Плавный пуск на симисторе: схема, устройство, электродвигателя, на симисторе

Содержание

схема, устройство, электродвигателя, на симисторе

На чтение 10 мин. Опубликовано

Владельцы ручного электроинструмента, как любители так и профессионалы, часто сталкиваются с его поломками. Не всегда это происходит по вине пользователя. Есть особенности, из-за которых это происходит вне зависимости от внешних факторов. Это зависит от технического совершенства изделия, его цены и области применения. Значительной части неисправностей можно избежать даже при использовании недорогих электроинструментов, если выполнить их несложную доработку, например, сделать плавный пуск.

Особенности и срок службы

В ручных электроинструментах, таких как: болгарка(ушм), циркулярная пила, шуруповерт, дрель – используют коллекторные двигатели с последовательным возбуждением.

Они могут работать на постоянном и на переменном токе.

Для их запитки в большинстве случаев используется обычная электросеть 230 В 50 Гц.

Раньше для профессионального инструмента использовалась сеть 380 В. Теперь, с ростом мощности потребителей в однофазных сетях (офисы и жилой сектор), появились и профессиональные электроинструменты на 220 В.

Коллекторные двигатели имеют большой крутящий и пусковой моменты, компактны, легко изготавливаются на повышенное напряжение. Крутящий момент здесь является решающим. При невысокой массе машины он как раз подходит для ручного электроинструмента. Но у таких электромоторов имеются недостатки и слабые места. Одно из таких слабых мест – щеточный узел.

Щетки из прессованного графита с наполнителями трутся о медные пластины коллектора и подвергаются механическому износу и электроэрозии. Это приводит к увеличению искрения и повышает пожарную и взрывоопасность электроинструмента. Попадание минеральной пыли внутрь ускоряет износ. Хотя вентиляторы, предусмотренные конструкцией, выдувают воздух наружу, пыль и цемент могут легко попадать внутрь. Во время простоя, если инструмент неудачно положили, пыль легко попадает внутрь.

На практике это постоянное явление.

Щетки электродвигателя из прессованного графита

Еще один недостаток электроинструмента – частые поломки редуктора. Это происходит как раз из-за большого пускового момента. Достоинство оборачивается недостатком. С поломкой редуктора приходится менять инструмент, ремонту они, обычно, не подлежат. К сожалению, промышленность, в стремлении снизить себестоимость продукции делает это за счет качества. Хочешь пользоваться хорошим электроинструментом – плати немалые деньги.

С последним недостатком как раз можно эффективно бороться плавным пуском. Многие производители делают это, но не всегда уделяют этому достаточно внимания. Хорошие регуляторы оборотов есть не у всех инструментов.

Плавный пуск – для чего это нужно

Для снижения непомерной нагрузки на механику электроинструмента при пуске, могут быть приняты меры со стороны электропитания. Вместо подачи на электродвигатель полного напряжения от источника (электросети), можно подавать пониженное напряжение, с помощью плавного пуска. Но где его взять? Речь идет о массовом применении. В отдельных случаях специалисты и умельцы могли решать эту задачу, но большинству рядовых потребителей это было недоступно.

Существует три способа ограничить пусковой момент электроинструмента и добиться плавного старта:

  1. Применение реостатов;
  2. Применение трансформаторов;
  3. Применение полупроводниковых ключей.

Первый способ применялся еще очень давно, но он не экономичен и неудобен.

Его можно применять и на постоянном, и на переменном токе.

Значительная часть мощности теряется на нагрев сопротивления реостата. Если задача ограничивается только плавным пуском, то это вполне терпимо. Если таким способом регулировать рабочую скорость электродвигателя, то это лишний нагрев окружающий среды и расход электроэнергии. В любом случае устройство оказывается громоздким.

Второй способ намного лучше и экономичнее. Подходит только для переменного тока. Он также может повысить электробезопасность при работе с электроинструментом. Недостаток в том, что классические трансформаторы теперь очень недешевы. Даже при самостоятельном изготовлении, так как в них уходит много дорогой меди. Устройство получается также достаточно большим и тяжелым.

Трансформатор

Третий способ плавного пуска самый современный и дешевый. Он опирается на массовое применение полупроводников. В свое время, в исследования и наладку промышленного производства полупроводниковых приборов были вложены огромные средства. Но дешевизна материалов, из которых их производят, и массовость выпуска уже успели все окупить. Благодаря невысокой себестоимости такие приборы доступны всем.

Главная особенность полупроводниковых ключей – нет механических контактов и работают они с огромной скоростью (частотой переключения). Переключаемые ими токи могут достигать больших величин, при больших напряжениях в отключенном состоянии. При этом, такие приборы практически не греются и не потребляют лишней энергии, как реостаты и отлично подходят для современных электроинструментов.

Виды полупроводниковых ключей

Тиристоры и симисторы

Сопротивление разомкнутого ключа достигает миллионов Ом, ток через него практически не протекает.

Сопротивление замкнутого ключа лежит в пределах единиц и десятых долей Ома.

Хотя при этом может протекать значительный ток, на ключе падает слишком малое напряжение, чтобы на нем выделялось, по закону Джоуля-Ленца, большое тепло. В обеих случаях он остается практически холодным.

Это относится к любому из типов силовых ключей, каковых существует три:

  • Тиристоры и симисторы;
  • Полевые транзисторы MOSFET;
  • Транзисторы IGBT.

Исторически первыми появились тиристоры. С их помощью регулировали мощность в цепях переменного тока, управляя фазой отпирания прибора.

С помощью регулировки фазы управляющего напряжения (длительность t1) можно влиять на момент отпирания симистора в каждом полупериоде (t3) и таким образом, на долю энергии, попадающей в нагрузку и соответственно на электродвигатель.

С появлением мощных полевых транзисторов с изолированным МОП-затвором (металл-окисел-полупроводник, или на английском Metal-Oxide-Semiconductor Field Effect Transistor) током в цепи стали управлять, изменяя ширину открывающих импульсов. Этот метод очень эффективен в цепях с постоянным током, для чего его сначала выпрямляют, и применяется в сварочных инверторах, частотных преобразователях и т.д.

Для наиболее мощных электроинструментов применяют IGBT – биполярные транзисторы с изолированным затвором. Это комбинация полевого транзистора с биполярным.

Для регулирования электродвигателя в настоящее время применяют уже устоявшееся, давно применяемое решение на симисторах. Более продвинутые решения пока не очень распространены.

Как изготовить плавный пуск самостоятельно

Благодаря простоте схемы устройство плавного пуска электродвигателя на симисторе собрать несложно. Оно изготавливается из доступных деталей. Лучше всего делать его на печатной плате, так ничего не будет болтаться и замыкать. Симистор нужно закрепить на теплоотводящем радиаторе, изготовленном из алюминия. Лучше, если это будет заводской радиатор, рассчитанный на мощность 10-30 Вт. Тогда он подойдет для электроинструмента мощностью 1000-1200 Вт.

Расчет радиатора очень просто подсчитать по току. На симисторе падает около 1.5-2 вольт напряжения, когда он открыт. Ток получаем делением мощности на сетевое напряжение. Например, электроинструмент с номинальной мощностью 1200 Вт: 1200/220 = 5.45 ампер. Умножим на 2, получаем 11 Вт.

Обычно в продажном электроинструменте схема ограничения мощности упрятана где-то в рукоятке или корпусе болгарки или дрели. Там нет возможности разместить нормальный радиатор. При частом пуске она перегревается и свои функции не выполняет. Только хороший профессиональный электроинструмент имеет нормальное устройство для ограничения пускового момента и регулировки оборотов.

ПРИМЕЧАНИЕ: Модуль плавного пуска для электроинструмента лучше всего изготавливать в коробке с розеткой. Не стоит брать слишком маленькие розеточные коробки. Там сложно разместить нормальный радиатор для симистора. Без радиатора от устройства не будет практической пользы! При сборке радиатора с прибором необходимо обеспечить чистоту сопрягаемых поверхностей и тонкий слой теплопроводящей пасты (КТП-8 или импортный аналог).

Радиатор нужно закрепить на той же плате, на которой собраны остальные детали. Плата помещается в коробку подходящих размеров и достаточно прочную. Такие коробки можно купить в электротоварах или изготовить из листового пластика. Может подойти чистая пустая банка из-под клея, краски с завинчивающейся или плотно закрывающейся крышкой. Она должна быть прочной и небьющейся.

Розетка, вмонтированная в устройство, должна быть рассчитана на номинальный ток используемого электродвигателя. Аналогичная история и с сетевым шнуром.

ВАЖНО! Если электроинструмент снабжен регулятором оборотов, его ручка должна быть надежно изолирована. Устройство находится под напряжением сети и может оказаться источником поражения током в случае плохой изоляции.

Печатную плату после монтажа полезно покрыть нитролаком для защиты от влаги. Принципиальная схема и разбор ее работы в следующем разделе.

Плавный пуск на микросхеме КР1182ПМ1

Это микросхема для электроинструментов российского производства, которая выпускается ЗАО “НТЦ СИТ” (г. Брянск). Ее можно приобрести в розницу во многих интернет-магазинах. Также новое название К1182МП1Р.

Микросхема может использоваться без внешнего симистора при работе электродвигателя на нагрузку до 150 Вт. Это слишком мало для электроинструмента, но можно задействовать более мощный симистор, что увеличит мощность регулирования до 1-1.5 кВт. Схема с ее использованием показана ниже:

Внутри чипа находится усилитель управляющего сигнала. Этот сигнал формируется на выводах 3 и 6 микросхемы. Фаза отпирания симистора пропорциональна напряжению между выводами 3 и 6, которое может изменяться в пределах от 0 до 6 В. При нуле нагрузка отключена. При включении конденсатор фактически накоротко замыкает управляющую цепь. Но он довольно быстро заряжается и это формирует плавность разгона.

Резистор R1 позволяет быстрее разряжаться конденсатору C1 для уменьшения пауз между включениями. При полном напряжении нагрузка работает с мощностью, близкой к номинальной. Это напряжение создается самой микросхемой, а внешняя цепь только “закорачивает” его с целью повлиять на фазу отключения симистора в каждом полупериоде сетевого напряжения.

Выключатель S1 может быть применен вместо выключателя, работающего в разрыве сетевой цепи. Только он работает наоборот, при размыкании электродвигатель запускается, а при замыкании отключается. Ток в цепи этого выключателя очень мал и можно использовать любой микровыключатель. Тем не менее, должен быть способ быстро отключить электроинструмент в любом случае! То есть, без аварийного сетевого выключателя не обойтись.

Использование переменного резистора на месте R1 позволит более-менее плавно регулировать обороты электродвигателя. Такая функция, дополнительно к плавному пуску, может быть очень полезной при работе с различными материалами, требующими своей скорости обработки.

Обычно время плавного пуска инструмента можно ограничить в пределах 0.3 – 0.5 сек. Это обеспечивает значительное повышение срока службы устройства. Если электроинструмент мощный и оборотистый, его может неожиданно вырвать из рук работника со всеми неприятными последствиями. В таких случаях нужен еще более плавный пуск. Выбрать подходящую задержку для разгона можно с помощью графика, показанного ниже:

 

Эти данные были получены в программе ngspice на основе характеристик, взятых из документации производителя. Кроме того, они были проверены на практике, с угловой шлифовальной машиной 1500 Вт и показали хорошее совпадение.

Симистор VS1 можно брать типа BT139-600 (Philips), ТС106-10-6 (Россия, СЗТП), BTB10-600BWRG (ST Microelectronics) или другой аналогичный. Конденсаторы типа К50-35 на рабочее напряжение 50 В, емкостью 1 мФ (C2,3) и 5-100 мФ для C1. Резистор R2 типа МЛТ-0.5. Также в схеме желательно использовать предохранитель с номинальным током, который на 15-20% превышает номинальный ток предполагаемой нагрузки.

Пример установки плавного пуска электродвигателя на болгарку:

Встроенный, на основе KRRQD-12A (KRRQD-20A)

Автор данного видео приводит интересный пример как можно сделать встроенный плавный пуск электродвигателя с помощью универсального приспособления-удлинителя KRRQD-12A (KRRQD-20A), практически для любого электроинструмента, до 12А (20А) на нагрузке. С максимальной подключаемой мощностью инструмента до 2500 Вт(4400 Вт).

Другие способы

Среди прочих способов плавного пуска для электроинструмента можно отметить использование трансформаторов. Например, будет довольно универсальным ЛАТР на 1-1.5 кВт. Хоть это и довольно тяжелый прибор, он может выручать, если находится под рукой, тогда не придется собирать другое устройство.

Иногда в качестве “холодного” сопротивления в цепи переменного тока используют параллельные наборы конденсаторов, используя их реактивное сопротивление на частоте 50 Гц:

где емкость нужно подставлять в Фарадах. Например, чтобы создать сопротивление 10 Ом нужно выполнить расчеты:

Учитывая большое рабочее напряжение конденсаторов и их емкость, получится слишком большая батарея. Такое решение иногда применялось раньше, но теперь слишком устарело.

Для ограничения мощности в нагрузке электродвигателя может быть использован мощный диод, с обратным напряжением не меньше 250 В. Он “срезает” один полупериод сетевого напряжения, но это создает помехи и неравномерность крутящего момента. Оба последних способа: с конденсаторами и диодом требуют переключателей, шунтирующих цепь. В случае конденсаторов потребуются еще и гасящие резисторы, ограничивающие ток короткого замыкания емкостей.

В общем, из всех способов плавного пуска электроинструмента, самым недорогим, надежным и удобным нужно признать фазовую регулировку с помощью микросхемы К1182МП1Р.

Устройство плавного пуска асинхронного двигателя

Интерес радиолюбителей к разработке устройств плавного пуска асинхронных электродвигателей не ослабевает. Появляются всё новые конструкции. Одна из них предлагается читателям.

Довольно большую популярность получили устройства плавного пуска на микросхеме КР1182ПМ1, например, описанное в [1]. Но этой микросхеме присущи особенности, не позволяющие достичь желаемых результатов без вынужденного усложнения схемы. Первая из них — максимальное напряжение сети не более 276 В. Для трёхфазного электродвигателя этого явно мало. Приходится занулять среднюю точку «звезды» его статора, чтобы ток протекал не между фазами, а между каждой фазой и нейтралью. Но в этом случае требуется регулировать ток всех трёх фаз, иначе через одну из обмоток в течение всего времени пуска будет протекать ток, многократно превышающий номинальный. А при включении обмоток «звездой» с изолированной средней точкой достаточно регулировать ток только в двух фазах.

Вторая особенность — необходимость внешней цепи для принудительной разрядки времязадающего конденсатора, так как ток его разрядки через саму микросхему КР1182ПМ1 весьма мал и устройство будет готово к повторному пуску двигателя только через довольно продолжительное время.
 

Недавно я решил разработать своё устройство плавного пуска. Сразу же решил не использовать в нём микроконтроллер, обойтись без узла определения прохождения тока через ноль (например, такого, как в [2]) и сделать его нечувствительным к порядку чередования фаз.

Рис. 1

Схема предлагаемого устройства показана на рис. 1. Оно состоит из трёх функциональных блоков. Два из них одинаковы и представляют собой симисторные регуляторы действующего значения напряжения на нагрузке, управляемые с помощью оптронов. Применение в них симметричных дини-сторов VS3 и VS4 (точнее, аналогов таких динисторов — микросхем КР1167КП1Б) позволило значительно упростить регуляторы.

Третий блок управляет одновременно обоими регуляторами, формируя в процессе пуска необходимый закон изменения эффективного значения приложенного к двигателю напряжения. Для этого он соответствующим образом изменяет ток, протекающий через излучающие диоды оптронов U1-U4, управляющих регуляторами.

Фотодиоды этих оптронов работают в фотовольтаическом режиме, генерируемое ими напряжение постепенно открывает транзисторы VT1 и VT2. При этом сопротивление транзисторов уменьшается, благодаря чему в каждом полупериоде сетевого напряжения конденсаторы C7 и C8 успевают заряжаться до напряжения открывания динисторов VS3 и VS4 за всё меньшее время. Соответственно симисторы VS1 и VS2 в каждом полупериоде открываются всё раньше и всё большие части полупериодов поступают на обмотки электродвигателя M1.

К сожалению, максимальное напряжение на обмотках электродвигателя при использовании таких регуляторов получается на 20…25 В меньше напряжения в сети. Поэтому предусмотрено реле K1, срабатывающее по окончании процесса пуска и соединяющее своими контактами электроды 1 и 2 симисторов VS1 и VS2. Этим достигается и уменьшение тепловыделения устройства плавного пуска в рабочем режиме двигателя.

Управляющий блок питается от одной из фаз трёхфазной сети через гасящий конденсатор C1 и выпрямитель на диодном мосте VD2-VD5. Учитывая, что напряжение на выходе моста незначительно по сравнению с сетевым напряжением, можно считать выпрямитель источником тока, значение которого около 20 мА задано реактивным сопротивлением конденсатора C1 и практически не зависит от нагрузки.

Резистор R5 ограничивает импульс тока зарядки конденсатора C1 в момент подключения устройства к сети. Рекомендую устанавливать этот резистор на высоте 5.7 мм над поверхностью монтажной платы, чтобы в случае его сгорания (например, в результате пробоя конденсатора Cl) плата не была повреждена. Резистор R6 необходим для разрядки конденсатора C1 после отключения от сети. Конденсатор C5 сглаживает пульсации.
 

Две цепи, состоящие из включённых последовательно излучающих диодов оптронов U1, U2 и U3, U4, соединены с плюсовым выводом этого конденсатора через постоянный резистор R2 и подстроечный R1. Ток через излучающие диоды зависит от сопротивления этих резисторов и значения выпрямленного диодным мостом VD2-VD5 напряжения, которое при неизменном выпрямленном токе зависит от сопротивления нагрузки выпрямителя. Первая часть этой нагрузки — цепь излучающих диодов. Вторая часть образована двумя включёнными последовательно параллельными интегральными стабилизаторами DA1 и DA2. Чем большая часть имеющихся 20 мА протекает через интегральные стабилизаторы, тем меньше остаётся на долю излучающих диодов.

Стабилизатор DA1 включён таким образом, что по мере зарядки конденсатора C4 сопротивление его участка катод-анод плавно увеличивается и ток через него уменьшается. При этом плавно увеличиваются выпрямленное напряжение и ток через излучающие диоды оптронов.

Стабилизатор DA2 задаёт начальное значение этого напряжения (устанавливают подстроечным резистором R9), которое достигается очень быстро после замыкания контактов выключателя SA1. Дальнейшее увеличение напряжения происходит плавно со скоростью, задаваемой сопротивлением подстроечного резистора R7 и ёмкостью конденсатора C4.

Для чего необходимо задавать начальное напряжение? Дело в том, что при слишком маленьком напряжении на обмотках электродвигателя ток через его обмотки уже течёт, а вал всё ещё остаётся неподвижным. При этом двигатель гудит, а обмотки нагреваются. Для предотвращения такого нежелательного режима и предусмотрена установка начального напряжения, обеспечивающего немедленное начало вращения вала. Необходимое значение этого напряжения сильно зависит от механической нагрузки на валу, поэтому его регулировку подстроечным резистором R9 следует производить в реальных условиях эксплуатации двигателя.

По завершении процесса пуска двигателя начинает действовать третья часть нагрузки выпрямителя на диодном мосте VD2-VD5 — соединённые последовательно стабилитрон VD1 и излучающий диод оптрона U5. Когда напряжение на выходе моста достигает напряжения стабилизации стабилитрона (24 В), сопротивление последнего резко уменьшается. Через него и излучающий диод оптрона U5 начинает течь ток. Фотодинистор оптрона открывается, и реле K1 срабатывает, шунтируя своими контактами симисторы VS1 и VS2. С этого момента на электродвигатель M1 поступает полное сетевое напряжение.

Оптроны 3ОД101В применены в качестве оптронов U1-U4 только потому, что они были у меня в наличии. Поскольку напряжение, создаваемое фотодиодом одного оптрона, оказалось недостаточным для открывания транзистора, число оптронов было удвоено. Как излучающие диоды, так и фотодиоды каждой их пары соединены последовательно. С другими диодными оптронами эксперименты не проводились. Вполне возможно, что они тоже подойдут. Существуют сдвоенные диодные оптроны (например, АОД134АС), а также такие, что содержат два фотодиода, освещаемых одним излучающим диодом (например, АОД176А). Возможно, стоит попробовать и их.

При подборе замены транзисторам 2SC4517 следует обратить внимание на максимальное напряжение коллектор- эмиттер. Оно не должно быть меньше 600 В. Это же касается и максимального напряжения в выключенном состоянии симисторов VS1 и VS2.
 

Транзисторы 2SC4517 в рассматриваемом устройстве можно применять без теплоотводов. Нужно ли отводить тепло от симисторов, зависит от мощности электродвигателя и от того, как часто планируется его включать.

Реле K1 — РП-64 [3] с катушкой на 220 В, 50 Гц. Его можно заменить, например, на реле R20-3022-96-5230 [4] c двумя группами нормально разомкнутых контактов и катушкой на 230 В переменного тока. Конденсаторы C2 и C3 — плёночные. Микросхемы КР1167КП1Б можно заменить импортными симметричными динисторами DB3.

Рис. 2

Налаживание устройства плавного пуска следует начать с балансировки двух регуляторов. Для этого нужно, как показано на рис. 2, подать на него однофазное напряжение 220 В, подключив вместо электродвигателя M1 две лампы накаливания на 220 В мощностью 40. 60 Вт. Выводы конденсатора C4 необходимо замкнуть перемычкой.

Подав питающее напряжение, установите подстроечным резистором R9 минимальную яркость свечения ламп, а подстроечным резистором R1 добейтесь одинаковой интенсивности их свечения. Отключив питание, удалите перемычку с конденсатора и снова включите устройство, контролируя напряжение на конденсаторе C5. Когда оно достигнет 25.26 В, должно сработать реле K1. Если с этим всё в порядке, можно проверить напряжение на лампах. Перед срабатыванием реле K1 оно должно быть не менее 190 В. Если напряжение на лампах меньше, можно уменьшить сопротивление резистора R2, но только так, чтобы не был превышен максимально допустимый ток управления оптронов U1-U4.

Теперь к устройству можно подключить электродвигатель и подать трёхфазное напряжение. На мой взгляд, подборку желательной продолжительности разгона лучше начинать с минимальной скорости нарастания напряжения на двигателе (движок подстроечно-го резистора R7 в верхнем по схеме положении) и минимального стартового напряжения (движок подстроечного резистора R9 в нижнем по схеме положении).

Хочу обратить внимание, что технически несложно отказаться от стабилизатора DA2, просто исключив его и относящиеся к нему элементы из схемы и соединив вместе провода, шедшие к аноду и катоду стабилизатора. Для регулировки стартового напряжения в этом случае устанавливают подстроеч-ные резисторы R1′ и R2′, показанные на схеме рис. 1 штриховыми линиями. Ноя бы не советовал так делать. Во-первых, это неудобно, поскольку оперировать придётся двумя подстроечными резисторами по очереди, стремясь не нарушать равенства значений напряжения на обмотках двигателя. Во-вторых, далеко не все подстроечные резисторы способны выдержать приложенное к ним напряжение около 400 В. В-третьих, в рассматриваемом устройстве резисторы R1′ и R2′, в отличие от других подстроечных резисторов, будут находиться под высоким напряжением относительно нейтрали трёхфазной сети, что может представлять опасность при случайном прикосновении к ним.

В заключение хочу сказать, что устройство плавного пуска не может заменить частотный регулятор скорости и продолжительное время поддерживать пониженную частоту вращения вала электродвигателя. С его помощью можно лишь увеличить время разгона до номинальных оборотов и снизить пусковой ток. Пребывание электродвигателя в режиме разгона дольше необходимого приведёт к перегреванию обмоток, потому что текущий через них в этом режиме ток хотя и значительно меньше стандартного пускового тока, но всё-таки превышает номинальный. В таком режиме двигатель очень чувствителен к нагрузке на валу и может остановиться при её незначительном повышении.

Некоторой аналогией устройства плавного пуска электродвигателя можно считать механизм сцепления в автомобиле. Постоянная работа асинхронного электродвигателя в режиме разгона подобна движению автомобиля с не полностью включённым сцеплением.

Литература

1.    Аладышкин Б. Применение микросхемы КР1182ПМ1. Плавный пуск электродвигателя. — http://electrik.info/main/praktika/278-primenenie-mikrosxemy-kr1182pm1-plavnyj-pusk.html.

2.    Плавный пуск трёхфазного асинхронни-ка. — http://kazus.ru/forums/showthread. php?t=12618.

3.     Промежуточное реле РП-64. — http://www.rele.ru/d/d7323c0e96dc68ab5ffed6ea85cd1801.pdf.

4.    R20 промышленные малогабаритные реле. — <www.relpol.pl/ru/Predlagat/My-predlagaem/Rele/promyshlennye-rele/Pele-R20

Автор: П. Галашевский, г. Херсон, Украина

Плавный пуск своими руками. — 16 Января 2016

Есть у меня болгарка, STERN, мощностью 1.2квт. Все бы хорошо, но нет в ней плавного пуска. Давно хотел сделать, да руки никак не  доходили. А тут еще и на работе, умер плавный пуск в  миксере  Rebir.  Разобрав кнопку, обнаружил там  керамическую плату и несколько смд деталек. Заменил нерабочий симистор и смд транзистор на новый, проверил все резисторы и конденсаторы. Но работа не восстановилась.  Было решено делать новую плату. Полазив по сети в посисках готового решения, было найдено два варианта. Первый вариант, это схема из журнала Радио за 1992 год. Люди делали и хвалили. Но меня остановило то, что схема собрана на тиристоре и поэтому  нужен дополнительно  диодный мост .   Во первых это повышает стоимость, во вторых увеличивает габариты. Как изветно, места в электро инструменте и так не много свободного, поэтому решил от этой схемы отказаться. Схемы с использованием динистора сразу отмел в сторону. Как регуляторы оборотов, они мне не нравятся. Схему, что мне понравилась, смотрите ниже.

На первый взгляд, схема довольно таки большая. Но я сделал ее на смд деталях и влез в размеры 35х40 мм. Есть подобная схема и печатка на сайте ЕЛВО. Но там печатная плата не соответствует схеме. Разбираться, что там намутил автор, желания у меня нету, поэтому развел свою плату. Симистор  предназначен для установки прямо на плату. Но после пробного пуска, выяснилось, что симистор у меня постоянно открыт.  Пришлось поменять местами силовые выводы симистора и схема заработала. В результате этого, что бы не резать дорожки, я решил припаять симистор проводами и вывести за пределы платы. На печатке , что находится внизу статьи, я поменял дорожки местами, так что у тех, кто захочет повторить,  таких проблем уже не будет. Описание работы схемы:

На резисторах R14, R15, диоде VD4, стабилитронах VD2, VD3 и конденсаторе C2 собран узел формирования напряжения питания схемы (20…22В).

Делитель на резисторах R1, R2, R3 задаёт напряжения для генератора линейно нарастающего напряжения на операционном усилителе DA1.1 и компаратора выполненного на DA1.2.

Операционный усилитель DA1.1, конденсатор C1 и резистор R4 включены по схеме интегратора, суммирующего результат интегрирования с входным напряжением. После включения, на выв. 1 DA1.1 напряжение линейно возрастает от нуля до напряжения насыщения ОУ.

С выхода интегратора через диод VD1 и резисторы R5, R6 линейно нарастающее напряжение подаётся на конденсатор C3, заряжая его. Компаратор на DA1.2 сравнивает напряжение на конденсаторе C3 с пороговым напряжение (Uпор.) на его инвертирующем входе (выв. 6). В тот момент, когда напряжение на конденсаторе C3 превысит пороговое напряжение, на выходе компаратора (выв. 7) появится высокий уровень напряжения. Ток заряда конденсатора C4 вызовет открытие транзистора VT4, что приведёт к открытию симистора VS1, управляющий электрод которого через ограничительный резистор R1 подключен к коллектору транзистора VT4. После окончания заряда конденсатора C4, транзистор VT4 закроется, но симистор VS1 останется открытым до конца текущего полупериода сетевого напряжения.

По мере того, как напряжение на выходе интегратора будет нарастать, время, за которое конденсатор C3 будет заряжаться до порогового напряжения

По мере нарастания напряжения на выходе интегратора, время, за которое конденсатор C3 заряжается до порогового напряжения, уменьшается, это в свою очередь будет приводить к уменьшению задержки открытия симистора и соответственно к увеличению мощности передаваемой нагрузке. Максимальное значение напряжения до которого может зарядится конденсатор C3, а соответственно и максимальная мощность передаваемая нагрузке определяется сопротивлением резисторов R5, R6. Крайнему левому по схеме положению движка переменного резистора R6 соответствует максимальное значение передаваемой нагрузке мощности.

На транзисторах VT1…VT3 и резисторах R8, R9, R12 собран узел разряда конденсатора C3 в начале каждого полупериода сетевого напряжения.

Цепочка C5, R5 служит для защиты симистора VS1 от импульсных перенапряжений (снабберная цепь) возникающих при коммутации активно-индуктивной нагрузки.

Во время пуска устройство создаёт помехи, поскольку открытие симистора происходит при ненулевом значении напряжения.

Изменением сопротивления резистора R4 и ёмкости конденсатора C1 можно задать желаемую продолжительность пуска, при значениях указанных на схеме продолжительность пуска составит около 8 секунд.

Номинал резистора R6 выбирается исходя из желаемого диапазона регулирования мощности (скорости вращения), значение, указанное на схеме соответствует диапазону регулирования от 45% до 96%. При желании верхнюю границу диапазона можно настроить точнее путём постепенного снижения номинала резистора R5, но при чрезмерном его уменьшении может наблюдаться неустойчивое открытие симистора в самом начале полупериода сетевого напряжения.

Теперь о деталях. Вместо конденсатора С1, емкостью 0.22мкф, поставил 0.1мкф, стабилитрон стоит один, импортный. Напряжение стабилизации 18 вольт. Симистор ВТ138. Смд транзисторы с маркировкой 1Р VT1-VT3-VT4 и 2Р VT2

Вот что вышло.

 

ПЕЧАТНАЯ ПЛАТА

схема запуска асинхронного двигателя, принцип работы УПП, основные функции

Электрические двигатели являются простыми и надежными машинами, но имеют и некоторые недостатки, которые усложняют их использование. В частности, при запуске такие устройства имеют высокие значения потребляемого тока и без специальных устройств запускаются с рывком из-за несогласованности крутящего момента двигателя и нагрузки на его валу. Дополнительными приборами, которые обеспечивают плавную работу двигателя при запуске и позволяют снизить пусковые токи называют устройствами плавного пуска.

Что такое устройство плавного пуска

Устройство плавного пуска (УПП) – это электротехнический прибор, который применяется в работе асинхронных двигателей и позволяет контролировать и управлять его запуском и параметрами для безопасной работы в сети переменного тока. Такое устройство снижает воздействие на двигатель ряда негативных факторов, в том числе уменьшает вероятность повышенного нагрева двигателя, устраняет рывки, обеспечивая плавный запуск и выход на рабочую нагрузку. Также устройства плавного пуска снижают негативное влияние на электрическую сеть посредством уменьшения пусковых токов электродвигателя.

Часто устройство плавного пуска электротехнические специалисты и люди, связанные с работой электродвигателей, называют такие приборы «мягкими пускателями». Это связано с тем, что на английском языке (а большинство качественных устройств – импортного производства) эти устройства называются «soft starter», что и означает «мягкий пускатель».

Плавный пуск электродвигателей с помощью преобразователей частоты и мягких пускателей позволяет решать большое количество задач и управлять работой электродвигателя в широких пределах его параметров. Особенно часто УПП применяют при работе в условиях тяжелого пуска (с большой инерцией или запуском под нагрузкой с четырехкратными пусковыми токами, с разгоном двигателя не менее 30 секунд) и особо тяжелого пуска (при шести или восьмикратных значения пусковых токов и большим временем разгона двигателя).

Самодельные варианты

Существует множество схем модернизации электроинструмента при помощи УПП. Среди всех разновидностей широкое применение получили устройства на симисторах. Симистор — полупроводниковый элемент, позволяющий плавно регулировать параметры питания. Существуют простые и сложные схемы, которые отличаются между собой вариантами исполнения, а также поддерживаемой мощностью, подключаемого электроинструмента. В конструктивном исполнении бывают внутренние, позволяющие встраиваться внутрь корпуса, и внешние, изготавливаемые в виде отдельного модуля, выполняющего роль ограничителя оборотов и пускового тока при непосредственном пуске УШМ.

Простейшая схема

УПП с регулированием оборотов на тиристоре КУ 202 получил широкое применение благодаря очень простой схеме исполнения (схема 1). Его подключение не требует особых навыков. Радиоэлементы для него достать очень просто. Состоит эта модель регулятора из диодного моста, переменного резистора (выполняет роль регулятора U) и схемы настройки тиристора (подача U на управляющий выход номиналом 6,3 вольта) отечественного производителя.


Благодаря размерам и количеству деталей регулятор этого типа можно встроить в корпус электроинструмента. Кроме того, следует вывести ручку переменного резистора и сам регулятор оборотов можно доработать, встроив кнопку перед диодным мостом.

Основной принцип работы заключается в регулировке оборотов электродвигателя инструмента благодаря ограничению мощности в ручном режиме. Эта схема позволяет использовать электроинструмент мощностью до 1,5 кВт. Для увеличения этого показателя необходимо заменить тиристор на более мощный (информацию об этом можно найти в интернете или справочнике). Кроме того, нужно учесть и тот факт, что схема управления тиристором будет отличаться от исходной. КУ 202 является отличным тиристором, но его существенный недостаток состоит в его настройке (подборка деталей для схемы управления). Для осуществления плавного пуска в автоматическом режиме применяется схема 2 (УПП на микросхеме).

Плавный пуск на микросхеме

Оптимальным вариантом для изготовления УПП является схема УПП на одном симисторе и микросхеме, которая управляет плавным открытием перехода p-n типа. Питается устройство от сети 220 В и ее несложно собрать самому. Очень простая и универсальная схема плавного пуска электродвигателя позволяет также и регулировать обороты (схема 2). Симистор возможно заменить аналогичным или с характеристиками, превышающими исходные, согласно справочнику радиоэлементов полупроводникового типа.

Схема 2. Схема плавного пуска электроинструмента

Устройство реализуется на основе микросхемы КР118ПМ1 и симисторе. Благодаря универсальности устройства его можно использовать для любого инструмента. Он не требует настройки и устанавливается в разрыв кабеля питания.

При пуске электродвигателя происходит подача U на КР118ПМ1 и плавный рост заряда конденсатора С2. Тиристор открывается постепенно с задержкой, зависящей от емкости управляющего конденсатора С2. При емкости С2 = 47 мкФ происходит задержка при запуске около 2 секунд. Она зависит прямо пропорционально от емкости конденсатора (при большей емкости время запуска увеличивается). При отключении УШМ конденсатор С2 разряжается при помощи резистора R2, сопротивление которого равно 68 к, а время разрядки составляет около 4 секунд.

Для регулирования оборотов нужно заменить R1 на резистор переменного типа. При изменении параметра переменного резистора происходит изменение мощности электромотора. R2 изменяет величину тока, протекающего через вход симистора. Симистор нуждается в охлаждении и, следовательно, в корпус модуля можно встроить вентилятор.

Таким образом, для запуска электродвигателей различного инструмента необходимо использовать УПП заводского изготовления или самодельные. УПП применяются для увеличения срока эксплуатации инструмента. При запуске двигателя происходит резкое увеличение тока потребления в 7 раз. Из-за этого возможно подгорание статорных обмоток и износ механической части. УПП позволяют значительно снизить пусковой ток. При изготовлении УПП самостоятельно нужно соблюдать правила безопасности при работе с электричеством.

Устройство плавного пуска — электротехническое устройство, используемое в асинхронных электродвигателях, которое позволяет во время запуска удерживать параметры двигателя (тока, напряжения и т.д.) в в безопасных пределах. Его применение уменьшает пусковые токи, снижает вероятность перегрева двигателя, устраняет рывки в механических приводах, что, в конечном итоге, повышает срок службы электродвигателя.

Принцип работы

Главный минус электродвигателей асинхронного типа – это то, что момент силы на валу пропорционален квадрату напряжения, которое приложено к электродвигателю. Это создает сильные рывки при запусках и в момент прекращения работы, что также повышает значения индукционного тока.

Устройства плавного пуска могут быть механическими и электрическими, а также комбинированными сочетая в себе положительные черты обоих устройств.

Механические устройства плавного пуска работают по принципу противодействия резкому увеличению оборотов электродвигателя влияя на его ротор механическим способом при помощи тормозных колодок, различных муфт, противовесов, магнитных блокираторов и прочих механизмов. Такие механизмы в последнее время применяются не часто, так как есть более совершенные устройства электрического управления.

Электрические УПП постепенно повышают ток или напряжение от опорного уровня до максимального, что позволяет плавно наращивать обороты электродвигателя и снизить нагрузки и пусковые токи. Чаще всего электрические устройства плавного пуска управляются электронным способом при помощи компьютерных систем или электронных приборов, что позволяет изменять параметры запуска и контролировать динамические характеристики. Мягкие пускатели позволяют изменять режимы работы электродвигателя в зависимости от приложенной нагрузки и позволяют реализовать ту или иную зависимость между скоростью вращения вала и напряжением.

Основные параметры и характеристики УПП

Ниже в тексте будут приведены схемы аппаратов плавного запуска для изучения и собственноручного изготовления. Для тех, кто не готов осуществить плавный пуск асинхронного электродвигателя своими руками, полагаясь на готовое изделие, будет полезной информация о существующих разновидностях софт стартеров.


Пример аналогово и цифрового УПП, в модульном исполнении (устанавливается на DIN-рейку)

Одним из главных параметров при выборе УПП является мощность обслуживаемого электромотора, выраженная в киловаттах. Не менее важным является время разгона и возможность регулировки интервала запуска. Данными характеристиками обладают все существующие софт стартеры. Более совершенные УПП являются универсальными и позволяют настраивать параметры мягкого запуска в широком диапазоне значений относительно характеристик двигателя и требований технологического процесса.


Пример универсального софтстартера

В зависимости от типа софт стартера в них могут присутствовать различные опции, повышающие функциональность аппарата и позволяющие осуществлять контроль работы электродвигателя. Например, при помощи некоторых УПП возможно осуществление не только плавного запуска электромотора, но и его торможение. Более совершенные софт стартеры осуществляют защиту двигателя от перегрузок и позволяют также регулировать вращательный момент ротора при пуске, останове и работе.


Пример различий в технических характеристиках различных УПП от одного производителя

Разновидности софт стартеров

По способу подключения УПП подразделяются на три вида:

  1. Однофазные. Регулируют пусковое напряжение на одной фазе для уменьшения пускового момента. Обладают ограниченной функциональностью и не снижают пусковой ток. В виду удешевления полупроводниковых силовых ключей, однофазные УПП применяются редко.


    Структурная схема однофазного УПП

  2. Двухфазные. Осуществляют регулировку пускового тока по двум фазам, что позволяет улучшить динамические характеристики запуска двигателя, но не решают проблему с несимметричной «просадкой» напряжения. Используется в основном радиолюбителями, осуществляющими плавный пуск асинхронного электродвигателя своими руками, схема устройства приведена ниже.


    Структурная схема двухфазного УПП

  3. Трехфазные. Дают максимально возможное уменьшение пускового момента, снижая пусковой ток до минимально возможной трехкратной перегрузки. Позволяют осуществлять большой набор функций помимо плавного разгона – регулировку момента, торможение, слежение за параметрами, дистанционное управление, защиту от тепловых перегрузок, и т. д.


    Структурная схема трехфазного УПП

УПП своими руками

Для самостоятельного изготовления УПП используемая схема плавного пуска асинхронного двигателя своими руками будет зависеть от возможности и навыков мастера. Самостоятельное смягчение пусковых перегрузок при помощи автотрансформатора доступно практически любому пользователю без специальных знаний, но данный способ является неудобным ввиду необходимости ручной регулировки старта электродвигателя. В продаже можно встретить недорогие устройства плавного запуска, которые придется самостоятельно подключить к электроинструменту, не обладая глубокими познаниями в радиотехнике. Пример работы до и после софт стартера, а также его подключение показано на видео ниже:


Для мастеров, обладающих общими знаниями в электротехнике, и владеющих практическими навыками электромонтажа подойдет для собственноручного осуществления плавного запуска схема переключения «звезда-треугольник». Данные схемы, несмотря на их солидный возраст, широко распространены и успешно используются по сей день ввиду простоты и надежности. В зависимости от квалификации мастера в сети интернет можно найти схемы УПП для повторения своими руками. Пример схемы относительно простого двухфазного УПП

Современные софт стартеры имеют внутри сложную электронную начинку из множества электронных деталей, работающих под управлением микропроцессора. Поэтому для изготовления аналогичного УПП своими руками по имеющимся в сети интернет схемам необходимо не только мастерство радиолюбителя, но и навыки программирования микроконтроллеров.

Схема подключения электродвигателя к УПП

Для того, чтобы подключить устройство плавного пуска к электродвигателю и питающей сети следует руководствоваться инструкцией на данный тип прибора, там будут указаны все важные аспекты при подключении: последовательность цепи, выводы заземления и нейтрали, а также правильная наладка пуска, разгона и торможения. Но в целом, существуют стандартные способы подключения, которые подходят для большинства устройств плавного пуска.

Каждое УПП имеет контакта на входе и столько же на выходе для подключения фаз, систему управления пуском и остановкой (кнопки ПУСК, СТОП), другие кнопки и контакты управления. К устройству подводят питающие кабели на входные клеммы (обычно это обозначения L1, L2, L3), а от выводных клемм (обозначения T1, T2, T3) подключают электродвигатель. При этом важно подключать УПП к сети через вводной автомат защиты и использовать при подключении двигателя к устройству плавного пуска и самого УПП к сети кабели с номинальным сечением, соответствующем предельному значению тока двигателя.

Прибор плавного пуска электродвигателя. Плавный пуск асинхронного электродвигателя: устройство, схема

Характерным для любого электродвигателя в процессе запуска является многократное превышение тока и механической нагрузки на приводимое в действие оборудование. При этом также возникают перегрузки питающей сети, создающие просадку напряжения и ухудшающие качество электроэнергии. Во многих случаях требуется устройство плавного пуска (УПП).

Необходимость плавного пуска электродвигателей

Статорная обмотка является катушкой индуктивности, состоящей из активного сопротивления и реактивного. Значение последнего зависит от частоты подаваемого напряжения. При запуске двигателя реактивное сопротивление изменяется от нуля, а пусковой ток имеет большую величину, многократно превышающую номинальный. Момент вращения также велик и может разрушить приводимое в движение оборудование. В режиме торможения также появляются броски тока, приводящие к повышению температуры статорных обмоток. При аварийной ситуации, связанной с перегревом двигателя, возможен ремонт, но параметры трансформаторной стали изменяются и номинальная мощность снижается на 30 %. Поэтому необходим плавный пуск.

Запуск электродвигателя переключением обмоток

Обмотки статора могут соединяться «звездой» и «треугольником». Когда у двигателя выведены все концы обмоток, можно снаружи коммутировать схемы «звезда» и «треугольник».

Устройство плавного пуска электродвигателя собирается из 3 контакторов, реле нагрузки и времени.

Электродвигатель запускается по схеме «звезда», когда контакты К1 и К3 замкнуты. Через интервал, заданный реле времени, К3 отключается и производится подключение схемы «треугольник» контактором К2. При этом двигатель выходит на полные обороты. Когда он разгоняется до номинальных оборотов, пусковые токи не такие большие.

Недостатком схемы является возникновение короткого замыкания при одновременном включении двух автоматов. Этого можно избежать, применив вместо них рубильник. Для организации реверса нужен еще один блок управления. Кроме того, по схеме «треугольник» электродвигатель больше нагревается и жестко работает.

Частотное регулирование скорости вращения

Вал электродвигателя вращается магнитным полем статора. Скорость зависит от частоты питающего напряжения. Электропривод будет работать эффективней, если дополнительно менять напряжение.

В состав устройства плавного пуска асинхронных двигателей может входить частотный преобразователь.

Первой ступенью устройства является выпрямитель, на который подается напряжение трехфазной или однофазной сети. Он собирается на диодах или тиристорах и предназначен для формирования пульсирующего напряжения постоянного тока.

В промежуточной цепи пульсации сглаживаются.

В инверторе выходной сигнал преобразуется в переменный заданной частоты и амплитуды. Он работает по принципу изменения амплитуды или ширины импульсов.

Все три элемента получают сигналы от электронной схемы управления.

Принцип действия УПП

Увеличение пускового тока в 6-8 раз и вращающего момента требуют применения УПП для выполнения следующих действий при запуске или торможении двигателя :

  • постепенное увеличение нагрузки;
  • снижение просадки напряжения;
  • управление запуском и торможением в определенные моменты времени;
  • снижение помех;
  • защита от скачков напряжения, при пропадании фазы и др.;
  • повышение надежности электропривода.

Устройство плавного пуска двигателя ограничивает величину напряжения, подаваемого в момент пуска. Оно регулируется путем изменения угла открытия симисторов, подключенных к обмоткам.

Пусковые токи необходимо снижать до величины, не более чем в 2-4 раза превышающей номинал. Наличие байпасного контактора предотвращает перегрев симисторов после его подключения после того, как двигатель раскрутится. Варианты включения бывают одно-, двух- и трехфазные. Каждая схема функционально отличается и имеет разную стоимость. Наиболее совершенным является трехфазное регулирование. Оно наиболее функционально.

Недостатки УПП на симисторах:

  • простые схемы применяются только с небольшими нагрузками или при холостом запуске;
  • продолжительный запуск приводит к перегреву обмоток и полупроводниковых элементов;
  • момент вращения вала снижается и двигатель может не запуститься.

Виды УПП

Наиболее распространены регуляторы без обратной связи по двум или трем фазам. Для этого предварительно устанавливается напряжение и время пуска. Недостатком является отсутствие регулирования момента по нагрузке на двигатель. Эту проблему решает устройство с обратной связью наряду с выполнением дополнительных функций снижения пускового тока, создания защиты от перекоса фаз, перегрузки и пр.

Наиболее современные УПП имеют цепи непрерывного слежения за нагрузкой. Они подходят для тяжело нагруженных приводов.

Выбор УПП

Большинство УПП — это регуляторы напряжения на симисторах, различающиеся функциями, схемами регулирования и алгоритмами изменения напряжения. В современных моделях софтстартеров применяются фазовые методы регулирования электроприводов с любыми режимами пуска. Электрические схемы могут быть с тиристорными модулями на разное количество фаз.

Одно из самых простых — это устройство плавного пуска с однофазным регулированием через один симистор, позволяющее только смягчать механические ударные нагрузки двигателей мощностью до 11 кВт.

Двухфазное регулирование также смягчает механические удары, но не ограничивает токовые нагрузки. Допустимая мощность двигателя составляет 250 кВт. Оба способа применяются из расчета приемлемых цен и особенностей конкретных механизмов.

Многофункциональное устройство плавного пуска с трехфазным регулированием имеет самые лучшие технические характеристики. Здесь обеспечивается возможность динамического торможения и оптимизации его работы. В качестве недостатков можно отметить только большие цены и габариты.

В качестве примера можно взять устройство плавного пуска Altistart. Можно подобрать модели для запуска асинхронных двигателей, мощность которых достигает 400 кВт.

Устройство выбирается по номинальной мощности и режиму работы (нормальный или тяжелый).

Выбор УПП

Основными параметрами, по которым выбираются устройства плавного пуска, являются:

  • предельная сила тока УПП и двигателя должны быть правильно подобраны и соответствовать друг другу;
  • параметр количества запусков в час задается как характеристика софтстартера и не должен превышаться при эксплуатации двигателя;
  • заданное напряжение устройства не должно быть меньше сетевого.

УПП для насосов

Устройство плавного пуска для насоса предназначено преимущественно для снижения гидравлических ударов в трубопроводах. Для работы с приводами насосов подходят УПП Advanced Control. Устройства практически полностью устраняют гидроудары при заполненных трубопроводах, позволяя увеличить ресурс оборудования.

Плавный запуск электроинструментов

Для электроинструмента характерны высокие динамические нагрузки и большие обороты. Его наглядным представителем является угловая шлифовальная машинка (УШМ). На рабочий диск действуют значительные силы инерции в начале вращения редуктора. Большие перегрузки по току возникают не только при запуске, но и при каждой подаче инструмента.

Устройство плавного пуска электроинструмента применяется только для дорогих моделей. Экономичным решением является его установка своими руками. Это может быть готовый блок, который помещается внутри корпуса инструмента. Но многие пользователи собирают простую схему самостоятельно и подключают ее в разрыв питающего кабеля.

При замыкании цепи двигателя, на регулятор фазы КР1182ПМ1 подается напряжение и начинает заряжаться конденсатор С2. За счет этого симистор VS1 включается с задержкой, которая постепенно уменьшается. Ток двигателя плавно нарастает и обороты набираются постепенно. Двигатель разгоняется примерно за 2 сек. Мощность, отдаваемая в нагрузку, достигает 2,2 кВт.

Устройство можно применять для любого электроинструмента.

Заключение

Выбирая устройство плавного пуска, необходимо анализировать требования к механизму и характеристикам электродвигателя. Характеристики производителя находятся в прилагаемой к оборудованию документации. Ошибки при выборе быть не должно, поскольку нарушится функционирование устройства. Важен учет диапазона скоростей, чтобы выбрать лучшее сочетание преобразователя и двигателя.

Одним из самых главных недостатков асинхронных электродвигателей с короткозамкнутым ротором является наличие у них больших пусковых токов. И если теоретически методы их снижения были хорошо разработаны уже довольно давно, то вот практически все эти разработки (использование пусковых резисторов и реакторов, переключение со звезды на треугольник, использование тиристорных регуляторов напряжения и т.д.) применялись очень в редких случаях.

Все резко изменилось в наше время, т.к. благодаря прогрессу силовой электроники и микропроцессорной техники на рынке появились компактные, удобные и эффективные устройства плавного пуска электродвигателей (софтстартеры) .

Устройства плавного пуска асинхронных двигателей — это устройства, которые значительно увеличивают срок эксплуатации электродвигателей и исполнительных устройств, работающих от вала этого двигателя. При подаче напряжения питания обычным способом, происходят процессы, разрушающие электродвигатель.

Пусковой ток и напряжение на обмотках двигателей, в момент переходных процессов, значительно превышают допустимые значения. Это приводит к износу и пробою изоляции обмоток, «подгоранию» контактов, значительно сокращает срок службы подшипников, как самого двигателя, так и устройств «сидящих» на валу электродвигателя.

Для обеспечения необходимой пусковой мощности, приходится увеличивать номинальную мощность питающих электрических сетей, что приводит к значительному удорожанию оборудования и перерасходу электроэнергии.

Кроме того «просадка» напряжения питания в момент пуска электродвигателя — может привести к порче оборудования, задействованного от этих же источников питания, эта же «просадка» наносит серьезный ущерб оборудованию электроснабжения, уменьшает срок его службы.

В момент пуска электродвигатель является серьезным источником электромагнитных помех, нарушающих работу электронного оборудования, запитанного от этих же электрических сетей, или находящихся в непосредственной близости от двигателя.

Если произошла аварийная ситуация и двигатель перегрелся или сгорел, то, в результате нагрева, параметры трансформаторной стали изменятся настолько, что номинальная мощность, отремонтированного двигателя, может снизиться на величину до 30%, в результате, этот электродвигатель окажется непригодным к использованию на прежнем месте.

Устройство плавного пуска электродвигателей объединяет функции плавного пуска и торможения, защиты механизмов и электродвигателей, а также связи с системами автоматизации.

Плавный пуск с помощью софтстартера реализуется медленным подъемом напряжения для плавного разгона двигателя и снижения пусковых токов. Регулируемыми параметрами обычно являются начальное напряжение, время разгона и время торможения электродвигателя. Очень маленькое значение начального напряжения может очень сильно уменьшить пусковой момент электродвигателя, поэтому оно обычно устанавливается 30-60% от значения номинального напряжения.

При запуске напряжения скачком увеличивается до устанволенного значения начального напряжения, а потом плавно за заданное время разгона поднимается до номинального значения. Электродвиагетль будет при этом плавно и быстро разгоняться до номинальной скорости.

Применение софстартеров позволяет уменьшить пусковой «бросок» тока до минимальных значений, уменьшает количество применяемых реле и , выключателей. Обеспечивает надежную защиту электродвигателей от аварийной перегрузки, перегрева, заклинивания, обрыва фазы, снижает уровень электромагнитных помех.

Устройства плавного пуска электродвигателей просты в устройстве, монтаже и эксплуатации.

Пример схемы подключения устройства плавного пуска электродвигателя

При выборе устройства плавного пуска необходимо учитывать следующее:

1. Ток электродвигателя. Необходимо выбирать устройство плавного пуска по полному току нагрузки двигателя, который не должен превышать ток предельной нагрузки устройства плавного пуска.

2. Максимальное число запусков в час. Обычно оно ограничено софтстартером. Необходимо, что-бы количество запусков в час электродвигателя не превышало этот параметр.

3. Напряжение сети. Каждое устройство плавного пуска рассчитано на работу при определенном напряжении. Напряжение сети питания должно соответствовать паспортному значению софтстартера.

Устройства плавного пуска электродвигателей относятся к классу комбинированных приборов. Основной задачей их принято считать распределение энергии. Также они помогают управлять мощностью электродвигателей. Для обеспечения непрерывной работы мотора они подходят идеально.

При необходимости питание от сети они отключат довольно быстро. На сегодняшний день устройства плавного пуска активно применяются в промышленности. В частности модели можно встретить в сверлильных и фрезерных станках. Для лифтовых станций такие приборы подходят.

Схема стандартного пускателя

Стандартная схема устройства плавного пуска электродвигателя представляет собой набор контактов. За счет смены их положения меняется параметр входного напряжение. Сердечники у моделей часто устанавливаются импульсного типа. Электрические катушки в устройствах находятся за контактами.

В данном случае тепловые реле используются с низкой и высокой частотой. Выводов для подключения оборудования должно быть предусмотрено два. Непосредственно передвижение контактов осуществляется благодаря пружинам. Блоки управления существуют разнообразные. Клеммы у моделей обычно располагаются под нижней крышкой. Фильтры усиления устанавливаются не на все пускатели.


Однофазные модификации

Однофазный прибор, обеспечивающий пуск электродвигателей (устройство плавного пуска), по конструкции является очень простым. В данном случае катушка подбирается с первичной обмоткой. Разомкнутых контактов у моделей наблюдается не более четырех единиц. В данном случае сердечник располагается под катушкой. Непосредственно частоту обязано держать не ниже 55 Гц.

Выводов для подключения к двигателю в устройствах предусмотрено два. Пружины у моделей применяются плоские. В зависимости от размеры пускателей меняются. Некоторые модификации оснащаются регуляторами чувствительности. Клеммы у них находятся возле нижней панели. Применяется устройство плавного пуска часто для промышленных станков.

Устройство двухфазных моделей

Двухфазный прибор, обеспечивающий пуск электродвигателей (устройство плавного пуска), выпускается только с импульсным сердечником. В данном случае тепловые реле устанавливаются низкочастотные. Непосредственно контактов у моделей может быть до четырех единиц. Для изменения фазы используется триггер. Также во многих устройствах устанавливаются фильтры усиления. Подключаются модели через выводы на задней панели. Клеммы в таких устройствах располагаются над верхней пластиной. Блоки управления часто имеются с регулятором чувствительности. Встретить двухфазные модели на производстве можно часто. Для фрезерного оборудования они подходят хорошо.

Модификации трехфазного типа

Устройства плавного пуска трехфазного электродвигателя работают за счет изменения положения контактов. Катушки в данном случае во многих моделях располагаются за сердечниками. Серия разомкнутых контактов устанавливается на специальной платформе. Выводы у трехфазных пускателей могут находиться над блоком управления. Однако чаще всего они располагаются у задней панели.

Непосредственно тепловые реле в таких устройствах имеются на 60 Гц. Чувствительность регулировать в оборудовании можно за счет рычага. Спусковой механизм устанавливается над сердечником. На сегодняшний день трехфазные пускатели часто работают с судовыми двигателями.

Модели для синхронных двигателей

Синхронный прибор, обеспечивающий пуск электродвигателей (устройство плавного пуска), отличается пониженной частотностью. Достигается это за счет использования сердечников закрытого типа. Катушки у таких моделей входное напряжение обязаны выдерживать на уровне 200 В.. Тепловые реле монтируются над верхней платиной. Система замыкающих контактов располагается по обе стороны сердечника.

Для увеличения чувствительности устройства используется специальный регулятор. Клеммы у моделей могут монтироваться у верхней и задней части панели. Фильтры усиления используются довольно редко. При этом триггеры устанавливаются часто.

Пускатели асинхронных двигателей

На сегодняшний день асинхронных прибор, обеспечивающий пуск электродвигателей (устройство плавного пуска), производится с различной комплектацией. у моделей устанавливаются на 220 и 300 В.. В данном случае сердечники часто используются открытого типа. В среднем параметр полосы пропускания у них достигает 5 мп. Однако на рынке представлены также сердечники импульсного типа. Отличаются они от других моделей повышенной чувствительностью. При этом изнашиваются они крайне медленно, и способны долго проработать. Разомкнутые контакты в устройствах находятся у верней пластины.

Тепловые реле устанавливаются исключительно низкочастотного типа. Выходное напряжение они минимум обязаны выдерживать на уровне 230 В.. Подключение многих моделей осуществляется через выводы. Для смены положение нижних контактов применяются пружины. Устанавливаются часто они не большого диаметра. Блоки управления во всех устройствах оснащаются блокираторами. Регуляторы чувствительности также присутствуют во всех конфигурация. По типу триггеров модели довольно сильно отличаются. Если рассматривать устройства с катушками на то они чаще всего имеются волнового типа. Однако фазовые аналоги также представлены на рынке.

Отдельного внимания в таких приборах заслуживает спусковой механизм. Как правило, состоит он из наборов проводников. В наше время наиболее распространенными считаются модификации на четыре контакта. Если рассматривать модели с катушками индуктивности на 300 В, то в данном случае триггеры всегда используются фазового типа.


Особенности моделей пуска высоковольтного двигателя

Пускатели высоковольтного типа активно используются в атомной энергетике. Катушки у таких устройств часто устанавливаются на 300 В.. Параметр пропускной способности колеблется в районе 5 мп. Непосредственно контакты имеются как подвижные, так и не подвижные. Сердечники устанавливаются импульсного, а также конденсаторного типа. Отличаются они между собой по показателю чувствительности. На сегодняшний день более надежными принято считать импульсные модификации.

Тепловые реле для приборов походят только низкочастотные. Параметр рабочего тока в системе достигает 5 А.. Для регулировки пластин используются плоские пружины. Блоки управления в пускателях имеются с блокираторами, и без них. Спусковые механизмы часто устанавливаются на трех проводниках. Фильтры усиления в данном случае используются очень редко.

Отдельного внимания в приборах заслуживает тип триггеров. Если рассматривать низкочастотные устройства, то они подбираются только волнового типа. С понижением чувствительности прибора они справляются хорошо. Подключается устройство плавного пуска высоковольтного электродвигателя через замыкание выводов. Часто они располагаются на верней крышке.


Модель серии ABB

Устройство плавного пуска электродвигателя ABB отличается наличием фазовых триггеров. Их преимущество перед волновыми модификациями кроется в способности быстро справляться с электромагнитными помехами. Таким образом, двигатель работает более стабильно, и обороты поддерживает всегда на нужном уровне. Фильтры усиления можно встретить только в устройствах низковольтного типа. Пластины у моделей фиксируются на плоских пружинах. Спусковые механизмы устанавливаются на блоках управления. Непосредственно частотность пользователь способен контролировать с помощью рычага.

Катушки индуктивности в таких устройствах серии ABB устанавливаются на 200 В.. Контакты располагаются по обе стороны от пластины. Сердечники часто устанавливаются закрытого типа. В результате износ их крайне мал. Тепловые реле можно встретить как ступенчатого, так и опорного типа. Выводов в устройствах имеется только два. Использоваться модели данного типа могут лишь в сетях с переменным током. В данном случае параметр выходного напряжения не должен превышать 220 В.. В свою очередь уровень предельного тога максимум может составлять 6 А.

Устройство для пуска «Шнайдер»

Устройство плавного пуска электродвигателя Шнайдер оснащено катушкой на 230 В.. Нагрузки оно максимум способно выдерживать в 6 А.. В данном случае сеть разомкнутых контактов находится возле теплового реле. Сердечник у модели установлен импульсного типа. Параметр полосы пропускания его составляет максимум 6 мп. Устанавливается тепловое реле сразу под пластиной. Выходы у модели имеются с клеммами. Подвижные контакты в системе крепятся на плоских пружинах. Блок управления предусмотрен в устройстве стандартный.

Блокиратор в нем имеется. Спусковой механизм установлен на четыре контакта. Фильтр усиления в пускателе не предусмотрен. Однако для регулировки частотности имеется рычаг. Триггер установлен фазового типа. Крепится он в приборе над нижней пластиной, рядом с подвижными контактами. Подходит устройство для управления синхронными двигателями.

Устройства для морских судов

Модели для морских судов включают в себя сердечники открытого типа. Непосредственно катушки устанавливаются на 300 В.. Перегрузки устройство для плавного пуска электродвигателя максимум должно выдерживать на уровне 6 А.. Параметр полосы пропускания таких модификаций достигает 7 мп. Для подключения моделей применяются специальные выводы. Часто они устанавливаются над сердечником у пластины.

Блоки управления для защиты могут оснащаться блокираторами. Спусковые механизмы по устройству довольно сильно отличаются. Если рассматривать низкочастотные модели, то они часто устанавливаются на четыре проводника. В данном случае клеммы должны находиться возле сердечника. Чувствительность у моделей данного типа не регулируется. Фильтры усиления присутствуют только в пускателях с волновыми триггерами. Подвижные пластины в приборах устанавливаются возле тепловых реле.

Модульные модели для объектов атомной энергетики

Устройства для атомной энергетики оснащаются надежными системами защиты. Всего пластин с контактами у приборов имеется около пяти. Катушки в устройствах устанавливаются самые различные. В некоторых случаях они крепятся на задних панелях. Выходов для подключения у приборов имеется два. Тепловые реле используются часто низкочастотного типа. В данном случае сердечники подходят только импульсные.

Данный раздел посвящен теоретическим основам частотного регулирования и принципам работы устройства плавного пуска.

Принцип работы преобразователя частоты

Частотный преобразователь — устройство, позволяющее осуществлять регулирование скорости вращения электродвигателей посредством изменения частоты электрического тока.

Для понимания процесса частотного регулирования для начала необходимо вспомнить из курса электротехники принцип работы асинхронного электродвигателя.

Вращение вала электродвигателя происходит за счет магнитного поля создаваемого обмотками статора. Синхронная частота вращения магнитного поля зависит от частоты напряжения питающей сети f и выражается следующей зависимостью:

где p – число пар полюсов магнитного поля.

Под действием нагрузки частота вращения ротора электродвигателя несколько отличается от частоты вращения магнитного моля статора вследствие скольжения s:

Следовательно частота вращения ротора электродвигателя представляет собой зависимость от частоты напряжения питающей сети:

Таким образом требуемую частоту вращения вала электродвигателя np можно получить путем изменения частоты напряжения сети f. Скольжение при изменении частоты вращения не увеличивается, а соответственно потери мощности в процессе регулирования незначительны.

Для эффективной работы электропривода и обеспечения максимальных значений основных характеристик электродвигателя требуется вместе с частотой изменять и питающее напряжение.

Функция изменения напряжения в свою очередь зависит от характера момента нагрузки. При постоянном моменте нагрузки Mc = const напряжение на статоре должно регулироваться пропорционально частоте:

Для случаев вентиляторного режима:

При моменте нагрузки, обратно пропорциональном скорости:

Таким образом, плавное регулирование частоты обеспечивается одновременным регулированием частоты и напряжения на статоре асинхронного двигателя.


Рис 1. Схема частотного преобразователя

На рис. 1. представлена типовая блок-схема низковольтного преобразователя частоты. В нижней части рисунка для каждого блока наглядно изображены графики входных и выходных напряжений и токов.

Сначала напряжение сети (U BX) поступает на вход выпрямителя (1). Далее для сглаживание выпрямленного напряжения (U ВЫПР) применяется конденсаторный фильтр (2). Затем уже постоянное напряжение (U d) подается на вход инвертора (3), где происходит преобразование тока из постоянного обратно в переменный, формируя тем самым выходной сигнал с необходимыми значениями напряжения и частоты. Для получение сигнала синусоидальной формы применяются сглаживающий фильтр (4)

Для более наглядного понимания принципа работы инвертора рассмотрим принципиальную схему частотного преобразователя на рис. 2


Рис. 2 – принципиальная схема низковольтного преобразователя частоты

В основном в инверторах применяется метод широтно-импульсной модуляции (ШИМ). Принцип данного метода заключается в попеременном включении и выключении ключей генератора, формируя импульсы различной длительности (рис. 3). Синусоидальный сигнал получается за счет индуктивности двигателя или применения дополнительного сглаживающего фильтра.


Рис. 3. Выходной сигнал преобразователя частоты

Таким образом, управляя процессом включения-выключения инверторных ключей, мы можем формировать выходной сигнал нужной частоты, а следовательно управлять технологическими параметрами механизма путем изменения частоты вращения привода.

Теория и принцип работы устройства плавного пуска

В связи с особенностями переходных процессов происходящих во время пуска электродвигателя токи обмоток достигают 6-8 кратной величины номинального тока электродвигателя, а вращающий момент на его валу достигает 150-200% от номинального значения. Как следствие это увеличивает риск поломки механической части двигателя, а также приводит к падению напряжения питающей сети.

Для решение данных проблем на практике применяется устройства плавного пуска электродвигателей , обеспечивающие постепенное увеличение токовой нагрузки.

Помимо снижения токовых нагрузок мягкие пускатели позволяют: .

  • Снизить нагрев обмоток двигателя;
  • Снизить просадки напряжения во время пуска;
  • Обеспечить торможение и последующий запуск двигателя в установленный момент времени;
  • Снизить гидроудары в напорных трубопроводах при работе в составе привода насоса;
  • Снизить электромагнитные помехи;
  • Обеспечить комплексную защиту электродвигателя при пропадании фазы, перенапряжении, заклинивании и пр;
  • Повысить надежность и долговечность системы в целом.

Принцип работы УПП

Типовая схема устройства плавного пуска представлена на рис. 1


Рис. 1. Типовая схема устройства плавного пуска

Изменением угла открытия тиристоров осуществляется регулирования выходного напряжения УПП. Чем больше угол открытия тиристора — тем больше величина выходного напряжения, питающего электродвигатель.


Рис. 2. Формирование выходного напряжения УПП

Принимая во внимание то что величина крутящего момента асинхронного электродвигателя пропорциональна квадрату напряжения, то снижение напряжения снижает величину вращающего момента вала двигателя. При помощи такого метода пусковые токи электродвигателя снижаются до величины 2…4 I НОМ, при этом время разгона несколько увеличивается. Наглядное изменение механической характеристики асинхронного электродвигателя при понижении напряжении показано на рис. 3


Рис 3. Механические характеристика двигателя

Снижение токовой нагрузки в процессе мягкого пуска электродвигателя наглядно показаны на рис. 4.


Рис. 4. Диаграмма плавного пуска асинхронного электродвигателя показана

На рис. 1. продемонстрирована типовая схема устройства плавного пуска однако стоит отметить, что реальная схема мягкого пускателя будет завесить в первую очередь от условий его эксплуатации. Например, для бытового бытовой инструмента и электродвигателя привода промышленной дробилки требуются различные устройства плавного пуска. Важнейшими параметрами, определяющими режимы работы устройств плавного пуска, являются время пуска и максимальное превышение по току.

В зависимости от этих параметров выделяют следующие режимы работы устройств плавного пуска:

  • Нормальный : пуск 10-20 секунд, ток при пуске не более 3,5 I ном.
  • Тяжелый : пуск порядка 30 секунд, тока при пуске не превышает 4,5 I ном
  • Сверхтяжелый : время разгона не ограничено, системы с большое инерцией, пусковой ток в диапазоне 5,5…8 I ном

Устройства плавного пуска можно разделить на следующие основные группы:

1. Регуляторы пускового момента
Данный тип устройств осуществляет контроль только одной фазы трехфазного двигателя. Контроль одной фазой дает возможность снижать пускового момент электродвигателя двигателя, но при этом снижение пускового тока происходит незначительное. Устройства данного типа не могут применяться для уменьшения токовых нагрузок в период пуска, а также для пуска высокоинерционных нагрузок. Однако они нашли применение в системах с однофазными асинхронными электродвигателями.

2. Регуляторы напряжения без обратной связи
Данный тип устройств работает по следующему принципу: пользователь задает величину начального напряжения и время его нарастания до номинальной величины и наоборот. Регуляторы напряжения без обратной связи могут осуществлять контроль как двух так и трех фаз электродвигателя. Такие регуляторы обеспечивают снижение пускового тока снижением напряжения в процессе пуска.

3. Регуляторы напряжения с обратной связью
Данный тип УПП представляет собой более совершенную модель описанного выше устройств. Наличие обратной связи по позволяет управлять процессом увеличения напряжения добиваясь оптимального режима пуска электродвигателя. Данные о токовой нагрузке позволяет также организовать комплексную защиту электродвигателя от перегрузки, перекоса фаз и т.п.

4. Регуляторы тока с обратной связью
Регуляторы тока с обратной связью представляют собой наиболее совершенные устройства плавного пуска. Принцип работы основан на прямом регулировании тока а не напряжения. Это позволяет добиться наиболее точное управление пуском электродвигателя, а также облегчает настройку и программирование УПП.

Плавный пуск блоков питания Источники питания Любительская радоэлектроника

 При включени блока питания усилителей, компьютеров и  других устройств  в сети возникает помеха, вызванная пусковыми токами трансформаторов, токами заряда электролитических конденсаторов и стартом самих питаемых устройств.  Эта помеха проявляется как «моргание» света, щелчки и искры в сетевых розетках, а электрически как просадка сетевого напряжения, которая может привести к сбою  других устройств, которые питаются от той же сети. Кроме того, эти пусковые токи вызывают обгорание контактов выключателей, сетевых розеток.  Выпрямительные диоды при таком старте работают при токовой перегрузке и могут выйти из строя. К примеру, бросок тока заряда конденсатора 10000мкФ 50В может составлять 10 и более ампер. Если диодный мост не рассчитан на такой ток, то такой пусковой ток может  вывести мост из строя. Особенно сильно пусковые токи заметны при мощности более 50-100Вт. Для таких блоков питания и предлагается это устройство плавного пуска, схема которого приведена на рис.1

 

Рис.1. Плавный пуск  блоков питания. Схема

 

При включении в сеть блок питания стартует через токоограничителный резистор R4. Через  время, необходимое для его старта, зарядки конденсаторов и пуска нагрузки, резистор шунтируется контактами реле и блок питания выводится на полную мощность. Время задержки определяется емкостью конденсатора C2. Элементы C1D1C2D2 являются  бестрансформаторным источником питания для схемы управления реле. Стабилитрон D2 играет  защитную роль, и при исправной схеме управления может отсутствовать. Реле BS-115C-12V, использованное в схеме, может быть заменено на любое другое реле с током контактов не менее 10А, с подбором стабилитронов, конденсатора C1 и выбором транзистора VT1 на напряжение, большее напряжения срабатывания реле. Стабилитрон D3 обеспечивает гистерезис между напряжением включенного и выключенного реле, т. е  реле включится резко, а не плавно.

Конденсатор C1 определяет ток включения реле. В случае недостаточного тока емкость конденсатора необходимо увеличить  в пределах 0,47…1мкФ, 400…630В. В защитных целях конденсатор желательно изолировать, обмотав его изолентой или надев на него полиэтиленовую или термоусадочную трубку. Предохранители выбираются на двухкратный номинальный ток БП. К примеру, для блока питания 100Вт предохранители должны быть на ток 1А. При необходимости схему можно дополнить сетевым симметричным или несимметричным фильтром, включенным после предохранителей. Соединение с корпусом, присуствующее на схеме, можно расценивать только как общий провод для подключения вольтметра.  Его нельзя соединять с шасси устройства, выводить  на общие провода сетевых фильтров и прочее.

Источник: www.radiokot.ru

Симисторный регулятор мощности, схема на КР1182ПМ1

Большое количество нагрузок требуют регулирования мощности, например такие:

  • лампы накаливания или любые другие диммируемые;
  • нагреватели;
  • коллекторные электродвигатели и в частности электроинструмент.

Если до появления полупроводниковых элементов задачи регулировки мощности требовали применения громоздких электромагнитных устройств, то
с появлением тиристоров задача фазового регулирования мощности сильно упростилась. А вот симисторный регулятор мощности ещё проще тиристорного, ему не требуется выпрямителя. Симистор может проводить ток как в течении положительной полуволны переменного напряжения, так и в течении отрицательной.

Точно также как и тиристорный регулятор симисторный регулятор мощности осуществляет регулировку за счет изменения угла открывания. Чем больше угол ‘a’ тем меньше энергии попадает на выход устройства.

Схема получается настолько простой и дешевой что её стали встраивать даже в кнопки дешевых дрелей.

Таблица номиналов элементов

  • C1 – 0,1 мк;
  • R1 – переменный резистор 470 кОм;
  • R2 – 10 кОм;
  • VS1 – DB3;
  • VS2 – BTA225-800B.

При данном типе VS2 cимисторный регулятор мощности способен отдавать в нагрузку до 25 А.
Удивительно, но схема содержит всего 5 элементов:
R1 и R2 – определяют скорость C1 и чем она будет больше тем скорее откроется симметричный динистор VS1 и откроет симистор VS2.

КР1182ПМ1

Отечественная промышленность выпускает специальную микросхему – фазовый регулятор КР1182ПМ1. Эта микросхема позволяет осуществлять фазовое регулирование как самостоятельно, при низких мощностях нагрузки до 150 Вт, так и совместно с тиристорами или симисторами при больших мощностях.

Внутренняя структура микросхемы КР1182ПМ1.

Микросхема предназначена для работы в диапазоне напряжений 80 – 276 В, тока до 1,2 А, мощности до 150 Вт и диапазоне температур от -40 до 70 гр. Цельсия.

Применение КР1182ПМ1 позволяет добиться высокой повторяемости скорости нарастания и спада напряжения.

Таблица номиналов элементов

  • C1 – 47 мкФ 10В;
  • C2, С3 – 1 мкФ 6,3 В;
  • DA1 – КР1182ПМ1;
  • R1 – переменный резистор 68 кОм;
  • R2 – 470 Ом;
  • S1 – кнопка выключения;
  • VS1 – BT136-600E.

В приведенной схеме R1 и С1 определяют скорость нарастания выходного напряжения чем больше их значения тем дольше работа режима плавного пуска.
С2 и С3 нужны для работы самой микросхемы и должны быть тем больше чем больший ток коммутирует микросхема.
R2 – ограничивает ток через симистор VS1.

Но есть и недостатки у фазового регулятора мощности – помехи которые могут генерироваться в сеть при больших мощностях. На некоторых видах нагрузки, например нагреватели или двигатели с большим моментом инерции допустимо использовать и другие виды регулировки, например пропускать или не пропускать целые полупериоды или периоды сетевого напряжения. Преимущества данного способов в переключении тиристора в момент нулевых напряжений и токов. Однако управление таким способом более сложное и скорее всего потребует применение микроконтроллера.

Устройство плавного пуска

— принцип работы и работа

Отправлено в 22:34 в устройствах плавного пуска компании Baiza Automation

Устройства плавного пуска — это пусковые устройства, используемые для ускорения, замедления и защиты трехфазных электрических асинхронных двигателей посредством управляющего напряжения, подаваемого на трехфазный двигатель.

Асинхронный двигатель — наиболее часто используемый двигатель как в промышленности, так и в быту. в основном промышленные двигатели — это однофазные двигатели или трехфазные индукционные двигатели в зависимости от источника питания. Электродвигатель переменного тока стал самым популярным из-за своей простой и прочной конструкции, низких эксплуатационных расходов и может быть пригоден для любых условий работы.

Асинхронный двигатель имеет множество применений, и для его плавного и безопасного пуска требуются некоторые пусковые устройства. Различные методы пуска используются для пуска асинхронных двигателей , таких как пускатель со звезды на треугольник , пускатель прямой пуск , пускатель с автотрансформатором , пускатель , плавный пускатель и частотно-регулируемый привод.(частотно-регулируемый привод полной формы).

В этой статье мы обсудим устройство плавного пуска для трехфазного асинхронного двигателя, схему устройства плавного пуска, работу устройства плавного пуска, применение, преимущества, блок, мощность, схему управления, принцип работы, использование.

Устройство плавного пуска — это еще одна разновидность пускателя с пониженным напряжением, используемого для пуска трехфазного асинхронного двигателя. Устройство плавного пуска также называется твердотельным контроллером.

Устройство плавного пуска не изменяет частоту, как ЧРП.Вместо этого он увеличивает уровень напряжения, подаваемого на двигатель, от начального значения до полного напряжения.

Это основное различие между устройством плавного пуска и частотно-регулируемым приводом.

Первоначально приложенное напряжение низкое, оно предназначено только для преодоления зубчатых колес или натяжения приводных ремней и т. Д. Во избежание резких рывков во время запуска. Постепенно напряжение увеличивается, крутящий момент также увеличивается, и двигатель начинает ускоряться.

Преимущества методов пуска устройства плавного пуска — это возможность регулировки крутящего момента в соответствии с конкретными потребностями.

За счет использования устройства плавного пуска уменьшается пусковой ток , это помогает защитить двигатель от высокого пускового тока, а также предотвращает резкое падение напряжения питания. Устройство плавного пуска также обеспечивает плавный останов в качестве пуска. Следовательно, он может быть подходящим там, где требуется плавная остановка, например, конвейерная лента, водяные насосы .

Основными преимуществами использования устройства плавного пуска являются: снижение пускового тока, что позволяет избежать падений напряжения в сети.Уменьшается крутящий момент, что снижает механические нагрузки на оборудование и приводит к уменьшению потребности в обслуживании и техническом обслуживании, а также к увеличению срока службы оборудования.

Блок-схема устройства плавного пуска:

Устройство плавного пуска

содержит только несколько основных компонентов тиристора для регулирования напряжения на двигателе. В дополнение к этому радиатор и вентилятор для отвода тепла в окружающую среду.

В зависимости от модели устройства плавного пуска оно может быть оборудовано встроенным электронным реле перегрузки (EOL), что устраняет необходимость во внешнем реле.

Принцип работы устройства плавного пуска:

Устройство плавного пуска

работает на основе угла включения тиристора или тиристора.

Блок тиристоров устройства плавного пуска

Угол включения тиристора при запуске

Где,

Белая часть = тиристор ВЫКЛ.

Синяя часть = тиристор ВКЛ

Устройство плавного пуска содержит количество антипараллельных подключенных тиристоров .Каждая фаза имеет пару тиристоров.

Тиристор — это полупроводниковые устройства, которые обычно изолированы, но, подавая сигнал зажигания на затвор, они начинают проводить и пропускать через него ток и напряжение.

Во время запуска для выполнения плавного пуска на тиристоры посылается сигнал зажигания , так что через него проходит только последняя часть каждого полупериода синусоидальной волны напряжения.

И после запуска, пусковой сигнал отправляется раньше и раньше, чтобы все большая и большая часть волны напряжения могла пройти через тиристор.

В конце концов, после каждого перехода через ноль посылается пусковой сигнал, разрешающий 100% -ное напряжение через тиристор.

Во время остановки выполняется обратное действие.

Сначала полное напряжение проходит через тиристоры, и при инициировании останова сигнал зажигания отправляется позже, а позже пропускается все меньшее и меньшее напряжение, пока не будет достигнуто конечное напряжение. Затем на двигатель больше не подается напряжение и двигатель останавливается.

Пуск: Тиристор пропускает через себя часть напряжения вначале и после увеличения, соответственно, времени разгона, установленного для пуска.

Останов: Тиристор находится в режиме полной проводимости, когда начинается плавный останов, напряжение снижается по мере того, как время нарастания задано для останова.

Напряжение уменьшается при запуске, следовательно, уменьшается ток и крутящий момент.

, если напряжение снижается до 50% от полного напряжения, ток будет уменьшен примерно до 50% от максимального тока на этой скорости, а крутящий момент будет уменьшен примерно до 25% от максимального крутящего момента.

Преимущества устройства плавного пуска:

Повышенная эффективность : Эффективность системы плавного пуска с твердотельными переключателями выше из-за низкого напряжения в открытом состоянии.

Управляемый запуск : Пусковой ток можно плавно регулировать, легко изменяя пусковое напряжение, и это обеспечивает плавный запуск двигателя без рывков. Это большое преимущество устройства плавного пуска.

Управляемое ускорение : Ускорение двигателя плавно регулируется с помощью устройства плавного пуска.

Низкая стоимость и размер : Это обеспечивается за счет использования твердотельных переключателей.

Плавный пуск трансформатора с симистором и uC

Привет, проявите терпение и прочтите описание ситуации:

У друга много проблем, пытаясь переключить первичную обмотку тороидального трансформатора
400 ВА с помощью симистора, управляемого оптотриаком с переходом через ноль.
Имея немного средств измерений, я попытался ему помочь.
Напряжение в сети 220В, вторичная обмотка оставлена ​​разомкнутой, нагрузка отсутствует.
Измерение пиков тока с помощью токоизмерительного щупа и дешевого цифрового осциллографа
Я измерял пики тока более 80 А.

После быстрого поиска в сети у меня есть множество объяснений этого факта
. Это очень просто
http://www.opamp-electronics.com/tutorials/inrush _current_ 2 _09_ 12.htm
Последнее изображение должно отображать ситуацию, с которой я имею дело.
Похоже, что при нулевом напряжении, начинающем ток с нуля, а не с отрицательного пика
, этот ток способен генерировать достаточный поток для насыщения
сердечника с ожидаемыми эффектами.

Я пытаюсь реализовать плавный пуск, используя опто-симистор
со случайной фазой вместо схемы перехода через ноль.
Я установил детектор перехода через ноль для запуска микроконтроллера, и я могу
активировать оптотриак и симистор в каждый момент в течение каждого полупериода.

В этом состоит первая попытка плавного пуска.
1) обнаружение нуля
2) ожидание 0,1 мс перед следующим нулем (конец полупериода) и включение
Triac
3) обнаружение следующего нуля, симистор отключается немного позже , я полагаю, когда текущий
достигнет нуля
4) подождите 0,2 мс до следующего нуля и включите симистор, ток
теперь течет в противоположном направлении, чем в 2)
5) то же, что и 3)
и так далее

Когда у меня почти 90% полупериодов, я выключаю симистор на пару
секунд, я не хочу оставаться во включенном состоянии, поэтому измерять всплески тока
только во время «плавного пуска»

К сожалению, большой ток шипы по-прежнему обнаруживаются.

Кто-нибудь может посоветовать мне, как сделать правильный алгоритм?

Мне всегда помогали в этом НГ, заранее спасибо

Диего
Италия

Выбор и применение тиристора в высоковольтном плавном пуске — ТЕХНОЛОГИЯ

30 октября 2019 г.

Выбор и применение тиристора при плавном пуске высокого напряжения

I. Введение

Поскольку ток при прямом пуске большого двигателя в 5-7 раз больше номинального тока, пусковой момент равен всего 0.От 4 до 1,6 номинального крутящего момента. Его можно запустить напрямую, если разрешены условия сети (падение напряжения сети при запуске двигателя менее 10%) и условия процесса (соответствие пускового момента). Однако чрезмерный пусковой ток, слишком малый пусковой момент и чрезмерное время пуска вызывают серьезные повреждения двигателя и электросети. Часто напряжение сети и колебания гармонического напряжения увеличиваются, а срабатывания передней ступени значительно увеличивают нагрузку на энергосистему и загрязнение сети, что серьезно влияет на безопасную работу энергосистемы.В то же время он причинил себе много вреда. Следовательно, для решения этих проблем между источником питания и двигателем необходимо установить устройство плавного пуска.

Внешний вид устройства плавного пуска тиристорного двигателя хорошо решает указанные выше проблемы, что компенсирует различные недостатки традиционного устройства плавного пуска, снижает пусковой ток двигателя, снижает мощность распределения и увеличивает срок службы двигателя и связанного с ним оборудования. . Срок службы. Пусковые параметры регулируются визуально и просты в обслуживании.Применение тиристоров в высоковольтном плавном пуске внесло революционные изменения в плавный пуск, и он оставит сильный удар в истории плавного пуска.

2. Как выбрать тиристор для устройства плавного пуска двигателя

Для высоковольтных двигателей 6кВ и 10кВ, поскольку напряжение высокое, необходимо соединить тиристоры встречно-параллельно, а затем последовательно . На 6 кВ на каждую фазу требуется 6 тиристоров (2 антипараллельных, 3 последовательно соединенных), на 10 кВ на каждую фазу требуется 10 тиристоров (2 антипараллельных, 5 групп последовательно).Таким образом, для каждого тиристора напряжение составляет около 2000 В, поэтому прямое и обратное направление выбранного тиристора не повторяет номинальное напряжение vdsm, vrsm должно быть более 6500 В.

При выборе номинального тока тиристора необходимо учитывать номинальный рабочий ток двигателя. Как правило, ток тиристора должен в 3-4 раза превышать номинальный ток двигателя.

В устройстве плавного пуска тиристорного высоковольтного двигателя регулятор напряжения переменного тока с фазным управлением, состоящий из двух независимых тиристорных устройств, включен встречно параллельно, и один положительный и отрицательный полупериоды соответствуют одному тиристору.Следовательно, требования к согласованности параметров двух антипараллельных устройств относительно высоки. Включая параметры триггера тиристора, поддерживающие текущие параметры и т. Д., Также необходимо выбрать то же самое. Постарайтесь сделать положительную и отрицательную полуволны симметричными, иначе через двигатель будет протекать постоянная составляющая тока. Поскольку двигатель является индуктивным для нагрузки обмотки, чрезмерно высокая составляющая постоянного тока приведет к сильному нагреву статора двигателя и даже к сгоранию обмоток двигателя, что приведет к утилизации двигателя.

Тиристор является наиболее важным силовым устройством в устройстве плавного пуска двигателя. Надежность работы всего устройства во многом зависит от правильного выбора номинального тока тиристора и номинального напряжения. Nanjing Aubo Electric (www.vfd-softstarter.com), профессиональные исследователи технологий в сочетании с характеристиками приложения плавного пуска, рекомендуется, чтобы принцип выбора пользователя в первую очередь учитывал надежность работы, то есть ток и напряжение должны быть достаточными. кратная маржа.Во-вторых, следует учитывать экономическую эффективность. Наконец, установку следует считать красивой, а ее объем следует максимально уменьшить.

Nanjing Aubo Electric (www.vfd-softstarter.com) придерживается концепции «отличного обслуживания клиентов». Чтобы лучше обслуживать всех пользователей машины в области плавного пуска.

Тиристоры, используемые Nanjing Aubo Electric Co.Ltd. для поля мягкого старта имеют следующие восемь характеристик:

1.Высокая производительность и надежность.

2. Высокая электрическая стабильность электрических параметров изделия.

3. Давление в трубке компонента снижено, а потребляемая мощность переключения мала.

4. Параметры продукта соответствуют.

5, рентабельный продукт

6, двусторонний отвод тепла, простая установка

7, кратковременная перегрузочная способность

8, низкое переходное термическое сопротивление

3. тиристорная защита

тиристорная плохая способность выдерживать перенапряжения и перегрузки по току, что является его основным недостатком.Теплоемкость тиристора очень мала. Когда происходит перегрузка по току, температура резко повышается, и pn переход может выгореть, что приведет к внутреннему короткому замыканию или обрыву цепи компонента. Например, когда тиристор на 100 А имеет перегрузку по току 400 А, ему разрешается работать только 0,02 с, в противном случае он будет поврежден из-за перегрева; способность тиристора выдерживать перенапряжение очень низкая, даже если напряжение превышает его обратное напряжение пробоя, даже если время очень короткое, также легко повредить.Если прямое напряжение превышает напряжение поворота, тиристор неправильно проводит, и ток после проводимости велик, что повреждает устройство.

1. Защита тиристоров от перенапряжения

Подключите RC-цепи поглощения RC на обоих концах тиристора. Как показано на рисунке 2, конденсатор поглощает перенапряжение. Суть в том, чтобы преобразовать энергию, вызывающую перенапряжение, в энергию электрического поля и сохранить ее в конденсаторе, а затем передать ее в резистор для ее потребления.

Рисунок 1 Роль RC-цепи поглощения в тиристорной защите от перенапряжения

Когда тиристор включен на блокировку, как и в схеме переключения, перенапряжение возникает из-за индуктивности линии (в основном индуктивности рассеяния lb трансформатора ). Поскольку носители заполняют внутреннюю часть элемента при включении тиристора, при падении прямого напряжения до нуля во время выключения элемента носители остаются внутри. Эти накопленные носители мгновенно генерируют большой обратный ток под действием обратного напряжения, так что накопленные носители быстро исчезают, а обратный ток исчезает очень быстро, то есть di / dt чрезвычайно велико.Следовательно, даже если линейная индуктивность l, подключенная к компоненту, мала, значение индуцированного потенциала i (di / dt), генерируемого индуктором, все еще велико, и этот потенциал включен последовательно с напряжением источника питания, и обратное применяется к компоненту, который был восстановлен до блокировки, что может привести к обратному пробою тиристора. Это перенапряжение, вызванное выключением тиристора, называется перенапряжением при выключении, и его значение может в 5-6 раз превышать пиковое значение рабочего напряжения, поэтому необходимо принять меры по его подавлению.

В цепи поглощения сопротивление-емкость конденсатор превращает электромагнитную энергию перенапряжения в накопление электростатической энергии, а резистор предотвращает резонанс емкости и индуктивности и ограничивает потери при включении тиристора и рост тока. ставка. Контур поглощения может подавлять перенапряжение, возникающее при включении тиристора в выключенное состояние, тем самым эффективно предотвращая выход тиристора из строя.

Положение RC-цепи поглощения должно быть как можно ближе к основному выводу модуля, то есть провод должен быть коротким.Лучше использовать неиндуктивный резистор для лучшей защиты.

2. Защита тиристоров от сверхтоков

Из-за небольшого размера и небольшой теплоемкости полупроводниковых устройств, особенно для высоковольтных и сильноточных устройств, таких как тиристоры, температура перехода должна строго контролироваться, в противном случае будет полностью поврежден. Когда в тиристоре протекает ток, превышающий номинальное значение, тепло не достигает излучения, поэтому температура перехода быстро повышается, и в конечном итоге слой перехода выгорает.

Причины перегрузки по току различны, например, поврежден тиристор самого преобразователя, неисправна цепь триггера, неисправна система управления, а также напряжение источника питания переменного тока слишком высокое, слишком низкое или отсутствует фаза, нагрузка перегрузка или короткое замыкание, влияние отказа фазового оборудования и т. д.

Наиболее часто используемым методом тиристорной максимальной токовой защиты является быстрый предохранитель. Так как обычный предохранитель имеет слишком медленную характеристику предохранителя, тиристор перегорел раньше, чем предохранитель сгорел; следовательно, его нельзя использовать для защиты тиристора.Быстродействующий предохранитель заделан в кварцевом песке серебряным предохранителем. Время предохранителя очень короткое и может использоваться для защиты тиристора.

По сравнению с обычными предохранителями, быстродействующие предохранители специально разработаны для защиты полупроводниковых устройств от перегрузки по току. Он имеет быстродействующие характеристики, а время его плавления составляет менее 50 Гц переменного тока за один цикл (20 мс) при пропускании 6-кратного номинального тока. Вообще говоря, номинальный ток быстродействующего предохранителя должен быть меньше, чем номинальное эффективное значение защищаемого тиристора, и больше, чем фактическое действующее значение, протекающее через тиристор.

3. Защита тиристора от перегрева

Когда через тиристор пропускается ток, происходит определенное падение напряжения, которое вызывает определенное энергопотребление. Чем больше ток, тем больше потребляемая мощность и больше выделяется тепла. Если быстро не рассеять это тепло, это вызовет проблемы с сгоранием микросхемы тиристора. Поэтому при использовании тиристорного модуля обязательно устанавливайте радиатор.

Качество отвода тепла является важным фактором, влияющим на безопасную работу модуля.Хорошие условия отвода тепла не только обеспечивают надежную работу модуля, предотвращают перегрев модуля, но также улучшают выходную мощность модуля по току.

Принцип работы устройства плавного пуска тиристорного двигателя

Применение тиристоров в устройствах плавного пуска высоковольтных двигателей — применение тиристоров для регулирования переменного напряжения. Тиристор может использоваться для изменения фазы фазового угла проводимости тиристора для регулировки напряжения.

Тиристорный устройство плавного пуска с фазовым сдвигом изменяет форму волны синусоидального переменного напряжения, чтобы сделать его несинусоидальным импульсным переменным током, регулируя свой рабочий цикл, как показано на рисунке 3.

Рисунок 3 Регулятор напряжения фазового сдвига

Примечание:

(1) α: угол регулирования. Относится ко времени добавления триггерного импульса.

(2) q: угол проводимости. Угол проводимости тиристора составляет половину каждого цикла. Чем больше угол управления, тем меньше угол проводимости, и их сумма составляет фиксированное значение α + q = p. Он изменяет среднее напряжение переменного тока, а его среднее напряжение регулируется и плавно изменяется.

В чем разница между частотно-регулируемым приводом и устройством плавного пуска.

Устройства плавного пуска и частотно-регулируемые приводы — это два продукта различного назначения.VFD предназначен для управления скоростью двигателя переменного тока, он не только изменяет выходное напряжение, но и изменяет частоту; Устройство плавного пуска — это фактически регулятор для запуска двигателя, просто изменяющий выходное напряжение. Частотно-регулируемый привод имеет все функции устройств плавного пуска, но его цена намного выше, чем у устройств плавного пуска, а его конструкция намного сложнее.

Преобразователь частоты преобразует источник питания (50 Гц или 60 Гц) в мощность переменного тока различной частоты для управления работой электродвигателя с переменной скоростью.Есть несколько способов определить ЧРП. Основываясь на методах работы главной цепи, его можно разделить на ЧРП типа напряжения и ЧРП тока; Основываясь на методах переключения, его можно разделить на привод с управлением PAM, привод с управлением PWM и привод с управлением PWM с высокой несущей частотой; Основываясь на принципе работы, его можно разделить на V / F-управление VFD, управление частотой скольжения и VFD-управление с векторным управлением и т.д .; В зависимости от использования его можно разделить на универсальный частотно-регулируемый привод, высокопроизводительный специализированный частотно-регулируемый привод, высокочастотный частотно-регулируемый привод, однофазный частотно-регулируемый привод.

Устройство плавного пуска — это набор устройств плавного пуска / останова двигателя, устройств энергосбережения при малой нагрузке и различных защитных функций для управления двигателями.

В устройстве плавного пуска в качестве регулятора используются три противоположных параллельных тиристора, подключенных к источнику питания и статору двигателя. При использовании устройства плавного пуска для запуска двигателя выходное напряжение тиристора постепенно увеличивается, а двигатель постепенно ускоряется до полного включения тиристора. Двигатель работает при номинальном напряжении для обеспечения плавного пуска, снижения пускового тока и предотвращения отключения при пуске из-за перегрузки по току.Когда двигатель достигает номинального числа оборотов в минуту, процесс запуска завершается, устройство плавного пуска использует байпасный контактор для замены тиристора, чтобы обеспечить номинальное напряжение на двигатель, чтобы уменьшить тепловые потери тиристора, продлить срок службы устройства плавного пуска и повысить эффективность, а также Избегайте гармонического загрязнения электросети.

% PDF-1.4 % 1 0 объект > поток application / pdf

  • Xue Du
  • Ying Ye
  • Yuelong Wang
  • Lei Peng
  • Suying Zhang
  • 2018-04-19T11: 52: 09-04: 00PScript5.dll Версия 5.2.22021-12-11T06: 14: 36-08: 002021-12-11T06: 14: 36-08: 00iText 4.2.0 от 1T3XTuid: 7543643d-88f6-4860-a37d-96887c874609uuid: 5f28201e-2b17-4db1 -88f4-c7e949b9d7e6uuid: 7543643d-88f6-4860-a37d-96887c874609
  • savedxmp.iid: 3E43D9423D53E811856BD825F5B3CE952018-05-09T09: 28: 41 + 05: 30Adobe3 Bridge meta конечный поток эндобдж 2 0 obj > эндобдж 3 0 obj > поток xVn0) U% R $ `(a ˭izY0dHQZ] G ~ + o_wrK̷̗wYA ݉ * Eɛ ݯ̀7 z, ޒ Km3Tʵ1PcI6! 😯 &! Z4Ǔys: dd /: 8 «C} 7HGS; + OG7

    Устройство плавного пуска SCR Неисправность напряжения

    SCR, а также максимальный номинальный ток ограничены до максимального номинального тока. .Кроме того, количество пусков в час также ограничено. Сочетание скачков напряжения, слишком большого количества запусков в час или слишком большого тока во время запуска приведет к выходу из строя устройства плавного пуска. Дисбаланс фаз по напряжению или току приведет к отказу SCR, как и однофазное состояние трехфазного двигателя. Также необходимо учитывать запускаемую нагрузку. Если это нагрузка с высоким пусковым крутящим моментом, для его работы может потребоваться сверхмощная версия устройства плавного пуска. SCR

    редко «ломаются», но замыкаются накоротко или, скорее, становятся постоянными проводниками.Единственное, что может вызвать это, — это чрезмерный момент затяжки или давление зажима. Если, с другой стороны, устройство плавного пуска показывает, что один SCR закорочен, то здесь вступают в игру комментарии Теренса Смита. Это будет либо скачок напряжения, либо скачок тока, либо чрезмерное нагревание, вызванное чрезмерным пусковым током или запусками в час.

    Но реакторы не особо помогут и увеличат потери пропускной способности в устройстве плавного пуска, я бы не стал тратить на это время.Запуск вращающегося двигателя не является проблемой и для устройства плавного пуска. И то, и другое — потенциальные проблемы с частотно-регулируемым приводом, совершенно разные животные.

    Если неисправность SCR связана также с несимметричным пусковым током, существует другая возможность. На соединительной коробке двигателя сбоку двигателя есть 6 болтов с винтами для соединительного кабеля, медных листов звезда-треугольник и катушек двигателя. Самые низкие места на болте — это зажимы катушек двигателя, за которыми следует болт.Над этим болтом находится пластина звезда-треугольник, болт, зажим для кабельного соединения и верхний 3-й болт. Во многих случаях самый нижний винт зажима катушки недостаточно затянут. Электрики никогда не проверяют их, потому что это не относится к кабельной установке. Во многих случаях они происходили из-за обрыва выходной фазы в инверторах и обрыва фазы в устройствах плавного пуска.

    Все о устройствах плавного пуска двигателей

    Как можно защитить и улучшить свои электродвигатели?

    Двигатели

    переменного и постоянного тока — бесценные машины, которые создают движение за счет электричества, но они склонны к выходу из строя при неправильном использовании.Эта частота отказов увеличивается, если двигатель изначально потребляет большой ток, который может повредить как его катушки, так и проводку. Пускатели двигателя с плавным пуском — полезный инструмент для предотвращения таких повреждений, а также повышения эффективности системы двигателя за счет регулирования этого броска тока. Эти устройства необходимы для некоторых основных приложений, поэтому эта статья поможет читателям понять, что такое устройства плавного пуска, как они работают и как они используются в реальных системах.

    Что такое устройства плавного пуска?

    Устройства плавного пуска

    — это электрические устройства, подключенные между источником питания и двигателем, которые регулируют величину тока, подаваемого на двигатель.Устройства плавного пуска используются с любым двигателем, который изначально потребляет избыточный ток, также известный как большой «пусковой ток». Название «устройство плавного пуска» обычно относится к электронным твердотельным накопителям, что означает просто привод, в котором используются полупроводники. Чтобы узнать о других типах стартеров, прочтите нашу статью о пускателях двигателей.

    Как объясняется в нашей статье об асинхронных двигателях, типичные двигатели переменного тока первоначально потребляют в два-семь раз больше номинального тока, так как требуется много энергии, чтобы эти машины вышли на полную скорость из состояния покоя.Этот скачок мощности может в лучшем случае вызвать нежелательные рывки в системе, а в худшем — повредить катушки двигателя и его проводку. Чтобы этого не произошло, устройство плавного пуска предотвратит такой бросок и запустит двигатель «мягко»; Другими словами, они снижают начальный ток, так что двигатель набирает полную скорость без избыточного тока. Они похожи на частотно-регулируемые приводы (ЧРП), но могут изменять только ток, а не скорость (подробнее о частотно-регулируемых приводах см. В нашей статье о контроллерах двигателей переменного тока). Хотя устройства плавного пуска не могут изменять скорость двигателя, они повышают эффективность и безопасность при использовании.Устройства плавного пуска популярны в системах с высоким моментом инерции, которые необходимо постепенно выводить на полную мощность.

    Как работают устройства плавного пуска?

    Достижения в кремниевых технологиях позволили электрическим твердотельным устройствам плавного пуска произвести большой фурор на рынке. Для уменьшения броска тока и разгона до полной скорости в твердотельных устройствах плавного пуска обычно используются компоненты, известные как тиристоры или кремниевые выпрямители (см. Рисунок 1 ниже):

    Рис. 1: Типовое обозначение схемы для тиристоров / тиристоров.

    Эти компоненты уменьшают поступающее на двигатель напряжение и позволяют операторам поддерживать постоянное напряжение до тех пор, пока не будет достигнута полная скорость. Они обычно используются в трех парах (или TRIACS) для учета каждой фазы двигателя, поскольку трехфазные двигатели обычно требуют плавного пуска (см. Рисунок 2 ниже):

    Рис. 2. Типичный твердотельный устройство плавного пуска, в котором используются три пары тиристоров (TRIAC) для снижения напряжения на двигателе. Обратите внимание на контакты над двигателем, которые изначально разделены.

    Изображение предоставлено: https://www.ee.co.za/article/choosing-variable-frequency-drive-soft-starter-needs.html

    После запуска каждая фаза будет проходить через каждый TRIAC, прежде чем попадет в двигатель. Тиристоры уменьшат напряжение (и, следовательно, ток) и позволят ослабленному сигналу пройти к двигателю. Ток контролируется до тех пор, пока двигатель не достигнет полной скорости, после чего тиристоры блокируются путем подключения двигателя напрямую к источнику питания через контакты (также известное как питание двигателя «через линию»).

    Кривые крутящего момента-скорости и тока-скорости для двигателей с поперечным и плавным пуском можно увидеть ниже на рисунках 3 и 4, и они помогают визуализировать влияние использования этих машин на производительность:

    Рис. 3 и 4: Сравнение кривых крутящий момент-скорость / текущая скорость-скорость для двигателей с полным напряжением и двигателей с плавным пуском. Зеленая часть на кривой текущей скорости представляет собой перекрытие обеих кривых тока.

    Из этих графиков видно, что устройства плавного пуска не только выравнивают ток во время запуска, но также управляют крутящим моментом двигателя.Устройства плавного пуска обеспечивают надежный, постоянный крутящий момент при номинальных скоростях, и, хотя они не обеспечивают такой хороший пусковой крутящий момент, как поперечные двигатели, они снижают отклонения и обеспечивают стабильную и безопасную мощность.

    Технические характеристики устройства плавного пуска

    В этом разделе подробно описаны некоторые общие характеристики, на которые следует обратить внимание при выборе устройства плавного пуска для вашего приложения. Обратите внимание, что в этом списке представлены только наиболее общие спецификации для всех устройств плавного пуска, но существует больше, в зависимости от конкретных моделей и функций.

    Тип нагрузки

    Устройства плавного пуска

    чаще всего используются в сочетании с трехфазными двигателями, так как эти двигатели переменного тока имеют высокие пусковые токи и крутящий момент. Важно знать, какая нагрузка (двигатель и двигатель) будет использоваться с точки зрения силы тока (в амперах) и мощности (кВт или л.с.), поскольку устройство плавного пуска должно иметь совместимую конструкцию.

    Номинальное рабочее напряжение

    Каков диапазон напряжений для устройства плавного пуска и насколько напряжение может отклоняться от этого диапазона? Например, устройство плавного пуска может иметь рабочий диапазон 230/400 В с допустимым отклонением ± 10%.Знание этих значений не только поможет предотвратить недостаточную / избыточную мощность двигателя, но также будет влиять на то, как запитывается сам стартер.

    Элементы безопасности

    Большинство устройств плавного пуска оснащены байпасными механизмами, которые замыкают цепь стартера на полное напряжение при заданных скоростях. При длительном использовании важно иметь средства безопасности, которые предотвратят повреждение цепи при коротком замыкании, например, реле защиты от тепловой перегрузки от перегрузки по току и перенапряжения. Также знание максимального дисбаланса между фазами поможет поддерживать систему в рабочих параметрах.Наконец, наличие некоторого вида регистрации данных для записи записей о неисправностях также может помочь в поиске и устранении неисправностей во время технического обслуживания.

    Монтаж, корпус и размеры

    Метод установки устройств плавного пуска важен, так как их способность охлаждать зависит от их ориентации. Большинство устройств плавного пуска поставляются с рекомендациями относительно того, как и где устройство должно быть установлено (например, вертикально и на плоской поверхности), а также с указанием максимального вертикального уклона для предотвращения накопления тепла. Размеры также важны, так как для устройства плавного пуска должно быть достаточно места, а также достаточно места, чтобы оно оставалось холодным.

    Заявки и критерии выбора

    Устройства плавного пуска

    лучше всего использовать в приложениях, где требуется медленный пуск, но мощный двигатель. Они обычно используются в таких применениях, как воздушные фильтры в зданиях, где двигатель должен приводить в действие большой вентилятор. Если в этом случае не использовалось устройство плавного пуска, вентилятор запустился бы на высоких скоростях и снизил бы эффективность фильтрации, а также потенциально повредил бы двигатель из-за высокой инерционной нагрузки. Точно так же устройства плавного пуска находят применение в системах водоснабжения, где воду необходимо медленно откачивать, чтобы предотвратить повышение давления.Наконец, конвейерные системы выигрывают от устройств плавного пуска, поскольку они должны ускорять предметы из состояния покоя без рывков, иначе предметы могут упасть с ленты. Устройства плавного пуска также являются популярными модификациями старых пускателей с пониженным напряжением, поскольку они более управляемы, программируются и эффективны.

    Устройства плавного пуска

    обеспечивают плавное, плавное ускорение энергоемких двигателей, которые в противном случае могут вызвать перегрузку их энергосистем. Используйте приведенные выше характеристики и поговорите со своим поставщиком, чтобы обеспечить наилучшие шансы найти подходящее устройство плавного пуска для работы.Эти машины, хотя и более дорогие, чем другие стартеры, значительно улучшат эффективность и безопасность любой системы, в которой они развернуты. Устройства плавного пуска дают операторам больше контроля, снижают риск повреждения и повышают эффективность, поэтому их первоначальная стоимость окупается за период эксплуатации. Любые приложения, которые имеют высокую инерционную нагрузку и большой бросок тока, должны серьезно рассматривать устройство плавного пуска, иначе они рискуют непреднамеренными движениями, отказами и ненужными задержками.

    Сводка

    В этой статье представлено понимание того, что такое устройства плавного пуска и как они работают. Для получения дополнительной информации о сопутствующих продуктах обратитесь к другим нашим руководствам или посетите платформу Thomas Supplier Discovery Platform, чтобы найти потенциальные источники поставок или просмотреть подробную информацию о конкретных продуктах.

    Источники:
    1. https://www.motioncontroltips.com/when-do-you-need-a-soft-starter-for-an-ac-motor/
    2. http://docs.elmarkholding.eu/LOW%20VOLTAGE%20POWER%20DISTRIBUTION/Motor%20Control%20and%20Protection/Starters/Soft%20Starters/Technical%20specification-%20Soft%20starter%20ELM%202500.pdf
    3. https://realpars.com/soft-starter/
    4. http://ucc.colorado.edu/siemens
    5. https://literature.rockwellautomation.com
    6. https://www.ee.co.za/article/choosing-variable-frequency-drive-soft-starter-needs.html

    Прочие изделия для двигателей

    Больше от Machinery, Tools & Supplies

    .
  • Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *