Принцип работы импульсного блока питания телевизора: схема. Замена адаптера. Принцип работы импульсного блока питания. Почему сетевой адаптер сгорел? Его устройство

Содержание

схема. Замена адаптера. Принцип работы импульсного блока питания. Почему сетевой адаптер сгорел? Его устройство

Одна из самых распространенных проблем с телевизорами связана с неисправностью блока питания. Обычно его ремонт требуется в том случае, если любой из элементов платы выходит из строя, и, как правило, это отнюдь не самый трудоемкий и дорогой вид работ. Однако заниматься им могут только специалисты, поскольку любые некорректные действия с БП могут привести к серьезным поломкам в самых разных частях аппарата.

О том, что такое блок питания, для чего нужен, и как понять, что он неисправен, пойдет речь в нашей статье.

Что это такое?

В самом общем смысле блок питания представляет из себя

источник электричества, который снабжает телевизор необходимым током. Этот модуль позволяет преобразовывать сетевое напряжение до значений, необходимых для полноценного функционирования техники. Как правило, БП включен в комплектацию антенн с усилителем для того, чтобы улучшать прием сигнала.

Блоки питания – универсальные приборы, они могут устанавливаться в других приспособлениях: для улучшения качества сигнала сотовой, спутниковой связи и даже интернета. БП незаменим в ситуации, когда используется Wi-Fi-адаптер, кстати, он также представляет из себя одну из разновидностей антенн. Проще говоря, везде, где используются радиоволны и имеется принимающая антенна, нужен блок питания.

Но мы рассмотрим только те его разновидности, которые требуются для бесперебойной работы телевизионной техники.

Обращаем внимание: актуальность установки и поддержания работоспособности БП прямо связана с тем, что в его отсутствие и починить его бывает очень затратно или даже невозможно.

Телевизионный блок питания выполняет три основные функции:

  • преобразование энергии подачи тока в аппаратуру;
  • защита от помех подпитывающего напряжения;
  • поддержание необходимого уровня напряжения внутри самого телевизора.

Наибольшее распространение получили современные системы, работающие от стандартных сетей в 220 Вт. Такие элементы бывают встроенными в единую конструкцию антенны либо располагающимися отдельно, когда подключение осуществляется через порт.

Если речь идет о встроенных моделях, то обычно применяется бестрансформаторная схема. В этом случае преобразование энергии осуществляется за счёт широтно-импульсной модуляции. Такие блоки питания включаются в самую обычную розетку, их рассчитанная мощность составляет 10 Вт. Этого параметра вполне достаточно для того, чтобы обеспечить питание антенны. Подобные элементы довольно компактны и не занимают много места, но в случае неисправности незамедлительно приводят к выводу из строя всей системы приема сигнала.

Поэтому бывает более практичным приобрести внешние устройства. Они ориентированы на то, что в случае выхода из строя БП некоторый сигнал всё же будет сохранён, хотя, безусловно, хорошим он не будет. В любом случае еще одно достоинство наружных блоков питания сводится к тому, что их можно быстро и просто заменить при необходимости.

Схема работы базируется на трансформаторе. При этом выходное напряжение БП стабилизируется параболическим образом, типовыми параметрами для выходного напряжения стали значения 24, а также 18, 12 и 5 Вт. Более точные цифры определяются в зависимости от технико-эксплуатационных параметров антенны.

Устройство и принцип работы

Чаще всего плата блока питания представляет собой отдельный электронный модуль. Это является отличительной чертой любого телевизора с небольшой диагональю экрана, а в более крупных моделях она встроена.

Любая плата блока питания имеет следующие составляющие:

  • трансформатор;
  • сетевой фильтр;
  • узлы рабочего и дежурного режима;
  • модуль предохранения от перегрузки;
  • радиаторы, то есть элементы охлаждения.

Принцип работы блока питания сводится к приведению подаваемого сетевого напряжения к тому виду, который будет удовлетворять требованиям энергоснабжения базовых электронных узлов телевизионной техники, в том числе и его матрицы.

Важно: величина и параметры питающих потенциалов должны в точности соответствовать как самим рабочим напряжениям, так и их эпюрам.

В большинстве случаев они указываются непосредственно на каждое предлагаемое устройство.

Как подключить?

Рассмотрим подробнее, как подсоединить БП. В большинстве случаев в активную антенну усилитель уже вмонтирован. А вот в пассивной – его нет. Чтобы его подключить, в первую очередь необходимо собрать антенный кабель со штекером, который будет предназначен для данных целей. Рассмотрим, как это сделать.

Сначала следует подготовить сам кабель, то есть зачистить его. Для этого острым канцелярским ножом либо скальпелем выполняют тонкий разрез по окружности на удалении 1,5 см от края кабеля. При выполнении этой работы

очень важно быть аккуратным и постараться не повредить волоски экранированной оплётки, расположенной сразу под изоляционным слоем.

После того как эти действия будут выполнены, упомянутые волоски нужно осторожно отогнуть, а расположенный около них кусок фольги убрать.

Отступив от загнутого края оплетки примерно 5 мм, необходимо сделать ещё один срез по окружности. Он необходим для того, чтобы удалить внутренний изоляционный слой. После этого кабель, подготовленный к монтажу, следует просунуть под соответствующие крепежи в коробке БП и затянуть винтами.

Обращаем особое внимание на то, что когда подключается провод, его металлизированная оплетка непременно должна иметь контакт с залуженной площадкой, которая является обязательным элементом конструкции любого корпуса БП.

Если этого не сделать, то питание на антенну попросту не будет поступать. Нужно учесть и тот факт, что кабельная оплетка ни в коем случае не должна соприкасаться с центральной жилой самого провода. Если это случится, то произойдет короткое замыкание, и индикатор работы модуля не будет функционировать.

Для сведения: при корректном подсоединении блока питания с самим антенным кабелем после выполнения всех необходимых настроек телевизор обычно показывает намного больше каналов, чем прежде.

Как проверить на исправность?

В общем виде наружная диагностика возможных неисправностей и поломок блока питания выглядит следующим образом.

Если внешний вид конденсаторов вызывает у вас хоть какие-то подозрения, то их необходимо сразу же снять и заменить.

Вы заметили перебои с работой дежурного режима – нужно сразу же проверить напряжение на управляемом стабилитроне. Если на выходе данного узла напряжение будет отсутствовать либо иметь слишком низкие значения, следовательно, режим работы нарушен.

Для того чтобы восстановить функциональность элемента, необходимо удостовериться в работоспособности всех остальных деталей схемы. Для этого следует выпаять один контакт подозрительного конденсатора либо резистора, все сгоревшие элементы удалить полностью и сразу же заменить новыми. Если вы увидите участок некачественной пайки – это место нужно залудить с флюсом, а после удостовериться в том, что контакты прочно зафиксированы в зоне крепления.

О восстановлении работоспособности схемы БП и возвращении дежурного режима укажут появление напряжение в 5 В, а также мигание красного светового индикатора на лицевой панели телевизора.

Обращаем внимание на то, что при каждой замене остальных подозрительных элементов необходимо сразу же выполнять проверку – произошли ли изменения на выходе блока питания.

О том, что функциональность оборудования возвращена, можно судить по нормальному включению телевизора и поступлению качественного аудио- и видеоряда.

Возможные неисправности и их причины

О том, что блоку управления телевизором необходим ремонт, могут указать следующие признаки:

  • телевизор не включается при нажатии кнопки, при этом светодиодная индикация-лампочка на корпусе не загорается;
  • лампочка загорается, но техника не запускается;
  • изображение идёт с большим отрывом от звука;
  • возникают значительные помехи – возможны изломы и полосы на экране;
  • искажение звука – телевизор пищит, тарахтит, издает другие шумы.

Все перечисленные неисправности БП могут быть вызваны несколькими причинами, среди которых выделяют:

  • устройство уходит в защиту вследствие короткого замыкания, которое привело к перегоранию БП или отдельных его компонентов;
  • нестабильная подача напряжения в сети;
  • перегорание предохранителя;
  • полный или частичный износ конденсаторов.

Чтобы запустить телевизор и получить полноценное качественное изображение, попробуйте несколько раз повторить включение и выключение агрегата.

Обращаем особое внимание на то, что любые самостоятельные попытки починки телевизора, как правило, приводят только к усугублению проблем с электронными элементами системы или даже полному выходу их из строя.

Любые неправильные действия влекут за собой необходимость замены телевизионной материнской платы, стоимость которой доходит до 70% стоимости всего агрегата.

Все элементы сложного электронного оборудования необходимо ремонтировать с точным соблюдением всех правил техники безопасности, в частности, следует предварительно разрядить входные конденсаторы. Не имея специального опыта подобных работ и знаний, вы можете причинить вред не только самому телевизору, но и своему здоровью.

О том, каков принцип работы у блока питания для телевизора, смотрите в следующем видео.

схема. Замена адаптера. Принцип работы импульсного блока питания. Почему сетевой адаптер сгорел? Его устройство

Одна из самых распространенных проблем с телевизорами связана с неисправностью блока питания. Обычно его ремонт требуется в том случае, если любой из элементов платы выходит из строя, и, как правило, это отнюдь не самый трудоемкий и дорогой вид работ. Однако заниматься им могут только специалисты, поскольку любые некорректные действия с БП могут привести к серьезным поломкам в самых разных частях аппарата.

О том, что такое блок питания, для чего нужен, и как понять, что он неисправен, пойдет речь в нашей статье.

Что это такое?

В самом общем смысле блок питания представляет из себя источник электричества, который снабжает телевизор необходимым током. Этот модуль позволяет преобразовывать сетевое напряжение до значений, необходимых для полноценного функционирования техники. Как правило, БП включен в комплектацию антенн с усилителем для того, чтобы улучшать прием сигнала.

Блоки питания – универсальные приборы, они могут устанавливаться в других приспособлениях: для улучшения качества сигнала сотовой, спутниковой связи и даже интернета. БП незаменим в ситуации, когда используется Wi-Fi-адаптер, кстати, он также представляет из себя одну из разновидностей антенн. Проще говоря, везде, где используются радиоволны и имеется принимающая антенна, нужен блок питания.

Но мы рассмотрим только те его разновидности, которые требуются для бесперебойной работы телевизионной техники.

Обращаем внимание: актуальность установки и поддержания работоспособности БП прямо связана с тем, что в его отсутствие и починить его бывает очень затратно или даже невозможно.

Телевизионный блок питания выполняет три основные функции:

  • преобразование энергии подачи тока в аппаратуру;
  • защита от помех подпитывающего напряжения;
  • поддержание необходимого уровня напряжения внутри самого телевизора.

Наибольшее распространение получили современные системы, работающие от стандартных сетей в 220 Вт. Такие элементы бывают встроенными в единую конструкцию антенны либо располагающимися отдельно, когда подключение осуществляется через порт.

Если речь идет о встроенных моделях, то обычно применяется бестрансформаторная схема. В этом случае преобразование энергии осуществляется за счёт широтно-импульсной модуляции. Такие блоки питания включаются в самую обычную розетку, их рассчитанная мощность составляет 10 Вт. Этого параметра вполне достаточно для того, чтобы обеспечить питание антенны. Подобные элементы довольно компактны и не занимают много места, но в случае неисправности незамедлительно приводят к выводу из строя всей системы приема сигнала.

Поэтому бывает более практичным приобрести внешние устройства. Они ориентированы на то, что в случае выхода из строя БП некоторый сигнал всё же будет сохранён, хотя, безусловно, хорошим он не будет. В любом случае еще одно достоинство наружных блоков питания сводится к тому, что их можно быстро и просто заменить при необходимости.

Схема работы базируется на трансформаторе. При этом выходное напряжение БП стабилизируется параболическим образом, типовыми параметрами для выходного напряжения стали значения 24, а также 18, 12 и 5 Вт. Более точные цифры определяются в зависимости от технико-эксплуатационных параметров антенны.

Устройство и принцип работы

Чаще всего плата блока питания представляет собой отдельный электронный модуль. Это является отличительной чертой любого телевизора с небольшой диагональю экрана, а в более крупных моделях она встроена.

Любая плата блока питания имеет следующие составляющие:

  • трансформатор;
  • сетевой фильтр;
  • узлы рабочего и дежурного режима;
  • модуль предохранения от перегрузки;
  • радиаторы, то есть элементы охлаждения.

Принцип работы блока питания сводится к приведению подаваемого сетевого напряжения к тому виду, который будет удовлетворять требованиям энергоснабжения базовых электронных узлов телевизионной техники, в том числе и его матрицы.

Важно: величина и параметры питающих потенциалов должны в точности соответствовать как самим рабочим напряжениям, так и их эпюрам.

В большинстве случаев они указываются непосредственно на каждое предлагаемое устройство.

Как подключить?

Рассмотрим подробнее, как подсоединить БП. В большинстве случаев в активную антенну усилитель уже вмонтирован. А вот в пассивной – его нет. Чтобы его подключить, в первую очередь необходимо собрать антенный кабель со штекером, который будет предназначен для данных целей. Рассмотрим, как это сделать.

Сначала следует подготовить сам кабель, то есть зачистить его. Для этого острым канцелярским ножом либо скальпелем выполняют тонкий разрез по окружности на удалении 1,5 см от края кабеля. При выполнении этой работы очень важно быть аккуратным и постараться не повредить волоски экранированной оплётки, расположенной сразу под изоляционным слоем.

После того как эти действия будут выполнены, упомянутые волоски нужно осторожно отогнуть, а расположенный около них кусок фольги убрать.

Отступив от загнутого края оплетки примерно 5 мм, необходимо сделать ещё один срез по окружности. Он необходим для того, чтобы удалить внутренний изоляционный слой. После этого кабель, подготовленный к монтажу, следует просунуть под соответствующие крепежи в коробке БП и затянуть винтами.

Обращаем особое внимание на то, что когда подключается провод, его металлизированная оплетка непременно должна иметь контакт с залуженной площадкой, которая является обязательным элементом конструкции любого корпуса БП. Если этого не сделать, то питание на антенну попросту не будет поступать. Нужно учесть и тот факт, что кабельная оплетка ни в коем случае не должна соприкасаться с центральной жилой самого провода. Если это случится, то произойдет короткое замыкание, и индикатор работы модуля не будет функционировать.

Для сведения: при корректном подсоединении блока питания с самим антенным кабелем после выполнения всех необходимых настроек телевизор обычно показывает намного больше каналов, чем прежде.

Как проверить на исправность?

В общем виде наружная диагностика возможных неисправностей и поломок блока питания выглядит следующим образом.

Если внешний вид конденсаторов вызывает у вас хоть какие-то подозрения, то их необходимо сразу же снять и заменить.

Вы заметили перебои с работой дежурного режима – нужно сразу же проверить напряжение на управляемом стабилитроне. Если на выходе данного узла напряжение будет отсутствовать либо иметь слишком низкие значения, следовательно, режим работы нарушен.

Для того чтобы восстановить функциональность элемента, необходимо удостовериться в работоспособности всех остальных деталей схемы. Для этого следует выпаять один контакт подозрительного конденсатора либо резистора, все сгоревшие элементы удалить полностью и сразу же заменить новыми. Если вы увидите участок некачественной пайки – это место нужно залудить с флюсом, а после удостовериться в том, что контакты прочно зафиксированы в зоне крепления.

О восстановлении работоспособности схемы БП и возвращении дежурного режима укажут появление напряжение в 5 В, а также мигание красного светового индикатора на лицевой панели телевизора.

Обращаем внимание на то, что при каждой замене остальных подозрительных элементов необходимо сразу же выполнять проверку – произошли ли изменения на выходе блока питания.

О том, что функциональность оборудования возвращена, можно судить по нормальному включению телевизора и поступлению качественного аудио- и видеоряда.

Возможные неисправности и их причины

О том, что блоку управления телевизором необходим ремонт, могут указать следующие признаки:

  • телевизор не включается при нажатии кнопки, при этом светодиодная индикация-лампочка на корпусе не загорается;
  • лампочка загорается, но техника не запускается;
  • изображение идёт с большим отрывом от звука;
  • возникают значительные помехи – возможны изломы и полосы на экране;
  • искажение звука – телевизор пищит, тарахтит, издает другие шумы.

Все перечисленные неисправности БП могут быть вызваны несколькими причинами, среди которых выделяют:

  • устройство уходит в защиту вследствие короткого замыкания, которое привело к перегоранию БП или отдельных его компонентов;
  • нестабильная подача напряжения в сети;
  • перегорание предохранителя;
  • полный или частичный износ конденсаторов.

Чтобы запустить телевизор и получить полноценное качественное изображение, попробуйте несколько раз повторить включение и выключение агрегата.

Обращаем особое внимание на то, что любые самостоятельные попытки починки телевизора, как правило, приводят только к усугублению проблем с электронными элементами системы или даже полному выходу их из строя. Любые неправильные действия влекут за собой необходимость замены телевизионной материнской платы, стоимость которой доходит до 70% стоимости всего агрегата.

Все элементы сложного электронного оборудования необходимо ремонтировать с точным соблюдением всех правил техники безопасности, в частности, следует предварительно разрядить входные конденсаторы. Не имея специального опыта подобных работ и знаний, вы можете причинить вред не только самому телевизору, но и своему здоровью.

О том, каков принцип работы у блока питания для телевизора, смотрите в следующем видео.

Блок питания ж/к телевизора

Блок питания современного телевизора (ТВ), независимо от марки его дисплея, представляет собой импульсный преобразователь напряжения с фиксированными выходными характеристиками. Их нормируемые значения определяют штатный режим работы всего устройства в целом. В случае появления каких-либо неисправностей по их изменению можно судить о характере поломки.

Устройство и принцип работы

Плата импульсного блока питания (ИБП) нередко выполняется в виде отдельного электронного модуля, что является характерной чертой ТВ с небольшой диагональю экрана. В более габаритных моделях она интегрируется в шасси приемника и находится внутри его конструкции (смотрите фото ниже).

В плату БП входят следующие обязательные составляющие:

  • Импульсный трансформатор.
  • Фильтр сетевого питания, собранный на основе дросселей и конденсаторов.
  • Узлы дежурного и рабочего режима.
  • Модуль защиты от перегрузок.
  • Элементы охлаждения (радиаторы).

Принцип работы БП заключается в приведении сетевого напряжения к виду, удовлетворяющему требованиям энергоснабжения основных электронных узлов телевизора (включая его матрицу).

Дополнительная информация: Величина и форма питающих потенциалов должны соответствовать рабочим напряжениям и их эпюрам, приводимым в специальных таблицах.

Иногда они указываются непосредственно на электрической схеме конкретного устройства.

Характерные неисправности и их выявление

Типовые неисправности блока питания рассмотрим на примере телевизора с ж/к экраном марки «ViewSonic N3260W». Внешние их проявления выражаются в следующих отклонениях от нормальных режимов работы воспроизводящего устройства:

  • При нажатии на кнопку «Сеть» телевизор совсем не включается.
  • Индикатор светится, но ТВ не переходит из дежурного в рабочий режим.
  • Изображение появляется только спустя некоторое время.
  • Включить телевизор удается лишь через несколько попыток, после чего появляются нормальное изображение и звук.

Первое, с чего начинается обследование при обнаружении большинства из этих неисправностей – это тщательный визуальный осмотр платы БП при полностью отключенном от сети устройстве. Если ничего подозрительно не обнаружено – следует перейти к более подробному анализу причин их появления. Для этого потребуется демонтировать питающий модуль из корпуса телевизора, отсоединив прежде все разъемы.

Затем необходимо разрядить высоковольтный фильтрующий конденсатор цепей питания, остаточное напряжение на котором опасно для человека. В силовых блоках большинства моделей ТВ, включая эту, причинами неисправности чаще всего являются:

  • Выход из строя электролитов вторичных питающих цепей.
  • Некачественная пайка отдельных составляющих платы (дросселей и полупроводниковых элементов, в частности).
  • Выгорание силовых (ключевых) транзисторов.
  • Обрыв или пропадание контакта в подводящих разъемах.

Обратите внимание: Убедиться в том, что электролиты состарились и вышли из строя удается по их вздутой крышке (фото сверху).

Последствия плохой фильтрации напряжения вследствие их неисправности бывают самыми различными. Они проявляются либо в полной потере работоспособности БП, либо в связанных с этим повреждениях элементов инвертора. Нередко они приводят к сбою программного обеспечения в чипах памяти материнской платы и необходимости его обновления.

Остальные неисправности также выявляются визуально. При выгорании транзисторов, например, в районе их ножек явно различим черный налет гари. Периодическое пропадание контакта в разъемах определяется по его восстановлению при легком покачивании из стороны в сторону. Для проведения такой проверки потребуется тестер, включенный в режим «Прозвонка». В остальных случаях неисправности выявляются по пропаданию нужных напряжений на выходе (или отклонению их от нормы).

Прядок диагностирования и устранения неисправностей

Общий порядок диагностирования и устранения обнаруженных неисправностей сводится к следующей последовательности ремонтных операций:

  1. Все конденсаторы, внешний вид которых вызывает хоть какие-то подозрения, необходимо сразу же заменить.
  2. При нарушении работы блока дежурного режима следует проверить напряжения 5 Вольт на управляемом стабилитроне.
  3. Если на выходе этого узла напряжение на фильтрующих конденсаторах отсутствует или его значение сильно занижено – это значит, что нарушен режим работы.
  4. Для его восстановления потребуется убедиться в исправности всех линейных элементов схемы.

Дополнительная информация: Их работоспособность проверяется с помощью того же тестера без полного выпаивания из платы блока.

Для этого достаточно выпаять только один контакт «подозрительного» резистора или конденсатора. Выявленные сгоревшие элементы удаляются из платы полностью и заменяются новыми. При обнаружении некачественной пайки следует залудить это место с флюсом, а затем убедиться, что контактная ножка надежно закреплена в зоне фиксации.

О восстановлении работоспособности схемы дежурного режима свидетельствует появление напряжения 5 Вольт, а также загорание красного светодиода на лицевой панели телевизора (фото сверху).

При каждой очередной замене других «подозрительных» элементов следует сразу же проверять произошедшие на выходе БП изменения. О восстановлении функции рабочего режима, например, судят по нормальному включению телевизора и появлению на его экране изображения и звука.

В заключение обзора отметим, что выявление и устранение неисправностей импульсных блоков питания, входящих в состав современных телевизионных приемников – это совсем непростая процедура. Она требует наличия специальной измерительной аппаратуры и некоторых навыков в ремонте электронной техники. Если вы затрудняетесь самостоятельно диагностировать причину отказа телевизора – лучше всего пригласить телемастера-профессионала. При нынешней, сравнительно невысокой стоимости на ремонт телевизионной техники, это позволит сэкономить время и не расходовать попусту свои силы.

Наши группы ВКонтакте и Одноклассниках

Заходите на прикольный канал Шахан TV

Разбираемся с типовыми неисправностями блоков питания телевизоров

Ремонт телевизоров

По статистике сервисных центров выход из строя блоков питания является наиболее распространенной причиной неисправности телевизоров. В современных телевизорах используются импульсные блоки питания различных конструкций и схематических построений. Однако большая часть присущих им неисправностей сходна, поэтому методика борьбы с ними может использоваться в различных моделях телевизоров.

Давайте рассмотрим часто встречающиеся неисправности устройств, связанные с работой блока питания, их внешние проявления, а также способы устранения.

При включении телевизора сгорает предохранитель

Данная неисправность может быть вызвана следующими причинами:

  • Проблемами в системе размагничивания кинескопа;
  • Неисправностями сетевого фильтра и выпрямителя;
  • Выходом из строя транзисторного ключа.
  1. Для поиска причины возникновения проблемы первым делом проверяем, нет ли следов короткого замыкания в элементах сетевого фильтра и выпрямителя блока питания. 
  2. Затем проверяем исправность термистора (позистора), отвечающего за правильную работу системы размагничивания экрана.
  3. Убеждаемся, что транзисторный ключ и все элементы его обвязки работают правильно. Если блок питания построен на ключевой микросхеме, то проверяем ее исправность.

При этом недостаточно просто найти вышедший из строя элемент. Важно отыскать причину появления неисправности. Скажем, неисправность ключевого транзистора может быть спровоцирована резким перепадом напряжения в сети электропитания или же выходом из строя (высыханием) электролитических конденсаторов первичных цепей.

Блок питания не функционирует, сетевой предохранитель исправен

В данном случае подозрение может пасть на сетевой фильтр, элементы выпрямителя и модулятор ШИМ (широтно-импульсный), которые следует проверить на предмет обрыва.

  1. Убедимся, что на сетевом конденсаторе «висит» постоянное напряжение (примерно 300 В). Если напряжения нет, то следует искать обрыв в сетевом фильтре или проверить исправность резистора.
  2. Проверяем, доходит ли напряжение до транзисторного ключа. Убеждаемся, что нет обрыва в первичной обмотке импульсного сетевого трансформатора.
  3. Если неисправности не обнаружены, проверяем, подаются ли импульсы на затвор транзистора, работающего в качестве ключа.
  4. Не помешает проверить исправность резистора пусковой цепочки, который обычно имеет высокий номинал по сопротивлению.

Срабатывает система защиты блока питания

В этом случае следует проверить исправность и отсутствие коротких замыканий во вторичных выпрямителях и нагрузках блока питания, а также в системах защиты (цепях контроля уровня выходных напряжений) и обратной связи (модуляторе).

В выпрямителях следует особое внимание обратить на исправность диодов и фильтрующих конденсаторов, а в системе защиты надо проверит исправность оптрона и его сопутствующих элементов (обвязки). 

В цепях обратной связи проверке подлежат конденсаторы, стабилитроны и диоды. 

Напряжения на выходе блока питания не соответствуют норме

В этом случае требуется проверить исправность сетевого конденсатора, элементов обеспечения работы ШИМ-модулятора и защитного оптрона.

При периодическом возникновении проблем в блоке питания

Для поиска причин неисправности следует использовать такой алгоритм: 

  • Внимательно рассмотреть места пайки элементов блока питания на предмет наличия круговых трещин;
  • Отыскать в схеме блока питания элементы с почерневшим корпусом, что указывает на их перегрев;
  • Если неисправность начинает проявляться только после разогрева телевизора, то вычислить виновный элемент можно его искусственным охлаждением (смачивание спиртом или ацетоном) или нагревом (паяльником). Характер поведения блока питания при этом может существенно сузить круг поиска неисправности. 

Где отремонтировать телевизор?

Принципиальная схема импульсного блока питания ЗУСЦТ, принцип работы

Материал данной статьи предназначен не только для владельцев уже раритетных телевизоров, желающих восстановить их работоспособность, но и для тех, кто хочет разобраться со схемотехникой, устройством и принципом работы импульсных блоков питания. Если усвоить материал данной статьи, то без труда можно будет разобраться с любой схемой и принципом работы импульсных блоков питания для бытовой техники, будь то телевизор, ноутбук или офисная техника. И так приступим…

 

В телевизорах советского производства, третьего поколения ЗУСЦТ применялись импульсные блоки питания — МП (модуль питания).

Импульсные блоки питания в зависимости от модели телевизора, где они использовались, разделялись на три модификации — МП-1, МП-2 и МП-3-3. Модули питания собраны по одинаковой электрической схеме и различаются только типом импульсного трансформатора и номиналом напряжения конденсатора С27 на выходе фильтра выпрямителя (см. принципиальную схему).

Функциональная схема и принцип работы импульсного блока питания телевизора ЗУСЦТ

Рис. 1. Функциональная схема импульсного блока питания телевизора ЗУСЦТ:

1 — сетевой выпрямитель; 2 — формирователь импульсов запуска; 3 — транзистор импульсного генератора, 4 — каскад управления; 5 — устройство стабилизации; 6 — устройство защиты; 7 — импульсный трансформатор блока питания телевизоров 3усцт; 8 — выпрямитель; 9 — нагрузка

Пусть в начальный момент времени в устройстве 2 будет сформирован импульс, который откроет транзистор импульсного генератора 3. При этом через обмотку импульсного трансформатора с выводами 19, 1 начнет протекать линейно нарастающий пилообразный ток. Одновременно в магнитном поле сердечника трансформатора будет накапливаться энергия, значение которой определяется временем открытого состояния транзистора импульсного генератора. Вторичная обмотка (выводы 6, 12) импульсного трансформатора намотана и подключена таким образом, что в период накопления магнитной энергии к аноду диода VD приложен отрицательный потенциал и он закрыт. Спустя некоторое время каскад управления 4 закрывает транзистор импульсного генератора. Так как ток в обмотке трансформатора 7 из-за накопленной магнитной энергии не может мгновенно измениться, возникает ЭДС самоиндукции обратного знака. Диод VD открывается, и ток вторичной обмотки (выводы 6, 12) резко возрастает. Таким образом, если в начальный период времени магнитное поле было связано с током, который протекал через обмотку 1, 19, то теперь оно создается током обмотки 6, 12. Когда вся энергия, накопленная за время замкнутого состояния ключа 3, перейдет в нагрузку, то во вторичной обмотке достигнет нулевого значения.

Из приведенного примера можно сделать вывод, что, регулируя длительность открытого состояния транзистора в импульсном генераторе, можно управлять количеством энергии, которое поступает в нагрузку. Такая регулировка осуществляется с помощью каскада управления 4 по сигналу обратной связи — напряжению на выводах обмотки 7, 13 импульсного трансформатора. Сигнал обратной связи на выводах этой обмотки пропорционален напряжению на нагрузке 9.

Если напряжение на нагрузке по каким-либо причинам уменьшится, то уменьшится и напряжение, которое поступает в устройство стабилизации 5. В свою очередь, устройство стабилизации через каскад управления начнет закрывать транзистор импульсного генератора позже. Это увеличит время, в течение которого через обмотку 1, 19 будет течь ток, и соответственно возрастет количество энергии, передаваемой в нагрузку.

Момент очередного открывания транзистора 3 определяется устройством стабилизации, где анализируется сигнал, поступающий с обмотки 13, 7, что позволяет автоматически поддерживать среднее значение выходного постоянного напряжения.

Применение импульсного трансформатора дает возможность получить различные по амплитуде напряжения в обмотках и устраняет гальваническую связь между цепями вторичных выпрямленных напряжений и питающей электрической сетью. Каскад управления 4 определяет размах импульсов, создаваемых генератором, и при необходимости отключает его. Отключение генератора осуществляется при уменьшении напряжения сети ниже 150 В и понижении потребляемой мощности до 20 Вт, когда каскад стабилизации перестает функционировать. При неработающем каскаде стабилизации, импульсный генератор оказывается неуправляемым, что может привести к возникновению в нем больших импульсов тока и к выходу из строя транзистора импульсного генератора.

Принципиальная схема импульсного блока питания телевизора ЗУСЦТ

Рассмотрим принципиальную схему модуля питания МП-3-3 и принцип ее работы.

Рис. 2 Принципиальная схема импульсного блока питания телевизора ЗУСЦТ, модуль МП-3-3

Открыть схему блока питания телевизора ЗУСЦТ с высоким разрешением >>>.

В ее состав входит низковольтный выпрямитель (диоды VD4 — VD7), формирователь импульсов запуска (VT3), импульсный генератор (VT4), устройство стабилизации (VT1), устройство защиты (VT2), импульсный трансформатор Т1 блока питания 3усцт и выпрямители на диодах VD12 — VD15 со стабилизатором напряжения (VT5 — VT7).

Импульсный генератор собран по схеме блокинг-генератора с коллекторно-базовыми связями на транзисторе VT4. При включении телевизора постоянное напряжение с выхода фильтра низковольтного выпрямителя (конденсаторов С16, С19 и С20) через обмотку 19, 1 трансформатора Т1 поступает на коллектор транзистора VT4. Одновременно сетевое напряжение с диода VD7 через конденсаторы С11, С10 и резистор R11 заряжает конденсатор С7, а также поступает на базу транзистора VT2, где оно используется в устройстве защиты модуля питания от пониженного напряжения сети. Когда напряжение на конденсаторе С7, приложенное между эмиттером и базой 1 однопереходного транзистора VT3, достигнет значения 3 В, транзистор VT3 откроется. Происходит разрядка конденсатора С7 по цепи: переход эмиттер-база 1 транзистора VT3, эмиттерный переход транзистора VT4, параллельно соединенные, резисторы R14 и R16, конденсатор С7.

Ток разрядки конденсатора С7 открывает транзистор VT4 на время 10 — 15 мкс, достаточное, чтобы ток в его коллекторной цепи возрос до 3…4 А. Протекание коллекторного тока транзистора VT4 через обмотку намагничивания 19, 1 сопровождается накоплением энергии в магнитном поле сердечника. После окончания разрядки конденсатора С7 транзистор VT4 закрывается. Прекращение коллекторного тока вызывает в катушках трансформатора Т1 появление ЭДС самоиндукции, которая создает на выводах 6, 8, 10, 5 и 7 трансформатора Т1 положительные напряжения. При этом через диоды одно-полупериодных выпрямителей во вторичных цепях (VD12 — VD15) протекает ток.

При положительном напряжении на выводах 5, 7 трансформатора Т1 происходит зарядка конденсаторов С14 и С6 соответственно в цепях анода и управляющего электрода тиристора VS1 и С2 в эмиттерно-базовой цепи транзистора VT1.

Конденсатор С6 заряжается по цепи: вывод 5 трансформатора Т1, диод VD11, резистор R19, конденсатор С6, диод VD9, вывод 3 трансформатора. Конденсатор С14 заряжается по цепи: вывод 5 трансформатора Т1, диод VD8, конденсатор С14, вывод 3 трансформатора. Конденсатор С2 заряжается по цепи: вывод 7 трансформатора Т1, резистор R13, диод VD2, конденсатор С2, вывод 13 трансформатора.

Аналогично осуществляются последующие включения и выключения транзистора VT4 блокинг-генератора. Причем нескольких таких вынужденных колебаний оказывается достаточным, чтобы зарядить конденсаторы во вторичных цепях. С окончанием зарядки этих конденсаторов между обмотками блокинг-генератора, подсоединенными к коллектору (выводы 1, 19) и к базе (выводы 3, 5) транзистора VT4, начинает действовать положительная обратная связь. При этом блокинг-генератор переходит в режим автоколебаний, при котором транзистор VT4 будет автоматически открываться и закрываться с определенной частотой.

В период открытого состояния транзистора VT4 его коллекторный ток протекает от плюса электролитического конденсатора С16 через обмотку трансформатора Т1 с выводами 19, 1, коллекторный и эмиттерный переходы транзистора VT4, параллельно включенные резисторы R14, R16 к минусу конденсатора С16. Из-за наличия в цепи индуктивности нарастание коллекторного тока происходит по пилообразному закону.

Для исключения возможности выхода из строя транзистора VT4 от перегрузки сопротивление резисторов R14 и R16 подобрано таким образом, что, когда ток коллектора достигает значения 3,5 А, на них создается падение напряжения, достаточное для открывания тиристора VS1. При открывании тиристора конденсатор С14 разряжается через эмиттерный переход транзистора VT4, соединенные параллельно резисторы R14 и R16, открытый тиристор VS1. Ток разрядки конденсатора С14 вычитается из тока базы транзистора VT4, что приводит к его преждевременному закрыванию.

Дальнейшие процессы в работе блокинг-генератора определяются состоянием тиристора VS1, более раннее или более позднее открывание которого позволяет регулировать время нарастания пилообразного тока и тем самым количество энергии, запасаемой в сердечнике трансформатора.

Модуль питания может работать в режиме стабилизации и короткого замыкания.

Режим стабилизации определяется работой УПТ (усилителя постоянного тока) собранного на транзисторе VT1 и тиристоре VS1.

При напряжении сети 220 Вольт, когда выходные напряжения вторичных источников питания достигнут номинальных значений, напряжение на обмотке трансформатора Т1 (выводы 7, 13) возрастает до значения, при котором постоянное напряжение на базе транзистора VT1, куда оно поступает через делитель Rl — R3, становится более отрицательным, чем на эмиттере, куда оно передается полностью. Транзистор VT1 открывается по цепи: вывод 7 трансформатора, R13, VD2, VD1, эмиттерный и коллекторный переходы транзистора VT1, R6, управляющий электрод тиристора VS1, R14, R16, вывод 13 трансформатора. Этот ток, суммируясь с начальным током управляющего электрода тиристора VS1, открывает его в тот момент, когда выходное напряжение модуля достигает номинальных значений, прекращая нарастание коллекторного тока.

Изменяя напряжение на базе транзистора VT1 подстроечным резистором R2, можно регулировать напряжение на резисторе R10 и, следовательно, изменять момент открывания тиристора VS1 и продолжительность открытого состояния транзистора VT4, тем самым устанавливать выходные напряжения блока питания.

При уменьшении нагрузки (либо увеличении напряжения сети) возрастает напряжение на выводах 7, 13 трансформатора Т1. При этом увеличивается отрицательное напряжение на базе по отношению к эмиттеру транзистора VT1, вызывая возрастание коллекторного тока и падение напряжения на резисторе R10. Это приводит к более раннему открыванию тиристора VS1 и закрыванию транзистора VT4. Тем самым уменьшается мощность, отдаваемая в нагрузку.

При понижении напряжения сети соответственно меньше становится напряжение на обмотке трансформатора Т1 и потенциал базы транзистора VT1 по отношению к эмиттеру. Теперь из-за уменьшения напряжения, создаваемого коллекторным током транзистора VT1 на резисторе R10, тиристор VS1 открывается в более позднее время и количество энергии, передаваемой во вторичные цепи, возрастает. Важную роль в защите транзистора VT4 играет каскад на транзисторе VT2. При уменьшении напряжения сети ниже 150 В напряжение на обмотке трансформатора Т1 с выводами 7, 13 оказывается недостаточным для открывания транзистора VT1. При этом устройство стабилизации и защиты не работает, транзистор VT4 становится неуправляемым и создается возможность выхода его из строя из-за превышения предельно допустимых значений напряжения, температуры, тока транзистора. Чтобы предотвратить выход из строя транзистора VT4, необходимо блокировать работу блокинг-генератора. Предназначенный для этой цели транзистор VT2 включен таким образом, что на его базу подается постоянное напряжение с делителя R18, R4, а на эмиттер пульсирующее напряжение частотой 50 Гц, амплитуда которого стабилизируется стабилитроном VD3. При уменьшении напряжения сети уменьшается напряжение на базе транзистора VT2. Так как напряжение на эмиттере стабилизировано, уменьшение напряжения на базе приводит к открыванию транзистора. Через открытый транзистор VT2 импульсы трапецеидальной формы с диода VD7 поступают на управляющий электрод тиристора, открывая его на время, определяемое длительностью трапецеидального импульса. Это приводит к прекращению работы блокинг-генератора.

Режим короткого замыкания возникает при наличии короткого замыкания в нагрузке вторичных источников питания. Запуск блока питания в этом случае производится запускающими импульсами от устройства запуска собранного на транзисторе VT3, а выключение — с помощью тиристора VS1 по максимальному току коллектора транзистора VT4. После окончания запускающего импульса устройство не возбуждается, поскольку вся энергия расходуется в короткозамкнутой цепи.

После снятия короткого замыкания модуль входит в режим стабилизации.

Выпрямители импульсных напряжений, подсоединенные ко вторичной обмотке трансформатора Т1, собраны по однополупериодной схеме.

Выпрямитель на диоде VD12 создает напряжение 130 В для питания схемы строчной развертки. Сглаживание пульсаций этого напряжения производится электролитическим конденсатором С27. Резистор R22 устраняет возможность значительного повышения напряжения на выходе выпрямителя при отключении нагрузки.

На диоде VD13 собран выпрямитель напряжения 28 В, предназначенный для питания кадровой развертки телевизора. Фильтрация напряжения обеспечивается конденсатором С28 и дросселем L2.

Выпрямитель напряжения 15 В для питания усилителя звуковой частоты собран на диоде VD15 и конденсаторе СЗО.

Напряжение 12 В, используемое в модуле цветности (МЦ), модуле радиоканала (МРК) и модуле кадровой развертки (МК), создается выпрямителем на диоде VD14 и конденсаторе С29. На выходе этого выпрямителя включен компенсационный стабилизатор напряжения собранного на транзисторах. В его состав входит регулирующий транзистор VT5, усилитель тока VT6 и управляющий транзистор VT7. Напряжение с выхода стабилизатора через делитель R26, R27 поступает на базу транзистора VT7. Переменный резистор R27 предназначен для установки выходного напряжения. В эмиттерной цепи транзистора VT7 напряжение на выходе стабилизатора сравнивается с опорным напряжением на стабилитроне VD16. Напряжение с коллектора VT7 через усилитель на транзисторе VT6 поступает на базу транзистора VT5, включенного последовательно в цепь выпрямленного тока. Это приводит к изменению его внутреннего сопротивления, которое в зависимости от того, увеличилось или уменьшилось выходное напряжение, либо возрастает, либо понижается. Конденсатор С31 предохраняет стабилизатор от возбуждения. Через резистор R23 поступает напряжение на базу транзистора VT7, необходимое для его открывания при включении и восстановления после короткого замыкания. Дроссель L3 и конденсатор С32 — дополнительный фильтр на выходе стабилизатора.

Конденсаторы С22 — С26, шунтируют выпрямительные диоды для уменьшения помех, излучаемых импульсными выпрямителями в электрическую сеть.

Сетевой фильтр блока питания ЗУСЦТ

Плата фильтра питания ПФП подсоединена к электрической сети через соединитель Х17 (А12), выключатель S1 в блоке управления телевизором и сетевые предохранители FU1 и FU2.

В качестве сетевых предохранителей используются плавкие предохранители типа ВПТ-19, характеристики которых позволяют обеспечить значительно более надежную защиту телевизионных приемников при возникновении неисправностей, чем предохранители типа ПМ.

Назначение заградительного фильтра — воспрепятствовать проникновению в электрическую сеть импульсных помех, создаваемых источником питания для бытовой радиоаппаратуры.

На плате фильтра питания находятся элементы заградительного фильтра (C1, С2, СЗ, дроссель L1) (см. принципиальную схему).

Резистор R3 предназначен для ограничения тока выпрямительных диодов при включении телевизора. Позистор R1 и резистор R2 — элементы устройства размагничивания маски кинескопа.

При ремонте бытовой аппаратуры следует неукоснительно соблюдать правила техники безопасности.

 

Ремонт импульсного блока питания телевизора видео уроки: рассмотрим досконально

Сегодня на рынке можно увидеть разнообразие телевизоров. Порой, выбрать телевизор из такого огромного выбора непросто. А уж тем более, знать по какой схеме они работают, это вообще «тёмный лес».

Разделы статьи

Какая схема блока питания у телевизора?

Блок питания – почти самая важная и главная деталь в телевизоре, так как от неё работает всё устройство. Он вырабатывает напряжение, для ламп в телевизоре. Схема блока питания или принцип работы состоит из напряжения 2 полупероидных выпрямителей. Выпрямители соединены последовательно. Если не будет работать хоть одна любая деталь, то подействуют неполадки и дефекты на всю работу системы. Поэтому за исправностью всего блока питания нужно внимательно следить и давать периодический отдых. Если телевизор не включается и никак не хочет работать кнопка Pover, то это может говорить об испорченности блока питания. Цепи питания имеют фильтр на трансформаторе и конденсаторе. Вход сети защищён предохранителем, а если нужно отключиться тумблером. Трансформатор нужен для полной нагрузки, его напряжение остаётся пониженным, что не мешает трудоспособности и перегреву.

Диодный мост идёт без радиатора. Напряжение 2 трансформатора, выпрямленное им, сглаживается 2 конденсатором, а огрехи сети фильтрует 3 конденсатор. Для уменьшения напряжения в цепи предусмотрен конденсатор большой ёмкости.

Чтобы наладить схему телевизора знать ничего не нужно. Просто настроить к выходу 12 Вольт нагрузку, в виде лампы от фар машины, и 2 регулятором поставить напряжение в 12, 6 Вольт. Резистор должен стоять так, чтобы при нагрузке ток прекратил расти при повороте движка резистора.

При включении питания сгорает сетевой предохранитель.

Неисправности могут быть вызваны:

  • системой размагничивания;
  • сетевым фильтром и выпрямителем;
  • неисправностью ключа.

Проверяем на предмет короткого замыкания элементы сетевого фильтра, выпрямителя, терморезистор – системы размагничивания, ключ и элементы его обвязки, а также ключевой микросхемы (если блок питания построен на ней).
При нахождении неисправного элемента проанализируйте причины выхода его из строя. Выход из строя транзистора может быть вызван, как скачком напряжения в сети, так и высыханием конденсаторов в первичных цепях.

Блок питания не включается, сетевой предохранитель цел.
Следует проверить на предмет обрыва: сетевой фильтр, выпрямитель, ШИМ — модулятор.
Начните с проверки, есть ли на сетевом конденсаторе С постоянное напряжение около 300В ( если нет, следует искать разрыв в сетевом фильтре, а также проверьте резистор R.
В случае наличия +300В на конденсаторе С, проверьте доходит ли оно до ключевого транзистора. Также следует проверить первичную обмотку сетевого импульсного трансформатора ТР на предмет обрыва.
Если все элементы исправны, а блок питания не включается необходимо проверить поступление импульсов на базу (затвор) транзистора.
Также проверьте цепочку R запуска, обычно это резисторы с большим сопротивлением.

П О П У Л Я Р Н О Е:
  • О полотнах лобзика
  • Большое разнообразие видов и размеров лобзиков. Начинающему мастеру трудно сразу разобраться в них, он может легко запутаться при выборе правильного полотна для той или иной поделки. Давайте в этой статье рассмотрим типы и описание каждого вида полотна.
    Подробнее…

  • Внимание! Подделки из Китая!
  • Сейчас многие покупают товары из Китая. Дешево, доступно, большое разнообразие различных изделий, деталей, наборов и т.д. Но не всегда и у всех можно купить качественный товар. Много попадается некачественного товара, брака и т.п. В статье, ниже расскажем о некоторых из них, касающихся радиолюбительства.

    Подробнее…

  • Какие сетевые вилки и розетки бывают?
  • Стандарт электрических вилок и розеток

    Те, кто любит путешествовать и бывает в разных странах замечали, что розетки и вилки не везде одинаковые. Так же при заказе различных устройств и приборов, например из Китая предлагается выбрать различные варианты: EU Plug, US Plug, UK Plug, AU Plug. Как не ошибиться в этом? Давайте подробнее разберёмся.

    Подробнее…

Популярность: 28 518 просм.

Устройство и принцип работы

Плата импульсного блока питания (ИБП) нередко выполняется в виде отдельного электронного модуля, что является характерной чертой ТВ с небольшой диагональю экрана. В более габаритных моделях она интегрируется в шасси приемника и находится внутри его конструкции (смотрите фото ниже).

В плату БП входят следующие обязательные составляющие:

  • Импульсный трансформатор.
  • Фильтр сетевого питания, собранный на основе дросселей и конденсаторов.
  • Узлы дежурного и рабочего режима.
  • Модуль защиты от перегрузок.
  • Элементы охлаждения (радиаторы).

Принцип работы БП заключается вприведении сетевого напряжения к виду, удовлетворяющему требованиямэнергоснабжения основных электронных узлов телевизора (включая его матрицу).

Дополнительная информация: Величина и форма питающих потенциалов должны соответствовать рабочим напряжениям и их эпюрам, приводимым в специальных таблицах.

Иногда они указываютсянепосредственно на электрической схеме конкретного устройства.

Восстановление стандартных устройств

Чаще всего в домашних условиях предпринимаются попытки восстановить блоки питания телевизоров и компьютеров. Желательно предварительно найти схему конкретного устройства. Прежде всего это касается телевизоров с кинескопами, так как их ИБП выдают широкий диапазон напряжений. С десктопными ПК проще, ведь их питающие блоки изготовлены по типовой схеме.

Ремонт телевизора

О проблемах с блоком питания свидетельствует неработающий светодиод «спящего» режима. Сначала следует проверить работоспособность сетевого шнура. Если проблема обнаружена не была, тогда можно приступить к предварительным ремонтным работам:

  • разборке ТВ и освобождению электронных печатных плат;
  • визуальному осмотру ИБП на наличие внешних неисправностей, например, вздутых конденсаторов;
  • проверке мест пайки (особое внимание здесь нужно уделить контактам импульсного трансформатора).

Если визуальный осмотр не дал положительных результатов, то последовательно проверяются предохранитель, диоды, конденсаторы и транзисторы. Установить работоспособность микросхем довольно сложно.

Среди основных неисправностей питающих блоков ТВ можно отметить:

  • обрыв балластных резисторов;
  • выход из строя фильтрующего высоковольтного конденсатора;
  • пробой диодного моста;
  • неисправность конденсаторов фильтра вторичного напряжения.

Все эти детали, кроме диодов, можно проверить непосредственно на плате. После замены неисправных элементов вместо предохранителя подключается обычная лампа накаливания, и телевизор подключается к сети. Здесь возможны следующие варианты поведения восстановленного агрегата:

  • Светодиод «спящего» режима включается, а лампа загорается и начинает затухать. Одновременно с этим на экране появляется растр. В этом случае необходимо проверить показатель напряжения строчной развертки. Если его значение оказалось повышенным, то причина может заключаться в неисправных конденсаторах или оптронных парах.
  • Когда светодиод не загорается, растр на экране отсутствует, а лампа вспыхает и гаснет, то нерабочим является генератор импульсов. В такой ситуации нужно проверить напряжение на конденсаторе. Если его значение оказалось менее 280 В, тогда может быть пробит один из диодов моста либо вышел из строя конденсатор.
  • Когда лампа горит ярко, нужно снова проверить все элементы ИБП.

Этот алгоритм действий позволит выявить основные неполадки питающего блока телевизора.

Десктопный компьютер

Следует помнить, что ремонт импульсных блоков питания с ШИМ-контроллером отличается сложностью, поэтому в некоторых ситуациях стоит просто заменить ИБП. Именно такие питающие устройства устанавливаются в современные десктопные ПК. О наличии проблемы свидетельствуют следующие признаки:

  • компьютер не запускается;
  • не вращается кулер ИБП;
  • наблюдается многократный запуск питающего устройства.

Для проведения ремонтных работ необходимо извлечь из системного блока ИБП и снять с него кожух. Затем нужно с плат и деталей удалить пыль с помощью кисточки. После этого проводится визуальный осмотр элементов блока, затем к нему подключается нагрузка. Алгоритм дальнейших действий аналогичен ремонту телевизора.

Если из строя вышли транзисторы генератора импульса или ШИМ-контроллер, то стоит просто купить новый ИБП. Это довольно сложное устройство и ремонт импульсных блоков питания такого типа самостоятельно выполнить тяжело.

При проведении ремонтных работ необходимо соблюдать правила безопасности и проявить осторожность. Также стоит правильно оценить свои возможности, ведь порой лучше обратиться к профессионалам.

Устранение неполадки

В первую очередь необходимо разрядить входные конденсаторы. Если этого не сделать, то в процессе ремонта возможно короткое замыкание или другие проблемы, которые приведут к более серьёзным поломкам. Для разрядки можно использовать низкоомный резистор, тестер или обычную лампочку, поднесённые к контактам на несколько секунд. После этого можно выпаивать повреждённые конденсаторы и заменить их рабочими с аналогичной мощностью.

Важно! Любой ремонт блока питания связан с рядом рисков. При неосторожных действиях вы можете нанести ещё больший вред телевизору или даже собственному здоровью. При любых сомнениях в собственных силах следует доверять процедуру починки опытному мастеру.

Видео урок от мастера подробно расскажет о всем процессе ремонта БП:

Что это такое?

В самом общем смысле блок питания представляет из себя источник электричества, который снабжает телевизор необходимым током. Этот модуль позволяет преобразовывать сетевое напряжение до значений, необходимых для полноценного функционирования техники. Как правило, БП включен в комплектацию антенн с усилителем для того, чтобы улучшать прием сигнала.

Блоки питания – универсальные приборы, они могут устанавливаться в других приспособлениях: для улучшения качества сигнала сотовой, спутниковой связи и даже интернета. БП незаменим в ситуации, когда используется Wi-Fi-адаптер, кстати, он также представляет из себя одну из разновидностей антенн. Проще говоря, везде, где используются радиоволны и имеется принимающая антенна, нужен блок питания.

Но мы рассмотрим только те его разновидности, которые требуются для бесперебойной работы телевизионной техники.

Обращаем внимание: актуальность установки и поддержания работоспособности БП прямо связана с тем, что в его отсутствие и починить его бывает очень затратно или даже невозможно.

Телевизионный блок питания выполняет три основные функции:

  • преобразование энергии подачи тока в аппаратуру;
  • защита от помех подпитывающего напряжения;
  • поддержание необходимого уровня напряжения внутри самого телевизора.

Наибольшее распространение получили современные системы, работающие от стандартных сетей в 220 Вт. Такие элементы бывают встроенными в единую конструкцию антенны либо располагающимися отдельно, когда подключение осуществляется через порт.

Если речь идет о встроенных моделях, то обычно применяется бестрансформаторная схема. В этом случае преобразование энергии осуществляется за счёт широтно-импульсной модуляции. Такие блоки питания включаются в самую обычную розетку, их рассчитанная мощность составляет 10 Вт. Этого параметра вполне достаточно для того, чтобы обеспечить питание антенны. Подобные элементы довольно компактны и не занимают много места, но в случае неисправности незамедлительно приводят к выводу из строя всей системы приема сигнала.

Поэтому бывает более практичным приобрести внешние устройства. Они ориентированы на то, что в случае выхода из строя БП некоторый сигнал всё же будет сохранён, хотя, безусловно, хорошим он не будет. В любом случае еще одно достоинство наружных блоков питания сводится к тому, что их можно быстро и просто заменить при необходимости.

Схема работы базируется на трансформаторе. При этом выходное напряжение БП стабилизируется параболическим образом, типовыми параметрами для выходного напряжения стали значения 24, а также 18, 12 и 5 Вт. Более точные цифры определяются в зависимости от технико-эксплуатационных параметров антенны.

Как подключить?

Рассмотрим подробнее, как подсоединить БП. В большинстве случаев в активную антенну усилитель уже вмонтирован. А вот в пассивной – его нет. Чтобы его подключить, в первую очередь необходимо собрать антенный кабель со штекером, который будет предназначен для данных целей. Рассмотрим, как это сделать.

Сначала следует подготовить сам кабель, то есть зачистить его. Для этого острым канцелярским ножом либо скальпелем выполняют тонкий разрез по окружности на удалении 1,5 см от края кабеля. При выполнении этой работы очень важно быть аккуратным и постараться не повредить волоски экранированной оплётки, расположенной сразу под изоляционным слоем.

После того как эти действия будут выполнены, упомянутые волоски нужно осторожно отогнуть, а расположенный около них кусок фольги убрать.

Отступив от загнутого края оплетки примерно 5 мм, необходимо сделать ещё один срез по окружности. Он необходим для того, чтобы удалить внутренний изоляционный слой. После этого кабель, подготовленный к монтажу, следует просунуть под соответствующие крепежи в коробке БП и затянуть винтами.

Обращаем особое внимание на то, что когда подключается провод, его металлизированная оплетка непременно должна иметь контакт с залуженной площадкой, которая является обязательным элементом конструкции любого корпуса БП. Если этого не сделать, то питание на антенну попросту не будет поступать. Нужно учесть и тот факт, что кабельная оплетка ни в коем случае не должна соприкасаться с центральной жилой самого провода. Если это случится, то произойдет короткое замыкание, и индикатор работы модуля не будет функционировать.

Для сведения: при корректном подсоединении блока питания с самим антенным кабелем после выполнения всех необходимых настроек телевизор обычно показывает намного больше каналов, чем прежде.

Как проверить на исправность?

В общем виде наружная диагностика возможных неисправностей и поломок блока питания выглядит следующим образом.

Если внешний вид конденсаторов вызывает у вас хоть какие-то подозрения, то их необходимо сразу же снять и заменить.

Вы заметили перебои с работой дежурного режима – нужно сразу же проверить напряжение на управляемом стабилитроне. Если на выходе данного узла напряжение будет отсутствовать либо иметь слишком низкие значения, следовательно, режим работы нарушен.

Для того чтобы восстановить функциональность элемента, необходимо удостовериться в работоспособности всех остальных деталей схемы. Для этого следует выпаять один контакт подозрительного конденсатора либо резистора, все сгоревшие элементы удалить полностью и сразу же заменить новыми. Если вы увидите участок некачественной пайки – это место нужно залудить с флюсом, а после удостовериться в том, что контакты прочно зафиксированы в зоне крепления.

О восстановлении работоспособности схемы БП и возвращении дежурного режима укажут появление напряжение в 5 В, а также мигание красного светового индикатора на лицевой панели телевизора.

Обращаем внимание на то, что при каждой замене остальных подозрительных элементов необходимо сразу же выполнять проверку – произошли ли изменения на выходе блока питания.

О том, что функциональность оборудования возвращена, можно судить по нормальному включению телевизора и поступлению качественного аудио- и видеоряда.

Возможные неисправности и их причины

О том, что блоку управления телевизором необходим ремонт, могут указать следующие признаки:

  • телевизор не включается при нажатии кнопки, при этом светодиодная индикация-лампочка на корпусе не загорается;
  • лампочка загорается, но техника не запускается;
  • изображение идёт с большим отрывом от звука;
  • возникают значительные помехи – возможны изломы и полосы на экране;
  • искажение звука – телевизор пищит, тарахтит, издает другие шумы.

Все перечисленные неисправности БП могут быть вызваны несколькими причинами, среди которых выделяют:

  • устройство уходит в защиту вследствие короткого замыкания, которое привело к перегоранию БП или отдельных его компонентов;
  • нестабильная подача напряжения в сети;
  • перегорание предохранителя;
  • полный или частичный износ конденсаторов.

Чтобы запустить телевизор и получить полноценное качественное изображение, попробуйте несколько раз повторить включение и выключение агрегата.

Обращаем особое внимание на то, что любые самостоятельные попытки починки телевизора, как правило, приводят только к усугублению проблем с электронными элементами системы или даже полному выходу их из строя. Любые неправильные действия влекут за собой необходимость замены телевизионной материнской платы, стоимость которой доходит до 70% стоимости всего агрегата.

Все элементы сложного электронного оборудования необходимо ремонтировать с точным соблюдением всех правил техники безопасности, в частности, следует предварительно разрядить входные конденсаторы. Не имея специального опыта подобных работ и знаний, вы можете причинить вред не только самому телевизору, но и своему здоровью.

О том, каков принцип работы у блока питания для телевизора, смотрите в следующем видео.

Принцип работы

Импульсный блок питания отличается выпрямлением сетевого напряжения, а затем преобразованием в высокочастотное напряжение. Оно может понизиться до необходимых значений, выпрямится и профильтруется. Сначала ток проходит на мостовой двигатель. Сразу действует ограничитель напряжения (предохраняет). Дальше он идёт через фильтры, где он преобразуется. Для зарядки резисторов нужны конденсаторы. Узел запускается после пробоя динистора. Позже в блоке питания происходит отпирание транзистора.

Если появилась генерация, то диоды начнут работать. Они будут соединены катодами. Посредством отрицательного потенциала можно запереть динистр. В придачу получается ограничение. Чтобы не допустить насыщение транзисторов, есть предохранители, которые работают после пробоя. Для противоположной работы нужен трансформатор. На выходе ток выходит через конденсаторы.

Основные причины поломки

Поломка блока питания в современных LED телевизорах является одной из наиболее часто встречающихся проблем. Повреждение способны вызвать многие факторы, однако специалистами выделяются 4 основные причины:

  • Перепады напряжения в сети (поступление сильно пониженного или повышенного выходного напряжения). В результате постоянно скачущего напряжения ухудшается не только работа телевизора, но и приходят в негодность комплектующие элементы. Чтобы не возникало проблем из-за нестабильного напряжения, рекомендуется применять стабилизатор.
  • Короткое замыкание. Способно привести к перегоранию многих узлов и деталей устройства, в том числе блока питания.
  • Выход из строя сетевого предохранителя. О перегоревшем элементе в первую очередь сообщит индикатор дежурного режима – он не будет светиться.
  • Повреждение конденсаторов. Часто возникающая проблема, особенно при длительной эксплуатации телевизора. На изношенность конденсатора оказывают влияние больше временные, чем внешние факторы. О выходе из строя этого элемента можно узнать при визуальной диагностике по его характерному вздутию (выпуклости).

Возникновению неисправностей блока питания также способствуют:

  • несоблюдение рекомендаций по эксплуатации;
  • нарушение климатического режима;
  • разборка устройства без наличия опыта и знаний по устройству техники.

Телевизор не переносит резкого перепада температуры и влажности. Купив его зимой и занеся в отапливаемое помещение, не включайте устройство сразу, что избежать образования внутри конденсата и преждевременного повреждения важных компонентов.

Для самостоятельного ремонта дорогостоящей техники нужно обладать базовыми техническими навыками и специальным инструментарием. Если всего этого нет, лучше сразу обратиться в мастерскую.

Ремонт блока питания телевизора: основные сведения

 

 

 

 

Описание основных узлов блока питания телевизора «Электроника Ц432». Недавно один из моих друзей принес мне переносной телевизор в плачевном состоянии для того, чтобы я его восстановил. После подключения телевизора к сети, было понятно, что неисправность скрывалась в блоке питания.

При первом просмотре и изучении схемы импульсного блока питания телевизора можно запутаться начинающим электроникам в хитросплетениях связей и не сразу понять, что к чему и тем самым только отбить охотку в дальнейшем изучении и ремонте.

Перед ответственным ремонтом начинающими электрониками, было бы не лишним просмотреть статью под названием «Основы электроники и схемотехники» и изучить принцип работы электронных приборов, таких как: транзисторы, тиристоры, микросхемы и многие другие.

Для того, чтобы можно было легче произвести ремонт блока питания телевизора «Электроника Ц432», я решил описать принцип работы импульсного блока питания более подробно. В литературе описаны принципы работы отдельных модулей данного блока питания, но нет полного алгоритма его работы. Опишу полный его алгоритм работы.

Перед изложением материала предлагаю просмотреть статью «Расчет блока питания» для более полного понимания принципа работы импульсного блока питания и скачать схему данного блока питания этой статьи здесь и уже после ее скачивания начинать ознакомление с данным материалом статьи. Итак начнем!

В блок стабилизации выходного напряжения входит:

  • Формирователь пилообразного напряжения.
  • Триггер импульсного формирователя.
  • Триггер токовой защиты с отрицательной обратной связью.
  • Триггер запуска
  • Формирователь пилообразного напряжения

Пульсирующее напряжение сети с выпрямителя VD1 — VD4 подается и на делитель напряжения состоящий из резисторов R1, R2, R14 и С31. Таким образом на базе транзистора VT2 появляется потенциал порядка 31 вольта. При подаче того же импульсного напряжения на резистор R3 происходит заряд емкости С7 до напряжения на эмиттере транзистора VT2 в 32 вольта. После того как напряжение на эмиттере превысит напряжение на базе того же транзистора произойдет его открытие и заряд емкости С6. В результате на емкости сформируется пилообразное напряжение.

Триггер импульсного формирователя

Триггер собранный на транзисторах VT3, VT4 запускается пилообразным напряжением, формируемым в свою очередь с помощью формирователя пилообразного напряжения собранном на транзисторе VT2 и элементах VD6 и С6.

Отрицательная обратная связь

Реализованная на транзисторе VT5 обратная связь стабилизирует выходное напряжение, определяя угол отпирания тиристора VT1, тем самым поддерживая напряжение конденсаторa на необходимом уровне, чем позволяет держать стабильное выходное напряжение.

Триггер токовой защиты

На транзисторах VT9, VT10 собран триггер токовой защиты. Триггер токовой защиты работает следующим образом. Как только на эмиттер транзистора VT10 подастся напряжение отрицательной полярности с резистора R4 откроются оба транзистора VT10 и VT9, что приведет к падению напряжения на конденсаторе С8 и пропаданию импульсов управления на тиристоре VT1.

Триггер запуска

Cобранный на транзисторах VT14, VT17 триггер, работает следующим образом. Напряжение с конденсатора С43 подается на делитель напряжения R60 и R67 триггера запуска VT14, VT17, а на резистор R58 подается пульсирующее напряжение с выпрямителя VD1 — VD4 через резистор R5. Потенциал эмиттера транзистора VT14 определяемый цепью заряда конденсатора С57 через резистор R58 после 5…7 секунд становится больше потенциала базы транзистора VT14, что приводит к открыванию транзисторов VT14 и VT17, после чего с триггера подается питание 12 вольт на генератор D1 и диод VD24 для блокировки триггера токовой защиты. С этого момента начинает работать стабилизатор и на конденсаторе C43 устанвливается напряжение в 130 вольт.

 

 

 

 

Ремонт блока питания из собственного опыта

 


Хочу рассказать Вам о ремонте блока питания телевизора «Электроника Ц432» на собственном опыте. Моя неисправность заключалась в том, что не было запуска блока питания от сети.

Начнем с того, что блок питания работает в двух режимах: от сети, напряжением 220 вольт и от автомобильного аккумулятора, напряжением 12 вольт.

Рассмотрим принцип работы блока питания от сети 220 вольт.

Что входит в блок стабилизации смотрите здесь!

Перед тем как подключить блок питания к сети 220 вольт, я запустил его от 12 вольт и тем самым убедился в исправности микросхемы так как он сразу у меня заработал. Затем я подключил его к сети.

При включении блока питания в сеть 220 вольт, с выпрямителя VD1 — VD4 через цепь R5 и диод VD5 происходит заряд конденсатора С43 за 5…7 секунд до напряжения 70 — 90 вольт. Вместе с тем выпрямленное пульсирующее напряжение с моста VD1 — VD4 подается через цепь R3, R9 и R13 на блок стабилизации напряжения и заряжает конденсатор С8, с которого подается напряжение на триггер импульсного формирователя собранного на транзисторах VT2, VT3 и VT4 для включения тиристора VT1. После чего я услышал щелчки в импульсном трансформаторе с большой периодичностью.

Щелчки указывали на попытки блока питания запустится но его постоянно, что то сдерживало. Присутствие щелчков указывало на то, что «Триггер импульсного формирователя» и «Формирователь пилообразного напряжения» работали исправно. Следующим шагом я решил проверить исправность триггера токовой защиты с отрицательной обратной связью.

Опишу принцип работы токовой защиты, чтобы всем было понятно. Напряжение на эмиттере транзистора VT9 должно быть все время около 9 вольт, для нормальной работы блока питания. При увеличении тока нагрузки блока питания, на эмиттер транзистора VT10, триггера токовой защиты будет подаваться напряжение отрицательной полярности с резистора R4 и это приведет к тому, что откроются оба транзистора VT10 и VT9. Таким образом напряжение на транзисторах VT5 и VT9 будет падать.

Проследим цепочку с эмиттера транзистора VT5, VT18, R20 и второй вывод микросхемы К174ГФ1. В зависимости от величины напряжения на выводе 2 микросхемы К174ГФ1, определяется частора следования импульсов на выходе микросхемы, вывод 4.

После моего краткого изложения принципа работы токовой защиты, я продолжу свой рассказ по ремонту блока питания.

Измерив напряжение на коллекторе транзистора VT5 стало известно, что оно было порядка 2-х вольт и не достаточным для нормальной работы блока. Я подумал на то, что неисправен триггер токовой защиты и после не долгих промеров пришел к выводу о его исправности. Затем измерев параметры цепочки VT18, R20, неисправность была найдена. Она крылась в излишне увеличенном сопротивлении резистора R20 от номинального значения и таким образом в отсутствии номинального напряжения на выводе 2 микросхемы К174ГФ1.

Это привело к тому, что микросхема работала на низкой частоте и таким образом катушка I, первичной обмотки трансформатора Т3 не успевала накопить достаточную энергию для поддержания своего индуктивного сопротивления и работала на омическом сопротивлении обмоточного провода, что привело к срабатыванию токовой защиты и присутствию щелчков в импульсном трансформаторе с большой периодичностью.

Теперь разберем работу блока питания от 12 вольт

При работе от 12 вольт не работает блок стабилизации выходного напряжения.

После подачи напряжения 12 вольт на вывод 5 микросхемы К174ГФ1 она запускается и на выходе 4 формируются импульсы которые в свою очередь приходят на эмиттер транзистора VT11 где с его коллектора импульсы подаются на базу транзистора VT12 который через обмотку 1 , 2 согласующего трансформатора Т1 передает мощность во вторичную обмотку 5,6 и базу транзистора VT15. Транзистор VT15 работает на первичную обмотку 5,6 выходного трансформатора Т3 со вторичных обмоток которого снимаются необходимые напряжения для питания телевизора.

Я надеюсь, что написанная мной статья, поможет Вам при ремонте блока питания телевизора «Электроника Ц432» и подобных блоков питания. Самое главное понять логику работы импульсного блока питания.
Желаю всем приятного ремонта!

Совет при ремонте блока питания «Электроника Ц432»

Если у Вас не запускается блок питания от сети 220 вольт, то при отыскании неисправности, начните проверку с подключения его от 12 вольт. Это позволит сузить круг проверяемых узлов и элементов, читайте дальше на сайте кухни.бел полезные статьи как правильно выбирать кухни под заказ, как заменить фасады и обновить мебель, как благоустроить кухонный и жилой интерьер.

 

Смотрите также:

Что такое импульсный источник питания (SMPS)?

Что означает импульсный источник питания (SMPS)?

Импульсный источник питания (SMPS) — это электронная схема, которая преобразует мощность с помощью переключающих устройств, которые включаются и выключаются на высоких частотах, и запоминающих компонентов, таких как катушки индуктивности или конденсаторы, для подачи энергии, когда переключающее устройство находится в нерабочем состоянии. состояние проводимости.

Импульсные источники питания имеют высокий КПД и широко используются в разнообразном электронном оборудовании, включая компьютеры и другое чувствительное оборудование, требующее стабильного и эффективного источника питания.

Импульсный источник питания также известен как импульсный источник питания или импульсный источник питания.

Techopedia объясняет импульсный источник питания (SMPS)

Импульсные источники питания классифицируются по типу входного и выходного напряжения. Четыре основные категории:

  • переменного тока в постоянный ток
  • от постоянного тока до постоянного тока
  • от постоянного тока до переменного тока
  • AC в AC

Основной изолированный импульсный источник питания переменного тока в постоянный состоит из:

  • Входной выпрямитель и фильтр
  • Инвертор, состоящий из переключающих устройств, таких как полевые МОП-транзисторы
  • Трансформатор
  • Выходной выпрямитель и фильтр
  • Цепь обратной связи и управления

Входной источник постоянного тока от выпрямителя или батареи подается на инвертор, где он включается и выключается на высоких частотах от 20 кГц до 200 кГц с помощью переключающего полевого МОП-транзистора или силовых транзисторов.Высокочастотные импульсы напряжения от инвертора подаются на первичную обмотку трансформатора, а вторичный выходной переменный ток выпрямляется и сглаживается для получения необходимых постоянных напряжений. Схема обратной связи контролирует выходное напряжение и дает команду схеме управления отрегулировать рабочий цикл, чтобы поддерживать выходной сигнал на желаемом уровне.

Существуют различные конфигурации схем, известные как топологии, каждая из которых имеет уникальные характеристики, преимущества и режимы работы, которые определяют, как входная мощность передается на выход.

Большинство широко используемых топологий, таких как обратноходовая, двухтактная, полумостовая и полная мостовая, состоят из трансформатора для обеспечения развязки, масштабирования напряжения и нескольких выходных напряжений. Неизолированные конфигурации не имеют трансформатора, а преобразование энергии обеспечивается индуктивной передачей энергии.

Преимущества импульсных источников питания:

  • Повышенный КПД от 68% до 90%
  • Регулируемые и надежные выходы независимо от изменений входного напряжения питания
  • Маленький размер и легче
  • Гибкая техника
  • Высокая удельная мощность

Недостатки:

  • Создает электромагнитные помехи
  • Сложная схемотехника
  • Дороже по сравнению с линейными расходными материалами

Импульсные источники питания используются для питания разнообразного оборудования, такого как компьютеры, чувствительная электроника, устройства с батарейным питанием и другое оборудование, требующее высокой эффективности.

Apple не произвела революцию в источниках питания; новых транзисторов сделал

Новая биография Стив Джобс содержит замечательное заявление о блоке питания Apple II и его разработчике Роде Холте: [1]
Вместо обычного линейного источника питания Холт построил тот, который используется в осциллографах. Он включал и выключал питание не шестьдесят раз в секунду, а тысячи раз; это позволило ему сохранять энергию в течение гораздо меньшего времени и, следовательно, отбрасывать меньше тепла. «Этот импульсный источник питания был столь же революционным, как и материнская плата Apple II», — сказал позже Джобс.«Род не получил большого признания за это в учебниках истории, но он должен. Каждый компьютер теперь использует импульсные блоки питания, и все они копируют дизайн Рода Холта».
Мне показалось удивительным то, что в компьютерах теперь используются блоки питания, основанные на дизайне Apple II, поэтому я провел небольшое расследование. Оказывается, блок питания Apple не был революционным ни в концепции использования импульсного блока питания для компьютеров, ни в специфической конструкции блока питания. Современные компьютерные блоки питания совершенно разные и не копируют дизайн Рода Холта.Оказывается, Стив Джобс делал свое обычное заявление о том, что все воруют революционные технологии Apple, что полностью противоречит действительности.

История импульсных блоков питания оказалась довольно интересной. Хотя большинство людей рассматривают блок питания как скучную металлическую коробку, на самом деле за этим стоит много технологических разработок. Фактически произошла революция в источниках питания в конце 1960-х — середине 1970-х годов, когда импульсные источники питания пришли на смену простым, но неэффективным линейным источникам питания, но это произошло за несколько лет до выхода Apple II в 1977 году.Заслуга этой революции следует отдать достижениям в полупроводниковой технологии, в частности, усовершенствованиям в переключающих транзисторах, а затем и инновационным ИС для управления импульсными источниками питания [2].

Немного об источниках питания

В стандартном настольном компьютере источник питания преобразует сетевое напряжение переменного тока в постоянное, обеспечивая несколько тщательно регулируемых низких напряжений при высоких токах. Источники питания могут быть построены различными способами, но линейные и импульсные источники питания — это два метода, относящиеся к этому обсуждению.(См. Примечания для получения дополнительной информации об устаревших технологиях, таких как большие механические мотор-генераторные системы [3] и феррорезонансные трансформаторы [4] [5].)

Типичный линейный источник питания использует громоздкий силовой трансформатор для преобразования 120 В переменного тока в низкое напряжение переменного тока, преобразует его в постоянное напряжение низкого напряжения с помощью диодного моста, а затем использует линейный регулятор для понижения напряжения до желаемого уровня. Линейный регулятор — это недорогой, простой в использовании компонент на основе транзистора, который превращает избыточное напряжение в отходящее тепло для получения стабильного выходного сигнала.Линейные источники питания почти несложно спроектировать и изготовить [6]. Однако одним большим недостатком является то, что они обычно расходуют около 50-65% энергии в виде тепла [7], часто требуя больших металлических радиаторов или вентиляторов для отвода тепла. Второй недостаток — они большие и тяжелые. С другой стороны, компоненты (кроме трансформатора) в линейных источниках питания должны работать только с низкими напряжениями, а выход очень стабильный и бесшумный.

Импульсный источник питания работает по совершенно другому принципу: быстрое включение и выключение питания, а не превращение избыточной мощности в тепло.В импульсном источнике питания входная линия переменного тока преобразуется в высоковольтный постоянный ток, а затем источник питания включает и выключает постоянный ток тысячи раз в секунду, тщательно контролируя время переключения, чтобы выходное напряжение в среднем составляло желаемое значение. Теоретически энергия не тратится зря, хотя на практике КПД будет 80% -90%. Импульсные источники питания намного эффективнее, выделяют гораздо меньше тепла и намного меньше и легче линейных источников питания. Основным недостатком импульсного источника питания является то, что он значительно сложнее линейного источника питания и намного сложнее в проектировании.[8] Кроме того, это гораздо более требовательно к компонентам, требуя транзисторов, которые могут эффективно включаться и выключаться на высокой скорости при большой мощности. Переключатели, катушки индуктивности и конденсаторы в импульсном источнике питания могут быть расположены в нескольких различных схемах (или топологиях) с такими названиями, как Buck, Boost, Flyback, Forward, Push-Pull, Half Wave и Full-Wave [9]. ]

История импульсных источников питания до 1977 г.

Принципы импульсных источников питания были известны с 1930-х годов [6] и строились из дискретных компонентов в 1950-х годах.[10] В 1958 году в компьютере IBM 704 использовался импульсный стабилизатор на основе примитивных электронных ламп. [11] Компания Pioneer Magnetics начала производство импульсных источников питания в 1958 году [12] (а спустя десятилетия внесла ключевое новшество в блоки питания для ПК [13]). General Electric опубликовала первый проект импульсного источника питания в 1959 году [14]. В 1960-х годах аэрокосмическая промышленность и НАСА [15] были основной движущей силой разработки импульсных источников питания, поскольку преимущества небольшого размера и высокой эффективности компенсировали высокую стоимость.[16] Например, НАСА использовало переключатели для спутников [17] [18], таких как Telstar в 1962 году. [19]

Компьютерная промышленность начала использовать импульсные блоки питания в конце 1960-х годов, и их популярность неуклонно росла. Примеры включают миникомпьютер PDP-11/20 в 1969 г. [20] Honeywell h416R в 1970 г. [21] и мини-компьютер Hewlett-Packard 2100A в 1971 г. [22] [23] К 1971 году компании, использующие импульсные регуляторы, «читали как« Кто есть кто »компьютерной индустрии: IBM, Honeywell, Univac, DEC, Burroughs и RCA, и это лишь некоторые из них.»[21] В 1974 году HP использовала импульсный источник питания для миникомпьютера 21MX, [24] Data General для Nova 2/4, [25] Texas Instruments для 960B, [26] и Interdata для своих мини-компьютеров. [27] В 1975 году HP использовала автономный импульсный источник питания в дисплейном терминале HP2640A, [28] Matsushita для своего миникомпьютера для управления трафиком [29], а IBM — в своем подобном пишущей машинке Selectric Composer [29] и портативном компьютере IBM 5100. . [30] К 1976 году Data General использовала импульсные блоки питания для половины своих систем, Hitachi и Ferranti использовали их [29], настольный компьютер Hewlett-Packard 9825A [31] и калькулятор 9815A [32] использовали их, а decsystem 20 [33] — большой импульсный блок питания.К 1976 году в жилых комнатах появились импульсные источники питания, питающие цветные телевизионные приемники. [34] [35]

Импульсные блоки питания также стали популярными продуктами для производителей блоков питания, начиная с конца 1960-х годов. В 1967 году RO Associates представила первый импульсный источник питания 20 кГц [36], который, как они утверждают, также стал первым коммерчески успешным импульсным источником питания [37]. NEMIC начала разработку стандартизированных импульсных источников питания в Японии в 1970 году.[38] К 1972 году большинство производителей блоков питания предлагали импульсные блоки питания или собирались предложить их. [5] [39] [40] [41] [42] HP продала линейку импульсных источников питания мощностью 300 Вт в 1973 году [43], а также компактный импульсный источник питания мощностью 500 Вт [44] и импульсный импульсный источник питания мощностью 110 Вт [45] в 1975 году. К 1975 году импульсные источники питания составляли 8% мощности. рынок поставок и быстро растет, движимый улучшенными компонентами и желанием иметь меньшие блоки питания для таких продуктов, как микрокомпьютеры. [46]

Импульсные источники питания были представлены в журналах по электронике того времени, как в рекламных объявлениях, так и в статьях. Electronic Design рекомендовал импульсные источники питания в 1964 году для повышения эффективности [47]. На обложке журнала Electronics World за октябрь 1971 года был представлен импульсный блок питания мощностью 500 Вт и статья «Блок питания импульсного регулятора». В длинной статье о блоках питания в Computer Design в 1972 году подробно обсуждались импульсные источники питания и растущее использование импульсных источников питания в компьютерах, хотя в ней упоминается, что некоторые компании все еще скептически относились к импульсным источникам питания.[5] В 1973 году в журнале Electronic Engineering была опубликована подробная статья «Импульсные источники питания: зачем и как» [42]. В 1976 году обложка журнала Electronic Design [48] была озаглавлена ​​«Внезапно переключиться стало проще», описывая новые ИС контроллера импульсного источника питания, Electronics опубликовала длинную статью об импульсных источниках питания [29] Powertec разместила двухстраничную рекламу преимуществ своих импульсных источников питания с ключевой фразой «Большой переключатель — это переключатели» [49], а журнал Byte объявил о импульсных источниках питания Boschert для микрокомпьютеров.[50]

Ключевым разработчиком импульсных блоков питания был Роберт Бошерт, который уволился с работы и в 1970 году начал собирать блоки питания на своем кухонном столе [51]. Он сосредоточился на упрощении импульсных источников питания, чтобы сделать их экономически выгодными по сравнению с линейными источниками питания, и к 1974 году он начал массовое производство недорогих источников питания для принтеров [51] [52], за которым последовала недорогая коммутация мощностью 80 Вт. Электроснабжение в 1976 г. [50] К 1977 году Boschert Inc выросла до компании с 650 сотрудниками [51], которая производила блоки питания для спутников и истребителей F-14 [53], а затем блоки питания для таких компаний, как HP [54] и Sun.Люди часто думают, что настоящее время — уникальное время для технологических стартапов, но Бошерт показывает, что стартапы на кухонном столе происходили даже 40 лет назад.

Развитие импульсных источников питания в 1970-х годах во многом было обусловлено появлением новых компонентов [55]. Номинальное напряжение коммутируемых транзисторов часто было ограничивающим фактором [5], поэтому появление в конце 1960-х — начале 1970-х годов высокоскоростных и мощных транзисторов с низким напряжением значительно увеличило популярность импульсных источников питания.[5] [6] [21] [16] Технология транзисторов развивалась так быстро, что коммерческий блок питания мощностью 500 Вт, представленный на обложке Electronics World в 1971 году, не мог быть построен с транзисторами всего 18 месяцев назад [21]. Как только силовые транзисторы смогут выдерживать сотни вольт, источники питания смогут отказаться от тяжелого силового трансформатора с частотой 60 Гц и работать в автономном режиме непосредственно от сетевого напряжения. Более высокая скорость переключения транзисторов позволила использовать более эффективные и гораздо более компактные источники питания. Введение интегральных схем для управления импульсными источниками питания в 1976 году широко рассматривается как начало эры импульсных источников питания за счет их радикального упрощения.[10] [56]

К началу 1970-х годов стало ясно, что происходит революция. Производитель блоков питания Уолт Хиршберг заявил в 1973 году, что «революция в конструкции блоков питания, происходящая в настоящее время, не будет завершена до тех пор, пока трансформатор на 60 Гц не будет почти полностью заменен» [57]. В 1977 году во влиятельной книге по источникам питания говорилось, что » считалось, что импульсные регуляторы совершают революцию в отрасли электроснабжения »[58].

Apple II и его блок питания

Персональный компьютер Apple II был представлен в 1977 году.Одной из его особенностей был компактный импульсный блок питания без вентилятора, который обеспечивал мощность 38 Вт при 5, 12, -5 и -12 вольт. Блок питания Holt Apple II имеет очень простую конструкцию с автономной топологией обратноходового преобразователя. [59]

Стив Джобс сказал, что теперь каждый компьютер копирует революционный дизайн Рода Холта [1]. Но революционен ли этот дизайн? Был ли он сорван с любого другого компьютера?

Как показано выше, ко времени выпуска Apple II на многих компьютерах использовались импульсные блоки питания.Конструкция не является особенно революционной, поскольку аналогичные простые автономные обратноходовые преобразователи продавались Boschert [50] [60] и другими компаниями. В долгосрочной перспективе создание схемы управления из дискретных компонентов, как это сделала Apple, было тупиковой технологией, поскольку будущее импульсных источников питания было за ИС контроллеров ШИМ [2]. Удивительно, что Apple продолжала использовать дискретные генераторы в источниках питания даже через Macintosh Classic, так как контроллеры IC были представлены в 1975 году. [48] Apple действительно перешла на контроллеры IC, например, в Performa [61] и iMac.[62]

Блок питания, который Род Холт разработал для Apple, был достаточно инновационным, чтобы получить патент [63], поэтому я подробно изучил патент, чтобы увидеть, есть ли какие-нибудь менее очевидные революционные особенности. В патенте описаны два механизма защиты источника питания от неисправностей. Первый (пункт 1) — это механизм безопасного запуска генератора через вход переменного тока. Второй механизм (пункт 8) возвращает избыточную энергию от трансформатора к источнику питания (особенно при отсутствии нагрузки) через зажимную обмотку на трансформаторе и диод.

Это блок питания AA11040-B для Apple II Plus. [59] Питание переменного тока поступает слева, фильтруется, проходит через большой переключающий транзистор к трансформатору обратного хода в середине, выпрямляется диодами справа (на радиаторах), а затем фильтруется конденсаторами справа. Схема управления находится внизу. Фотография использована с разрешения kjfloop, Copyright 2007.

Механизм запуска переменного тока не использовался Apple II, [59] но использовался Apple II Plus, [64] Apple III, [65] Lisa, [66] Macintosh, [67] и Mac 128K через Classic.[68] Я не смог найти никаких источников питания сторонних производителей, которые использовали бы этот механизм, [69] за исключением блока питания телевизора 1978 года, [70] и он стал устаревшим контроллерами IC, поэтому этот механизм, похоже, не повлиял на компьютерный блок питания.

Второй механизм в патенте Холта, зажимная обмотка и диод для возврата мощности в обратном преобразователе, использовался в различных источниках питания до середины 1980-х годов, а затем исчез. Некоторые примеры — источник питания Boschert OL25 (1978), [60] Apple III (1980), [65] Документация Apple по источникам питания (1982 г.), [59] Жесткий диск Tandy (1982 г.), [71] Тэнди 2000 (1983), [72] [73] Яблочная Лиза (1983), [66] Apple Macintosh (1984 г.), [67] Commodore Model B128 (1984), [74] Тэнди 6000 (1985), [75] а также От Mac Plus (1986) до Mac Classic (1990).[68] Эта обмотка с обратным зажимом, по-видимому, была популярна в Motorola в 1980-х годах, она фигурирует в техническом описании микросхемы контроллера MC34060 [76], руководстве разработчика 1983 года [77] (где обмотка была описана как обычная, но необязательная) и в примечании к применению 1984 года. . [78]

Этот зажим с обратным ходом наматывает новаторство Холта, которое сорвали другие компании? Я так думал, пока не нашел книгу по источникам питания 1976 года, в которой подробно описывалась эта обмотка [35], которая испортила мой рассказ. (Также обратите внимание, что в прямых преобразователях (в отличие от обратных преобразователей) эта зажимная обмотка использовалась еще в 1956 г. [79] [80] [81], поэтому ее применение в обратном преобразователе в любом случае не кажется большим скачком. .)

Одним из вызывающих недоумение аспектов обсуждения источников питания в книге Стива Джобса [1] является утверждение, что источник питания Apple II «похож на те, что используются в осциллографах», поскольку осциллографы — это всего лишь одно небольшое применение для переключения источников питания. Это утверждение, по-видимому, возникло из-за того, что Холт ранее разработал импульсный источник питания для осциллографов [82], но нет другой связи между источником питания Apple и источниками питания осциллографов.

Наибольшее влияние Apple II на индустрию блоков питания оказала Astec — гонконгская компания, производившая блоки питания.До того, как вышел Apple II, Astec была малоизвестным производителем импульсных инверторов постоянного тока в постоянный. Но к 1982 году Astec стала ведущим в мире производителем импульсных источников питания, почти полностью опираясь на бизнес Apple, и удерживала первое место в течение ряда лет. [83] [84] В 1999 году Astec была приобретена компанией Emerson [85], которая в настоящее время является второй по величине компанией в области энергоснабжения после Delta Electronics. [86]

Малоизвестный факт об источнике питания Apple II заключается в том, что он изначально собирался калифорнийскими домохозяйками из среднего класса как сдельная.[83] Однако по мере роста спроса строительство источника питания было передано Astec, хотя оно стоило на 7 долларов больше. К 1983 году Astec производила 30 000 блоков питания Apple в месяц. [83]

Блоки питания post-Apple

В 1981 году был выпущен IBM PC, который оказал долгосрочное влияние на конструкции блоков питания компьютеров. Блоки питания для оригинального ПК IBM 5150 производились компаниями Astec и Zenith. [83] В этом источнике питания мощностью 63,5 Вт используется обратная схема, управляемая микросхемой контроллера источника питания NE5560.[87]

Я буду подробно сравнивать блок питания для ПК IBM 5150 с блоком питания Apple II, чтобы показать их общие черты и различия. Оба они представляют собой автономные источники питания с обратным ходом и несколькими выходами, но это почти все, что у них общего. Несмотря на то, что в блоке питания ПК используется контроллер IC, а в Apple II используются дискретные компоненты, в блоке питания ПК используется примерно в два раза больше компонентов, чем в блоке питания Apple II. В то время как в блоке питания Apple II используется генератор переменной частоты, построенный на транзисторах, в блоке питания ПК используется генератор ШИМ фиксированной частоты, обеспечиваемый микросхемой контроллера NE5560.В ПК используются оптоизоляторы для обеспечения обратной связи по напряжению с контроллером, а в Apple II используется небольшой трансформатор. Apple II напрямую управляет силовым транзистором, в то время как ПК использует управляющий трансформатор. ПК проверяет все четыре выхода мощности на соответствие нижнему и верхнему пределам напряжения, чтобы убедиться, что мощность в норме, и выключает контроллер, если какое-либо напряжение выходит за пределы спецификации. Apple II вместо этого использует лом SCR на выходе 12 В, если это напряжение слишком высокое. В то время как обратноходовой трансформатор ПК имеет одну первичную обмотку, Apple II использует дополнительную первичную фиксирующую обмотку для возврата мощности, а также другую первичную обмотку для обратной связи.ПК обеспечивает линейное регулирование от источников питания 12 В и -5 В, а Apple II — нет. В ПК используется вентилятор, а в Apple II — нет. Понятно, что блок питания IBM 5150 не «сдирает» конструкцию блоков питания Apple II, поскольку между ними почти нет ничего общего. А позже конструкции блоков питания стали еще более разными.

Блок питания IBM PC AT стал де-факто стандартом для блоков питания компьютеров. В 1995 году Intel представила спецификацию материнской платы ATX [88], а блок питания ATX (вместе с вариантами) стал стандартом для блоков питания настольных компьютеров, при этом компоненты и конструкции часто ориентированы именно на рынок ATX.[89]

Компьютерные системы питания стали более сложными с появлением в 1995 году модуля регулятора напряжения (VRM) для Pentium Pro, который требовал более низкого напряжения при более высоком токе, чем источник питания мог обеспечить напрямую. Для обеспечения этого питания Intel представила VRM — импульсный стабилизатор постоянного тока, установленный рядом с процессором, который снижает 12 вольт от источника питания до низкого напряжения, используемого процессором [90]. (Если вы разгоняете свой компьютер, именно VRM позволяет поднять напряжение.) Кроме того, видеокарты могут иметь собственный VRM для питания высокопроизводительного графического чипа. Быстрому процессору может потребоваться 130 Вт от VRM. Сравнение этого с половиной ватта мощности, используемой процессором Apple II 6502 [91], показывает огромный рост энергопотребления современных процессоров. Один только современный процессорный чип может использовать более чем в два раза мощность всего компьютера IBM 5150 или в три раза больше, чем Apple II.

Поразительный рост компьютерной индустрии привел к тому, что потребление энергии компьютерами стало причиной беспокойства об окружающей среде, что привело к появлению инициатив и нормативных актов, направленных на повышение эффективности источников питания.[92] В США сертификация Energy Star и 80 PLUS [93] подталкивает производителей к производству более эффективных «зеленых» источников питания. Эти источники питания обеспечивают большую эффективность с помощью различных методов: более эффективное резервное питание, более эффективные схемы запуска, резонансные схемы (также известные как мягкое переключение и ZCT или ZVT), которые снижают потери мощности в переключающих транзисторах за счет отсутствия питания проходит через них, когда они выключаются, и схемы «активного зажима» для замены переключающих диодов на более эффективные транзисторные схемы.[94] Усовершенствования в технологии MOSFET-транзисторов и высоковольтных кремниевых выпрямителей за последнее десятилетие также привели к повышению эффективности. [92]

Источники питания могут более эффективно использовать мощность сети переменного тока с помощью метода коррекции коэффициента мощности (PFC). [95] Активная коррекция коэффициента мощности добавляет еще одну схему переключения перед основной схемой источника питания. Специальная ИС контроллера PFC переключает его с частотой до 250 кГц, аккуратно извлекая плавное количество энергии из источника питания для создания постоянного высокого напряжения, которое затем подается в обычную схему импульсного источника питания.[13] [96] PFC также иллюстрирует, как блоки питания превратились в товар с очень тонкой маржой, где доллар — это большие деньги. Активная коррекция коэффициента мощности считается особенностью высокопроизводительных источников питания, но ее фактическая стоимость составляет всего около 1,50 доллара США [97].

На протяжении многих лет для блоков питания IBM PC использовалось множество различных микросхем контроллеров, конструкций и топологий, как для поддержки различных уровней мощности, так и для использования преимуществ новых технологий. [98] Микросхемы контроллеров, такие как NE5560 и SG3524, были популярны в ранних ПК IBM.[99] Микросхема TL494 стала очень популярной в конфигурации полумоста, [99] самой популярной конструкции в 1990-х. [100] Серия UC3842 также была популярна для конфигураций прямого преобразователя. [99] Стремление к повышению эффективности сделало двойные прямые преобразователи более популярными [101], а коррекция коэффициента мощности (PFC) сделала контроллер CM6800 очень популярным [102], поскольку одна микросхема управляет обеими цепями. В последнее время стали более распространены прямые преобразователи, генерирующие только 12 В, с использованием преобразователей постоянного тока для обеспечения очень стабильной 3.Выходы 3 В и 5 В. [94] Более подробную информацию о современных источниках питания можно получить из многих источников. [103] [104] [98] [105]

В этом типичном блоке питания XT мощностью 150 Вт используется популярная полумостовая конструкция. Фильтр переменного тока на входе справа. Слева от него находится схема управления / драйвера: микросхема TL494 вверху управляет маленьким желтым приводным трансформатором внизу, который управляет двумя переключающими транзисторами на радиаторах внизу. Слева от него находится больший желтый главный трансформатор с вторичными диодами и регулятором на радиаторах и выходной фильтром слева.Этот полумостовой блок питания полностью отличается от конструкции Apple II с обратной связью. Авторское право на фотографию: larrymoencurly, использовано с разрешения.

Современные компьютеры содержат удивительный набор импульсных источников питания и регуляторов. Современный источник питания может содержать переключающую схему PFC, переключающий обратноходовой источник питания для резервного питания, переключающий прямой преобразователь для генерации 12 вольт, переключающий преобразователь постоянного тока в постоянный для генерации 5 вольт и переключающий преобразователь постоянного тока в постоянный для генерации 3 .3 вольта, [94] поэтому блок питания ATX можно рассматривать как пять различных импульсных блоков питания в одной коробке. Кроме того, на материнской плате есть импульсный регулятор VRM для питания процессора, а на видеокарте есть еще один VRM, всего семь переключаемых источников питания в типичном настольном компьютере.

Технология импульсных источников питания продолжает развиваться. Одно из разработок — цифровое управление и цифровое управление питанием. [106] Вместо использования аналоговых схем управления микросхемы цифрового контроллера оцифровывают управляющие входы и используют программные алгоритмы для управления выходами.Таким образом, проектирование контроллера источника питания становится вопросом программирования не меньше, чем проектирования аппаратного обеспечения. Цифровое управление питанием позволяет источникам питания обмениваться данными с остальной системой для повышения эффективности и ведения журналов. Хотя сейчас эти цифровые технологии в основном используются для серверов, я ожидаю, что в конечном итоге они перейдут на настольные компьютеры.

Подводя итог, можно сказать, что исходный блок питания для ПК IBM 5150 почти во всех отношениях отличался от блока питания Apple II, за исключением того, что оба блока питания были обратноходовыми.Более современные блоки питания не имеют ничего общего с Apple II. Абсурдно утверждать, что блоки питания копируют дизайн Apple.

Известные конструкторы импульсных источников питания

Стив Джобс сказал, что Род Холт должен быть более известен тем, что разработал блок питания для Apple II: «Род не получил большого признания за это в учебниках истории, но он должен» [1]. Но даже в лучшем случае разработчики блоков питания не известны за пределами очень небольшого сообщества. Роберт Бошерт был занесен в Зал славы электронной инженерии Electronic Design в 2009 году за работу в области энергоснабжения.[51] Роберт Маммано получил награду за заслуги перед компанией Power Electronics Technology в 2005 году за начало производства ИС для контроллеров с ШИМ [10]. В 2008 году Руди Севернс получил награду за заслуги перед Power Electronics Technology за свои инновации в импульсных источниках питания. [107] Но ни один из этих людей не известен даже в Википедии. Другим крупным новаторам в этой области уделяется еще меньше внимания. [108] Я неоднократно сталкивался с работой Эллиота Джозефсона, который проектировал спутниковые системы питания в начале 1960-х годов [18], имеет множество патентов на источники питания, включая Tandy 6000 [75], и даже номер его патента напечатан на Apple II Plus. и платы источника питания Osborne 1 [59], но он, похоже, полностью не распознан.

Ирония в комментарии Стива Джобса о том, что Роду Холту не уделяют должного внимания, заключается в том, что работа Рода Холта описана в десятках книг и статей об Apple, от Revenge of the Nerds, в 1982 [109] до лучших работ 2011 года. продавая биографию Стива Джобса, что делает Рода Холта самым известным дизайнером блоков питания за всю историю.

Заключение

Источники питания — это не скучные металлические коробки, как думает большинство людей; у них много интересной истории, во многом обусловленной усовершенствованием транзисторов, которые сделали импульсные источники питания практичными для компьютеров в начале 1970-х годов.Совсем недавно стандарты эффективности, такие как 80 PLUS, вынудили источники питания стать более эффективными, что привело к появлению новых конструкций. Apple II продавал огромное количество импульсных блоков питания, но его конструкция блока питания представляла собой технологический тупик, который не был «сорван» другими компьютерами.

Если вас интересуют источники питания, вам также может понравиться моя статья «Крошечный, дешевый и опасный: внутри (поддельного) зарядного устройства для iPhone».

Примечания и ссылки

Я потратил слишком много времени на изучение источников питания, анализ схем и копание в старых журналах по электронике.Вот мои заметки и ссылки на случай, если они кому-то пригодятся. Мне было бы интересно услышать от разработчиков источников питания, которые имели непосредственный опыт разработки источников питания в 1970-х и 1980-х годах.

[1] Стив Джобс , Уолтер Исааксон, 2011. Дизайн блока питания Рода Холта для Apple II обсуждается на странице 74. Обратите внимание, что описание импульсного блока питания в этой книге довольно искажено.

[2] ШИМ: от одного чипа к гигантской отрасли, Джин Хефтман, Power Electronics Technology, стр 48-53, октябрь 2005 г.

[3] Предварительное планирование площадки: компьютер Cray-1 (1975) В Cray-1 использовались два мотор-генератора мощностью 200 л.с. (150 кВт) для преобразования входного переменного тока 250 А 460 В в регулируемую мощность 208 В, 400 Гц; каждый мотор-генератор был примерно 3900 фунтов. Мощность 208 В, 400 Гц подавалась на 36 отдельных источников питания, в которых использовались двенадцатифазные трансформаторы, но не было внутренних регуляторов. Эти блоки питания образуют 12 верстаков вокруг компьютера Cray. Фотографии силовых компонентов Cray можно найти в Справочном руководстве по аппаратному обеспечению Cray-1 серии S (1981).Эта высокочастотная установка двигатель-генератор может показаться странной, но в IBM 370 использовалась аналогичная установка, см. Объявление: IBM System / 370 Model 145.

[4] Во многих более крупных компьютерах для регулирования использовались феррорезонансные трансформаторы. Например, в блоке питания компьютера IBM 1401 использовался феррорезонансный регулятор мощностью 1250 Вт, см. Справочное руководство, 1401 Data Processing System (1961), стр. 13. В HP 3000 Series 64/68/70 также использовались феррорезонансные трансформаторы, см. Руководство по установке компьютеров Series 64/68/70 (1986), стр. 2-3.DEC использовала феррорезонансные и линейные источники питания почти исключительно в начале 1970-х годов, в том числе для PDP-8 / A (рисунок в «Выбор источника питания вырисовывается в сложных конструкциях», Electronics , Oct 1976, volume 49, p111).

[5] «Источники питания для компьютеров и периферийных устройств», Computer Design , июль 1972 г., стр. 55-65. В этой длинной статье о блоках питания много говорится об импульсных блоках питания. Он описывает понижающую (последовательную), повышающую (шунтирующую), двухтактную (инверторную) топологии и полную мостовую топологию.В статье говорится, что номинальное напряжение переключающего транзистора является ограничивающим параметром во многих приложениях, но «высоковольтные высокоскоростные транзисторы становятся все более доступными по низкой цене — важный фактор более широкого использования источников импульсных стабилизаторов». В нем делается вывод, что «Доступность высоковольтных, высокомощных переключающих транзисторов по умеренным ценам дает дополнительный импульс использованию высокоэффективных импульсных обычных [sic] источников питания. В этом году ожидается существенное увеличение их использования.»

В статье также говорится: «Одной из наиболее спорных тем является продолжающаяся дискуссия о ценности импульсных источников питания для компьютерных приложений по сравнению с обычными последовательными транзисторными регуляторами». Это подтверждается некоторыми комментариями производителей. Одним из скептиков была компания Elexon Power Systems, которая «не считает импульсные регуляторы« ответом ». В ближайшем будущем они планируют раскрыть совершенно новый подход к источникам питания ». Другой был Modular Power Inc, который «не рекомендовал переключать регуляторы, за исключением случаев, когда малый размер, легкий вес и высокая эффективность являются основными соображениями, как в портативном и бортовом оборудовании».«Sola Basic Industries» заявила, что «их инженеры крайне скептически относятся к долговременной надежности импульсных стабилизаторов в практических конструкциях массового производства и прогнозируют проблемы с отказом транзисторов».

Раздел статьи, посвященный комментариям производителей, дает представление о технологиях в отрасли электроснабжения в 1972 году: Hewlett Packard »указывает, что сегодня большое влияние оказывает доступность высокоскоростных, сильноточных и недорогих транзисторов, ускоряемая нынешней тенденцией к импульсным стабилизаторам.Компания широко использует переключатели в полном спектре конструкций с высокой мощностью ». Lambda Electronics «широко использует импульсные регуляторы на выходную мощность более 100 Вт», которые предназначены для предотвращения охлаждения вентилятором. Компания Analog Devices предложила прецизионные расходные материалы, в которых для повышения эффективности используются методы переключения. RO Associates «считает, что рост количества импульсных источников питания является серьезным изменением в области проектирования источников питания». Они предлагали миниатюрные источники на 20 кГц и недорогие источники на 60 кГц. Sola Basic Industries »прогнозирует, что производители миникомпьютеров будут использовать больше бестрансформаторных импульсных регуляторов в 1972 году для повышения эффективности и уменьшения размера и веса.» Trio Laboratories «указывает на то, что производители компьютеров и периферийных устройств обращаются к переходу на другой тип, потому что цены сейчас более конкурентоспособны, а приложения требуют меньшего размера».

[6] Практическая конструкция импульсного источника питания, Марти Браун, 1990, стр. 17.

[7] См. Раздел комментариев для подробного обсуждения эффективности линейного источника питания.

[8] Поваренная книга по источникам питания , Марти Браун, 2001. На странице 5 обсуждается относительное время разработки для различных технологий электропитания: линейный регулятор занимает 1 неделю от общего времени разработки, тогда как импульсный стабилизатор с ШИМ требует 8 человеко-месяцев.

[9] Обзор различных топологий можно найти в обзорах SMPS и топологиях источников питания. Подробности см. В Microchip AN 1114: Топологии SMPS и Топологии импульсных источников питания

[10] Лауреат премии за выслугу лет Роберт Маммано, Power Electronics Technology , сентябрь 2005 г., стр. 48-51. В этой статье Silicon General SG1524 (1975) описывается как ИС, открывшая эру импульсных регуляторов и импульсных источников питания.

[11] Справочное руководство по проектированию заказчиков IBM: Блок питания 736, Блок питания 741, Блок распределения питания 746 (1958), стр. 60-17.Блок питания для компьютера 704 состоит из трех шкафов размером с холодильник, заполненных электронными лампами, предохранителями, реле, механическими таймерами и трансформаторами, потребляющими мощность 90,8 кВА. В нем использовалось несколько методов регулирования, включая трансформаторы с насыщаемым реактором и опорное напряжение на основе термисторов. Выходы постоянного тока регулировались переключающим механизмом тиратрона с частотой 60 Гц. Тиратроны — это переключающие вакуумные лампы, которые управляют выходным напряжением (подобно триакам в обычном диммерном переключателе). Это можно рассматривать как импульсный источник питания (см. Источники питания, импульсные регуляторы, инверторы и преобразователи , Irving Gottlieb, pp 186-188).

[12] В своей рекламе Pioneer Magnetics заявляет, что они разработали свой первый импульсный источник питания в 1958 году. Например, см. Electronic Design , V27, p216.

[13] Источник питания с коэффициентом мощности Unity, патент 4677366. Pioneer Magnetics подала этот патент в 1986 году на активную коррекцию коэффициента мощности. См. Также статью Pioneer Magnetics «Почему PFC? страница.

[14] Один из первых импульсных источников питания был описан в «Транзисторный преобразователь-усилитель мощности», Д. А. Пейнтер, General Electric Co., Конференция по твердотельным схемам , 1959, стр. 90-91. Также см. Соответствующий патент 1960 г. 3067378 «Транзисторный преобразователь».

[15] Исследование бездиссипативного преобразователя постоянного тока в постоянный, Центр космических полетов Годдарда, 1964. Этот обзор транзисторных преобразователей постоянного тока показывает около 20 различных схем переключения, известных в начале 1960-х годов. Обратный преобразователь заметно отсутствует. Многие другие отчеты НАСА о преобразователях энергии за этот период доступны на сервере технических отчетов НАСА.

[16] Подробная история импульсных источников питания представлена ​​в S.J. M.Phil Уоткинса. дипломная работа Автоматическое тестирование импульсных источников питания, в гл. История и развитие импульсных источников питания до 1987 г.

[17] История развития импульсных источников питания, TDK Power Electronics World. Это дает очень краткую историю импульсных источников питания. В TDK также есть удивительно подробное обсуждение импульсных источников питания в комической форме: TDK Power Electronics World.

[18] «Спутниковый источник питания с регулируемой длительностью импульса», Electronics , февраль 1962 г., стр. 47-49. В этой статье Эллиота Джозефсона из Lockheed описывается ШИМ-преобразователь постоянного тока с постоянной частотой для спутников. См. Также патент 3219907 Устройство преобразования мощности.

[19] Система электроснабжения космического корабля, Telstar, 1963. Спутник Telstar получал энергию от солнечных элементов, сохраняя энергию в никель-кадмиевых батареях. Эффективность была критической для спутника, поэтому использовался импульсный стабилизатор напряжения постоянного тока с понижающим преобразователем, преобразующим переменное напряжение батареи в стабильное -16 В постоянного тока при мощности до 32 Вт при КПД до 92%.Поскольку спутнику требовался широкий диапазон напряжений, до 1770 вольт для усилителя RF, были использованы дополнительные преобразователи. Регулируемый постоянный ток преобразовывался в переменный, подавался на трансформаторы и выпрямлялся для получения необходимых напряжений.

[20] В некоторых моделях PDP, таких как PDP-11/20, использовался источник питания H720 (см. Руководство по PDP, 1969). Этот источник питания подробно описан в Руководстве по блоку питания и монтажной коробке H720 (1970). В источнике питания весом 25 фунтов используется силовой трансформатор для генерации 25 В постоянного тока, а затем импульсные регуляторы (понижающий преобразователь) для генерации 230 Вт регулируемого напряжения +5 и -15 вольт.Поскольку транзисторы той эпохи не могли работать с высоким напряжением, напряжение постоянного тока пришлось снизить до 25 вольт с помощью большого силового трансформатора.

[21] «Источник питания импульсного регулятора», Electronics World v86 October 1971, p43-47. Эта длинная статья об импульсных источниках питания была размещена на обложке журнала Electronics World . Статью стоит поискать хотя бы для изображения импульсного блока питания самолета F-111, которое выглядит настолько сложным, что я почти ожидал, что он посадит самолет.Импульсные источники питания, обсуждаемые в этой статье, сочетают в себе импульсный инвертор постоянного и переменного тока с трансформатором для изоляции с отдельным понижающим или повышающим импульсным стабилизатором. В результате в статье утверждается, что импульсные блоки питания всегда будут дороже линейных блоков питания из-за двух каскадов. Однако современные блоки питания сочетают в себе оба этапа. В статье обсуждаются различные источники питания, в том числе импульсный блок питания мощностью 250 Вт, используемый в Honeywell h416R. В статье говорится, что импульсный стабилизатор питания достиг совершеннолетия благодаря новым достижениям в области быстродействующих и мощных транзисторов.На обложке изображен импульсный блок питания мощностью 500 Вт, который, согласно статье, не мог быть построен с транзисторами, доступными всего полтора года назад.

[22] Источник питания Bantam для миникомпьютера, Hewlett-Packard Journal , октябрь 1971 г. Подробная информация о схемах в патенте «Высокоэффективный источник питания» 3 852 655. Это автономный источник питания мощностью 492 Вт с инверторами, за которыми следуют импульсные стабилизаторы на 20 В.

[23] HP2100A был представлен в 1971 году с импульсным источником питания (см. Основные характеристики HP2100A).Утверждается, что он имеет первый импульсный источник питания в миникомпьютере 25 лет работы в режиме реального времени, но PDP-11/20 был раньше.

[24] Компьютерная система питания для тяжелых условий эксплуатации, стр. 21, Hewlett-Packard Journal , октябрь 1974 г. В миникомпьютере 21MX использовался автономный переключающий пререгулятор мощностью 300 Вт для выработки регулируемого постоянного напряжения 160 В, которое подавалось на переключающие преобразователи постоянного тока в постоянный.

[25] Общее техническое руководство по данным Nova 2, 1974. В Nova 2/4 использовался импульсный стабилизатор для генерации 5 В и 15 В, в то время как в более крупном 2/10 использовался трансформатор постоянного напряжения.В руководстве говорится: «При более высоких потерях тока, связанных с компьютером, потери [от линейных регуляторов] могут стать чрезмерными, и по этой причине часто используется импульсный стабилизатор, как в NOVA 2/4».

[26] Модель 960B / 980B для обслуживания компьютеров Модель: источник питания В блоке питания миникомпьютера Texas Instruments 960B использовался импульсный стабилизатор для источника питания 5 В мощностью 150 Вт и линейные регуляторы для других напряжений. Импульсный стабилизатор состоит из двух параллельных понижающих преобразователей, работающих на частоте 60 кГц и использующих переключающие транзисторы 2N5302 NPN (введены в 1969 году).Поскольку транзисторы рассчитаны на максимальное напряжение 60 В, в блоке питания используется трансформатор для понижения напряжения до 35 В, которое подается на регулятор.

[27] Руководство по эксплуатации импульсных регулируемых источников питания M49-024 и M49-026, Interdata, 1974. Эти автономные полумостовые источники питания обеспечивали мощность 120 Вт или 250 Вт и использовались миникомпьютерами Interdata. В генераторе переключения используются микросхемы таймера 555 и 556.

[28] 2640A, источник питания Hewlett-Packard Journal , июнь 1975 г., стр. 15.«Импульсный источник питания был выбран из-за его эффективности и занимаемой площади». Также техническая информация о терминале данных. Другой интересный момент — его корпус, отлитый из структурной пены (p23), который очень похож на формованный из пенопласта корпус Apple II (см. Стр. 73 из Steve Jobs ) и несколькими годами ранее.

[29] «В сложных конструкциях большое значение имеет выбор источников питания», Electronics , октябрь 1976 г., том 49. p107-114. В этой длинной статье подробно рассматриваются источники питания, в том числе импульсные.Обратите внимание, что Selectric Composer сильно отличается от популярной пишущей машинки Selectric.

[30] Информационное руководство по обслуживанию портативного компьютера IBM 5100. IBM 5100 был портативным компьютером весом 50 фунтов, который использовал BASIC и APL, а также включал монитор и ленточный накопитель. Источник питания описан на стр. 4-61 как небольшой, высокомощный, высокочастотный импульсный импульсный стабилизатор, обеспечивающий 5 В, -5 В, 8,5 В, 12 В и -12 В.

[31] Настольный компьютер HP 9825A 1976 года использовал импульсный стабилизатор для источника питания 5 В.Он также использовал формованный корпус из пеноматериала, предшествующий Apple II; см. 98925A Product Design, Hewlett-Packard Journal , июнь 1976 г., стр. 5.

[32] Калькулятор среднего уровня обеспечивает большую мощность при меньших затратах, В журнале Hewlett-Packard Journal , июнь 1976 г. обсуждается импульсный источник питания 5 В, используемый в калькуляторе 9815A.

[33] Блок питания DEC H7420 описан в Decsystem 20 Power Supply System Description (1976). Он содержит 5 импульсных регуляторов для обеспечения нескольких напряжений и обеспечивает мощность около 700 Вт.В источнике питания используется большой трансформатор для снижения линейного напряжения до 25 В постоянного тока, которое передается на отдельные импульсные регуляторы, которые используют понижающую топологию для получения желаемого напряжения (+5, -5, +15 или +20).

Миникомпьютер Decsystem 20 представлял собой большую систему, состоящую из трех шкафов размером с холодильник. Потребовалось внушительное трехфазное питание мощностью 21,6 кВт, которое регулируется комбинацией импульсных и линейных регуляторов. Он содержал семь источников питания H7420 и около 33 отдельных импульсных регуляторов, а также линейный регулятор для ЦП, который использовал -12 В постоянного тока при 490 А.

[34] Импульсные источники питания для телевизионных приемников стали набирать обороты примерно в 1975–1976 годах. Philips представила TDA2640 для телевизионных импульсных источников питания в 1975 году. Philips опубликовала книгу «Импульсные источники питания в телевизионных приемниках » в 1976 году. Одним из недостатков все более широкого использования импульсных источников питания в телевизорах было то, что они вызывали помехи. с любительским радио, как обсуждалось в Wireless World, v82, p52, 1976.

[35] «Электронное управление мощностью и цифровые методы», Texas Instruments, 1976.В этой книге подробно рассматриваются импульсные источники питания.

В главе IV «Системы инвертора / преобразователя» описывается простой источник обратноходового питания мощностью 120 Вт, использующий силовой транзистор BUY70B, управляемый тиристором. Следует отметить, что в этой схеме используется дополнительная первичная обмотка с диодом для возврата неиспользованной энергии источнику.

В главе V «Импульсные источники питания» описывается конструкция импульсного источника питания 5 В 800 Вт на основе автономного импульсного шунтирующего регулятора, за которым следует преобразователь постоянного тока в постоянный.Он также описывает довольно простой обратноходовой источник питания с несколькими выходами, управляемый SN76549, разработанный для цветного телевидения с большим экраном.

[36] Вехи развития силовой электроники, Ассоциация производителей источников энергии.

[37] В 1967 году RO Associates представила первый успешный импульсный источник питания, импульсный источник питания 20 кГц, 50 Вт, модель 210 (см. «RO сначала в импульсные источники питания», Electronic Business , Volume 9, 1983, p36 .) К 1976 году они претендовали на то, чтобы быть лидерами в области импульсных источников питания.В их патенте 1969 года 3564384 «Высокоэффективный источник питания» описан полумостовой импульсный источник питания, который на удивление похож на источники питания ATX, популярные в 1990-х годах, за исключением схем усилителя, управляющих ШИМ, а не широко распространенной ИС контроллера TL494.

[38] Компания Nippon Electronic Memory Industry Co (NEMIC, которая в итоге стала частью TDK-Lambda) начала разработку стандартизированных импульсных источников питания в 1970 году. История корпорации ТДК-Лямбда.

[39] «Я прогнозирую, что большинство компаний, после нескольких неудачных попыток в области источников питания, к концу 1972 года предложат ряд импульсных источников питания с приемлемыми характеристиками и ограничениями по радиопомехам.», стр. 46, Электронная инженерия, , том 44, 1972 г.

[40] Производитель блоков питания Coutant построил блок питания под названием Minic, используя «относительно новую технику импульсного стабилизатора». Инструментальная практика для АСУ ТП и автоматизации , Том 25, стр. 471, 1971 г.

[41] «Импульсные источники питания выходят на рынок», стр. 71, Electronics & Power , февраль 1972 г. Первый «бестрансформаторный» импульсный источник питания появился на рынке Великобритании в 1972 году, APT SSU1050, который представлял собой регулируемый импульсный источник питания мощностью 500 Вт с использованием полумостовой топологии.Этот 70-фунтовый блок питания считался легким по сравнению с линейными блоками питания.

[42] В этой статье подробно рассказывается о импульсных источниках питания и описываются преимущества автономных источников питания. В нем описан миниатюрный импульсный источник питания полумостового типа MG5-20, созданный Advance Electronics. В статье говорится: «Широкое применение микроэлектронных устройств привело к увеличению объема обычных источников питания. Переключающие преобразователи теперь стали жизнеспособными и предлагают заметную экономию в объеме и весе.» «Импульсные источники питания: зачем и как», Малкольм Берчалл, технический директор, подразделение источников питания, Advance Electronics Ltd. Electronic Engineering , Volume 45, Sept 1973, p73-75.

[43] Высокоэффективные модульные источники питания с использованием импульсных регуляторов, Hewlett-Packard Journal , декабрь 1973 г., стр. 15-20. Серия 62600 обеспечивает мощность 300 Вт при использовании автономного импульсного источника питания с полумостовой топологией. Ключевым моментом было внедрение транзисторов на 400 В, 5 А с субмикросекундным временем переключения.«Полный импульсный регулируемый источник питания мощностью 300 Вт едва ли больше, чем просто силовой трансформатор эквивалентного источника с последовательным регулированием, и он весит меньше — 14,5 фунтов по сравнению с 18 фунтами трансформатора».

[44] Сильноточный источник питания для систем, которые широко используют 5-вольтовую логику ИС, Hewlett-Packard Journal , апрель 1975 г., стр. 14-19. Импульсный источник питания 62605M мощностью 500 Вт для OEM-производителей, размер и вес которых составляет 1/3 и 1/5 от линейных источников питания. Использует автономную полумостовую топологию.

[45] Модульные источники питания: модели 63005C и 63315D: в этом источнике питания мощностью 110 Вт 5 В использовалась топология автономного прямого преобразователя и конвекционное охлаждение без вентилятора.

[46] «Проникновение коммутационных источников питания на рынке источников питания США вырастет с 8% в 1975 году до 19% к 1980 году. Это растущее проникновение соответствует общемировой тенденции и представляет собой очень высокие темпы роста». Для такого прогнозируемого роста было указано несколько причин, в том числе «наличие более качественных компонентов, снижение […] общей стоимости и появление более мелких продуктов (таких как микрокомпьютеры), которые делают желательными блоки питания меньшего размера». Электроника, Том 49. 1976. Стр. 112, врезка «Что насчет будущего?»

[47] Сеймур Левин, «Импульсные регуляторы питания для повышения эффективности».»Electronic Design, 22 июня 1964 г. В этой статье описывается, как импульсные регуляторы могут повысить эффективность с менее чем 40 процентов до более чем 90 процентов при значительной экономии размера, веса и стоимости.

[48] На обложке документа Electronic Design 13 от 21 июня 1976 г. написано: «Внезапно переключение стало проще. Импульсные источники питания могут быть разработаны с использованием на 20-50 дискретных компонентов меньше, чем раньше. Одна ИС выполняет все функции управления, необходимые для двухтактный выходной дизайн.ИС называется регулирующим широтно-импульсным модулятором. Чтобы узнать, предпочитаете ли вы переключение, перейдите на страницу 125. «На странице 125 есть статья« Управление импульсным источником питания с помощью одной схемы LSI », в которой описаны ИС импульсных источников питания SG1524 и TL497.

[49] В 1976 году Powertec запустила двухстраничную рекламу, описывающую преимущества импульсных источников питания, под названием «Большой переход к коммутаторам». В этой рекламе описывались преимущества блоков питания: с удвоенной эффективностью они выделяли 1/9 тепла.У них были 1/4 размера и веса. Это обеспечило повышенную надежность, работало в условиях обесточивания и могло выдерживать гораздо более длительные перебои в подаче электроэнергии. Powertec продала линейку импульсных блоков питания мощностью до 800 Вт. Они предложили импульсные источники питания для систем с дополнительной памятью, компьютерных мэйнфреймов, телефонных систем, дисплеев, настольных приборов и систем сбора данных. Страницы 130-131, Электроника в49, 1976.

[50] Byte magazine, p100 В июне 1976 года был анонсирован новый импульсный источник питания Boschert OL80, обеспечивающий 80 Вт при двухфунтовом блоке питания по сравнению с 16 фунтами для менее мощного линейного блока питания.Это также было рекламировано в Microcomputer Digest, февраль 1976 г., стр. 12.

[51] Роберт Бошерт: Человек многих шляп меняет мир источников питания: он начал продавать импульсные источники питания в 1974 году, сосредоточившись на том, чтобы сделать импульсные источники питания простыми и недорогими. В заголовке говорится, что «Роберт Бошерт изобрел импульсный источник питания», что должно быть ошибкой редактора. В статье более обоснованно утверждается, что Бошерт изобрел недорогие импульсные источники питания для массового использования. В 1974 году он произвел в больших объемах недорогой импульсный источник питания.

[52] Руководство по техническому обслуживанию коммуникационного терминала Diablo Systems HyTerm модели 1610/1620 показаны двухтактный источник питания Boschert 1976 года и полумостовой источник питания LH Research 1979 года.

[53] Опыт Boschert с F-14 и спутниками рекламировался в рекламе Electronic Design , V25, 1977, где также упоминалось серийное производство для Diablo и Qume.

[54] Необычный импульсный источник питания использовался в компьютере HP 1000 A600 (см. Техническую и справочную документацию) (1983).Блок питания 440 Вт обеспечивал стандартные выходы 5 В, 12 В и -12 В, а также выход переменного тока 25 кГц 39 В, который использовался для распределения мощности на другие карты в системе, где она регулировалась. В автономном двухтактном источнике питания, разработанном Boschert, использовалась специальная микросхема HP IC, чем-то напоминающая TL494.

[55] В 1971 году для поддержки автономных импульсных источников питания были представлены многочисленные линейки переключающих транзисторов 450 В, такие как серия SVT450, серия 40850–4085 от RCA и серия 700V SVT7000.

[56] ШИМ: от одного чипа к гигантской отрасли, Power Electronics Technology , октябрь 2005 г. В этой статье описывается история создания ИС управления источником питания, от SG1524 в 1975 году до многомиллиардной отрасли.

[57] «Революция в конструкции источников питания, происходящая в настоящее время, не будет завершена до тех пор, пока трансформатор на 60 Гц не будет почти полностью заменен», — Вальтер Хиршберг, ACDC Electronics Inc., Калифорния. «Новые компоненты вызывают революцию в источниках питания», p49, Canadian Electronics Engineering , v 17, 1973.

[58] Импульсный и линейный источник питания, конструкция преобразователя мощности , Pressman 1977 «Импульсные регуляторы, которые совершают революцию в отрасли электроснабжения из-за их низких внутренних потерь, небольшого размера, веса и стоимости, конкурентоспособной по сравнению с традиционными последовательными или линейными источниками питания».

[59] Несколько источников питания Apple описаны в документе Apple Products Information Pkg: Astec Power Supplies (1982). Блок питания Apple II Astec AA11040 — это простой дискретный блок питания с обратным ходом и несколькими выходами.В нем используется переключающий транзистор 2SC1358. Выход 5 В сравнивается со стабилитроном и обратной связью управления и изолируется через трансформатор с двумя первичными обмотками и одной вторичной. В нем используется зажимная обмотка обратного диода.

AA11040-B (1980) имеет существенные модификации схемы обратной связи и управления. В нем используется переключающий транзистор 2SC1875 и источник опорного напряжения TL431. AA11040-B, по-видимому, использовался для Apple II + и Apple IIe (см. Форум hardwaresecrets.com).Шелкография на печатной плате источника питания говорит о том, что она защищена патентом 4323961, который, как оказалось, является «автономным источником питания постоянного тока с обратным ходом», разработанным Эллиотом Джозефсоном и переданным Astec. Схема в этом патенте в основном представляет собой немного упрощенный AA11040-B. Изолирующий трансформатор обратной связи имеет одну первичную и две вторичные обмотки, противоположные AA11040. Этот патент также напечатан на плате источника питания Osborne 1 (см. Разборку Osborne 1), которая также использует 2SC1875.

В Apple III Astec AA11190 используется фиксирующая обмотка обратного диода, но не схема запуска переменного тока Холта.Используется переключающий транзистор 2SC1358; схема обратной связи / управления очень похожа на AA11040-B. В источнике питания дисковода Apple III Profile AA11770 использовалась фиксирующая обмотка обратноходового диода, переключающий транзистор 2SC1875; опять же, схема обратной связи / управления очень похожа на AA11040-B. AA11771 аналогичен, но добавляет еще один TL431 для выхода AC ON.

Интересно, что в этом документе Apple перепечатывает десять страниц «Руководства по источникам питания постоянного тока» HP (версия 1978 года, используемая Apple), чтобы предоставить справочную информацию по импульсным источникам питания.

[60] Обратные преобразователи: твердотельное решение для недорогого импульсного источника питания, Electronics , декабрь 1978 г. В этой статье Роберта Бошерта описывается источник питания Boschert OL25, который представляет собой очень простой дискретно-компонентный источник обратноходового питания мощностью 25 Вт с 4 выходами. Он включает в себя зажимную обмотку обратного диода. Он использует источник опорного напряжения TL430 и оптоизолятор для обратной связи с выхода 5 В. В нем используется переключающий транзистор MJE13004.

[61] В Macintosh Performa 6320 используется микросхема контроллера SMPS AS3842, как видно на этом рисунке.AS3842 — это версия контроллера тока UC3842 от Astec, который был очень популярен для преобразователей прямого тока.

[62] Детали источника питания для iMac найти сложно, и используются разные источники питания, но, если собрать воедино различные источники, iMac G5, похоже, использует контроллер PFC TDA4863, пять силовых МОП-транзисторов 20N60C3, ШИМ-контроллер SG3845, напряжение TL431. ссылки и контроль мощности с помощью WT7515 и LM339. Также используется 5-контактный встроенный коммутатор TOP245, вероятно, для питания в режиме ожидания.

[63] Источник питания постоянного тока, №4130862. который был подан в феврале 1978 г. и выдан в декабре 1978 г. Блок питания, указанный в патенте, имеет некоторые существенные отличия от блока питания Apple II, созданного Astec. Большая часть логики управления находится на первичной стороне в патенте и вторичной стороне в реальном источнике питания. Кроме того, в патенте используется оптическая связь с обратной связью, а в источнике питания используется трансформатор. Блок питания Apple II не использует обратную связь по переменному току, описанную в патенте.

[64] Подробное обсуждение блока питания Apple II Plus можно найти на сайте applefritter.com. В описании источник питания ошибочно называется топологией прямого преобразователя, но это топология обратного хода. Неудобно, что это обсуждение не соответствует схемам блока питания Apple II Plus, которые я нашел. Заметные различия: в схеме используется трансформатор для обеспечения обратной связи, в то время как в обсуждении используется оптоизолятор. Кроме того, обсуждаемый источник питания использует вход переменного тока для запуска колебаний транзистора, а схема — нет.

[65] Apple III (1982 г.). Этот блок питания Apple III (050-0057-A) практически полностью отличается от блока питания Apple III AA11190. Это дискретный источник питания обратного хода с переключающим транзистором MJ8503, управляемым тиристором, фиксирующей обмоткой обратного хода и 4 выходами. Он использует схему запуска переменного тока Холта. Обратная связь переключения контролирует выход -5 В с операционным усилителем 741 и подключается через трансформатор. Он использует линейный регулятор на выходе -5 В.

[66] Яблочная Лиза (1983).Еще один дискретный источник питания с обратным ходом, но значительно более сложный, чем Apple II, с такими функциями, как резервное питание, дистанционное включение через симистор и выход +33 В. Для переключения в нем используется силовой транзистор MJ8505 NPN, управляемый тиристором. Он использует схему запуска переменного тока Холта. Обратная связь по переключению контролирует напряжение +5 В (по сравнению с линейно регулируемым выходом -5 В) и подключается через трансформатор.

[67] Блок питания Macintosh. Этот источник питания с обратным ходом использует обмотку диодных зажимов и схему запуска переменного тока Холта.В нем используется переключающий транзистор 2SC2335, управляемый дискретным генератором. Коммутационная обратная связь контролирует выход +12 В с помощью стабилитронов и операционного усилителя LM324 и подключается через оптоизолятор.

[68] Схема Mac 128K, Обсуждение Mac Plus. Этот источник питания с обратным ходом использует обмотку диодных зажимов и схему запуска переменного тока Холта. В нем используется переключающий транзистор 2SC2810, управляемый дискретными компонентами. Обратная связь по переключению контролирует выход 12 В и подключается через оптоизолятор.Интересно, что в этом документе утверждается, что блок питания, как известно, был склонен к сбоям из-за того, что в нем не использовался вентилятор. Блок питания Mac Classic выглядит идентичным.

[69] Коммутационный блок питания TEAM ST-230WHF 230 Вт. Эта схема — единственный компьютерный блок питания стороннего производителя, который я обнаружил, который подает необработанный переменный ток в схему привода (см. R2), но я уверен, что это всего лишь ошибка чертежа. R2 должен подключаться к выходу диодного моста, а не к входу. Сравните с R3 в почти идентичной схеме привода в этом блоке питания ATX.

[70] Микропроцессоры и микрокомпьютеры и импульсные источники питания , Брайан Норрис, Texas Instruments, McGraw-Hill Company, 1978 г. В этой книге описываются импульсные источники питания для телевизоров, которые используют сигнал переменного тока для запуска колебаний.

[71] Блок питания жесткого диска Tandy (Astec AA11101). В этом обратноходовом источнике питания мощностью 180 Вт используется обмотка с зажимом диода. В нем используется переключающий транзистор 2SC1325A. В генераторе используются дискретные компоненты. Обратная связь от шины 5 В сравнивается с опорным напряжением TL431, а обратная связь использует трансформатор для изоляции.

[72] Блок питания Tandy 2000 (1983 г.). Этот источник питания с обратным ходом мощностью 95 Вт использует микросхему контроллера MC34060, переключающий транзистор MJE12005 и имеет обмотку фиксатора обратного хода. Он использует MC3425 для контроля напряжения, имеет линейный регулятор для выхода -12 В и обеспечивает обратную связь на основе выхода 5 В по сравнению с опорным сигналом TL431, проходящим через оптоизолятор. На выходе 12 В используется стабилизатор магнитного усилителя.

[73] В The Art of Electronics есть подробное обсуждение источника питания Tandy 2000 (стр. 362).

[74] Модель Commodore B128. В этом источнике питания с обратным ходом используется обмотка с зажимом диода. В нем используется переключающий транзистор MJE8501, управляемый дискретными компонентами, а обратная связь переключения контролирует выход 5 В с помощью опорного сигнала TL430 и изолирующего трансформатора. Выходы 12 В и -12 В используют линейные регуляторы.

[75] Tandy 6000 (Astec AA11082). В этом блоке питания с обратным ходом мощностью 140 Вт используется обмотка с зажимом диода. Схема представляет собой довольно сложную дискретную схему, поскольку в ней используется повышающая схема, описанная в патенте Astec 4326244, также разработанном Эллиотом Джозефсоном.В нем используется переключающий транзистор 2SC1325A. У него немного необычный выход 24 В. Один выход 12 В линейно регулируется LM317, а выход -12 В управляется линейным регулятором MC7912, но другой выход 12 В не имеет дополнительной регулировки. Обратная связь осуществляется с выхода 5 В с использованием источника напряжения TL431 и развязывающего трансформатора. Здесь есть красивая фотография блока питания.

[76] Документация на микросхему контроллера MC34060 (1982 г.).

[77] Руководство разработчика по переключению цепей и компонентов источника питания, The Switchmode Guide , Motorola Semiconductors Inc., Паб. № SG79, 1983. R J. Haver. Для обратного преобразователя фиксирующая обмотка описывается как дополнительная, но «обычно присутствует, чтобы позволить энергии, накопленной в реактивном сопротивлении утечки, безопасно вернуться в линию вместо того, чтобы лавина переключающего транзистора».

[78] «Обеспечение надежной работы силовых полевых МОП-транзисторов», примечание к приложению Motorola 929, (1984) показывает источник питания с обратным ходом, использующий MC34060 с фиксирующей обмоткой и диодом. Его можно скачать с datasheets.org.uk.

[79] Для получения дополнительной информации о форвард-конвертерах см. История прямого преобразователя, Switching Power Magazine , vol.1, No. 1, pp. 20-22, июл 2000 г.

[80] Первый импульсный преобразователь с диодной обмоткой был запатентован в 1956 году компанией Philips, патент 2,920,259 «Преобразователь постоянного тока».

[81] Другой патент, показывающий обмотку с возвратной энергией с диодом, — это патент Hewlett-Packard от 1967 года 3313998. Импульсно-регуляторный источник питания с цепью возврата энергии

[82] Маленькое королевство: частная история Apple Computer Майкл Мориц (1984) говорит, что Холт проработал в компании на Среднем Западе почти десять лет и помог разработать недорогой осциллограф (стр. 164).Стив Джобс, «Путешествие — награда», Джеффри Янг, 1988 г., утверждает, что Холт разработал импульсный источник питания для осциллографа за десять лет до прихода в Apple (стр. 118). Учитывая состояние импульсных источников питания в то время, это почти наверняка ошибка.

[83] «Коммутационные блоки растут в чреве компьютеров», Электронный бизнес , том 9, июнь 1983 г., стр. 120-126. В этой статье подробно описывается бизнес-сторона импульсных блоков питания. В то время как Astec была ведущим производителем импульсных источников питания, Lambda была ведущим производителем источников питания переменного и постоянного тока, поскольку она продавала большие количества как линейных, так и импульсных источников питания.

[84] «Стандарты: переключение вовремя для поставок», Electronic Business Today , vol 11, p74, 1985. В этой статье говорится, что Astec является ведущим в мире производителем блоков питания и лидером в области импульсных блоков питания. Astec выросла почти исключительно на поставках блоков питания Apple. В этой статье также упоминаются компании-поставщики электроэнергии из «большой пятерки»: ACDC, Astec, Boschert, Lambda и Power One.

[85] Astec становится 100% дочерней компанией Emerson Electric, Business Wire , 7 апреля 1999 г.

[86] Отраслевой отчет о крупнейших энергоснабжающих компаниях за 2011 год — Power Electronics Industry News, v 189, март 2011 г., консультанты по микротехнике. Также, Энергетическая промышленность продолжает марш к консолидации, Power Electronics Technology, май 2007 обсуждает различные консолидации.

[87] Документация SAMS по фотофакту для IBM 5150 содержит подробную схему источника питания.

[88] В Википедии представлен обзор стандарта ATX. Официальная спецификация ATX находится в формфакторах.орг.

[89] ON Semiconductor, как и Fairchild, имеет эталонные образцы блоков питания ATX. Некоторые ИС, разработанные специально для приложений ATX, это SG6105 Power Supply Supervisor + Regulator + PWM, NCP1910 High Performance Combo Controller for ATX Power Supplies, ISL6506 Multiple Linear Power Controller with ACPI Control Interfaces, и SPX1580 Ultra Low Dropout Voltage Regulator.

[90] Корпорация Intel представила рекомендацию о коммутационном преобразователе постоянного тока рядом с процессором в Руководстве по распределению питания процессора Intel AP-523 Pentium Pro, в котором представлены подробные спецификации для модуля регулятора напряжения (VRM).Подробная информация об образце VRM приведена в разделе «Заправка мегапроцессора — обзор конструкции преобразователя постоянного тока в постоянный ток» с использованием UC3886 и UC3910. Более свежие спецификации VRM содержатся в Рекомендациях по проектированию Intel Voltage Regulator Module (VRM) и Enterprise Voltage Regulator-Down (EVRD) 11 (2009 г.).

[91] В таблице данных микропроцессоров R650X и R651X указано типичное значение рассеиваемой мощности 500 мВт.

[92] Технологии преобразования энергии для компьютерных, сетевых и телекоммуникационных систем питания — прошлое, настоящее и будущее, М.М. Йованович, Лаборатория силовой электроники Delta, Международная конференция по преобразованию энергии и приводам (IPCDC), Санкт-Петербург, Россия, 8-9 июня 2011 г.

[93] Программа 80 Plus описана в разделе «Сертифицированные источники питания и производители 80 PLUS», где описаны различные уровни 80 PLUS: бронзовый, серебряный, золотой, платиновый и титановый. Базовый уровень требует КПД не менее 80% при различных нагрузках, а более высокие уровни требуют все более высокого КПД. Первые блоки питания 80 PLUS вышли в 2005 году.

[94] Несколько случайных примеров блоков питания, которые сначала генерируют всего 12 В и используют преобразователи постоянного тока для генерации выходных сигналов 5 В и 3,3 В: Эталонный дизайн высокоэффективного блока питания ATX 255 Вт от ON Semiconductor (80 Plus Silver), NZXT HALE82 power обзор блока питания, обзор блока питания SilverStone Nightjar.

[95] Источники питания используют только часть электроэнергии, подаваемой по линиям электропередач; это дает им плохой «коэффициент мощности», который тратит энергию и увеличивает нагрузку на нижние линии.Вы можете ожидать, что эта проблема возникает из-за быстрого включения и выключения импульсных источников питания. Однако плохой коэффициент мощности на самом деле происходит из-за начального выпрямления переменного и постоянного тока, при котором используются только пики входного переменного напряжения.

[96] Основы коррекции коэффициента мощности (PFC), Указания по применению 42047, Fairchild Semiconductor, 2004.

[97] Правильный выбор размеров и разработка эффективных источников питания утверждает, что активная коррекция коэффициента мощности добавляет около 1,50 доллара к стоимости источника питания мощностью 400 Вт, активный фиксатор добавляет 75 центов, а синхронное выпрямление добавляет 75 центов.

[98] Многие источники схем электроснабжения доступны в Интернете. Некоторые андизм danyk.wz.cz, а также smps.us. Несколько сайтов, которые предоставляют загрузку схем источников питания, — это eserviceinfo.com и elektrotany.com.

[99] Информацию о типовой конструкции блока питания ПК см. В FAQ по SMPS. В разделах «Описание Боба» и «Комментарии Стива» обсуждаются типичные блоки питания для ПК на 200 Вт, использующие микросхему TL494 и конструкцию полумоста.

[100] В тезисе 1991 г. говорится, что TL494 все еще использовался в большинстве импульсных источников питания ПК (по состоянию на 1991 г.).Разработка импульсного источника питания 100 кГц (1991 г.). Мыс Техникон Тезисы и диссертации. Документ 138.

[101] Введение в двухтранзисторную прямую топологию для источников питания с эффективностью 80 PLUS, EE Times, 2007.

[102] hardwaresecrets.com заявляет, что CM6800 является самым популярным контроллером PFC / PWM. Это замена ML4800 и ML4824. CM6802 — более «зеленый» контроллер в том же семействе.

[103] Анатомия импульсных источников питания, Габриэль Торрес, Hardware Secrets, 2006.В этом учебном пособии очень подробно описывается работа и внутреннее устройство блоков питания ПК с подробными изображениями реальных внутренних устройств блока питания. Если вы хотите точно знать, что делает каждый конденсатор и транзистор в блоке питания, прочтите эту статью.

[104] Презентация блока питания ON Semiconductor’s Inside представляет собой подробное математическое руководство по принципам работы современных блоков питания.

[105] Справочное руководство по источнику питания SWITCHMODE, ON Semiconductor. Это руководство содержит большое количество информации об источниках питания, топологиях и многих примерах реализации.

[106] Некоторые ссылки на цифровое управление питанием: «Дизайнеры обсуждают достоинства цифрового управления питанием», EE Times , декабрь 2006 г. Глобальный рынок ИС для цифрового управления питанием к 2017 году достигнет 1,0 миллиарда долларов. Системный контроллер цифровой ШИМ TI UCD9248. Эталонная схема цифрового питания переменного / постоянного тока с универсальным входом и коррекцией коэффициента мощности, EDN , апрель 2009 г.

[107] Руди Севернс, лауреат премии за выслугу лет, Power Electronics Technology , сентябрь 2008 г., стр. 40-43.

[108] Куда делись все гуру ?, Power Electronics Technology , 2007. В этой статье обсуждается вклад многих новаторов в области источников питания, включая Сола Гиндоффа, Дика Вайза, Уолта Хиршберга, Роберта Окада, Роберта Бошерта, Стива Голдмана, Аллена Розенштейна, Уолли Херсома , Фил Кётч, Яг Чопра, Уолли Херсом, Патрицио Винчиарелли и Марти Шлехт.

[109] История разработки Холтом источника питания для Apple II впервые появилась в статье Пола Чиотти Revenge of the Nerds (не имеющей отношения к фильму) в журнале California в 1982 году.

цепей питания, источник питания для мониторов и телевизоров, SMPS

Телевидение: силовые цепи связанная тема: Импульсные источники питания
Блок питания с переключаемым режимом (SMPS) 75 Вт для типичного монитора или телевизионного приложения ИИП мощностью 75 Вт с квазирезонансным контроллером обратного хода TEA1507, файл pdf
Alimentations en Franais
Alimentations dcoupage en Franais
Конвертер топологии для горизонтального прогиба и генераторов EHT pdf файл
Кокрофт Уолтон Напряжение Множители
Обратный трансформатор обратные ходы можно найти во всех типах мониторов и экранов, в которых используется катод. лучевая трубка (ЭЛТ), e.грамм. Телевизоры, компьютерные мониторы и т. Д. Flyback обслуживает несколько целей в телевизоре, в основном генерация ускоряющего напряжения для ЭЛТ (обычно 20-30кВ) и нескольких вспомогательных напряжений
Блок питания для монитора и телевизора Блок питания для монитора и телевизора
МОП-транзистор Демпферная защита Mosfet в обратноходовом источнике питания, файл pdf
Выключатель на базе SMPS для цветных телевизионных приемников Импульсный источник питания (SMPS) обычно состоит из силового трансформатора, вторичного выпрямителя. диоды, переключающий полупроводниковый прибор, управляющая ИС и периферийные схемы.Помимо своей основной функции подачи питания на нагрузку на вторичной стороне, SMPS, возможно, придется выполнять другие, специальные функции, в зависимости от системы. Для Например, SMPS для цветного телевизионного приемника должен минимизировать влияние переключение шумов на экране и снижение энергопотребления в режиме ожидания, pdf файл
Приложения Power MOSFET в телевидении pdf файл
Блок питания
Источник питания Принципиальная схема цепей ИИП, управление питанием
Однотранзисторный драйвер обратного хода
РЕЖИМ ПЕРЕКЛЮЧЕНИЯ КОНТРОЛЛЕР ПИТАНИЯ TEA2260 / 61 представляет собой монолитную интегральную схему. для использования в первичной части автономного импульсного источника питания, pdf файл
РЕЖИМ ПЕРЕКЛЮЧЕНИЯ КОНТРОЛЛЕР ИСТОЧНИКА ПИТАНИЯ автономный импульсный источник питания с использованием MOS силовой транзистор
Переключено Источник питания Mode (SMPS) pdf файл
TEA2260 / TEA2261 Расчет трансформатора, Спецификация трансформатора, Коммутационный транзистор и его базовый привод, Расчет предела тока, Демпферная сеть, Базовый привод, Частота генератора, Регулирующая петля, Перегрузка конденсатор, конденсатор плавного пуска, трансформатор напряжения обратной связи, пуск резистор, Высоковольтный фильтрующий конденсатор, SMPS, файл pdf
Телевизор и жк Приложения для мониторов Источник питания для ЖК-мониторов
Умножитель напряжения Умножитель напряжения
Умножитель напряжения схема ТВ-каскада
Horizontaal
Телевидение: отклоняющие цепи, сигналы синхронизации
Расчет амортизаторов RC для демпфирования ярма Расчет амортизаторов RC для ярма Демпфирование, файл pdf
Компонентная видеосинхронизация Форматы pdf файла
Электромагниты отклоняющей ярма
По горизонтали схема отклонения Схема отклонения по горизонтали, файл pdf
По горизонтали схема отклонения Схема отклонения по горизонтали, файл pdf
По горизонтали схема отклонения TV Схема отклонения по горизонтали, предназначенная для Ч / Б ТВ и маленький экран цветной телевизор.Он генерирует сигнал отклонения и управляет отклонением, pdf файл
По горизонтали схема отклонения pdf файл
ТЕЛЕВИЗОР С НИЗКИМ ШУМОМ СИСТЕМА ВЕРТИКАЛЬНОГО ПРОКЛОНЕНИЯ
Новый демпфер Семейство диодов для ЭЛТ-телевизоров и ЭЛТ-мониторов. основная схема горизонтального отклонения, время обратного восстановления (trr) и поворот потери при выключении (Poff), Принципиальная схема цепи горизонтального отклонения с поправкой Восток-Запад, pdf файл
NTE7131 Связанная постоянным током схема вертикального отклонения pdf файл
TDA8357J выход полного моста вертикального отклонения, схема в LVDMOS, файл pdf
Телевидение Синхронизация телевидения Синхронизация
Отклонение телевизора и монитора системы Системы отклонения телевизоров и мониторов
Цепь горизонтального отклонения телевизора Упрощенная схема горизонтального отклонения ТВ, файл pdf
Цепь горизонтального отклонения телевизора UTC PC1031 разработан для Ч / Б и цветных телевизоров с маленьким экраном.Он порождает сигнал отклонения и приводы отклоняющей катушки, pdf файл
телевидение Сигнал синхронизации линии синхронизации
ТВ вертикаль Цепь отклонения ТВ Цепь вертикального отклонения ТВ, TDA8172, pdf файл
Понимание телевизора Горизонтальный выходной каскад Понимание ТВ горизонтального выходного каскада, файл pdf
Схема вертикального отклонения для телевизора и монитора Схема вертикального отклонения для ТВ, TDA 1170, pdf файл
Схема вертикального отклонения для телевизора и монитора блок-схема устройства, выполняющего вертикальный прогиб, линейное изменение напряжения генератор, каскад осциллятора, генератор рампы, импульс обратного хода на ярме, обратная цепь, ток в ярме и падение напряжения на ярме во время Вертикальный прогиб, файл pdf
Вертикальное отклонение Выходная цепь вертикального отклонения Выходная цепь, KA2142C представляет собой монолитная линейная ИС, предназначенная для цветного ТВ и монитора вертикального отклонения вывод, файл pdf
Вертикальный усилитель мощности TDA4863AJ Вертикальный усилитель TDA4861 для использования в системах вертикального отклонения для рамы частоты до 200 Гц, pdf файл
Horizontaal

Дом | Карта сайта | Электронная почта: support [at] karadimov.инфо

Последнее обновление: 2011-01-02 | Авторские права © 2011-2021 Educypedia.

http://educypedia.karadimov.info

% PDF-1.3 % 342 0 объект > эндобдж xref 342 85 0000000016 00000 н. 0000002051 00000 н. 0000002204 00000 н. 0000003234 00000 н. 0000003621 00000 н. 0000003688 00000 п. 0000003847 00000 н. 0000004061 00000 н. 0000004235 00000 н. 0000004314 00000 н. 0000004617 00000 н. 0000004696 00000 н. 0000004942 00000 п. 0000005021 00000 н. 0000005235 00000 п. 0000005429 00000 п. 0000005618 00000 п. 0000005697 00000 п. 0000005776 00000 п. 0000005855 00000 н. 0000006153 00000 н. 0000006232 00000 н. 0000006456 00000 п. 0000006670 00000 н. 0000006971 00000 н. 0000007050 00000 н. 0000007289 00000 н. 0000007368 00000 н. 0000007447 00000 н. 0000007526 00000 н. 0000007730 00000 н. 0000007808 00000 н. 0000008094 00000 н. 0000008365 00000 н. 0000008616 00000 н. 0000008695 00000 н. 0000008773 00000 н. 0000008851 00000 н. 0000009020 00000 н. 0000009098 00000 н. 0000009240 00000 п. 0000009459 00000 п. 0000009683 00000 п. 0000009761 00000 н. 0000009930 00000 н. 0000010008 00000 п. 0000010086 00000 п. 0000010164 00000 п. 0000010380 00000 п. 0000010458 00000 п. 0000010687 00000 п. 0000010764 00000 п. 0000010988 00000 п. 0000011234 00000 п. 0000011448 00000 п. 0000011526 00000 п. 0000011730 00000 п. 0000012035 00000 п. 0000012113 00000 п. 0000012191 00000 п. 0000012492 00000 п. 0000012570 00000 п. 0000012648 00000 п. 0000012725 00000 п. 0000012862 00000 п. 0000012939 00000 п. 0000013018 00000 п. 0000013097 00000 п. 0000013382 00000 п. 0000014117 00000 п. 0000014618 00000 п. 0000014882 00000 п. 0000014934 00000 п. 0000015206 00000 п. 0000015744 00000 п. 0000019096 00000 п. 0000021268 00000 п. 0000057692 00000 п. 0000060370 00000 п. 0000060423 00000 п. 0000060517 00000 п. 0000060701 00000 п. 0000060742 00000 п. 0000002355 00000 н. 0000003212 00000 н. трейлер ] >> startxref 0 %% EOF 343 0 объект > эндобдж 344 0 объект > / Кодировка> >> / DA (/ Helv 0 Tf 0 г) >> эндобдж 425 0 объект > транслировать HTGLa6! A @ $ 8 = TT 숽 `.{/ «EPuFlWM4Djԃƃo xoM

Конструкция блока питания переменного / постоянного тока за 7 этапов

С тех пор, как Никола Тесла выиграл нынешнюю войну и установил переменный ток (AC) в качестве системы передачи и распределения, блоки питания с преобразованием высокого напряжения переменного тока в постоянный ток (DC) низкого напряжения, предназначенные для электронных компоненты были в наличии. До настоящего времени источники питания сначала развивались от громоздких линейных трансформаторов до различных импульсных источников питания с различной топологией.Помимо уменьшенных размеров, они стали более эффективными и надежными.

Выходная мощность обычного источника питания с линейным трансформатором пропорциональна его объему и весу. Линейный трансформатор мощностью около 10 Вт весит примерно 300 г, но если выходная мощность увеличится до 100 Вт, его вес увеличится в несколько раз до примерно 3-5 кг. Даже перемещение его дома похоже на силовую тренировку, не говоря уже о том, чтобы брать его с собой во время путешествий. Не только это, если требуется базовая функция обратной связи по напряжению, но также необходимо установить линейный регулятор.Этот регулятор потребляет напряжение, превышающее спецификацию, из-за потери тепла. Следовательно, для разумного контроля над повышением температуры необходимо установить большой радиатор, который увеличивает габариты всего блока питания и, следовательно, увеличивает его вес в два раза. Тем не менее, за исключением некоторых аудиофилов, которые придерживаются чрезвычайно высоких стандартов шума пульсаций, линейные источники питания практически не востребованы.

В настоящее время существует множество сценариев применения и категорий источников питания. Помимо привычных нам домов и офисов, существуют определенные потребности в определенных сферах применения, таких как медицинское обслуживание, тяжелая промышленность, автомобили, лабораторное оборудование, центры обработки данных, приложения 5G, железные дороги, навигация и т. Д.В то же время, в ответ на различные применения были разработаны источники питания, электрические свойства, внешний вид, атмосферостойкость и резервирование которых отвечают конкретным задачам.

Обзоры

Источник питания переменного / постоянного тока

: что мне спроектировать и изготовить, или просто купить?

Что нужно для разработки хорошего источника питания в различных сценариях применения? Используя адаптер питания, наиболее часто используемый в портативных компьютерах (ноутбуках) в качестве примера ниже, давайте посмотрим, как разработан адаптер для ноутбуков, чтобы соответствовать поставленным задачам.Давайте также сравним, покупать ли готовый продукт или пытаться спроектировать его и сделать продукт самостоятельно.

Ниже приведен процесс проектирования источников питания переменного / постоянного тока:

  • Планирование и определение основных характеристик электрических свойств
  • Завершить компоновку печатной платы
  • Отбор проб
  • Приварите компоненты из списка BOM к плате
  • Электронная проверка и корректировка свойств
  • Опытное производство и повторная проверка
  • Получить сертификат безопасности для продажи на месте

Возьмем, к примеру, адаптер 120 Вт для ноутбуков, чтобы шаг за шагом объяснить, как проектировать блоки питания переменного / постоянного тока.

Процесс проектирования источников питания переменного / постоянного тока

Шаг 1: Планирование и определение основных характеристик электрических свойств

Вообще говоря, на ранней стадии проектирования источника питания необходимо сначала определить основные электрические характеристики. Ниже адаптер 120 Вт для ноутбуков используется в качестве примера для просмотра элементов, которые необходимо определить, и общих параметров. Они включают в себя входное напряжение и частоту, внешний вид и размеры, рабочую температуру и влажность, входную розетку переменного тока, общую эффективность, энергопотребление в режиме ожидания, выходное напряжение, выходной ток, пиковую нагрузку, защиту (включая OCP / OVP / OTP), различные потребности в ЭМС, и т.п.

Вышеупомянутое сведено в таблицу, чтобы сделать их ясными и легкими для понимания.

Артикул Технические характеристики
Входное напряжение и частота 90 ~ 264 В переменного тока (50/60 Гц)
Внешний вид и размеры 123 * 45 * 67 мм
Рабочая температура и влажность -10 ℃ ~ 40 ℃
Входная розетка переменного тока C14
Выходное напряжение 19 В ± 5%
Выходной ток 6.3A
Общий КПД Следуйте DoE уровня VI и CoC Ver. 5 уровень 2
Энергопотребление в режиме ожидания 0,15 Вт
Пиковая нагрузка x 2 (50 мс с периодом 1 с)

Защита (включая OCP / OVP / OTP)

Защелка / икота
Различные потребности в ЭМС IEC62368-1

После приблизительного определения электрических характеристик пришло время выбрать подходящую топологию.Для адаптера мощностью 120 Вт топологии, доступные для выбора, обычно включают обратный ход, ACF (обратный ход с активным зажимом) и HB-LLC. При этом, ввиду ужесточения нормативных требований, Flyback, характеризующийся чрезмерно низкой эффективностью, может не подходить. Хотя остальные (ACF и HB-LLC) достижимы, учитывая, что регулировать эффективность легкой нагрузки ACF сложнее, на этот раз в качестве топологии была выбрана HB-LLC.

После выбора топологии, чтобы обеспечить плавный процесс проектирования, обычно выбирают блок-схему.Сначала примерно различаются схемные структуры различных блоков и названия основной ИС или выбранных компонентов. Кроме того, с учетом входной мощности> 75 Вт, в соответствии с требованиями ЕС по общему гармоническому искажению, необходимо добавить схему PFC для удовлетворения требований ЕС.

Приведенная ниже диаграмма представляет собой блок-схему, построенную в соответствии с вышеупомянутыми электрическими характеристиками и в соответствии с соответствующими компонентами на основе структуры HB-LLC.

Пока еще продолжается этап планирования, и проектировщики, знакомые со структурой источника питания, могут не показать очевидных различий в выборе между покупкой готового продукта или созданием его самостоятельно. Однако разница между ними постепенно становится очевидной при последующем переходе к фазе реализации.

Шаг 2: Завершите компоновку печатной платы

Обычно этап компоновки печатной платы следует после подтверждения структуры схемы и выбора компонентов.Что касается того, как разместить все компоненты в соответствии со спецификациями, указанными клиентами, с учетом электрических характеристик и безопасного расстояния, уменьшения трудностей производства и сборки, автоматизации производства, тепловой конвекции и других условий, потребуется профессиональный инженер-компоновщик и подходящее программное обеспечение для работы. Возьмем, к примеру, этот адаптер мощностью 120 Вт. Опытному инженеру-компоновщику потребуется около недели, чтобы завершить первую редакцию печатной платы с нуля.

Шаг 3: Отбор проб

Законченный файл печатной платы затем будет отправлен поставщику печатных плат, специализирующемуся на отборе образцов, для планирования производства образца. Обычно для получения 10-15 образцов печатных плат требуется около 3–5 рабочих дней при затратах на отбор образцов в размере 200 долларов США. Чтобы сократить расходы, игроки, занимающиеся самостоятельным проектированием, могут, конечно, попытаться выполнить травление и промывку, используя плату PCB без покрытия с медной фольгой, которую они приобрели. Тем не менее, учитывая низкую точность, медная проволока легко ломается, и готовый продукт имеет только слой медной фольги (см. Рисунок 1 ниже) без шелкографии верхнего / нижнего слоя (см. Рисунки 2 и 3) в качестве справочного материала для сборки, не говоря уже о необходимость покупать кучу жидкостей для химического травления и задача точно просверливать отверстия в печатной плате одно за другим.В условиях, когда экономится не так много денег и высокая частота отказов, самостоятельное производство печатных плат не рекомендуется.

Рисунок 1: слой медной фольги

Рисунок 2: шелкография верхнего слоя

Рисунок 3: шелкография нижнего слоя

Шаг 4: Приварите компоненты из списка спецификации к печатной плате

После того, как печатная плата завершена, все компоненты в списке спецификаций, подготовленном на ранней стадии, вручную привариваются к печатной плате.Обычно последовательность сборки — сначала SMD, а затем DIP. Сначала соберите небольшие компоненты, а затем — большие. Таким образом, меньшая вероятность возникновения натяга в сборке и отсутствия компонентов в сборке. Однако ручная сборка не может быть полностью безошибочной. Более того, поскольку несколько прототипов собираются вручную, проблемы, возникающие в каждом прототипе, могут различаться. Отсутствующие детали, несовпадение, обратная полярность и т. Д. — все это усложняет создание прототипов. В конечном итоге от отбора проб до запуска пройдет не менее недели, не считая времени на подготовку материала на ранней стадии для всех компонентов в списке спецификации.На этом этапе, если игроки, занимающиеся самостоятельным проектированием, производят только один прототип, это займет меньше времени, при условии, что время и стоимость подготовки материала на ранней стадии не включены в расчет. Поскольку отдельные игроки имеют ограниченный доступ к ресурсам, они должны покупать все компоненты один за другим в магазине электронных материалов. Подготовка всех материалов для одного прототипа определенно в 2–3 раза дороже, чем покупка готового блока питания.

Шаг 5: Электронная проверка и корректировка свойств

После завершения этапов запуска следует этап проверки и корректировки электронных свойств.Чтобы смоделировать питание систем в разных странах и различных условиях нагрузки, необходимо множество связанных инструментов и устройств для завершения проверки электронных свойств, включая программируемые источники питания переменного тока и аналоговые электронные фиктивные нагрузки. Конечно, также необходимы высокоточные осциллографы и соответствующие пробники (пробники напряжения / пробники тока / дифференциальные пробники), цифровые измерители, измерители мощности и паяльники с регулируемой температурой. В определенных ситуациях требуется подтверждение слабых сигналов в цепях.В этом случае необходим источник питания постоянного тока. Тем не менее, среднестатистический игрок не может себе позволить перечисленные выше инструменты. Чтобы продвинуться дальше, набор анализаторов частотных характеристик стоимостью 1 миллион тайваньских долларов также является необходимым оборудованием для достижения высокой стабильности обратной связи и адекватного запаса по фазе и запасу усиления.

Если вы до сих пор не переключили канал, значит, у вас есть страсть к источникам питания! Чтобы соответствовать вашему усердию, продолжим…

Что касается первого издания образцов, персонал отдела исследований и разработок обычно выполняет проверки, связанные с основными электрическими характеристиками, повышением температуры, электромагнитными помехами и EMS.Однако, поскольку источники питания относятся к категории аналоговых схем, часто определенные меры противодействия изменению электрических параметров могут вызвать побочные эффекты. Это приведет к превышению технических характеристик другого электрического свойства или элемента проверки, что может иметь волновой эффект и время и снова и снова создавать проблемы для разработчиков (это явление известно как эффект качелей, при котором предположительно переданный параметр B снова выходит из строя после противодействие параметру A. изменено.Следовательно, то, как правильно справиться с ситуацией, будет зависеть от кропотливой настройки опытным инженером). Следовательно, в дополнение к предварительному тестированию, проводимому персоналом НИОКР, FSP создал отдел проверки, работающий на полную ставку, чтобы проводить проверки одну за другой с точки зрения третьей стороны. Это, в свою очередь, обеспечит качество продукции.

В таблице ниже показаны стандартные блоки питания FSP, требующие проверки.

ОТЧЕТ О КВАЛИФИКАЦИОННОМ ИСПЫТАНИИ

Заказчик: Название режима: FSP120-AAAN3 Проверено: XXX
Версия отчета: 01 Этап: B-TEST Проверено: XXX
Спец.Реверс: 1.00 Дата: XXX Утвердил: XXX
Серийный номер: S7510030032

Товар Подпозиция Результаты Страница Комментарии

Входные характеристики

КПД Пасс 1-3
Входной ток Пасс 1-2
Коэффициент мощности Пасс 1-2
Пусковой ток Пасс 4
Время включения Арт. 24
Время поддержки Пасс 25

Выходные характеристики

Регулировка выходного напряжения Пасс 5-6
Пульсация и шум Пасс 7-8
Динамическая нагрузка Пасс 9-13
Перебег Пасс 14-18
стр.Время задержки G Пасс 26
Время сбоя P.G Пасс 27
Время подъема Пасс 28

Защиты

Короткое замыкание Пасс 19-20
Перегрузка по току Пасс 21
Перенапряжение Пасс 22-23

Безопасность

Ток утечки Пасс 37
Хай-пот Пасс 38
Сопротивление изоляции Пасс 39
Заземление Пасс 40 IEC60068-2-2

Окружающая среда / надежность

Тепловой Пасс 32-36
Записать Пасс 41
Акустическая эмиссия Пасс 53-55
Цикл ВКЛ / ВЫКЛ Пасс 56
Низкотемпературное хранение Пасс 57 IEC60068-2-1
Высокотемпературное хранение Пасс 58 IEC60068-2-2
Циклическое изменение температуры и влажности Пасс 59 IEC60068-2-14
Холодный старт Пасс 60 IEC60068-2-1
Напряжение напряжения Пасс 61-74
Вибрация Пасс 75-77 IEC60068-2-64

E.M.C.

Гармоника тока Пасс 29-31 EN61000-3-2
Всплеск освещения Пасс 42-43 EN61000-4-5
ESD Пасс 44-45 EN61000-4-2
EFT Пасс 46-47 EN61000-4-4
Электромагнитная проводимость Пасс 48-52 EN55032
Падение напряжения переменного тока Пасс 78-79 EN61000-4-11

Проигрывателям с собственной разработкой, как правило, не хватает полных тестовых инструментов и устройств.Поэтому после включения первого выпуска образцов они могут использовать только простой мультиметр для проверки правильности напряжения. В лучших сценариях игроки с самостоятельной конструкцией могут поставляться с сопротивлением нагрузке, которое можно применять для основных тестов на старение и повышение температуры. Однако без более сложных устройств могут возникнуть более сложные проблемы, из-за которых игроки могут застрять и сделать дальнейшую проверку невозможной. Даже при нормальном включении стабильность и срок службы остаются неопределенными. При этом, если все процессы работают и проблемы будут решены, стоит иметь возможность самостоятельно укомплектовать источник питания, даже если это может быть более затратным, чем прямая покупка имеющегося в продаже источника питания.В конце концов, чувство достижения бесценно.

При этом блоки питания собственной разработки подвержены более высокому риску и не рекомендуются для использования с более дорогими продуктами. Если в работе что-то пойдет не так, может выйти из строя блок питания; в тяжелых случаях внутренние электрические устройства будут повреждены, что является скорее потерей, чем прибылью. На данный момент это, вероятно, будет для обычных источников питания собственной разработки, но каждый из сертифицированных FSP источников питания все равно должен будет пройти следующие этапы.

Шаг 6: Пробное производство и повторная проверка

После первоначальной проверки электрических свойств научно-исследовательским персоналом на заводе будет организовано пробное производство. Это делается в надежде найти проблемные области производства до официального начала массового производства. Это снизит количество брака при массовом производстве. С другой стороны, поскольку образцы пробной продукции более полны, чем образцы, полученные вручную, и их количество больше, отдел проверки FSP будет использовать образцы для выполнения проверки.В дополнение к элементам, проверенным вышеупомянутым персоналом, занимающимся исследованиями и разработками, также выполняются дополнительные компоненты, снижающие номинальные характеристики, и открытые короткие проверки. Снижение номинальных характеристик компонентов в основном предназначено для определения того, соответствуют ли излишки всех компонентов техническим характеристикам компонентов во время работы на мощности. Если есть избыток, он будет доведен до сведения сотрудников отдела НИОКР для внесения улучшений. Открытое короткое замыкание в основном предназначено для проверки того, какие реакции возникают в источнике питания, когда какой-либо компонент выходит из строя, или возникает явление разомкнутой цепи или короткого замыкания в отдельном устройстве.Поскольку блоки питания подключены к электросети, теоретически энергия неисчерпаема. Отказ источника питания, вызывающий выделение тепла, дыма или даже искр, может привести к серьезным несчастным случаям, связанным с безопасностью. Такие исходы совершенно недопустимы. Таким образом, открытое короткое замыкание имитирует все возможные неблагоприятные результаты, чтобы исключить возможные опасности до того, как они произойдут. Поскольку два вышеупомянутых теста предназначены для проверки каждого компонента источника питания, проверка занимает много времени. Кроме того, имитация открытого короткого состояния часто приводит к повреждению источника питания.Таким образом, требуются многочисленные образцы, которые не могут быть заполнены одним специалистом по НИОКР, а с помощью специального подразделения проверки.

Шаг 7: Получите сертификат безопасности для продажи на месте

Как упоминалось выше, при отказе источника питания могут возникнуть серьезные проблемы с безопасностью. Источники питания также могут иметь разные соображения безопасности при использовании в разных местах. Хотя многие международные организации, такие как IEEE (Институт инженеров по электротехнике и радиоэлектронике), установили рекомендуемые спецификации, учитывая разное напряжение в сети в разных странах, розетка переменного тока и определение безопасности различаются от страны к стране.В конце концов, страны по всему миру разработали свои собственные наборы критериев. Таким образом, адаптеры для ноутбуков, которые могут быть проданы и использованы в любой стране мира, должны быть протестированы с помощью профессиональной лаборатории и в соответствии с требованиями страны, в которой они находятся. Наконец, необходимо наличие сертификата безопасности, выданного этой страной. быть полученным для продуктов, которые будут разрешены для продажи на местном уровне, и это всего лишь одна страна. Если необходимо принять во внимание универсальное использование, нам нужно будет подавать заявки на сертификат безопасности от каждой страны по отдельности.Безусловно, это будет стоить немалых денег. Кроме того, такая сертификация безопасности является обязательным требованием с юридической силой. Несоблюдение приведет к штрафу, и товар больше не будет продаваться.

Заключение

На данный момент можно описать основные этапы квалифицированного электроснабжения с нуля. Конечно, многие детали невозможно описать подробно. Многочисленные формы сигналов и подтверждения данных испытаний, альтернативные проверки материалов, особые правила, особые требования к окружающей среде, корректировки новых материалов и т. Д.добавить непреодолимые неизвестности к сложности, связанной с проектированием мощности.

Возвращаясь к вопросу индивидуально разработанных источников питания, помимо их более высокой стоимости по сравнению с коммерчески доступными источниками питания, личные усилия в формулировании спецификации / выборе структуры схемы / выборе модели трансформатора / конструкции обмотки / чертеже схемы / компоновке печатной платы / закупке материалов / сборка прототипа / и, наконец, отладка электрических свойств не только будет стоить денег, но также потребует много времени и энергии для завершения всего процесса.Помимо личной компетентности, требуется значительный энтузиазм, не говоря уже об отсутствии возможности позволить себе дорогостоящие инструменты и устройства для проверки электрических свойств и сложных процессов проверки качества. Это, в свою очередь, приведет к высокой ненадежности готовой продукции.

Ясно, что блок питания DIY, который имеет низкое соотношение цены и качества, в конце концов, не такая уж и хорошая идея. С таким же успехом это может быть вызов для студентов или самореализующихся.

Статьи по теме: < Источники питания переменного и постоянного тока Введение >

Принцип работы и технология импульсной схемы питания цветного телевизора Panasonic

Поделитесь принципиальной схемой импульсного источника питания для цветного телевизора Panasonic, структурной схемой импульсного источника питания, поймите структуру и принцип работы схемы импульсного источника питания для цветного телевизора Panasonic, а также рабочий процесс переключения питания цветного телевизора Panasonic цепь питания.

Принципиальная схема импульсного блока питания для цветного телевизора Panasonic

Схема импульсного блока питания показана на рисунке 1.

Источник питания 220 В переменного тока фильтруется тремя линейными фильтрами l870, l871 и l872, выпрямляется мостом d801, фильтруется c818, а затем добавляется к первому выводу ic801 через переключающий трансформатор T801.

В то же время входное переменное напряжение выпрямляется посредством d808, r804, 805 для зарядки C811.Когда напряжение зарядки повышается до 16,0 В, то есть когда напряжение пятого вывода ic801 составляет 16,0 В, полевой МОП-транзистор ic801 начинает включаться, и ток течет через обмотку t801p2.p1. Индуцированная электродвижущая сила создается во вторичных обмотках V1, V2, S1, s5a, S6, S7, S3, S5b, S4 и S5b. Индуцированные электродвижущие силы V1 и V2 выпрямляются с помощью d803 и фильтруются с помощью C811, чтобы сформировать напряжение около 14,7 В постоянного тока, равное рабочему напряжению на выводе 5 ic801.

Индуцированная электродвижущая сила (ЭДС) в обмотках S1 и s5a выпрямляется с помощью d831, фильтруется с помощью c833 и l831, и напряжение 140 В + B выводится для выходной цепи линии; на этой ветви, после того, как напряжение снижается с помощью r860, создается канал постоянного напряжения +30 В для питания основного и вспомогательного высокочастотного тюнера BT и источника питания полевого выхода.

Индуцированная электродвижущая сила в обмотках S6 и S7 выпрямляется с помощью d830 и фильтруется с помощью c831, а затем напряжение +25 В постоянного тока выводится с r833 для схемы усилителя мощности звука.

После первой цепи d834 и d834 напряжение второй цепи фильтруется d834, и источник питания d834 V используется для схемы «картинка в картинке» (PIP); третья схема подается на трехконтактный регулятор напряжения ic805 (an7809-lb) после фильтрации L845, r842 и C840, а затем генерируется напряжение + 9 В постоянного тока после фильтрации c841 для цепи малого сигнала всей машины.

Индуцированная электродвижущая сила в обмотках S4, S5b выпрямляется фильтрами R848, l840, d836, c843, l841 и l844, а затем выдает напряжение + 5 В постоянного тока для питания процессора. Электрик мир

IC801 (strm6833bf04) — это специальная толстопленочная интегральная схема для стабилизации напряжения и защиты импульсного источника питания.

Рабочий процесс следующий: при напряжении пятого пина 16,0 В начинает заряжаться внутренний конденсатор С3.Когда напряжение зарядки составляет 3,0-5,0 В, силовой МОП-транзистор включен. При этом C2 начинает заряжаться. При зарядке 0,75 В генератор перестает колебаться, и силовой МОП транзистор отключается.

После этого C2 быстро разряжается до 0 В, C3 начинает разряжаться, и напряжение медленно уменьшается с 5 В. Когда напряжение на обоих концах G падает до 3 В, генератор снова начинает вибрировать, и силовой МОП транзистор снова включается.

Практика доказала: IC 801 (strm6833bf04) для цветного телевизора Panasonic m18m core — это специальная толстопленочная интегральная схема для стабилизации и защиты импульсного напряжения питания.Он используется более десяти лет и не имеет никаких недостатков. Можно сказать, что это качественная толстопленочная интегральная схема. Внутренняя структура показана на рисунке 2.


просмотров публикации:
23

Pressman, Abraham, Billings, Keith, Morey, Taylor: 9780071482721: Amazon.com: Books

Примечание издателя: качество, подлинность или доступ к каким-либо онлайн-правам на продукты, приобретенные у сторонних продавцов, издатель не дает. с продуктом.

Обновлено руководство №1 в мире по проектированию источников питания!

Признанный во всем мире как исчерпывающий справочник по проектированию источников питания на протяжении более 25 лет, Switching Power Supply Design был обновлен с учетом последних инноваций в технологиях, материалах и компонентах. Это третье издание представляет основные принципы наиболее часто используемых топологий, предоставляя вам важную информацию, необходимую для разработки передовых источников питания.В этом экспертном ресурсе, использующем метод обучения, как и почему, есть примеры проектирования, уравнения и диаграммы. Третье издание модели импульсного источника питания Особенности :

  • Проекты для многих наиболее полезных топологий импульсного источника питания
  • Основные принципы, необходимые для решения повседневных проблем проектирования
  • Сильный акцент на основных основах конструкции трансформатора и магнетика
  • Новое в этом издании: полная глава о конструкции дросселя и оптимальных условиях привода для современных быстрых IGBT

Получите все необходимое для разработки полного импульсного источника питания:

Основные импульсные регуляторы * Push-Pull Топологии прямого и прямого преобразователя * Топологии полумостовых и полумостовых преобразователей * Топологии обратноходовых преобразователей * Топологии с питанием по току и питанием по току * Разные топологии * Конструкция трансформатора и магнитов * Конструкция высокочастотного дросселя * Оптимальные условия возбуждения для биполярных силовых транзисторов, полевых МОП-транзисторов , Силовые транзисторы и IGBT * Цепи привода для магнитных усилителей * Пострегуляторы * Отключение n, Коммутационные потери при выключении и демпферы с малыми потерями * Стабилизация обратной связи * Формы сигналов резонансного преобразователя * Коэффициент мощности и коррекция коэффициента мощности * Высокочастотные источники питания для люминесцентных ламп и регуляторы с низким входным напряжением для портативных компьютеров и портативного оборудования

.

Добавить комментарий

Ваш адрес email не будет опубликован.