». ОЗУ в ПЛИС, шины с тремя состояниями, система синхронизации. Конфигурация ПЛИС. Примеры реализации функций и типовых цифровых узлов.
Тема 15. Средства автоматизации проектирования и отладки цифровых устройств. Этапы проектирования цифровых устройств. Методика и средства автоматизированного проектирования. Использование языков высокого уровня для описания цифровых устройств: проблемно-ориентированный язык VHDL. Примеры проектирования цифровых элементов с применением языка VHDL: описание проекта, компиляция, тестирование и реализация на кристалле FPGA. Тема 16. Заключение. Перспективы развития цифровой схемотехники
IEEE 200-1975 — Стандартные справочные обозначения IEEE для электрических и электронных деталей и оборудования
Стандартные детали
Охватывается формулировка и применение условных обозначений для электрических и электронных деталей и оборудования. Обозначения данного стандарта предназначены для однозначной идентификации и расположения отдельных элементов на схемах и в наборе, а также для сопоставления элементов в наборе, графических символов на схемах и элементов в списках частей, описаниях схем и инструкциях.Приведены три метода формирования и применения условных обозначений: метод нумерации единиц, метод нумерации местоположений и метод кодирования местоположения. Полное условное обозначение может включать условные обозначения, сформированные с использованием любого из этих методов на любом уровне от основных частей до полных единиц.
Комитет по стандартам | |
Статус | Неактивно-Снято |
Утверждение Совета директоров | 1975-10-31 |
История | Дата публикации: 1975-12-30 Подтверждено: 1988-10-20 Дата отзыва: 17 января 1997 г. |
Условные обозначения для электронной промышленности
Этот сценарий относится к отрасли электротехники и электроники, где важно хранить позиционные обозначения в SAP.
Согласно Wiki «Условное обозначение однозначно идентифицирует компонент в электрической схеме или на печатной плате. Условное обозначение обычно состоит из одной или двух букв, за которыми следует цифра, например R13, C1002. За номером иногда следует буква, указывающая на то, что компоненты сгруппированы или сопоставлены друг с другом, например R17A, R17B. IEEE 315 содержит список букв обозначения класса для использования в электрических и электронных сборках. Например, буква R — это приставка для резисторов сборки, C — для конденсаторов, K — для реле.”
Для получения более подробной информации о позиционных обозначениях обратитесь к Wiki: https://en.wikipedia.org/wiki/Reference_designator
При работе в электронной промышленности важно хранить эти ссылочные обозначения в SAP и в конечном итоге отправлять эту информацию в подключенные системы MES. Эта информация поможет системе MES разместить компонент в точных точках крепления на печатной плате. Как показано на рисунке ниже, позиционные обозначения нанесены на печатную плату. Это отмечает точное место, где компонент, например конденсатор или реле, должен быть размещен на печатной плате.Кроме того, одни и те же компоненты могут использоваться в нескольких точках, что означает, что компонент может иметь несколько позиционных обозначений, что делает еще более важным сохранение всех эталонных точек для каждого компонента в SAP.
Условные обозначения также могут называться точками крепления или точками установки.
Теперь возникает вопрос, где хранить эти ссылочные обозначения в SAP?
Что ж, все детали компонентов хранятся в спецификации, поэтому имеет смысл хранить позиционные обозначения в спецификации.
Нажмите «Перейти к» в строке меню, а затем нажмите «Обзор подпунктов».
В разделе подпунктов спецификации мы можем сохранить позиционные обозначения, которые в SAP называются «точками установки».
Что нам нужно помнить, так это то, что количество, назначенное для подэлементов, в конечном итоге будет превышать количество, определенное на уровне компонентов.
Таким образом, ссылочные обозначения можно очень легко сохранить в спецификациях в стандартной системе SAP, и нет необходимости поддерживать Z-таблицы или расширять спецификации.
Обозначения на E. Обозначения в различных электрических цепях. Как научиться читать концептуальные схемы
Если вы только начали заниматься радиотехникой, я расскажу вам об этой статье, как на ней названы радиодетали в схеме, и какой вид .
Здесь вы узнаете, как работает транзистор, диод, конденсатор, микросхема, реле и т. Д.
Пополните, пожалуйста, больше.
Как обозначается биполярный транзистор
Все транзисторы имеют три выхода, и если он биполярный, то есть два типа, как видно из изображения перехода PNP и перехода NPN.И три выхода имеют названия E-Emitter, to-collector и B-base. Где какой вывод на сам транзистор ищите в справочнике, или введите название транзистора + выводы в поиске.
Внешний вид У него следующий транзистор, и это лишь малая часть их внешнего вида, существующие купюры заполнены.
Как полярный транзистор обозначается
Уже есть три выхода со следующим названием, это z-шторка, и -stock, s-flow
Но внешний вид очень мало отличается, а точнее может иметь одинаковую базу.Вопрос как это, а это уже из справочников или инета обозначать написано в базе.
Как конденсатор обозначается
Конденсаторы бывают полярные и неполярные.
Их отличие в том, что полярник указывает на один из выводов значком «+». И тара измеряется в микрофрейсе «МКФ».
А у них такой вид, стоит учесть, что если конденсатор полярный, то вывод обозначается на цоколе одной из сторон ножек, только уже главным знаком «-«.
Как обозначается диод и светодиод
Обозначение светодиода и диода на схеме отличается тем, что на светодиодах заключенных и исходящих две стрелки. Но в роли их другой диод используется для выпрямления тока, а светодиод уже используется для излучения света.
А вот светодиоды имеют такой вид.
А вот обычные прямоугольные и импульсные диоды например:
Как обозначена микросхема.
Микросхемы — это уменьшенная схема, выполняющая ту или иную функцию, и в ней может быть большое количество транзисторов.
А у них такой вид.
Обозначение реле
Я думаю о них впервые услышали автомобилисты, особенно водители Жигулей.
Так как когда не было форсунок и транзисторы не получили широкого распространения, то в фарах автомобиля, прикуривателя, стартера и так все почти включалось и управлялось через реле.
Такая же простая схема реле.
Здесь все просто, на электромагнитную катушку подается текущее напряжение, которое в свою очередь замыкает или разблокирует участок цепи.
На этом статья заканчивается.
Если есть желание, какие радиодетали вы хотите видеть в следующей статье, пишите в комментариях.
Полярность цилиндрической батареи Условное графическое обозначение
и условное графическое обозначение.Аккумуляторы в схеме по ГОСТ.
Обозначение батареи по электрическим схемам. Имеет короткую черту, обозначающую отрицательный полюс, а длинную линию — положительный полюс. Одиночный аккумулятор, используемый для питания устройства, на схемах обозначен латинской буквой G, а аккумулятор, состоящий из нескольких аккумуляторов буквами GB.
Примеры использования обозначения аккумуляторов в схемах.
На схеме 1 использовано простейшее условное графическое обозначение аккумулятора или аккумулятора по ГОСТу.На схеме 2 использовано более информативное обозначение АКБ по ГОСТу, здесь отражено количество АКБ в группе АКБ, указано напряжение АКБ и положительный полюс. ГОСТ позволяет использовать обозначение батареи, нанесенное на Схему 3.
Часто Б. Бытовая техника Обнаружено использование нескольких цилиндрических батарей. Включение разного количества последовательно соединенных батарей позволяет получать блоки питания с различным напряжением.Такой батарейный блок обеспечивает напряжение, равное сумме напряжений всех входящих батарей.
Последовательное соединение трех аккумуляторов напряжением 1,5 вольта обеспечивает напряжение питания устройства 4,5 вольта.
При последовательном включении аккумуляторов ток, который снижается, уменьшается за счет увеличения внутреннего сопротивления источника питания.
Подключение батареек к приставке ПДУ ТВ.
Например, мы сталкиваемся с последовательным включением батареек при их замене в панели управления телевизора.
Параллельное включение батарей используется редко. Преимущество параллельного включения состоит в увеличении тока нагрузки собранного таким способом источника питания. Напряжение включенных параллельно включенных батарей остается таким же, как номинальное напряжение одной батареи, а ток разряда увеличивается пропорционально количеству встроенных батарей. Несколько слабых батарей можно заменить на одну более мощную, поэтому использовать параллельное включение для маломощных батарей бессмысленно.Параллельно имеет смысл только мощные аккумуляторы из-за отсутствия или дорогие аккумуляторы с еще большим током разряда.
Параллельное включение батареек.
У такого включения есть недостаток. Аккумуляторы не могут иметь точно совпадающее напряжение на контактах при отключенной нагрузке. У одного аккумулятора это напряжение может быть 1,45 вольта, а у другого 1,5 вольта. Это вызовет ток от батареи с большим напряжением к батарее с меньшим.При установке аккумуляторов в отсеки прибора при отключенной нагрузке произойдет разрядка. В дальнейшем при такой схеме включения саморазряд происходит быстрее, чем при последовательном включении.
Комбинация последовательного и параллельного подключения батарей может быть получена от разных источников питания батарей.
Первый транзистор
На фото справа вы видите первый рабочий транзистор, который был создан в 1947 году тремя учеными — Уолтером Браттеном, Джоном Бардином и Уильямом Шокли.
Несмотря на то, что первый транзистор имел не очень презентабельный вид, это не помешало ему произвести революцию в электронике.
Трудно предположить, какой была бы нынешняя цивилизация, если бы не был изобретен транзистор.
Транзистор — первое твердотельное устройство, которое может усиливать, генерировать и преобразовывать электрический сигнал. Не имеет подверженных вибрации деталей, имеет компактные размеры. Это делает его очень привлекательным для использования в электронике.
Это была небольшая стыковка, а теперь давайте разберемся подробнее, что такое транзистор.
Прежде всего стоит напомнить, что транзисторы делятся на два больших класса. Первый — так называемый биполярный, а второй — полевой (они же униполярные). Основа как полевых, так и биполярных транзисторов — это полупроводник. Основным материалом для производства полупроводников является германия и кремний, а также соединение галлия и мышьяка — арсенид галлия ( Gaas.).
Стоит отметить, что наибольшее распространение получили кремниевые транзисторы, хотя этот факт может скоро встряхнуть, поскольку развитие технологий идет непрерывно.
Так уж сложилось, но на заре развития полупроводниковой техники ведущее место занял биполярный транзистор. Но не многие знают, что первоначальная ставка была сделана на создание полевого транзистора. Его вспомнили позже. Про полевые MOSFET транзисторы читайте.
Не будем вдаваться в подробное описание транзисторных устройств по физическому уровню, а сначала выясним, как это обозначено на концепциях.Для новичков в электронике это очень важно.
Для начала нужно сказать, что биполярные транзисторы могут быть двух разных структур. Это структура P-N-P и N-P-N. Пока мы не будем вдаваться в теорию, просто помним, что биполярный транзистор может иметь либо структуру P-N-P, либо N-P-N.
На концептуальных схемах биполярные транзисторы обозначены так.
Как видим, на рисунке показаны два условных графических обозначения.Если стрелка внутри круга направлена на центральный рисунок, то это транзистор со структурой P-N-P. Если стрелка направлена наружу, она имеет структуру Н-П-Н.
Небольшой совет.
Чтобы не запоминать условное обозначение, и тип проводимости (p-n-p или n-p-n) биполярного транзистора определить невозможно, можно применить такую аналогию.
Сначала посмотрим, куда указывает стрелка на обычном изображении.Далее представляем, что идем в направлении стрелки, и если упираемся в «стену» — вертикальную линию — значит, «проход N. ест»! « N. et al.» Означает P- n. -п (п- Н. -П).
Ну, а если идти, а не упираться в «стенку», то транзистор показан на схеме n-P-N структур. Аналогичная аналогия может быть использована в отношении полевых транзисторов при определении типа канала (N или P). Об обозначении разных полевых транзисторов на схеме читайте
.Обычно дискретный, то есть отдельный транзистор имеет три выхода.Раньше его даже называли полупроводниковым триггером. Иногда может иметь четыре вывода, но четвертый служит для подключения металлического корпуса к общему проводу. Это экранирование, не связанное с другими выводами. Также один из выводов, обычно это коллектор (о нем будет дальше), может иметь форму фланца для крепления к радиатору охлаждения или быть частью металлического корпуса.
Взгляните. На фото представлены различные транзисторы еще советского производства, а также начала 90-х годов.
Но это уже современный импорт.
Каждый из выводов конвейера имеет свое назначение и название: база, эмиттер и коллектор. Обычно эти имена сокращаются и записываются просто b ( Base ), E ( Emitter ), K ( Collector ). На зарубежных схемах выход коллектора обозначается буквой C. это от слова Collector — «Коллектор» (глагол Collect. — «собирать»). Базовая маркировка выпуска — B., от слова Base. (от англ. База — «Главная»). Это контрольный электрод. Ну и выход эмиттера обозначается буквой E. , от слова Emitter. — «Эмитент» или «Источник выбросов». В этом случае эмиттер служит источником электронов, так сказать, поставщиком.
Электронная схемаIN Выводы транзисторов нужно паять, строго соблюдая маневренность. То есть вывод коллектора виден в той части схемы, где он должен быть подключен.Невозможно вместо вывода базы на файловый сборщик или вывод эмиттера. В противном случае схема работать не будет.
Как узнать, где по концепции транзистора коллектор, а где эмиттер? Все просто. Вывод, что стрелка всегда эмиттер. Тот, который нарисован перпендикулярно (под углом 90 0) к центральному элементу, является основанием основания. А тот, что остался, — коллекционер.
Также в концептуальных схемах Транзистор отмечен символом. Вт. или Q. . В старых советских книгах по электронике можно встретить обозначение в виде буквы В. или Т. . В схеме указан следующий порядковый номер транзистора, например Q505 или VT33. При этом следует учитывать, что буквами VT и Q обозначаются не только биполярные транзисторы, но и поля в том числе.
В реальной электронике транзисторы легко перепутать с другими электронными компонентами, например симисторами, тиристорами, интегральными стабилизаторами, поскольку они имеют одинаковый корпус.Особенно легко запутаться, когда на электронный компонент нанесена неизвестная маркировка.
В этом случае необходимо знать, что разметка позиционирования сделана на многих печатных платах и указан тип элемента. Это так называемая шелкография. Так что pCB Рядом с деталью можно написать Q305. Это означает, что этот элемент транзистора и его порядковый номер на принципиальной схеме — 305. Бывает также, что название электрода транзистора указано рядом с выводами.Итак, если рядом с выходом стоит буква Е, то это эмиттерный электрод транзистора. Таким образом можно чисто визуально определить, что установлено на плате — транзистор или совершенно другой элемент.
Как уже упоминалось, это утверждение справедливо не только для биполярных транзисторов, но и для полевых. Поэтому после определения типа элемента необходимо указать класс транзистора (биполярный или полевой) на маркировке, нанесенной на его корпус.
Полевой транзистор FR5305 на печатной плате прибора. Рядом тип элемента — VT
Любой транзистор имеет опечатку или маркировку. Пример маркировки: КТ814. Вы можете узнать все параметры элемента. Как правило, они указаны в Даташите. Он представляет собой справочный лист или техническую документацию. Также могут быть транзисторы той же серии, но немного с другими электрическими параметрами. Тогда имя содержит дополнительные символы в конце или, реже, в начале маркировки.(например, буква А или Д).
Зачем нужны всевозможные дополнительные обозначения? Дело в том, что в процессе производства добиться одинаковых характеристик на всех транзисторах очень сложно. Всегда есть некая, пусть и небольшая, но разница в параметрах. Поэтому они делятся на группы (или модификации).
Строго говоря, параметры транзисторов разных партий могут различаться довольно существенно. Особенно это было заметно раньше, когда от технологии их массового производства только отказывались.
Считывание схем невозможно без знания условных графических и буквенных обозначений элементов. Большинство из них стандартизированы и описаны в нормативных документах. Большинство из них были опубликованы в прошлом веке в новом стандарте. Только один был принят, в 2011 году (ГОСТ 2-702-2011 ECD. Правила выполнения электрических схем), так что иногда новая элементная база указывается по принципу «как кто-то придумал». И в этом сложность чтения схем новых устройств.Но, в основном, условные обозначения в электрических схемах описаны и многим знакомы.
На схемах часто бывает два типа обозначений: графическое и буквенное, также часто проставляется номинал. По этим данным многие сразу могут сказать, как работает схема. Этот навык вырабатывается годами практики, и для начала необходимо понять и запомнить условные обозначения в электрических схемах. Затем, зная работу каждого элемента, можно представить конечный результат устройства.
Для составления и чтения различных схем Обычно требуются разные элементы. Типов схем много, но в электрике обычно используются:
Есть еще много других типов электрических схем, но в вашей домашней практике они не используются. Исключение — трасса прокладки кабелей по участку, подача электричества в дом. Этот тип документа обязательно понадобится и будет полезен, но это больше план, чем схема.
Основные изображения и функциональные знаки
Коммутационные аппараты (выключатели, контакторы и др.)) построены на контактах различной механики. Есть замыкающие, размыкающие, переключающие контакты. Замыкающий контакт в нормальном состоянии разомкнут, при переводе в рабочее состояние цепь замыкается. Прерывистый контакт находится в нормальном состоянии и при определенных условиях запускает цепь эрозии.
Переключающие контакты двух- и трехпозиционные. В первом случае работает одна цепочка, потом другая. Во втором — нейтральная позиция.
Кроме того, контакты могут выполнять разные функции: контактор, разъединитель, выключатель и т. Д.Все они также имеют условное обозначение и нанесены на соответствующие контакты. Есть функции, которые выполняют только мобильные контакты. Они показаны на фото ниже.
Основные функции могут выполнять только фиксированные контакты.
Условия однолинейных схем
Как уже говорилось, на однолинейных схемах указывается только силовая часть: УЗО, автоматы, диафавтоматы, розетки, выключатели, выключатели и т.д. и взаимосвязь между ними.Обозначения этих условных элементов могут использоваться в схемах электрощита.
Основная особенность графических условных обозначений в электрических системах заключается в том, что устройства, аналогичные по принципу устройства, отличаются какой-то мелочью. Например, автомат (автоматический выключатель) и выключатель различаются только двумя небольшими деталями — наличием / отсутствием прямоугольника на контакте и формой фиксированного значка контакта, на котором отображаются функции данных контакта. Контактор из обозначения прерывателя имеет только форму значка на неподвижном контакте.Очень небольшая разница, а устройство и его функции другие. За всеми этими мелочами нужно ухаживать и запоминать.
Также небольшая разница между условными обозначениями Узо и дифференциального автомата. Это тоже только в функциях подвижных и неподвижных контактов.
Примерно так же обстоит дело с катушками и контакторами. Они выглядят как прямоугольник с небольшими графическими дополнениями.
В этом случае вспомнить проще, так как есть довольно серьезные отличия во внешнем виде дополнительных иконок.С PHOTEL все очень просто — лучи солнца ассоциируются со стрелками. Импульсное реле также довольно легко отличить по характерной форме знака.
Немного попроще с лампами и подключениями. У них разные «картинки». Соединительное соединение (типа розетка / вилка или розетка / вилка) выглядит как два кронштейна, а разборное (типа клеммной колодки) — кружками. Причем количество пар флажков или кружков указывает на количество проводов.
Изображение шин и проводов
На любой схеме связь связана, и по большей части она осуществляется с помощью проводов. Некоторые связки представляют собой шины — более мощные проводящие элементы, от которых можно избавиться от ударов. Провода обозначаются тонкой линией, а места ответвлений / соединений — точками. Если точек нет — это не соединение, а перекресток (без подключения к электросети).
Есть отдельные изображения для шин, но они используются, если вам нужно графически отделить их от линий связи, проводов и кабелей.
На схемах крепления часто необходимо обозначать не только способ прокладки кабеля или провода, но и его характеристики или способ прокладки. Все это тоже отображается графически. Для чтения чертежей это тоже необходимая информация.
Как изображать выключатели, выключатели, розетки
Для некоторых типов данного оборудования утверждены стандарты изображений. Так, диммеры (световые клавиши) и кнопочные переключатели остались без обозначения.
Но все остальные типы переключателей имеют свои собственные условные обозначения в электрических цепях. Они бывают открытой и скрытой установки, соответственно группы иконок тоже две. Разница заключается в положении объекта на ключевом изображении. Чтобы понять схему, о каком типе переключателя идет речь, необходимо помнить.
Есть отдельные обозначения для двухблочных и тройных выключателей. В документации они называются «сдвоенными» и «встроенными» соответственно. Есть отличия и для корпусов с разной степенью защиты.Цены при нормальных условиях эксплуатации ставят выключатели с IP20, может до IP23. Во влажных помещениях (ванная, бассейн) или на улице степень защиты должна быть не ниже IP44. Их изображения отличаются тем, что кружки расписаны. Так что отличить их несложно.
Есть отдельные образы для переключателей. Это переключатели, позволяющие управлять включением / выключением света с двух точек (есть с трех, но без стандартных изображений).
Такая же тенденция наблюдается в обозначении розеток и групп розеток: розетки бывают одинарные, розетки сдвоенные, есть группы по несколько штук.Изделия для помещений с нормальными условиями эксплуатации (IP от 20 до 23) имеют неокрашенную середину, для влажных — с корпусом повышенной защиты (IP44 и выше).
Обозначения В электрических цепях: розетки разных типов Установки (открытые, скрытые)
Понимая логику обозначения и запоминая некоторые исходные данные (например, характерное изображение открытой и скрытой настройки разное), через некоторое время можно уверенно ориентироваться на чертежах и схемах.
Лампы на схемах
В этом разделе описаны символы в электрических цепях различных ламп и ламп. Здесь лучше обстоят дела с обозначениями новой элементной базы: есть даже вывески для светодиодных ламп и светильников, компактных люминесцентных ламп (для домашнего хозяйства). Приятно также, что изображения ламп разного типа существенно различаются — перепутать сложно. Например, лампы с лампами накаливания изображаются в кружке, с длинной линейной люминесцентной — длинным узким прямоугольником.Разница в изображении линейной лампы люминесцентного типа и светодиода не очень велика — только штрихи на концах — но запомнить ее можно.
Стандарт имеет даже условные обозначения в электрических схемах для потолочного и подвесного светильника (патрона). Также они имеют довольно необычную форму — кружочки небольшого диаметра с черточками. В общем, в этом разделе сосредоточиться проще, чем в других.
Элементы понятий электрических схем
Принципиальные схемы устройств содержат другую элементную базу.Также изображены перемычки, клеммы, разъемы, лампочки, но, кроме того, имеется большое количество радиоэлементов: резисторы, баки, предохранители, диоды, тиристоры, светодиоды. Большинство условных обозначений в электрических схемах этой элементной базы представлено на рисунках ниже.
Реже придется подписывать отдельно. Но в большинстве схем присутствуют эти элементы.
Обозначения в электрических цепях
Помимо графических изображений подписываются элементы на схемах.Также помогает читать схемы. Рядом с буквенным обозначением товара часто бывает его порядковый номер. Это сделано для того, чтобы затем легко найти тип и параметры в спецификации.
В приведенной выше таблице показаны международные обозначения. Есть отечественный стандарт — ГОСТ 7624-55. Экспозиции отсюда с таблицей ниже.
Для того, чтобы собрать схему в которой только радиодетали и не нужны: резисторы (сопротивления), транзисторы, диоды, конденсаторы и т. Д.Из множества радиодеталей нужно уметь быстро отличить по внешнему виду нужную, расшифровать надпись на ее корпусе, определить базу. Обо всем этом и пойдет речь ниже.
Конденсатор.
Этот элемент присутствует практически в каждой схеме любительских построек. Как правило, самый простой конденсатор — это две металлические пластины (пластины) и воздух между ними в качестве диэлектрика. Вместо воздуха может быть фарфор, слюда или другой непроводящий материал.Через конденсатор постоянного тока. не проходит, а переменный ток через конденсатор проходит. Благодаря этому свойству конденсатор ставят там, где необходимо отделить постоянный ток от переменного.
Конденсатор имеет основной параметр — это ёмкость .
Единица мощности — микрофрад (МКФ) взята за основу в любительских конструкциях и в промышленном оборудовании. Но чаще используется другая единица — пикофарад (ПФ), миллионная доля микрофрарад (1 мкФ = 1000 нф = 1000000 ПФ).На схемах вы встретите другой. Причем емкостью до 9100 пф включительно указывают схемы в пикофарадах или нанофарадах (9х2), а также дополнительные микрофарады. Если, например, рядом с условным обозначением конденсатора написано «27», «510» или «6800», это означает, что емкость конденсатора соответственно 27, 510, 6800 ПФ или N510 (0,51 НФ \ u003d 510 ПФ или 6Н8 = 6,8 НФ = 6800пф). Но числа 0,015, 0,25 или 1,0 означают, что емкостная емкость равна соответствующему количеству микрофрейдов (0.015 мкФ = 15 НФ = 15000 ПФ).
Типы конденсаторов.
Конденсаторы бывают постоянной и переменной емкости.
Вт. Переменные конденсаторы Емкость изменяется при вращении выступающей наружу оси. В этом случае одна площадка (подвижная) устанавливается на неподвижную, не соприкасаясь с ней, результирующая емкость увеличивается. Помимо этих двух типов, в наших конструкциях используется еще один тип конденсаторов — подстроечные. Обычно его устанавливают в конкретный прибор для того, чтобы точнее выбрать, выбрать нужную емкость и больше конденсатор не трогать.В любительских конструкциях подрезанный конденсатор часто используют как переменный — он дешевле и доступнее.
Конденсаторыразличаются по материалу пластин и дизайну. Бывают конденсаторы воздушные, слюдяные, керамические и др. Конденсаторы постоянного тока этого вида — не полярные. Другой тип конденсаторов — электролитические (полярные). Такие конденсаторы выпускаются большой емкости — от десятого лепестка МКФ до нескольких десятков МКФ. На схемах указывается не только емкость, но и максимальное напряжение, на котором их можно использовать.Например, надпись 10,0 х 25 В означает, что конденсатор емкостью 10 мкФ нужно подвести на напряжение 25 В.
Для переменных или подстроечных конденсаторов на схеме указаны крайние значения емкости, которые получаются, если ось конденсатора повернуть из одного крайнего положения в другое или повернуть отработанные (как в подстроечных конденсаторах). Например, надпись 10 — 240 указывает на то, что в одном крайнем положении оси емкость конденсатора составляет 10 ПФ, а в другом — 240 ПФ.При плавном повороте из одного положения в другое емкость конденсатора также будет плавно изменяться от 10 до 240 ПФ или обратно — от 240 до 10 ПФ.
Резистор.
Надо сказать, что этот элемент, как и конденсатор, можно увидеть во многих самоделках. Это фарфоровая трубка (или стержень), на которую снаружи напыляется тончайшая пленка металла или сажи (углерода). На некачественных мощных резисторах сверху наматывается нихромовая нить. Резистор имеет сопротивление и используется для установки желаемого тока в электрической цепи.Вспомните пример с баком: изменяя диаметр трубы (сопротивление нагрузке), можно получить тот или иной расход воды (электричество разной силы). Чем тоньше пленка на фарфоровой трубке или стержне, тем больше сопротивление току.
Резисторы бывают постоянные и переменные.
Из постоянных, чаще всего применяемых резисторов типа МЛТ (металлизированные лакированные термостойкие), Солнца (влагостойкость), УЛМ (углеродные лакированные малогабаритные), из переменных — SP (сопротивление переменному току) и SPO (сопротивление переменного объема) .Внешний вид постоянных резисторов показан на рис. ниже.
различаются по сопротивлению и мощности. Сопротивление измеряется в Омах (ОМ), киломах (ком) и мегаомах (МОМ). Мощность выражается в ваттах и обозначается буквами TW. Резисторы разной мощности характеризуются размерами. Чем больше мощность резистора, тем больше его размер.
Сопротивление резистора указано на схемах рядом с его условным обозначением.Если сопротивление меньше 1 кОм, цифры обозначают число ОМ без единицы измерения. При сопротивлении 1 ком и более — до 1 МОм укажите количество килом и поставьте букву «К». Сопротивление 1 МОм и выше выражается числом мега с добавлением буквы «М». Например, если рядом с обозначением резистора написано 510, это означает, что сопротивление резистора составляет 510 Ом. Обозначения 3,6 К и 820 К соответствуют сопротивлению 3,6 кОм и 820 кОм соответственно.Надпись на схеме 1 м или 4,7 м означает, что используется сопротивление 1 МОм и 4,7 МОм.
В отличие от постоянных резисторов, имеющих два вывода, переменных резисторов таких выводов три. На схеме указано сопротивление между крайними выводами. переменный резистор. Сопротивление между средним выводом и крайним изменяется при вращении выступающей оси резистора. Более того, когда ось вращается в одном направлении, сопротивление между средним выводом и одним из крайних увеличивается, соответственно, уменьшаясь между средним выводом и другим крайним.Когда ось поворачивается назад, происходит обратное явление. Это свойство переменного резистора используется, например, для регулировки громкости звука в усилителях, ресиверах, телевизорах и т. Д.
Полупроводниковые приборы.
Это целая группа Детали: Диоды, Стабилизаторы, Транзисторы. В каждой детали использован полупроводниковый материал, а проще полупроводник. Что это? Все существующие вещества можно разделить на три большие группы. Некоторые из них — это медь, железо, алюминий и другие металлы — хорошо проводится электрический ток — это проводники.Дерево, фарфор, пластик не проводят ток. Это нерасходы, изоляторы (диэлектрики). Полупроводники занимают промежуточное положение между проводниками и диэлектриками. Такие материалы проводятся только при определенных условиях.
Диоды.
У диода (см. Рис. Ниже) два выхода: анодный и катодный. Если подключить батарею полюсами: плюс к аноду, минус к катоду, в направлении анода к катоду течет ток. Сопротивление диода в этом направлении невелико.Если попробовать поменять полюса батарей, то есть включить диод «наоборот», то через диод ток не пойдет. В этом направлении диод имеет большее сопротивление. Если пропустить через диод переменный ток, то на выходе у нас будет только одна полуволна — это будет хоть пульсирующий, но постоянный ток. Если переменный ток подать на четыре диода, включенные мостом, то мы уже получаем две положительные полуволны.
Стабилизаторы.
Эти полупроводниковые приборы также имеют два выхода: анодный и катодный. В прямом направлении (от анода к катоду) Stabilod работает как диод, беспрепятственно пропускающий ток. Но в обратном направлении он изначально не пропускает ток (как и диод), а при увеличении подаваемого на него напряжения внезапно «делает себя» и начинает пропускать ток. Напряжение «пробоя» называется напряжением стабилизации. Он останется неизменным даже при значительном увеличении входного напряжения.Благодаря этому свойству Стабилитрон находит применение во всех случаях, когда необходимо получить стабильное напряжение питания какого-либо устройства с колебаниями, например, сетевого напряжения.
Транзисторы.
Из полупроводниковых приборов транзистор (см. Рис. Ниже) чаще всего применяется в электронике. У него три выхода: база (b), эмиттер (E) и коллектор (K). Транзистор — усилительное устройство. Его условно можно сравнить с таким известным вам устройством, как мундштук.Достаточно сказать что-нибудь перед узким отверстием рожка, послав широкий один-друг, стоящий в нескольких десятках метров, и голос, усиленный рожком, будет хорошо слышен на расстоянии. Если взять узкое отверстие для входа рупора усилителя, а широкое — на выход, то можно сказать, что выходной сигнал в несколько раз больше входного. Это показатель усиленных способностей рога, его прироста.
Сейчас ассортимент выпускаемых радиодеталей очень богат, поэтому на рисунках представлены далеко не все их типы.
Но вернемся к транзистору. Если пропустить через сайт базу — эмиттер слабого тока, он будет усилен транзистором в десятки, а то и сотни раз. Усиленный ток будет протекать через коллектор — эмиттер. Если транзистор звенит база-эмиттер мультиметра и коллектор база, то это похоже на измерение двух диодов. В зависимости от наибольшего тока, который может пройти через коллектор, транзисторы делятся на маломощные, средние и большие.Кроме того, эти полупроводниковые устройства могут быть структурами r-P-R или N-r-p. Так есть транзисторы с разным чередованием полупроводниковых слоев (если в диоде три слоя материала, то три). Усиление транзистора не зависит от его конструкции.
ASME Y14.44 — Справочные обозначения для электрических и электронных деталей и оборудования
Этот документ ссылается на:
ASME B4.2 — Предпочтительные метрические пределы и посадкиОпубликовано ASME на 1 января 1978 г.
В этом стандарте описывается система пределов ISO и подходящих деталей для сопрягаемых деталей, поскольку она одобрена для общего инженерного использования в Соединенных Штатах Америки.Он устанавливает: (1) условные обозначения …
Этот документ ссылается на:
ASME B89.7.2 — Планирование размерных измеренийОпубликовано ASME на 29 декабря 2014 г.
Цель Целью настоящего стандарта является обеспечение правильности и приемлемости размерных измерений. Требования Настоящий стандарт устанавливает требования к подготовке и утверждению…
На этот документ ссылаются:
ASME Y14.24 — Типы и применение технических чертежейОпубликовано ASME на 23 октября 2020 г.
Этот стандарт определяет типы инженерных чертежей, которые наиболее часто используются для установления технических требований. В нем описаны типичные приложения и минимальные требования к контенту.Чертежи для …
На этот документ ссылаются:
ASME Y14.100 — Практики инженерного рисованияОпубликовано ASME на 14 ноября 2017 г.
Настоящий Стандарт устанавливает основные требования и справочные документы, применимые к подготовке и редактированию ручных или компьютерных инженерных чертежей и связанных списков…
На этот документ ссылаются:
ASME Y14.34 — Связанные спискиОпубликовано ASME на 1 января 2013 г.
Настоящий Стандарт устанавливает минимальные требования к подготовке и пересмотру списков приложений, списков данных, списков указателей, списков деталей и списков проводов. Кроме того, в настоящем стандарте представлены…
Условные обозначения элементов таблицы электрической цепи. Обзор условно-графических обозначений, используемых в электрических схемах. Включение трехфазного двигателя в однофазную сеть
При проведении электротехнических работ каждый человек так или иначе сталкивается с символами, которые есть в любой электрической цепи. Эти схемы очень разнообразны, с разными функциями, однако все графические условные обозначения представлены в унифицированных формах и во всех схемах соответствуют одним и тем же элементам.
Основные условные обозначения в электрических схемах ГОСТ отображаются в таблицах.
В настоящее время в электротехнике и электронике используются не только отечественные элементы, но и продукция зарубежных фирм. Импортные электрические элементы составляют огромный ассортимент. Они обязательно отображаются на всех рисунках в виде символов. Они определяют не только значения основных электрических параметров, но и полный их перечень, входящий в то или иное устройство, а также взаимосвязь между ними.
Прочитать и понять содержание электрической схемы
Необходимо изучить все элементы, входящие в его состав и принцип работы устройства в целом. Обычно вся информация есть либо в справочниках, либо в спецификации, прилагаемой к схеме. Позиционные обозначения характеризуют соотношение элементов, входящих в комплект устройства, с их обозначениями на схеме. Для обозначения того или иного электрического элемента графически применяется стандартная геометрическая символика, где каждое изделие изображается отдельно или вместе с другими.Ценность каждого отдельного изображения зависит от сочетания символов между собой.
Отображается каждая диаграмма
Соединения между отдельными элементами и проводниками. В таких случаях важное значение имеет стандартное обозначение одних и тех же компонентов и элементов. Для этого существуют позиционные обозначения, где типы элементов, особенности их конструкции и цифровые значения отображаются в буквенном выражении. Элементы, используемые в общем виде, обозначены на чертежах как квалифицирующие, характеризующие ток и напряжение, методы управления, типы соединений, форму импульсов, электронные средства связи и другие.
Умение читать электрические удары — важная составляющая, без которой невозможно стать специалистом в области электромонтажных работ. Каждый начинающий электрик должен уметь обозначать розетки электропроводки, выключатели, коммутационные аппараты и даже счетчик электроэнергии по ГОСТу. Далее мы предоставим читателям сайта условные обозначения в электрических схемах, как графические, так и буквенные.
Графика
Что касается графического обозначения всех элементов схемы, то этот обзор мы предоставим в виде таблиц, в которых товары будут сгруппированы по назначению.
В первой таблице вы можете увидеть, как электрические коробки, щиты, шкафы и консоли отмечены в электрических цепях:
Следующее, что следует знать, это условное обозначение розеток и выключателей питания (в том числе проходных) на единичных схемах квартир и частных домов:
Что касается осветительных элементов, то лампы и светильники по ГОСТу указывают:
В более сложных схемах, где используются электродвигатели, такие элементы могут обозначаться как:
Также полезно знать, как графически обозначить трансформаторы и дроссели в основных электрических цепях:
Электроинструменты по ГОСТ на чертежах имеют следующее графическое обозначение:
Но, кстати, для начинающего электрика пригодится таблица, в которой показано, как он выглядит на плоскости контура электропроводки земли, а также самой ЛЭП:
Кроме того, на диаграммах можно увидеть волнистую или прямую линию, «+» и «-», которые указывают на генерацию тока, напряжения и форму импульсов:
В более сложных схемах автоматизации можно встретить непонятные графические обозначения, например, контактные соединения.Вспомните, как это указывают приборы на электрических цепях:
Кроме того, следует знать, как выглядят радиоэлементы на проектах (диоды, резисторы, транзисторы и т.д.):
Вот и все условные графические обозначения в электрических схемах силовых цепей и освещения. Как они уже видели компонентов довольно много и помните, как это назначается только с опытом. Поэтому мы рекомендуем вам сохранить все эти таблицы, чтобы при чтении проекта планирования планировки проекта или квартиры вы могли сразу определить, какой элемент цепочки находится в определенном месте.
Интересное видео
Если у обычного человека восприятие информации происходит при чтении слов и букв, то у слесарей и установщиков заменяют буквенное, цифровое или графическое обозначение. Сложность в том, что пока электрик закончит обучение, устроится на работу, чему-то научится на практике, как появляются новые разъемы и ГОСТ, по которым и производятся регулировки. Поэтому не стоит пытаться изучить всю документацию и сразу.Достаточно усвоить базовые знания, а по ходу трудовых будней добавлять актуальные данные.
Для проектировщиков сетей, заводчиков кипиа, электриков умение читать электричество — ключевой показатель качества и квалификации. Без специальных знаний разобрать в тонкостях конструкции приборов, цепей и способов подключения электрических распределителей невозможно.
Типы и типы электрических схем
Прежде чем приступить к изучению существующих обозначений электрооборудования и его соединения, необходимо разобраться с типологией схем.На территории нашей страны внедрена стандартизация по ГОСТ 2.701-2008 от 1 июля 2009 года по ECCD. Схемы. Виды и виды. Общие требования ».
В соответствии с этим стандартом все схемы делятся на 8 типов:
- Объединенные.
- Расположенные.
- Общие.
- Подключения.
- Монтажные соединения.
- Полнопринципные.
- Функциональные
- Структурные
- Комбинированные.
- Подразделение.
- Энергия.
- Оптический.
- Вакуум.
- Кинематика.
- Газ.
- Пневматический.
- Гидравлический.
- Электрический.
Среди существующих 10 видов, указанных в этом документе, выделяются:
Для электриков наибольший интерес представляет среди всех вышеперечисленных типов и типов схем, а также наиболее популярная и часто используемая в работе — электрическая схема.
Последний вышедший ГОСТ дополнен множеством новых разговоров, актуальных сегодня с шифром 2.702-2011 от 1 января 2012 года. Документ «ЭКДП. Правила выполнения электрических схем» относится к другим ГОСТам, среди которых указано выше.
В тексте стандарта подробно изложены четкие требования для электрических цепей всех видов. Поэтому при проведении монтажных работ необходимо руководствоваться электрическими схемами. Определение понятия электрической схемы, согласно ГОСТ 2.702-2011 следующее:
«Под электрической схемой следует понимать документ, содержащий условные обозначения частей изделия и / или отдельных деталей с указанием описание взаимосвязи между ними, принципов действия от электрической энергии.»
После определения документ содержит правила реализации на бумаге и в программных средах контактных соединений, маркировки проводов, буквенных обозначений и графических изображений электрических элементов.
Следует отметить, что в их домашнем задании используется всего три вида электричества:
- Монтаж — Для устройства изображена печатная плата с расположением элементов с четким указанием места, номинал, принцип крепления и подведение итогов к другим деталям.На схемах электропроводки жилых помещений указаны количество, расположение и номинал, способ подключения и другие точные инструкции по монтажу проводов, выключателей, светильников, розеток и тому подобного.
- Принципал — Они включают подробную информацию, контакты и характеристики каждого элемента для сетей или инструментов. Различают полные и линейные концепции. В первом случае контролирует управление, управление элементами и самой силовой цепью; Линейная схема ограничивается только цепочкой с изображением остальных элементов на отдельных листах.
- Функциональный — Здесь без детализации физических размеров и других параметров указаны основные узлы устройства или цепи. Любую деталь можно изобразить в виде блока с буквенным обозначением, дополнить связями с другими элементами устройства.
Графические обозначения в электрических схемах
Документация, в которой правила и способы графического обозначения элементов схемы представлены тремя элементами:
- 2.755-87 — графические обозначения контактных и коммутационных соединений.
- 2.721-74 — графические обозначения деталей и узлов общего пользования.
- 2.709-89 — графические обозначения в электрических станциях схем, оборудования, контактных соединений проводов, электрических элементов.
Стандарт с шифром 2.755-87 применяется для схем однолинейных электрических щитов, условных графических изображений (ВТО) тепловых реле, контакторов, переключателей, автоматических выключателей, другого коммутационного оборудования.Обозначения в соотношениях диффузоров и УЗО нет.
На страницах ГОСТ 2.702-2011 допускается изображение этих элементов в произвольном порядке, с пояснением, расшифровкой объятия и самой схемы дипаптоматов и УЗО.
ГОСТ 2.721-74 содержит УГО, применяемые для вторичных электрических цепей.
ВАЖНО: Для обозначения коммутационного оборудования существует:
4 основных изображения hugo
9 функциональных признаков hugo
UGO | Имя |
Dughead | |
Без собственного излучения | |
С вырубкой леса | |
Концевой выключатель или переключатель хода | |
С автоматическим запуском | |
Выключатель-разъединитель | |
Разъединитель | |
Переключатель | |
Контактор |
ВАЖНО: Обозначения 1-3 и 6-9 применяются к неподвижным контактам, 4 и 5 — к мобильным контактам.
Basic hugo для однолинейных электрических щитов
UGO | Имя |
Тепловое реле | |
Контакторный контакт | |
Выключатель нагрузки — выключатель нагрузки | |
Автоматический выключатель | |
Предохранитель | |
Дифференциальный выключатель | |
Узо. | |
Трансформатор напряжения | |
Трансформатор тока | |
Выключатель (выключатель нагрузки) с предохранителем | |
Машина для защиты двигателя (со встроенным тепловым реле) | |
Преобразователь частоты | |
Электросчетчик | |
Кемпинговый контакт с кнопкой «Сброс» или другим кнопочным переключателем, с возвратом и размыканием с помощью специального элемента управления | |
Походной контакт с кнопочным переключателем, с возвратом и размыканием нажатием кнопки управления | |
Кемпинговый контакт с кнопочным переключателем, с возвратом и размыканием повторным нажатием кнопки управления | |
Переключение контакта с кнопочным переключателем, с автоматическим возвратом и размыканием | |
Походный контакт с замедленным движением, которое инициируется при возврате и срабатывает | |
Походный контакт с замедленным движением, которое запускается только при срабатывании | |
Походный контакт с замедленным движением, который предусмотрен в работе при возврате и срабатывает | |
Походный контакт с медленным действием, срабатывающий только при возврате | |
Замыкание контакта с замедленным включением только при срабатывании | |
Катушка временного реле | |
Фоторелевая катушка | |
Катушка импульсной катушки | |
Общее обозначение катушки реле или катушки контактора | |
Лампочка Индикация (свет), освещение | |
Моторный привод | |
Терминал (соединение разборное) | |
Варистор, ОПН (ограничитель перенапряжения) | |
Отвод | |
Розетка (разъемное соединение): | |
Нагревательный элемент |
Обозначение измерительных электроприборов по характеристике параметров цепи
ГОСТ 2.271-74 приняты следующие обозначения в электрических щитах для шин и проводов:
Буквенные обозначения в электрических цепях
Нормы буквенного обозначения элементов электрических цепей описаны в стандарте ГОСТ 2.710-81 с наименованием текста «ECCD. Буквенно-цифровые обозначения в электрических цепях». Не обозначает маркировку для роттоматов и УЗО, которые в п. 2.2.12 настоящего стандарта прописаны как обозначение многокодированных кодов.Для основных элементов распределительного щита приняты следующие буквенные обозначения:
Наименование | Обозначение |
Выключатель автоматический в цепи питания | QF. |
Автоматический выключатель в цепи управления | Sf. |
Выключатель автоматический с дифференциальной защитой или дифавтоматом | QFD. |
Выключатель погрузчика или выключатель нагрузки | QS. |
УЗО (устройство защитного отключения) | QSD. |
Контактор | КМ. |
Реле тепловое | Ф, КК. |
Временное реле | Кт. |
Реле напряжения | Кв. |
Импульсное реле | Ki. |
Photoworkle | KL. |
ОПОН, разрядник | ФВ |
Предохранитель плавкий | Fu. |
Трансформатор напряжения | ТВ. |
Трансформатор тока | TA. |
Преобразователь частоты | Уз. |
Амперметр | PA |
Ваттметр | Pw. |
Частота | PF |
Вольтметр | PV |
Счетчик энергии активен | PI |
Счетчик энергии реактивный | ПК. |
Нагревательный элемент | EK |
Фотоэлемент | BL. |
Лампа осветительная | Эл. |
Лампочка или световая сигнализация | Hl |
Штекерный разъем | Xs. |
Переключатель или переключатель в цепях управления | SA |
Выключатель кнопочный в цепях управления | SB. |
Клеммы | Xt. |
Изображение электрооборудования на планах
Несмотря на то, что ГОСТ 2.702-2011 и ГОСТ 2.701-2008 учитывают такой вид электрических молотов, как «схема расположения» при проектировании конструкций и зданий, и это необходимо руководствоваться стандартами ГОСТ 21.210-2014, в котором указывается «СПДС.
Изображения на схемах условных графических схем электропроводки и электрооборудования». Документ устанавливает условия размещения на планах прокладки электросетевого электрооборудования (лампы, выключатели). , розетки, электрические щиты, трансформаторы), кабельные линии, шины, шины.
Эти условные обозначения используются для составления чертежей электрического освещения, силового электрического оборудования, источников питания и других планов. Использование этих обозначений также используется в фундаментальных одноцентровых электрических щитах.
Условные графические изображения электрооборудования, электроприборов и электроприемников
Контуры всех изображенных устройств в зависимости от информативности и сложности конфигурации принимаются по ГОСТ 2.302 в масштабе чертежа по действительным размерам.
Условное графическое обозначение линий электропроводки и проводника
Условное графическое изображение шин и шины
ВАЖНО: Расчетное положение сборной шины должно точно совпадать на схеме с местом его вложение.
Условные графические изображения ящиков, шкафов, щитов и пультов
Условные графические обозначения выключателей, выключателей
На страницах документации ГОСТ 21.210-2014 для выключателей кнопочных, диммеров (световые модели), отдельно обозначенного обозначения не предусмотрено. В некоторых схемах по п.4.7. Нормативные акты используются произвольные обозначения.
Условные изображения розеток
Условные графические обозначения ламп и прожекторов
Обновленная версия ГОСТа содержит изображения ламп с люминесцентными и светодиодными лампами.
Условные графические символы устройств управления и контроля
Заключение
Графические и буквенные изображения электриков и электрических цепей не являются полным списком, так как в стандартах есть много специальных символов и цифр, которые практически в быту не используется.Чтобы ознакомиться с электрическими схемами, вам потребуется учесть множество факторов, в первую очередь — страну производителя устройства или электрооборудования, проводки и кабелей. Есть разница в маркировке и условном обозначении в схемах, что можно изрядно запутать.
Во-вторых, для проводов следует тщательно продумать такие области, как пересечение или отсутствие общей сети. В чужих цепях при отсутствии шины или общего силового кабеля с пересекающимися объектами в точке соприкосновения рисуется продолжение полуцепи.В бытовых схемах это не используется.
Если схема изображена без соответствия стандартам, установленным gtales, это называется скетчем. Но и для этой категории есть определенные требования, согласно которым по эскизу должно быть составлено примерное представление о будущей разводке или конструкции устройства. Рисунки можно использовать для составления на них более точных чертежей и схем, с нужными обозначениями, разметкой и соблюдением масштаба.
================================================= ====================================
С другого сайта:
Условные графические обозначения в электрических схемах
Рано или поздно при проведении электромонтажных или электромонтажных работ приходится иметь дело с электрическими цепями, содержащими несколько буквенно-цифровых и условно-графических обозначений.О последних и пойдет разговор в этой статье. Существует большое количество типов элементов электрических схем, выполняющих самые разные функции, поэтому не существует единого документа, определяющего правильность графического обозначения всех элементов, которые можно найти на схемах. Ниже в таблицах представлены примеры условных графических изображений электрооборудования и электропроводки, элементов электрических цепей в схемах, взятых из различных актуальных на данный момент документов.Вы можете скачать бесплатно полностью по ГОСТу, перейдя по ссылкам внизу страницы.
Скачать бесплатно Gost.
- ГОСТ 21.614. Фото Условное изображение электрооборудования и проводки в оригинале
- ГОСТ 2.722-68 Условные графические обозначения в схемах. Электрические машины
- ГОСТ 2.723-68 Условные графические обозначения в схемах.Индукторы, реакторы, дроссели, трансформаторы, автотрансформаторы и магнитные усилители
- ГОСТ 2.729-68 Условные графические обозначения в схемах. Приборы электроизмерительные
- ГОСТ 2.755-87 Условные графические обозначения в схемах. Коммутационные и контактные соединения
Чтобы скачать книгу …
Обозначения буквенно-цифровых в электрических схемах (ГОСТ 2.710-81)
Коды подписанных элементов приведены в таблице.Позиционные обозначения элементам (устройствам) присваиваются внутри изделия. Порядковые номера элементам (устройствам) следует присваивать, начиная с единицы, внутри группы элементов, имеющих одинаковый буквенный код, в соответствии с последовательностью расположения элементов или устройств на схеме сверху вниз в направлении слева. направо.
Позиционные обозначения проставляются на схеме рядом с условным графическим обозначением элементов или устройств справа или над ними.Цифры и буквы, входящие в позиционное обозначение, выполняются одним размером.
Однородный код | Группы типов элементов | Примеры видов элементов | Двухбуквенный код |
A. | Приборы (общее обозначение) | — | — |
Преобразователи неэлектрической величины в электричестве | SelSIN — приемник | BE. | |
SelSIN — Датчик | BC. | ||
Датчик температуры | Bk. | ||
Фотоэлемент | BL. | ||
Измеритель давления | ВР. | ||
Такогенератор | Br. | ||
Датчик скорости | Bv | ||
C. | Конденсаторы | — | — |
Интегральные схемы, | Схема интегральная, аналог | DA | |
Схема интегральная, цифровая, логический элемент | DD | ||
Устройство задержки | Dt. | ||
Устройство хранения информации | Ds. | ||
Элементы разные | Нагревательный элемент | EK | |
Световое освещение | Эл. | ||
Разрядники, предохранители | ДИСКРЕМНЫЙ ЭЛЕМЕНТ ЗАЩИТЫ Текущий Мгновенный | FA. | |
Дискретный элемент защиты инерционного действия | FP. | ||
Дискретный элемент защиты от напряжения | FV | ||
Предохранитель | Fu. | ||
г. | Генераторы, блоки питания | Аккумулятор | ГБ. |
Элементы индикации и сигнализации | Устройство звуковой сигнализации | HA | |
Символьный индикатор | Hg. | ||
Световая сигнализация | Hl | ||
Реле, контакторы, пускатели | Релейный индекс | Х. | |
Реле тока | Ка. | ||
Реле электроцепловое | КК. | ||
Контактор, магнитный пускатель | КМ. | ||
Реле поляризованное | КП. | ||
Реле времени | Kt. | ||
Реле напряжения | Кв. | ||
L. | Катушки индуктивности, дроссели | Дроссель люминесцентного освещения | LL |
М. | Двигатели | — | — |
Приборы, измерительное оборудование | Амперметр | PA | |
Счетчик импульсов | шт. | ||
Частотомер | PF | ||
Счетчик реактивной энергии | ПК. | ||
Счетчик активной энергии | PI | ||
Омметр | Пар. | ||
Регистрирующее устройство | PS. | ||
Счетчик времени, часы | Pt. | ||
Вольтметр | PV | ||
Ваттметр | Pw. | ||
Выключатели и разъединители в силовых цепях | Выключатель автоматический | QF. | |
Разъединитель | QS. | ||
Резисторы | Термистор. | РК | |
Потенциометр | RP. | ||
Шунт измерительный | RS. | ||
Варистор | Ру | ||
Коммутирующие устройства в цепях управления, сигнализации и измерения Примечание . Обозначение используется для устройств бесконтактного питания . | Переключатель или переключатель | SA | |
Кнопка переключения | SB. | ||
Выключатель автоматический | Sf. | ||
Переключатели, срабатывающие от различных воздействий: — | SL. | ||
— Давление | Sp. | ||
— О ситуации | Кв. | ||
— От частоты вращения | Стар. | ||
— Температура | SK | ||
Трансформаторы, автотрансформаторы | Трансформатор тока | TA. | |
Трансформатор напряжения | ТВ. | ||
Стабилизатор | ТС. | ||
U. | Преобразователи электрической величины в электротехнике | Преобразователь частоты, инвертор, выпрямитель | Уз. |
Электровакуумные и полупроводниковые приборы | Диод, Stabilirton | VD. | |
Электровакуумные аппараты | Вл | ||
Транзистор | Вт. | ||
Тиристор | Vs. | ||
Контактные соединения | Текущий | Ха. | |
Штифт | Xp. | ||
Гнездо | Xs. | ||
Дисселляционные составы | Xt. | ||
Устройства механические с электромагнитным приводом | Электромагнит | Я. | |
Электромагнитный привод тормоза | УБ. | ||
Пластина электромагнитная | Yh. |
] — переключатели, переключатели и электромагнитные реле построены на основе условных обозначений контактов: замыкающие ( рис. 5.1, Б. ), размывающие (в, г) и переключаемые (ж, д). Контакты, которые одновременно замыкают или размыкают два значения, обозначены, как показано на рис. 5.1 , ну и.
Для начального положения замыкающих контактов, разомкнутого состояния коммутирующей электрической цепи, разъединяющего — замкнутого, коммутирующего — положение, при котором одна из цепей замкнута, другая разомкнута (исключение составляет контакт с нейтралью). должность).Хьюго все контакты разрешено изображать только в зеркале или повернутом на 90 °.
Стандартизированная система объятий предусматривает отражение таких конструктивных особенностей, как непродолжительность срабатывания одного или нескольких контактов в группе, отсутствие или наличие фиксации их в одном из положений. Так, если необходимо показать, что контакт замкнут или разомкнут раньше других, обозначение его подвижной части дополняется коротким ходом, направленным в сторону срабатывания ( рис.5.2 , а, б), а если позже, — удар, направленный в обратном направлении ( рис. 5.2 , Б, г). Отсутствие фиксации в закрытом или открытом положениях (собственное излучение) обозначается маленьким треугольником, вершина которого движущейся частью контакта направлена в исходное положение (рис. 5.2, г, Б), а фиксация — кружок на обозначении его неподвижной части ( рис. 5.2, , F, и). Последние два hugo используют в тех случаях, когда необходимо показать тип коммутационного изделия, контакты которого этими свойствами обычно не обладают.
Условное графическое обозначение переключателей ( рис. 5.3. ) Строят на основе символов замыкающих и размыкающих контактов. Подразумевается, что контакты фиксируются в обоих положениях, т.е. не имеют самоопределения.
Буквенный код этой группы определяется схемой и конструктивным исполнением выключателя. Если последний ставится в цепи управления, сигнализации, измерений, он обозначается латинской буквой S, а если в цепи питания — буквой Q.Способ управления отражается во второй букве кода: кнопочные переключатели и переключатели обозначаются буквой B (SB), автоматический — буквой F (SF), все остальные — буквой A (SA).
Если в переключателе несколько контактов, символы их подвижных частей параллельны и объединяются механической линией связи. В качестве примера на рис. 5.3. Условное графическое обозначение переключателя SA2, содержащего один размыкающий и два замыкающих контакта, и SA3, состоящего из двух замыкающих контактов, один из которых (на рисунке — справа) замыкается позже другого.Выключатели Q1 и Q2 служат для переключения силовых цепей. Контакты Q2 механически связаны с любым органом управления, о чем свидетельствует отрезок линии хода. В качестве изображения контактов в разных участках цепи их один коммутирующий продукт традиционно отражается в буквенно-цифровом позиционном обозначении (SA4.1, SA4.2, SA4.3).
Аналогичным образом на основе условного обозначения переключающего контакта строятся условные графические обозначения двухпозиционных переключателей ( рис.5.4. , SA1, SA4). Если переключатель зафиксирован не только в крайнем, но и в среднем (нейтральном) положении, символ подвижной части контакта будет препятствовать между обозначениями неподвижных частей, возможность его поворота в обе стороны отображается значком точка (SA2 на рис. 5.4. ). Также подходит случай, если вам нужно показать переключатель на схеме, фиксируемый только в среднем положении (см. рис. 5.4. , SA3).
Отличительная особенность переключателей и переключателей hugo — символ кнопки, связанный с обозначением подвижной части механической линии связи ( рис.5.5. ). В этом случае, если условное графическое обозначение построено на основе символа главного контакта (см. рис. 5.1 ) Это означает, что выключатель (выключатель) не зафиксирован в нажатом положении (при отпускании кнопки возвращается в исходное положение). Если необходимо показать фиксацию, используются обозначения контактов фиксации, специально предназначенные для этой цели ( рис. 5.6. ). Возврат в исходное положение При нажатии на другую кнопку, переключатель показан в этом случае знак запирающего механизма, подключив его к символу подвижной части контакта со стороны, противоположной символу кнопки (см.5.6, 5B1.1, SB12). Если возврат происходит при многократном нажатии кнопки, вместо механической линии связи (SB2) изображается механизм блокировки.
Многопозиционные переключатели (например, галерея) обозначены, как показано на рис. 5.7. . Здесь SA1 (на 6 позиций и 1 направление) и SA2 (на 4 положения и 2 направления) — переключатели с выводами от подвижных контактов, SA3 (на 3 положения и 3 направления) — без выводов с них. Условное графическое обозначение отдельных групп контактов изображено на схемах в одном и том же положении, принадлежность к одному переключателю традиционно показана в позиционном обозначении (см. рис.5.7. , SA1.1, SA1.2).
Для изображения многопозиционных выключателей со сложной коммутацией ГОСТ предусматривает несколько способов. Два из них показаны на рис. 5.8. . Переключатель SA1 имеет 5 позиций (они обозначены цифрами; буквы A-D введены только для пояснения). В позиции 1 одна на другой цепи A и B, G и D, в позициях 2, 3, 4 соответственно цепи b и r, A и B, A и D, в позиции 5 — цепи A и B, V и G.
Переключатель SA2 — на 4 позиции.В первом из них замкнуты цепи A и B (речь идет о точках, расположенных под ними), во втором — цепочки E и G, в третьем — in и g, в четвертом — b и G.
СИМВОЛЫ, КОМПОНЕНТЫ И ССЫЛКИ ЭЛЕКТРОНИКИ
Изучив этот раздел, вы сможете:
- Обозначьте компоненты символом.
- Считайте цветовой код резистора.
- Правильно нарисуйте символы компонентов с помощью шаблона.
- Правильно укажите компоненты.
- Правильно запишите значения компонентов.
Электронные схемы обычно состоят из отдельных компонентов. В знание этих компонентов, их символов и ссылок. является обязательным. Вам необходимо знать эти важные факты, чтобы вы могли представлять компоненты в схеме. Инженер разработает схему и проанализировать его осуществимость.
После выполнения инженерного задания появится эскиз схемы. быть переданы в редакцию.Чертеж будет использовать эскиз для создания формального схематический рисунок. Редакционный отдел отвечает за создание убедитесь, что каждый компонент отображается правильно. Для этого нужно быть знакомым со следующими стандартами:
1. Y32.2 ЭЛЕКТРИЧЕСКИЕ И ЭЛЕКТРОННЫЕ СХЕМЫ, ГРАФИЧЕСКИЕ СИМВОЛЫ для.
2. Y32.14 ЛОГИЧЕСКИЕ СХЕМЫ, ГРАФИЧЕСКИЕ СИМВОЛЫ для.
3. Y32.1 6 ОБОЗНАЧЕНИЯ ДЛЯ ЭЛЕКТРИЧЕСКИХ И ЭЛЕКТРОННЫХ ЧАСТЕЙ И ОБОРУДОВАНИЕ.
Эти стандарты гарантируют, что ваши чертежи верны и имеют общеотраслевое признание.
СВЯЗЬ КОМПОНЕНТОВ И СИМВОЛОВ
Во многих случаях символ очень похож на физический компонент. Коммутатор — хороший тому пример. Обратите внимание на взаимосвязь на фиг. 1. В учебе В этом разделе поищите другие символы, которые очень похожи на свои компоненты.
КОМПОНЕНТЫ
В электронике используется множество различных компонентов.Объем это руководство позволит вам изучить только основные из них. Ты начнешь с резистором.
РЕЗИСТОР
Резистор — это компонент, который вносит определенное СОПРОТИВЛЕНИЕ в схема. См. Фиг. 2. Сопротивление противоположно потоку электронов. Величина противодействия регулируется изменением длины, диаметра, или материал проводника. Резисторы обычно изготавливаются из углерода или никромовая проволока.Оба эти материала плохо проводят электричество.
РИС. 1. Поворотный переключатель и символическое изображение.
РИС. 2. Некоторые типичные стили резисторов. A — Угольные резисторы с фиксированным размером
по номинальной мощности. B — фиксированные, проволочные, жаропрочные резисторы с
номинальная мощность 2 Вт и выше.
обозначаются буквой «ER». Каждое семейство компонентов будет иметь другую букву для ссылки, РИС.3.
РИС. 3. Обозначение резистора с полной информацией.
Резисторы указаны в омах. Их значения могут варьироваться от дроби от ома до миллионов ом. Углеродные резисторы имеют цветовую маркировку, которая используется для идентификации их значений (цветовую маркировку резисторов см. в приложениях).
Резисторытакже указаны в ваттах. Значение в ваттах является максимальным. с питанием резистор может спокойно обращаться. Угольные резисторы в норме от 1/8 до 2 Вт.Резисторы мощностью более 2 Вт обычно имеют проволочную обмотку. Резисторы будут больше при увеличении напряжения.
Резисторы, как и другие компоненты, не могут быть доведены до совершенства. Терпимость должны быть предоставлены, чтобы учесть производственные ошибки. Допуск обычно отклоняться от заявленного значения на 1–10%.
ОБЩИЙ РЕЗИСТОР
Общий резистор — это тот, в котором нет опций. Это служит функция предоставления установленного и установленного значения.Эти резисторы называются постоянными резисторами. Теперь давайте посмотрим на некоторые регулируемые резисторы.
РЕОСТАТ
Реостат — один из переменных резисторов. Имеет два терминала. Типичное использование — приглушить свет над обеденным столом. Символ для реостата показан на фиг. 4А. Движущаяся стрелка называется дворником. Стеклоочиститель перемещается по резистору, позволяя регулировать величину сопротивления в цепи.
На ФИГ. 4B вы видите пунктирную линию между двумя символами реостата. Этот линия означает составные или механически соединенные компоненты. Как регулировка вала компонента D, он одновременно регулирует оба реостата. Примечание: Изучая этот новый язык, электронику, вы найдете и другие компоненты. со стрелками. Посмотрите, изменчивы ли они.
РИС. 4. A и B — два символа, используемые для реостатов. C и D — физические
составные части.Рисунки на E и F показывают, как резистивный провод в реостате
накручивается. Вращение стеклоочистителя по часовой стрелке увеличивает сопротивление.
ПОТЕНЦИОМЕТР
Потенциометр также является переменным резистором. Это отличается от реостат в том, что он имеет три вывода. См. Фиг. 5. Его можно использовать для балансировки стереосистемы.
Потенциометр также можно использовать как реостат. Стеклоочиститель завязан к одному концевому выводу, что делает его двухполюсным резистором, таким как реостат ИНЖИР.6.
РЕЗИСТОР НАКОНЕЧНИК
Резисторы с ответвлениями обычно имеют проволочную обмотку. См. Фиг. 7. Может иметь один или несколько выводов по его длине. Резисторы с ответвлениями обычно используется для делителей напряжения.
КОМПЛЕКТЫ РЕЗИСТОРОВ
Можно приобрести резисторы в одном корпусе. Этот корпус выглядит так же, как микросхема интегральной схемы, фиг. 8. Программа резисторы в упаковке обычно имеют одинаковое номинальное значение.
РИС. 5. Потенциометры имеют три вывода. Обратите внимание на разные физические
формы компонентов. Это зависит от того, как они будут использоваться, и
настроен в оборудовании. A — Роторный. B — поворотный. C — символ. D — Слайд.
E — схематический пример.
РИС. 6. Потенциометры с прикрепленными к одной стороне дворниками работают как
реостаты.
РИС. 7. A — резистор с двойным ответвлением. B — символ двойного нажатия
резистор.C — регулируемый резистор ответвления.
РИС. 8. A — Один тип пакета резисторов. B — Схема упаковки.
C — Как вызвать резистор из блока резисторов 1.
ПОЛУПРОВОДНИКИ
Вы будете изучать семейство компонентов, называемых полупроводниками. В виде компоненты идут, полупроводники относительно новые. Это компоненты что привело к миниатюризации электронных компонентов. Начинать с диодом.
ДИОД
Диод — двухэлектродный полупроводник. Это обеспечивает легкий поток электроны только в одном направлении. Поток идет от катода к анод, фиг. 9. Разработчику необходимо знать катод и анодные концы диода. Эти знания помогут нам показать это правильно в сборке схемы.
Обратите внимание на номер 1N662, показанный на фиг. 9. Этот номер является каталожным. Инженер позвонит по этому номеру, чтобы указать требуемый компонент. в цепи.
РИС. 9. Общие обозначения концов диодных компонентов. A и B — типичный компонент
формы. C — показан символ с простым указанием направления. D — символ с обозначением.
(CR) и каталожный номер.
ЗЕНЕР ДИОД
Стабилитрон — это пробойный диод, РИС. 10. Это означает, что он привлекает больше ток при достижении номинального напряжения. Зенеры используются для регулирования напряжение цепи. Они могут выдерживать от одного до сотен вольт.В Символ стабилитрона отличается от стандартного диода только в как показан катод.
МОСТ ВЫПРЯМИТЕЛЬ
Мостовой выпрямитель используется для преобразования переменного тока в постоянный.
ток, фиг. 11. Переменный ток — это электрический ток, который меняет направление на противоположное.
направление потока через равные промежутки времени. Постоянный ток — это электрический
ток течет только в одном направлении. В наших автомобилях используется выпрямитель.
для изменения выхода генератора переменного тока на постоянный ток, необходимый для
аккумулятор и другие электрические устройства.Мостовой выпрямитель может быть
называется двухполупериодным выпрямителем. он имеет четыре диода, которые работают вместе, чтобы
разрешить ток только в одной секции dir
.
РИС. 10. Символ стабилитрона.
РИС. 11. A — мостовой выпрямитель. B — Как диодные элементы связаны
выполнить исправление.
ТРАНЗИСТОР
Транзистор — это активный полупроводниковый прибор, используемый в твердотельной электронике, ИНЖИР.12. Этот компонент вместе с диодом почти устранил трубка или вакуумная трубка. Обычно он имеет три электрода: эмиттер, базу, и коллектор.
Есть два основных типа транзисторов; типа PNP и NPN. На чертеже символ, единственное заметное отличие — это направление стрелки. Стрелка NPN на эмиттере указывает за пределы конверта (кружок символ), (А). Стрелка PNP указывает на основание (B).Способ запомнить тип NPN: «NPN» напоминает вам, что стрелка «Не указывая внутрь» Существуют и другие типы транзисторов, фиг. 1 3. Эти символы предназначены для единиц, выполняющих специальные функции. Символы будут использоваться реже, чем для других транзисторов.
РИС. 12. A — Транзистор NPN. B — транзистор PNP. C — символ транзистора.
с опознанными ногами. D — Корпус транзистора с идентифицированной правой ножкой.
как нога эмиттера.Маленький язычок — индикатор. E — транзистор
который имеет корпус для коллектора. E, F — оба транзистора сделаны больше
чтобы они могли рассеивать свое тепло. Иногда они устанавливаются на другие
металлические формы, которые помогают отводить тепло.
РИС. 13. Полевые транзисторы (FET), показанные в этом примере
имеют имена по их символам. Это просто объяснение руководства и
не является частью символа.
ИНТЕГРИРОВАННАЯ ЦЕПЬ
Интегральная схема (ИС) — это электронное устройство, в котором оба активных и пассивные компоненты содержатся в одном корпусе, фиг.14. Эти компоненты электрически связаны между собой во время изготовления. Взаимосвязанные затем детали упаковываются в защитное покрытие. В пакете будет плоские выводы, A, C, или круглые выводы, B, выходящие наружу для электрических соединения.
Пассивными компонентами, используемыми в схемах ИС, являются резисторы, конденсаторы и катушки. На эти компоненты не подается питание, они не создают и не усиливают энергию. Они полагаются на сигнал для выполнения своей функции.
Активными компонентами, используемыми в схемах ИС, являются транзисторы и диоды. Эти компоненты способны управлять напряжением или током. Они могут производят энергию или переключающее действие в цепи. Их результат зависит от источника питания.
Миниатюризация схем — одно из важнейших достижений в области электроники. Цепи настолько малы, что их нужно строить. техниками, использующими микроскопы.Схемы сделаны из очень маленьких кусочки кремния, обычно называемые чипами.
РИС. 14. A — Типичная плоская упаковка. B — круглая металлическая банка. C — дуальный
встроенный пакет, наиболее часто используемый стиль интегрированного пакета микросхемы.
D — плоский блок с открытой внутренней схемой. E — Пример компонентов
обычно находится внутри микросхемы.
КАК СОЗДАЮТСЯ ИНТЕГРИРОВАННЫЕ ЦЕПИ
Интегральные схемы создаются путем маскирования, травления и диффузии на МОНОЛИТНАЯ ПОДЛОЖКА (большая листовая основа) из кремния.Маска набор шаблонов, используемых для контроля избирательного травления или пропитки части полупроводникового материала с примесными атомами. Офорт — это удаление химическими веществами нежелательного материала с поверхности. Диффузия это процесс легирования примесей в кремний с образованием желаемого переходы. Из этого сложного объяснения очевидно, что полное исследование Описание конструкции и изготовления микросхемы выходит за рамки этого текста. Однако мы можем воспользоваться упрощенным исследованием чипа, чтобы дать вам оценка этого устройства.
Интегральные схемы выполнены на тонком пластине кремния диаметром от одного до двух дюймов. Обычный срез может содержать от 1 00 до 1000 цепей. бок о бок. После обработки цепи разделяются, чтобы сделать равное количество отдельных цепей, называемых микросхемами.
Для создания микросхемы используются следующие типичные процессы:
1. Взять пластину кремния P-типа в качестве подложки. Вафля будет тонкой срез кремния, легированного или пропитанного положительными примесями, фиг.15.
2. Добавьте слой кремния N-типа толщиной около 0,20 мкм. Слой выращивается на вафле. Этот слой N-типа станет коллектором для транзистор.
3. Нанесите тонкий слой диоксида кремния. Он выращен на материале N-типа.
4. Замаскируйте участки, которые нужно протравить. Маска установит области кислотостойкость. Затем пластина протравливается кислотой. Кислотостойкость будет оставляют желаемые области, фиг.1 6.
5. На следующем этапе материал P-типа распыляется во всех областях. не покрыт диоксидом кремния. Распространение — это надевание и вовлечение основа из материала P- или N-типа, фиг. 1 7.
6. В процессе диффузии образуется новый слой диоксида кремния. над зонами типа P, а также на вершине острова.
РИС. 15. Первые три шага в построении ИС.
РИС. 16. Слой диоксида кремния после травления.
РИС. 17. Материал P-типа был распространен в незащищенные районы.
РИС. 18. Офорт создал область для нового региона.
РИС. 19. A — Шаги показали, как транзистор создается в ИС.
схема. Остальные компоненты создаются с помощью тех же методов. B — фотоплоттер.
создает изображения интегральных схем быстрее, чем вручную. (Gerber Scientific,
Inc.)
7. Снова используя маскировку, мы будем контролировать вытравливание N-типа. остров для создания новой области, фиг.18.
8. Пластина подвергается воздействию другого диффузанта P-типа, и создается область. для области эмиттера транзистора, фиг. 19. Резисторы, диоды и между этими областями также могут быть созданы конденсаторы.
9. После завершения цепи тонкий слой алюминия напыляется в вакууме. по всей цепи. Затем алюминий травится, чтобы сформировать узоры. между резисторами, диодами и транзисторами. Алюминий также будет создать площадки для крепления проводов, идущих к внешним соединениям.
10. Затем пластину разрезают на отдельные цепи. Это очень упрощенный посмотрите на изготовление ИС. Существуют также другие методы и техники для Производство микросхем. Ученые сейчас работают над чипом, созданным из выращенных белок. Успехи происходят ежедневно.
Преимущества микросхем ИС — их размер, вес, стоимость и надежность. Размер ИС является преимуществом перед эквивалентным количеством отдельных лиц. составные части.Размер дает огромное преимущество в весе. Цена полные микросхемы IC очень часто сопоставимы с отдельными транзисторы. Микросхема отличается большой надежностью. В 100 раз надежнее чем одиночный транзистор. При всех этих преимуществах есть еще некоторые недостатки.
Недостатки: сложно создать катушки и конденсаторы в пакет IC. Они должны работать при низких рабочих напряжениях и токах. рейтинги.Миниатюрные диоды и транзисторы хрупкие и не могут терпеть грубое обращение или чрезмерную жару. Недостатки незначительны и незначительные по сравнению с преимуществами.
Некоторыми приложениями для микросхем IC являются цифровые часы, карманные калькуляторы, электронные игры, стереооборудование, компьютеры и многие другие устройства. Размер и стоимость делают микросхемы ИС желательными для этих приложений.
КОНДЕНСАТОРЫ И КОМПОНЕНТЫ AC / DC
Конденсатор — это устройство, состоящее из двух проводящих поверхностей. разделены изоляционным материалом.Изоляционным материалом может быть бумага, слюда, стекло, полиэтиленовые пленки, масло или воздух. Конденсатор накапливает энергию, блоки поток постоянного тока и позволяет. поток переменного тока.
ОБЩИЙ КОНДЕНСАТОР
Как и общий резистор, общий конденсатор имеет один фиксированный и установленный значение. Это значение устанавливается интервалом, фиг. 20 и / или размер тарелок.
ПЕРЕМЕННЫЙ КОНДЕНСАТОР
Переменные конденсаторы можно регулировать, изменяя полезную площадь пластины или расстояние между ними, фиг.21.
КОНДЕНСАТОР ПОЛЯРИЗОВАННЫЙ
Поляризованные конденсаторы можно включать в цепь только в одном направлении. Символ следует размещать с положительной полярностью. Положительная сторона будет — прямая сторона символа, фиг. 22.
Информация для конденсатора должна быть записана, как показано на фиг. 23.
РАССТОЯНИЕ С ИЗОЛЯЦИОННЫМ МАТЕРИАЛОМ ИЛИ ВОЗДУХОМ
РИС. 20. A — Три из многих стилей обычных конденсаторов.B — Базовый
структура конденсатора. C — общий символ конденсатора. Обратите внимание на
символ обозначает основную функцию.
РИС. 21. A, B — два типа переменных конденсаторов. C — символ для
переменный конденсатор. Обратите внимание на стрелку для переменной.
РИС. 22. Поляризованный (электролитический) конденсатор с обозначением. В
положительный конец указан на физическом компоненте. Чтобы купить генерала
конденсатора, вы должны сообщить продавцу три вещи: значение в фарадах,
номинальное напряжение и допуск.
РИС. 23. Символ конденсатора с полной информацией.
КАТУШКА, ДРОССЕЛЬ ИЛИ ИНДУКТОР
Катушка, дроссель или индуктор — это устройство, состоящее из катушки с изолированной Проволока вокруг железного, керамического или воздушного сердечника. См. Фиг. 24. Он сопротивляется изменение переменного тока и его прохождение, но дает небольшое сопротивление к протеканию постоянного тока.
Катушки оцениваются в генри, единицах индуктивности.Сопротивление в Ом, и допустимая нагрузка по току в амперах также может быть указана на фиг. 25.
РИС. 24. A — Общая катушка и символ. B — переменная катушка и символ.
СОЛЕНОИД
Соленоид — это электромагнитное устройство, имеющее катушку под напряжением и магнитный сердечник, фиг. 26. Этот сердечник будет двигаться, когда катушка находится под напряжением. Он выполняет механические функции. На наших машинах он используется для включения шестерня бендикса стартера, когда на него подано питание поворотом ключа для запуска машина.
Соленоиды можно условно показать тремя способами, РИС. 27.
РЕЛЕ
Реле — это электромеханическое устройство, используемое для размыкания и / или замыкания контактов. или переключатели, как их иногда называют. См. Фиг. 28. Часть для работы контакты — это электромагнит. Это моток проволоки вокруг мягкого железное ядро. Электромагнит перемещает рычаг, размыкающий или замыкающий контакты. Реле используются для запуска и остановки многих механических устройств.
Символы реле отображаются по-разному в разных компаниях. Они все описывают одно и то же устройство с некоторыми вариациями символов, фиг. 29.
РИС. 25. Символ катушки с информацией.
РИС. 26. Общий соленоид. Соленоиды используют ту же ссылочную букву
как катушка: «L.»
РИС. 27. Символы, обычно используемые для соленоида.
РИС. 28. A — Открытое реле, показывающее контакты. B — капсулированное реле
используется на печатных платах.
РИС. 29. Различные способы показать катушку реле и контакты.
ТРАНСФОРМАТОР
Трансформатор — это еще одно электромагнитное устройство, фиг. 30. По индукции он изменяет значения первичного напряжения и тока на разные значения на вторичный. Частота осталась прежней.
Трансформатор имеет две катушки или катушку с ответвлениями. Одна катушка будет первичной раздел, другой второстепенный. Они могут повышать или понижать напряжение.
РИС. 30. A — Типовой трансформатор. B — символ трансформатора с железным сердечником.
C — символ керамического сердечника. D — символ воздушного ядра. E — Автотрансформатор
(одинарная обмотка с отводом). F — трансформатор с двумя вторичными обмотками с одним
центр нажат.
Трансформаторы, которые мы видим на опорах в старых кварталах являются понижающим типом. Они понижают напряжение до уровня, который мы можем использовать в наших домах. Большинство трансформаторов, используемых в электронике, также являются понижающими. тип.Они понижают входящее напряжение 120 вольт до уровня, используемого электроникой. оборудование.
ВЫКЛЮЧАТЕЛЬ
Выключатель a — это механическое или электрическое устройство, которое открывает или закрывает цепь. Коммутацию также можно назвать замыканием или размыканием цепи. Есть много разных типов переключателей. ИНЖИР. 31 показывает поворотный переключатель. Другие типы переключателей — тумблерные, скользящие, кулисные и прецизионные, фиг. 32.
РИС. 31.Поворотный переключатель с двумя деками. Каждая колода имеет несколько дворников.
которые соединены или механически соединены с вращающимся валом.
РИС. 32. Вышеуказанные переключатели показывают основные типы, используемые в промышленности и
их символы.
Замыкание переключателя называется замыканием цепи. Открытие выключатель называется разрывом цепи. Такие термины, как однополюсный, двойной бросок, прерывание перед включением используются при переключении. На рис. 33 показаны некоторые из эти формы символов.
РИС. 33. Общие условия переключения.
Переключатели обозначаются буквой «s». Чтобы купить switch мы должны указать тип переключателя, напряжение и ток. Информация о переключателе представлен на фиг. 34. Символ переключателя должен быть нарисован вместе с переключателем. в нормальном положении. В примере на фиг. 34, переключатель нормально открытого типа.
АККУМУЛЯТОР
Батарея — это источник постоянного тока, состоящий из одной или нескольких ячеек.Ссылаться на фиг. 35. Эти клетки будут преобразовывать химическую энергию в электрическую. энергия. Батареи содержат источник питания для большей части наших портативных электронное оборудование. Калькуляторы, транзисторные радиоприемники и фонарики — это некоторые из используемых вами устройств с батарейным питанием. Батареи есть рассчитаны в вольтах и амперах.
РИС. 34. Значок переключателя с необходимой информацией.
РИС. 35. A, B, C — Одноэлементные батареи. D — многоэлементный аккумулятор.
Символы батареи дополняются информацией, показанной на фиг. 36. Длинная линия на символе указывает на положительную сторону, но знак «+» обычно добавляется для дальнейшего пояснения.
РИС. 36. Символ батареи со справочной информацией.
АНТЕННА
Антенны также могут называться антеннами. Антенны используются для приема или передавать излучающие волны. Есть разные типы антенн, поэтому вы будете использовать разные символы для обозначения использования каждого из них, РИС.37.
РИС. 37. Типы антенн и соответствующие символы.
ПРЕДОХРАНИТЕЛЬ
Защитные устройства используются для защиты электронного оборудования. Некоторый из них предохранители. Предохранитель обычно состоит из короткого отрезка провода. или металл, который отделяется, когда ток превышает заданные пределы, ИНЖИР. 38. Предохранители указаны в амперах. Достаточный ток вызывает нагрев в цепь, которая перегорит или оплавит предохранительный провод. Люди обычно звонят это перегоревший предохранитель.Если бы не предохранители в цепи, электроника оборудование будет повреждено и потребует гораздо больших затрат на ремонт, чем замена предохранитель.
ВЫКЛЮЧАТЕЛЬ
Автоматический выключатель — еще один компонент, используемый для защиты электрооборудования, ИНЖИР. 39. В отличие от предохранителя, автоматический выключатель размыкает цепь с перегрузкой. не повреждая себя. Нагрев контура вызовет его размыкание. потом как только температура вернется в нормальный рабочий диапазон, контур могут быть повторно закрыты.Автоматические выключатели защищают наши дома. Большинство автоматических выключателей работают за счет термической перегрузки, но некоторые используют магнитную перегрузку.
РИС. 38. A — Предохранитель общего типа. B — плавкий предохранитель. C — символ предохранителя, обозначающий
предохранитель на 1/2 ампера.
РИС. 39. A — Стандартный автоматический выключатель с ручным управлением. B — тепловая перегрузка
символ автоматического выключателя. C — Обозначение магнитной перегрузки со ссылкой.
обозначение и номинал усилителя.
КРИСТАЛЛ
Кристалл представляет собой тонкую пластину кварца, фиг.40. Он построен с предустановкой толщину, поэтому он будет вибрировать с определенной частотой при подаче напряжения. Он используется в качестве элемента управления частотой в радиочастотных генераторах. Каналы гражданского радио контролируются кристаллами.
РИС. 40. Кристалл и символ с обозначением. Это 250 килогерц
кристалл. Герц (Гц) означает частоту или количество циклов в секунду. Этот кристалл
циклов 250 000 раз в секунду.
ОСЦИЛЛЯТОР
Генераторы вырабатывают переменный ток.В радиочастотах переменный ток может составлять от тысяч до миллионов циклов на второй. Осциллятор — это отправная точка для радиопередачи. Один стиль осциллятора показан на фиг. 41.
РИС. 41. Осциллятор и символ.
ФИЛЬТР
Фильтр — это компонент, предназначенный для отделения полезных сигналов от нежелательных. сигналы или частоты. Фильтры используются для подавления определенных полос частот, легко передавая другие.Три категории фильтров бывают: высокочастотный, низкочастотный и полосовой. High-pass позволит только высокий частота прохождения. Низкочастотный пропускает низкие частоты. Band-pass позволит диапазон частот, вырезая те, что на высоких и низкие концы.
Фильтры бывают разных типов. См. Один тип кузова на фиг. 42.
РИС. 42. Фильтр и символ.
ТРУБКА
Хотя лампы заменяются полупроводниковыми, некоторые из них все еще в использовании.Лампы контролируют поток электронов во многом так же, как диоды и транзисторы. делать. Они могут усиливать, как транзисторы, и выпрямлять, как диод. ИНЖИР. 43 показаны элементы символов трубок. Используя эти элементы, вы можете создавать полные символы устройства, фиг. 44. Трубки намного больше, чем их полупроводники. аналоги.
РИС. 43. Детали электронных ламп в символическом представлении.
РИС. 44. A — Простейший тип лампы — выпрямитель. B — Триод с подогревом
катод.C — пятиэлементная трубка с тремя решетками. D — электронно-лучевая трубка.
символически показано.
Они выделяют больше тепла во время работы. Эта температура требует компонент большего размера, чтобы тепло могло рассеиваться. Большинство трубок подключены в схему, вставив в патроны для трубок, РИС. 45. Это позволяет их легко заменить и проверить.
РИС. 45. A — Телефонная трубка. B — розетка с ключом. Примечание: центральная направляющая
штифт позволит симметричному соединению поместиться только в одном положении.C — выпрямитель.
РАЗЪЕМ
Разъем — это любое устройство на конце провода или кабеля, позволяющее оборудованию быть подключенным к другому оборудованию или отключенным от него.
Существует много типов разъемов, но мы используем лишь несколько символов. Видеть ИНЖИР. 46.
РИС. 46. А, Б — разъем распределительного щита. C, D — разъем Phono. E — терминал
блокировать. F, G — разъем печатной платы. H, I — разъемы блока питания.
КАБЕЛЬ, ПРОВОДНИК ИЛИ ПРОВОД
Кабель может называться проводником или проводом. Он бывает разных стили для конкретных целей. Показаны типы кабелей и их обозначения. на фиг. 47.
РИС. 47. A — Коаксиальный кабель с символом. B — витая пара с экраном.
C — Коаксиальные вилки и кабель.
ВХОДНЫЕ И ВЫХОДНЫЕ УСТРОЙСТВА
Электронным системам требуется вход и выход для завершения функция.Входами могут быть микрофоны или записывающие головки. Выходы могут быть колонки или наушники, фиг. 48. Каждый компонент обозначен символ и условное обозначение.
Микрофон — это электроакустический преобразователь, реагирующий на звук. волн и подает на усилитель по существу эквивалентные электрические волны. Громкоговоритель излучает в воздух акустическую мощность, по существу такая же форма волны, как и у электрического входа.
РИС.48. A — Обычный микрофон. B — чтение, запись и стереомагнитный
ленточные головки. C — наушники. D — динамик или громкоговоритель. Каждый компонент
показан с символом и условным обозначением.
ИНДИКАЦИОННЫЕ, ЭКСПЕРИМЕНТАЛЬНЫЕ И СИГНАЛЬНЫЕ СВЕТИЛЬНИКИ
Фары выполняют в электронике разные функции. Их можно использовать как индикаторные огни. См. Фиг. 49. Эти огни обычно указывают такие вещи, как «питание включено», «температура слишком высока» или некоторая информация, которую необходимо указать.
РИС. 49. Контрольные лампы и сопутствующие символы. Обратите внимание на светодиодную лампу.
ОСВЕЩЕНИЕ
Светильники для площадей — это огни, которые используются для освещения наших домов и дворов, ИНЖИР. 50. Лампы, которые загораются на панели управления, так что счетчики и датчики можно прочитать, называются светящимися огнями. Они такие же, как и площадь горит, но обычно меньше по мощности.
РИС. 50. Типовые светильники. A — флуоресцентный.B — в луче света. C — соответствующий
символ. «DS» — рекомендательное письмо.
СЧЕТЧИК
Измерители используются для отображения уровней тока, частоты, скорости, температуры, время и другая информация. Примеры счетчиков и их обозначений: показанный на фиг. 51.
РИС. 51. A — Три типа счетчиков. B — символы для стандартных счетчиков.
ВРАЩАТЕЛЬНОЕ ОБОРУДОВАНИЕ
Многие из наших чертежей электроники включают двигатели, генераторы и их схемы управления.
ДВИГАТЕЛЬ
Двигатель — это машина, преобразующая электрическую энергию в механическую. энергия. Обычно он создает вращающую силу, вращая приводной вал. Двигатели используются для привода звукового оборудования: фонографов, магнитной ленты. плееры, охлаждающие вентиляторы и многие другие приложения, фиг. 52.
РИС. 52. А — Электродвигатель. B — символ электродвигателя и ссылочная буква.
C — Двигатель, который может работать как комбинированный двигатель-генератор.
ГЕНЕРАТОР
Генератор — это вращающаяся машина, преобразующая механическую энергию в электрическая энергия, фиг. 53. Может использоваться также для преобразования постоянного тока. напряжение в переменный ток нужной частоты и амплитуды.
РИС. 53. Генератор и условное обозначение с условным обозначением.
ВОЗВРАТ ЦЕПИ
Для возврата схемы используются три символа.Они земля земля, заземление шасси и символы общего заземления. Земля заземления, фиг. 54А, есть используется для возврата цепи непосредственно на землю. В цепях переменного тока будет использоваться символ заземления. Основания шасси, фиг. 54B, используются для обозначения цепи, которые возвращаются в раму или шасси оборудования. Авто хороший пример наземного блока шасси. Общая земля, фиг. 54C и D используются для отображения доходов с одинаковым потенциалом. Этот потенциал не обязательно быть нулем.Общие точки соприкосновения иногда называют авиакомпанией.
РИС. 54. A — символ заземления. B — символ заземления корпуса. C — общий язык
символ. D — символ общего заземления с модификатором, который сделает его общим.
к остальным — 1 источник 5V рисунка.
ЗНАЧЕНИЯ КОМПОНЕНТОВ
Есть предпочтительные способы записи величин в таких единицах, как Ом, вольт или генри. Значения должны быть короткими и удобочитаемыми. Составная часть значения выражены, как показано на фиг.55.
РИС. 55. A — Как записать значения резисторов. Символ K будет написан от руки.
в столицах. B — Как записать значения конденсаторов и катушек индуктивности.
СТАНДАРТЫ
Все символы и условные обозначения в этом разделе соответствуют со стандартом. Два основных стандарта:
USAS Y32.16 Справочные обозначения электрических и электронных деталей и оборудование.
USAS Y32.2 Графические символы для электронных и электрических схем.
Военные стандарты учитываются при заключении военных или государственных контрактов. вовлечены.
МОДИФИКАТОРЫ СИМВОЛОВ
Есть много вещей, которые мы можем сделать с основным символом, чтобы изменить его значение. Модификаторы используются для изменения значения компонента. Вы видели некоторые модификаторов, использованных ранее в этом разделе. Обратите внимание на некоторые дополнительные модификаторы и их использование на фиг. 56.
Полярность. Используется, чтобы указать, в каком направлении установлено устройство схема.
РИС. 56. Модификаторы, используемые для добавления смысла к основным символам.
ВОПРОСЫ НА ОБЗОР
1. Какую функцию выполняет резистор?
2. Что регулирует величину сопротивления?
3. Какая фраза вам напоминает транзистор типа NPN?
4. Используя цветовую кодировку резистора (приложение), укажите значение для следующие резисторы.
а. коричневый черный коричневый серебристый
г.оранжевый зеленый оранжевый золото
г. коричневый зеленый оранжевый серебристый
г. оранжевый черный зеленый золото
5. Укажите следующие цвета:
а. 270 ± 5%
г. 2400 ± 10%
г. 4,7 К ± 10%
г. 5,6 К ± 5%
e. 0,18M ± 5%
ф. 1,1 млн ± 5%
6. Объясните, как работает реостат.
7. Конденсаторные блоки _________ (AC, DC).
8.Какую информацию необходимо указать при покупке конденсатора?
9. Что делает катушка?
10. Сколько символов используется для обозначения соленоидов?
11. Какие две секции трансформатора?
12. Какие функции выполняют реле?
13. Что означает размещение между двумя настраиваемыми символами?
14. Какой источник тока обеспечивает батарея?
15. В чем основное отличие предохранителя от автоматического выключателя?
16.Какие два конца диода?
17. Как используются стабилитроны?
18. Какие компоненты заменены?
19. Что для вас значит, когда указано — разъем имеет ключ?
20. Что значит правильно указать резистор? Список о три идеи.
ПРОБЛЕМЫ
PROB. 1. Нарисуйте символ резистора и предоставьте всю идентифицирующую информацию.
PROB.2. Потренируйтесь рисовать символ трансформатора. Добавьте символ крана в центре. Предоставьте всю необходимую информацию.
PROB. 3. Используя свой шаблон символа, создайте следующие компоненты: Обозначьте каждый из них соответствующим условным обозначением.
1. Транзистор (PNP).
2. Рамочная антенна.
3. Диод (стабилитрон).
4. Потенциометр используется как реостат.
5. Трансформатор (железный сердечник)
6.Резистор с отводом.
7. Однопереходный транзистор.
8. Предохранитель.
9. Шасси заземлено.
10. Коаксиальный кабель.
11. Батарея многоэлементная.
12. Автоматический выключатель.
13. Индуктор.
14. Конденсатор (переменный).
15. Переключатель (механический) (поворотный).
16. Спикер.
17. Микрофон.
18. Головка подборщика.
19. Мотор.
20. Транзистор (NPN).