Определить сечение провода: ? , » elektri4estwo.ru

Содержание

Расчёт сечения провода по диаметру

Основным и самым распространённым способом передачи электроэнергии к потребителю является электрический провод и электрический кабель. Электрический провод и электрический кабель – это электротехническое изделие, состоящее из металлической токопроводящей жилы или нескольких жил. Каждая жила помещена в электрическую изоляцию. Все изолированные жилы провода или электрического кабеля помещаются в общую изоляцию.

В настоящее время промышленностью выпускаются самые разнообразные электрические провода и электрические кабели. Кабели и провода в основном бывают медные и алюминиевые, т.е. состав жил кабеля или провода – медь или алюминий.

Электрические кабели и провода бывают одножильные и многожильные. Жила кабеля или провода может быть как однопроволочная (монолитная), так и многопроволочная. Жилы изготавливаются в основном круглой формы, однако нередко у электрических кабелей большого сечения форма многопроволочной жилы может быть выполнена в виде треугольника.

Сегодня мы расскадем как сделать расчет сечения провода по диаметру.

Маркировка электрического кабеля (провода)

Существует стандартный ряд сечений жил проводов и электрических кабелей, которые применяются. Это 1мм2; 1,5мм2; 2,5мм2; 4мм2; 6мм2; 8мм2; 10мм2 и т.д. Тип, сечение и количество жил указывается либо на бирке, идущей в комплекте с кабелем или проводом, либо на самом изделии. Например, маркировка часто наносится на общую изоляцию кабеля и провода. Также технические данные электрических проводников указываются и в паспорте изделия.

Допустим, в наличии имеется кабель ВВГнг 3х2,5. Расшифровывается данная маркировка достаточно просто: кабель медный с ПВХ изоляцией, в ПВХ оболочке, не горючий, количество жил равно трём, сечение каждой жилы равно 2,5мм2. Если в начале маркировки будет стоять буква «А», т.е. тип кабеля будет АВВГ, то это значит, что жилы у кабеля алюминиевые.

По маркировке провода также можно узнать не только тип самого провода, но также количество и сечение токопроводящих жил. Например, провод ПВС 3х1,5. Расшифровка следующая: провод с ПВХ изоляцией и в ПВХ оболочке, соединительный. Количество жил также три, а сечение каждой жилы равно 1,5мм2.

Сечение проводника

У каждой жилы провода и кабеля своё сечение. Оно может быть как совсем малым (1мм2 и менее), так и очень большим (95мм2 и более). Сечение жилы влияет на способность длительно и кратковременно выдерживать электрический ток определённой величины. Чем больше сечение жилы, тем больший ток она способна выдержать в течение практически неограниченного времени.

Неправильно выбранное сечение при проектировании может в дальнейшем стать причиной перегрева проводника, повреждения (разрушения) его изоляции в процессе большого нагрева, вследствие чего может произойти короткое замыкание и, как следствие, возникновение возгорания и пожара.

Несоответствие сечения

Не всегда причиной перегрева кабеля или провода в процессе эксплуатации может быть неправильный расчёт сечения. Как часто бывает на практике, причина очень проста. Не все производители кабельно-проводниковой продукции добросовестно относятся к качеству выпускаемых изделий. Дело в том, что очень часто сечение выпускаемых кабелей и проводов фактически занижено, т.е. не соответствует заявленному значению.

Чтобы избежать покупки электрического кабеля или провода с заниженным сечением, необходимо сначала визуально оценить его фактическое сечение. Практически любой специалист в области электрики способен «на глаз» определить сечение проводника. Но когда этого недостаточно, то профессионал может самостоятельно рассчитать площадь поперечного сечения электрического проводника. Расчёт сечения производится по обычной математической формуле:

S = π*D2/4 – формула №1

или

S = π*R2формула №2

где: π – математическая постоянная, которая всегда равна примерно 3,14;

        R – радиус провода;

        D – диаметр провода.

Радиус равен половине диаметра:

R = D/2 – формула №3

Расчёт фактического сечения электрического проводника

Зная формулу расчёта сечения проводника, можно рассчитать его фактическое значение и узнать, насколько занижена или завышена (что бывает редко) производителем заявленная величина сечения.

Однопроволочная (монолитная жила)

Для того чтобы самостоятельно рассчитать сечение жилы провода или кабеля, необходим штангенциркуль и возможно калькулятор.

Для начала необходимо с жилы провода или с жилы электрического кабеля снять слой изоляции, чтобы оголить саму жилу. Затем штангенциркулем измеряется диаметр жилы. Т.к. жила монолитная, то замер будет всего лишь один. После замера диаметра жилы, необходимо подставить значение диаметра (радиуса) в одну из вышеуказанных формул.

Пример №1

Допустим, на кабеле или проводе заявленное сечение жилы 2,5мм2. При замере диаметр жилы оказался равен 1,7мм. Подставляя значение в формулу №1, получим:

S = 3,14*1,72/4 = 2,26865 ≈ 2,3мм2

Расчёт по формуле №1 показал, что сечение жилы от стандартного значения занижено на 0,2мм2.

Теперь рассчитаем фактическое значение сечения по формуле №2, но для начала определим по формуле №3 радиус:

R = 1,7/2 = 0,85мм

Подставляем значение радиуса в формулу №2 и получаем:

S = 3,14*0,852 = 2,26865 ≈ 2,3мм

Расчёт по второй формуле оказался аналогичным расчёту по первой. Т.е. сечение жилы кабеля оказалось заниженным на 0,2мм2.

Пример №2

Допустим, диаметр жилы при измерении штангенциркулем оказался равен 1,8мм. Подставляя данное значение в формулу №1, получаем:

S = 3,14*1,82/4 = 2,5434 ≈ 2,5мм2

Т.е. фактическое сечение составило 2,5мм2, что в принципе соответствует стандартной величине.

Многопроволочная жила

Если определять сечение многопроволочной жилы, то нельзя производить замер диаметра по методу монолитной жилы, т.к. расчёт будет с большой погрешностью. Для определения сечения многопроволочной жилы, необходимо произвести замер диаметра каждой отдельной проволоки в жиле.

Если общее сечение жилы достаточно велико, то замер каждой проволоки вполне возможен, т.к. диаметр реально замерить штангенциркулем. Но если многопроволочная жила имеет малое сечение, то определить диаметр каждой проволоки очень проблематично ввиду тонкости проводника.

Как узнать сечение провода: по диаметру, формула измерения

Без проводки и кабелей не обходится ни один частный дом, квартира и производственное помещение. Они обеспечивают их электроэнергией и позволяют работать всем стационарным приборам. Электромонтажные работы по прокладке проводки невозможны без четкого плана и согласования типов используемых кабелей. Одной из основных их технических характеристик является сечение. Следует подробнее рассмотреть, что это такое, как узнать сечение провода и чем отличается сечение от диаметра.

Что такое сечение кабеля

Сечение кабеля — это площадь среза проводниковой жилы кабеля без учета обмотки и изоляционного слоя. Обычно все кабеля и провода имеют круглый срез и одну жилу. В этом случае площадь сечения можно узнать по формуле площади круга. Если же токоведущих жил несколько, то сечением будет сумма сечений всех проволок и жил.

Ровный разрез провода, который представляет собой сечение

К сведению! Величина площади сечения во всех странах подлежит стандартизации. Государства бывшего СССР и Европы обладают одними и теми же стандартами. В России в качестве регламентационного документа выступает ПУЭ (Правила устройства электроустановок).

Площадь круга — это и есть сечение

Сечение кабеля выбирают исходя из предполагаемой нагрузки сети. Делается это с помощью специальных таблиц — «Допустимые токовые нагрузки на кабель». Если нет ни малейшего желания разбираться с этими цифрами, то просто стоит уяснить, что для обычных домашних розеток подходят кабеля из меди с сечением 1,5-2,5 мм², а для осветительных приборов — 1,0-1,5 мм².

Таблица соотношения диаметра и сечения

Ввод однофазной сети для обычной квартиры на две или три комнаты осуществляется магистральным кабелем с сечением 6 мм².

Чем отличается сечение от диаметра

Поперечное сечение в форме круга обязательно должно иметь диаметр. Само по себе сечение — это разрез кабеля или любого другого предмета под прямым углом к продольной оси. Диаметр же представляет собой хорду, то есть отрезок, который соединяет две точки на окружности и проходит точно через ее центр. Диаметр есть не только у окружности или круга, но и у сферы, шара. Общего у этих величин мало, так как одна определяет расстояние, а другая — площадь.

Площадь такого кабеля рассчитать самостоятельно сложно

Обратите внимание! Сечение всегда используется на практике для объемных тел, а кабель или провод — объемные предметы, которые чаще всего изготавливают в виде длинного цилиндра (если разделить его на части), который обладает поперечным сечением. Диаметр его также можно определить, но сложилось так, что указывают именно площадь.

Варианты по определению

Способов определить сечение кабеля несколько. Необходимость в этом обычно возникает при проведении электромонтажных работ, когда требуется проверить имеющийся проводник на соответствие стандартам применения к конкретной сфере. Например, человек может делать проводку, для которой нужен кабель с сечением не менее 1,5 мм. Ему необходимо будет проверить свой провод на соответствие этим условиям, так как в противном случае возможны перегрев кабелей и соединений, выход из строя бытовых приборов и даже пожар.

Перед замером следует убрать изоляционный слой

Важно! Если проводник обладает одной жилой, то измерения производятся непосредственно на нем самом. Из бухты провода необходимо выпутать один проводок, очистить его от изоляции и только потом проводить измерения.

Формула площади круга

Для вычисления площади сечения круглого провода через радиус необходимо помножить его квадрат на число Пи. На практике гораздо проще определить диаметр и поделить его на 2. Исходя из способов выполнения замера, можно выделить следующие методы вычисления сечения.

По диаметру с помощью штангенциркуля или микрометра

Самый популярный способ измерения заключается в определении диаметра с помощью штангенциркуля или микрометра. Подобные приборы позволяют максимально точно осуществить замер диаметра, а затем умножить его половину на число Пи.

Для работы нужен только провод и сам прибор. Процесс выглядит следующим образом:

  1. Переводят фиксатор микрометра в положение «Открыто».
  2. Откручивают ручку устройства на расстояние, которое будет достаточным для вставки проводника между щупами.
  3. Вставляют провод в щупы и закручивают его специальной ручной до характерного для прибора треска.
  4. Фиксируют показания диаметра на соответствующей шкале.
  5. Раскручивают ручку и вынимают провод.

Существенное преимущество данного метода измерений заключается в том, что он позволяет определить диаметр и, как следствие, сечение любого круглого проводника. При этом он может быть подключен к сети и активно работать в том или ином электрическом приборе.

Использование штангенциркуля очень удобное

Обратите внимание! Минус способа в том, что приборы достаточно дорогие, и покупать их для одного-двух использований нет смысла.

По диаметру с помощью карандаша или ручки

Этот метод основан на использовании любого тонного предмета, на который можно намотать жилу провода. Обычно в качестве такого предмета используется ручка, карандаш или фломастер. Провод наматывается на него в виде спирали с максимально плотно сжатыми кольцами. Для исключения неточностей изоляцию снимают по всей длине исследуемого проводника.

Все обмотки обладают одной шириной и толщиной, поэтому необходимо сжать их как можно сильнее и определить общую длину с помощью линейки или сантиметра. Далее эта величина просто делится на количество колец обмотки. Чем больше будет витков, тем более точный результат получится в итоге.

Преимущество такого подхода в том, что для его применения не нужны вообще никакие специальные измерительные инструменты, кроме обычной линейки. Если говорить о недостатках, то они заключаются в низкой точности измерений и более долгом процессе подготовки к ним.

Обмотка вокруг карандаша

Важно! Если в предыдущем случае все можно было сделать за пару секунд, то тут придется обеспечить максимальное прилегание всех витков друг к другу. Также работает это только для тонких проводов из меди. Для алюминия это не подходит.

По диаметру с помощью линейки

Данный способ подходит для толстых проводов. Чем тоньше жила, тем меньшей точности результат в итоге получится. Диаметр может быть определен с помощью нити или бумаги. Второй метод более точный.

Пошаговый процесс замера:

  1. Оторвать небольшой кусок обычной бумаги и загнуть ее с одной стороны. Лучше всего брать тонкую.
  2. Взять бумажку и приложить ее к проводнику.
  3. Обернуть его листом по окружности до того, как два конца бумажки не коснутся друг друга.
  4. Загнуть второй конец в месте соединения.
  5. Приложить листик к линейке и измерить расстояние от одного загнутого края до другого.
  6. Высчитать диаметр через полученную длину окружности, разделенную на два числа Пи.
  7. Применить стандартную формулу.
Искать диаметр можно с помощью линейки

Метод подходит для алюминиевых жил достаточной толщины, которые проблематично сгибать. Недостаток заключается в очень низкой точности измерений.

По диаметру с помощью таблицы

Некоторые интересуются, как определить сечение кабеля по диаметру с помощью таблицы. Данный подход используется для кабелей и проводов стандартного сечения. Например, человек любым из вышеописанных способов узнал диаметр. Совсем не обязательно пользоваться формулами. Достаточно посмотреть в представленную таблицу и определить сечение без расчетов.

Отношение диаметра и сечений

По мощности или току

Если человек знает проводящие свойства провода, то с их помощью также можно определить сечение. Для этого необходимо узнать либо силу тока, либо мощность. Далее остается найти значение в таблице и сопоставить ему сечение.

Таблица для определения сечения на основе тока и мощности

Важно! Стоит помнить, что для медных и алюминиевых жил результат будет разным.

По формулам

Как уже было сказано, есть ряд простых формул, позволяющих определить сечение проводника. Точнее это одна формула, но в одном случае используется радиус круглого провода, а во втором — диаметр. Для определения необходимо:

  1. Измерить диаметр провода (его толщину) любым из описанных выше способов. Рекомендуется использовать штангенциркуль.
  2. Записать полученное значение диаметра.
  3. Высчитать площадь сечения с помощью формулы: S = π × R², где R — это радиус (половина диаметра), π — это число Пи, которое приблизительно равно 3,1415.
Аналогичная таблица для медных проводников

Важно! Можно воспользоваться и другой формулой, где вместо радиуса фигурирует половина диаметра (D/2), которую возводят в квадрат. Результат будет аналогичен, поэтому лучше заранее разделить диаметр на 2.

Как определить на глаз

Опытные электрики могут определять сечение кабеля на глаз. Каждый проводник ими может быть легко идентифицирован по своему виду и соответствующим этому виду характеристикам. Понятно, что, например, ВВГ провода могут быть только определенных сечений, которые отличаются друг от друга с некоторым шагом. Это регламентируется техническими условиями изготовления или государственным стандартом.

Если же опыта и подобных знаний у человека нет, то определить сечение на глаз помогут точный и развитый глазомер и память. Если мастер хоть раз видел кабель с площадью сечения 1 мм², то, запомнив его размеры, он может мысленно или физически сравнивать другие проводники с ним и делать выводы о том, насколько сильно он отличается в большую или меньшую сторону. Помогает это тогда, когда провода приблизительно одинаковы.

Обратите внимание! Если имеется проводник с сечением 0,5 мм² и толстый кабель размерами площади 5 мм², то определить размеры будет тяжело. Кроме того, профессионалы так не работают. Это опасно и чревато негативными последствиями, связанными с неправильным выбором.

Измерять сечение на глаз — не самая лучшая затея

В материале было рассмотрено, как проверить сечение кабеля штангенциркулем и некоторыми другими способами. Мерить эту величину с помощью специальных приборов — одно из самых правильных решений, так как только они дают возможность определять показатель максимально точно.

Как определить сечение провода. Полный комплекс электромонтажных работ любой сложности под ключ! Услуги электрика — своевременно, качественно, оперативно.

Капитальный ремонт квартиры или дома – это не только обновление дизайна интерьера, но и замена старой электропроводки. Одни доверяют электрику исключительно профессионалам, другие предпочитают делать всю работу самостоятельно. Как определить сечение провода? Ответ на этот вопрос вы найдете в нашей статье.

Все что связано с электрическим током достаточно серьезно, ошибки могут привести к таким последствиям как замыкание, пожар, порча имущества. Если, к примеру, выбрать недостаточное сечение, то провод в скором времени начнется перегреваться, что приведет к разрушению изоляционного слоя. Рассмотрим данный вопрос подробнее.

Последовательность определения сечения по диаметру:

Чаще всего кабель состоит из двух-четырех жил. Каждый отдельный элемент изолирован специальным материалом. Надрежьте кабель и обратите внимание на жилы. Как правило, все они имеют одинаковый диаметр. Единственная жила, отличающаяся по толщине от других, исполняет роль заземлителя.

Снимите верхнюю изоляцию и при помощи штангенциркуля определите диаметр жилы. Далее необходимо вычислить площадь круга (места надреза). Для этих целей используют стандартную формулу: Sкр= 3,14d/4= 0,785 d — Площадь круга (S) и есть сечение провода. А диаметр (d) вы уже измерили штангенциркулем.

К примеру, диаметр провода составляет три миллиметра. Наша задача определить его сечение. Подставляем значения в готовую формулу и получаем следующее: 3мм*3мм*0,7854= 7,0686 мм. Полученную цифру округлим до 7. Итак, мы определили сечение жилы с диаметром в три миллиметра. Как видите, ничего сложного в этом нет.

Выше описанные расчеты сделаны для одножильного провода. Если при вскрытии оболочки кабеля вы обнаружили несколько жил, тогда первым делом необходимо сосчитать количество элементов. Для облегчения задачи распушите содержимое провода.

Последовательность действий:

— Определение диаметра отдельно взятой жилки.
— Нахождение площади сечения вышеуказанного элемента.
— Определение площади сечения провода путем сложения площади каждой жилки.

Наш пример. Имеется многожильный провод, количество жил которого составляет десять штук, диаметр отдельного взятого элемента – 0,4 мм. Находим сечение одной жилы по знакомой нам уже формуле: 0,4мм*0,4мм*0,7854= 0,125664 мм. Полученный показатель округляем до 0,15 мм. Теперь необходимо вычислить площадь многожильного провода. 0,15 мм*10= 1,5 мм.

Если жил в проводе слишком много, имеется еще один вариант вычисления конечного показателя. Для этого просто замеряют диаметр жил, собранных в тугой пучок. Единственный нюанс – между мелкими проводками в любом случае остаются воздушные зазоры, которые могут дать искажения в конечном результате. Дабы исключить возникновение каких-либо ошибок, полученную цифру (сечение) умножают на знакомое вам значение – 0,7854.

Наш пример. Итак, по последним вычислениям у нас получился кабель с диаметром в 1,5 мм. Вычисление: 1,5мм*1,5мм*0,7854=1,76715, после округления — 2 мм.

Итак, зная сечение провода, можно определить какую силу тока он выдерживает. Соответственно значения у провода с медными или алюминиевыми жилами будут различными. Подведем итоги: для определения сечения конкретного провода необходимо знать количество жил, измерить диаметр каждого элемента, вычислить площадь их сечения. Для выполнения работы понадобится штангенциркуль, микрометр или канцелярская линейка. Намотайте жилку на ручку таким образом, чтобы витки были плотно прижаты друг к другу. Далее измерьте расстояние общей намотки и разделите на количество витков. В результате вы получите диаметр жилы в миллиметрах.

Методы определения сечения проводов электрических сетей

В данной статье будут рассматриваться различные методы определения сечения проводов линии электрических сетей, на примере расчета линии электропередач напряжением 35 кВ.

Содержание

Исходные данные:

Схема сети на напряжение 35 кВ изображена на рис.1.

  • Время использования максимальной нагрузки для всех потребителей Тmax = 2500 ч и Тmax = 6000 ч;
  • Сеть выполняется сталеалюминевыми проводами, расстояние между проводами 3000 мм, расположенные – по треугольнику;
  • Коэффициент мощности cosϕ = 0,8;
  • На схеме, нагрузки выражены в МВт и Мвар, а длины участков в км. Полная мощность записана в виде комплексной полной мощности: Ṡ = P+jQ.

Например, для первого участка комплексная полная мощность равна: Ṡ = p1 + jq1 = 2 +j1,5.

При этом полная мощность определяется как модуль комплексной полной мощности:

Решение:

1. Допустимая потеря напряжения, принята согласно [Л1, с.119], составляет:

2. Определяем мощности по участкам и результаты наносим на схему рис.1:

Так как величина реактивного сопротивления линии х0 на 1 км изменяется в зависимости от сечения провода незначительно. Согласно [Л1, с.143] величина реактивного сопротивления составляет:

  • для воздушных линий в пределах от 0,36 до 0,46 Ом/км;
  • для кабелей напряжением 6-10 кВ – от 0,06 до 0,09 Ом/км;
  • для кабелей напряжением 35 кВ – от 0,11 до 0,13 Ом/км.

Поэтому для упрощения расчетов, принимаем среднюю реактивность воздушной линии напряжением 35 кВ равную х0 = 0,4 Ом/км.

3. Определяем допустимую потерю напряжения, обусловленную реактивными сопротивлениями по формуле 6-35 [Л1, с.143]:

где:

  • Uн =35 кВ – номинальное напряжение сети;
  • х0 = 0,4 Ом/км – среднее реактивное сопротивление воздушной линии на напряжение 35 кВ;
  • Q – реактивная мощность участка, МВАр;
  • L – длина участка, км.

4. Определяем допустимую потерю напряжения, обусловленную активной составляющей нагрузки при заданной допустимой потери напряжения ΔUдоп. = 2,8 кВ по формуле 6-36 [Л1, с.143]:

1.1. Определяем сечение провода на всей длине линии по формуле 6-37 [Л1, с.144]:

где:

  • P – активная мощность участка, МВт;
  • L – длина участка, км;
  • ρ = 0,028 Ом*мм2/м = 28 Ом*мм2/км – удельное сопротивление материала жилы при 20 °С (температура изготовления жилы) для алюминия [Л2, с.30].

Предварительно принимаем провод марки АС-70 для всей линии. Для данного провода активное и индуктивное сопротивление равно r0 = 0,421 Ом/км, x0 = 0,408 Ом/км; см. ГОСТ 839 таблица А.4 и РД 153-34.0-20.527-98 таблица П12 при среднегеометрическом расстоянии между проводами 3,0 м.

1.2. Определяем фактическую потерю напряжения по формуле 6-35 [Л1, с.143]:

1.3. Определяем фактическую потерю напряжения для провода АС-95, где: r0 = 0,314 Ом/км, x0 = 0,397 Ом/км:

2.1. Определяем коэффициент kр по формуле 6-39 [Л1, с.145]:

2.2. Определяем сечение проводов для каждого участка, по формуле 6-40 [Л1, с.146]:

2.3. Определяем активные и индуктивные сопротивления для выбранных проводов по ГОСТ 839 таблица А.4 и РД 153-34.0-20.527-98 таблица П12 при среднегеометрическом расстоянии между проводами 3,0 м:

  • АС-35: r0 = 0,777 Ом/км, x0 = 0,429 Ом/км;
  • АС-50: r0 = 0,595 Ом/км, x0 = 0,418 Ом/км;
  • АС-95: r0 = 0,314 Ом/км, x0 = 0,397 Ом/км;

2.4. Проверяем потерю напряжения по формуле 6-35 [Л1, с.143] с учетом выбранных марок проводов:

Рассмотрим условия выбора сечения линии, исходя из требования минимальных потерь мощности.

Условием минимальных потерь в линии является постоянство плотности тока на всех участках. Величину плотности тока, соответствующую минимуму потерь, определяют по допустимой потере напряжения ΔUaдоп., обусловленной активным сопротивлением.

3.1. Определяем плотность тока, соответствующая минимальным потерям по формуле 6-43 [Л1, с. 147]:

где:

  • P – активная мощность участка, МВт;
  • L – длина участка, км;
  • ρ = 0,028 Ом*мм2/м = 28 Ом*мм2/км – удельное сопротивление материала жилы при 20 °С (температура изготовления жилы) для алюминия [Л2, с.30];
  • ΔUaдоп = 1630 В — допустимая потеря напряжения, обусловленная активной составляющей нагрузки, рассчитанная ранее в данной статье.

3.2 Определяем рабочие токи в каждом участке по формуле [Л1, с.129]:

3.3. Определяем сечение проводов по формуле 6-44 [Л1, с.147]:

3.4. Определяем активные и индуктивные сопротивления для выбранных проводов по ГОСТ 839 таблица А.4 и РД 153-34.0-20.527-98 таблица П12:

  • АС-35: r0 = 0,777 Ом/км, x0 = 0,429 Ом/км;
  • АС-50: r0 = 0,595 Ом/км, x0 = 0,418 Ом/км;
  • АС-120: r0 = 0,244 Ом/км, x0 = 0,391 Ом/км;
  • АС-150: r0 = 0,204 Ом/км, x0 = 0,384 Ом/км;

3.5. Проверяем потерю напряжения по формуле 6-35 [Л1, с.143] с учетом выбранных сечений:

4.1. Определяем экономическое сечение проводов по участкам, согласно ПУЭ п. 1.3.25, с учетом что Тmax= 2500 ч:

где:

  • I – расчетный ток участков, А;
  • Jэк = 1,3 — нормированное значение экономической плотности тока (А/мм2) для неизолированных алюминиевых проводов выбираем по ПУЭ таблица 1.3.36, с учетом что время использования максимальной нагрузки Тmax= 2500 ч.

4.2. Определяем экономическое сечение проводов по участкам, согласно ПУЭ п. 1.3.25, с учетом что Тmax= 6000 ч:

где: Jэк = 1,0 — нормированное значение экономической плотности тока (А/мм2) для неизолированных алюминиевых проводов выбираем по ПУЭ таблица 1.3.36, с учетом что время использования максимальной нагрузки Тmax= 6000 ч.

4.3. Определяем активные и индуктивные сопротивления для выбранных проводов при среднегеометрическом расстоянии между проводами 3,0 м:

  • АС-35: r0 = 0,777 Ом/км, x0 = 0,429 Ом/км;
  • АС-70: r0 = 0,421 Ом/км, x0 = 0,408 Ом/км;
  • АС-150: r0 = 0,204 Ом/км, x0 = 0,384 Ом/км;
  • АС-185: r0 = 0,154 Ом/км, x0 = 0,377 Ом/км;

4.4. Проверяем потерю напряжения по формуле 6-35 [Л1, с.143] с учетом выбранных сечений:

5.1. Определяем затраты металла по каждому участку и результаты по вариантам сведем в таблицу 1. Данные о массе 1 км провода принимаем согласно ГОСТ 839 таблица А.4.

Таблица 1 – Затраты цветного металла

Как мы видим, наименьшие затраты металла получились во 2-м варианте, рассчитанном по методу минимальной затраты металла.

5.2. Определяем потери активной мощности на участках трехфазной линии с активным сопротивлением r0 по формуле 4-1а [Л1, с.74]:

5.3. Определяем время максимальных потерь (τ), исходя из коэффициента мощности cosϕ=0,8 и время использования максимальной нагрузки Тmax= 2500 ч и Тmax= 6000 ч, согласно рис.4.3 [Л1, с.78]:

  • для Тmax= 2500 ч – τ = 1600 ч;
  • для Тmax= 6000 ч – τ = 4500 ч.

5.4. Определяем потери электроэнергии по формуле [Л1, с.151]:

Результаты расчетов по всем вариантам заносим в таблицу 2.

Таблица 2 – Потери мощности и электроэнергии

Участок Варианты
1-й 2-й 3-й 4-й
Потери мощности, кВт
0-1 196 196 127 96
1-2 119 119 92 77
2-3 43,4 82 82 58
3-4 2 5 5 5
Итого: 360 401,8 306,9 236,5
Потери электроэнергии, кВт*ч 103
При τ = 1600 ч 576 643 491 378
При τ = 4500 ч 1620 1808 1381 1064

Минимальные потери получились в 3-м и 4-м вариантах, т.е. при расчетах, выполненных по методу минимума потерь и по методу экономической плотности тока.

Вывод:

Как видно из результатов расчета 1-й вариант, определенный по методу постоянного сечения вдоль линии, неприемлем по всем показателям. Что касается остальных вариантов, то в рассмотренном примере они по своим показателям близки друг к другу. Это объясняется прежде всего тем, что сечение проводов на последнем участке выбрано выше требуемого электрическими расчетами по механическим соображениям и поэтому в электрическом отношении использовано не полностью.

Методы определения сечения проводов электрических сетей по минимуму расхода проводникового материала и по минимуму потерь мощности дают более экономичные решения, нежели те, которые получаются при выборе одинакового сечения по всей длине линии [Л1, с.148].

Первый из упомянутых методов экономит капитальные затраты и соответствующие составляющие эксплуатационных расходов, зависящие от стоимости сооружения линии, и поэтому может применяться для потребителей с малым числом часов использования максимальной нагрузки и для промышленных нагрузок с малыми токовыми нагрузками при незначительных величинах времени потер.

Для потребителей с большим числом часов использования максимума и большими нагрузками целесообразнее пользоваться вторым методом (метод минимальной затраты металла), так как в этом случае прежде всего добиваются уменьшения составляющей эксплуатационных расходов, зависящий от потерь в линии.

Определение сечений проводов по экономическим плотностям тока, установленным ПУЭ, учитывают оба фактора (как экономию капитальных затрат, так и снижение потерь), поскольку экономическая плотность тока принимается в зависимости от времени использования максимальной нагрузки.

Вот почему метод определения сечений проводов по экономической плотности тока, как позволяющий обобщить все основные технико-экономические показатели производства и распределения электроэнергии, и являются основным для расчета сетей.

Однако при большой протяженности линии сечение проводов, выбранное по экономической плотности тока, может не обеспечить допустимой потери напряжения, что сделает необходимым повторный расчет. Чтобы избежать пересчета, предварительно определяют плотность тока jΔр, обеспечивающую допустимую потерю напряжения. Если окажется, что jΔр > jэ, то принимают сечение по экономической плотности тока, т.е. по jэ. В противном случае сечение выбирают по jΔр.

Значительное превышение выбранного сечения над экономическим свидетельствует о том, что необходимо применить для сети более высокое номинальное напряжение (например, 10 кВ вместо 6 кВ), либо прибегнуть к специальным методам снижения потерь напряжения, например, к компенсации реактивной мощности или к продольной компенсации.

Литература:

  1. Электрические сети энергетических систем. В.А. Боровиков. 1977 г.
  2. Справочная книга электрика. Григорьева В.И. 2004 г.

Всего наилучшего! До новых встреч на сайте Raschet.info.

Таблица сечения проводов по диаметру, разные методы замеров

Качество кабеля при монтаже проводки — самая важная составляющая успеха. Качественные провода производят по ГОСТу, но есть также изделия, выпущенные по ТУ с менее строгим контролем. В любом случае, будет нелишним проверить параметры кабеля вручную. Ведь жалобы потребителей на занижение сечения медной жилы встречаются весьма часто. Важно проверить добросовестность выбранного производителя: соответствует ли заявленное сечение реальному? Если вам нужно сравнить сечение провода и диаметр, таблица поможет сделать это быстро и просто. Ищите табличку в конце статьи.

Специалисты говорят, что если покупать не ГОСТовский кабель, то экономия на медном проводнике может составить от 10% до 40% от заявленного номинала. Если поверить недобросовестному производителю на слово, это может стоит вам серьезного ущерба — от сокращения срока эксплуатации проводки до пожара и выхода из строя дорогой техники.

Обязательно просите у продавца сертификат на кабельную продукцию. Проверяйте маркировку на изоляции, а не только на бирке и коробке. На оболочке также следует искать название завода-изготовителя.

В соответствии с требованиями ГОСТ 31996-2012 пространство между изолированными жилами должно быть заполнено. Поэтому даже визуальный осмотр разреза кабеля даст вам понять, насколько производитель ответственно относится к стандартам.

Чтобы определить сечение провода по диаметру, нужно сначала измерить этот самый диаметр.

Как измерить диаметр жилы микрометром

Есть несколько методов измерения диаметра жилы провода или кабеля:

  1. Микрометром;
  2. Штангенциркулем;
  3. Линейкой.

Эти методы расписаны в порядке убивания точности. Микрометр позволяет определять линейные размеры с точностью от 0,2 мкм. Для работы с проводкой подойдут гладкие, проволочные, резьбомерные и цифровые микрометры. Ниже вы увидите фото и основные части микрометра для измерения жил кабеля.

1 — опорная стойка для фиксации проводника;

2 — винт;

3 — неподвижная гайка для замеров;

4 — неподвижный стебель со шкалой;

5 — измерительный барабан;

6 — трещотка.

Как определить сечение провода с помощью микрометра? Первым делом мы всегда измеряем диаметр жилы, а принцип измерения довольно прост. Сначала проверяется точность прибора путем закручивания винта и простого контроля: совпадает ли ноль барабанной шкалы с горизонтальной чертой на стебле. В тех случаях, когда метки не совпадают, измеритель регулирует стебель специальным ключом из комплекта микрометра. Далее приступаем к подготовительному этапу — выкручиваем винт до размера, превышающего диаметр провода. Помещаем очищенную от изоляции жилу в зазор между неподвижным упором и винтом. Зажимаем винт трещоткой, слушаем количество щелчков: закрутка микровинта должна остановиться после трех щелчков. Далее мы должны снять показания по трем шкалам: на стебле и барабане. Штрихи сверху шкалы показывают полное число миллиметров, половина второй шкалы — это еще полмиллиметра. В завершение добавляем к нашим записям показание с барабанной шкалы, внимательно учитываем цену деления шкалы (обычно 0,01 мм), а затем суммируем все три показателя для получения результата.

В идеале на микрометре нужно провести несколько замеров диаметра провода и вычислить среднее арифметическое.

Как определить диаметр провода штангенциркулем

Удобно определять сечение кабеля по диаметру с помощью штангенциркуля. Этот высокоточный инструмент с линейкой-штангой производит замеры с точностью до 0,05 мм. Как выглядит штангенциркуль, и как он устроен, смотрите ниже.

1 — штанга;

2 — рамка;

3 — губки для наружных замеров

4 — губки для внутренних замеров;

5 — глубиномер с линейкой;

6 — стопорный винт, чтобы зафиксировать рамку;

7 — шкала нониуса, чтобы подсчитать доли миллиметра;

8 — шкала штанги.

Этап перед измерениями очень важен, поскольку на нем замерщик проверяет техническое состояние прибора. Губки в совмещенном положении должны соответствовать совпадению штанговых торцов и линейки глубиномера, а все шкалы в норме чистые, и отметки на них хорошо просматриваются. Если на рабочих поверхностях обнаружены следы коррозии, царапин и забоин, если губки перекосились, то штангенциркуль не позволит определить точное сечение провода по диаметру.

Порядок замеров провода штангенциркулем выглядит так:

  1. Очищенную от изоляции жилу зажимают в губках — плотно, без перекосов и зазоров, с незначительным усилием.
  2. Плоскость рамки должна быть перпендикулярна оси измеряемой детали. Губки размещаются в диаметрально противоположных точках.
  3. С помощью стопорного винта фиксируется размер, затем снимают показания.
  4. Количество целых миллиметров смотрят на шкале штанги слева направо. Нулевой штрих нониуса показывает число миллиметров. Доли миллиметров смотрят по тому штриху нониуса, который точнее всех совпадает со штрихом основной шкалы. Потом умножают порядковый номер найденного штриха нониуса (без учета нулевого) на цену деления шкалы.
  5. Общий результат, то есть диаметр токоведущей жилы — это сумма двух величин, миллиметров и долей миллиметров.

Вот подробный алгоритм измерений на видео:

Как высчитать сечение провода по диаметру?

А как узнать сечение провода с полученным диаметром? Все очень просто: надо подставить значение диаметра в формулу.

Что делать без микрометра и штангенциркуля

Ради нескольких измерений вовсе необязательно покупать микрометр или штангенциркуль. Существует известный “дедовский” метод определения диаметра жилы с помощью линейки, а как узнать сечение провода по формуле, вы уже знаете.

Итак, вам нужно зачистить жилу от изоляции и плотно намотать ее на карандаш (см. картинку).

А дальше вы просто прикладываете линейку к намотке, замеряете общую длину намотанного проводника и делите ее на количество витков. Удобно подсчитывать количество витков в 1 или 2 см.

Чем больше количество витков, тем выше точность измерений. Намотайте как минимум 15 витков для нормального результата.

Формула диаметра провода этим способом выглядит так:

D = l/n,

в которой l — длина всех витков, а n — число накрученных витков.

Несколько полезных советов по этому способу:

  • минимизируйте зазоры, чтобы уменьшить погрешность, то есть наматывайте жилу вплотную.
  • получите как можно больше результатов и вычислите среднее арифметическое, это также снизит погрешность измерений.
  • проверьте гибкость провода перед намоткой — этот способ походит для относительно тонких проводников.

Смотрите, как узнать сечение кабеля по диаметру, измеренному линейкой.

Таблица сечения проводов по диаметру

Теорию обязательно нужно знать и понимать, но все таки ля экономии времени целесообразно пользоваться готовой таблицей сечения проводов по диаметру. Ее также можно использоваться для нахождения диаметра проводки по сечению.

Как видите, сечение кабеля по диаметру в таблице соответствует аналогичным расчетам по формуле.

Видео о сечении кабеля по диаметру

И еще одна подробная видеоинструкция, как узнать сечение провода по измеренному диаметру, и почему это важно.

Видео с вопросом: Расчет минимальной площади поперечного сечения провода

Стенограмма видеозаписи

Длина провода, по которому ток от электростанции до подстанции, составляет 7,25 км. Они сделаны из меди с удельным сопротивлением от 1,7 до 10 отрицательных восьми Ом-метров. Ток по проводам составляет 450 миллиампер. Мощность, рассеиваемая проводами, должна быть не более 15 Вт.Какая минимальная площадь поперечного сечения требуется для проводов, по которым проходит ток? Ответ дайте в научном представлении с точностью до одного десятичного знака.

Здесь нас спрашивают о проводах, по которым ток идет от электростанции к подстанции. Предположим, что это один из таких проводов. Нам сказали, что эти провода имеют длину 7,25 километра, которую мы обозначили здесь как. Нам также дано удельное сопротивление 𝜌 меди, из которой сделаны эти провода, равным 1.7 умножить на 10 на отрицательные восемь ом-метров. Нам сказали, что ток 𝐼 по проводам равен 450 миллиампер. Затем последняя информация, которую нам дают, заключается в том, что мощность, рассеиваемая проводами, должна быть не более 15 Вт. И мы обозначили это максимальное рассеивание мощности как.

Учитывая всю эту информацию, нас просят определить минимальную площадь поперечного сечения, необходимую для проводов, по которым передается ток. И давайте обозначим эту минимальную площадь поперечного сечения как 𝐴.Чтобы ответить на этот вопрос, мы можем вспомнить, что удельное сопротивление провода связано с другим свойством, сопротивлением провода, через уравнение, которое также включает длину провода и его площадь поперечного сечения. В частности, сопротивление 𝑅 провода равно его удельному сопротивлению, умноженному на его длину, деленную на площадь его поперечного сечения.

Если мы умножим обе части этого числа на на, то увидим, что слева в числителе сокращается с 𝑅 в знаменателе.Между тем, справа отменяются символы 𝐴. Это дает нам уравнение, в котором площадь поперечного сечения является предметом. Мы имеем, что 𝐴 равно удельному сопротивлению 𝜌, умноженному на длину 𝑙, деленному на сопротивление. Нам даны значения для 𝜌 и 𝑙 в правой части этого уравнения. Но мы не знаем ценности сопротивления 𝑅. Однако нам сообщают ток 𝐼 по проводам и максимальную рассеиваемую мощность 𝑃.

Напомним, что мощность 𝑃, рассеиваемая проводом или компонентом схемы, равна квадрату проходящего через него тока 𝐼, умноженного на его сопротивление 𝑅.Мы можем сделать 𝑅 объектом, разделив обе стороны на 𝐼 в квадрате, так что справа в квадрате в числителе сокращается с в квадрате в знаменателе. Затем, поменяв местами левую и правую части уравнения, мы получаем, что равно 𝑃, деленному на в квадрате. Если мы используем наши значения для тока через провод и максимальной мощности, рассеиваемой этим проводом 𝑃 в этом уравнении, то мы вычислим максимальное сопротивление 𝑅, которое может иметь этот провод.

Чтобы рассчитать сопротивление в омах, нам понадобится мощность в ваттах и ​​сила тока в амперах.Однако на данный момент наше значение 𝐼 выражается в миллиамперах. Чтобы преобразовать это в единицы ампер, мы можем вспомнить, что один миллиампер равен одной тысячной ампера. Это означает, что для перехода от миллиампер к амперам мы делим на коэффициент 1000, так что ток 𝐼 равен 450, деленному на 1000 ампер. Это составляет 0,45 ампера.

Теперь мы готовы взять это значение тока вместе с нашим значением мощности 𝑃 и подставить их в это уравнение, чтобы вычислить сопротивление.Когда мы это сделаем, мы получим, максимальное сопротивление, которое могут иметь эти провода, равно 15 ваттам, разделенным на квадрат 0,45 ампера. Оценка этого дает сопротивление 𝑅, равное 74,0740 Ом. Если мы теперь обратим наше внимание на это уравнение для площади поперечного сечения, мы увидим, что теперь у нас есть значения для всех трех величин в правой части. Кстати, мы должны заметить, что делим на это максимальное сопротивление 𝑅, которое могут иметь провода. То есть для большего значения 𝑅 мы получим меньшее значение.Итак, используя в этом уравнении наше значение максимального сопротивления, которое могут иметь провода, мы рассчитаем их минимально допустимую площадь поперечного сечения, а это именно то, что нас просят найти.

Однако, прежде чем мы подставим наши значения, нам нужно будет произвести еще одно преобразование единиц измерения. У нас есть удельное сопротивление в ом-метрах, сопротивление 𝑅 в омах и длина в километрах. Чтобы вычислить площадь 𝐴 в квадратных метрах, нам нужно преобразовать значение 𝑙 из километров в метры.Для этого напомним, что один километр равен 1000 метрам. Это означает, что чтобы преобразовать длину из километров в метры, мы умножаем ее на коэффициент 1000. Итак, мы получаем, что 𝑙 равно 7,25 умноженным на 1000 метров. Получается 7250 метров.

Теперь мы можем подставить наши значения для удельного сопротивления 𝜌, длины 𝑙 и сопротивления 𝑅 в это уравнение, чтобы вычислить значение 𝐴. Когда мы это делаем, мы получаем вот это выражение. Посмотрев на единицы измерения, мы можем увидеть, что омы сокращаются от числителя и знаменателя.И это оставляет нам два множителя метров в числителе, что дает нам общие единицы измерения в метрах в квадрате. Оценка выражения дает площадь поперечного сечения 𝐴 1,663875 умноженную на 10 в квадрате отрицательных шести метров.

Обратите внимание, что нас просят дать наш ответ в экспоненциальном представлении с точностью до одного десятичного знака. Это значение, которое мы вычислили, уже указано в экспоненциальном представлении. Поэтому нам просто нужно округлить до одного десятичного знака. Когда мы это делаем, результат округляется до 1,7 умножить на 10 до отрицательных шести квадратных метров.Тогда наш ответ состоит в том, что минимальная площадь поперечного сечения, необходимая для этих проводов, составляет 1,7 умножить на 10 до отрицательных шести квадратных метров.

Провода

A обеспечивает электрическую связь между. Обычно это стержень из тянутого или прокатного металла, длина которого превышает его диаметр.

В свойствах провода можно определить характеристики провода. Доступны следующие объекты недвижимости:

Объект

Описание

Поперечное сечение (CSA /)

Обязательная собственность.«Металлическое» сечение провода, обычно в [мм²] или [AWG]. В AWG отображается одно значение, если значение метрики находится в диапазоне 5% от преобразованного значения AWG. Если преобразованное значение AWG превышает 5%, отображается диапазон значений.

AWG

Спецификация диаметра проволоки («American Wire Gauge», первоначально называется Brown & Sharpe Gauge).Система числовых размеров проволоки, начиная с с наименьшими номерами наибольших размеров. Каждый размер датчика составляет 20,6%. отдельно по площади поперечного сечения. Чем ниже номер AWG, тем больший диаметр проволоки.

Примечание:

Если поперечное сечение определяется в квадратных единицах измерения, AWG заполняется автоматически.

С изоляцией

Если этот параметр активирован, для провода определяется изоляция, и внешний диаметр необходимо вводить вручную.Если этот флажок не установлен, внешний диаметр рассчитывается автоматически.

Внешний диаметр

Обязательная собственность. Наружный диаметр провода, включая изоляцию.

мин.

Минимально допустимый радиус изгиба согласно паспорту используемого провода.

Примечание:

Определяется кратно значению Наружного диаметра.

Макс. сопротивление

Максимально допустимое электрическое сопротивление, которое может иметь провод.

Макс. напряжение

Максимально допустимое напряжение для безопасной работы.

Макс. текущий

Максимально допустимый ток для безопасной работы.

Электрический класс

Классификация проводов (любая, определяемая пользователем классификация как «высокое напряжение», «данные», «управление», и т. д.) можно ввести здесь. Это значение будет использоваться по умолчанию для провода. поле возникновения в и может быть позже изменено. Это может предотвратить например провода высокого и низкого напряжения от прокладки в одном месте.Такой конфликт можно легко распознать в списке задач рабочей области.

Код материала

Краткое обозначение материала (например, ПОЛИВИНИЛХЛОРИД = ПВХ).

ниток

Многожильный провод, не обеспечить электрическую связь.Служит для увеличения механической сопротивление (особенно сила отрыва).

Цвет

Цвет провода при его размещении в рабочем пространстве EPLAN Harness proD.

Цвет полосы

Цвет полосы на проводе.

Выходные данные

Напечатанный номер или комбинация символов и цифр, напечатанных на провод для идентификации.

Рассчитать площадь поперечного сечения провода длины класса 12 физика JEE_Main

Подсказка: В этом вопросе мы должны найти площадь поперечного сечения провода длиной 2 м и сопротивлением $ 46 {\ text {} } \ Omega $ и удельное сопротивление $ 1.2} $.

Примечание: В этом вопросе мы использовали формулу удельного сопротивления $ \ rho $. Теперь мы собираемся понять больше об удельном сопротивлении. Удельное сопротивление провода — это электрическое сопротивление этого провода на единицу площади поперечного сечения и на единицу длины.
Удельное сопротивление — это свойство материала этой проволоки. Удельное сопротивление имеет различные применения в электронике. Удельное сопротивление полезно для сравнения металлов на основе их способности проводить через них электрические токи.{- 1}} $. Это также мера для сравнения свойств разных металлов. Есть и другие типы проводимости —
(a) Электропроводность электролита в растворе называется электролитической проводимостью.
(b) Проводимость, обусловленная движением ионов в кристаллической решетке, называется ионной проводимостью.
(c) Это свойство пористого материала пропускать воду называется гидравлической проводимостью.
(d) Теплопроводность материала — это его способность проводить тепло.

Таблица эквивалентных сечений провода по Брауну и Шарпу

Таблица эквивалентных сечений провода по Брауну и Шарпу Справочная информация и информация

Таблица эквивалентных сечений провода

Таблица эквивалентных сечений провода. В таблице представлены датчики Брауна и Шарпа. Таблица
показывает размер провода в зависимости от диаметра провода, что позволяет быстро определить физический размер проводов различных размеров.
Вернуться к калибру провода AWG для определения допустимого тока.
Конечно, таблица дает возможность оценить размер кабеля в зависимости от количества проводов.
Однако размер кабеля будет зависеть от типа изоляции и степени экранирования.


Калибр стандартного провода и сечение

Таблица размеров сечения провода для неизолированного провода.
В основном диаграмма показывает поперечное сечение сечения провода, а также сечение ряда проводов.
Таким образом, вы можете найти эквивалентный размер провода, используя несколько проводов меньшего размера [вместе].
Или, сколько проводов одного калибра составляют более крупный провод другого калибра.

Примечание редактора; Я не уверен в приложении здесь. Хотя, если бы мне нужно было заменить сплошной медный провод на многожильный, это могло бы помочь.
Конечно, замена одного кабеля на другой может оказаться подходящим приложением для данных, представленных в таблице.

Свойства Алюминиевая проволока;
Алюминиевая страница с таблицей размеров электрических проводов.
эквивалентных сечений провода.
Таблица размеров AWG в метрических единицах.
Устаревшие стандарты калибра проводов.

Список производителей электрических проводов и Кабель

См. Также цветовую кодировку , используемую на странице «Изоляция провода» ; Цвет кодирование изоляции проводов в зависимости от области применения.

Brown and Sharpe — старое название американского стандарта калибра проводов.
Фактически какое-то время стол Брауна и Шарпа назывался американским стандартом калибра проволоки.
Однако, отметив, что он еще не признан стандартом, Браун и Шарп изменили название на AWG.
Определите калибр кабеля в зависимости от его физического размера. Определите длину кабеля в зависимости от увеличения размера.



Изменено 31.12.11
Авторские права © 1998-2016 Все права защищены Ларри Дэвис

Flatwire — Fort Wayne Metals

Flatwire

Технологии производства

Flatwire, часто называемый ленточным проводом, обычно используется в устройствах, предназначенных для уменьшения профиля катетера или увеличения доступного размера просвета. Типичные применения включают страховочную проволоку в проволочном проводнике катетера, спиральные катушки в проволочном проводнике катетера и плетеную проволоку.Fort Wayne Metals использует две технологии производства для производства плоской проволоки с закругленными краями разных типов: катаная плоская проволока и тянутая плоская проволока.


Сравнение Flatwire

Оба продукта обладают гладкой блестящей поверхностью и жесткими допусками по размеру. Однако у каждого есть свои преимущества. Катаная плоская проволока имеет более крупный литой, меньший изгиб, меньшее напряжение, вызываемое проволокой, и более низкую стоимость по сравнению с тянутой плоской проволокой, поскольку соотношение ширины / толщины увеличивается. Хотя вытянутый плоский провод имеет преимущество в виде улучшенных допусков по размеру, он часто используется для приложений, требующих более постоянных и жестких размеров.


Доступность размера

Максимальная доступная ширина для обоих типов плоской проволоки зависит от толщины и сплава. Максимальное соотношение ширины и толщины катаной плоской проволоки составляет примерно десять к одному, с учетом сплава. Толщина скрученной плоской проволоки составляет 0,0003 дюйма. Толщина вытянутой плоской проволоки составляет 0,0015 дюйма. Стандартные допуски для каждого типа проволоки описаны ниже. В зависимости от ширины, толщины, сплава и соотношения ширина / толщина могут быть предложены как тянутый плоский провод, так и катанный плоский провод.


Катушка Flatwire

Допуск толщины:

± 10% толщины с округлением до следующих 0,0001 дюймов с минимальным значением ± 0,0002 дюйма.

Допуски по ширине:

± 10% ширины с округлением до следующих 0,0001 дюйма.


Нарисованный Flatwire
Ширина или толщина Допуск
Более в том числе Плюс или Минус
0.0000 « 0,0080 « 0,0002 «
0,0080 « 0,0120 « 0,0003 «
0,0120 « 0,0240 « 0,0004 «
0,0240 дюйма 0,0330 « 0,0005 «
0,0330 « 0,0440 « 0,0008 «
0.0440 « 0,0010 «


Предел прочности

Предел прочности на разрыв плоской проволоки определяется технологией изготовления. Предел прочности на растяжение в большинстве сплавов варьируется от отожженного до пружинного. Максимальный предел прочности на разрыв зависит как от самого сплава, так и от других требований, предъявляемых к указанной проволоке, например от литой.


Расчет площади поперечного сечения

При определении прочности на разрыв необходимо правильно рассчитать площадь поперечного сечения, используя коэффициенты преобразования плоской проволоки (см. Таблицу ниже).Поскольку скрученный и вытянутый плоский провод имеет кромки полного радиуса, необходимо определить необходимые корректировки для удаления углов прямоугольника из расчета площади. Точный расчет имеет жизненно важное значение, поскольку мельчайшие различия в площади поперечного сечения могут существенно повлиять на прочность на разрыв.


Коэффициенты преобразования Flatwire

Первый столбец — это ширина, разделенная на толщину. Коэффициент используется для расчета площади поперечного сечения (т. Е. 0,010 «÷ 0,003» = 3.3; найдите 3,3, чтобы получить 0,984; 0,003 дюйма x 0,010 дюйма x 0,984 = 0,0000295; это площадь поперечного сечения).


Коэффициенты преобразования Flatwire
Ширина Толщина Фактор Ширина Толщина Фактор
1,1 0,836 3,0 0,981
1.2 0,867 3,1 0,982
1,3 0,890 3,2 0,983
1,4 0,907 3,3 0,984
1,5 0,920 3,4 0,985
1,6 0.930 3,5 0,986
1,7 0,939 3,6 0,987
1,8 0,946 3,7–3,8 0,988
1,9 0,952 3,9-4,0 0,989
2,0 0,957 4.1-4,2 0,990
2,1 0,961 4,3–4,4 0,991
2,2 0,964 4,5–4,7 0,992
2,3 0,968 4,8-5,0 0,993
2,4 0,970 5.1-5.5 0,994
2,5 0,973 5,6-6,0 0,995
2,6 0,975 6,1-6,9 0,996
2,7 0,977 7,0-8,1 0,997
2,8 0,978 8.2-10.00 0,998
2,9 0,980 > 10,0 0,999


Прямолинейность: литье и изгиб

Если прямолинейность критична для применения с плоской проволокой, то можно указать минимальный литой и / или максимальный изгиб. Бросок измеряется путем отрезания трехфутового куска от катушки и укладывания ее краем на плоскую поверхность так, чтобы она образовывала круг или дугу.Размер круга или дуги — это слепок. Чтобы определить изгиб, отрезают небольшой отрезок плоской проволоки. Затем он размещается по ширине, а не по краю. Затем, удерживая провод посередине напротив прямой линии, расстояние, на которое свободные концы выступают от линии, измеряется как изгиб.

Оптимизация формы поперечного сечения жил проволоки, подверженных чисто растягивающим нагрузкам, с использованием уменьшенной спиральной модели | Расширенное моделирование и моделирование в технических науках

Уменьшенная спиральная модель

Когда спиральная конструкция деформируется равномерно по всей ее длине, переменные состояния (деформации и напряжения) однородны по спиральным линиям.Его общий отклик можно точно проанализировать, взяв репрезентативную двумерную поверхность. Это свойство называется трансляционной инвариантностью [14], и оно используется для получения редуцированной модели конечных элементов [7], формулировка которой аналогична по идее обобщенным элементам плоской деформации [16]. Были предложены и другие модели, использующие это же свойство, например модели Зубова [17], Трейсседе [13], Фрихи и др. [14] и Каратанасопулос и Кресс [15]. В отличие от вышеупомянутых моделей, модель, использованная в этой работе, была получена в рамках модели конечной деформации, поэтому она может лучше описывать движения проволоки.Кроме того, он был разработан для сложных геометрий и взаимодействий в поперечном сечении.

Рис. 3

Осевой отклик жилы проволоки 1 + 6. Геометрические параметры приведены в Таблице 3, а свойства материала — в Таблице 2

Уменьшенная модель позволяет иметь сложную геометрию, сохраняя при этом небольшое количество элементов. Это позволяет изучать мелкие сетки, а также локальные деформации и напряжения без необходимости использования объемного КЭ и очень дорогостоящего в вычислительном отношении моделирования.С другой стороны, он ограничен исходным предположением: можно изучать только однородные варианты нагружения, такие как осевое удлинение и скручивание, радиальное уплотнение и тепловое расширение [15]. Соответственно, можно рассматривать любой вариант нагружения, определяющий, что каждое поперечное сечение конструкции ведет себя одинаково.

Требования к подходам к моделированию

Для нашей оптимизации необходимы четыре требования, которые должны быть удовлетворены выбранной техникой моделирования. Аналитическая модель, предложенная Фейрером [5], и две трехмерные модели КЭ (основанные на твердых объемных или балочных элементах) сравниваются с сокращенной моделью.

Осевой отклик Поскольку осевое удлинение является вариантом нагрузки, для которого необходимо оптимизировать, наша модель должна иметь возможность полностью отражать взаимодействие между проволоками, в том числе жесткость из-за контакта между проволоками и пластичность материала. На рисунке 3 показано, как все модели могут предсказать общее осевое поведение.

Вычислительная эффективность Основное внимание при приближении к программе оптимизации состоит в том, чтобы обеспечить максимальную эффективность основного моделирования, которое вычисляет целевое значение, поскольку оно выполняется несколько раз.Поэтому на рис. 4 показано сравнение времени решения для количественной оценки скорости каждой модели. Помимо аналитической модели, балочная и редуцированная модели сопоставимы в решении анализа, при этом твердотельный КЭ работает значительно медленнее.

Сложная геометрия С целью настройки оптимизации формы выбранная модель должна быть способна полностью описывать геометрию пряди (и, в частности, внешней проволоки). Твердые и сокращенные модели КЭ — единственные, которые удовлетворяют этому требованию, поскольку как аналитическая, так и балочная КЭ-модели полагаются на узкую базу данных сечений для определения контакта.

Рис. 4

Сплошные элементы континуума (слева), балочные элементы (в центре) и редуцированные элементы (справа), с соответствующими временами вычислений для моделирования, показанного на рис. 3

Таблица 1 Требования, соответствующие каждой модели

Реакция на изгиб Расчет реакции на изгиб также требуется в программе оптимизации, чтобы ограничить гибкость пряди. Твердые и балочные КЭ-модели и аналитические модели могут напрямую описывать такой вариант нагружения. С другой стороны, сокращенная модель, поскольку поперечные срезы не будут вести себя независимо от их осевого положения, по своей сути не способна моделировать изгиб.

В таблице 1 показано, чем сокращенная модель отличается от альтернативных подходов к моделированию.

Расширение уменьшенной спиральной модели для учета контакта

Поскольку влияние контакта между проволоками важно для полной характеристики напряженного состояния внутри пряди, потребовалось расширение модели, найденной в [7] (рис. 5b) . Изначально модель была разработана для анализа отдельного компонента, либо свободных спиралей, либо твердых участков (например, твердого цилиндра с включениями).Вместо этого пряди имеют отдельные компоненты, которые могут свободно вращаться и перемещаться относительно друг друга. Следовательно, необходимо ввести закон взаимодействия. Вместо простого слияния точек контакта [15], в настоящей работе используется закон контакта с экспоненциальной зависимостью от избыточного давления.

Чтобы использовать определения контактов, уже доступные в Abaqus, вводится геометрический прием. Поскольку каждый компонент является локально плоским и имеет место относительное вращение вне плоскости, для обеспечения трехмерного контакта должна быть определена вспомогательная эталонная поверхность .Это позволяет взаимодействию фактически представлять контакт поверхность-поверхность, а не контакт между линиями, что в конечном итоге приведет к искусственному — локализованному изгибу. Эта поверхность получается путем выдавливания узлов внутреннего сердечника перпендикулярно плоскости отсчета. Эти узлы затем соединяются элементами оболочки и жестко связаны с соответствующими родительскими узлами, чтобы гарантировать спиральную симметрию. На рис. 5b показана такая контактная поверхность с выделенными узлами, подключенными к соответствующему главному узлу, лежащему в эталонном поперечном сечении.

Рис. 5

a Поперечное сечение нити 1 + 6 с выделенной сокращенной областью модели. b Вспомогательная поверхность для определения контакта. Узловые степени свободы полностью привязаны к соответствующему узлу, лежащему в исходном поперечном сечении, уравнениями связи. c Экструдированная прядь, соответствующая поперечному сечению, указанному в a

Приблизительная жесткость на изгиб

Рис. 6

Результаты Фоти [18] и значения жесткости, рассчитанные аналитически

Как предполагается в работе Фоти [18], изгиб нити проявляет две отличительные крайности.

  • Фаза стержня , где кривизна изгиба достаточно мала, чтобы трение между компонентами препятствовало их скольжению относительно друг друга. Все провода образуют поперечное сечение с соединенными элементами, что связано с высокой жесткостью на изгиб.

  • Фаза скольжения , кривизна достаточно велика, чтобы трением можно было пренебречь, и предполагается, что каждый компонент свободно изгибается вокруг своей нейтральной плоскости, что определяет общее снижение жесткости на изгиб.6 E_ {i} I_ {i} \ end {align} $$

    (2)

    , где E — модуль Юнга, I — момент инерции каждого провода относительно его собственной нейтральной плоскости, а \ ({\ tilde {I}} \) — момент инерции относительно нейтральная плоскость пряди. Нижний индекс 0 относится к сердечнику провода, а значения \ (i> 0 \) относятся к внешним проводам (\ (i = 1 \ cdots 6 \)).

    Это приближение позволяет нам рассматривать изгиб без привлечения более сложных моделей.На рисунке 6 показано, как аналитически рассчитанные значения жесткости соответствуют результатам, полученным Фоти [18]. Однако возможность охарактеризовать переход между двумя фазами (который зависит от коэффициента трения \ (\ mu \)) не сохраняется.

    Осевое усилие, приложенное к пряди, также влияет на реакцию на изгиб [18] из-за повышенного трения в контакте между проволоками, когда прядь удлиняется. Принимая во внимание тот факт, что для приложений, рассматриваемых в этой работе, осевые силы велики, а кривизны малы, будет учитываться жесткость фазы прилипания \ (K_ {stick} \).

    Модель материала

    На протяжении всех представленных здесь симуляций модель материала является упруго-идеально пластичным конститутивным законом. На рисунке 7 показана кривая напряжения-деформации, соответствующая параметрам материала, указанным в таблице 2. Такой выбор определяющего закона позволяет моделировать разрушение с помощью анализа предельной нагрузки . Материал анализируемой конструкции заменен на идеально пластичный материал с меньшим пределом текучести. Это делает предельную нагрузку, то есть максимальную нагрузку, которую конструкция может выдержать до пластического обрушения, представляет разрушающую нагрузку .

    Рис. 7

    Кривая зависимости напряжения от деформации линейного упругого идеально пластичного материала

    Таблица 2 Свойства материала, используемые как эталонные для анализа предельной нагрузки (\ (H = 0,0 \) ГПа)

    Как рассчитать сечение кабеля и провода

    Как выбирается сечение кабеля для прокладки в квартире Предполагается, что количество линий не меньше количества комнат. Автоматы используются при 10 А, исходя из предположения, что срабатывание происходит раньше, чем начнется плавление изоляции.
  • Для розеток проводка берется 2,5 квадратных миллиметра по меди. Предполагается разместить на каждые 4 метра периметра комнаты на точке. На кухне 4 розетки, причем на пару засчитывается дубль (в жилых помещениях не в счет). Например, в кухню врезаются два тандема, а для холла — по количеству метров периметра (в парилка считается одной) .Автоматы берут на 16 А.
  • Если в доме есть электроплита, проводка идет на щит.Такая розетка не дублируется, иначе нарушается прописанное в стандартах правило. Медное сечение берут шесть квадратных миллиметров, а мощность машины увеличивается до 20 А.
  • Выбор кабеля для квартиры

    Нужно учесть ряд моментов. Во-первых, рекомендации А. Земскова доступны каждому, кто не хочет заморачиваться и учитывать сечение проводов в кабеле. Проверенная методика: автомат выключится перед началом плавки проводки.Многих не устраивает количественная сторона. Предположим, машина на 20 А выдерживает 20 х 220 = 4,5 кВт мощности. Получить представление об объеме потребления не так-то просто.

    Обычно горелки на 1 кВт. На практике значительный вклад вносит КПД. Фактически электроплита на 4 конфорки может потреблять от 6 кВт и выше. Эту цифру А. Земсков называет, говоря об автомате на 20 А. Читатели заметят несоответствие: при потреблении 6 кВт тока нужно намного больше.На самом деле большинство автоматов может час проработать с перегрузкой на 45%. Значит, наше УЗО на 20 А по времени отключится.

    Это произойдет при полной нагрузке. Потребление от 6 кВт означает полное использование всех горелок. Это случается нечасто. В остальное время электрическая плита отдыхает и остывает проводка. Уравновешивайте и переключайте контакты внутри машины. УЗО работает и вообще не отключается, несмотря на формальное превышение номинального тока. Отметим, что, по словам дилеров, при замкнутом проводе мощность на 6 квадратных миллиметров сечения для меди равна 7.4 кВт (ток 34 А). Автор перестраховался, что делать при устройстве электропроводки в квартире.

    Автомат сработает раньше. Уже при токе 34 А он не проработает даже полчаса. Поэтому утеплитель не будет перегреваться и не плавиться. Это гарантия безупречной работы. Из сказанного читатели уже должны научиться определять сечение провода по мощности.

    Потребление электроэнергии в филиале

    В первую очередь оценивается потребление в филиале.Если это светодиодные лампы верхнего освещения, то оценку допускается не производить просто путем выбора самой тонкой и дешевой (но обязательно медной) жилы. Если вам нужно запитать сварочный аппарат, вы должны подумать о мозгах. Использование техники в домашних условиях не подразумевается, но оценить энергопотребление можно уже по табличке на корпусе. Допустим, ток 220 А при 27 В означает, что на вторичной стороне инвертора образуется 6 кВт.

    Стандарты

    предписывают подключение мощного оборудования непосредственно к распределительному щиту (а не параллельно).Следует выбрать место использования оборудования, например, балкон. Кстати, розетки на складе по правилам нет (слишком высокий класс пожарной опасности), поэтому в разрешенном месте проложите точку раздачи.

    Не забудьте поставить автомат. Сварка имеет индивидуальные условия. Допустим, мы говорили о 6 кВт, но на самом деле инвертор обязан работать в этом режиме не более 70% рабочего цикла. Следовательно, нужно беспокоиться, скорее, не о длительном режиме, а о запуске.С этой точки зрения УЗО делятся на классы допуска на кратковременное превышение тока.

    Вывод проводов

    Оценка потребления по максимуму

    Во-вторых, проводится оценка токов потребления. Ни в коем случае не должно доходить до предела. Для расчета сечения кабеля по мощности необходима физика работы прибора. Например, асинхронные двигатели при запуске потребляют более высокий номинальный ток. Если брать холодильник, стоящий в компрессоре, это не так важно (мощность низкая).

    Слишком чувствительный автомат (класс А) тут не поставить. Электроплиты отличаются меньшим разбросом параметров. Для них они распознают сечение кабеля по диаметру, как описано выше. Не забывайте учитывать кулинарные предпочтения. Блюда длительного приготовления накладывают ограничения. Алгоритм идет с конца: спрашиваем у хозяйки, как долго плита загружается в полном режиме, находим мощность из каталогов, определяем ток, берем запас 5%, рассчитываем толщину сердечника, делаем запас еще 10%, потом выбираем автоматический выключатель, который отключает сеть определенную хозяйкой Так кабель на пределе не проработает слишком долго.

    Объединение двух или более ветвей

    . При объединении ответвлений сечение кабеля определяется простым сложением мощности. С квадратами работать нельзя. Для расчета сечения провода воспользуйтесь таблицей, представленной на рисунке. Обратите внимание, что закладка должна быть закрытой.

    Таблица секционного расчета

    для разделов 0,5 и 0,75 не рекомендуется использовать, кроме случаев, когда проводка для освещения от энергосберегающих (галогенных или светодиодных) ламп.Тогда проблема определения сечения провода не ставится. Тем более что ставить автомат на квартиру допустимо, просто это не всегда удобно.

    На каждую жилу может протекать меньший ток, чем может выдержать медь проводка с поперечным сечением 0,5 квадратных миллиметра. Только в основной жиле наблюдается значительный нагрев. Остается объединить ветки в распределительной панели. Рекомендуется использовать клеммы ABB из латуни или все примитивно завернуть в колпачок.Использовать для суммирования ответвлений жилы одного кабеля не стоит.

    Рабочее напряжение

    Для определения сечения жилы кабеля по диаметру учитывается рабочее напряжение. По умолчанию это 220 В, а провод трехжильный. Бывает, в новостройках заводят 380 В с использованием конструкций от 4-х жил. Для расчета текущего сечения используйте второй столбец таблицы.

    Как видите, у ядра уже меньшая удельная мощность.При расчете на 220 В протекал каждый (кроме заземления) ток (скажем, 34 А), соответствующий значению 220 х 34 = 7,4 кВт. В случае большего количества фаз мощность растет не прямо пропорционально, а слабее. Чем больше жилого материала входит в скрутку или в один и тот же утеплитель, тем строже требования, поскольку добавляются тепловые эффекты. Тем, кому нужны сложные конфигурации, придется провести углубленный поиск.

    Как изменяется сечение жилы в зависимости от способа прокладки кабеля

    Требования к прокладке кабеля открытым способом

    Если кабель проложен открытым способом, то условия для его охлаждения лучше, требования снижаются.На втором рисунке представлена ​​таблица, демонстрирующая эту закономерность. При прокладке кабелей вне помещения пределы мощности увеличиваются. В данном случае, помимо меди, мы представляем секции из алюминия. Плюс в том, что кабель дешевле и с большим объемом. Алюминий — легкий металл, а медь тяжелее стали. С этой точки зрения прокладка кабелей кому-то может быть возможна. Поэтому нужно исходить из цены и возможностей. Но медь более долговечна, имеет лучшую проводимость и не подвержена электрохимической коррозии.

    Алюминий не применяется для подключения мощных устройств. Потери в медных кабелях в полтора раза ниже, что существенно при больших токах, в отличие от масштабов домовладения. Ориентироваться нужно на технические расчеты, основанные на оценке длины линии, ее назначения, способа монтажа. Например, известно, что километр обычного провода имеет низкое сопротивление, чего нельзя сказать о кабеле.

    Многих интересует, как отличить кабель от провода.В ГОСТе нет разделения, но под кабелем обычно понимают изделие с большим сечением, и с усиленной изоляцией, например, стальной броней. При прокладке под землей, в подвале усиленная изоляция с помощью кабеля. Иногда использовали масло для защиты от коррозии. Эти параметры разделены на провод и кабель.

    Основное отличие — изолированность. Возьмем, к примеру, полевку для общения. Это провод с небольшой толщиной жил, а тип изоляции — кабельная.Также провода питания электроинструмента, скорее всего, будут кабелями на 2-3 жилы. Они хорошо защищены от механических повреждений и имеют толстую изоляцию.

    Ориентируясь на справочную информацию, ГОСТ дает для меди сильно заниженные значения, на практике существенно перекрывающиеся.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *