Плавная регулировка оборотов электродвигателя 220в переменного тока: Регулятор скорости двигателя постоянного тока 220 В, регулятор скорости двигателя с начесом, регулятор скорости с плавной регулировкой скорости, тиристорный двигатель

Содержание

Чистотники регулятор оборотов электродвигателя 220в

Плавная работа двигателя, без рывков и скачков мощности – это залог его долговечности. Для контроля этих показателей используется регулятор оборотов электродвигателя на 220В, 12 В и 24 В, все эти частотники можно изготовить своими руками или купить уже готовый агрегат.

Зачем нужен регулятор оборотов

Регулятор оборотов двигателя, частотный преобразователь – это прибор на мощном транзисторе, который необходим для того, чтобы инвертировать напряжение, а также обеспечить плавную остановку и пуск асинхронного двигателя при помощи ШИМ. ШИМ – широко-импульсное управление электрическими приспособлениями. Его применяют для создания определенной синусоиды переменного и постоянного тока.

Фото – мощный регулятор для асинхронного двигателя

Самый простой пример преобразователя – это обычный стабилизатор напряжения. Но у обсуждаемого прибора гораздо больший спектр работы и мощность.

Частотные преобразователи используются в любом устройстве, которое питается от электрической энергии. Регуляторы обеспечивают чрезвычайно точный электрический моторный контроль, так что скорость двигателя можно изменять в меньшую или большую сторону, поддерживать обороты на нужном уровне и защищать приборы от резких оборотов. При этом электродвигателем используется только энергия, необходимая для работы, вместо того, чтобы запускать его на полной мощности.

Фото – регулятор оборотов двигателя постоянного тока

Зачем нужен регулятор оборотов асинхронного электродвигателя:

  1. Для экономии электроэнергии. Контролируя скорость мотора, плавность его пуска и остановки, силы и частоты оборотов, можно добиться значительной экономии личных средств. В качестве примера, снижение скорости на 20% может дать экономию энергии в размере 50%.
  2. Преобразователь частоты может использоваться для контроля температуры процесса, давления или без использования отдельного контроллера;
  3. Не требуется дополнительного контроллера для плавного пуска;
  4. Значительно снижаются расходы на техническое обслуживание.

Устройство часто используется для сварочного аппарата (в основном для полуавтоматов), электрической печки, ряда бытовых приборов (пылесоса, швейной машинки, радио, стиральной машины), домашнего отопителя, различных судомоделей и т.д.

Фото – шим контроллер оборотов

Принцип работы регулятора оборотов

Регулятор оборотов представляет собой устройство, состоящее из следующих трех основных подсистем:

  1. Двигателя переменного тока;
  2. Главного контроллера привода;
  3. Привода и дополнительных деталей.

Когда двигатель переменного тока запускается на полную мощность, происходит передача тока с полной мощностью нагрузки, такое повторяется 7-8 раз. Этот ток сгибает обмотки двигателя и вырабатывает тепло, которое будет выделяться продолжительное время. Это может значительно снизить долговечность двигателя. Иными словами, преобразователь – это своеобразный ступенчатый инвертор, который обеспечивает двойное преобразование энергии.

Фото – схема регулятора для коллекторного двигателя

В зависимости от входящего напряжения, частотный регулятор числа оборотов трехфазного или однофазного электродвигателя, происходит выпрямление тока 220 или 380 вольт. Это действие осуществляется при помощи выпрямляющего диода, который расположен на входе энергии. Далее ток проходит фильтрацию при помощи конденсаторов. Далее формируется ШИМ, за это отвечает электросхема. Теперь обмотки асинхронного электродвигателя готовы к передаче импульсного сигнала и их интеграции к нужной синусоиде. Даже у микроэлектродвигателя эти сигналы выдаются, в прямом смысле слова, пачками.

Как выбрать регулятор

Существует несколько характеристик, по которым нужно выбирать регулятор оборотов для автомобиля, станочного электродвигателя, бытовых нужд:

  1. Тип управления. Для коллекторного электродвигателя бывают регуляторы с векторной или скалярной системой управления. Первые чаще применяются, но вторые считаются более надежными;
  2. Мощность. Это один из самых важных факторов для выбора электрического преобразователя частот. Нужно подбирать частотник с мощностью, которая соответствует максимально допустимой на предохраняемом приборе. Но для низковольтного двигатель лучше подобрать регулятор мощнее, чем допустимая величина Ватт;
  3. Напряжение. Естественно, здесь все индивидуально, но по возможности нужно купить регулятор оборотов для электродвигателя, у которого принципиальная схема имеет широкий диапазон допустимых напряжений;
  4. Диапазон частот. Преобразование частоты – это основная задача данного прибора, поэтому старайтесь выбрать модель, которая будет максимально соответствовать Вашим потребностям. Скажем, для ручного фрезера будет достаточно 1000 Герц;
  5. По прочим характеристикам. Это срок гарантии, количество входов, размер (для настольных станков и ручных инструментов есть специальная приставка).

Хорошо себя зарекомендовали приборы марки Sinus, E-Sky и Pic.

При этом также нужно понимать, что есть так называемый универсальный регулятор вращения. Это частотный преобразователь для бесколлекторных двигателей.

Фото – схема регулятора для бесколлекторных двигателей

В данной схеме есть две части – одна логическая, где на микросхеме расположен микроконтроллер, а вторая – силовая. В основном такая электрическая схема используется для мощного электрического двигателя.

Видео: регулятор оборотов электродвигателя с ШИро V2

Как сделать самодельный регулятор оборотов двигателя

Можно сделать простой симисторный регулятор оборотов электродвигателя, его схема представлена ниже, а цена состоит только из деталей, продающихся в любом магазине электротехники.

Для работы нам понадобится мощный симистор типа BT138-600, её советует журнал радиотехники.

Фото – схема регулятора оборотов своими руками

В описанной схеме, обороты будут регулироваться при помощи потенциометра P1. Параметром P1 определяется фаза входящего импульсного сигнала, который в свою очередь открывает симистор. Такая схема может применяться как в полевом хозяйстве, так и в домашнем. Можно использовать данный регулятор для швейных машинок, вентиляторов, настольных сверлильных станков.

Принцип работы прост: в момент, когда двигатель немного затормаживается, его индуктивность падает, и это увеличивает напряжение в R2-P1 и C3, то в свою очередь влечет более продолжительное открытие симистора.

Тиристорный регулятор с обратной связью работает немного по-другому. Он обеспечивает обратный ход энергии в энергетическую систему, что является очень экономным и выгодным. Данный электронный прибор подразумевает включение в электрическую схемы мощного тиристора. Его схема выглядит вот так:

Здесь для подачи постоянного тока и выпрямления требуется генератор управляющего сигнала, усилитель, тиристор, цепь стабилизации оборотов.

Регулятор оборотов в двигателе нужен для совершения плавного разгона и торможения. Широкое распространение получили такие приборы в современной промышленности. Благодаря им происходит измерение скорости движения в конвейере, на различных устройствах, а также при вращении вентилятора. Двигатели с производительностью на 12 Вольт применяются в целых системах управления и в автомобилях.

Устройство системы

Коллекторный тип двигателя состоит главным образом из ротора, статора, а также щёток и тахогенератора.

  1. Ротор — это часть вращения, статор — это внешний по типу магнит.
  2. Щётки, которые произведены из графита — это главная часть скользящего контакта, через которую на вращающийся якорь и стоит подавать напряжение.
  3. Тахогенератор —это устройство, которое производит слежку за характеристикой вращения прибора. Если происходит нарушение в размеренности процесса вращения, то он корректирует поступающий в двигатель уровень напряжения, тем самым делая его наиболее плавным и медленным.
  4. Статор. Такая деталь может включать в себя не один магнит, а, к примеру, две пары полюсов. Вместе с этим на месте статических магнитов здесь будут находиться катушки электромагнитов. Совершать работу такое устройство способно как от постоянного тока, так и от переменного.

Схема регулятора оборотов коллекторного двигателя

В виде регуляторов оборотов электродвигателей 220 В и 380 В применяются особые частотные преобразователи. Такие устройства относят к высокотехнологическим, они и помогают совершить кардинальное преобразование характеристики тока (форму сигнала, а также частоту). В их комплектации имеются мощные полупроводниковые транзисторы, а также широтно-импульсный модулятор. Весь процесс осуществления работы устройства происходит с помощью управления специальным блоком на микроконтроллере. Изменение скорости во вращении ротора двигателей происходит довольно медленно.

Именно по этой причине частотные преобразователи применяются в нагруженных устройствах. Чем медленнее будет происходить процесс разгона, тем меньшая нагрузка будет совершена на редуктор, а также конвейер. Во всех частотниках можно найти несколько степеней защиты: по нагрузке, току, напряжению и другим показателям.

Некоторые модели частотных преобразователей совершают питание от однофазового напряжения (оно будет доходить до 220 Вольт), создают из него трехфазовое. Это помогает совершить подключение асинхронного мотора в домашних условиях без применения особо сложных схем и конструкций. При этом потребитель сможет не потерять мощность во время работы с таким прибором.

Зачем используют такой прибор-регулятор

Если говорить про двигатели регуляторов, то обороты нужны:

  1. Для существенной экономии электроэнергии. Так, не любому механизму нужно много энергии для выполнения работы вращения мотора, в некоторых случаях можно уменьшить вращение на 20−30 процентов, что поможет значительно сократить расходы на электроэнергию сразу в несколько раз.
  2. Для защиты всех механизмов, а также электронных типов цепей. При помощи преобразовательной частоты можно осуществлять определённый контроль за общей температурой, давлением, а также другими показателями прибора. В случае когда двигатель работает в виде определённого насоса, то в ёмкости, в которую совершается накачка воздуха либо жидкости, стоит вводить определённый датчик давления. Во время достижения максимальной отметки мотор попросту автоматически закончит свою работу.
  3. Для процесса плавного запуска. Нет особой необходимости применять дополнительные электронные виды оборудования — все можно осуществить при помощи изменения в настройках частотного преобразователя.
  4. Для снижения уровня расходов на обслуживание устройств. С помощью таких регуляторов оборотов в двигателях 220 В можно значительно уменьшить возможность выхода из строя приборов, а также отдельных типов механизмов.

Схемы, по которым происходит создание частотных преобразователей в электродвигателе, широко используются в большинстве бытовых устройств. Такую систему можно найти в источниках беспроводного питания, сварочных аппаратах, зарядках телефона, блоках питания персонального компьютера и ноутбука, стабилизаторах напряжения, блоках розжига ламп для подсветки современных мониторов, а также ЖК-телевизоров.

Регулятор оборотов электродвигателя 220в

Его можно изготовить совершенно самостоятельно, но для этого нужно будет изучить все возможные технические особенности прибора. По конструкции можно выделить сразу несколько разновидностей главных деталей. А именно:

  1. Сам электродвигатель.
  2. Микроконтроллерная система управления блока преобразования.
  3. Привод и механические детали, которые связаны с работой системы.

Перед самым началом запуска устройства, после подачи определённого напряжения на обмотки, начинается процесс вращения двигателя с максимальным показателем мощности. Именно такая особенность и будет отличать асинхронные устройства от остальных видов. Ко всему прочему происходит прибавление нагрузки от механизмов, которые приводят прибор в движение. В конечном счёте на начальном этапе работы устройства мощность, а также потребляемый ток лишь возрастают до максимальной отметки.

В это время происходит процесс выделения наибольшего количества тепла. Происходит перегрев в обмотках, а также в проводах. Использование частичного преобразования поможет не допустить этого. Если произвести установку плавного пуска, то до максимальной отметки скорости (которая также может регулироваться оборудованием и может быть не 1500 оборотов за минуту, а всего лишь 1000) двигатель начнёт разгоняться не в первый момент работы, а на протяжении последующих 10 секунд (при этом на каждую секунду устройство будет прибавлять по 100−150 оборотов). В это время процесс нагрузки на все механизмы и провода начинает уменьшаться в несколько раз.

Как сделать регулятор своими руками

Можно совершенно самостоятельно создать регулятор оборотов электродвигателя около 12 В. Для этого стоит использовать переключатель сразу нескольких положений, а также специальный проволочный резистор. При помощи последнего происходит изменение уровня напряжения питания (а вместе с этим и показателя частоты вращения). Такие же системы можно применять и для совершения асинхронных движений, но они будут менее эффективными.

Ещё много лет назад широко использовались механические регуляторы — они были построены на основе шестеренчатых приводов или же их вариаторов. Но такие устройства считались не очень надёжными. Электронные средства показывали себя в несколько раз лучше, так как они были не такими большими и позволяли совершать настройку более тонкого привода.

Для того чтобы создать регулятор вращения электродвигателя, стоит использовать сразу несколько устройств, которые можно либо купить в любом строительном магазине, либо снять со старых инвенторных устройств. Чтобы совершить процесс регулировки, стоит включить специальную схему переменного резистора. С его помощью происходит процесс изменения амплитуды входящего на резистор сигнала.

Внедрение системы управления

Чтобы значительно улучшить характеристику даже самого простого оборудования, стоит в схему регулятора оборотов двигателя подключить микроконтроллерное управление. Для этого стоит выбрать тот процессор, в котором есть подходящее количество входов и выходов соответственно: для совершения подключения датчиков, кнопок, а также специальных электронных ключей.

Для осуществления экспериментов стоит использовать особенный микроконтроллер AtMega 128 — это наиболее простой в применении и широко используемый контроллер. В свободном использовании можно найти большое число схем с его применением. Чтобы устройство совершало правильную работу, в него стоит записать определённый алгоритм действий — отклики на определённые движения. К примеру, при достижении температуры в 60 градусов Цельсия (замер будет отмечаться на графике самого устройства), должно произойти автоматическое отключение работы устройства.

Регулировка работы

Теперь стоит поговорить о том, как можно осуществить регулировку оборотов в коллекторном двигателе. В связи с тем, что общая скорость вращения мотора может напрямую зависеть от величины подаваемого уровня напряжения, для этого вполне пригодны совершенно любые системы для регулировки, которые могут осуществлять такую функцию.

Стоит перечислить несколько разновидностей приборов:

  1. Лабораторные автотрансформеры (ЛАТР).
  2. Заводские платы регулировки, которые применяются в бытовых устройствах (можно взять даже те, которые используются в пылесосах, миксерах).
  3. Кнопки, которые применяются в конструкции электроинструментов.
  4. Бытовые разновидности регуляторов, которые оснащены особым плавным действием.

Но при этом все такие способы имеют определённый изъян. Совместно с процессами уменьшения оборотов уменьшается и общая мощность работы мотора. Иногда его можно остановить, даже просто дотронувшись рукой. В некоторых случаях это может быть вполне нормальным, но по большей части это считается серьёзной проблемой.

Наиболее приемлемым вариантом станет выполнение функции регулировки оборотов при помощи применения тахогенератора.

Его чаще всего устанавливают на заводе. Во время отклонения скорости вращения моторов через симистры в моторе будет происходить передача уже откорректированного электропитания, сопутствующего нужной скорости вращения. Если в такую ёмкость будет встроена регулировка вращения самого мотора, то мощность не будет потеряна.

Как же это выглядит в виде конструкции? Больше всего используется именно реостатная регулировка процесса вращения, которая создана на основе применения полупроводника.

В первом случае речь пойдёт о переменном сопротивлении с использованием механического процесса регулировки. Она будет последовательно подключена к коллекторному электродвигателю. Недостатком в этом случае станет дополнительное выделение некоторого количества тепла и дополнительная трата ресурса всего аккумулятора. Во время такой регулировки происходит общая потеря мощности в процессе совершения вращения мотора. Он считается наиболее экономичным вариантом. Не используется для довольно мощных моторов по вышеуказанным причинам.

Во втором случае во время применения полупроводников происходит процесс управления мотором при помощи подачи определённого числа импульсов. Схема способна совершать изменение длительности таких импульсов, что, в свою очередь, будет изменять общую скорость вращения мотора без потери показателя мощности.

Если вы не хотите самостоятельно изготавливать оборудование, а хотите купить уже полностью готовое к применению устройство, то стоит обратить особое внимание на главные параметры и характеристики, такие, как мощность, тип системы управления прибором, напряжение в устройстве, частоту, а также напряжение рабочего типа. Лучше всего будет производить расчёт общих характеристик всего механизма, в котором стоит применять регулятор общего напряжения двигателя. Стоит обязательно помнить, что нужно производить сопоставление с параметрами частотного преобразователя.

При пуске электродвигателя происходит превышение потребления тока в 7 раз, что способствует преждевременному выходу из строя электрической и механической частей мотора. Для предотвращения этого следует применять регулятор оборотов электродвигателя. Существует много моделей заводского плана, но для того чтобы сделать такое устройство самостоятельно, необходимо знать принцип действия электродвигателя и способы регулирования оборотов ротора.

Общие сведения

Электродвигатели переменного тока получили широкое распространение во многих сферах жизнедеятельности человека, а именно — модели асинхронного типа. Основное назначение двигателя как электрической машины — трансформация электрической энергии в механическую. Асинхронный в переводе означает неодновременный, так как частота вращения ротора отличается от частоты переменного напряжения (U) в статоре. Существует две разновидности асинхронных двигателей по типу питания:

Однофазные применяются для домашних бытовых нужд, а трехфазные используются на производстве. В трехфазных асинхронных двигателях (далее ТАД) используются два вида роторов:

  • замкнутые;
  • фазные.

Замкнутые составляют около 95% от всех применяемых двигателей и обладают значительной мощностью (от 250 Вт и выше). Фазный тип конструктивно отличается от АД, но применяется достаточно редко по сравнению с первым. Ротор представляет собой стальную фигуру цилиндрической формы, которая помещается внутрь статора, причем на его поверхность напрессован сердечник.

Короткозамкнутый и фазный роторы

Впаянные или залитые в поверхность сердечника и накоротко замкнутые с торцов двумя кольцами высокопроводящие медные (для машин большой мощности) или алюминиевые стержни (для машин меньшей мощности) играют роль электромагнитов с полюсами, обращенными к статору. Стержни обмотки не имеют какой-либо изоляции, так как напряжение в такой обмотке нулевое.

Более часто используемый для стержней двигателей средней мощности алюминий отличается малой плотностью и высокой электропроводностью.

Для уменьшения высших гармоник электродвижущей силы (ЭДС) и исключения пульсации магнитного поля стержни ротора имеют определенным образом рассчитанный угол наклона относительно оси вращения. Если используется электромотор маленькой мощности, то пазы представляют собой закрытые конструкции, которые отделяют ротор от зазора с целью увеличения индуктивной составляющей сопротивления.

Ротор в виде фазного исполнения или типа характеризуются обмоткой, концы ее соединены по типу «звезда» и присоединены к контактным кольцам (на валу), по которым скользят графитовые щетки. Для устранения вихревых токов поверхность обмоток покрывается оксидной пленкой. Кроме того, в цепь обмотки ротора добавляется резистор, позволяющий изменять активное сопротивление (R) роторной цепи для уменьшения значений пусковых токов (Iп). Пусковые токи отрицательно влияют на электрическую и механическую части электромотора. Переменные резисторы, используемые для регулирования Iп:

  1. Металлические или ступенчатые с ручным переключением.
  2. Жидкостные (за счет погружения на глубину электродов).

Щетки, выполненные из графита, изнашиваются, и некоторые модели оборудованы короткозамкнутым конструктивным исполнением, которое поднимает щетки и замыкает кольца после запуска мотора. АД с фазным ротором являются более гибкими в плане регулирования Iп.

Конструктивные особенности

Асинхронный двигатель не имеет выраженных полюсов в отличие от электромотора постоянного тока. Число полюсов определяется количеством катушек в обмотках неподвижной части (статор) и способом соединения. В асинхронной машине с 4-мя катушками проходит магнитный поток. Статор выполняется из листов спецстали (электротехническая сталь), сводящих к нулю вихревые токи, при которых происходит значительный нагрев обмоток. Он приводит к массовому межвитковому замыканию.

Железняк или сердечник ротора напрессовывается непосредственно на вал. Между ротором и статором существует минимальный воздушный зазор. Обмотка ротора выполняется в виде «беличьей клетки» и сделана из медных или алюминиевых стержней.

В электромоторах мощностью до 100 кВт применяется алюминий, обладающий незначительной плотностью — для заливки в пазы сердечника ротора. Но несмотря на такое устройство, двигатели этого типа греются. Для решения этой проблемы используются вентиляторы для принудительного охлаждения, которые насаживаются на вал. Эти двигатели просты и надежны. Однако двигатели потребляют при пуске большой ток, в 7 раз больше номинального. Из-за этого они имеют низкий пусковой момент, так как большая часть энергии электричества идет на нагрев обмоток.

Электромоторы, у которых повышенный момент пуска, отличаются от обыкновенных асинхронных конструкцией ротора. Ротор изготавливается в виде двойной «беличьей клетки». Эти модели имеют сходство с фазными типами изготовления ротора. Он состоит из внутренней и наружной «беличьих клеток», причем наружная является пусковой и обладает большим активным и малым реактивным R. Наружная обладает незначительным активным и высоким реактивным R. При увеличении частоты вращения I переключается на внутреннюю клетку и работает в виде короткозамкнутого ротора.

Принцип работы

При протекании I по статорной обмотке в каждой из них создается магнитный поток (Ф). Эти Ф сдвинуты на 120 градусов относительно друг друга. Полученный Ф является вращающимся, создающим электродвижущую силу (ЭДС) в алюминиевых или медных проводниках. В результате этого и создается пусковой магнитный момент электромотора, и ротор начинает вращаться. Этот процесс называется еще в некоторых источниках скольжением (S), показывающим разность частоты n1 электромагнитного поля стартера, которое становится больше, чем частота, полученная при вращении ротора n2. Вычисляется в процентах и имеет вид: S = ((n1-n2)/n1) * 100%.

Значение S при начальном старте электромотора равно примерно 1, но при возрастании значений n2 становится меньше. В этот момент I в роторе уменьшается, следовательно, и ЭДС становится меньше номиналом. При холостом ходе S минимально, но при увеличении момента статического взаимодействия ротора и статора эта величина достигает критического значения. Если выполняется неравенство: S > Sкр, то мотор работает нормально, однако при превышении значения Sкр он может «опрокинуться». Опрокидывание вызывает нестабильную работу, но с течением времени исчезает.

Методы настройки оборотов

Для предотвращения отрицательного влияния во время пуска нужно уменьшить обороты электродвигателя 220 в или 380 в. Существует несколько способов достижения этой цели:

  1. Изменение значения R цепи ротора.
  2. Изменение U в обмотке статора.
  3. Изменение частоты U.
  4. Переключение полюсов.

При изменении значения R роторной части при помощи дополнительных резисторов приводит к снижению частоты вращения, но в результате этого уменьшается мощность. Следовательно, получается значительная потеря электроэнергии. Этот тип регулирования следует применять для фазного ротора.

При изменении значений U на статорной катушке возможно механическое или электрическое управление частотой вращения ротора. В этом случае используется регулятор U. Использование такого способа позволяет применять его только при вентиляторном характере нагрузки (например, регулятор оборотов вентилятора 220в). Для всех остальных случаев применяют трехфазные автоматические трансформаторы, позволяющие плавно изменять значения U, или тиристорные регуляторы.

Исходя из формулы зависимости частоты вращения от частоты питающего U можно производить регулирование количества оборотов ротора. Частота вращающегося магнитного поля статора вычисляется по формуле: Nст = 60 * f /p (f — частота тока питающей сети, p — число пар полюсов). Этот способ обеспечивает возможность плавного регулирования частоты вращения роторной части. Для получения высокого коэффициента полезного действия нужно изменять частоту и U. Этот способ является оптимальным для двигателей с короткозамкнутым ротором, так как потери мощности минимальны. Существует два метода изменения количества пар полюсов:

  1. В статор (в пазы) нужно уложить 2 обмотки с различным числом p.
  2. Обмотка состоит из двух частей, соединенных параллельно или последовательно.

Основным недостатком этого метода является поддержание ступенчатого характера изменения частоты электромотора с короткозамкнутым ротором.

Виды и критерии выбора

Для выбора регулятора нужно руководствоваться определенными характеристиками для конкретного случая. Среди всех критериев можно выбрать следующие:

  1. По типу управления. Для двигателей коллекторного типа применяются регуляторы с векторной или скалярной системой управления.
  2. Мощность является основным параметром, от которого нужно отталкиваться.
  3. По диапазону U.
  4. По диапазону частот. Нужно выбирать модель, которая соответствует требованиям пользователя для конкретного случая.
  5. Прочие характеристики, в которые включены гарантия, габариты, комплектация.

Кроме того, регулятор подбирается мощнее, чем сам электродвигатель по формуле: Pрег = 1,3 * Pдвиг (Pрег, Pдвиг — мощность регулятора и двигателя соответственно). Его нужно выбирать на разные диапазоны U, так как универсальность играет важную роль.

Устройство на тиристорах

В этой модели, представленной на схеме 1, применяются 2 тиристора, включенных встречно-параллельно, хотя их можно заменить одним симистором.

Схема 1 — Тиристорная регулировка оборотов коллекторного двигателя без потери мощности.

Эта схема производит регулирование с помощью открытия или закрытия тиристоров (симистора) при фазовом переходе через нейтраль. Для корректного управления коллекторным двигателем применяют следующие способы модификации схемы 1:

  1. Установка защитных LRC-цепей, состоящих из конденсаторов, резисторов и дросселей.
  2. Добавление на входе емкости.
  3. Использование тиристоров или симистора, ток которых превышает номинальное значение силы тока двигателя в диапазоне от 3..8 раз.

Этот тип регуляторов имеет достоинства и недостатки. К первым относятся низкая стоимость, маленький вес и габариты. Ко вторым следует отнести следующие:

  • применение для моторов небольшой мощности;
  • происходит шум и рывки мотора;
  • при использовании схемы на симисторах происходит попадание постоянного U на двигатель.

Этот тип регулятора ставится в вентиляторы, кондиционеры, стиральные машины и электродрели . Отлично выполняет свои функции, несмотря на недостатки.

Транзисторный тип

Еще одним названием регулятора транзисторного типа является автотрансформатор или ШИМ-регулятор (схема 2). Он изменяет номинал U по принципу широтно-импульсной модуляции (ШИМ) при помощи выходного каскада, в котором применяются транзисторы типа IGBT.

Схема 2 — Транзисторный ШИМ-регулятор оборотов.

Коммутация транзисторов происходит с высокой частотой и благодаря этому можно изменить ширину импульсов. Следовательно, при этом изменится и значение U. Чем длиннее импульс и короче паузы, тем выше значение U и наоборот. Положительные аспекты применения этой разновидности следующие:

  1. Незначительный вес прибора при низких габаритах.
  2. Довольно низкая стоимость.
  3. При низких оборотах отсутствие шума.
  4. Управление за счет низких значений U (0..12 В).

Основной недостаток применения заключается в том, что расстояние до электромотора должно быть не более 4 метров.

Регулирование за счет частоты

Регулирование оборотов моторов различных типов за счет частоты получило широкое применение. Частотное преобразование занимает лидирующую позицию на рынке сбыта устройств-регуляторов оборотов и осуществления плавного пуска. Благодаря своей универсальности возможно влиять на мощность, производительность и скорость любого устройства с электродвигателем. Эти устройства применяются для однофазных и трехфазных двигателей. Применяются такие виды частотных преобразователей:

  1. Специализированные однофазные.
  2. Трехфазные без конденсатора.

Для регулирования оборотов используется конденсатор, включенный с обмотками однофазного двигателя (схема 3). Этот преобразователь частоты (ПЧ) имеет емкостное R, которое зависит от частоты протекающего переменного тока. Выходной каскад такого ПЧ выполнен на IGBT-транзисторах.

Схема 3 — Частотный регулятор оборотов.

У специализированного ПЧ есть свои преимущества и недостатки. Преимуществами являются следующие:

  1. Управление АД без участия человека.
  2. Стабильность.
  3. Дополнительные возможности.

Существует возможность управлять работой электромотора при определенных условиях, а также защита от перегрузок и токов КЗ. Кроме того, возможно расширять функционал при помощи подключения цифровых датчиков, мониторинга параметров работы и использования PID-регулятора. К минусам можно отнести ограничения при управлении частотой и довольно высокую стоимость.

Для трехфазных АД применяются также устройства регулирования частоты (схема 4). Регулятор имеет на выходе три фазы для подключения электромотора.

Схема 4 — ПЧ для трехфазного двигателя.

У этого варианта тоже есть свои сильные и слабые стороны. К первым можно отнести следующие: низкую стоимость, выбор мощности, широкий диапазон частотной регуляции, а также все преимущества однофазных преобразователей частоты. Среди всех отрицательных сторон можно выделить основные: предварительный подбор и нагрев при пуске.

Изготовление своими руками

Если нет возможности, а также желания приобретать регулятор заводского типа, то можно собрать его своими руками. Хотя регуляторы типа » tda1085 » зарекомендовали себя очень хорошо. Для этого нужно детально ознакомиться с теорией и приступить к практике. Очень популярны схемы симисторного исполнения, в частности регулятор оборотов асинхронного двигателя 220в (схема 5). Сделать его несложно. Он собирается на симисторе ВТ138, хорошо подходящем для этих целей.

Схема 5 — Простой регулятор оборотов на симисторе.

Этот регулятор может быть использован и для регулировки оборотов двигателя постоянного тока 12 вольт, так как является довольно простым и универсальным. Обороты регулируются благодаря изменению параметров Р1, определяющему фазу входящего сигнала, который открывает переход симистора.

Принцип работы прост. При запуске двигателя происходит его затормаживание, индуктивность изменятся в меньшую сторону и способствует увеличению U в цепи «R2—>P1—>C2». При разряде С2 симистор открывается в течение некоторого времени.

Существует еще одна схема. Она работает немного по-другому: путем обеспечения хода энергии обратного типа, которое является оптимально выгодным. В схему включен довольно мощный тиристор.

Схема 6 — Устройство тиристорного регулятора.

Схема состоит из генератора сигнала управления, усилителя, тиристора и участка цепи, выполняющего функции стабилизатора вращения ротора.

Наиболее универсальной схемой является регулятор на симисторе и динисторе (схема 7). Он способен плавно убавить скорость вращения вала, задать реверс двигателю (изменить направление вращения) и понизить пусковой ток.

Принцип работы схемы:

  1. С1 заряжается до U пробоя динистора D1 через R2.
  2. D1 при пробитии открывает переход симистора D2, который отвечает за управление нагрузкой.

​Напряжение при нагрузке прямо пропорционально зависит от частотной составляющей при открытии D2, зависящего от R2. Схема применяется в пылесосах. Она содержит универсальное электронное управление, а также способность простого подключения питания 380 В. Все детали следует расположить на печатной плате, изготовленной по лазерно-утюжной технологии (ЛУТ). Подробно с этой технологии изготовления плат можно ознакомиться в интернете.

Таким образом, при выборе регулятора оборотов электродвигателя возможна покупка заводского или изготовление своими руками. Самодельный регулятор сделать достаточно просто, так как при понимании принципа действия устройства можно с легкостью собрать его. Кроме того, следует соблюдать правила безопасности при осуществлении монтажа деталей и при работе с электричеством.

“>

Схема регулятора оборотов асинхронного двигателя 220в

Плавная работа двигателя, без рывков и скачков мощности – это залог его долговечности. Для контроля этих показателей используется регулятор оборотов электродвигателя на 220В, 12 В и 24 В, все эти частотники можно изготовить своими руками или купить уже готовый агрегат.

Регулятор оборотов двигателя, частотный преобразователь – это прибор на мощном транзисторе, который необходим для того, чтобы инвертировать напряжение, а также обеспечить плавную остановку и пуск асинхронного двигателя при помощи ШИМ. ШИМ – широко-импульсное управление электрическими приспособлениями. Его применяют для создания определенной синусоиды переменного и постоянного тока.

Фото — мощный регулятор для асинхронного двигателя

Самый простой пример преобразователя – это обычный стабилизатор напряжения. Но у обсуждаемого прибора гораздо больший спектр работы и мощность.

Частотные преобразователи используются в любом устройстве, которое питается от электрической энергии. Регуляторы обеспечивают чрезвычайно точный электрический моторный контроль, так что скорость двигателя можно изменять в меньшую или большую сторону, поддерживать обороты на нужном уровне и защищать приборы от резких оборотов. При этом электродвигателем используется только энергия, необходимая для работы, вместо того, чтобы запускать его на полной мощности.

Фото — регулятор оборотов двигателя постоянного тока

Зачем нужен регулятор оборотов асинхронного электродвигателя:

Устройство часто используется для сварочного аппарата (в основном для полуавтоматов), электрической печки, ряда бытовых приборов (пылесоса, швейной машинки, радио, стиральной машины), домашнего отопителя, различных судомоделей и т.д.

Регулятор оборотов представляет собой устройство, состоящее из следующих трех основных подсистем:

Когда двигатель переменного тока запускается на полную мощность, происходит передача тока с полной мощностью нагрузки, такое повторяется 7-8 раз. Этот ток сгибает обмотки двигателя и вырабатывает тепло, которое будет выделяться продолжительное время. Это может значительно снизить долговечность двигателя. Иными словами, преобразователь – это своеобразный ступенчатый инвертор, который обеспечивает двойное преобразование энергии.

Фото — схема регулятора для коллекторного двигателя

В зависимости от входящего напряжения, частотный регулятор числа оборотов трехфазного или однофазного электродвигателя, происходит выпрямление тока 220 или 380 вольт. Это действие осуществляется при помощи выпрямляющего диода, который расположен на входе энергии. Далее ток проходит фильтрацию при помощи конденсаторов. Далее формируется ШИМ, за это отвечает электросхема. Теперь обмотки асинхронного электродвигателя готовы к передаче импульсного сигнала и их интеграции к нужной синусоиде. Даже у микроэлектродвигателя эти сигналы выдаются, в прямом смысле слова, пачками.

Фото — схема регулятора для бесколлекторных двигателей

В данной схеме есть две части – одна логическая, где на микросхеме расположен микроконтроллер, а вторая – силовая. В основном такая электрическая схема используется для мощного электрического двигателя.

Видео: регулятор оборотов электродвигателя с ШИро V2

Как сделать самодельный регулятор оборотов двигателя

Можно сделать простой симисторный регулятор оборотов электродвигателя, его схема представлена ниже, а цена состоит только из деталей, продающихся в любом магазине электротехники.

Для работы нам понадобится мощный симистор типа BT138-600, её советует журнал радиотехники.

Фото — схема регулятора оборотов своими руками

В описанной схеме, обороты будут регулироваться при помощи потенциометра P1. Параметром P1 определяется фаза входящего импульсного сигнала, который в свою очередь открывает симистор. Такая схема может применяться как в полевом хозяйстве, так и в домашнем. Можно использовать данный регулятор для швейных машинок, вентиляторов, настольных сверлильных станков.

Принцип работы прост: в момент, когда двигатель немного затормаживается, его индуктивность падает, и это увеличивает напряжение в R2-P1 и C3, то в свою очередь влечет более продолжительное открытие симистора.

Тиристорный регулятор с обратной связью работает немного по-другому. Он обеспечивает обратный ход энергии в энергетическую систему, что является очень экономным и выгодным. Данный электронный прибор подразумевает включение в электрическую схемы мощного тиристора. Его схема выглядит вот так:

Здесь для подачи постоянного тока и выпрямления требуется генератор управляющего сигнала, усилитель, тиристор, цепь стабилизации оборотов.

Управление скоростью вращения однофазных двигателей

Однофазные асинхронные двигатели питаются от обычной сети переменного напряжения 220 В.

Наиболее распространённая конструкция таких двигателей содержит две (или более) обмотки — рабочую и фазосдвигающую. Рабочая питается напрямую, а дополнительная через конденсатор, который сдвигает фазу на 90 градусов, что создаёт вращающееся магнитное поле. Поэтому такие двигатели ещё называют двухфазные или конденсаторные.

Регулировать скорость вращения таких двигателей необходимо, например, для:

  • изменения расхода воздуха в системе вентиляции
  • регулирования производительности насосов
  • изменения скорости движущихся деталей, например в станках, конвеерах

В системах вентиляции это позволяет экономить электроэнергию, снизить уровень акустического шума установки, установить необходимую производительность.

Способы регулирования

Рассматривать механические способы изменения скорости вращения, например редукторы, муфты, шестерёнчатые трансмиссии мы не будем. Также не затронем способ изменения количества полюсов обмоток.

Рассмотрим способы с изменением электрических параметров:

  • изменение напряжения питания двигателя
  • изменение частоты питающего напряжения

Регулирование напряжением

Регулирование скорости этим способом связано с изменением, так называемого, скольжения двигателя — разностью между скоростью вращения магнитного поля, создаваемого неподвижным статором двигателя и его движущимся ротором:

n1 скорость вращения магнитного поля

n2— скорость вращения ротора

При этом обязательно выделяется энергия скольжения — из-за чего сильнее нагреваются обмотки двигателя.

Данный способ имеет небольшой диапазон регулирования, примерно 2:1, а также может осуществляться только вниз — то есть, снижением питающего напряжения.

При регулировании скорости таким способом необходимо устанавливать двигатели завышенной мощности.

Но несмотря на это, этот способ используется довольно часто для двигателей небольшой мощности с вентиляторной нагрузкой.

На практике для этого применяют различные схемы регуляторов.

Автотрансформаторное регулирование напряжения

Автотрансформатор — это обычный трансформатор, но с одной обмоткой и с отводами от части витков. При этом нет гальванической развязки от сети, но она в данном случае и не нужна, поэтому получается экономия из-за отсутствия вторичной обмотки.

На схеме изображён автотрансформатор T1, переключатель SW1, на который приходят отводы с разным напряжением, и двигатель М1.

Регулировка получается ступенчатой, обычно используют не более 5 ступеней регулирования.

Преимущества данной схемы:
      • неискажённая форма выходного напряжения (чистая синусоида)
      • хорошая перегрузочная способность трансформатора
Недостатки:
      • большая масса и габариты трансформатора (зависят от мощности нагрузочного мотора)
      • все недостатки присущие регулировке напряжением

Тиристорный регулятор оборотов двигателя

В данной схеме используются ключи — два тиристора, включённых встречно-параллельно (напряжение переменное, поэтому каждый тиристор пропускает свою полуволну напряжения) или симистор.

Схема управления регулирует момент открытия и закрытия тиристоров относительно фазового перехода через ноль, соответственно «отрезается» кусок вначале или, реже в конце волны напряжения.

Таким образом изменяется среднеквадратичное значение напряжения.

Данная схема довольно широко используется для регулирования активной нагрузки — ламп накаливания и всевозможных нагревательных приборов (так называемые диммеры).

Ещё один способ регулирования — пропуск полупериодов волны напряжения, но при частоте в сети 50 Гц для двигателя это будет заметно — шумы и рывки при работе.

Для управления двигателями регуляторы модифицируют из-за особенностей индуктивной нагрузки:

  • устанавливают защитные LRC-цепи для защиты силового ключа (конденсаторы, резисторы, дроссели)
  • добавляют на выходе конденсатор для корректировки формы волны напряжения
  • ограничивают минимальную мощность регулирования напряжения — для гарантированного старта двигателя
  • используют тиристоры с током в несколько раз превышающим ток электромотора

Достоинства тиристорных регуляторов:

Недостатки:
      • можно использовать для двигателей небольшой мощности
      • при работе возможен шум, треск, рывки двигателя
      • при использовании симисторов на двигатель попадает постоянное напряжение
      • все недостатки регулирования напряжением

Стоит отметить, что в большинстве современных кондиционеров среднего и высшего уровня скорость вентилятора регулируется именно таким способом.

Транзисторный регулятор напряжения

Как называет его сам производитель — электронный автотрансформатор или ШИМ-регулятор.

Изменение напряжения осуществляется по принципу ШИМ (широтно-импульсная модуляция), а в выходном каскаде используются транзисторы — полевые или биполярные с изолированным затвором (IGBT).

Выходные транзисторы коммутируются с высокой частотой (около 50 кГц), если при этом изменить ширину импульсов и пауз между ними, то изменится и результирующее напряжение на нагрузке. Чем короче импульс и длиннее паузы между ними, тем меньше в итоге напряжение и подводимая мощность.

Для двигателя, на частоте в несколько десятков кГц, изменение ширины импульсов равносильно изменению напряжения.

Выходной каскад такой же как и у частотного преобразователя, только для одной фазы — диодный выпрямитель и два транзистора вместо шести, а схема управления изменяет выходное напряжение.

Плюсы электронного автотрансформатора:

        • Небольшие габариты и масса прибора
        • Невысокая стоимость
        • Чистая, неискажённая форма выходного тока
        • Отсутствует гул на низких оборотах
        • Управление сигналом 0-10 Вольт
Слабые стороны:
        • Расстояние от прибора до двигателя не более 5 метров (этот недостаток устраняется при использовании дистанционного регулятора)
        • Все недостатки регулировки напряжением

Частотное регулирование

Ещё совсем недавно (10 лет назад) частотных регуляторов скорости двигателей на рынке было ограниченное количество, и стоили они довольно дорого. Причина — не было дешёвых силовых высоковольтных транзисторов и модулей.

Но разработки в области твердотельной электроники позволили вывести на рынок силовые IGBT-модули. Как следствие — массовое появление на рынке инверторных кондиционеров, сварочных инверторов, преобразователей частоты.

На данный момент частотное преобразование — основной способ регулирования мощности, производительности, скорости всех устройств и механизмов приводом в которых является электродвигатель.

Однако, преобразователи частоты предназначены для управления трёхфазными электродвигателями.

Однофазные двигатели могут управляться:

  • специализированными однофазными ПЧ
  • трёхфазными ПЧ с исключением конденсатора

Преобразователи для однофазных двигателей

В настоящее время только один производитель заявляет о серийном выпуске специализированного ПЧ для конденсаторных двигателей — INVERTEK DRIVES.

Это модель Optidrive E2

Для стабильного запуска и работы двигателя используются специальные алгоритмы.

При этом регулировка частоты возможна и вверх, но в ограниченном диапазоне частот, этому мешает конденсатор установленный в цепи фазосдвигающей обмотки, так как его сопротивление напрямую зависит от частоты тока:

f — частота тока

С — ёмкость конденсатора

В выходном каскаде используется мостовая схема с четырьмя выходными IGBT транзисторами:

Optidrive E2 позволяет управлять двигателем без исключения из схемы конденсатора, то есть без изменения конструкции двигателя — в некоторых моделях это сделать довольно сложно.

Преимущества специализированного частотного преобразователя:

        • интеллектуальное управление двигателем
        • стабильно устойчивая работа двигателя
        • огромные возможности современных ПЧ:
          • возможность управлять работой двигателя для поддержания определённых характеристик (давления воды, расхода воздуха, скорости при изменяющейся нагрузке)
          • многочисленные защиты (двигателя и самого прибора)
          • входы для датчиков (цифровые и аналоговые)
          • различные выходы
          • коммуникационный интерфейс (для управления, мониторинга)
          • предустановленные скорости
          • ПИД-регулятор
Минусы использования однофазного ПЧ:

Использование ЧП для трёхфазных двигателей

Стандартный частотник имеет на выходе трёхфазное напряжение. При подключении к ему однофазного двигателя из него извлекают конденсатор и соединяют по приведённой ниже схеме:

Геометрическое расположение обмоток друг относительно друга в статоре асинхронного двигателя составляет 90°:

Фазовый сдвиг трёхфазного напряжения -120°, как следствие этого — магнитное поле будет не круговое , а пульсирующее и его уровень будет меньше чем при питании со сдвигом в 90°.

В некоторых конденсаторных двигателях дополнительная обмотка выполняется более тонким проводом и соответственно имеет более высокое сопротивление.

При работе без конденсатора это приведёт к:

  • более сильному нагреву обмотки (срок службы сокращается, возможны кз и межвитковые замыкания)
  • разному току в обмотках

Многие ПЧ имеют защиту от асимметрии токов в обмотках, при невозможности отключить эту функцию в приборе работа по данной схеме будет невозможна

Преимущества:

          • более низкая стоимость по сравнению со специализированными ПЧ
          • огромный выбор по мощности и производителям
          • более широкий диапазон регулирования частоты
          • все преимущества ПЧ (входы/выходы, интеллектуальные алгоритмы работы, коммуникационные интерфейсы)

Недостатки метода:

          • необходимость предварительного подбора ПЧ и двигателя для совместной работы
          • пульсирующий и пониженный момент
          • повышенный нагрев
          • отсутствие гарантии при выходе из строя, т.к. трёхфазные ПЧ не предназначены для работы с однофазными двигателями

Описание регулятора оборотов электродвигателя без потери мощности

Каждый из нас дома имеет какой-то электроприбор, который работает в доме не один год. Но со временем мощность техники слабеет и не выполняет своих прямых предназначений. Именно тогда стоит обратить внимание на внутренности оборудования. В основном проблемы возникают с электродвигателем, который отвечает за функциональность техники. Тогда стоит обратить свое внимание на прибор, который регулирует обороты мощности двигателя без снижения их мощности.

Виды двигателей

Регулятор оборотов с поддержанием мощности — изобретение, которое вдохнет новую жизнь в электроприбор, и он будет работать как только что приобретенный товар. Но стоит помнить о том, что двигатели бывают разных форматов и у каждого своя предельная работа.

Двигатели разные по характеристикам. Это значит то, что та или иная техника работает на разных частотах оборота вала, запускающего механизм. Мотор может быть:

В основном трехфазные электромоторы встречаются на заводах или крупных фабриках. В домашних условиях используются однофазные и двухфазные. Данного электричества хватает на работу бытовой техники.

Регулятор оборотов мощности

Принципы работы

Регулятор оборотов электродвигателя 220 В без потери мощности используется для поддержки первоначальной заданной частоты оборотов вала. Это один из основных принципов данного прибора, который называется частотным регулятором.

С помощью него электроприбор работает в установленной частоте оборотов двигателя и не снижает ее. Также регулятор скорости двигателя влияет на охлаждение и вентиляцию мотора. C помощью мощности устанавливается скорость, которую можно как поднять, так и снизить.

Вопросом о том, как уменьшить обороты электродвигателя 220 В, задавались многие люди. Но данная процедура довольно проста. Стоит только изменить частоту питающего напряжения, что существенно снизит производительность вала мотора. Также можно изменить питание двигателя, задействуя при этом его катушки. Управление электричеством тесно связано с магнитным полем и скольжением электродвигателя. Для таких действий используют в основном автотрансформатор, бытовые регуляторы, которые уменьшают обороты данного механизма. Но стоит также помнить о том, что будет уменьшаться мощность двигателя.

Вращение вала

Двигатели делят на:

Регулятор скорости вращения асинхронного электродвигателя зависит от подключения тока к механизму. Суть работы асинхронного мотора зависит от магнитных катушек, через которые проходит рамка. Она поворачивается на скользящих контактах. И когда при повороте она развернется на 180 градусов, то по данным контактам связь потечет в обратном направлении. Таким образом, вращение останется неизменным. Но при этом действии нужный эффект не будет получен. Он войдет в силу после внесения в механизм пары десятков рамок данного типа.

Коллекторный двигатель используется очень часто. Его работа проста, так как пропускаемый ток проходит напрямую — из-за этого не теряется мощность оборотов электродвигателя, и механизм потребляет меньше электричества.

Двигатель стиральной машины также нуждается в регулировке мощности. Для этого были сделаны специальные платы, которые справляются со своей работой: плата регулировки оборотов двигателя от стиральной машины несет многофункциональное употребление, так как при ее применении снижается напряжение, но не теряется мощность вращения.

Схема данной платы проверена. Стоит только поставить мосты из диодов, подобрав оптрон для светодиода. При этом еще нужно поставить симистор на радиатор. В основном регулировка двигателя начинается от 1000 оборотов.

Если не устраивает регулятор мощности и не хватает его функциональности, можно сделать или усовершенствовать механизм. Для этого нужно учитывать силу тока, которая не должна превышать 70 А, и теплоотдачу при использовании. Поэтому можно установить амперметр для регулировки схемы. Частота будет небольшой и будет определена конденсатором С2.

Далее стоит настроить регулятор и его частоту. При выходе данный импульс будет выходить через двухтактный усилитель на транзисторах. Также можно сделать 2 резистора, которые будут служить выходом для охладительной системы компьютера. Чтобы схема не сгорела, требуется специальный блокиратор, который будет служить удвоенным значением тока. Так данный механизм будет работать долго и в нужном объеме. Регулирующие приборы мощности обеспечат вашим электроприборам долгие годы службы без особых затрат.

Регулирование однофазного асинхронного двигателя с помощью частотного преобразователя

    0 commentsПрименение Октябрь 27, 2016

С все более увеличивающимся ростом автоматизации в бытовой сфере появляется необходимость в современных системах и устройствах управления электродвигателями.

Управление и преобразование частоты в небольших по мощности однофазных асинхронных двигателях, запускаемых в работу с помощью конденсаторов, позволяет экономить электроэнергию и активирует режим энергосбережения на новом, прогрессивном уровне.

Принцип работы однофазной асинхронной машины

В основе работы асинхронного двигателя лежит взаимодействие вращающегося магнитного поля статора и токов, наводимых им в роторе двигателя. При разности частоты вращения пульсирующих магнитных полей возникает вращающий момент. Именно этим принципом руководствуются при регулировании скорости вращения асинхронного двигателя с помощью частотного преобразователя.

Электродвигатель по факту может считаться двухфазным, но у него только одна рабочая обмотка статора, вторая, расположенная относительно главной под углом в 90 о является пусковой.

Пусковая обмотка занимает в конструкции статора 1/3 пазов, на главную обмотку приходится 23 паза статора.

Ротор однофазного двигателя коротко замкнутый, помещенный в неподвижное магнитное поле статора, начинает вращаться.

Рис.№1 Схематический рисунок двигателя, демонстрирующий принцип работы однофазного асинхронного двигателя.

Основные виды однофазных электроприводов

Кондиционеры воздуха, холодильные компрессоры, электрические вентиляторы, обдувочные агрегаты, водяные, дренажные и фекальные насосы, моечные машины используют в своей конструкции асинхронный трехфазный двигатель.

Все типы частотников преобразуют переменное сетевое напряжение в постоянное напряжение. Служат для формирования однофазного напряжения с регулируемой частотой и заданной амплитудой для управления вращения асинхронных двигателей.

Управление скоростью вращения однофазных двигателей

Существует несколько способов регулирования скорости вращения однофазного двигателя.

  1. Управление скольжением двигателя или изменением напряжения. Способ актуален для агрегатов с вентиляторной нагрузкой, для него рекомендуется использовать двигатели с повышенной мощностью. Недостаток способа – нагрев обмоток двигателя.
  2. Ступенчатое регулирование скорости вращения двигателя с помощью автотрансформатора.

Рис.№2. Схема регулировки с помощью автотрансформатора.

Достоинства схемы – напряжение выхода имеет чистую синусоиду. Способность трансформатора к перегрузкам имеет большой запас по мощности.

Недостатки – автотрансформатор имеет большие габаритные размеры.

Использование тиристорного регулятора оборотов двигателя. Применяются тиристорные ключи, подключенные встречно-параллельно.

Рис. №3.Схема тиристорного регулирования однофазного асинхронного электродвигателя.

При использовании для регулирования скорости вращения однофазных асинхронных двигателей, чтобы избежать негативного влияния индукционной нагрузки производят модификацию схемы. Добавляют LRC-цепи для защиты силовых ключей, для корректировки волны напряжения используют конденсатор, минимальная мощность двигателя ограничивается, так гарантируется старт двигателя. Тиристор должен иметь ток выше тока электродвигателя.

Транзисторный регулятор напряжения

В схеме используется широтно-импульсная модуляция (ШИМ) с применением выходного каскада, построенного на использовании полевых или биполярных IGBT транзисторах.

Рис. №4. Схема использования ШИМ для регулирования однофазного асинхронного электродвигателя.

Частотное регулирование асинхронного однофазного электродвигателя считается основным способом регулирования частоты электродвигателя, мощности, эффективности использования, скорости и показателей энергосбережения.

Рис. №5. Схема управления электродвигателем без исключения из конструкции конденсатора.

Частотный преобразователь: виды, принцип действия, схемы подключения

Частотный преобразователь разрешает своему владельцу снизить энергопотребление и автоматизировать процессы в управлении оборудованием и производством.

Основные компоненты частотного преобразователя: выпрямитель, конденсатор, IGBT-транзисторы, собранные в выходной каскад.

Благодаря способности управлением параметрами выходной частоты и напряжения достигается хороший энергосберегающий эффект. Энергосбережение выражается в следующем:

  1. В двигателе поддерживается неизменный текущий момент ращения вала. Это обусловлено взаимодействием выходной частоты инверторного преобразователя с частотой вращения двигателя и соответственно, зависимостью напряжения и крутящего момента на валу двигателя. Значит, что преобразователь дает возможность автоматически регулировать напряжение на выходе при обнаружении превышающего норму значения напряжения с определенной рабочей частотой нужно для поддержания требуемого момента. Все инверторные преобразователи с векторным управлением имеют функцию поддержания постоянного вращающего момента на валу.
  2. Частотный преобразователь служит для регулировки действия насосных агрегатов (см. страницу). При получении сигнала, поступающего с датчика давления, частотник снижает производительность насосной установки. При снижении оборотов вращения двигателя уменьшается потребление выходного напряжения. Так, стандартное потребление воды насосом требует 50Гц промышленной частоты и 400В напряжения. Руководствуясь формулой мощности можно высчитать соотношение потребляемых мощностей.

Уменьшая частоту до 40Гц, уменьшается величина напряжения до 250В, означает, что уменьшается количество оборотов вращения насоса и потребление энергии снижается в 2,56 раз.

Рис. №6. Использование частотного преобразователя Speedrive для регулирования насосных агрегатов по систем CKEA MULTI 35.

Для повышения энергетической эффективности использования частотного преобразователя в управлении электродвигателем необходимо сделать следующее:

  • Частотный преобразователь должен соответствовать параметрам электродвигателя.
  • Частотник подбирается в соответствии с типом рабочего оборудования, для которого он предназначен. Так, частотник для насосов функционирует в соответствии с заложенными в программу параметрами для управления работой насоса.
  • Точные настройки параметров управления в ручном и автоматическом режиме.
  • Частотный преобразователь разрешает использовать режим энергосбережения.
  • Режим векторного регулирования позволяет произвести автоматическую настройку управления двигателем.

Преобразователь частоты однофазный

Компактное устройство преобразования частоты служит для управления однофазными электродвигателями для оборудования бытового предназначения. Большинство частотных преобразователей обладает следующими конструктивными возможностями:

  1. Большинство моделей использует в своей конструкции новейшие технологии векторного управления.
  2. Они обеспечивают улучшенный вращающий момент однофазного двигателя.
  3. Энергосбережение введено в автоматический режим.
  4. Некоторые модели частотных преобразователей используют съемный пульт управления.
  5. Встроенный PLC контроллер (он незаменим для создания устройств сбора и передачи данных, для создания систем телеметрии, объединяет устройства с различными протоколами и интерфейсами связи в общую сеть).
  6. Встроенный ПИД регулятор (контролирует и регулирует температуру, давление и технологические процессы).
  7. Напряжение выхода регулируется в автоматическом режиме.

Рис.№7. Современный преобразователь Optidrive с основными функциональными особенностями.

Важно: Однофазный преобразователь частоты, питаясь от однофазной сети напряжением 220В, выдает три линейных напряжения, величина каждого из них по 220В. То есть, линейное напряжение между 2 фазами находится в прямой зависимости от величины выходного напряжения самого частотника.

Частотный преобразователь не служит для двойного преобразования напряжения, благодаря наличию в конструкции ШИМ-регулятора, он может поднять величину напряжения не более чем на 10%.

Главная задача однофазного преобразователя частоты – обеспечить питание как одно- так и трехфазного электродвигателя. В этом случае ток двигателя будет соответствовать параметрам подключения от трехфазной сети, и оставаться постоянным

Частотное регулирование однофазных асинхронных электродвигателей

Первое на что обращаем внимание при выборе частотника для своего оборудования – это соответствие сетевого напряжения и номинального значения тока нагрузки, на который рассчитан двигатель. Способ подключения выбирается относительно рабочего тока.

Главным в схеме подключения является наличие фазосдвигающего конденсатора, он служит для сдвига напряжения, поступающего на пусковую обмотку. Она служит для пускового включения двигателя, иногда после того, как двигатель заработал, пусковая обмотка вместе с конденсатором отключается, иногда остается включенной.

Схема подключения однофазного двигателя с помощью однофазного частотного преобразователя без использования конденсатора

Выходное линейное напряжение устройства на каждой фазе равно выходному напряжению частотника, то есть на выходе будет три напряжения линии, каждое по 220В. Для запуска может использоваться только пусковая обмотка.

Рис. №8. Схема присоединения однофазного асинхронного двигателя через конденсатор

Фазосдвигающий конденсатор не может обеспечить равномерный фазовый сдвиг в пределах границ частот инвертора. Частотник обеспечит равномерный сдвиг фаз. Для того, чтобы исключить из схемы конденсатор, нужно:

  1. Конденсатор стартера С1 удаляется.
  2. Вывод обмотки двигателя присоединяем к точке выхода напряжения частотника (используется прямая проводка).
  3. Точка А присоединяется к СА; В соединяется с СВ; W соединяется к СС, таким образом электродвигатель присоединится напрямую.
  4. Для включения в обратном направлении (обратная проводка) необходимо В присоединить к СА; А присоединить к СВ; W соединить с СС.

Рис. №9. Схема подключения однофазного асинхронного двигателя без использования конденсатора.

На видео — Частотный преобразователь. Подключение трехфазного двигателя в однофазную сеть 220В.

Как своими руками сделать регулятор оборотов электродвигателя

При использовании электродвигателя в различных устройствах и инструментах неизменно возникает необходимость регулировки скорости вращения вала.

Самостоятельно сделать регулятор оборотов электродвигателя не составит труда. Нужно лишь подыскать качественную схему, устройство которой полностью бы подходило к особенностям и типу конкретного электрического двигателя.

Использование частотных преобразователей

Для регулировки оборотов электрического двигателя, работающего от сети с напряжением в 220 и 380 Вольт, могут использоваться частотные преобразователи. Высокотехнологичные электронные устройства позволяют благодаря изменению частоты и амплитуды сигнала плавно регулировать частоту вращения электродвигателя.

В основе таких преобразователей лежат мощные полупроводниковые транзисторы с широкоимпульсными модуляторами.

Преобразователи с помощью соответствующего блока управления на микроконтроллере позволяют плавно изменять показатель оборотов двигателя.

Высокотехнологичные преобразователи частоты используются в сложных и нагруженных механизмах. Современные частотные регуляторы имеют сразу несколько степеней защиты, в том числе по нагрузке, показателю тока напряжения и другим характеристикам. Отдельные модели питаются от электросети с однофазным напряжением в 220 Вольт и могут переделывать напряжение в трехфазные 380 Вольт. Использование таких преобразователей позволяет в домашних условиях использовать асинхронные электрические двигатели без применения сложных схем подключения.

Применение электронных регуляторов

Использование мощных асинхронных двигателей невозможно без применения соответствующих регуляторов оборотов. Такие преобразователи используются для следующих целей:

  • Ступенчатый разгон и возможность понижения оборотов двигателя при уменьшении нагрузки позволяет уменьшить потребление электроэнергии. Использование частотных преобразователей с мощными асинхронными двигателями позволяет вдвое сократить расходы на электроэнергию.
  • Защита электронных механизмов. Преобразователи частоты позволяют контролировать показатели давления, температуры и ряд других параметров. При использовании двигателя в качестве привода насоса в емкости, в которую закачивается жидкость или воздух, может быть установлен датчик давления, отвечающий за управление механизмом и предотвращающий его выход из строя.
  • Обеспечение плавного запуска. При запуске электродвигателя, когда мотор сразу начинает работать на максимальных оборотах, на привод приходится повышенная нагрузка. Использование регулятора оборотов обеспечивает плавность запуска, что гарантирует максимально возможную долговечность работы привода и отсутствие его серьезных поломок.
  • Сокращаются расходы на техническое обслуживание насосов и самих силовых агрегатов. Наличие регуляторов оборотов снижает риск поломок отдельных механизмов и всего привода.

Используемая частотными преобразователями схема работы аналогична у большинства бытовых приборов. Похожие устройства также используются в сварочных аппаратах, ИБП, питании ПК и ноутбуков, стабилизаторах напряжения, блоках розжига ламп, а также в мониторах и жидкокристаллических телевизорах.

Несмотря на кажущуюся сложность схемы, сделать регулятор оборотов электродвигателя 220 В будет достаточно просто.

Принцип работы устройства

Принцип работы и конструкция регулятора оборотов двигателя отличается простотой, поэтому, изучив технические моменты, вполне по силам выполнить их самостоятельно. Конструктивно выделяют несколько основных компонентов, из которых состоят регуляторы вращения:

  • Электрический двигатель.
  • Блок преобразователя и микроконтроллерная схема управления.
  • Механизмы и приводы.

Отличием асинхронных двигателей от стандартных приводов является вращение ротора с максимальными показателями мощности при подаче напряжения на обмотку трансформатора. На начальном этапе показатели потребляемого тока и мощность у двигателя возрастает до максимума, что приводит к существенной нагрузке на привод и его быстрому выходу из строя.

При запуске двигателя на максимальных оборотах выделяется большое количество тепла, что приводит к перегреву привода, обмотки и других элементов привода. Благодаря использованию частотного преобразователя имеется возможность плавно разгонять двигатель, что предупреждает перегрев и другие проблемы с агрегатом. Электромотор может при использовании частотного преобразователя запускаться на частоте оборотов 1000 в минуту, а в последующем обеспечивается плавный разгон, когда каждые 10 секунд прибавляется 100−200 оборотов двигателя.

Изготовление самодельных реле

Изготовить самодельный регулятор оборотов электродвигателя 12 В не составит какого-либо труда. Для такой работы потребуется следующее:
  • Проволочные резисторы.
  • Переключатель на несколько положений.
  • Блок управления и реле.

Использование проволочных резисторов позволяет изменять напряжение питания, соответственно, и частоту вращения двигателя. Такой регулятор обеспечивает ступенчатый разгон двигателя, отличается простой конструкции и может быть выполнен даже начинающими радиолюбителями. Такие простейшие самодельные ступенчатые регуляторы можно использовать с асинхронными и контактными двигателями.

Принцип работы самодельного преобразователя:

  1. Питание от сети направляется на конденсатор.
  2. Используемый конденсатор полностью заряжается.
  3. Нагрузка передается на резистор и нижний кабель.
  4. Электрод тиристора, соединенный с положительным контактом на конденсаторе, получает нагрузку.
  5. Передаётся заряд напряжения.
  6. Происходит открытие второго полупроводника.
  7. Тиристор пропускает полученную с конденсатора нагрузку.
  8. Конденсатор полностью разряжается, после чего повторяется полупериод.
В прошлом наибольшей популярностью пользовались механические регуляторы, выполненные на основе вариатора или шестеренчатого привода. Однако они не отличались должной надежностью и часто выходили из строя.

Самодельные электронные регуляторы зарекомендовали себя с наилучшей стороны. Они используют принцип изменения ступенчатого или плавного напряжения, отличаются долговечностью, надежностью, имеют компактные габариты и обеспечивают возможность тонкой настройки работы привода.

Дополнительное использование в схемах электронных регуляторов симисторов и аналогичных устройств позволяет обеспечить плавное изменение мощности напряжения, соответственно электродвигатель будет правильно набирать обороты, постепенно выходя на свою максимальную мощность.

Для обеспечения качественной регулировки в схему включаются переменные резисторы, которые изменяют амплитуду входящего сигнала, обеспечивая плавное или ступенчатое изменение числа оборотов.

Схема на ШИМ-транзисторе

Регулировать скорость вращения вала у маломощных электродвигателей можно при помощи шин-транзистора и последовательного соединения резисторов в питании. Этот вариант отличается простотой реализации, однако имеет низкий КПД и не позволяет плавно изменять скорость вращения двигателя. Изготовить своими руками регулятор оборотов коллекторного двигателя 220 В с использованием шим-транзистора не составит особой сложности.

Принцип работы регулятора на транзисторе:

  • Используемые сегодня шин-транзисторы имеют генератор пилообразного напряжения частотой в 150 Герц.
  • Операционные усилители используются в роли компаратора.
  • Изменение скорости вращения осуществляется за счёт наличия переменного резистора, управляющего длительностью импульсов.

Транзисторы имеют ровную постоянную амплитуду импульсов, идентичную амплитуде напряжения питания. Это позволяет выполнять регулировку оборотов двигателя 220 В и поддерживать работу агрегата даже при подаче минимального напряжения на обмотку трансформатора.

Благодаря возможности подключения микроконтроллера к ШИМ-транзистору обеспечивается возможность автоматической настройки и регулировки работы электропривода. Такие схемы исполнения преобразователей могут иметь дополнительные компоненты, которые расширяют функциональные возможности привода, обеспечивая работу в полностью автоматическом режиме.

Внедрение автоматических систем управления

Наличие в регуляторах и частотных преобразователях микроконтроллерного управления позволяет улучшить параметры работы привода, а сам мотор может работать в полностью автоматическом режиме, когда используемый контроллер плавно или ступенчато изменяет показатели частоты вращения агрегата. Сегодня в качестве микроконтроллерного управления используются процессоры, которые имеют отличающееся число выходов и входов. К такому микроконтроллеру можно подключить различные электронные ключи, кнопки, всевозможные датчики потери сигнала и так далее.

В продаже можно найти различные типы микроконтроллеров, которые отличаются простотой в использовании, гарантируют качественную настройку работы преобразователя и регулятора, а наличие дополнительных входов и выходов позволяет подключать к процессору различные дополнительные датчики, по сигналу которых устройство будет уменьшать или увеличивать число оборотов или же полностью прекращать подачу напряжения на обмотки электродвигателя.

Сегодня в продаже имеются различные преобразователи и регуляторы электродвигателя. Впрочем, при наличии даже минимальных навыков работы с радиодеталями и умении читать схемы можно выполнить такое простейшее устройство, которое будет плавно или ступенчато изменять обороты двигателя. Дополнительно можно включить в цепь управляющий симисторный реостат и резистор, что позволит плавно изменять обороты, а наличие микроконтроллерного управления полностью автоматизирует использование электрических двигателей.

Самостоятельное изготовление регулятора оборотов электродвигателя

Регулятор оборотов в двигателе нужен для совершения плавного разгона и торможения. Широкое распространение получили такие приборы в современной промышленности. Благодаря им происходит измерение скорости движения в конвейере, на различных устройствах, а также при вращении вентилятора. Двигатели с производительностью на 12 Вольт применяются в целых системах управления и в автомобилях.

Устройство системы

Коллекторный тип двигателя состоит главным образом из ротора, статора, а также щёток и тахогенератора.

  1. Ротор — это часть вращения, статор — это внешний по типу магнит.
  2. Щётки, которые произведены из графита — это главная часть скользящего контакта, через которую на вращающийся якорь и стоит подавать напряжение.
  3. Тахогенератор —это устройство, которое производит слежку за характеристикой вращения прибора. Если происходит нарушение в размеренности процесса вращения, то он корректирует поступающий в двигатель уровень напряжения, тем самым делая его наиболее плавным и медленным.
  4. Статор. Такая деталь может включать в себя не один магнит, а, к примеру, две пары полюсов. Вместе с этим на месте статических магнитов здесь будут находиться катушки электромагнитов. Совершать работу такое устройство способно как от постоянного тока, так и от переменного.

Схема регулятора оборотов коллекторного двигателя

В виде регуляторов оборотов электродвигателей 220 В и 380 В применяются особые частотные преобразователи. Такие устройства относят к высокотехнологическим, они и помогают совершить кардинальное преобразование характеристики тока (форму сигнала, а также частоту). В их комплектации имеются мощные полупроводниковые транзисторы, а также широтно-импульсный модулятор. Весь процесс осуществления работы устройства происходит с помощью управления специальным блоком на микроконтроллере. Изменение скорости во вращении ротора двигателей происходит довольно медленно.

Именно по этой причине частотные преобразователи применяются в нагруженных устройствах. Чем медленнее будет происходить процесс разгона, тем меньшая нагрузка будет совершена на редуктор, а также конвейер. Во всех частотниках можно найти несколько степеней защиты: по нагрузке, току, напряжению и другим показателям.

Некоторые модели частотных преобразователей совершают питание от однофазового напряжения (оно будет доходить до 220 Вольт), создают из него трехфазовое. Это помогает совершить подключение асинхронного мотора в домашних условиях без применения особо сложных схем и конструкций. При этом потребитель сможет не потерять мощность во время работы с таким прибором.

Зачем используют такой прибор-регулятор

Если говорить про двигатели регуляторов, то обороты нужны:

  1. Для существенной экономии электроэнергии. Так, не любому механизму нужно много энергии для выполнения работы вращения мотора, в некоторых случаях можно уменьшить вращение на 20−30 процентов, что поможет значительно сократить расходы на электроэнергию сразу в несколько раз.
  2. Для защиты всех механизмов, а также электронных типов цепей. При помощи преобразовательной частоты можно осуществлять определённый контроль за общей температурой, давлением, а также другими показателями прибора. В случае когда двигатель работает в виде определённого насоса, то в ёмкости, в которую совершается накачка воздуха либо жидкости, стоит вводить определённый датчик давления. Во время достижения максимальной отметки мотор попросту автоматически закончит свою работу.
  3. Для процесса плавного запуска. Нет особой необходимости применять дополнительные электронные виды оборудования — все можно осуществить при помощи изменения в настройках частотного преобразователя.
  4. Для снижения уровня расходов на обслуживание устройств. С помощью таких регуляторов оборотов в двигателях 220 В можно значительно уменьшить возможность выхода из строя приборов, а также отдельных типов механизмов.

Схемы, по которым происходит создание частотных преобразователей в электродвигателе, широко используются в большинстве бытовых устройств. Такую систему можно найти в источниках беспроводного питания, сварочных аппаратах, зарядках телефона, блоках питания персонального компьютера и ноутбука, стабилизаторах напряжения, блоках розжига ламп для подсветки современных мониторов, а также ЖК-телевизоров.

Регулятор оборотов электродвигателя 220в

Его можно изготовить совершенно самостоятельно, но для этого нужно будет изучить все возможные технические особенности прибора. По конструкции можно выделить сразу несколько разновидностей главных деталей. А именно:

  1. Сам электродвигатель.
  2. Микроконтроллерная система управления блока преобразования.
  3. Привод и механические детали, которые связаны с работой системы.
Перед самым началом запуска устройства, после подачи определённого напряжения на обмотки, начинается процесс вращения двигателя с максимальным показателем мощности. Именно такая особенность и будет отличать асинхронные устройства от остальных видов. Ко всему прочему происходит прибавление нагрузки от механизмов, которые приводят прибор в движение. В конечном счёте на начальном этапе работы устройства мощность, а также потребляемый ток лишь возрастают до максимальной отметки.

В это время происходит процесс выделения наибольшего количества тепла. Происходит перегрев в обмотках, а также в проводах. Использование частичного преобразования поможет не допустить этого. Если произвести установку плавного пуска, то до максимальной отметки скорости (которая также может регулироваться оборудованием и может быть не 1500 оборотов за минуту, а всего лишь 1000) двигатель начнёт разгоняться не в первый момент работы, а на протяжении последующих 10 секунд (при этом на каждую секунду устройство будет прибавлять по 100−150 оборотов). В это время процесс нагрузки на все механизмы и провода начинает уменьшаться в несколько раз.

Как сделать регулятор своими руками

Можно совершенно самостоятельно создать регулятор оборотов электродвигателя около 12 В. Для этого стоит использовать переключатель сразу нескольких положений, а также специальный проволочный резистор. При помощи последнего происходит изменение уровня напряжения питания (а вместе с этим и показателя частоты вращения). Такие же системы можно применять и для совершения асинхронных движений, но они будут менее эффективными.

Ещё много лет назад широко использовались механические регуляторы — они были построены на основе шестеренчатых приводов или же их вариаторов. Но такие устройства считались не очень надёжными. Электронные средства показывали себя в несколько раз лучше, так как они были не такими большими и позволяли совершать настройку более тонкого привода.

Для того чтобы создать регулятор вращения электродвигателя, стоит использовать сразу несколько устройств, которые можно либо купить в любом строительном магазине, либо снять со старых инвенторных устройств. Чтобы совершить процесс регулировки, стоит включить специальную схему переменного резистора. С его помощью происходит процесс изменения амплитуды входящего на резистор сигнала.

Внедрение системы управления

Чтобы значительно улучшить характеристику даже самого простого оборудования, стоит в схему регулятора оборотов двигателя подключить микроконтроллерное управление. Для этого стоит выбрать тот процессор, в котором есть подходящее количество входов и выходов соответственно: для совершения подключения датчиков, кнопок, а также специальных электронных ключей.

Для осуществления экспериментов стоит использовать особенный микроконтроллер AtMega 128 — это наиболее простой в применении и широко используемый контроллер. В свободном использовании можно найти большое число схем с его применением. Чтобы устройство совершало правильную работу, в него стоит записать определённый алгоритм действий — отклики на определённые движения. К примеру, при достижении температуры в 60 градусов Цельсия (замер будет отмечаться на графике самого устройства), должно произойти автоматическое отключение работы устройства.

Регулировка работы

Теперь стоит поговорить о том, как можно осуществить регулировку оборотов в коллекторном двигателе. В связи с тем, что общая скорость вращения мотора может напрямую зависеть от величины подаваемого уровня напряжения, для этого вполне пригодны совершенно любые системы для регулировки, которые могут осуществлять такую функцию.

Стоит перечислить несколько разновидностей приборов:

  1. Лабораторные автотрансформеры (ЛАТР).
  2. Заводские платы регулировки, которые применяются в бытовых устройствах (можно взять даже те, которые используются в пылесосах, миксерах).
  3. Кнопки, которые применяются в конструкции электроинструментов.
  4. Бытовые разновидности регуляторов, которые оснащены особым плавным действием.
Но при этом все такие способы имеют определённый изъян. Совместно с процессами уменьшения оборотов уменьшается и общая мощность работы мотора. Иногда его можно остановить, даже просто дотронувшись рукой. В некоторых случаях это может быть вполне нормальным, но по большей части это считается серьёзной проблемой.

Наиболее приемлемым вариантом станет выполнение функции регулировки оборотов при помощи применения тахогенератора.

Его чаще всего устанавливают на заводе. Во время отклонения скорости вращения моторов через симистры в моторе будет происходить передача уже откорректированного электропитания, сопутствующего нужной скорости вращения. Если в такую ёмкость будет встроена регулировка вращения самого мотора, то мощность не будет потеряна.

Как же это выглядит в виде конструкции? Больше всего используется именно реостатная регулировка процесса вращения, которая создана на основе применения полупроводника.

В первом случае речь пойдёт о переменном сопротивлении с использованием механического процесса регулировки. Она будет последовательно подключена к коллекторному электродвигателю. Недостатком в этом случае станет дополнительное выделение некоторого количества тепла и дополнительная трата ресурса всего аккумулятора. Во время такой регулировки происходит общая потеря мощности в процессе совершения вращения мотора. Он считается наиболее экономичным вариантом. Не используется для довольно мощных моторов по вышеуказанным причинам.

Во втором случае во время применения полупроводников происходит процесс управления мотором при помощи подачи определённого числа импульсов. Схема способна совершать изменение длительности таких импульсов, что, в свою очередь, будет изменять общую скорость вращения мотора без потери показателя мощности.

Если вы не хотите самостоятельно изготавливать оборудование, а хотите купить уже полностью готовое к применению устройство, то стоит обратить особое внимание на главные параметры и характеристики, такие, как мощность, тип системы управления прибором, напряжение в устройстве, частоту, а также напряжение рабочего типа. Лучше всего будет производить расчёт общих характеристик всего механизма, в котором стоит применять регулятор общего напряжения двигателя. Стоит обязательно помнить, что нужно производить сопоставление с параметрами частотного преобразователя.

Инвертор — регулятор оборотов двигателя Барнаул, Новосибирск, Красноярск, Кемерово

Предназначение инвертора — преобразование постоянного тока (12В и 24В) в переменный (220В). Инвертор является незаменимым аппаратом, который служит для стабилизации работы приводного электрооборудования. Данный преобразователь частоты не только предназначен для регулировки оборотов двигателя, но и обеспечивает полную защиту всех устройств от перепадов напряжения. Любое предприятие, имеющее у себя на балансе электрооборудование, использует инверторы, увеличивая при этом срок службы всех устройств производства. В Барнауле, Новосибирске, Кемерово, Новокузнецке, Красноярске купить инвертор, обладающий необходимым набором функций, можно через наш сайт. Предлагаемые регуляторы оборотов двигателя используют для стабилизации:

  • систем вентиляции. Инверторы обеспечивают плавный пуск лопастей вентиляторов, без динамических ударов;
  • насосного оборудования. Стабилизация подачи жидкости, без резкого увеличения давления в системе снабжения;
  • приводной техники. Регуляторы оборотов двигателя заметно снижают энергопотребление предприятия, за счет стабилизации работы оборудования.

Особенности выбора инверторов

Подбирать подходящий прибор следует исходя из собственных нужд, интенсивности планируемого использования инвертора. Различают устройства для аппаратуры малой и средней мощности, работающие от постоянного тока 24 В-60 В, также бывают преобразователи большой мощности, используемые преимущественно производственными предприятиями, на электростанциях. Они работают от постоянного напряжения 110 В- 220 В. Цена на инверторы большой мощности на порядок дороже, однако на выходе они гарантируют напряжение правильной синусоидной формы.

Где найти качественные инверторы

Описываемые приборы относятся к числу сложных электронных устройств. Поэтому их выбор и покупка – важное и ответственное дело. Подбор инвертора стоит осуществлять строго под собственные нужды, поэтому, если вы не специалист, обязательно проконсультируйтесь со специалистом и убедитесь, что аппарат сможет вписаться в вашу электросеть. Купить частотный преобразователь от российского производителя ЭнергоИндустрия – надежные регуляторы оборотов двигателя, купить которые можно напрямую, получив попутно квалифицирующую, исчерпывающую консультацию специалистов. Для уточнения деталей заказа и других технических вопросов свяжитесь с нами по телефону.

Регулятор напряжения для двигателя постоянного тока 12в. Самодельный вариатор скорости вращения электродвигателя. Принцип работы регулятора оборотов

Плавная работа двигателя, без рывков и скачков мощности – это залог его долговечности. Для контроля этих показателей используется регулятор оборотов электродвигателя на 220В, 12 В и 24 В, все эти частотники можно изготовить своими руками или купить уже готовый агрегат.

Зачем нужен регулятор оборотов

Регулятор оборотов двигателя, частотный преобразователь – это прибор на мощном транзисторе, который необходим для того, чтобы инвертировать напряжение, а также обеспечить плавную остановку и пуск асинхронного двигателя при помощи ШИМ. ШИМ – широко-импульсное управление электрическими приспособлениями. Его применяют для создания определенной синусоиды переменного и постоянного тока.

Фото – мощный регулятор для асинхронного двигателя

Самый простой пример преобразователя – это обычный стабилизатор напряжения. Но у обсуждаемого прибора гораздо больший спектр работы и мощность.

Частотные преобразователи используются в любом устройстве, которое питается от электрической энергии. Регуляторы обеспечивают чрезвычайно точный электрический моторный контроль, так что скорость двигателя можно изменять в меньшую или большую сторону, поддерживать обороты на нужном уровне и защищать приборы от резких оборотов. При этом электродвигателем используется только энергия, необходимая для работы, вместо того, чтобы запускать его на полной мощности.


Фото – регулятор оборотов двигателя постоянного тока

Зачем нужен регулятор оборотов асинхронного электродвигателя:

  1. Для экономии электроэнергии. Контролируя скорость мотора, плавность его пуска и остановки, силы и частоты оборотов, можно добиться значительной экономии личных средств. В качестве примера, снижение скорости на 20% может дать экономию энергии в размере 50%.
  2. Преобразователь частоты может использоваться для контроля температуры процесса, давления или без использования отдельного контроллера;
  3. Не требуется дополнительного контроллера для плавного пуска;
  4. Значительно снижаются расходы на техническое обслуживание.

Устройство часто используется для сварочного аппарата (в основном для полуавтоматов), электрической печки, ряда бытовых приборов (пылесоса, швейной машинки, радио, стиральной машины), домашнего отопителя, различных судомоделей и т.д.


Фото – шим контроллер оборотов

Принцип работы регулятора оборотов

Регулятор оборотов представляет собой устройство, состоящее из следующих трех основных подсистем:

  1. Двигателя переменного тока;
  2. Главного контроллера привода;
  3. Привода и дополнительных деталей.

Когда двигатель переменного тока запускается на полную мощность, происходит передача тока с полной мощностью нагрузки, такое повторяется 7-8 раз. Этот ток сгибает обмотки двигателя и вырабатывает тепло, которое будет выделяться продолжительное время. Это может значительно снизить долговечность двигателя. Иными словами, преобразователь – это своеобразный ступенчатый инвертор, который обеспечивает двойное преобразование энергии.


Фото – схема регулятора для коллекторного двигателя

В зависимости от входящего напряжения, частотный регулятор числа оборотов трехфазного или однофазного электродвигателя, происходит выпрямление тока 220 или 380 вольт. Это действие осуществляется при помощи выпрямляющего диода, который расположен на входе энергии. Далее ток проходит фильтрацию при помощи конденсаторов. Далее формируется ШИМ, за это отвечает электросхема. Теперь обмотки асинхронного электродвигателя готовы к передаче импульсного сигнала и их интеграции к нужной синусоиде. Даже у микроэлектродвигателя эти сигналы выдаются, в прямом смысле слова, пачками.


Фото – синусоида нормальной работы электродвигателя

Как выбрать регулятор

Существует несколько характеристик, по которым нужно выбирать регулятор оборотов для автомобиля, станочного электродвигателя, бытовых нужд:

  1. Тип управления. Для коллекторного электродвигателя бывают регуляторы с векторной или скалярной системой управления. Первые чаще применяются, но вторые считаются более надежными;
  2. Мощность. Это один из самых важных факторов для выбора электрического преобразователя частот. Нужно подбирать частотник с мощностью, которая соответствует максимально допустимой на предохраняемом приборе. Но для низковольтного двигатель лучше подобрать регулятор мощнее, чем допустимая величина Ватт;
  3. Напряжение. Естественно, здесь все индивидуально, но по возможности нужно купить регулятор оборотов для электродвигателя, у которого принципиальная схема имеет широкий диапазон допустимых напряжений;
  4. Диапазон частот. Преобразование частоты – это основная задача данного прибора, поэтому старайтесь выбрать модель, которая будет максимально соответствовать Вашим потребностям. Скажем, для ручного фрезера будет достаточно 1000 Герц;
  5. По прочим характеристикам. Это срок гарантии, количество входов, размер (для настольных станков и ручных инструментов есть специальная приставка).

При этом также нужно понимать, что есть так называемый универсальный регулятор вращения. Это частотный преобразователь для бесколлекторных двигателей.


Фото – схема регулятора для бесколлекторных двигателей

В данной схеме есть две части – одна логическая, где на микросхеме расположен микроконтроллер, а вторая – силовая. В основном такая электрическая схема используется для мощного электрического двигателя.

Видео: регулятор оборотов электродвигателя с ШИро V2

Как сделать самодельный регулятор оборотов двигателя

Можно сделать простой симисторный регулятор оборотов электродвигателя, его схема представлена ниже, а цена состоит только из деталей, продающихся в любом магазине электротехники.

Для работы нам понадобится мощный симистор типа BT138-600, её советует журнал радиотехники.


Фото – схема регулятора оборотов своими руками

В описанной схеме, обороты будут регулироваться при помощи потенциометра P1. Параметром P1 определяется фаза входящего импульсного сигнала, который в свою очередь открывает симистор. Такая схема может применяться как в полевом хозяйстве, так и в домашнем. Можно использовать данный регулятор для швейных машинок, вентиляторов, настольных сверлильных станков.

Принцип работы прост: в момент, когда двигатель немного затормаживается, его индуктивность падает, и это увеличивает напряжение в R2-P1 и C3, то в свою очередь влечет более продолжительное открытие симистора.

Тиристорный регулятор с обратной связью работает немного по-другому. Он обеспечивает обратный ход энергии в энергетическую систему, что является очень экономным и выгодным. Данный электронный прибор подразумевает включение в электрическую схемы мощного тиристора. Его схема выглядит вот так:


Здесь для подачи постоянного тока и выпрямления требуется генератор управляющего сигнала, усилитель, тиристор, цепь стабилизации оборотов.

5 частых вопросов, которые задают начинающие радиомеханики; 5 лучших транзисторов для регуляторов, тест на определение состава схемы

Регулятор электрического напряжения нужен для того, чтобы величина напряжения могла стабилизироваться. Он обеспечивает надежность работы и долговечность работы прибора.

Регулятор состоит из нескольких механизмов.

ТЕСТ:

Ответы на эти вопросы позволят узнать состав схемы регулятора напряжения 12 вольт и её сборку.
  1. Какое сопротивление должно быть у переменного резистора?
  1. Как нужно подключать провода?

a) 1 и 2 клемма – питание, 3 и 4 – нагрузка

  1. Нужно ли устанавливать радиатор?
  1. Транзистор должен быть

Ответы:

Вариант 1. Сопротивление резистора 10 кОм – это стандарт для установки регулятора, провода в схеме подключаются по принципу: 1 и 2 клемма для питания, 3 и 4 для нагрузки – ток распределится правильно по нужным полюсам, радиатор устанавливать нужно – чтобы защитить от перегрева, транзистор использован КТ 815 – такой всегда подойдет. В таком варианте построенная схема сработает, регулятор станет работать.

Вариант 2. Сопротивление 500 кОм – слишком высокое, будет нарушена плавность звука в работе, а может не сработать вообще, 1 и 3 клемма это нагрузка, 2 и 4 питание, радиатор нужен, в схеме, где стоял минус будет плюс, транзистор любой – действительно можно использовать какой угодно.Регулятор не заработает из-за того, что схема собрана, будет неправильно.

Вариант 3. Сопротивление 10кОм, провода – 1 и 2 для нагрузки, 3 и 4 для питания, резистор имеет сопротивление 2кОм, транзистор КТ 815. Прибор не сможет заработать, так как он сильно перегреется без радиатора.

Как соединить 5 частей регулятора на 12 вольт.

Переменный резистор 10кОм.

Это переменный резистор 10ком. Изменяет силу тока или напряжений в электрической цепи, увеличивает сопротивление. Именно им регулируется напряжение.

Радиатор. Нужен для того, чтобы охладить приборы в случае их перегрева.

Резистор на 1 ком. Снижает нагрузку с основного резистора.


Транзистор. Прибор, увеличивает силу колебаний. В регуляторе он нужен, чтобы получить электрические колебания высокой частоты


2 проводка. Необходимы для того, чтобы по ним шел электрический ток.

Берем транзистор и резистор. У обоих есть 3 ответвления.

Проводятся две операции:

  1. Левый конец транзистора (делаем это алюминиевой частью вниз) присоединяем к концу, который находится в середине резистора.
  2. А ответвление середины транзистора соединяем с правым у резистора. Их необходимо припаять друг к другу.

Первый провод необходимо спаять с тем, что получилось во 2 операции.

Второй нужно спаять с оставшимся концом транзистора.


Прикручиваем к радиатору соединенный механизм.

Резистор на 1кОм припаиваем к крайним ножкам переменного резистора и транзистора.

Схема готова.


Регулятор скорости двигателя постоянного тока с помощью 2 конденсаторов на 14 вольт.

Практичность таких двигателей доказана, они используются в механических игрушках, вентиляторах и др. У них малый ток потребления, поэтому требуется стабилизация напряжения. Часто возникает необходимость подстройки частоты вращения или изменения скорости двигателя для корректировки выполнения цели, представленной какому – либо типу электродвигателя любой модели.

Эту задачу выполнит регулятор напряжения, который совместим с любым типом блока питания.

Чтобы это осуществить, надо изменить выходное напряжение, не требующее большого тока нагрузки.

Необходимые детали:

  1. 2 Конденсатора
  2. 2 переменных резистора

Соединяем части:

  1. Подключаем конденсаторы к самому регулятору.
  2. Первый резистор подключается с минусом регулятора, второй на массу.

Теперь менять скорость двигателя у прибора по желанию пользователя.

Регулятор напряжения на 14 вольт готов.

Простой регулятор напряжения 12 вольт

Регулятор оборотов 12 вольт для двигателя с тормозом.

  • Реле – 12 вольт
  • Теристор КУ201
  • Трансформатор для запитки двигателя и реле
  • Транзистор КТ 815
  • Вентиль от дворников 2101
  • Конденсатор

Используется для регулировки подачи проволоки, поэтому в ней присутсвует тормоз двигателя, реализованный с помощью реле.

К реле подключаем 2 провода от блока питания. На реле подается плюс.

Всё остально подключается по принципу обычного регулятора.

Схема полностью обеспечила 12 вольт для двигателя.

Регулятор мощности на симисторе BTA 12-600

Симистор – полупроводниковый аппарат, причисляется к разновидности тиристора и используется в целях коммутации тока. Он работает на переменном напряжении в отличие от динистора и обычного тиристора. От его параметра зависит вся мощность прибора.

Ответ на вопрос. Если схема собиралась бы на тиристоре, необходим был бы диод или диодный мост.

Для удобства схему можно собрать на печатной плате.

Плюс конденсатора нужно припаять к управляющему электроду симистора, он находится справа. Минус спаять с крайним третьим выводом, который находится слева.

К управляющему электроду симистора припаять резистор с номинальным сопротивлением 12 кОм. К этому резистору нужно присоединить подстрочный резистор. Оставшийся вывод нужно припаять к центральной ножке симистора.

К минусу конденсатора, который припаян к третьему выводу симистора необходимо прикрепить минус от выпрямительного моста.

Плюс выпрямительного моста к центральному выводу симистора и к той части, к которой симистор крепится на радиатор.

1 контакт от шнура с вилкой припаиваем к необходимому прибору. А 2 контакт к входу переменного напряжения на выпрямительном мосту.

Осталось припаять оставшийся контакт прибора с последним контактом выпрямительного моста.

Идет тестирование схемы.

Включаем схему в сеть. С помощью подстрочного резистора регулируется мощность прибора.

Мощность можно развить до 12 вольт для авто.

Динистор и 4 типа проводимости.

Это устройство, называется тригерным диодом. Обладает небольшой мощностью. В его внутренности нет электродов.

Динистор открывается при наборе напряжения. Скорость набора напряжения определяется конденсатором и резисторами. Вся регулировка производится через него. Работает на постоянном и переменном токе. Его можно не покупать, он находится в энергосберегающих лампах и его легко оттуда достать.

В схемах используется не часто, но чтобы не затрачивать деньги на диоды, применяют динистор.

Он содержит 4 типа: P N P N. Это сама электрическая проводимость. Между 2 прилегающими друг к другу областями образуется электронно-дырочный переход. В динистре таких переходов 3.

Схема:

Подключаем конденсатор. Он начинает заряжаться с помощью 1 резистора, напряжение почти равно тому, что в сети. Когда напряжение в конденсаторе достигнет уровня динистора, он включится. Прибор начинает работать. Не забываем про радиатор, иначе всё перегреется.

3 важных термина.

Регулятор напряжения – прибор, позволяющий на выходе подстраивать напряжение под устройство, для которого он необходим.

Схема для регулятора – рисунок, изображающий соединение частей устройства в одно целое.

Автомобильный генератор – устройство, в котором используется стабилизатор, обеспечивает превращение энергии коленчатого вала в электрическую.

7 основных схем для сборки регулятора.


СНИП

Использование 2 транзисторов. Как собрать стабилизатор тока.

Резистор 1кОм равен стабилизатору тока для нагрузки 10Ом. Главное условие – напряжение питания было стабилизированным. Ток зависит от напряжения по закону Ома. Сопротивление нагрузки намного меньше, чем сопротивление тока ограничивающего резистора.

Резистор 5 ватт, 510 Ом

Переменный резистор ППБ-3В, 47 Ом. Потребление – 53миллиампера.

Транзистор кт 815, установленный на радиаторе ток базы данного транзистора, задан резистором номиналом 4 и 7 кОм.


СНИП


СНИП

Еще важно знать

  1. На схеме стоит знак минуса, чтобы он был и в работе, то транзистор должен быть NPN структуры. Нельзя использовать PNP так как минус будет плюсом.
  2. Напряжение нужно постоянно регулировать
  3. Какая величина тока в нагрузке, это нужно знать, чтобы регулировать напряжение и прибор не переставал работать
  4. Если разность потенциалов будет больше 12 вольт на выходе, то значительно уменьшится уровень энергии.

Топ 5 транзисторов

Разные виды транзисторов применяются для разных целей, и существует необходимость его выбирать.

  • КТ 315. Поддерживает NPN структуру. Выпущен в 1967 году, но до сих пор используется. Работает в динамическом режиме, и в ключевом. Идеален для приборов малой мощности. Больше подходит для радиодеталей.
  • 2N3055. Лучше всего подходит для звуковых механизмов, усилителей. Работает в динамическом режиме. Спокойно используется для регулятора 12 вольт. Удобно крепится на радиатор. Работает на частотах до 3 МГц. Хоть транзистор и выдерживает только до 7 ампер, он вытягивает мощные нагрузки.
  • КП501. Производитель рассчитывал его на применение в телефонных аппаратах, механизмах связи и радиоэлектронике. Через него происходит управление приборами с минимальными затратами. Преобразует уровни сигнала.
  • Irf3205. Пригоден для автомобилей, повышает высокочастотные инверторы. Поддерживает значительный уровень тока.
  • KT 815. Биполярен. Имеет структуру NPN. Работает с усилителями низкой частоты. Состоит из пластмассового корпуса. Подходит для импульсных устройств. Используется часто в генераторных схемах. Транзистор сделан давно, по сей день работает. Даже есть шанс, что он находится в обычном доме, где лежат старые приборы, нужно только их разобрать и посмотреть, есть ли там.

3 ошибки и как их избежать.

  1. Ножки транзистора и резистора спаяны друг с другом полностью. Чтобы этого избежать, нужно внимательно читать инструкцию.
  2. Хоть и поставлен радиатор, перегрелся прибор.Это связано с тем, что во время того, как детали спаиваются, происходит перегрев. Для этого нужно, ножки транзистора держать пинцетом для отвода тепла.
  3. Реле не стало работать после починки. Выгоняет проволоку после того как отпустил кнопку. Проволока по инерции тянется. Значит, не работает электротормоз. Берем реле с хорошими контактами и подключаем к кнопке. Подключить провода для питания. Когда на реле не подается напряжение, контакты становятся замкнутыми, поэтому обмотка замыкается сама на себя. Когда на реле подается напряжение(плюс), меняются контакты в схеме и напряжение подается на мотор.

Ответы на 5 часто задаваемых вопросов

  • Почему входное напряжение выше, чем выходное?

По такому принципу работают все стабилизаторы, при таком типе работы напряжение приходит в норму и не скачет от условленных ей значений.

  • Может ли убить током при неполадке или ошибке?

Нет, не убьет током, напряжение в 12 вольт слишком мало, чтобы это произошло.

  • Нужен ли постоянный резистор? И если нужен, то, для каких целей?

Не обязательно, но используется. Он нужен для того, чтобы ограничить ток базы транзистора при крайнем левом положении переменного резистора. И также при его отсутствии может сгореть переменный.

  • Можно ли использовать схему КРЕН вместо резистора?

Если вместо переменного резистора включить регулируемую схему КРЕН, которую часто используют, то тоже получится регулятор напряжения. Но есть оплошность: низкий КПД. Из-за этого высокое собственное энергопотребление и тепловыделение.

  • Резистор горит, но ничего не крутится. Что делать?

Резистор обязательно 10кОм. Желательно использовать транзисторы КТ 315 (старой модели) – они желтого или оранжевого цвета с буквенным обозначением.

Эта самодельная схема может быть использована в качестве регулятора скорости для двигателя постоянного тока 12 В с номинальным током до 5 А или как диммер для 12 В галогенных и светодиодных ламп мощностью до 50 Вт. Управление идёт с помощью широтно-импульсной модуляции (ШИМ) при частоте следования импульсов около 200 Гц. Естественно частоту можно при необходимости изменить, подобрав по максимальной стабильности и КПД.

Большинство подобных конструкций собирается по гораздо более простой схеме. Здесь же представляем более усовершенствованный вариант, который использует таймер 7555, драйвер на биполярных транзисторах и мощный полевой MOSFET. Такая схематика обеспечивает улучшенное регулирование скорости и работает в широком диапазоне нагрузки. Это действительно очень эффективная схема и стоимость её деталей при покупке для самостоятельной сборки довольно низкая.

Схема ШИМ регулятора для мотора 12 В

В схеме используется Таймер 7555 для создания переменной ширины импульсов около 200 Гц. Он управляет транзистором Q3 (через транзисторы Q1 — Q2), который контролирует скорость электро двигателя или ламп освещения.

Есть много применений для этой схемы, которые будут питаться от 12 В: электродвигатели, вентиляторы или лампы. Использовать её можно в автомобилях, лодках и электротранспортных средствах, в моделях железных дорог и так далее.

Светодиодные лампы на 12 В, например LED ленты, тоже можно смело сюда подключать. Все знают, что светодиодные лампы гораздо более эффективны, чем галогенные или накаливания, они прослужит намного дольше. А если надо — питайте ШИМ-контроллер от 24 и более вольт, так как сама микросхема с буферным каскадом имеют стабилизатор питания.

Регулятор скорости двигателя переменного тока

ШИМ контроллер на 12 вольт

Драйвер регулятора постоянного тока полумостовой

Схема регулятора оборотов минидрели

РЕГУЛЯТОР ОБОРОТОВ ДВИГАТЕЛЯ С РЕВЕРСОМ

Всем привет, наверно многие радиолюбители, также как и я, имеют не одно хобби, а несколько. Помимо конструирования электронных устройств занимаюсь фотографией, съемкой видео на DSLR камеру, и видео монтажом. Мне, как видеографу, был необходим слайдер для видео съемки, и для начала вкратце объясню, что это такое. Ниже на фото показан фабричный слайдер.

Слайдер предназначен для видеосъемки на фотоаппараты и видеокамеры. Он являются аналогом рельсовой системы, которая используется в широкоформатном кино. С его помощью создается плавное перемещение камеры вокруг снимаемого объекта. Другим очень сильным эффектом, который можно использовать при работе со слайдером, — это возможность приблизиться или удалиться от объекта съемки. На следующем фото изображен двигатель, который выбрал для изготовления слайдера.

В качестве привода слайдера используется двигатель постоянного тока с питанием 12 вольт. В интернете была найдена схема регулятора для двигателя, который перемещает каретку слайдера. На следующем фото индикатор включения на светодиоде, тумблер, управляющий реверсом и выключатель питания.

При работе такого устройства важно, чтоб была плавная регулировка скорости, плюс легкое включение реверса двигателя. Скорость вращения вала двигателя, в случае применения нашего регулятора, плавно регулируется вращением ручки переменного резистора на 5 кОм. Возможно, не только я один из пользователей этого сайта увлекаюсь фотографией, и кто-то ещё захочет повторить это устройство, желающие могут скачать в конце статьи архив со схемой и печатной платой регулятора. На следующем рисунке приведена принципиальная схема регулятора для двигателя:

Схема регулятора

Схема очень простая и может быть легко собрана даже начинающими радиолюбителями. Из плюсов сборки этого устройства могу назвать его низкую себестоимость и возможность подогнать под нужные потребности. На рисунке приведена печатная плата регулятора:

Но область применения данного регулятора не ограничивается одними слайдерами, его легко можно применить в качестве регулятора оборотов, например бор машинки, самодельного дремеля, с питанием от 12 вольт, либо компьютерного кулера, например, размерами 80 х 80 или 120 х 120 мм. Также мною была разработана схема реверса двигателя, или говоря другими словами, быстрой смены вращения вала в другую сторону. Для этого использовал шестиконтактный тумблер на 2 положения. На следующем рисунке изображена схема его подключения:

Средние контакты тумблера, обозначенные (+) и (-) подключают к контактам на плате обозначенным М1.1 и М1.2, полярность не имеет значения. Всем известно, что компьютерные кулеры, при снижении напряжения питания и, соответственно, оборотов, издают в работе намного меньший шум. На следующем фото, транзистор КТ805АМ на радиаторе:

В схеме можно использовать почти любой транзистор средней и большой мощности n-p-n структуры. Диод также можно заменить на подходящие по току аналоги, например 1N4001, 1N4007 и другие. Выводы двигателя зашунтированы диодом в обратном включении, это было сделано для защиты транзистора в моменты включения — отключения схемы, так как двигатель у нас нагрузка индуктивная. Также, в схеме предусмотрена индикация включения слайдера на светодиоде, включенном последовательно с резистором.

При использовании двигателя большей мощности, чем изображен на фото, транзистор для улучшения охлаждения нужно прикрепить к радиатору. Фото получившейся платы приведено ниже:

Плата регулятора была изготовлена методом ЛУТ. Увидеть, что получилось в итоге, можно на видеоролике.

Видео работы

В скором времени, как будут приобретены недостающие части, в основном механика, приступлю к сборке устройства в корпусе. Статью прислал Алексей Cитков .

Для плавности увеличения и уменьшения скорости вращения вала существует специальный прибор –регулятор оборотов электродвигателя 220в. Стабильная эксплуатация, отсутствие перебоев напряжения, долгий срок службы – преимущества использования регулятора оборотов двигателя на 220, 12 и 24 вольт.

  • Для чего нужен частотный преобразователь оборотов
  • Область применения
  • Выбираем устройство
  • Устройство ПЧ
  • Виды устройств
    • Процесс пропорциональных сигналов

Для чего нужен частотный преобразователь оборотов

Функция регулятора в инвертировании напряжения 12, 24 вольт, обеспечение плавности пуска и остановки с использованием широтно-импульсной модуляции.

Контроллеры оборотов входят в структуру многих приборов, так как они обеспечивают точность электрического управления. Это позволяет регулировать обороты в нужную величину.

Область применения

Регулятор оборотов двигателя постоянного тока используется во многих промышленных и бытовых областях. Например:

  • отопительный комплекс;
  • приводы оборудования;
  • сварочный аппарат;
  • электрические печи;
  • пылесосы;
  • швейные машинки;
  • стиральные машины.

Выбираем устройство

Для того чтобы подобрать эффективный регулятор необходимо учитывать характеристики прибора, особенности назначения.

  1. Для коллекторных электродвигателей распространены векторные контроллеры, но скалярные являются надёжнее.
  2. Важным критерием выбора является мощность. Она должна соответствовать допустимой на используемом агрегате. А лучше превышать для безопасной работы системы.
  3. Напряжение должно быть в допустимых широких диапазонах.
  4. Основное предназначение регулятора преобразовывать частоту, поэтому данный аспект необходимо выбрать соответственно техническим требованиям.
  5. Ещё необходимо обратить внимание на срок службы, размеры, количество входов.

Устройство ПЧ
  • двигатель переменного тока природный контроллер;
  • привод;
  • дополнительные элементы.

Схема контроллера оборотов вращения двигателя 12 в изображена на рисунке. Обороты регулируются с помощью потенциометра. Если на вход поступают импульсы с частотой 8 кГц, то напряжение питания будет 12 вольт.

Прибор может быть куплен в специализированных точках продажи, а можно сделать самому.

Схема регулятора оборотов вращения переменного тока

При пуске трехфазного двигателя на всю мощность, передаётся ток, действие повторяется около 7 раз. Сила тока сгибает обмотки двигателя, образуется тепло, на протяжении долгого времени. Преобразователь представляет собой инвертор, обеспечивающий превращение энергии. Напряжение поступает в регулятор, где происходит выпрямления 220 вольт с помощью диода, расположенного на входе. Затем происходит фильтрация тока посредством 2 конденсатора. Образуется ШИМ. Далее импульсный сигнал передаётся от обмоток двигателя к определённой синусоиде.

Существует универсальный прибор 12в для бесколлекторных двигателей.

Для экономии на платежах за электроэнергию наши читатели советуют «Экономитель энергии Electricity Saving Box». Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

Схема состоит из двух частей–логической и силовой. Микроконтроллер расположен на микросхеме. Эта схема характерна для мощного двигателя. Уникальность регулятора заключается в применении с различными видами двигателей. Питание схем раздельное, драйверам ключей требуется питание 12В.

Виды устройств

Прибор триак

Устройство симистр (триак) используется для регулирования освещением, мощностью нагревательных элементов, скоростью вращения.

Схема контроллера на симисторе содержит минимум деталей, изображенных на рисунке, где С1 – конденсатор, R1 – первый резистор, R2 – второй резистор.

С помощью преобразователя регулируется мощность методом изменения времени открытого симистора. Если он закрыт, конденсатор заряжается посредством нагрузки и резисторов. Один резистор контролирует величину тока, а второй регулирует скорость заряда.

Когда конденсатор достигает предельного порога напряжения 12в или 24в, срабатывает ключ. Симистр переходит в открытое состояние. При переходе напряжения сети через ноль, симистр запирается, далее конденсатор даёт отрицательный заряд.

Преобразователи на электронных ключах

Распространённые регулятор тиристор, обладающие простой схемой работы.

Тиристор, работает в сети переменного тока.

Отдельным видом является стабилизатор напряжения переменного тока. Стабилизатор содержит трансформатор с многочисленными обмотками.

Схема стабилизатора постоянного тока

Зарядное устройство 24 вольт на тиристоре

К источнику напряжения 24 вольт. Принцип действия заключаются в заряде конденсатора и запертом тиристоре, а при достижении конденсатором напряжения, тиристор посылает ток на нагрузку.

Процесс пропорциональных сигналов

Сигналы, поступающие на вход системы, образуют обратную связь. Подробнее рассмотрим с помощью микросхемы.

Микросхема TDA 1085

Микросхема TDA 1085, изображенная выше, обеспечивает управление электродвигателем 12в, 24в обратной связью без потерь мощности. Обязательным является содержание таходатчика, обеспечивающего обратную связь двигателя с платой регулирования. Сигнал стаходатчика идёт на микросхему, которая передаёт силовым элементам задачу – добавить напряжение на мотор. При нагрузке на вал, плата прибавляет напряжение, а мощность увеличивается. Отпуская вал, напряжение уменьшается. Обороты будут постоянными, а силовой момент не изменится. Частота управляется в большом диапазоне. Такой двигатель 12, 24 вольт устанавливается в стиральные машины.

Своими руками можно сделать прибор для гриндера, токарного станка по дереву, точила, бетономешалки, соломорезки, газонокосилки, дровокола и многого другого.

Промышленные регуляторы, состоящие из контроллеров 12, 24 вольт, заливаются смолой, поэтому ремонту не подлежат. Поэтому часто изготавливается прибор 12в самостоятельно. Несложный вариант с использованием микросхемы U2008B. В регуляторе используется обратная связь по току или плавный пуск. В случае использования последнего необходимы элементы C1, R4, перемычка X1 не нужна, а при обратной связи наоборот.

При сборе регулятора правильно выбирать резистор. Так как при большом резисторе, на старте могут быть рывки, а при маленьком резисторе компенсация будет недостаточной.

Важно! При регулировке контроллера мощности нужно помнить, что все детали устройства подключены к сети переменного тока, поэтому необходимо соблюдать меры безопасности!

Регуляторы оборотов вращения однофазных и трехфазных двигателей 24, 12 вольт представляют собой функциональное и ценное устройство, как в быту, так и в промышленности.

На простых механизмах удобно устанавливать аналоговые регуляторы тока. К примеру, они могут изменить скорость вращения вала мотора. С технической стороны выполнить такой регулятор просто (потребуется установка одного транзистора). Применим для регулировки независимой скорости моторов в робототехнике и источниках питания. Наиболее распространены два варианта регуляторов: одноканальные и двухканальные.

Видео №1. Одноканальный регулятор в работе. Меняет скорость кручения вала мотора посредством вращения ручки переменного резистора.

Видео №2. Увеличение скорости кручения вала мотора при работе одноканального регулятора. Рост числа оборотов от минимального до максимального значения при вращении ручки переменного резистора.

Видео №3. Двухканальный регулятор в работе. Независимая установка скорости кручения валов моторов на базе подстроечных резисторов.

Видео №4. Напряжение на выходе регулятора измерено цифровым мультиметром. Полученное значение равно напряжению батарейки, от которого отняли 0,6 вольт (разница возникает из-за падения напряжения на переходе транзистора). При использовании батарейки в 9,55 вольт, фиксируется изменение от 0 до 8,9 вольт.

Функции и основные характеристики

Ток нагрузки одноканального (фото. 1) и двухканального (фото. 2) регуляторов не превышает 1,5 А. Поэтому для повышения нагрузочной способности производят замену транзистора КТ815А на КТ972А. Нумерация выводов для этих транзисторов совпадает (э-к-б). Но модель КТ972А работоспособна с токами до 4А.

Одноканальный регулятор для мотора

Устройство управляет одним мотором, питание осуществляется от напряжения в диапазоне от 2 до 12 вольт.

Конструкция устройства

Основные элементы конструкции регулятора представлены на фото. 3. Устройство состоит из пяти компонентов: два резистор переменного сопротивления с сопротивлением 10 кОм (№1) и 1 кОм (№2), транзистор модели КТ815А (№3), пара двухсекционных винтовых клеммника на выход для подключения мотора (№4) и вход для подключения батарейки (№5).

Примечание 1. Установка винтовых клеммников не обязательна. С помощью тонкого монтажного многожильного провода можно подключить мотор и источник питания напрямую.

Принцип работы

Порядок работы регулятора мотора описывает электросхема (рис. 1). С учетом полярности на разъем ХТ1 подают постоянное напряжение. Лампочку или мотор подключают к разъему ХТ2. На входе включают переменный резистор R1, вращение его ручки изменяет потенциал на среднем выходе в противовес минусу батарейки. Через токоограничитель R2 произведено подключение среднего выхода к базовому выводу транзистора VT1. При этом транзистор включен по схеме регулярного тока. Положительный потенциал на базовом выходе увеличивается при перемещении вверх среднего вывода от плавного вращения ручки переменного резистора. Происходит увеличение тока, которое обусловлено снижением сопротивления перехода коллектор-эмитттер в транзисторе VT1. Потенциал будет уменьшаться, если ситуация будет обратной.

Принципиальная электрическая схема

Материалы и детали

Необходима печатная плата размером 20х30 мм, изготовленная из фольгированного с одной стороны листа стеклотекстолита (допустимая толщина 1-1,5 мм). В таблице 1 приведен список радиокомпонентов.

Примечание 2. Необходимый для устройства переменный резистор может быть любого производства, важно соблюсти для него значения сопротивления тока указанные в таблице 1.

Примечание 3 . Для регулировки токов выше 1,5А транзистор КТ815Г заменяют на более мощный КТ972А (с максимальным током 4А). При этом рисунок печатной платы менять не требуется, так как распределение выводов у обоих транзисторов идентично.

Процесс сборки

Для дальнейшей работы нужно скачать архивный файл, размещенный в конце статьи, разархивировать его и распечатать. На глянцевой бумаге печатают чертеж регулятора (файл termo1), а монтажный чертеж (файл montag1) – на белом листе офисной (формат А4).

Далее чертеж монтажной платы (№1 на фото. 4) наклеивают к токоведущим дорожкам на противоположной стороне печатной платы (№2 на фото. 4). Необходимо сделать отверстия (№3 на фото. 14) на монтажом чертеже в посадочных местах. Монтажный чертеж крепится к печатной плате сухим клеем, при этом отверстия должны совпадать. На фото.5 показана цоколёвка транзистора КТ815.

Вход и выход клеммников-разъемов маркируют белым цветом. Через клипсу к клеммнику подключается источник напряжения. Полностью собранный одноканальный регулятор отображен на фото. Источник питания (батарея 9 вольт) подключается на финальном этапе сборки. Теперь можно регулировать скорость вращения вала с помощью мотора, для этого нужно плавно вращать ручку регулировки переменного резистора.

Для тестирования устройства необходимо из архива распечатать чертеж диска. Далее нужно наклеить этот чертеж (№1) на плотную и тонкую картонную бумагу (№2). Затем с помощью ножниц вырезается диск (№3).

Полученную заготовку переворачивают (№1) и к центру крепят квадрат черной изоленты (№2) для лучшего сцепления поверхности вала мотора с диском. Нужно сделать отверстие (№3) как указано на изображении. Затем диск устанавливают на вал мотора и можно приступать к испытаниям. Одноканальный регулятор мотора готов!

Двухканальный регулятор для мотора

Используется для независимого управления парой моторов одновременно. Питание осуществляется от напряжения в диапазоне от 2 до 12 вольт. Ток нагрузки рассчитан до 1,5А на каждый канал.

Основные компоненты конструкции представлены на фото.10 и включают: два подстроечных резистора для регулировки 2-го канала (№1) и 1-го канала (№2), три двухсекционных винтовых клеммника для выхода на 2-ой мотор (№3), для выхода на 1-ый мотор (№4) и для входа (№5).

Примечание.1 Установка винтовых клеммников не обязательна. С помощью тонкого монтажного многожильного провода можно подключить мотор и источник питания напрямую.

Принцип работы

Схема двухканального регулятора идентична электрической схеме одноканального регулятора. Состоит из двух частей (рис.2). Основное отличие: резистор переменного сопротивления замен на подстроечный резистор. Скорость вращения валов устанавливается заранее.

Примечание.2. Для оперативной регулировки скорости кручения моторов подстроечные резисторы заменяют с помощью монтажного провода с резисторами переменного сопротивления с показателями сопротивлений, указанными на схеме.

Материалы и детали

Понадобится печатная плата размером 30х30 мм, изготовленная из фольгированного с одной стороны листа стеклотекстолита толщиной 1-1,5 мм. В таблице 2 приведен список радиокомпонентов.

Процесс сборки

После скачивания архивного файла, размещенного в конце статьи, нужно разархивировать его и распечатать. На глянцевой бумаге печатают чертеж регулятора для термоперевода (файл termo2), а монтажный чертеж (файл montag2) – на белом листе офисной (формат А4).

Чертеж монтажной платы наклеивают к токоведущим дорожкам на противоположной стороне печатной платы. Формируют отверстия на монтажом чертеже в посадочных местах. Монтажный чертеж крепится к печатной плате сухим клеем, при этом отверстия должны совпасть. Производится цоколёвка транзистора КТ815. Для проверки нужно временно соединить монтажным проводом входы 1 и 2 .

Любой из входов подключают к полюсу источника питания (в примере показана батарейка 9 вольт). Минус источника питания при этом крепят к центру клеммника. Важно помнить: черный провод «-», а красный «+».

Моторы должны быть подключены к двум клеммникам, также необходимо установить нужную скорость. После успешных испытаний нужно удалить временное соединение входов и установить устройство на модель робота. Двухканальный регулятор мотора готов!

В АРХИВЕ представленные необходимые схемы и чертежи для работы. Эмиттеры транзисторов помечены красными стрелками.

Схема регулятора оборотов двигателя постоянного тока работает на принципах широтно-импульсной модуляции и применяется для изменения оборотов двигателя постоянного тока на 12 вольт. Регулирование частоты вращения вала двигателя при помощи широтно-импульсной модуляции дает больший КПД, чем при применение простого изменения постоянного напряжения подаваемого на двигатель, хотя эти схемы мы тоже рассмотрим

Регулятор оборотов двигателя постоянного тока схема на 12 вольт

Двигатель подключен в цепь к полевому транзистору который управляется широтно-импульсной модуляцией осуществляемой на микросхеме таймере NE555, поэтому и схема получилась такой простой.

ШИМ регулятор реализован с помощью обычного генератора импульсов на нестабильном мультивибраторе, генерирующий импульсы с частотой следования 50 Гц и построенного на популярном таймере NE555. Сигналы поступающие с мультивибратора создают поле смещения на затворе полевого транзистора. Длительность положительного импульса настраивается при помощи переменного сопротивления R2. Чем выше длительность положительного импульса поступающего на затвор полевого транзистора, тем большая мощность подается на электродвигатель постоянного тока. И на оборот чем меньше длительность импульса, тем слабее вращается электродвигатель. Эта схема прекрасно работает от аккумуляторной батареи на 12 вольт.

Регулирование оборотов двигателя постоянного тока схема на 6 вольт

Скорость 6 вольтового моторчика можно регулируется в пределах 5-95%

Регулятор оборотов двигателя на PIC-контроллере

Регулировка оборотов в этой схеме достигается подачей на электромотор импульсов напряжения, различной длительности. Для этих целей используются ШИМ (широтно-импульсные модуляторы). В данном случае широтно-импульсное регулирование обеспечивается микроконтроллер PIC. Для управления скоростью вращения двигателя используются две кнопки SB1 и SB2, «Больше» и «Меньше». Изменять скорость вращенияможно только при нажатом тумблере «Пуск». Длительность импульса при этом изменяется, в процентном отношении к периоду, от 30 — 100%.

В качестве стабилизатора напряжения микроконтроллера PIC16F628A, используется трехвыводной стабилизатор КР1158ЕН5В, имеющий низкое падение напряжение «вход-выход», всего около 0,6В. Максимальное входное напряжение — 30В. Все это позволяет применять двигатели с напряжением от 6В до 27В. В роли силового ключа используется составной транзистор КТ829А который желательно установить на радиатор.

Устройство собрано на печатной плате размерами 61 х 52мм. Скачать рисунок печатной платы и файл прошивки можно по ссылке выше. (Смотри в архиве папку 027-el )

Эта самодельная схема может быть использована в качестве регулятора скорости для двигателя постоянного тока 12 В с номинальным током до 5 А или как диммер для 12 В галогенных и светодиодных ламп мощностью до 50 Вт. Управление идёт с помощью широтно-импульсной модуляции (ШИМ) при частоте следования импульсов около 200 Гц. Естественно частоту можно при необходимости изменить, подобрав по максимальной стабильности и КПД.

Большинство подобных конструкций собирается по гораздо . Здесь же представляем более усовершенствованный вариант, который использует таймер 7555, драйвер на биполярных транзисторах и мощный полевой MOSFET. Такая схематика обеспечивает улучшенное регулирование скорости и работает в широком диапазоне нагрузки. Это действительно очень эффективная схема и стоимость её деталей при покупке для самостоятельной сборки довольно низкая.

В схеме используется Таймер 7555 для создания переменной ширины импульсов около 200 Гц. Он управляет транзистором Q3 (через транзисторы Q1 — Q2), который контролирует скорость электро двигателя или ламп освещения.


Есть много применений для этой схемы, которые будут питаться от 12 В: электродвигатели, вентиляторы или лампы. Использовать её можно в автомобилях, лодках и электротранспортных средствах, в моделях железных дорог и так далее.


Светодиодные лампы на 12 В, например LED ленты, тоже можно смело сюда подключать. Все знают, что светодиодные лампы гораздо более эффективны, чем галогенные или накаливания, они прослужит намного дольше. А если надо — питайте ШИМ-контроллер от 24 и более вольт, так как сама микросхема с буферным каскадом имеют стабилизатор питания.

Во многих электронных схемах используются системы активного охлаждения с вентиляторами. Чаще всего их моторы управляются микроконтроллером или другой специализированной микросхемой, а скорость вращения регулируется с помощью ШИМ. Такое решение характеризуется не слишком хорошей плавностью работы, может привести к нестабильной работе вентилятора, а кроме того, создает много помех.

Для потребностей высококачественной аудиотехники разработан аналоговый регулятор оборотов вентилятора. Схема пригодится при строительстве усилителей НЧ с активной системой охлаждения и позволяет выполнить плавную регулировку оборотов вентиляторов в зависимости от температуры. Производительность и мощность зависит в основном от выходного транзистора, тесты проводились с выходными токами до 2 А, что позволяет подключить даже несколько больших вентиляторов на 12 В. Естественно можно применить это устройство и для управления обычными моторами постоянного тока, при необходимости повысив питающее напряжение. Хотя для совсем уже мощных двигателей придётся задействовать системы плавного пуска tehprivod.su/katalog/ustroystva-plavnogo-puska

Принципиальная схема регулятора оборотов мотора

Схема состоит из двух частей: дифференциального усилителя и стабилизатора напряжения. Первая часть занимается измерением температуры и обеспечивает напряжение, пропорциональное температуре, когда она превышает установленный порог. Это напряжение является управляющим для стабилизатора напряжения, выход которого контролирует питание вентиляторов.

Схема регулятора оборотов электродвигателя постоянного тока приведена на рисунке. Основа — компаратор U2 (LM393), работающий в этой конфигурации как обычный операционный усилитель. Первая его часть U2A работает как усилитель дифференциальный, чьи условия работы определяют резисторы R4-R5 (47k) и R6-R7 (220k). Конденсатор C10 (22pF) улучшает стабильность усилителя, а R12 (10k) подтягивает выход компаратора к плюсу питания.

На один из входов дифференциального усилителя подается напряжение, которое образуется через делитель, состоящий из R2 (6,8k), R3 (680 Ом) и PR1 (500 Ом), и фильтруется с помощью C4 (100nF). На второй вход этого усилителя поступает напряжение с датчика температуры, который в данном случае один из разъемов транзистора T1 (BD139), поляризованный небольшим током с помощью R1 (6,8k).

Конденсатор C2 (100nF) был добавлен, чтобы фильтровать напряжение с датчика температуры. Полярность датчика и делителя опорного напряжения задает стабилизатор U1 (78L05) вместе с конденсаторами C1 (1000uF/16V), C3 (100nF) и C5 (47uF/25V), предоставляя стабилизированное напряжение 5 В.

Компаратор U2B работает как классический усилитель ошибки. Он сравнивает напряжение с выхода дифференциального усилителя с выходным напряжением с помощью цепочки R10 (3,3k), R11 (47 Ом) и PR2 (200 Ом). Исполнительным элементом стабилизатора является транзистор T2 (IRF5305), база которого управляется делителем R8 (10k) и R9 (5,1k).

Конденсатор C6 (1uF) и C7 (22pF) и C9 (10nF) улучшают стабильность петли обратной связи. Конденсатор C8 (1000uF/16V) фильтрует выходное напряжение, он имеет значительное влияние на стабильность системы. Разъемом выхода — AR2 (TB2), а разъем питания — AR1 (TB2).

Благодаря применению выходного транзистора с низким сопротивлением в открытом состоянии, схема обладает очень малым падением напряжения — порядка 50 мВ при выходном токе 1 А, что не требует блока питания с более высоким напряжением для управления вентиляторами, работающие на 12 В.

В большинстве случаев в роли U2 можно применить популярный операционный усилитель LM358, правда несколько ухудшив выходные параметры.

Сборка регулятора

Монтаж следует начинать с установки двух перемычек, затем должны быть установлены все резисторы и мелкие керамические конденсаторы.

В большинстве случаев оба эти элемента будут установлены снизу платы на ножках, изогнутых под углом 90 градусов. Такая укладка позволит их прикрутить непосредственно к радиатору (обязательно использовать изоляционные прокладки).

Обсудить статью РЕГУЛЯТОР ОБОРОТОВ ДВИГАТЕЛЯ 12 В

Самодельный вариатор скорости вращения электродвигателя — Регулятор оборотов электродвигателя 12в своими руками

Эта самодельная схема может быть использована в качестве регулятора скорости для двигателя постоянного тока 12 В с номинальным током до 5 А или как диммер для 12 В галогенных и светодиодных ламп мощностью до 50 Вт. Управление идёт с помощью широтно-импульсной модуляции (ШИМ) при частоте следования импульсов около 200 Гц. Естественно частоту можно при необходимости изменить, подобрав по максимальной стабильности и КПД.

Схема ШИМ регулятора для мотора 12 В

В схеме используется Таймер 7555 для создания переменной ширины импульсов около 200 Гц. Он управляет транзистором Q3 (через транзисторы Q1 — Q2), который контролирует скорость электро двигателя или ламп освещения.

Похожие новости

ШИМ контроллер на 12 вольт Схема регулятора оборотов минидрели

Всем привет, наверно многие радиолюбители, также как и я, имеют не одно хобби, а несколько. Помимо конструирования электронных устройств занимаюсь фотографией, съемкой видео на DSLR камеру, и видео монтажом. Мне, как видеографу, был необходим слайдер для видео съемки, и для начала вкратце объясню, что это такое. Ниже на фото показан фабричный слайдер.

Слайдер предназначен для видеосъемки на фотоаппараты и видеокамеры. Он являются аналогом рельсовой системы, которая используется в широкоформатном кино. С его помощью создается плавное перемещение камеры вокруг снимаемого объекта. Другим очень сильным эффектом, который можно использовать при работе со слайдером, — это возможность приблизиться или удалиться от объекта съемки. На следующем фото изображен двигатель, который выбрал для изготовления слайдера.

В качестве привода слайдера используется двигатель постоянного тока с питанием 12 вольт. В интернете была найдена схема регулятора для двигателя, который перемещает каретку слайдера. На следующем фото индикатор включения на светодиоде, тумблер, управляющий реверсом и выключатель питания.

При работе такого устройства важно, чтоб была плавная регулировка скорости, плюс легкое включение реверса двигателя. Скорость вращения вала двигателя, в случае применения нашего регулятора, плавно регулируется вращением ручки переменного резистора на 5 кОм. Возможно, не только я один из пользователей этого сайта увлекаюсь фотографией, и кто-то ещё захочет повторить это устройство, желающие могут скачать в конце статьи архив со схемой и печатной платой регулятора. На следующем рисунке приведена принципиальная схема регулятора для двигателя:

Видео работы

Для плавности увеличения и уменьшения скорости вращения вала существует специальный прибор —регулятор оборотов электродвигателя 220в. Стабильная эксплуатация, отсутствие перебоев напряжения, долгий срок службы — преимущества использования регулятора оборотов двигателя на 220, 12 и 24 вольт.

Для чего нужен частотный преобразователь оборотов

Контроллеры оборотов входят в структуру многих приборов, так как они обеспечивают точность электрического управления. Это позволяет регулировать обороты в нужную величину.

Регулятор оборотов двигателя постоянного тока используется во многих промышленных и бытовых областях. Например:

Выбираем устройство
  1. Для коллекторных электродвигателей распространены векторные контроллеры, но скалярные являются надёжнее.
  2. Важным критерием выбора является мощность. Она должна соответствовать допустимой на используемом агрегате. А лучше превышать для безопасной работы системы.
  3. Напряжение должно быть в допустимых широких диапазонах.
  4. Основное предназначение регулятора преобразовывать частоту, поэтому данный аспект необходимо выбрать соответственно техническим требованиям.
  5. Ещё необходимо обратить внимание на срок службы, размеры, количество входов.
  • двигатель переменного тока природный контроллер;
  • привод;
  • дополнительные элементы.

Прибор может быть куплен в специализированных точках продажи, а можно сделать самому.

Схема регулятора оборотов вращения переменного тока

Существует универсальный прибор 12в для бесколлекторных двигателей.

Для экономии на платежах за электроэнергию наши читатели советуют «Экономитель энергии Electricity Saving Box». Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

Схема состоит из двух частей—логической и силовой. Микроконтроллер расположен на микросхеме. Эта схема характерна для мощного двигателя. Уникальность регулятора заключается в применении с различными видами двигателей. Питание схем раздельное, драйверам ключей требуется питание 12В.

Прибор триак Схема контроллера на симисторе содержит минимум деталей, изображенных на рисунке, где С1 — конденсатор, R1 — первый резистор, R2 — второй резистор.

Когда конденсатор достигает предельного порога напряжения 12в или 24в, срабатывает ключ. Симистр переходит в открытое состояние. При переходе напряжения сети через ноль, симистр запирается, далее конденсатор даёт отрицательный заряд.

Распространённые регулятор тиристор, обладающие простой схемой работы.

Тиристор, работает в сети переменного тока.

К источнику напряжения 24 вольт. Принцип действия заключаются в заряде конденсатора и запертом тиристоре, а при достижении конденсатором напряжения, тиристор посылает ток на нагрузку.

Сигналы, поступающие на вход системы, образуют обратную связь. Подробнее рассмотрим с помощью микросхемы.

Микросхема TDA 1085

Своими руками можно сделать прибор для гриндера, токарного станка по дереву, точила, бетономешалки, соломорезки, газонокосилки, дровокола и многого другого.

При сборе регулятора правильно выбирать резистор. Так как при большом резисторе, на старте могут быть рывки, а при маленьком резисторе компенсация будет недостаточной.

Регуляторы оборотов вращения однофазных и трехфазных двигателей 24, 12 вольт представляют собой функциональное и ценное устройство, как в быту, так и в промышленности.

Видео № 1. Одноканальный регулятор в работе. Меняет скорость кручения вала мотора посредством вращения ручки переменного резистора.

Видео № 3. Двухканальный регулятор в работе. Независимая установка скорости кручения валов моторов на базе подстроечных резисторов.

Функции и основные характеристики

Одноканальный регулятор для мотора

Конструкция устройства
Принцип работы
Материалы и детали

Примечание 3. Для регулировки токов выше 1,5А транзистор КТ815Г заменяют на более мощный КТ972А (с максимальным током 4А). При этом рисунок печатной платы менять не требуется, так как распределение выводов у обоих транзисторов идентично.

Для дальнейшей работы нужно скачать архивный файл, размещенный в конце статьи, разархивировать его и распечатать. На глянцевой бумаге печатают чертеж регулятора (файл termo1 ), а монтажный чертеж (файл montag1 ) — на белом листе офисной (формат А4).

Для тестирования устройства необходимо из архива распечатать чертеж диска. Далее нужно наклеить этот чертеж (№ 1) на плотную и тонкую картонную бумагу (№ 2 ). Затем с помощью ножниц вырезается диск (№ 3).

Полученную заготовку переворачивают (№ 1 ) и к центру крепят квадрат черной изоленты (№ 2) для лучшего сцепления поверхности вала мотора с диском. Нужно сделать отверстие (№ 3) как указано на изображении. Затем диск устанавливают на вал мотора и можно приступать к испытаниям. Одноканальный регулятор мотора готов!

Используется для независимого управления парой моторов одновременно. Питание осуществляется от напряжения в диапазоне от 2 до 12 вольт. Ток нагрузки рассчитан до 1,5А на каждый канал.

Принцип работы

Примечание.2. Для оперативной регулировки скорости кручения моторов подстроечные резисторы заменяют с помощью монтажного провода с резисторами переменного сопротивления с показателями сопротивлений, указанными на схеме.

Понадобится печатная плата размером 30×30 мм, изготовленная из фольгированного с одной стороны листа стеклотекстолита толщиной 1-1,5 мм. В таблице 2 приведен список радиокомпонентов.

Процесс сборки

Чертеж монтажной платы наклеивают к токоведущим дорожкам на противоположной стороне печатной платы. Формируют отверстия на монтажом чертеже в посадочных местах. Монтажный чертеж крепится к печатной плате сухим клеем, при этом отверстия должны совпасть. Производится цоколёвка транзистора КТ815. Для проверки нужно временно соединить монтажным проводом входы 1 и 2 .

В АРХИВЕ представленные необходимые схемы и чертежи для работы. Эмиттеры транзисторов помечены красными стрелками.

Регулятор оборотов двигателя постоянного тока схема на 12 вольт

Двигатель подключен в цепь к полевому транзистору который управляется широтно-импульсной модуляцией осуществляемой на микросхеме таймере NE555, поэтому и схема получилась такой простой.

ШИМ регулятор реализован с помощью обычного генератора импульсов на нестабильном мультивибраторе, генерирующий импульсы с частотой следования 50 Гц и построенного на популярном таймере NE555. Сигналы поступающие с мультивибратора создают поле смещения на затворе полевого транзистора. Длительность положительного импульса настраивается при помощи переменного сопротивления R2. Чем выше длительность положительного импульса поступающего на затвор полевого транзистора, тем большая мощность подается на электродвигатель постоянного тока. И на оборот чем меньше длительность импульса, тем слабее вращается электродвигатель. Эта схема прекрасно работает от аккумуляторной батареи на 12 вольт.

Регулирование оборотов двигателя постоянного тока схема на 6 вольт

Регулировка оборотов в этой схеме достигается подачей на электромотор импульсов напряжения, различной длительности. Для этих целей используются ШИМ (широтно-импульсные модуляторы). В данном случае широтно-импульсное регулирование обеспечивается микроконтроллер PIC. Для управления скоростью вращения двигателя используются две кнопки SB1 и SB2, «Больше» и «Меньше». Изменять скорость вращенияможно только при нажатом тумблере «Пуск». Длительность импульса при этом изменяется, в процентном отношении к периоду, от 30 — 100%.

Устройство собрано на печатной плате размерами 61×52мм. Скачать рисунок печатной платы и файл прошивки можно по ссылке выше. (Смотри в архиве папку 027-el )

Регулирование частоты оборотов электродвигателя с помощью частотных преобразователей | Полезные статьи

Частотные преобразователи применяются для плавной регулировки скорости вращения электродвигателей, а также для их защиты от перегрева и перегрузок. Эти устройства обеспечивают плавный пуск и торможение электродвигателей.

Используя частотник для электродвигателя, принцип работы которого заключается в эффективном способе управления напряжением, можно будет уже не беспокоиться за производственный или ремонтный процесс, осуществляемый соответствующим агрегатом — все будет находиться под контролем частотного преобразователя. В процессе своей работы частотник способен создавать выходное импульсное напряжение заданной частоты в диапазоне от нуля до шестисот герц. Частотное регулирование электродвигателей позволяет добиваться изменения их скорости вращения по заданным критериям. В современных моделях частотников может использоваться и бездатчиковый способ векторного регулирования, когда на валу электродвигателя нет датчика скорости, а сама скорость изменяется лишь в небольших диапазонах. Такого вида частотный регулятор для электродвигателя обычно применяется при управлении низковольтными двигателями переменного тока. В любом случае следует выбирать тот частотный преобразователь, который будет соответствовать мощности и условиям работы электродвигателя.

За счет преобразователя могут контролироваться самые разные параметры электродвигателя — например, это настройка крутящего момента, выходной мощности, изменение напряжения, скорости вращения вала и многое другое. Как видим, частотное регулирование электродвигателей — это очень широкое понятие, и поэтому оно может быть совершенно разным в зависимости от конкретной ситуации. Надо заметить, что частотник также еще позволяет экономить электроэнергию при переменном токе; к тому же это устройство, без сомнения, повышает в целом и срок работы электродвигателя. Получается, что устройство частотного регулирования оборотов электродвигателей — очень важное и нужное средство для любого электродвигателя.

 

Частотные преобразователи могут использоваться на конвейерах различных видов, в подъемном оборудовании (на кранах и в лифтовых системах), в центробежных насосах, вентиляторах и на металлообрабатывающем оборудовании. Частотный регулятор оборотов электродвигателя — неотъемлемый компонент на любом производстве, так как даже в экономическом плане их использование окупает себя на все сто процентов. Ведь частотники помогают существенно снижать расходы на обслуживание электродвигателей и приводных механизмов. Что и говорить про оптимизацию всего рабочего процесса с помощью частотника. Например, при помощи дополнительных входов управления частотного привода можно синхронизировать различные процессы на конвейере, а также задавать соотношения изменения одних показателей в зависимости от других — например, сделать зависимой скорость вращения шпинделя станка от скорости подачи резца. То есть в результате нагрузки на резец в данном случае подача будет уменьшена.

Плавная регулировка оборотов электродвигателя 220в переменного тока — Портал о стройке

Важной особенностью конструкции любого сварочного аппарата является вероятность регулировки рабочего тока. В промышленных аппаратах используют разные способы регулировки тока: шунтирование с помощью дросселей всевозможных типов, изменение магнитного потока за счет подвижности обмоток или магнитного шунтирования, применение магазинов активных балластных сопротивлений и реостатов. К недостаткам такой регулировки надо отнести сложность конструкции, громоздкость сопротивлений, их сильный нагрев при работе, неудобство при переключении. Наиболее оптимальный вариант — ещё при намотке вторичной обмотки сделать ее с отводами и, переключая количество витков, изменять ток. Однако использовать такой способ можно для подстройки тока, но не для его регулировки в широких пределах. Кроме того, регулировка тока во вторичной цепи сварочного трансформатора связана с определенными проблемами. Так, через регулирующее устройство проходят значительные токи, что приводит к его громоздкости, а для вторичной цепи практически невозможно подобрать столь мощные стандартные переключатели, чтобы они выдерживали ток до 200 А. Другое дело — цепь первичной обмотки, где токи в пять раз меньше. После долгих поисков путем проб и ошибок был найден оптимальный вариант решения проблемы — просторно популярный тиристорный регулятор, схема которого изображена на рис.1. При предельной простоте и доступности элементной базы он прост в менеджменте, не требует настроек и хорошо зарекомендовал себя в работе — работает не иначе, как «часики». Регулирование мощности происходит при периодическом отключении на фиксированный промежуток времени первичной обмотки сварочного трансформатора на каждом полупериоде тока (рис.2). Среднее роль тока при этом уменьшается. Основные элементы регулятора (тиристоры) включены встречно и параллельно товарищ другу. Они поочередно открываются импульсами тока, формируемыми транзисторами VT1, VT2…. Смотреть описание схемы …

Source: www.electroschema.com

Читайте также

Что определяет скорость вращения двигателя?

Электродвигатели отличаются своим разнообразием и широким диапазоном типоразмеров. Существуют двигатели с дробной мощностью (л.с.) для небольших бытовых приборов и двигатели мощностью в тысячи л.с. для тяжелого промышленного использования. Другие характеристики, указанные на паспортных табличках двигателей, включают их входное напряжение, номинальный ток, энергоэффективность и скорость в об / мин.

Скорость вращения электродвигателя зависит от двух факторов: его физической конструкции и частоты (Гц) источника питания.Инженеры-электрики выбирают скорость двигателя в зависимости от потребностей каждого приложения, подобно тому, как механическая нагрузка определяет требуемую мощность.


Убедитесь, что в вашем здании есть подходящий электродвигатель для каждого применения.


Как частота напряжения соотносится со скоростью двигателя

В зависимости от страны источник питания будет иметь частоту 60 Гц или 50 Гц. Хотя трехфазный двигатель будет вращаться с обоими входами мощности, возникнут проблемы с производительностью, если двигатель указан для одной частоты и будет использоваться с другой.

Поскольку источник напряжения 60 Гц переключает полярность на 20% быстрее, чем источник питания 50 Гц, двигатель, рассчитанный на 50 Гц, будет вращаться на 20% выше об / мин. Крутящий момент двигателя остается относительно постоянным, а более высокая скорость приводит к более высокой мощности на валу. Двигатель также выделяет больше тепла, но охлаждающий вентилятор также ускоряется вместе с валом, помогая отводить лишнее тепло. Двигатель также имеет тенденцию потреблять больше реактивного тока, что снижает его коэффициент мощности.

Подключение двигателя 60 Гц к источнику питания 50 Гц — более тонкий вопрос.Снижение скорости при том же напряжении может привести к насыщению магнитного сердечника двигателя, увеличению тока и перегреву агрегата. Самый простой способ предотвратить насыщение — снизить входное напряжение, и в идеале соотношение В / Гц должно оставаться постоянным:

  • Двигатель 60 Гц, работающий при 50 Гц, составляет 83,3% от номинальной частоты.
  • Чтобы поддерживать постоянное соотношение В / Гц, входное напряжение также следует снизить до 83,3%.
  • Если электродвигатель обычно работает при 240 В и 60 Гц, входное напряжение при 50 Гц должно быть 200 В, чтобы соотношение составляло 4 В / Гц.

Электропроводка двигателя и количество полюсов

Постоянный магнит имеет два полюса, но двигатели могут быть подключены так, чтобы их магнитное поле имело большее количество полюсов. Двухполюсный двигатель совершает полный оборот с одним изменением полярности, в то время как четырехполюсный двигатель вращается только на 180 ° с одним переключателем полярности. Чем больше полюсов, тем ниже скорость двигателя: если все остальные факторы равны, 4-полюсный электродвигатель будет вращаться со скоростью, вдвое меньшей, чем 2-полюсный электродвигатель.

  • Источник питания 60 Гц меняет полярность 60 раз в секунду, а двухполюсный двигатель будет вращаться со скоростью 3600 об / мин при подключении к этому источнику.Четырехполюсный двигатель будет вращаться только со скоростью 1800 об / мин.
  • Для двигателей с частотой 50 Гц скорость составляет 3000 об / мин при 2 полюсах и 1500 об / мин при 4 полюсах.

Эту концепцию можно резюмировать следующим уравнением:

Используя это уравнение, 4-полюсный двигатель с частотой 60 Гц имеет скорость 1800 об / мин, а 6-полюсный двигатель с частотой 50 Гц имеет скорость 1000 об / мин. Однако на самом деле это скорость магнитного поля, называемая синхронной скоростью, которая не всегда равна скорости вала.

  • В синхронном двигателе , ротор использует постоянный магнит или электромагнит для вращения с расчетной скоростью.
  • С другой стороны, асинхронный двигатель будет работать немного ниже расчетной скорости вращения. Так работает электромагнитная индукция, и ее не следует рассматривать как неисправность.

Если на паспортной табличке электродвигателя указана частота вращения 1800 об / мин, можно сделать вывод, что это 4-полюсный синхронный двигатель, рассчитанный на 60 Гц.С другой стороны, если скорость на паспортной табличке имеет меньшее значение, например 1760 об / мин, устройство является асинхронным двигателем.

Преобразователь частоты может управлять скоростью двигателя, регулируя входную частоту, как следует из его названия. ЧРП также может модулировать напряжение, чтобы поддерживать соотношение В / Гц ниже точки, в которой магнитный сердечник насыщается. Благодаря этой функции частотно-регулируемый привод не повреждает двигатель, даже если скорость снижается ниже значения, указанного на паспортной табличке. Основным недостатком частотно-регулируемых приводов являются гармонические искажения, поскольку они являются нелинейными нагрузками, но это можно компенсировать с помощью фильтров гармоник.

Страница не найдена — EE Publishers

Просмотр статей за последние 30 дней
Выберите день 4 июля 2020 г. 5 апреля 2020 г. 29 марта 2020 г. 22 марта 2020 г. 17 марта 2020 г. 4 марта 2020 г. 13 декабря 2019 г. 30 ноября 2019 г. 29 ноября 2019 г. 28 ноября 2019 г. 27 ноября 2019 г. 26 ноября 2019 г. , 2019 25 ноября 2019 22 ноября 2019 21 ноября 2019 20 ноября 2019 19 ноября 2019 18 ноября 2019 15 ноября 2019 14 ноября 2019 13 ноября 2019 12 ноября 2019 11 ноября 2019 9 ноября 2019 8 ноября 2019 г. 7 ноября 2019 г. 6 ноября 2019 г. 5 ноября 2019 г. 4 ноября 2019 г. 1 ноября 2019 г.
Просмотреть статьи по месяцам
Выберите месяц июль 2020 г. (1) апрель 2020 г. (1) март 2020 г. (4) декабрь 2019 г. (1) ноябрь 2019 г. (172) октябрь 2019 г. (256) сентябрь 2019 г. (262) август 2019 г. (247) июль 2019 г. (264) июнь 2019 (264) Май 2019 (231) Апрель 2019 (242) Март 2019 (280) Февраль 2019 (186) Январь 2019 (201) Декабрь 2018 (121) Ноябрь 2018 (194) Октябрь 2018 (230) Сентябрь 2018 (184) Август 2018 (281) июль 2018 (276) июнь 2018 (220) май 2018 (303) апрель 2018 (263) март 2018 (245) февраль 2018 (250) январь 2018 (192) декабрь 2017 (150) ноябрь 2017 (230) октябрь 2017 (346) Сентябрь 2017 (280) Август 2017 (348) Июль 2017 (342) Июнь 2017 (355) Май 2017 (372) Апрель 2017 (276) Март 2017 (346) Февраль 2017 (262) Январь 2017 (260) Декабрь 2016 (164) Ноябрь 2016 (251) Октябрь 2016 (303) Сентябрь 2016 (292) Август 2016 (298) Июль 2016 (399) Июнь 2016 (344) Май 2016 (389) Апрель 2016 (374) Март 2016 (360) Февраль 2016 (324) Январь 2016 (252) Декабрь 2015 (197) ноябрь 2015 (275) октябрь 2015 (360) сентябрь 2015 (380) август 2015 (306) июль 2015 (374) июнь 2015 (385) май 2015 (342) апрель 2015 (311) март 2015 (396) февраль 2015 (301) Январь 2015 г. (267) Декабрь 2014 г. (154) Ноябрь 2014 г. (288) Октябрь 2014 г. (336) Сентябрь 2014 г. (375) Август 2014 г. (382) Июль 2014 г. (406) Июнь 2014 г. (388) Май 2014 г. (345) Апрель 2014 г. (425) март 2014 г. (395) февраль 2014 г. (369) январь 2014 г. (31) декабрь 2013 г. (138) ноябрь 2013 г. (222) октябрь 2013 г. (355) сентябрь 2013 г. (324) август 2013 г. (361) июль 2013 г. (478) июнь 2013 г. (325) май 2013 г. (374) апрель 2013 г. (373) март 2013 г. (328) февраль 2013 г. (328) январь 2013 г. (249) декабрь 2012 г. (191) ноябрь 2012 г. (283) октябрь 2012 г. (388) сентябрь 2012 г. (323) август 2012 г. (389) июль 2012 г. (396) июнь 2012 г. (371) май 2012 г. (314) апрель 2012 г. (295) март 2012 г. (290) февраль 2012 г. (322) январь 2012 г. (263)

Controls Tangxi 4000 Вт 220 В переменного тока SCR Регулятор напряжения Диммер Электродвигатель Регулятор скорости Промышленные двигатели

Управление Tangxi 4000 Вт 220 В переменного тока SCR регулятор напряжения диммер электрический двигатель регулятор скорости промышленные двигатели
  1. Дом
  2. Промышленное электрооборудование
  3. Элементы управления и индикаторы
  4. Промышленные двигатели
  5. Электродвигатели
  6. Крепления и аксессуары
  7. Органы управления

Tangxi 4000 Вт 220 В переменного тока SCR Регулятор напряжения Диммер Регулятор скорости электродвигателя



Tangxi 4000 Вт 220 В переменного тока SCR Регулятор напряжения Диммер Регулятор скорости электродвигателя, Регулятор напряжения переменного тока SCR Диммер Регулятор скорости электродвигателя Tangxi 4000 Вт 220 В, Tangxi 4000 Вт 220 В переменного тока SCR Регулятор напряжения Диммер Регулятор скорости электродвигателя: Товары для дома, Обслуживание клиентов 24/7 Получите продукт, который вы хотите Купить сейчас, ЛУЧШАЯ цена гарантирована Быстрая доставка и низкие цены Изучите новейшие стильные продукты.220V AC SCR Регулятор напряжения Диммер Регулятор скорости электродвигателя Tangxi 4000W.

Tangxi 4000 Вт 220 В переменного тока SCR регулятор напряжения диммер электрический двигатель регулятор скорости

Портативный USB-кабель для Zebra TC51 BoxWave AllCharge miniSync Выдвижной кабель Jet Black Zebra TC51, DIY Projects HVAC для электрической панели управления uxcell 5 шт. Зеленый световой индикатор с зуммером AC / DC 12 В 22 мм Монтаж на панели Мигающий сигнал тревоги, дека A без кнопки B Концентрический концентрический 3 .0-дюймовый гибкий кабель 22,5 град .; или 16 позиций по 22,5 градуса; или 16 позиций Энкодеры Кодер, OMNIHIL 30 футов, длинный высокоскоростной кабель USB 2.0, совместимый с Samsung SDP-900DXA XGA Digital Presenter, InstallerParts 550MHZ Professional Series Ethernet Cable CAT6 Cable UTP CMR Riser Rated Non-Booted 35 FT 5 Pack 10Gigabit / sec Network / High Кабель скоростного интернета Серый. Штатные датчики наружной температуры, сертифицированное отремонтированное двухканальное реле безопасности Siemens 3TK2834-1BB40, DS90CF386MTDX / NOPB, Liukouu E6C2-CWZ6C Инкрементальный поворотный энкодер Универсальный энкодер 50 мм, диаметр 600P / R.Цвет: черный ZHANGAO 7inch Angel Eyes LED HI / LO Beam DRL Поворотный сигнал для Harley Davidson / Jeep Cherokee Декоративные фонари. 1 шт. FCh32N60N Mosfet N-Ch 600V 22A To-247 22N60 Fch32N60, Fịnger Vibrtors 10 Spẹed USB Rẹchargeable Gspọt Mạssager Fr Wọmen-Wearable Vibrtor-Mạgic Wạnd Mạssager Hẹads. A3AAH-3418G ASC34H / AE34G / ASC34H Упаковка из 10 КАБЕЛЕЙ IDC. Сделано в США. Конденсатор AmRad овальной формы, 440 В переменного тока, Genteq 97F9400-5 uf MFD 370, 6,6 футов, сертифицированный USB A 2.0 — USB-C, нейлоновый плетеный шнур для быстрой зарядки для кабеля USB типа C.

Tangxi 4000 Вт 220 В переменного тока SCR регулятор напряжения диммер электрический двигатель регулятор скорости

Мужские большие и высокие брюки Haggar B & t Premium Stretch Classic Fit с простыми передними брюками и другие костюмные брюки на. Наш широкий выбор предлагает бесплатную доставку и бесплатный возврат. Пользовательская гравировка на задней стороне медальона в виде сердца до 3 строк, становится непрозрачной при печати; Изготовлен из прозрачного винила, цвет самого предмета может незначительно отличаться от приведенного выше изображения. Tangxi, 4000 Вт, 220 В переменного тока, регулятор напряжения SCR, диммер, регулятор скорости электродвигателя , этот галстук-бабочка SelfTie имеет шейный ободок, который идет вокруг шеи с прорезью на конце, чтобы удерживать его на месте. Поднимите рваные джинсовые шорты за 000 миль до обслуживания (в зависимости от условий вождения).Используйте адаптер для ручки самоубийства Brody, чтобы превратить любую ручку переключения передач в ручку рулевого колеса и управлять ею с легкостью, Buy Ty Beanie Babies Punxsutawney Phil 2007 — Сурок: мягкие игрушки и плюшевые мишки — ✓ БЕСПЛАТНАЯ ДОСТАВКА возможна при соответствующих покупках, Tangxi 4000W 220V AC SCR Voltage Regulator Dimmer Electric Motor Speed ​​Controller , Наш широкий выбор элегантен для бесплатной доставки и бесплатного возврата, Шелковый цветок белой розы с мини-розами и белым детским дыханием. С нижним верхом из тонкой шелковой ткани румяного цвета.Например, 4 кв. фут НЕ означает 2 кв. фут. длины x 2 кв. фут. ширины. Указанные международные почтовые расходы указаны для «стандартной авиапочты» — без номера для отслеживания, но с полной страховкой. Tangxi 4000 Вт 220 В переменного тока SCR Регулятор напряжения Диммер Электродвигатель Регулятор скорости , Ищу координационные приглашения. гладкая плакатная бумага с матовым покрытием. поэтому, пожалуйста, подождите 4-6 недель для вашего заказа. ref = ts Время доставки после отправки: европа: 2 недели, за пределами европы: 4 недели. Если при оформлении заказа в вашем заказе не осталось выбора цвета. Tangxi 4000 Вт 220 В переменного тока SCR Регулятор напряжения Диммер Электродвигатель Регулятор скорости , Цвет: черный с черной мягкой подкладкой из гальки. Размеры продукта: Д x Ш 6 дюймов x В Более высокая сторона: 8 ½ дюйма Более короткая сторона: 5 ½ дюйма Расстояние между каждым слотом: 3 дюйма. Баннер «Готов к развешиванию» изготовлен из плотного полиэстера 300D и имеет ширину ткани 16 x 48 дюймов. : IDS Poker 84 ‘Подстаканник Tri-Fold для покера на 10 игроков, черный войлочный подстаканник с сумкой для переноски: Спорт и отдых, 5-миллиметровый стерео разъем Адаптер гнезда: Электроника, Tangxi 4000 Вт 220 В переменного тока SCR регулятор напряжения Диммер Регулятор скорости электродвигателя , ЛЕГКИЙ УХОД — машинная стирка при 100 ° F и сушка при слабом нагревании.


Tangxi 4000 Вт 220 В переменного тока SCR регулятор напряжения диммер регулятор скорости электродвигателя


Tangxi 4000 Вт 220 В переменного тока SCR Регулятор напряжения Диммер Электродвигатель Регулятор скорости: Товары для дома, круглосуточное обслуживание клиентов Получите продукт, который вы хотите Купить сейчас, ЛУЧШАЯ цена гарантирована Быстрая доставка и низкие цены Изучите новейшие стильные продукты.
Tangxi 4000 Вт 220 В переменного тока SCR регулятор напряжения диммер регулятор скорости электродвигателя

Инвертор: невоспетый герой трансмиссии электромобиля

Как известно, у электромобилей есть одна или несколько батарей и один или несколько пропульсивных двигателей.В наших конструкциях используется один пропульсивный двигатель, который через простой блок трансмиссии соединяется с приводным валом транспортного средства. Но задумывались ли вы когда-нибудь о том, что происходит между батареями и двигателем?

Так же, как батарейки типа АА в вашем фонарике, батарейки в электромобиле являются устройствами постоянного тока, что означает, что есть положительная клемма и отрицательная клемма, а напряжения на этих клеммах стабильны. Хорошо, в отличие от ваших батареек AA, наши батареи генерируют сотни вольт и большой ток; но у них все еще есть соединения «+» и «-».

Теоретически можно было бы просто подключить питание от этих батарей к двигателю постоянного тока, который представляет собой двигатель, работающий от постоянного напряжения. Однако двигатели постоянного тока не являются хорошим решением для электромобилей, потому что их трудно точно контролировать по скорости и крутящему моменту. В конце концов, двигатель электромобиля должен работать плавно и предсказуемо от нулевых оборотов в минуту (автомобиль не движется) до сотен оборотов в минуту (на шоссе). Этот уровень управления лучше всего достигается с помощью двигателя переменного тока. Переменный ток все время циклически изменяет свое напряжение.Это то, что выходит из ваших домашних розеток на 110 или 220 В.

Итак — каким-то образом — нам нужно взять электричество постоянного тока высокого напряжения, которое исходит от батарей, и преобразовать его в электричество переменного тока для двигателя. Вот где пригодится инвертор.

Инвертор EV от UQM (Danfoss Editron)

Инвертор — это электронное устройство, которое использует силовые транзисторы в качестве переключателей, чтобы нарезать и нарезать электричество постоянного тока для создания выхода переменного тока. Переменный ток имеет положительное и отрицательное напряжение в своем цикле, и транзисторы открывают и закрывают соединения, которые попеременно позволяют напряжению оставаться неизменным или делать его отрицательным (отсюда и название «инвертор»).В простейшей форме на выходе будет «прямоугольная волна»:

Однако электричество переменного тока, которое поступает из розеток вашего дома, принимает форму «синусоидальной волны»:

Синусоидальная волна имеет гораздо более плавное изменение между положительным и отрицательным полюсами, и она больше подходит для двигателей переменного тока, внутри которых есть магнитные поля, которым нужно время, чтобы нарастать и опускаться по силе.

Путем очень быстрого включения и выключения транзисторов выходные напряжения могут быть «сконструированы» путем смешивания коротких импульсов положительного и отрицательного напряжения в различных количествах, чтобы получить среднее напряжения, которое следует синусоидальной («синусоидальной») форме.Этот метод называется «широтно-импульсной модуляцией». Добавление некоторой «фильтрации», состоящей из электронных компонентов, которые сглаживают сигнал, может дать чистый синусоидальный выход переменного тока.

Но есть еще кое-что, что инвертор в электромобиле должен делать…

Двигатели переменного тока, которые мы используем, являются «трехфазными» двигателями, что означает, что они работают от трех отдельных электрических токов переменного тока, которые смещены друг относительно друга во времени. Это означает, что фаза 2 достигает своего положительного пика немного позже фазы 1; и фаза 3 достигает своего пика вскоре после фазы 2.Это похоже на стадионную волну напряжения. Это приводит к созданию в двигателе набора магнитных полей, которые эффективно вращают , что и вызывает вращение ротора (вращающейся части двигателя). Следовательно, инвертор в наших электромобилях выдает не только один выход переменного тока — он выдает три . На этой фотографии вы можете видеть двустороннее соединение для входа постоянного тока (+ и -) и три разъема для кабелей переменного тока, питающих двигатель:

Подключение питания к инвертору

Но мы еще не закончили: у инвертора еще одна работа …

Инвертор в электромобиле также называется ЧРП — частотно-регулируемым приводом.Синусоидальная энергия переменного тока может генерироваться в широком диапазоне различных частот. Или, другими словами, скорость, с которой напряжение меняется с положительного на отрицательное и обратно, может резко измениться. Это то, что нужно для управления скоростью вращения двигателя. Изменяя частоту переменного тока, эта магнитная стадионная волна ускоряется или замедляется, а двигатель изменяет скорость. И автомобиль тоже. Одно из замечательных свойств электродвигателя заключается в том, что он может генерировать полезный движущий момент в очень широком диапазоне скоростей вращения; это сильно отличается от бензинового или дизельного двигателя, что является одной из причин, по которой им нужны сложные многоскоростные трансмиссии.

Мы видели, что инвертор преобразует электричество постоянного тока в искусно сконструированную, плавно синусоидальную, трехфазную, переменную частоту переменного тока. Итак, мы закончили?

Нет. Есть еще «регенерация».

Regen — сокращение от «регенерация» — это поведение электромобилей, при котором, когда вы убираете ногу с педали акселератора, двигатель становится генератором, который посылает заряд аккумуляторам. Это помогает увеличить запас хода на дороге и продлить срок службы компонентов тормозной системы.Итак, когда двигатель работает как генератор, он вырабатывает три фазы синусоидального переменного тока. Инвертор должен взять их и преобразовать в один выход постоянного тока, который имеет более высокое напряжение, чем батареи, чтобы зарядить их.

На фотографиях в этой статье показан инвертор от нашего партнера UQM (ныне Danfoss Editron), который мы используем в нашем новом силовом агрегате Ford Transit 2 -го поколения . UQM поставляет не только инвертор, но также двигатель с постоянными магнитами и интеллектуальное управляющее программное обеспечение, встроенное в инвертор.Такая поставка всей системы позволяет им оптимизировать ее для достижения наилучшего крутящего момента и эффективности при небольшом весе, что делает ее отличным вариантом для платформы Transit.

Итак, вы видите, что инвертор — это сложное оборудование, которое является незамеченным героем трансмиссии электромобиля.

Вернуться на страницу блога…

Ciglow 4000 Вт Регулятор напряжения Регулятор температуры скорости электродвигателя Диммер 10-220 В переменного тока Регулятор температуры скорости электрического двигателя Элементы управления и индикаторы Крепления и аксессуары

Регулятор напряжения Ciglow 4000 Вт Регулятор температуры скорости электродвигателя Диммер 10-220 В переменного тока Регуляторы температуры скорости электрического двигателя И индикаторы крепления и аксессуары
  1. Дом
  2. Промышленное электрооборудование
  3. Органы управления и индикаторы
  4. Промышленные двигатели
  5. Электродвигатели
  6. Крепления и аксессуары
  7. Органы управления
  8. Ciglow 4000 Вт Регулятор напряжения Регулятор температуры скорости электрического двигателя 10-220 В переменного тока Диммер Регулятор температуры скорости электрического двигателя

Ciglow 4000 Вт Регулятор напряжения Регулятор температуры скорости электродвигателя 10-220 В переменного тока Диммер Регулятор температуры скорости электродвигателя

Диммер 10-220 В Регулятор температуры скорости электродвигателя Ciglow 4000 Вт Регулятор напряжения Регулятор температуры скорости электродвигателя AC, Ciglow 4000 Вт Регулятор напряжения Регулятор температуры скорости электродвигателя AC 10-220 В Диммер Регулятор температуры скорости электрического двигателя: Товары для дома.Регулятор напряжения Регулятор скорости вращения электродвигателя AC 10-220V Диммер Регулятор температуры скорости электрического двигателя Ciglow 4000W, Ciglow, Ciglow 4000W Регулятор напряжения Регулятор температуры скорости электрического двигателя AC 10-220V Регулятор температуры скорости электрического двигателя.




Ciglow 4000 Вт Регулятор напряжения Регулятор температуры скорости электродвигателя 10-220 В переменного тока Диммер Регулятор температуры скорости электродвигателя

Ciglow 4000 Вт Регулятор напряжения Регулятор температуры скорости электрического двигателя Переменный ток 10-220 В Диммер Регулятор температуры скорости электрического двигателя: Товары для дома.Регулируемый диапазон напряжения может быть действительно плавным и регулируемым от 10 В до 220 В, что делает его более подходящим для приборов, которым требуется низкое напряжение для привода нагревательного провода. . Конструкция с двойной емкостью: используйте амперометрическую емкость + емкость металлической пленки для поглощения скачков напряжения и скачков напряжения, что более эффективно и безопасно в использовании. . Широкое применение: используйте для регулировки скорости, яркости, напряжения, температуры различных электронных устройств, таких как электрическая печь, водонагреватель, лампы, небольшой двигатель и т. Д. Долговечность: использование высококачественного корпуса, изготовленного из 1.Алюминий и нержавеющая сталь толщиной 5 мм, безопасно и удобно. . Простота использования: легко контролировать напряжение, скорость, температуру и многое другое с помощью регулируемой поворотной ручки. . Описание:. Этот регулятор напряжения является хорошим решением проблемы перегрузки по току, вызванной малым сопротивлением во время охлаждения сердечника электрического провода. Используя двусторонний тиристор высокой мощности, максимальный ток может достигать 20А, легко регулировать выходное напряжение в диапазоне 0-220 В. Широко используется для приборов мощностью менее 4000 Вт, таких как электрические печи, водонагреватели, лампы, небольшой двигатель и многое другое.. . Характеристики:. Цвет: Серебристый. Материал: алюминий + нержавеющая сталь. Входное напряжение: 220 В переменного тока. Регулировка напряжения: AC 10-220V. Мощность: Макс. 4000 Вт. Эффективность:> 90%. Размер: прибл. 85 x 55 x 38 мм / 3,3 x 2,2 x 1,5 дюйма. Вес упаковки: 127 г. . Список пакетов :. 1 х регулятор напряжения. . Примечание: Нагруженная мощность не может превышать указанную максимальную мощность, в противном случае это приведет к сгоранию модуля и электрического прибора … . .




Ciglow 4000 Вт Регулятор напряжения Регулятор температуры скорости электродвигателя 10-220 В переменного тока Диммер Регулятор температуры скорости электродвигателя

Тройники однотонного цвета из 100% хлопка.Наш широкий выбор предлагает бесплатную доставку и бесплатный возврат. Новый набор из 10 №70 НСС Wіrе Gаugе Twіst Drіll для медицинских работ и бурения. Серьги MELODY Fashion Square из стерлингового серебра S925 Серьги, идеальный размер для книг и расходных материалов: 16 дюймов x 11, Цилиндрические винты DRESSELHAUS 4,8 DIN En Iso 1207 M 6 x 40 мм оцинкованная упаковка 100 шт. ** Застежка-липучка для идеальной посадки ● 1 год гарантии от дефектов, Eldon James G102-150-78 Переборка из черного нейлона и гайка для монтажа на панель, набор с резьбой 10 1 / 4-18 NPSF.обеспечение максимального комфорта после длительного ношения. Мужская модная куртка на молнии Sweatwater, пуховик с капюшоном, парки, пальто, куртка в магазине мужской одежды. 5 шт. Подавители электростатического разряда Chip Guard 0402 24 Volt, ARTFFEL Мужские тонкие классические рубашки на пуговицах с длинными рукавами и 3D-принтом в африканском стиле Fribal в магазине мужской одежды, рубашку с принтом Leomodo Christmas Elements и другие рубашки можно купить в SFH 4235-Z OSRAM Opto Semiconductors Inc Optoelectronics Pack из 5 SFH 4235-Z. Тот же рисунок напечатан на передней и задней части футболки. Наш широкий выбор элегантен для бесплатной доставки и бесплатного возврата, Generic 10Pcs FDP047N08 FDP047AN08A0 FDP047N10 TO-220 164A 75V N-Channel PowerTrench MOSFET.они обещают сделать вас на 100% удовлетворенными. Дизайн — наши плавки имеют эластичную талию и сетчатую подкладку. Разъемы питания постоянного тока Разъемы питания, упаковка 100 шт. PJ-008B. Дата первого упоминания: 31 декабря, Материалы: Цепь — нержавеющая сталь. TISHITA 20см / 30см Micro to USB и Micro USB Male для питания хоста OTG, купите Zhhlinyuan Winter Warm Knit Caps Headwear Unisex Solid Color Stripe Beanie Hat: покупайте головные повязки от лучших модных брендов в ✓ БЕСПЛАТНОЙ ДОСТАВКЕ и возможен возврат при подходящих покупках, Этот дизайн Надежно вмещает несколько долларов и монет, проволока 32GA, 15 футов, нихром, 80, термостойкая проволочная катушка, плетеная электронная катушка, проволока AWG 0.3х0,8 плоский. Купить свадебные платья свадебные платья короткие цветочные кружева половину рукава плюс размер винтаж и другие платья в, пожалуйста, дайте нам около 10 дней, чтобы сделать юбку. Цвет: Черный ЧЕХОЛ ДЛЯ ТЕЛЕФОНА WUXUN Поворотный ролик 8 мм Резьбовой стержень 50 мм Металлический каркас с двумя колесами Поворотный ролик Черный, дата первого размещения: 26 ноября.

Регулятор напряжения Ciglow 4000 Вт Регулятор температуры скорости электродвигателя 10–220 В переменного тока Диммер Регулятор температуры скорости электродвигателя
Регулятор напряжения Ciglow 4000 Вт Регулятор температуры скорости электродвигателя 10–220 В переменного тока Диммер Регулятор температуры скорости электродвигателя: Товары для дома.

uniquegoods 110–220 В переменного тока, 4000 Вт, регулятор скорости двигателя, регулятор напряжения, регулятор напряжения, регулятор температуры, регулятор яркости

uniquegoods, переменный ток, 110–220 В, регулятор скорости двигателя, регулятор напряжения, регулятор напряжения, регулятор температуры, регулятор яркости

uniquegoods, 110–220 В переменного тока, 4000 Вт, высокопроизводительный SCR Регулятор скорости двигателя регулятор напряжения регулятор температуры регулятор затемнения — -. Рабочее напряжение: 110-220 В переменного тока, потенциометр выключен, выход 0 В, SCR запускается примерно с 10 В.Входное напряжение 0-220 В переменного тока точно регулируется. 。 Максимальная мощность: 4000 Вт (подключенная резистивная нагрузка), максимальный ток 20 А, рекомендуется естественное рассеивание тепла для работы в пределах 2000 Вт в течение длительного времени. Если он превышает 2000 Вт, пожалуйста, усилите отвод тепла самостоятельно. 。 Особенности: Двойная изоляция, что означает отсутствие утечки тока в случае короткого замыкания или сгорания тиристора. Цепь антипиковая, антипомпажная, RC-абсорбционный добавленный предохранитель и другая множественная защита. Алюминиевый корпус, оловянная обработка, чрезмерный ток не нагревается, с клеммой защитной крышки.。 Инструкции: Подключите вход этого продукта к 220 В переменного тока, выход подключен к проводу электропечи или электродвигателю. Поверните стержень потенциометра, который может играть роль регулирования скорости, регулирования напряжения и регулирования температуры, его очень удобно использовать. 。 Применение: В основном используется в некоторых электронных продуктах 220 В 110 В, таких как регулировка температуры провода электропечи 220 В, регулировка яркости лампы накаливания, вентилятор 220 В, регулировка скорости вращения сверлильного станка с электродрелью 110 В и т. Д.。 Параметры: 。1.Рабочее напряжение: 110–220 В. переменного тока. 2.Максимальная мощность: 4000 Вт (подключенная резистивная нагрузка). Regulation 3. Регулировка напряжения: начиная с 10 В. 4. Особенности: Безопасность и надежность, точность, защита от цепей. -пиковый, антипомпажный, RC-абсорбционный, добавленный предохранитель и другая множественная защита. 5.Материал: Алюминиевый корпус более безопасен в использовании, утолщенный радиатор увеличивает защитную крышку для более безопасного использования. .S6. Размер: 3,58×2,32×1. дюймов (не включая ручку). 7. Вес: 6,17 унций. Инструкции:。 Подключите вход этого продукта к 220 В переменного тока, выход подключен к проводу электропечи или электродвигателю.Поверните шток потенциометра, который может играть роль регулирования скорости, регулирования напряжения и регулирования температуры, он очень удобен в использовании. Применение:。 1. Используется новый двунаправленный высокомощный тиристор, а расчетный ток составляет до 20 ампер, что может хорошо решить проблему перегрузки по току, вызванную низким сопротивлением печного провода в условиях охлаждения; 。2. Удобно регулировать выходное напряжение муниципального источника питания, которое можно регулировать произвольно между 0-220В для использования поставщиком электроэнергии.Такие как: электрическая печь, регулировка нагрева водонагревателя, регулировка света, регулировка скорости небольшого двигателя, регулировка температуры электрического паяльника. Для достижения затемнения, регулирования температуры, эффекта регулирования давления. Примечания: 。1. Нагрузка не должна превышать указанная максимальная мощность, в противном случае модуль и электроприборы сгорят; 。2.Попробуйте использовать резистивную нагрузку; следует значительно снизить мощность индуктивной, емкостной нагрузки; 。3.Советы: Пожалуйста, не открывайте и не переустанавливайте самостоятельно. в комплекте:。 Регулятор напряжения SCR 1x 4000 Вт。。。。






uniquegoods 110–220 В переменного тока 4000 Вт Контроллер скорости двигателя с регулируемым током высокой мощности Регулятор напряжения Регулятор температуры Регулятор затемнения

экологически чистый материал ;.Bonyak Jewelry 18-дюймовое колье с родиевым покрытием с 6-миллиметровыми бусинами из синего декабрьского месяца рождения и амулетом апостола Святого Томаса: одежда. Показанная модель имеет полированное хромированное покрытие. Дата первого упоминания: 9 августа. uniquegoods AC 110–220 В 4000 Вт Контроллер скорости двигателя SCR высокой мощности Регулятор напряжения Регулятор температуры Регулятор затемнения . Красивые модные украшения символизирует белое золото 585 пробы поверх стерлингового серебра. ЛУЧШИЙ ПОДАРОК: лучший выбор на день рождения, размеры платформы примерно.Фильтр Donaldson P607274: Industrial & Scientific, uniquegoods AC 110–220 В 4000 Вт Контроллер скорости двигателя с высокой мощностью SCR Регулятор напряжения Регулятор температуры Регулятор яркости , мы рассматриваем домашний декор как возможность добавить искусства в дом и сплотить коллективное сообщество художники, Случаи: повседневная или уличная одежда. 5-миллиметровый круглый синий имитационный сапфир. Сообщите нам, если вас интересует какой-либо из этих вариантов. uniquegoods AC 110–220 В, 4000 Вт, регулятор скорости двигателя, регулятор скорости, регулятор напряжения, регулятор температуры, монитор затемнения .Говорят, что он был приобретен как талисман «мужества и победы», когда его долгое время лелеяли как талисман. Переплет был сшит вручную на спине, и я добавил дополнительную машинную вышивку по периметру для дополнительной прочности. * Дополнительно: сначала оберните этикетки в прозрачную контактную бумагу, чтобы «водонепроницаемые». Похоже, это кусочки стекла Миллефиори, uniquegoods AC 110V-220V 4000W Контроллер скорости двигателя высокой мощности SCR Регулятор напряжения Регулятор температуры Регулятор яркости , -Aristotle Эта оригинальная палочка для волос вырезана вручную из рога лося, оставшегося после ежегодной линьки лосей процесс, прочный и экологически чистый материал, 5: Восхождение — ✓ Возможна БЕСПЛАТНАЯ ДОСТАВКА при подходящих покупках.Описание продукта Good Grips Smooth Potato Masher. uniquegoods AC 110–220 В, 4000 Вт, регулятор скорости двигателя, регулятор скорости, регулятор напряжения, регулятор температуры, монитор затемнения . Уникальный дизайн кожи превращает каждую деталь в единое целое: «Обновите рукоятки с помощью ленты SpeedRibbon.


Теория частотно-регулируемых приводов (ЧРП) и устранение неисправностей — Jade Learning

Преобразователи частоты (ЧРП) Теория и устранение неисправностей

Автор: Дэвид Херрес | 9 апреля 2018 г.

Автор: Дэвид Херрес —

Частотно-регулируемые приводы

(VFD), также известные как приводы с регулируемой скоростью, широко используются на рабочих местах.Они используются в лифтах, водяных насосах, крупных воздушных компрессорах и системах транспортировки материалов, где регулируются характеристики скорости и крутящего момента двигателей переменного тока.

Частотно-регулируемый привод со считыванием

Во времена Томаса Эдисона двигатель постоянного тока использовался для создания вращательного движения от электрической энергии к силовому оборудованию на фермах, в домах и в производственных цехах. Преимущество двигателя постоянного тока состояло в том, что скорость двигателя можно было легко и плавно регулировать, регулируя напряжение.

Бесщеточный асинхронный двигатель переменного тока, изобретенный Николой Тесла и представленный на рынке Джорджем Вестингаузом, был экономичным в производстве и эксплуатации, но недостатком было то, что его скорость нельзя было эффективно регулировать. Вы могли замедлить его, уменьшив напряжение, но это было эквивалентно его перегрузке, что привело к повышению температуры и сокращению срока службы двигателя. Плавное и эффективное управление скоростью необходимо во многих приложениях, например в лифтах, где кабина должна замедляться перед остановкой на каждой площадке.В течение многих десятилетий двигателей постоянного тока с выпрямителями было достаточно для этой и подобных установок.

В 1960-х годах были разработаны частотно-регулируемые приводы, которые стали использоваться во всем мире, что позволило легко решить эту проблему. Они управляют скоростью двигателя с помощью широтно-импульсной модуляции, при которой изменение формы сигнала, а не регулировка напряжения используется для замедления или даже ускорения стандартных асинхронных двигателей относительно значений, указанных на паспортной табличке, при условии, что подшипники вала и охлаждение соответствуют задаче.

Преобразователи частоты

можно сконфигурировать для управления другими параметрами двигателя и составления отчетов о них с помощью простого пользовательского интерфейса.ЧРП по большей части надежны и безотказны, но в конечном итоге существует вероятность неисправности, и, как правило, электрик по техническому обслуживанию на предприятии выполняет оценку и ремонт на месте. При наличии подходящего испытательного оборудования устранение неисправностей намного проще, чем обслуживание цветного телевизора или большой системы охлаждения. Для начала рассмотрим анатомию типичного ЧРП — устройства, регулирующего скорость конвейера сборочной линии.

ЧРП обычно относится к контроллеру с интерфейсом оператора или ко всей сборке, включая двигатель.ЧРП и контроллер могут быть размещены в большом корпусе от пола до потолка, расположенном между оператором и моторным оборудованием, в блоке кирпичного типа, который поместится в ладони вашей руки, или где-то между этими крайностями. Шестьдесят циклов переменного тока от электросети, обычно 480 В, подается через ответвленную цепь с защитой от перегрузки по току на вход частотно-регулируемого привода, где она сначала выпрямляется и фильтруется для создания постоянного тока без пульсаций. Этот ток передается по шине постоянного тока в секцию инвертора, где электрическая энергия преобразуется в прямоугольный переменный ток, рабочий цикл которого, отношение пикового напряжения к времени отключения, выражается в процентах.Ширина этого импульса определяет скорость двигателя, которую можно изменять так, чтобы она была больше или меньше номинальной.

Форма волны на выходе инвертора определяется вручную или автоматически по электрическим сигналам от контроллера движения и, в конечном итоге, от пользовательского интерфейса. В случае неисправности оборудования первая задача лечащего электрика — определить, связана ли неисправность оборудования с частотно-регулируемым приводом или где-то еще в цепи. Проблемы с двигателем, такие как перегрев, прерывистая работа, чрезмерное потребление тока, вызывающее отключение из-за перегрузки, или короткий срок службы двигателя, могут быть результатом плохого качества электроэнергии на входе частотно-регулируемого привода, усталости двигателя, блокировки нагрузки или недостаточного размера двигателя.Другая проблема может заключаться в одном или нескольких проводниках источника питания, например, в неисправной клемме, которая может вызвать обрыв или прерывистую фазу. После того, как будет установлено, что неисправность находится внутри частотно-регулируемого привода, следует провести некоторые электрические испытания.

Измерения напряжения можно производить на входе, выходе и на шине постоянного тока. Эти показания не всегда являются окончательными, но в сочетании с визуальным осмотром они часто позволяют локализовать неисправность. Следует подчеркнуть, что из-за высокого уровня напряжения необходима особая осторожность.Напряжение постоянного тока между передней и задней частью частотно-регулируемого привода, поскольку оно основано на размахе, а не на среднеквадратичном значении, выше, чем общий номинальный ток оборудования по переменному току. В частности, напряжение постоянного тока в 1,414 раза больше среднеквадратичного значения переменного тока всего устройства из-за природы двухполупериодного выпрямителя. Итак, для 480-вольтного частотно-регулируемого привода мы имеем 678 вольт на шине постоянного тока. Более того, как и в любом источнике питания, электролитические конденсаторы могут сохранять потенциально смертельный заряд долгое время после отключения устройства.

Много информации можно получить, сняв показания напряжения на шине постоянного тока.Обязательно используйте соответствующие СИЗ и соблюдайте правила электробезопасности при проверке напряжения. Все три напряжения должны быть одинаковыми без пульсаций, измеренных на выходе выпрямителя или где-либо на шине постоянного тока. Все три проводника привязаны к земле, но плавают над землей, поэтому небезопасно проверять их настольным осциллографом, если он не оборудован высоковольтными дифференциальными пробниками. Поскольку это дорого, многие электрики предпочитают портативные осциллографы с батарейным питанием, в которых все входы изолированы от земли и друг от друга.При отсутствии осциллографа пульсации можно обнаружить с помощью мультиметра в режиме переменного напряжения. Если обнаружена пульсация, причиной проблемы может быть один или несколько конденсаторов фильтра в выпрямителе.

В выпрямительной секции любой из диодов или конденсаторов может выйти из строя, поэтому, даже если они не являются визуально дефектными, может потребоваться их проверка мультиметром в режимах проверки диодов и конденсаторов.

В инверторной секции биполярные транзисторы с изолированным затвором (IGBT), которые являются очень быстрыми переключателями, следует сравнивать друг с другом на эквивалентную работу, и здесь также предпочтительно с помощью портативного осциллографа.Другой вид отказа — это ввод данных, который устанавливает величину широтно-импульсной модуляции. Документация производителей, обычно доступная в виде бесплатного скачивания в Интернете, необходима для того, чтобы получить доступ к любому месту в этом отделе.

Конечно, частотно-регулируемый привод (VFD), а также вся установка двигателя должны соответствовать требованиям национального электрического кодекса. ЧРП и другие системы привода с регулируемой скоростью охватываются частью X статьи 430. Электрик, которому поручено обслуживание этой системы, должен обследовать все аспекты оборудования с целью исправления любых недостатков.Пункты для проверки в дополнение к ЧРП включают, но не ограничиваются, следующее:

  • Размеры проводов параллельной цепи двигателя в соответствии с 430.22.
  • Защита двигателя от короткого замыкания и замыкания на землю — 430.52
  • Средства отключения и контроллеры
  • должны иметь размер и расположение согласно разделу 430.110 и таблице 430.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *