Принцип работы выпрямителя: Выпрямитель напряжения: классификация, применение, схема выпрямителя

Содержание

Сварочный выпрямитель – устройство и принцип работы

При выполнении сварочных работ важную роль играет обеспечение условий, в которых образуется ровный, аккуратный, прочный шов и сводится к минимуму разбрызгивание металла. Для создания именно таких условий служит сварочный выпрямитель, преобразующий переменный ток в постоянный.

В этом аппарате, состоящем из нескольких блоков, осуществляется выпрямление входного переменного тока, снижение напряжения и увеличение силы тока до необходимого значения.

Устройство, назначение и принцип работы сварочного выпрямителя

Производители предлагают несколько конструктивных схем аппаратов, но их главные компоненты одинаковы.

Как устроен сварочный выпрямитель – основные составные части:


  • понижающий трансформатор;
  • полупроводниковые элементы – диоды;
  • охлаждающий блок;
  • регуляторы электротока;
  • измерительные устройства.

Основные этапы преобразования тока, поступающего в аппарат:


  • На первичную обмотку понижающего трансформатора поступает переменный одно- или трехфазный питающий ток.
  • На вторичной обмотке, благодаря электромагнитной индукции, генерируется ток со сниженным значением напряжения и силой тока, повышенной до требуемого значения.
  • Переменный ток с новыми параметрами поступает на выпрямительный блок, состоящий из полупроводниковых элементов.
  • В сварочную зону подается постоянный ток с нужными параметрами. Для контроля силы тока и значения напряжения в составе сварочного выпрямителя предусмотрены амперметр и вольтметр.

При эксплуатации полупроводниковые элементы (диоды) нагреваются, поэтому для их охлаждения устанавливаются специальные радиаторы и вентилятор. Во время функционирования аппарата диоды постоянно охлаждаются воздушным потоком, что значительно продлевает беспрерывный период функционирования выпрямителя.В современных моделях устанавливаются датчики перегрева, которые дают сигнал на отключение возможности сварки при перегреве аппарата.

Для настройки требуемой силы тока предусмотрено несколько режимов регулировки:


  • Витковая. Осуществляется в аппаратах с секционированными обмотками, входящими в устройство сварочного выпрямителя.
  • Фазовая. Осуществляется с использованием тиристоров.
  • Импульсная – широтная, частотная и амплитудная. Применяется в преобразователях с транзисторным регулятором или в инверторных моделях.
  • Магнитная. Осуществляется благодаря присутствию в схеме сварочного выпрямителя дросселя насыщения, смонтированного между блоком выпрямления и понижающим трансформатором. Дроссель – это несколько катушек, через которые пропускаетсянапряжение. При переключении рычага изменяется путь прохождения тока, а следовательно, его сила.

Преимущества и недостатки применения сварочных выпрямителей

Сварочный выпрямительимеет ряд достоинств, по сравнению страдиционным сварочным трансформатором, от которого он отличается наличием выпрямительного блока.

Это:


  • более стабильная дуга;
  • минимальное разбрызгивание металлического расплава;
  • качественная поверхность шва;
  • возможность качественной сварки легированных сталей, цветных металлов и сплавов на их основе.

Минусами являются:

  • чувствительность к колебаниям напряжения в электрической сети;
  • быстрый выход из строя при КЗ в сети;
  • чувствительность к условиям окружающей среды – высокой влажности и запыленности.

Для чего служит сварочный выпрямитель?

Преобразователь с блоком-выпрямителем используется как для сварки, так и для резки металлов.

Для каких видов сварки эффективны сварочные выпрямители:


  • толщина свариваемыхзаготовок с разделкой кромок – 1-50 мм, конкретная минимальная и максимальная толщина зависит от возможностей аппарата-преобразователя;
  • при использовании плавящихся электродов с сечением 2-6 мм;
  • при работе неплавящимися электродами – угольными и вольфрамовыми;
  • свариваемые металлы – нелегированная и легированная сталь, чугун, цветные металлы и сплавы на их основе.

Виды сварочных выпрямителей по количеству фаз

В зависимости от числа фаз первичного тока питания различают одно- и трехфазные преобразователи. Однофазные модели, работающие от бытовой электросети переменного тока с напряжением 220 В,имеют небольшую и среднюю мощность.В основном применяются в бытовых целях. Имеют однополупериодное или двухполупериодное выпрямительное устройство (мостовое или с выводом средней точки вторичной обмотки трансформатора). Двухполупериодные устройства имеют большую мощность и КПД, по сравнению с однополупериодными. Наиболее популярныдвухполупериодные мостовые модели, состоящие из понижающего трансформатора и четырех диодов, сформированных в диодный мост.

Трехфазные аппараты, бывающие одно- и многопостовыми,работают от сети напряжением 380 В, имеют среднюю и большую мощность, эффективны для сварки и резки металлов значительной толщины.

Типы сварочных выпрямителей – одно- и многопостовые

В зависимости от модели выпрямительного аппарата, к нему могут подключаться один или несколько сварочных кабелей.

Описание однопостового сварочного выпрямителя

Однопостовые аппараты, к которым может подключаться только один сварочный кабель, используются для выполнения работ небольших объемов. Это компактное устройство, обладающее невысокой мощностью, чаще всего используется в бытовых целях или в небольших мастерских. Имеет небольшие размеры и массу, поэтому его легко перемещать на новые рабочие места. В конструкции современных аппаратов предусмотрены защиты от перегрева и слишком высокого напряжения. В помещениях с естественной вентиляцией часто используются выпрямительные устройства серии ВД.

Однопостовые аппараты работают отодно- или трехфазного тока. Для бытовых целей обычно используются однофазные модели.

Характеристики многопостовых сварочных выпрямителей

Многопостовые аппараты востребованы для ручной и механизированной сварки. Модели для ручной сварки серии ВДМ имеют несложную конструкцию. Управление силой тока осуществляется балластными реостатами. Такие выпрямители часто используются при организации систем, питающихся от общецехового магистрального шинопровода. Отличаются стабильной выходной вольтамперной характеристикой.

Многопостовые аппараты для механизированной сварки могут обслуживать до 30 рабочих мест сварщиков. Применяются для наплавки и сваривания под флюсом. Взаимное влияние постов друг на друга исключено.

Подготовка к эксплуатации и эксплуатационные условия для сварочных выпрямителей

Эксплуатацию выпрямительных аппаратов можно начинать только после тщательного изучения сопроводительной документации, в которой изложена информация об устройстве модели, допустимых условиях работы, правилах безопасности. Перед использованием устройство очищается от пыли, заземляется и проверяется в соответствии с инструкцией.

Установку, подключение к электросети и регулировку должен осуществлять электромонтажник с третьей и выше группой электробезопасности. Сварочные работы может вести сварщик, прошедший обучение по использованию аппарата, имеющий удостоверение на право сварки и группу электробезопасности вторую и выше.

Поскольку сварочные выпрямительные устройства чувствительны к качеству питающего тока, в сетях с нестабильным электроснабжением их подключают через источники бесперебойного питания (ИБП) соответствующей мощности.

Также следует контролировать уровни запыленности и влажности, максимальный уровень которых указывается в техдокументации.

Обслуживание и ремонт сварочных выпрямителей

Для обеспечения бесперебойной работы выпрямительное устройство нуждается в периодическом техобслуживании и своевременном ремонте. Перед эксплуатацией необходимо проверить надежность заземления. Обязательное условие – наличие защитного кожуха.

Основные этапы технического обслуживания:


  • контроль целостности изоляции всех конструктивных элементов, находящихся под напряжением;
  • обследование прочности фиксации клемм;
  • удаление пыли и загрязнений с внутренних механизмов.

Распространенными неисправностями, требующими незамедлительного ремонта, являются появление гула и перегрев устройства. Вероятные причины этих проблем:


  • неправильно подобранная крыльчатка вентилятора;
  • заклинивание вала вентилятора;
  • замыкание первичной обмотки понижающего трансформатора;
  • нарушение изоляции токоведущих частей.

Падение выходного напряжения ниже заданного значения может произойти из-за обрыва вторичной обмотки или замыкания витков. Одной из причин выхода из строя оборудования является поломка выпрямительного диодного моста.

Если напряжение холостого хода и рабочего режима нестабильно, то необходимо проверить:


  • ручку регулятора;
  • предохранители первичной обмотки;
  • устойчивость фиксации клемм пускателя.

Для ремонта выпрямителей требуются определенные знания и навыки, поэтому диагностику и восстановление рабочих характеристик аппаратоврекомендуется доверить работникам специализированногосервис-центра.

принцип работы, типы и схемы

Принцип работы

Видя, что 3-фазный источник питания — это просто три однофазные комбинации, мы можем использовать это многофазное свойство для создания 3-фазных цепей выпрямителя.

Как и в случае однофазного выпрямления, в трехфазном выпрямлении используются диоды, тиристоры, транзисторы или преобразователи для создания полуволновых, двухволновых, неконтролируемых и полностью управляемых выпрямительных цепей, преобразующих данный трехфазный источник питания в постоянный выходной уровень постоянного тока. В большинстве случаев трехфазный выпрямитель подается напрямую от электросети или от трехфазного трансформатора, если подключенная нагрузка требует другого уровня выхода постоянного тока.

Как и в случае предыдущего однофазного выпрямителя, наиболее простой трехфазной выпрямительной схемой является схема неуправляемого полуволнового выпрямителя, в которой используются три полупроводниковых диода, по одному диоду на фазу, как показано ниже.

Принцип работы диодного моста

Диод в цепи переменного напряжения

Итак, в статье про диод мы рассматривал, что будет на выходе диода, если подать на него переменный ток. Для этого мы даже собирали вот такую схему, где G – это синусоидальный генератор. С клемм X1 и X2 уже снимали сигнал.

Мы на диод подавали переменное напряжение.

А на выходе после диода получали уже вот такой сигнал.

То есть у нас получилось вот так.

Да, мы получили постоянный ток из переменного, но стоило ли это того? В этом случае у нас получился постоянный пульсирующий ток, где половина мощности сигнала была вообще вырезана.

Как работает диодный мост в теории

Как вы знаете, переменный ток меняет свое направление несколько раз в секунду. Поэтому, его можно разбить на положительные полуволны и отрицательные полуволны. Положительные полуволны я пометил красным, а отрицательные – синим.

Для того, чтобы диодный мост работал, ему нужна какая-либо нагрузка. Пусть это будет резистор. Следовательно, когда на диодный мост приходит положительная полуволна, протекание тока через него будет выглядеть вот так.

Как вы видите, при положительной полуволне не задействованы диоды, которые я показал штриховой линией.

После положительной полуволны приходит отрицательная полуволна, и в этом случае протекание тока в диодном мосте выглядит так.

В этом случае, диоды, которые работали при положительной полуволне, при отрицательной полуволне они отдыхают). Эстафету принимает на себя другая пара диодов. Можно даже сказать, что в диодном мосте они работают попарно. Одна пара диодов работает на положительную полуволну, а другая пара – на отрицательную.

Обратите внимание на нагрузку. На нее всегда приходит одна и та же полярность тока при любом стечении обстоятельств

Работа диодного моста на практике

Давайте и мы посмотрим, что получается на выходе диодного моста, если подать на него переменное напряжение. Для этого возьмем 4 простых кремниевых диода и соединим их в диодный мост

Важно, чтобы диоды были одной марки

На вход диодного моста будем подавать переменное напряжение, и посмотрим, что у нас получается на выходе.

Итак, на вход я подаю вот такой сигнал.

На выходе получаю постоянное пульсирующее напряжение.

Здесь мы видим, что отрицательная полуволна в диодном мосте не срезается, а превращается в положительную. Мощность сигнала при этом не теряется, так как отрицательная полуволна просто инвертируется в положительную полуволну. Ну разве не чудо?

Наблюдательный читатель также может заметить, что амплитуда сигнала чуть-чуть просела. Если мы на вход подавали синусоидальный сигнал с амплитудой в 6 Вольт, то на выходе диодного моста имеем чуть меньше 6 Вольт, а точнее где-то 4,8 Вольта. Почему так произошло? Дело все в том, что на кремниевом диоде падает напряжение 0,6-0,7 Вольт. Так как переменное напряжение проходит через 2 диода при каждой полуволне, то на каждом диоде падает по 0,6 Вольт. 2×0,6=1,2 Вольта. 6-1,2=4,8 Вольта.

Теперь можно с гордостью нарисовать рисунок.

Однофазный однополупериодный выпрямитель

Однофазный однополупериодный выпрямитель, схема которого приведена на рис. 30.2 а, является простейшим.

Схема однофазного двух-полупериодного выпрямителя.| Эпюры напряжений и токов выпрямителя.

Однофазный однополупериодный выпрямитель имеет ограниченное применение. Он используется главным образом в маломощных усилителях и в измерительных схемах при условии применения фильтра для сглаживания пульсаций. Основными недостатками этой схемы являются следующие: высокий уровень пульсаций тока, низкий коэффициент использования трансформатора; значительное изменение выходного напряжения при большом внутреннем сопротивлении вентиля, большое обратное напряжение; малый КПД выпрямителя из-за больших потерь на внутреннем сопротивлении вентиля.

Благодаря простоте устройства однофазные однополупериодные выпрямители часто применяются в маломощных цепях измерительных приборов, в радий — и телевизионной технике.

Таким образом, для однофазного однополупериодного выпрямителя следует выбирать анод, у которого максимально допустимое обратное напряжение больше или равно амплитудному значению напряжения на вторичной обмотке трансформатора.

Схема использования заряд.

Так как УЗ-400 и УЗ-401 имеют однофазные однополупериодные выпрямители, то для сглаживания выходного напряжения необходим конденсатор в 50 — 100 мкф. Чтобы конденсатор успевал зарядиться и обеспечить достаточное сглаживание напряжения на обмотке реле, изменять напряжение на входе УЗ-400 необходимо очень медленно. После каждого срабатывания проверяемого реле необходимо снизить входное напряжение до нуля и обождать некоторое время, чтобы конденсатор разрядился на реле. Необходимо помнить, что проверять от УЗ-400 или УЗ-401 можно только аппаратуру с номинальным током, не превышающим номинальный ток диодов в выпрямителях зарядного устройства.

На рис. 14.6, а изображена схема простейшего однофазного однополупериодного выпрямителя на ТИ-рИСТОре VS. Управление выпрямленным напряжением в управляемых выпрямителях сводится к задержке во времени момента включения тиристора по отношению к моменту его естественного включения. Это осуществляется за счет сдвига фаз между анодным напряжением и напряжением, подаваемым на управляющий электрод тиристора. Такой сдвиг фаз называют углом управления а. В зависимости от сопротивления переменного резистора R1 угол управления а может изменяться от 0 до 90, что позволяет плавно регулировать выпрямленное напряжение от наибольшей величины до ее половины. Зависимость среднего значения выпрямленного напряжения Ua от угла управления а называют характеристикой управления. Для однофазного двухполупериодного выпрямителя эта характеристика представлена на рис. 14.7, где максимальное значение угла управления атахл.

Схема трехфазного выпрямителя с отводом от нулевой точки ( а и мостового.

Однофазный выпрямитель с удвоением напряжения ( рис. 30.2 г) представляет собой последовательное соединение двух однофазных однополупериодных выпрямителей. В первом полупериоде при положительном напряжении на аноде диода VD заряжается конденсатор Сь а во втором полупериоде проводит диод VD2 и конденсатор С2 заряжается напряжением противоположной полярности. Так как эти конденсаторы включены последовательно, то выходное напряжение почти удваивается. Конденсаторы С ] и С2 могут использоваться как элементы фильтра. Трансформатор в этой схеме используется так же полно, как и в мостовой. В связи с этим такой выпрямитель часто называют полумостовым.

Основным элементом современных управляемых выпрямителей является тиристор. На рис. 9.30, а представлена схема простейшего однофазного однополупериодного выпрямителя на тиристоре.

Емкостный фильтр ( рис. 5.5 о) состоит из конденсатора, подключаемого параллельно нагрузке; применяется в маломощных цепях. Процесс сглаживания пульсаций емкостным фильтром показан на рис. 5.6. Положительные полуволны напряжения, выпрямленного однофазным однополупериодным выпрямителем, разделены паузами.

Расчет основан на допущении, что R — С Rn. Это допущение почти всегда соблюдается, давая основание считать, что переходные процессы в схеме выпрямления весьма быстро проходят, и время установления режима работы вентиля меньше времени протекания тока через него. Переходные процессы снова возникают при повторном включении вентиля, в результате чего форма кривой напряжения на конденсаторе несколько отличается от формы кривых, ранее изображенных на графиках. Чтобы учесть потери в схеме однофазного однополупериодного выпрямителя, на рис. 3 — 12, а показано сопротивление R, включенное последовательно с нагрузкой.

Назначение и практическое использование

Область использования моста, набранного из диодов, довольно широка. Это могут быть блоки питания и узлы управления. Он стоит во всех устройствах, питающихся от промышленной сети 220 вольт. Например, телевизоры, приёмники, зарядки, посудомоечные машины, светодиодные лампы.

Не обходятся без него и автомобили. После запуска двигателя начинает работать генератор, вырабатывающий переменный ток. Так как бортовая сеть вся питается от постоянного напряжения, ставится выпрямительный мост, через который происходит подача выпрямленного напряжения. Этим же постоянным сигналом происходит и подзарядка аккумуляторной батареи.

Выпрямительное устройство используется для работы сварочного аппарата. Правда, для него применяются мощные устройства, способные выдерживать ток более 200 ампер. Использование в устройствах диодной сборки даёт ряд преимуществ по сравнению с простым диодом. Такое выпрямление позволяет:

  • увеличить частоту пульсаций, которую затем просто сгладить, используя электролитический конденсатор;
  • при совместной работе с трансформатором избавиться от тока подмагничивания, что даёт возможность эффективнее использовать габаритную мощность преобразователя;
  • пропустить большую мощность с меньшим нагревом, тем самым увеличивая коэффициент полезного действия.

Но также стоит отметить и недостаток, из-за которого в некоторых случаях мост не используют. Прежде всего, это двойное падение напряжения, что особенно чувствительно в низковольтных схемах. А также при перегорании части диодов устройство начинает работать в однополупериодном режиме, из-за чего в схему проникают паразитные гармоники, способные вывести из строя чувствительные радиоэлементы.

Блок питания

Ни один современный блок питания не обходится без выпрямительного устройства. Качественные источники изготавливаются с использованием мостовых выпрямителей. Классическая схема состоит всего из трёх частей:

  1. Понижающий трансформатор.
  2. Выпрямительный мост.
  3. Фильтр.

Синусоидальный сигнал с амплитудой 220 вольт подаётся на первичную обмотку трансформатора. Из-за явления электромагнитной индукции во вторичной его обмотке наводится электродвижущая сила, начинает течь ток. В зависимости от вида трансформатора величина напряжения за счёт коэффициента трансформации снижается на определённое значение.

Между выводами вторичной обмотки возникает переменный сигнал с пониженной амплитудой. В соответствии со схемой подключения диодного моста это напряжение подаётся на его вход. Проходя через диодную сборку, переменный сигнал преобразуется в пульсирующий.

Такая форма часто считается неприемлемой, например, для звукотехнической аппаратуры или источников освещения. Поэтому для сглаживания используется конденсатор, подключённый параллельно выходу выпрямителя.

Трёхфазный выпрямитель

На производствах и в местах, где используется трёхфазная сеть, применяют трёхфазный выпрямитель. Состоит он из шести диодов, по одной паре на каждую фазу. Использование такого рода устройства позволяет получить большее значение тока с малой пульсацией. А это, в свою очередь, снижает требования к выходному фильтру.

Наиболее популярными вариантами включения трёхфазных выпрямителей являются схемы Миткевича и Ларионова. При этом одновременно могут использоваться не только шесть диодов, но и 12 или даже 24. Трёхфазные мосты используются в тепловозах, электротранспорте, на буровых вышках, в промышленных установках очистки газов и воды.

15.3 Стабилизаторы напряжения и тока

Этим устройством называют электрический прибор, автоматически обеспечивающий поддержание напряжения (тока) нагрузки с заданной точностью. Электронные приборы могут нормально работать при вариации питающего напряжения 0,1 – 3,0%, а иногда и того меньше.

Стабилизаторы классифицируют по ряду признаков:

  1. По роду стабилизируемой величины – стабилизаторы напряжения и тока.
  2. По способу стабилизации – параметрические и компенсационные стабилизаторы.

Широкое применение получили компенсационные стабилизаторы, которые подразделяются на стабилизаторы непрерывного и импульсного регулирования. Стабилизация достигается за счет введения отрицательной обратной связи между выходом и регулирующим элементом, который изменяет свое сопротивление так, что компенсирует возникшее отклонение выходной величины.

Параметрические стабилизаторы напряжения и тока. Схема такого устройства имеет вид:

Рисунок 15. 14 — Схема параметрического стабилизатора напряжения на стабилитроне (а) и вольт — амперные характеристики Rб при ?Uвх параметрического стабилизатора (б).

С помощью такого простейшего стабилизатора, в котором применяется полупроводниковый стабилитрон VD, можно обеспечить стабилизацию напряжения от единиц до нескольких сотен вольт при токах от единиц мА до одного ампера. Если необходимо стабилизировать U<3В, то вместо стабилитрона используют стабисторы.

Коэффициент стабилизации параметрического стабилизатора напряжения на стабилитроне примерно равен 30 — 50. Его К.П.Д. не превышает 0,3; а диапазон стабилизируемого напряжения узок и не регулируется.

В параметрических стабилизаторах тока нелинейный элемент включается последовательно с нагрузкой.

Рисунок 15.14 — Схема (а) и объяснение принципа действия (б) параметрического стабилизатора тока.

В качестве нелинейного элемента используют биполярные и полевые транзисторы. Рабочая точка на вольт-амперной характеристике параметрического стабилизатора тока выбирается таким образом, чтобы при изменении питающего напряжения нагрузочный ток практически не изменялся. Коэффициент стабилизации тока в таком стабилизаторе составляет несколько десятков.

Рисунок 15.15 — Схемапараметрического стабилизатора тока на полевом транзисторе

Компенсационные стабилизаторы постоянного напряжения и тока являются АСР с отрицательной обратной связью, но их достоинства достигнуты усложнением схем. К > 1000, η = 0,5 – 0,6. Аналогично параметрическому стабилизатору, компенсационный стабилизатор включают между сглаживающим фильтром и нагрузочным резистором.

Рисунок 15. 16-Схемы компенсационного стабилизатора напряжения на биполярных

транзисторах (а) и операционном усилителе (б).

Рисунок 15.17 — Схема компенсационного стабилизатора тока на биполярных транзисторах.

Компенсационные стабилизаторы непрерывного действия выпускаются в виде ИМС и применяются в качестве индивидуальных стабилизаторов отдельных блоков. В то же время общие источники ВП выполняют нестабилизированными.

Импульсные стабилизаторы постоянного напряжения (ИСПН) имеют η = 0,80 – 0, 85, меньше габариты и массу. Это достигается использованием транзистора в режиме ключа, что позволяет получить прямоугольные импульсы, которые затем сглаживаются фильтром. Мощность потерь на транзисторе стремится к нулю и получают высокий К.П.Д. Изменение длительности импульсов или частоты их следования позволяет поддерживать Uвых = const.

Импульсные стабилизаторы постоянного напряжения по способу управления регулирующим элементом разделяют на релейные (двухпозиционные) и с широтно–импульсной модуляцией (ШИМ). Частоты переключений регулирующего транзистора равны 2 – 50 кГц.

Рисунок 15.18 — Принципиальная электрическая схема релейного импульсного стабилизатора постоянного напряжения.

Что такое стабилизатор и для чего он нужен?

На сегодняшний день, рынок электроприборов предлагает большой выбор выпрямителей. Устройства можно подобрать по техническим характеристикам, которые будут подходить определенной электросети.

Но для начала нужно разобраться, что же такое трансформатор переменного тока. Если его правильно подобрать, он будет служить долгие годы. Устройство, как уже говорилось ранее, защищает электроприборы от перепада переменного тока.

С помощью выпрямителя тока, все электроприборы работают в щадящем режиме. Это позволяет сэкономить на электроэнергии и продлить эксплуатацию бытовой техники. Если подробно разобраться, то вся электротехника изготавливается со специальной программой и рассчитана на определенное напряжение в сети.

Если все условия соблюдены, бытовые приборы будут работать с высокой производительностью и минимальной затратой энергии. Переменный ток электрической сети часто меняется, поэтому выпрямитель выравнивает его.

Еще применяют трансформаторы напряжения для двигателей автомобилей. Они нужны для того, чтобы двигатель мог завестись без перегрузок с низкого напряжения. Пример двигателя автомобиля, можно взять мотор стиральной машины. При постоянных перепадах без стабилизатора тока, двигатель испытывает большие перегрузки, как следствие может сгореть.

Практическое применение

На практике диодный мост имеет довольно широкий спектр применения – это и цифровая техника, блоки питания в персональных компьютерах, ноутбуках, различных устройствах, автомобильных генераторах, питающихся от низкого постоянного напряжения. Помимо этого их можно встретить в системах звуковоспроизведения, измерительной техники, теле- радиовещания, они устанавливаются в ряде различных устройств по всему дому. Для лучшего понимания роли диодного моста в этих приборах мы рассмотрим несколько конкретных схем, в которых он применяется.

Примеры схем с диодным мостом и их описание

Одна из наиболее простых схем с применением диодного моста – это зарядное устройство, применяемое для оборудования, питаемого низким напряжением. Один из таких вариантов рассмотрим на следующем примере

Как видите на рисунке, от понижающего трансформатора Т1 напряжение из переменного 220В преобразуется в переменное на уровне 7 – 9В. После этого пониженное напряжение подается на диодный мост VD, от которого выпрямленное через сглаживающий конденсатор С1 на микросхему КР. От микросхемы выпрямленное напряжение стабилизируется и выдается на клеммы разъема.

На рисунке выше приведен пример схемы карманного фонаря, данная модель подключается к бытовой сети 220В через розетку, что представлено соединением разъема Х1 и Х2. Далее напряжение подается на мост VD, а с него уже на микросхему DA1, которая при наличии входного питания сигнализирует об этом через светодиод HL1. После этого напряжение питания приходит на аккумулятор GB, который заряжается и затем используется в качестве основного источника питания для лампы фонарика.

Здесь представлен пример схемы сварочного агрегата, в котором диодный мост устанавливается сразу после понижающего трансформатора для выпрямления электрического тока. Из-за сложности схемы дальнейшее рассмотрение работы устройства нецелесообразно. Стоит отметить, что существуют и другие устройства с еще более сложным принципом работы – импульсные блоки питания, ШИМ модуляторы, преобразователи и т.д.

Оцените статью:

Принцип работы и принцип действия сварочного выпрямителя

Назначение сварочного выпрямителя состоит в преобразовании переменного тока сети (однофазной или трехфазной) с частотой 50Гц и напряжением 220/380в на постоянный


ток, питающий сварочную дугу между электродом и свариваемой деталью. Принцип действия сварочного выпрямителя любого типа, а существует много различных схем, как преобразования, так и управления процессом преобразования тока. Принцип работы сварочного выпрямителя можно разделить на три части:
  • понижение напряжения сети до напряжения холостого тока сварки;
  • преобразование переменного тока в постоянный;
  • регулировка сварочного тока, для создания управляемого процесса.
Понижение напряжения сети до напряжения холостого происходит в силовом трансформаторе низкочастотных устройств или в импульсном высокочастотном трансформаторе у выпрямителей с двойным преобразованием тока (инверторный тип выпрямителей). Силовые трансформаторы рассчитываются исходя из заданных параметров мощности (тока сварки), необходимого времени непрерывной работы и формы магнитопровода (стержневой, тороидальный и др.). Принцип действия сварочного выпрямителя инверторного типа отличается от обычного предварительным преобразованием частоты тока сети от 50Гц до 40-100кГц. Дальнейшее преобразование напряжения не требует массивного силового прибора. Высокочастотный трансформатор импульсного типа имеет минимальные габариты, и выпрямитель-инвертор получает значительные преимущества в габаритах и весе.

Для преобразование переменного тока в постоянный используются выпрямители на диодных схемах. На выходе выпрямителя получается напряжение холостого тока. Оно обычно выше напряжения дуги. Падающая вольтамперная характеристика понижает напряжение при возрастании тока сварки. Это способствует переносу металла электрода на соединяемые детали. Для сглаживания пульсаций используются емкостные фильтры.

Процесс регулировки сварочного тока, для создания управляемого процесса сварки позволяет производить сварочные работы при необходимой величине тока. Подобная регулировка позволяет варить металлические детали разной толщины или с разной скоростью сварки без прожогов металла свариваемых деталей. Высокий ток требует сварки с большей скоростью. Принцип работы сварочного выпрямителя, помимо создания нужного напряжения, основан на возможности плавного регулирования тока сварки с помощью активного переменного сопротивления (обычного реостата).

Читайте также


принцип работы, схемы и т.д.

Двухполупериодный выпрямитель — устройство или контур, проводящий ток в течение обеих половин цикла переменного тока. Двухполупериодный выпрямитель состоит из трансформатора с центральным отводом вторичной обмотки, двух диодов и сопротивления нагрузки.

Схема двухполупериодного выпрямителя
Обратите внимание на основы электричества и на приборы электроники.

Принцип действия двухполупериодного выпрямителя

В течение первой половины цикла переменного тока верхний конец вторичной обмотки положителен, а нижний конец вторичной обмотки отрицателен. Диод D1 находится в состоянии прямого подключения, а диод D2 находится в состоянии обратного подключения, поскольку средняя точка отрицательна относительно положительной стороны вторичной обмотки и положительна относительно отрицательной стороны вторичной обмотки. Ток протекает от средней точки через сопротивление нагрузки, через D1 к положительной стороне вторичной обмотки. Падение напряжения на сопротивлении RL представляет собой положительную полуволну.

Путь тока через двухполупериодный выпрямитель: D1 находится в состоянии прямого подключения

В течение второй половины цикла переменного тока верхний конец вторичной обмотки отрицателен, а нижний конец вторичной обмотки положителен. Диод D1 находится в состоянии обратного подключения, а диод D2 находится в состоянии прямого подключения. Как изображено на рисунке 3-7, ток протекает от средней точки через сопротивление нагрузки, через D2 к положительной стороне вторичной обмотки. Падение напряжения на сопротивлении RL снова представляет собой положительную полуволну.

Путь тока в двухполупериодном выпрямителе: D2 находится в состоянии прямого подключения

Поскольку ток протекает через сопротивление RL в одном и том же направлении в течение обеих половин цикла входного напряжения, через RL проходят две полуволны в течение каждого полного цикла. Тем не менее, поскольку у этого трансформатора есть средняя точка, падение напряжения на сопротивлении нагрузки представляет собой лишь

половину того, что могло бы быть, если бы нагрузка была соединена ко всей вторичной обмотке. Форма кривой выходного сигнала двухполупериодного выпрямителя

Однополупериодный выпрямитель Принцип работы выпрямителя кра…

Сразу хочу сказать, что здесь никакой воды про однополупериодный выпрямитель, и только нужная информация. Для того чтобы лучше понимать что такое однополупериодный выпрямитель , настоятельно рекомендую прочитать все из категории Электроника, Микроэлектроника , Элементная база


Считается, что трансформатор и выпрямительный диод — идеальны, то есть у трансформатора активное сопротивление обмоток равно нулю, у диода Rпр = 0 и Rобр = ∞.


Рис.2 Схема однополупериодного выпрямителя

Принцип работы выпрямителя

Рассмотрим временные диаграммы однополупериодного выпрямителя (рис.3) в интервале времени 0 — T/2 диод VD1 открыт φА > φВ, в нагрузке течет ток iн .
В интервале времени T/2 — T диод закрыт φА < φВ, к диоду приложено U2m.


Рис.3 . Об этом говорит сайт https://intellect.icu . Временные диаграммы однополупериодного выпрямителя
Ток и напряжение в нагрузке имеют пульсирующий характер и как следствие значительно отличаются от постоянных составляющих

Основные электрические параметры выпрямителя

Диод в выпрямителях является основным элементом и во многом определяет основные показатели выпрямителей.
1. Uнср и Iнср – средние значения выпрямленных напряжения и тока в нагрузочном устройстве
2. Мощность нагрузочного устройства Pнср = Uнср•Iнср
3. Амплитуда основной гармоники Uоснг
4. Коэффициент пульсаций выпрямленного напряжения

5. КПД выпрямителя
6. Обратное максимально напряжение на запертом диоде Uобрmax
Определим среднее значение выпрямленного напряжения и тока в нагрузке.
В однополупериодном выпрямителе теряется больше половины входного напряжения!

Входное напряжение (напряжение на вторичной обмотке трансформатора):

Среднее значение выпрямленного тока, средневыпрямленный ток равен току через диод:

Частота пульсаций выпрямленного напряжения равна частоте сетевого напряжения:
fп = fосн
Выпрямленное напряжение имеет несинусоидальную форму сигнала, поэтому может быть разложено в ряд Фурье:

Так как частота пульсаций выпрямленного напряжения равна частоте сети, то при расчете коэффициента пульсаций берут напряжение основной первой гармоники:

р = 1,57 — очень большой коэффициент пульсаций – это является недостатком схемы.
Обратное максимальное напряжение на запертом диоде равно амплитуде входного напряжения:

При выборе выпрямительных диодов используются максимально допустимые параметры: ток прямой максимально допустимый и напряжение обратное максимально допустимое: Iпрmax, Uобрmax.
Диод в выпрямителях является основным элементом, и его параметры во многом определяют основные параметры выпрямителей

См. также

А как ты думаешь, при улучшении однополупериодный выпрямитель, будет лучше нам? Надеюсь, что теперь ты понял что такое однополупериодный выпрямитель и для чего все это нужно, а если не понял, или есть замечания, то нестесняся пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Электроника, Микроэлектроника , Элементная база

Однофазный мостовой выпрямитель, принцип работы, описание

Рассматриваемый выпрямитель (рис. 4.21) широко используется в самых различных устройствах сравнительно малой мощности (до сотен ватт и, иногда, единиц киловатт).

Опишем работу выпрямителя для двух характерных видов нагрузки: активной (рис. 4.21, а) и активноиндуктивной (рис. 4.21, б).

Работа выпрямителя на активную нагрузку при нулевом угле управления.
Для рассматриваемого выпрямителя углом управления называют угол а сдвига по фазе между началом каждой положительной полуволны напряжения питания ивх и со ответствующим моментом включения тиристоров Т, и Т4, а также равный ему угол сдвига между началом каждой отрицательной полуволны напряжения ивх и соответствующим моментом включения тиристоров Т2 и Т3 (тиристоры включаются парами).

При а = О электрические процессы в управляемом выпрямителе совпадают с процессами в рассмотренном выше неуправляемом выпрямителе. Естественно, остаются прежними и математические выражения, характеризующие выпрямитель.

Работа выпрямителя на активную нагрузку при угле управления я/2 рад (90 эл. град.) (рис. 4.22).

Анализ процессов в выпрямителе при ненулевом угле управления а усложняется, так как на некоторых отрезках оси абсцисс (и на некоторых отрезках времени) все тиристоры схемы выключены и приходится решать задачу распределения на них напряжения ивх. При этом два тиристора находятся под прямым, а другие два — под обратным напряжением.

Предполагаем (это общепринято), что эквивалентные сопротивления всех выключенных тиристоров одинаковы и не зависят от полярности напряжения. В этом случае напряжение на каждой паре тиристоров, один из которых находится под прямым, а второй — под обратным напряжением, делится поровну {это легко понять, если мысленно заменить все четыре выключенные тиристоры резисторами с одинаковыми сопротивлениями). Именно так временные диаграммы изображены на отрезках оси абсцисс 0…Я/2, л..!(3/2)я, и т. д.

При w*t=п/2 включаются тиристоры Т3 и Т4. При этом на тиристорах Т2 и Т3 скачкообразно возрастает в два раза обратное напряжение.

Аналогично после включения тиристоров Т2 и Т4 увеличивается обратное напряжение на тиристорах Т1 и Т4. Тиристоры Т2 и Т3 выключаются при соonst = 2п.

Анализ схемы с включенными тиристорами несложен.

Как и прерыватель переменного тока, при а О выпрямитель потребляет из питающей сети ток с формой, сильно отличающейся от синусоидальной.

Регулировочная характеристика управляемого выпрямителя — это зависимость среднего значения Ucp выпрямленного напряжения от угла управления. Регулировочной характеристикой называют и график этой зависимости.

Регулировочная характеристика выпрямителя, работающего на активную нагрузку, имеет вид

Изобразим соответствующий график (рис. 4.23, сплошная линия).Работа выпрямителя на активноиндуктивную нагрузку при нулевом угле управления (рис. 4.24).

Предполагаем (как общепринято), что индуктивность нагрузки LH очень велика, так что ток нагрузки ieblx практически постоянный. Это допущение можно использовать, если постоянная времени нагрузки хн значительно больше периода напряжения сети.

Работа выпрямителя на активноиндуктивную нагрузку при угле управления я/4 рад (45 эл. град.) (рис. 4.25).

При принятом условии о существенном влиянии индуктивности одна пара тиристоров в каждый момент времени открыта (электродвижущая сила самоиндукции препятствует выключению некоторой пары тиристоров до включения следующей пары). Это упрощает анализ схемы.

Временная диаграмма входного тока iex смещена относительно диаграммы напряжения ивх и, следовательно, основная гармоника входного тока отстаёт по фазе от напряжения питания.

Из изложенного следует, что в рассматриваемом режиме выпрямитель загружает питающую сеть реактивной мощностью и это, безусловно, является отрицательным фактором.

Регулировочная характеристика выпрямителя, работающего на активноиндуктивную нагрузку, определяется выражением,так как среднее значение напряжения на идеальной катушке индуктивности равно нулю (иначе ее ток возрастал бы до бесконечности). Мощность Рн, потребляемая резистором RH активноиндуктивной нагрузки, вычисляется по формуле (тах как ток ieblx — постоянный, его действующее и среднее значения совпадают).

Сварочные выпрямители: типы, применение, принцип работы

Так как источником тока для сварочных инверторов является переменный ток, то для преобразования переменного тока в постоянный или высокочастотный служат различные выпрямители, которые отличают по мощности и различному вольтажу.

Работа дуговой электрической сварки с баласного реостата или инверторного преобразователя практически невозможна без использования выпрямителей.

 

 

 

Устройство сварочного выпрямителя

Самый типичный выпрямитель состоит из трех основных компонентов:

  • силовой трансформатор, который предназначается для приема “пиковой нагрузки” и передачи ее к выпрямляющему трансформатору.

При этом происходит ПН-переход, то есть первичное преобразование переменного тока в импульсный ток, то есть силовой трансформатор первоначально трансформирует энергию электрической сети в энергию, которая необходима для возникновения дуги между электродом и сварными кромками изделия;

  • выпрямляющей трансформатор, которые преобразует импульсный ток в ток постоянного действия напряжением 220 В.

Работа трансформатора основана на прохождение током последовательных резистентных участков, в протяжении которых возрастает сила тока, но падает напряжение по закону Ома;

  • регулирующая, пусковая и пропускающая электрическая арматура, кабеля.

    Регуляторы позволяют выставлять характеристики тока и напряжения, режимы работы сварочного инвертора (сварка, резка).

Почему в промышленности используются чаще сплавы алюминия, чем других металлов? Узнайте все о сварке алюминия различными видами сварочных аппаратов.

В чем роль трансформаторов для сварки и почему они незаменимы для ручной дуговой и некоторых видов промышленной сварки. Подробнее здесь.

 

Типы сварочных выпрямителей

Как правило, выпрямители отличают по типу и конструктивным особенностям силовой части (трансформатора).

В общей номенклатуре изделий выделяют следующие:

  • сила тока регулируется трансформатором;
  • оснащенные насыщающим дросселем;
  • тиристорные или выпрямитель сварочный многопостовой;
  • транзисторные на полупроводниках;
  • инверторные или выпрямитель сварочный инверторный, принцип действия которого основан на частотном поышении токовой нагрзуки по инекции.

Так же в зависимости от механизации сварочного аппарата выделяют различные выпрямители по их вольт-амперным данным:

1. Автоматическая и полуавтоматическая сварка:

  • витковое регулирование напряжения. То есть выпрямитель оснащен витковым реостатом для изменения характеристик вольтажа и силы тока;
  • магнитное регулирование. Силовой поток тока регулируется магнитными полями, которые могут быть, как полями возбуждения, так и полями резистентности силы тока;
  • фазовая регулировка, когда кроме питающего кабеля прокладывается силовой “нулевой” кабель для перераспределения нагрузки, которая уходит на “массу”;
  • импульсная регулировка с помощью осциллографа;

2. Выпрямители для ручной дуговой сварки:

  • повышение сопротивления за счет ведения магнитного шунта или за счет увеличения металлоконструкции выпрямляющего трансформатора;
  • обратная связь по току, то есть повышение разности потенциалов и возвращение электрического заряда к источнику. Это существенно ослабляет силу тока и напряжение, что дает предпосылки к выпрямлению тока.

3. Сварочные выпрямители, оснащенные насыщающим дросселем:

Дроссель насыщения представляет собой стальной электрод, вокруг которого концентрическими кругами намотана токопроводящая проволока.

При возникновении сильного магнитного поля в катушке дросселя возникает ток возбуждения, который циркулирует по центральному сердечнику-электроду.

Этот сердечник в свою очередь являются конденсатором, который способен увеличивать и сохранять электрический заряд, после чего заряд передается на выпрямляющий трансформатор.

Вам надо починить небольшие металлические изделия на дому – тогда вам пригодиться холодная сварка. Читайте статью о том, как использовать холодную сварку в домашних условиях.

При любой сварке следует придерживаться техники безопасности. Читайте здесь как выбрать маску со стеклом хамелеон для сварки.

 

Принцип работы сварочного выпрямителя

Технологически дроссель занимает место между принимающим и выпрямляющим трансформатором в электрической схеме всего выпрямителя.

Стоит отметит, что наилучшей схемой является трехфазная схема “звезда-звезда”(сварочный выпрямитель трехфазный), когда три сопротивления соединяются в замкнутый контур параллельно, а “нулевой” провод отходит от точки соединения.

В мощностных выпрямителях, которые используются в автоматической сварке используется схема “треугольник-треугольник”. Дублированная треугольная схема представляет собой систему сопротивлений в замкнутом контуре, которая соединяется последовательно, а нулевой провод отходит на клемме от любого из сопротивлений.

Кроме того вся система выпрямителя должна быть оснащена стабилизаторами тока и предохранительным автоматом:

  • стабилизаторы тока служат для стабилизации и гашения моментальных скачков тока, которые могут привести к поломке выпрямителя и трансформаторов.

Например, электрод залип на поверхность сварки, образовался замкнутый контур и токи пошли обратно на трансформатор.

Этот момент стабилизатор забирает на себя 90% избыточного тока, преобразуя его в тепловую энергию;

  • предохранительный автомат, состоящий из легкоплавких пробок-предохранителей, служит для того, чтобы в критические моменты повышения напряжения разомкнуть замкнутую цепь.

Если случилось замыкание, то предохранитель нагревается, и при оплавлении нарушается его форма, цепь размыкается.

Сварочные выпрямители – вид электрических агрегатов, без которых в принципе невозможна работа сваркой и проведение сварных работ.

Выпрямители отличает надежность и полное выполнение своих задач по преобразованию электрической энергии.

Хотите надежный и быстрый метод соединения металлических изделий, но у вас нет возможности сделать обычную шовную сварку. Есть решение – используйте точечную контактную сварку.

Вам нужен простой и компактный аппарат для работы по дому? Тогда вам следует выбрать инвертор. Узнаете здесь все подробности.

 

Читайте также:

  • Термокарандаш для сварки Сварочный карандаш по внешнему виду представляет трубку или стержень, который туго заполнен сухим спрессованным горючем веществом, вещество при […]
  • Выбор сварочного кабеля При электродуговой сварке сварочные кабеля используются для передачи электрического тока от инвертора или баласного реостата к «держаку», в котором […]

Полуволновой и полноволновой выпрямитель | Принцип работы | Принципиальная схема

Выпрямитель — это устройство для преобразования переменного тока в постоянный. За исключением батарей , которые являются небольшими источниками электроэнергии постоянного тока, или аккумуляторных батарей, хранящих электроэнергию, большинство бытовых устройств, работающих с электричеством постоянного тока, используют выпрямители.

На промышленном уровне есть отрасли, которым требуется электричество постоянного тока для работы двигателей постоянного тока или процессы, которые могут работать только с постоянным током; они либо должны иметь свои собственные генераторы, либо получать требования постоянного тока от источников переменного тока с помощью выпрямителей.

Однофазный и трехфазный переменный ток можно преобразовать в постоянный. Для бытовых продуктов и небольших приложений достаточно однофазных выпрямителей, но для больших нагрузок на промышленном уровне, таких как гальваника, электролитическое рафинирование металлов и передача высокого напряжения постоянного тока (HVDC) и более мелких, например приводы двигателей постоянного тока, три -фазовые преобразователи применяются.

Преобразователь — это термин, который используется как для выпрямителя, так и для инвертора (инвертор выполняет противоположную работу по обеспечению переменного тока от постоянного.

В простейшем виде выпрямитель состоит из диодов , и поэтому мы можем назвать его диодным выпрямителем. Диодные выпрямители проще, чем другие типы, в которых используются переключающие устройства. Наиболее распространенным и широко используемым однофазным выпрямителем является мостовой выпрямитель , но также можно использовать двухполупериодные выпрямители и полуволновые выпрямители .

Мостовой выпрямитель: Двухполупериодный выпрямитель переменного тока с использованием четырех диодов (для однофазных) или шести диодов (для трехфазных) для получения постоянного тока из переменного тока.

Двухполупериодный выпрямитель: Выпрямитель, в котором оба полупериода формы волны переменного тока выпрямляются и подаются на выход как постоянный ток, в отличие от полуволнового выпрямителя, в котором только половина каждого цикла достигает выхода.

Однополупериодный выпрямитель: Простейший тип выпрямителя для переменного тока, состоящий только из одного диода (для однофазного) и трех диодов (для трехфазного), которые блокируют отрицательный полупериод переменного тока, так что только положительный полупериоды переходят на выход.

Полупериодный выпрямитель

На рисунке 1 показана схема полуволнового выпрямителя, который является самым простым и низкокачественным типом выпрямителя. Но он демонстрирует принцип работы выпрямителя.

Он состоит только из одного диода, включенного в цепь переменного тока. В результате для каждого полного цикла переменного тока диод проводит только половину цикла, но блокирует ток в течение другой половины. Результат показан на рисунке Рисунок 1c , который представляет собой напряжение постоянного тока, видимое нагрузкой.

Характеристики однополупериодного выпрямителя очень плохие, а напряжение постоянного тока сильно колеблется. Напряжение постоянного тока здесь, по сути, представляет собой серию полусинусоидальных импульсов (импульс — это короткий сигнал постоянного тока). Это изменение уровня напряжения, называемое пульсацией , может быть до некоторой степени сглажено с помощью фильтра.

Обратите внимание, что изменение напряжения отражается на нагрузке в зависимости от того, из чего она состоит. Если не указано иное, нагрузка для этого выпрямителя — это все, что подключено в цепи, и она представлена ​​ R в Рисунок 1 .

Пульсация: Колебания выпрямленного сигнала переменного тока. Быстрые колебания электрического значения, такого как напряжение, которое должно быть постоянным.

Рисунок 1 Однополупериодный выпрямитель. (а) Цепь переменного тока. (b) Напряжение переменного тока на резисторе без диода. (c) Напряжение на резисторе, когда в цепь добавлен диод.

Рисунок 2 Принципиальная схема однополупериодного выпрямителя и влияние фильтра на выходное напряжение.

Самый распространенный фильтр — это один или несколько конденсаторов, подключенных между положительным и отрицательным полюсами постоянного напряжения, то есть параллельно нагрузке.

Однополупериодные выпрямители используются только в приложениях, для которых приемлемо грубое постоянное напряжение, например, для зарядки аккумуляторов.

Однополупериодный выпрямитель с фильтром и его выход на нагрузку (отфильтрованный выход) показаны на Рисунок 2 . Как можно видеть, в результате использования конденсатора (фильтра) выходное напряжение не такое, как раньше, а это означает, что напряжение не изменяется между нулем и пиковым значением переменного тока.Он варьируется от минимума до максимума.

Изменение напряжения на отфильтрованном выходе находится между пиковым значением и ненулевой положительной величиной. Среднее значение DC в этом случае больше, чем в нефильтрованном случае.

Чем больше конденсатор, тем больше минимальное значение и разница между минимальным и максимальным (пульсация) меньше. В результате среднее значение постоянного тока выше.

В полуволновом выпрямителе амплитуда пульсаций довольно велика.Частота пульсаций такая же, как частота входного сигнала переменного тока.

Для преобразования постоянного тока в переменный однополупериодный выпрямитель устраняет отрицательную половину в каждом цикле переменного тока.

Полнополупериодный выпрямитель

Полупериодный выпрямитель использует только полупериод формы волны переменного тока. Двухполупериодный выпрямитель имеет два диода, и на его выходе используются обе половины сигнала переменного тока.

В течение периода, когда один диод блокирует ток, другой диод проводит и пропускает ток.

Схема (принципиальная схема) двухполупериодного выпрямителя показана на рис. 3 , где также показано нефильтрованное выходное напряжение. Источник переменного тока показан как трансформатор . Это реальность для многих выпрямителей. Сначала напряжение понижается (или увеличивается) до желаемого значения, а затем оно отправляется на выпрямитель.

Рисунок 3 Принципиальная схема двухполупериодного выпрямителя и его выходное напряжение

Как также можно увидеть из Рисунок 3 , две одинаковые стороны диодов соединены вместе и соединены с одним сторона груза.

Другая сторона (нагрузки) подключена к центральной точке вторичной обмотки трансформатора. Это означает, что трансформатор должен иметь центральный ответвитель, и требуется, чтобы доступ к этой точке был доступен.

Кроме того, в двухполупериодном выпрямителе полученное постоянное напряжение соответствует только половине подаваемого напряжения. Таким образом, для прямого преобразования сетевого питания 120 В в постоянный требуется трансформатор 1: 2 с центральным отводом. Это один из недостатков двухполупериодного выпрямителя.

Среднее значение нефильтрованного постоянного напряжения, полученного таким образом, составляет всего 45 процентов от эффективного напряжения вторичной обмотки трансформатора. В этом смысле, если пиковое напряжение на вторичной обмотке трансформатора Рис. 3 составляет, например, 240 В, среднее значение выпрямленного (постоянного) напряжения составляет

$ D {{C} _ {AV}} = 0,45 * {{V} _ {Eff}} = 0,45 * 240 = 108V $

Практически, это среднее значение не так полезно, за исключением простых и дешевых зарядных устройств. Это связано с тем, что на практике в большинстве случаев для уменьшения пульсаций используется конденсатор (или другой фильтр).

Среднее значение постоянного тока на выходе двухполупериодного выпрямителя в два раза больше, чем у сопоставимого (с таким же пиковым значением выпрямленного импульса) полуволнового выпрямителя, потому что он имеет в два раза больше импульсов. Частота его ряби тоже в два раза.

Отфильтрованный выход имеет гораздо меньше пульсаций, чем у полуволнового выпрямителя. Частота пульсаций в 2 раза больше частоты сети.

Пульсация — это быстрые колебания напряжения постоянного тока, получаемого от выпрямленного переменного тока.

Мостовой выпрямитель

Мостовой выпрямитель аналогичен соединению двух двухполупериодных выпрямителей для получения полного напряжения источника на выходе вместо половины.

Таким образом, помимо соотношения напряжений, еще одним преимуществом является отсутствие необходимости в центральной точке отвода. Он использует четыре диода, как показано на Рисунок 4 .

Обратите внимание на то, как четыре диода соединены вместе и в цепь. В каждом полупериоде два диода проводят ток, а два блокируют ток.Результирующая выпрямленная форма волны, видимая нагрузкой, аналогична показанной для двухполупериодного выпрямителя, за исключением того, что на этот раз напряжение вдвое больше, чем у двухполупериодного выпрямителя, при всех тех же условиях.

На рисунке 4 показано направление тока для половины цикла. Обратите внимание, что мы использовали обычный способ отображения электронных схем; таким образом, путь тока завершается через землю.

Ток через нагрузку, подключенную к двухполупериодному выпрямителю или мостовому выпрямителю, течет только в одном направлении, как если бы все отрицательные полупериоды переменного тока преобразовывались в положительные.

Если вы проследите течение тока, вы заметите, что независимо от того, какая сторона трансформатора находится под более высоким напряжением, ток через нагрузку всегда идет в одном направлении. То есть это постоянный ток.

Обычно для фильтрации пульсаций используется конденсатор. Всегда для всех выпрямителей, чем выше емкость этого конденсатора, тем лучше эффект фильтрации. Среднее напряжение нефильтрованного постоянного напряжения можно определить из

\ [\ begin {matrix} {{V} _ {AN}} = \ frac {2 {{V} _ {peak}}} {\ pi} = \ frac {2 \ sqrt {2} {{V} _ {Eff}}} {\ pi} = 0.90 {{V} _ {Eff}} & {} & \ left (1 \ right) \\\ end {matrix} \]

Таким образом, для эффективного переменного напряжения 120 В среднее значение нефильтрованного выходного постоянного напряжения равно 90 процентов от 120 В, то есть 108 В. Тем не менее, после установки конденсатора это напряжение может увеличиться. Для чисто резистивной нагрузки отфильтрованное постоянное напряжение после включения конденсатора параллельно нагрузке составляет

. Рис. 4 Принципиальная схема мостового выпрямителя и его выходное напряжение

$ \ begin {matrix} {{V} _ {DC}} = {{V} _ {пик}} \ left (1- \ frac {1} {2fRC} \ right) & {} & \ left (2 \ right) \\\ end {matrix} $

Где R — сопротивление нагрузки, C — емкость фильтра, а f — частота пульсаций.Это уравнение показывает, что больший конденсатор или большая нагрузка дают гораздо более плавное напряжение постоянного тока; это также указывает на то, что с тем же конденсатором лучший результат получается, если частота пульсаций выше.

Эффект фильтров можно лучше наблюдать из рисунков 5 и 6 , которые показывают сравнение фильтрованных и нефильтрованное напряжение для конкретного случая. Эти цифры соответствуют эффективному напряжению 14 В переменного тока (размах напряжения 40 В), показанному на осциллографе .

Показание слева — эффективное значение пульсаций, а показание справа — среднее значение постоянного тока. (Обратите внимание, что на диодах всегда падает некоторый процент напряжений.)

Рисунок 6 иллюстрирует ту же форму выпрямленного сигнала. Напряжение пульсаций упало до 0,4 В, тогда как напряжение постоянного тока составляет 7 В при тех же условиях нагрузки.

Рисунок 5 Нефильтрованный выход мостового выпрямителя.

Рисунок 6 Отфильтрованный выход выхода постоянного тока, показанный на Рисунок 5 .

Рисунок 7 Влияние увеличения нагрузки на напряжение постоянного тока, показанное на рисунке 6

Сколько составляет среднее напряжение постоянного тока и сколько пульсаций остается в выпрямленном постоянном токе, зависит от характера нагрузки, ее потребляемой мощности ( ток цепи) и фильтр (емкость конденсатора), как можно определить из Уравнение 2 . Рисунок 7 изображает эффект увеличения всей резистивной нагрузки (увеличение тока) для того же случая в Рисунок 6 .

  • Мостовой выпрямитель — практически самый распространенный и наиболее часто используемый выпрямитель для однофазного переменного тока. В настоящее время можно купить четыре диода, объединенные вместе в одном корпусе, как показано на Рисунок 8 .
  • Они бывают разной формы. Он может быть больше одного диода, но размер зависит также от номинального напряжения и тока (мощности).
  • Он имеет две входные клеммы для подключения к переменному току и две выходные клеммы, которые обеспечивают электричество постоянного тока.Любой конденсатор для фильтрации и нагрузка подключаются к стороне постоянного тока.
  • На практике номинальная мощность выпрямителя и максимальное напряжение являются основными факторами при выборе правильного выпрямителя.
  • Как и в случае постоянного тока, мощность — это произведение напряжения и тока. Таким образом, для конкретного применения выпрямительные диоды должны выдерживать приложенное напряжение и ток цепи.
  • Когда диоды используются в выпрямителе в каждом полупериоде сигнала переменного тока, они подвергаются отрицательному напряжению на них, когда они смещены в обратном направлении.Диод должен выдерживать пиковое обратное напряжение. Для однофазного мостового выпрямителя это напряжение составляет около 1,57 от постоянного напряжения.

Рисунок 8 Интегральные схемы мостового выпрямителя .

Половина | Принцип работы полноволнового выпрямителя

Привет, друзья, в этой статье я собираюсь описать принцип работы полуволнового выпрямителя и принцип работы полнополупериодного выпрямителя , если вам интересно, продолжайте читать.

Электроэнергия доступна в домах и на производстве в виде переменного напряжения.Но для работы большинства устройств в электронном оборудовании требуется постоянное напряжение. Поэтому почти все электронное оборудование состоит из схемы, преобразующей переменное напряжение сети в постоянное. Эта часть оборудования называется источником питания.

Процесс получения однонаправленных токов и напряжений из переменных токов и напряжений известен как выпрямление. Эта функция выполняется схемой , выпрямительной схемой . Свойство диода однонаправленной проводимости находит широкое применение в выпрямительных схемах.




В этой схеме выпрямление достигается за счет использования одного диода D, как показано на рис.
. Трансформатор используется для изменения уровня напряжения в сети. Он также обеспечивает изоляцию от линии питания и снижает риск поражения электрическим током.

Когда цепь подключена к электросети, на вторичной обмотке трансформатора индуцируется напряжение переменного тока. Он имеет чередующиеся положительные и отрицательные полупериоды.

Во время положительного полупериода напряжения A положительно по отношению к B

  • диод включен (за счет прямого смещения)
  • текущие i потоки.

Во время отрицательного полупериода напряжения A отрицательно по отношению к B

  • диод D выключен (из-за обратного смещения)
  • нет тока через резистор нагрузки R L .

Таким образом, переменный синусоидальный сигнал, подаваемый на первичную обмотку трансформатора, выпрямляется в однонаправленный сигнал. Очевидно, отрицательный полупериод на входе подавляется, то есть он не используется для подачи энергии на нагрузку.

Как видно, на выходе не постоянный постоянный ток, а только пульсирующая волна постоянного тока с частотой пульсаций, равной частоте входного напряжения.

Эту волну можно наблюдать с помощью осциллографа, подключенного к R L . При измерении вольтметром постоянного тока он покажет некоторое среднее положительное значение напряжения (примерно , половина входного напряжения ). Поскольку используется только один полупериод входной волны, он называется полуволновым выпрямителем .




Четыре диода используются в схеме полного мостового выпрямителя , как показано на рис. Для получения выходного сигнала. Входной сигнал применяется к двум противоположным углам, а выходной — к двум оставшимся углам этой схемы.



Во время полупериода положительного входа клемма A вторичной обмотки является положительной, а C — отрицательной, как показано на рисунке. Чтобы сделать концепцию понятной, на рисунке

опущены диоды с обратным смещением (ВЫКЛ).
  • диоды D 2 и D 4 становятся смещенными в прямом направлении (ВКЛ)
  • , тогда как D 1 и D 3 имеют обратное смещение (ВЫКЛ)
  • Ток
  • течет по ABEDC, образуя падение на R L .

Во время полупериода отрицательного входа вторичная клемма C становится положительной, а отрицательная.

  • диоды D 2 и D 4 имеют обратное смещение (ВЫКЛ)
  • D 1 и D 3 с прямым смещением (ВКЛ)
  • Цепь
  • течет по CBEDA.



Следовательно, ток продолжает течь через сопротивление нагрузки R L в том же направлении BE в течение обоих полупериодов входного переменного тока. Точка B полного мостового выпрямителя действует как анод, а точка D как катод . Выходное напряжение на R L равно входному напряжению.Его частота вдвое больше, чем частота питания.



Пульсирующие выходы, полученные от схем полуволнового и двухполупериодного выпрямителей, не подходят для работы электронных устройств. Чтобы получить стабильное постоянное напряжение, мы должны отфильтровать или сгладить изменение переменного тока выпрямленного напряжения.

Обычно для этой цели к выходу выпрямителя подключается конденсатор C. Этот конденсатор улучшает волновые формы выпрямителя.

Когда выходное напряжение выпрямителя увеличивается, конденсатор заряжается до пикового напряжения V m , а когда выходное напряжение выпрямителя уменьшается, конденсатор начинает разряжаться через нагрузку.Этот процесс продолжается. Таким образом, он сглаживает пульсации выпрямителя.

Коэффициент пульсации и эффективность выпрямления выпрямителя


Насколько эффективно выпрямитель преобразует мощность переменного тока в мощность постоянного тока, описывается коэффициентом пульсаций и эффективностью выпрямления.

Коэффициент пульсаций (r) — это мера чистоты выхода постоянного тока выпрямителя.

r = среднеквадратичное значение составляющей волны / среднее значение или значение постоянного тока

Это 1.21 для однополупериодного выпрямителя и 0,482 для полного мостового выпрямителя.

Эффективность выпрямления (ȵ) сообщает нам, какой процент от общей входной мощности переменного тока преобразуется в полезную выходную мощность постоянного тока.

ȵ = мощность постоянного тока, подаваемая на нагрузку / мощность переменного тока на входе выпрямителя

Она составляет 40,6% для однополупериодного выпрямителя и 81,2% для полного мостового выпрямителя.

Спасибо, что прочитали о принципе работы полуволнового выпрямителя Принцип работы двухполупериодного выпрямителя и .

Электроника | Все сообщения

© https://yourelectricalguide.com/ Принцип работы полуволнового выпрямителя и принцип работы двухполупериодного выпрямителя.

Схема работы и ее характеристики

В период 1880-х годов началась идентификация и уникальность выпрямителей. Развитие выпрямителей привело к появлению различных подходов в области силовой электроники. Первоначальный диод, который использовался в выпрямителе, был разработан в 1883 году.С развитием вакуумных диодов, которые впервые появились в начале 1900-х годов, возникли ограничения на выпрямители. В то время как с модификациями ртутных дуговых трубок использование выпрямителей было расширено до различных мегаваттных диапазонов. И один тип выпрямителя — это полупериодный выпрямитель.

Усовершенствование вакуумных диодов показало эволюцию ртутных дуговых трубок, и эти ртутные дуговые трубки были названы выпрямительными трубками. С развитием выпрямителей были впервые применены многие другие материалы.Итак, это краткое объяснение того, как развивались выпрямители и как они развивались. Давайте иметь четкое и подробное объяснение того, что такое полуволновой выпрямитель, его схема, принцип работы и характеристики.


Что такое полуволновой выпрямитель?

Выпрямитель — это электронное устройство, преобразующее переменное напряжение в постоянное. Другими словами, он преобразует переменный ток в постоянный. Выпрямитель используется практически во всех электронных устройствах. В основном он используется для преобразования сетевого напряжения в постоянное напряжение в блоке питания.При питании от постоянного тока работают электронные устройства. В зависимости от периода проводимости выпрямители подразделяются на две категории: полуволновой выпрямитель и полнополупериодный выпрямитель.

Конструкция

По сравнению с двухполупериодным выпрямителем, HWR является самым простым выпрямителем в конструкции. Только с одним диодом можно построить устройство.

Конструкция HWR

Полупериодный выпрямитель состоит из следующих компонентов:

  • Источник переменного тока
  • Резистор в секции нагрузки
  • Диод А
  • Понижающий трансформатор

Источник переменного тока

Это источник тока подает переменный ток на всю цепь.Этот переменный ток обычно представляется как синусоидальный сигнал.

Понижающий трансформатор

Для увеличения или уменьшения переменного напряжения обычно используется трансформатор. Поскольку здесь используется понижающий трансформатор, он снижает напряжение переменного тока, а когда используется повышающий трансформатор, он увеличивает напряжение переменного тока с минимального уровня до высокого уровня. В HWR используется в основном понижающий трансформатор, поскольку необходимое напряжение для диода очень минимально. Когда трансформатор не используется, большое количество переменного напряжения вызовет повреждение диода.В некоторых случаях также можно использовать повышающий трансформатор.

В понижающем устройстве вторичная обмотка имеет минимальное количество витков, чем первичная обмотка. Из-за этого понижающий трансформатор снижает уровень напряжения от первичной до вторичной обмотки.

Диод

Использование диода в полуволновом выпрямителе позволяет протекать току только в одном направлении, в то время как он останавливает ток в другом направлении.

Резистор

Это устройство, которое блокирует прохождение электрического тока только до определенного уровня.

Это конструкция полуволнового выпрямителя серии .

Работа полуволнового выпрямителя

Во время положительного полупериода диод находится в состоянии прямого смещения и проводит ток до RL (сопротивление нагрузки). На нагрузке возникает напряжение, такое же, как входной сигнал переменного тока положительного полупериода.

В качестве альтернативы, во время отрицательного полупериода диод находится в состоянии обратного смещения, и ток через диод не протекает.На нагрузке появляется только входное напряжение переменного тока, и это общий результат, который возможен в течение положительного полупериода. Выходное напряжение пульсирует постоянным напряжением.

Цепи выпрямителя

Однофазные цепи или многофазные цепи входят в состав цепей выпрямителя. Для бытовых применений используются однофазные выпрямительные схемы малой мощности, а для промышленных применений HVDC требуется трехфазное выпрямление. Наиболее важным применением диодов с PN переходом является выпрямление, и это процесс преобразования переменного тока в постоянный.

Полупериодное выпрямление

В однофазном полуволновом выпрямителе течет либо отрицательная, либо положительная половина переменного напряжения, а другая половина переменного напряжения блокируется. Следовательно, выход принимает только половину волны переменного тока. Один диод требуется для однофазного полуволнового выпрямления и три диода для трехфазного питания. Полупериодный выпрямитель создает большее количество пульсаций, чем двухполупериодный выпрямитель, и для устранения гармоник он требует гораздо большей фильтрации.

Однофазный полуволновой выпрямитель

Для синусоидального входного напряжения выходное постоянное напряжение холостого хода для идеального полуволнового выпрямителя составляет

В среднеквадратичное значение = Vpeak / 2

Vdc = Vpeak / ᴨ

Где

  • Vdc, Vav — выходное напряжение постоянного тока или среднее выходное напряжение
  • Vpeak — пиковое значение входного фазного напряжения
  • Vrms — выходное напряжение среднеквадратичного значения

Работа полуволнового выпрямителя

PN переход диод проводит только при прямом смещении.Полупериодный выпрямитель использует тот же принцип, что и диод с PN переходом, и, таким образом, преобразует переменный ток в постоянный. В схеме однополупериодного выпрямителя сопротивление нагрузки включено последовательно с диодом с PN переходом. Переменный ток — это вход однополупериодного выпрямителя. Понижающий трансформатор принимает входное напряжение, а выходной сигнал трансформатора передается на нагрузочный резистор и диод.

Работа HWR объясняется в двух фазах:

  • Процесс положительной полуволны
  • Процесс отрицательной полуволны
Положительный полуволна

Когда частота 60 Гц в качестве входного переменного напряжения, шаг трансформатор понижает это напряжение до минимального.Таким образом, на вторичной обмотке трансформатора создается минимальное напряжение. Это напряжение на вторичной обмотке называется вторичным напряжением (Vs). Минимальное напряжение подается как входное напряжение на диод.

Когда входное напряжение достигает диода, во время положительного полупериода диод переходит в состояние прямого смещения и пропускает электрический ток, тогда как во время отрицательного полупериода диод переходит в отрицательное состояние смещения и препятствует прохождению электрического тока.Положительная сторона входного сигнала, который подается на диод, совпадает с прямым напряжением постоянного тока, которое подается на диод P-N. Таким же образом, отрицательная сторона входного сигнала, который подается на диод, совпадает с обратным напряжением постоянного тока, которое прикладывается к PN-диоду

Итак, было известно, что диод проводит ток в смещенном вперед состоянии и препятствует протекание тока в обратном смещенном состоянии. Таким же образом в цепи переменного тока диод пропускает ток в течение цикла + ve и блокирует ток во время цикла -ve.Переходя к + ve HWR, он не будет полностью блокировать полупериоды -ve, он допускает несколько сегментов полупериодов -ve или допускает минимальный отрицательный ток. Это генерация тока из-за неосновных носителей заряда, находящихся в диоде.

Генерация тока через эти неосновные носители заряда очень минимальна, поэтому им можно пренебречь. Эту минимальную часть полупериодов -ve невозможно наблюдать в секции нагрузки. В практических диодах считается, что отрицательный ток равен «0».

Резистор в секции нагрузки использует постоянный ток, который вырабатывается диодом. Таким образом, резистор называется резистором электрической нагрузки, где напряжение / ток постоянного тока рассчитываются на этом резисторе (R L ). Электрическая мощность считается электрическим коэффициентом схемы, в которой используется электрический ток. В HWR резистор использует ток, производимый диодом. Из-за этого резистор называют нагрузочным резистором. R L в HWR используется для ограничения или ограничения дополнительного постоянного тока, генерируемого диодом.

Таким образом, был сделан вывод, что выходной сигнал в полуволновом выпрямителе представляет собой непрерывные полупериоды + ve синусоидальной формы.

Отрицательная полуволна

Работа и конструкция полуволнового выпрямителя в отрицательном направлении почти идентична положительной полуволновой выпрямителю. Единственный сценарий, который здесь будет изменен, — это направление диода.

Если входное напряжение переменного тока составляет 60 Гц, понижающий трансформатор снижает его до минимального напряжения.Таким образом, на вторичной обмотке трансформатора создается минимальное напряжение. Это напряжение на вторичной обмотке называется вторичным напряжением (Vs). Минимальное напряжение подается как входное напряжение на диод.

Когда входное напряжение достигает диода, во время отрицательного полупериода диод переходит в состояние прямого смещения и пропускает электрический ток, тогда как во время положительного полупериода диод переходит в отрицательное состояние смещения и препятствует прохождению электрического тока.Отрицательная сторона входного сигнала, который подается на диод, совпадает с прямым напряжением постоянного тока, которое подается на диод P-N. Таким же образом, положительная сторона входного сигнала, который подается на диод, совпадает с обратным напряжением постоянного тока, которое прикладывается к PN-диоду

Итак, было известно, что диод проводит ток в состоянии обратного смещения и препятствует протекание тока в прямом смещенном состоянии. Таким же образом в цепи переменного тока диод пропускает ток в течение цикла -ve и блокирует ток во время цикла + ve.Переходя к -ve HWR, он не будет полностью препятствовать положительным полупериодам, он допускает несколько сегментов положительных полупериодов или допускает минимальный положительный ток. Это генерация тока из-за неосновных носителей заряда, находящихся в диоде.

Генерация тока через эти неосновные носители заряда очень минимальна, поэтому им можно пренебречь. Эту минимальную часть положительных полупериодов невозможно наблюдать в секции нагрузки. В практических диодах считается, что положительный ток равен «0».

Резистор в секции нагрузки использует постоянный ток, который вырабатывается диодом. Таким образом, резистор называется резистором электрической нагрузки, где напряжение / ток постоянного тока рассчитываются на этом резисторе (R L ). Электрическая мощность считается электрическим коэффициентом схемы, в которой используется электрический ток. В HWR резистор использует ток, производимый диодом. Из-за этого резистор называют нагрузочным резистором. R L в HWR используется для ограничения или ограничения дополнительного постоянного тока, генерируемого диодом.

В идеальном диоде полупериоды + ve и -ve на выходе кажутся похожими на полупериоды + ve и -ve Но в практических сценариях полупериоды + ve и -ve несколько отличаются от полупериодов + ve и -ve. циклы ввода, и это незначительно.

Итак, был сделан вывод, что выходной сигнал в однополупериодном выпрямителе представляет собой непрерывные полупериоды, которые имеют синусоидальную форму. Таким образом, выходной сигнал полуволнового выпрямителя представляет собой непрерывные синусоидальные сигналы с положительной и отрицательной полярностью, но не чистый сигнал постоянного тока и в пульсирующей форме.

Работа полуволнового выпрямителя

Это пульсирующее значение постоянного тока изменяется в течение короткого периода времени.

Работа полуволнового выпрямителя

Во время положительного полупериода, когда вторичная обмотка верхнего конца положительна относительно нижнего конца, диод находится в состоянии прямого смещения и проводит ток. Во время положительных полупериодов входное напряжение прикладывается непосредственно к сопротивлению нагрузки, когда прямое сопротивление диода предполагается равным нулю.Формы выходного напряжения и выходного тока такие же, как у входного переменного напряжения.

Во время отрицательного полупериода, когда вторичная обмотка нижнего конца положительна относительно верхнего конца, диод находится в состоянии обратного смещения и не проводит ток. Во время отрицательного полупериода напряжение и ток на нагрузке остаются нулевыми. Величина обратного тока очень мала и им пренебрегают. Таким образом, в течение отрицательного полупериода мощность не передается.

Серия положительных полупериодов — это выходное напряжение, возникающее на сопротивлении нагрузки. Выходной сигнал представляет собой пульсирующую волну постоянного тока, и для создания плавных выходных волновых фильтров используются фильтры, которые должны проходить через нагрузку. Если входная волна имеет полупериод, то он известен как полуволновой выпрямитель.

Схемы трехфазного полуволнового выпрямителя

Трехфазный полуволновой неуправляемый выпрямитель требует трех диодов, каждый из которых подключен к одной фазе. Схема трехфазного выпрямителя страдает от высокого уровня гармонических искажений как в цепях постоянного, так и переменного тока.Выходное напряжение на стороне постоянного тока выдает три различных импульса за цикл.

Трехфазный HWR в основном используется для преобразования трехфазной мощности переменного тока в трехфазную мощность постоянного тока. При этом вместо диодов используются переключаемые, которые называются неуправляемыми переключателями. Здесь неуправляемые переключатели соответствуют тому, что не существует подхода к регулированию времени включения и выключения переключателей. Это устройство построено с использованием трехфазного источника питания, подключенного к трехфазному трансформатору, причем вторичная обмотка трансформатора всегда соединена звездой.

Здесь используется только соединение звездой по той причине, что нейтральная точка необходима для повторного подключения нагрузки ко вторичной обмотке трансформатора, обеспечивая, таким образом, обратное направление для потока мощности.

Общая конструкция 3-фазного HWR, обеспечивающего чисто резистивную нагрузку, показана на рисунке ниже. Конструктивно каждая фаза трансформатора обозначена как отдельный источник переменного тока.

Коэффициент полезного действия трехфазного трансформатора составляет почти 96.8%. Хотя эффективность трехфазного HWR больше, чем у однофазного HWR, она меньше, чем эффективность трехфазного двухполупериодного выпрямителя.

Трехфазный HWR
Характеристики полуволнового выпрямителя

Характеристики полуволнового выпрямителя для следующих параметров

PIV (Peak Inverse Voltage)

В условиях обратного смещения диод должен выдерживать максимальное напряжение. Во время отрицательного полупериода ток через нагрузку не протекает.Таким образом, полное напряжение появляется на диоде, потому что нет падения напряжения через сопротивление нагрузки.

PIV полуволнового выпрямителя = V SMAX

Это PIV полуволнового выпрямителя .

Средние и пиковые токи в диоде

Предположим, что напряжение на вторичной обмотке трансформатора синусоидально, а его пиковое значение равно V SMAX . Мгновенное напряжение, которое подается на полуволновой выпрямитель, составляет

Vs = V SMAX Sin wt

Ток, протекающий через сопротивление нагрузки, составляет

I MAX = V SMAX / (R F + R L )

Регламент

Регулировка — это разница между напряжением холостого хода и напряжением полной нагрузки по отношению к напряжению полной нагрузки, а регулирование напряжения в процентах дается как

% Регулирование = {(Vno-load — Vfull-load) / Vfull-load} * 100

КПД

Отношение входного переменного тока к выходному постоянному току известно как КПД (?).

? = Pdc / Pac

Мощность постоянного тока, подаваемая на нагрузку, составляет

Pdc = I 2 dc R L = (I MAX / ᴨ) 2 R L

Входная мощность переменного тока трансформатора,

Pac = Рассеиваемая мощность в сопротивлении нагрузки + рассеиваемая мощность на переходном диоде

= I 2 действующее значение R F + I 2 среднеквадратичное значение R L = {I 2 MAX /4} [R F + R L ]

? = Pdc / Pac = 0.406 / {1 + R F / R L }

КПД полуволнового выпрямителя составляет 40,6%, если пренебречь R F .

Коэффициент пульсаций (γ)

Содержание пульсаций определяется как количество переменного тока, присутствующего в выходном постоянном токе. Если коэффициент пульсаций меньше, производительность выпрямителя будет больше. Значение коэффициента пульсаций для полуволнового выпрямителя составляет 1,21.

Мощность постоянного тока, генерируемая HWR, является не точным сигналом постоянного тока, а пульсирующим сигналом постоянного тока, а в форме пульсирующего постоянного тока существуют пульсации.Эти колебания можно уменьшить, используя фильтрующие устройства, такие как катушки индуктивности и конденсаторы.

Для вычисления количества пульсаций в сигнале постоянного тока используется коэффициент, который называется коэффициентом пульсаций и обозначается как γ . Когда коэффициент пульсации высокий, он показывает расширенную пульсирующую волну постоянного тока, тогда как минимальный коэффициент пульсации показывает минимальную пульсирующую волну постоянного тока.

Когда значение γ очень минимально, это означает, что выходной постоянный ток почти такой же, как чистый сигнал постоянного тока.Таким образом, можно утверждать, что чем ниже коэффициент пульсаций, тем более плавный сигнал постоянного тока.

В математической форме этот коэффициент пульсации обозначается как пропорция среднеквадратичного значения участка переменного тока к участку постоянного тока выходного напряжения.

Коэффициент пульсаций = среднеквадратичное значение секции переменного тока / среднеквадратичное значение секции постоянного тока

I 2 = I 2 dc + I 2 1 + I 2 2 + I 2 4 = I 2 dc + I 2 ac

γ = I ac / I dc = (I 2 — I 2 ) / I dc = {(I rms / I 2 dc ) / Idc = {(I rms / I 2 dc ) -1} = k f 2 -1)

Где kf — форм-фактор

kf = Irms / Iavg = (Imax / 2) / (Imax / ᴨ) = ᴨ / 2 = 1.57

Итак, γ = (1,572 — 1) = 1,21

Коэффициент использования трансформатора (TUF)

Он определяется как отношение мощности переменного тока, подаваемой к нагрузке, и номинальной мощности переменного тока вторичной обмотки трансформатора. TUF однополупериодного выпрямителя составляет около 0,287.

HWR с конденсаторным фильтром

Согласно общей теории, которая обсуждалась выше, выход полуволнового выпрямителя представляет собой пульсирующий сигнал постоянного тока. Это получается, когда HWR работает без фильтра.Фильтры — это устройство, которое используется для преобразования пульсирующего сигнала постоянного тока в устойчивые сигналы постоянного тока, что означает (преобразование пульсирующего сигнала в плавный сигнал). Это может быть достигнуто путем подавления пульсаций постоянного тока, которые возникают в сигнале.

Хотя эти устройства теоретически можно использовать без фильтров, но предполагается, что они будут реализованы для любых практических приложений. Поскольку устройству постоянного тока потребуется устойчивый сигнал, пульсирующий сигнал должен быть преобразован в плавный, чтобы его можно было использовать в реальных приложениях.Это причина того, что HWR используется с фильтром в практических сценариях. Вместо фильтра можно использовать катушку индуктивности или конденсатор, но чаще всего используется HWR с конденсатором.

На рисунке ниже поясняется принципиальная схема конструкции полуволнового выпрямителя с конденсаторным фильтром и то, как он сглаживает пульсирующий сигнал постоянного тока.

Преимущества и недостатки

По сравнению с двухполупериодным выпрямителем, однополупериодный выпрямитель не так часто используется в приложениях.Хотя у этого устройства мало преимуществ. Преимущества полуволнового выпрямителя : :

  • Дешевый — Поскольку используется минимальное количество компонентов
  • Простой — Благодаря тому, что конструкция схемы полностью проста
  • Простота использования — Благодаря легкой конструкции, использование устройства также будет таким оптимизированным. базовый частотный уровень аналогичен частотному уровню входного напряжения.Кроме того, будет увеличиваться коэффициент пульсации, что означает, что шум будет высоким, и потребуется расширенная фильтрация для обеспечения постоянного выходного сигнала постоянного тока.
  • Поскольку подача мощности будет только во время одного полупериода входного переменного напряжения, их выпрямительная характеристика минимальна, а также будет меньше выходная мощность.
  • Полупериодный выпрямитель имеет минимальный коэффициент использования трансформатора.
  • В сердечнике трансформатора происходит насыщение по постоянному току, которое приводит к току намагничивания, гистерезисным потерям, а также к развитию гармоник.
  • Количество энергии постоянного тока, которое поступает от полуволнового выпрямителя, недостаточно для генерации даже общего количества энергии. Принимая во внимание, что это может быть использовано для нескольких приложений, таких как зарядка аккумулятора.

Приложения

Основное применение полуволнового выпрямителя — получение мощности переменного тока от источника постоянного тока. Выпрямители в основном используются для внутренних цепей источников питания почти в каждом электронном устройстве. В источниках питания выпрямитель обычно размещается последовательно, таким образом, он состоит из трансформатора, сглаживающего фильтра и регулятора напряжения.Некоторые другие применения HWR:

  • Использование выпрямителя в блоке питания позволяет преобразовывать переменный ток в постоянный. Мостовые выпрямители широко используются в огромных приложениях, где они обладают способностью преобразовывать высокое переменное напряжение в минимальное постоянное напряжение.
  • Реализация HWR помогает получить требуемый уровень постоянного напряжения через понижающие или повышающие трансформаторы.
  • Это устройство также используется при сварке железных цепей, а также в репеллентах от комаров, чтобы выталкивать провод для паров.
  • Используется в радиоустройстве AM для целей обнаружения.
  • Используется в качестве возбуждающих и генерирующих схем.

Речь идет о схеме полуволнового выпрямителя и работе с ее характеристиками. Мы считаем, что информация, представленная в этой статье, поможет вам лучше понять этот проект. Кроме того, по любым вопросам, касающимся этой статьи или любой помощи в реализации проектов в области электротехники и электроники, вы можете свободно обращаться к нам, оставляя комментарии в разделе комментариев ниже.Вот вам вопрос, какова основная функция однополупериодного выпрямителя?

Трехфазный диодный выпрямитель | Plexim

Принцип работы

Трехфазный диодный выпрямитель преобразует трехфазное переменное напряжение на входе в постоянное напряжение на выходе. Чтобы показать принцип работы схемы, индуктивности источника и нагрузки (L s и L d ) не учитываются для простоты. Напряжение постоянного тока делится на шесть сегментов в пределах одного периода основного источника, который соответствует различным комбинациям линейного напряжения источника (V LL ).В каждом сегменте есть минимальное и максимальное напряжение постоянного тока:

  • Минимальное напряжение постоянного тока: Если одно линейное напряжение равно нулю, то напряжение постоянного тока составляет минимум V DC = V LL · sin (60 °).
  • Максимальное напряжение постоянного тока: напряжение постоянного тока увеличивается до максимального значения V DC = V LL , где два линейных напряжения равны.

Между минимальным и максимальным напряжениями постоянного тока находится среднее напряжение постоянного тока, которое определяется по формуле: V DC, av = V LL · 3 / pi.Пульсации постоянного напряжения возникают с частотой, в 6 раз превышающей частоту сети. Для шести интервалов знаки фазных токов (I a , I b , I c ) даются по формуле:

Фазовый интервал Знак фазных токов
0 ° <φ <60 ° (0, -1, 1)
60 ° <φ <120 ° (1, -1, 0)
120 ° <φ <180 ° (1, 0, -1)
180 ° <φ <240 ° (0, 1, -1)
240 ° <φ <300 ° (-0, 1, 0)
300 ° <φ <360 ° (-1, 0, 1)

Влияние индукторов

Как и в случае с однофазным диодным выпрямителем, включение нагрузки (L d ) и индуктивности источника (L s ) приводит к интервалу коммутации тока между двумя парами диодов.Чем больше индуктивность источника, тем больше времени требуется для коммутации тока. Например, после фазового интервала 1 (0 ° <φ <60 °) ток коммутируется с пары диодов D 5 / D 6 на D 1 / D 6 . В течение этого интервала V ca остается равным нулю, поскольку D 1 и D 5 оба являются проводящими, что приводит к уменьшению постоянного напряжения. Падение постоянного напряжения пропорционально индуктивности источника, то есть ΔV out ~ L s.

Эксперименты

  • Измените индуктивность источника с 0 мкГн на 50 мкГн и наблюдайте увеличение интервала коммутации тока, а также падение напряжения нагрузки.
  • Убедитесь, что большая индуктивность нагрузки снижает пульсации постоянного напряжения.

Принцип работы, принципиальная схема, типы и преимущества

Как мы все знаем, насколько важные электронные схемы используются в наши дни. Мы можем сказать, что весь спектр программного обеспечения, промышленности, машиностроения, медицины и сельского хозяйства либо каким-то образом связан с этими электрическими цепями.Итак, двигаясь в этом сценарии, выпрямители — это схемы, которые появились как наиболее распространенные электронные блоки питания. Какому-то количеству цепей требуется источник питания постоянного тока для питания многих электрических компонентов. Итак, устройство, которое подходит для этой операции, — это «Выпрямитель». Итак, давайте обсудим концепцию того, что такое мостовой выпрямитель, его схему и как он работает?

Что такое мостовой выпрямитель?

Одна специальная схема, которая дает выходной сигнал, аналогичный выходному сигналу двухполупериодного выпрямителя, — это мостовой выпрямитель, где в этой схеме используются четыре диода для формирования замкнутого контура.С помощью этих диодов переменный ток преобразуется в постоянный. Поставляемый выход имеет аналогичную полярность независимо от данного входа. Выбор мостовых выпрямителей основан на нескольких параметрах, таких как уровни мощности, напряжение пробоя, температурные диапазоны и другие. Преимущество этой схемы заключается в том, что нет необходимости в трансформаторе с центральным отводом, поэтому цена минимальна, и даже размер небольшой, где одна сторона мостовой петли подключена к вторичной обмотке, а другая сторона подключена к нагрузке. .На приведенной ниже схеме показана схема мостового выпрямителя

Схема моста-выпрямителя

Схема и конструкция мостового выпрямителя

Как мы уже обсуждали, уникальность этой схемы заключается в ее соединенной петле через четыре диода с именами D1, D2, D3 и D4 вместе с нагрузочным резистором RL. Образованный контур обеспечивает повышенную эффективность преобразования переменного тока в постоянный. Данная волна переменного тока подается через клеммы A и B, а выходной сигнал в форме постоянного тока принимается через RL, и он проходит через C и D.

Мостовой выпрямитель работает

Четыре диода включены последовательно, и это позволяет только двум из диодов пропускать электрический ток за каждый полупериод. Для положительного полупериода D1 и D3 пропускают электрический ток, тогда как во время отрицательного полупериода D2 и D4 пропускают электрический ток через них. Это означает, что во время положительного полупериода D1 и D3 находятся в состоянии смещения вперед, а D2 и D4 находятся в состоянии смещения в обратном направлении.

Таким образом, ток будет проходить по пути, создаваемому D1 и D3, а выходное напряжение положительно на C и D.Таким же образом, когда применяется отрицательный импульс, D1 и D3 находятся в состоянии обратного смещения, а D2 и D4 находятся в состоянии прямого смещения. Таким образом, ток будет проходить по пути, создаваемому D2 и D4, а выходное напряжение будет положительным между C и D.

Здесь следует отметить, что выходное напряжение имеет положительную полярность независимо от применяемой входной полярности. . Но полученный выходной сигнал будет пульсирующим, и это можно устранить, используя конденсатор в конструкции схемы.Итак, это работа мостового выпрямителя. Формы выходных сигналов показаны ниже:

формы сигналов мостового выпрямителя

Эффективность мостового выпрямителя

Эффективность выпрямителя соответствует известной производительности мостового выпрямителя, что означает, насколько эффективно переменное напряжение преобразуется в постоянное. Высокий КПД указывает на то, что выпрямитель работает хорошо, тогда как низкий КПД указывает на низкую производительность. Он обозначается как отношение выходного постоянного тока к соответствующему входному переменному току.Он обозначается знаком «ŋ».

Где ŋ = выход постоянного тока / вход переменного тока = P D / P A

Максимальный КПД выпрямителя составляет 81,1%.

Типы мостовых выпрямителей

Существуют различные классификации мостовых выпрямителей, и эти классификации основаны на таких параметрах, как конфигурация схемы, возможности обращения, тип питания и многие другие. Основная классификация — однофазные и трехфазные выпрямители, в зависимости от типа входной работы.Давайте кратко обсудим классификацию.

Однофазные и трехфазные выпрямители

Само название почти определяет тип выпрямителя. Когда применяемый вход однофазный, он называется однофазным выпрямителем, тогда как когда применяемый вход состоит из трех фаз, он называется трехфазным выпрямителем. Первоначальный состоит из 4 диодов, а трехфазный — из 6 диодов для генерации постоянного напряжения. Кроме того, они классифицируются как неуправляемый и управляемый тип на основе коммутационного оборудования, такого как тиристоры и диоды.

Управляемый мостовой выпрямитель

Они снова подразделяются на управляемые полуволновые и двухполупериодные выпрямители. Название определяет, что выходное напряжение можно изменять. Поскольку у неуправляемого мостового выпрямителя мало недостатков, их можно устранить с помощью регулируемых. Этот выпрямитель состоит из полевых МОП-транзисторов, IGBT-транзисторов и резисторов с кремниевым управлением. Это означает, что можно полностью контролировать, когда тиристоры могут переключаться между состояниями ВКЛ и ВЫКЛ в зависимости от применяемых импульсов затвора.Это связано с тем, что, когда SCR является проводником прямого смещения, он будет проводить электричество, а в обратном состоянии он блокирует ток. Итак, будет контролируемый выход.

Опять же, это полуволновые и двухполупериодные управляемые промежуточные и мостовые выпрямители.

Неуправляемый мостовой выпрямитель

Название определяет, что выходное напряжение не может быть изменено. Этот выпрямитель состоит из переключателей, состоящих из управляемых и неуправляемых переключателей. Поскольку диод допускает протекание тока только в одиночном.Работа диода не ограничивается до тех пор, пока он не будет смещен в обратном направлении. Таким образом, с комбинацией диодов и выпрямителей не будет управления работой, и поэтому они называются неуправляемыми мостовыми выпрямителями. В зависимости от потребности в нагрузке они не допускают колебаний мощности.

Опять же, это однополупериодные и двухполупериодные неуправляемые выпрямители с центральным отводом и мостовые выпрямители.

Коэффициент пульсаций

Коэффициент пульсаций мостового выпрямителя определяется как уровень плавности генерируемого выхода постоянного тока.Сигнал с меньшим количеством пульсаций имеет максимальный коэффициент пульсаций и плавный, тогда как сигнал с большим количеством пульсаций имеет минимальный коэффициент пульсаций и пульсации.

Представляется как отношение уровня пульсаций напряжения к уровню постоянного напряжения.

Он задается формулой

γ = sqrt [(Vrms / v DC ) 2 -1]

Преимущества

Преимущества мостового выпрямителя выражаются следующим образом:

  • При сравнении с однополупериодным выпрямителем выходной сигнал менее пульсирующий и имеет большую плавность.Это означает, что он имеет максимальный коэффициент пульсации.
  • Повышенный КПД выпрямителя
  • Минимальные потери мощности и пространства, поскольку схема состоит только из резистора, диодов и входного источника

Применения

В целом, из-за выпрямления выпрямители используются в выпрямлении мощности и во многих электронных устройствах. устройств.

Мостовой выпрямитель применяет , как показано ниже:

  • Используется для преобразования переменного напряжения в постоянное
  • Для генерации поляризованных напряжений они реализованы в электросварочных аппаратах
  • Применяются в подвижном составе, опорных и трехфазных двигатели для работы поездов
  • В основном мостовые выпрямители используются в модуляциях, умножителях и демодуляционном оборудовании.
  • Используется для служб обнаружения пикового сигнала, а также в радиоприемниках AM.

Часто задаваемые вопросы

1). Как протекает ток в мостовом выпрямителе?

Для отрицательного и положительного полупериодов ток будет проходить в прямом направлении через контур.

2). Является ли мостовой выпрямитель двухполупериодным выпрямителем?

Он считается своего рода двухполупериодным выпрямителем, который обеспечивает эффективность преобразования входного переменного тока в выход постоянного тока.

3).Почему мы используем 4 диода в мостовом выпрямителе?

Без необходимости в трансформаторе с центральным отводом, использование четырех диодов позволяет полностью выполнить выпрямление.

4). Какой диод используется в мостовом выпрямителе?

В большинстве мостовых выпрямителей используются кремниевые диоды, поскольку они обеспечивают меньшее падение напряжения, а также обеспечивают максимальную выходную мощность.

5). Почему конденсатор используется в мостовом выпрямителе?

Для устранения любых пульсирующих волн, присутствующих в сигнале постоянного тока, в мостовых выпрямителях используются конденсаторы.

Это все о детальной концепции мостового выпрямителя. Уникальность конструкции позволяет использовать это устройство в различных отраслях промышленности и в различных устройствах. Итак, узнать больше о мостовых выпрямителях и узнать, каковы точные функции и как они работают?

Полуволновой выпрямитель

: принцип и работа

Полупериодный выпрямитель — это простая схема, которая в основном используется для преобразования переменного напряжения в постоянное. Это простой диод или группа диодов, которые преобразуют переменное напряжение (переменный ток) в постоянный ток.Он используется в конечном числе электронных устройств.

Принцип полуволнового выпрямителя

Схема однополупериодного выпрямителя — диод. И диод работает и пропускает ток только в одном направлении и блокирует его в другом. Итак, основной принцип работы выпрямителя — это работа только диода.

Если схема содержит группу диодов, то правильное расположение всех диодов является обязательным. Самая простая из известных форм — полуволна.

форма волны полуволнового выпрямителя Принципиальная схема полуволнового выпрямителя
Необходимые компоненты
  • Понижающий трансформатор используется для уменьшения или увеличения переменного напряжения.
  • Повышающий трансформатор используется для увеличения напряжения от низкого к высокому, тогда как понижающий трансформатор используется для понижения переменного напряжения с высокого до низкого, то есть, наоборот, повышающего трансформатора
  • понижающие трансформаторы являются основными компонентами трансформатора напряжения, который выполняет совсем другие функции, чем выпрямитель.

В выпрямителях в основном используются понижающие трансформаторы, так как диод требует очень мало источника переменного напряжения.

рабочая

А, понижающий трансформатор имеет количество витков в первичной обмотке, чем во вторичной обмотке; именно поэтому напряжение переменного тока уменьшается при переходе от первичной обмотки ко вторичной.

  • Источник переменного тока подает переменный ток (переменный ток) в нашу схему выпрямителя.
  • Резистор или нагрузка — это электрический компонент, который используется для ограничения прохождения тока до определенного уровня.
  • Диод является основным и важным компонентом выпрямителя. Электронное устройство, которое блокирует движение тока в другом направлении, когда он движется в одном направлении.
  • Электролитические конденсаторы обычно действуют как фильтр в схемах выпрямителя. Они используются в схеме для уменьшения пульсаций напряжения. Присоединяя конденсатор к схеме выпрямителя, вы должны правильно подключить его, соблюдая полярность, потому что тогда через него может проходить только ток.Это следует иметь в виду, потому что, если электролитический конденсатор подключен с обратной полярностью, он может выйти из строя.

Диод всегда следует размещать между трансформатором и резистором.

Эти выпрямители бывают двух типов:
  1. Положительный цикл
  2. Отрицательный цикл

Работа полуволнового выпрямителя

Работа однополупериодного выпрямителя завершается за два цикла: положительный и отрицательный.

  • Диод находится в состоянии прямого смещения в течение положительного полупериода. И ток проходит через сопротивление нагрузки.
  • Итак, на диоде установилось напряжение.
  • И, диод находится в состоянии обратного смещения во время отрицательного полупериода. Итак, в цепи нет движения, и ток равен нулю.
  • Итак, есть только то напряжение, которое установилось на диоде; что является чистым результатом положительного полупериода схемы.
  • И, генерируемое выходное напряжение отвечает за пульсации постоянного напряжения из схемы выпрямителя.

См. Также трехфазный трансформатор

Схема полуволнового выпрямителя

со схемой

Принципиальная схема полуволнового выпрямителя

Простой полуволновой выпрямитель — это не что иное, как диод с одинарным pn-переходом, подключенный последовательно к нагрузочному резистору. Как вы знаете, диод относится к электрическому току, как односторонний клапан — к воде, он позволяет электрическому току течь только в одном направлении.Это свойство диода очень полезно при создании простых выпрямителей, которые используются для преобразования переменного тока в постоянный.

Если вы посмотрите на диаграмму выше, мы подаем переменный ток в качестве входа. Входное напряжение подается на понижающий трансформатор, а результирующее уменьшенное выходное напряжение трансформатора передается на диод «D» и нагрузочный резистор RL. Выходное напряжение измеряется на нагрузочном резисторе RL.

В рамках серии «Учебное пособие по базовой электронике» мы увидели, что выпрямление — это наиболее важное применение диода с PN переходом.Процесс выпрямления — это преобразование переменного тока (AC) в постоянный (DC).

Работа полуволнового выпрямителя

Проще говоря, полуволновой выпрямитель удаляет отрицательный полупериод переменного тока на входе и позволяет проходить только положительным циклам, создавая поток постоянного тока.

Чтобы полностью понять принцип работы полуволнового выпрямителя, вы должны хорошо знать теоретическую часть . Если вы плохо знакомы с концепцией PN-перехода и его характеристиками, я рекомендую вам сначала прочитать часть теории полуволнового выпрямителя.

Работа полуволнового выпрямителя довольно проста. С теоретической части вы должны знать, что диод с pn переходом проводит ток только в одном направлении. Другими словами, диод с pn переходом проводит ток только тогда, когда он смещен в прямом направлении. Тот же принцип используется в полуволновом выпрямителе для преобразования переменного тока в постоянный. Здесь вводится переменный ток. Это входное напряжение понижается с помощью трансформатора. Пониженное напряжение подается на диод «D» и сопротивление нагрузки RL.Во время положительных полупериодов входной волны диод «D» будет смещен в прямом направлении, а во время отрицательных полупериодов входной волны диод «D» будет смещен в обратном направлении. Возьмем выход через резистор нагрузки RL. Поскольку диод пропускает ток только в течение половины периода входной волны, мы получаем выходной сигнал, как показано на диаграмме. Выходной сигнал является положительным и значительным во время положительных полупериодов входной волны. При этом выход равен нулю или незначителен во время отрицательных полупериодов входной волны.Это называется полуволновым выпрямлением .

Объяснение полуволнового выпрямления академическими словами!

Когда одиночный выпрямительный диодный блок включен последовательно с нагрузкой на источнике переменного тока, он преобразует переменное напряжение в однонаправленное пульсирующее напряжение, используя половину цикла приложенного напряжения, а другой полупериод подавляется, потому что он проводит только в одном направлении. Если в цепи нет индуктивности или батареи, ток будет равен нулю в течение половины времени.Это называется полуволновым выпрямлением . Как уже говорилось, диод — это электронное устройство, состоящее из двух элементов, известных как катод и анод. Поскольку в диоде электроны могут течь только в одном направлении , то есть от катода к аноду, диод обеспечивает одностороннюю проводимость, необходимую для выпрямления. Это справедливо для диодов всех типов — вакуумных, газонаполненных, кристаллических или полупроводниковых, металлических (типа оксида меди и селена) диодов. Полупроводниковые диоды, из-за присущих им преимуществ обычно используются в качестве выпрямительного устройства.Однако для очень высоких напряжений можно использовать вакуумные диоды.

Работа однополупериодного выпрямителя

Схема однополупериодного выпрямителя с полупроводниковым диодом (D) с сопротивлением нагрузки R L , но без сглаживающего фильтра, на рисунке не показана. Диод включен последовательно с вторичной обмоткой трансформатора и сопротивлением нагрузки R L. Первичная обмотка трансформатора подключается к сети переменного тока.

Переменное напряжение на вторичной обмотке меняет полярность после каждого полупериода входной волны.Во время положительных полупериодов входного переменного напряжения , т. Е. , когда верхний конец вторичной обмотки положительный относительно нижний конец диода смещен в прямом направлении и, следовательно, проводит ток. Если прямое сопротивление диода предполагается равным нулю (на практике, однако, существует небольшое сопротивление), входное напряжение во время положительных полупериодов прикладывается непосредственно к сопротивлению нагрузки R L , делая его верхний конец положительным. по его нижний конец. Формы сигналов выходного тока и выходного напряжения имеют ту же форму, что и входное переменное напряжение.

Во время отрицательных полупериодов входного переменного напряжения , т. Е. , когда нижний конец вторичной обмотки положительный относительно. его верхний конец, диод имеет обратное смещение и поэтому не проводит. Таким образом, во время отрицательных полупериодов входного переменного напряжения ток и напряжение на нагрузке остаются равными нулю. Обратный ток, будучи очень малым по величине, не учитывается. Таким образом, в течение отрицательных полупериодов питание на нагрузку не подается.

Таким образом, выходное напряжение (VL), развиваемое на сопротивлении нагрузки R L , представляет собой серию положительных полупериодов переменного напряжения с промежуточными очень небольшими постоянными уровнями отрицательного напряжения. Из рисунка очевидно, что выход не является постоянным постоянным током. , но только пульсирующая волна постоянного тока.Чтобы сделать выходную волну гладкой и полезной в источнике питания постоянного тока, мы должны использовать фильтр по нагрузке. Поскольку используются только полупериоды входной волны, он называется полуволновым выпрямителем .

Теория полуволнового выпрямителя

Выпрямление — это применение диода с pn переходом. Полуволновой выпрямитель — это устройство, в котором используются основные свойства диода с pn переходом. Итак, чтобы понять основную теорию, лежащую в основе полуволнового выпрямителя, вам необходимо понять pn-переход и характеристики диода pn-перехода.Мы разработали две статьи, чтобы помочь вам понять их обе.

1) Понимание PN-перехода — Эта статья поможет вам понять pn-переход и основную теорию, лежащую в основе использования PN-перехода в качестве выпрямителя.

2) Характеристики диода с pn переходом — Эта статья поможет вам разобраться в характеристиках диода с pn переходом с помощью графиков. Вы можете понять поведение диода при различных уровнях напряжения и его проводимость.

Примечание: — За изобретением диода с PN переходом стоит интересная история . История вращается вокруг настойчивости молодого ученого из Bell Laboratories в США, г-на Рассела Ола. Из этого рассказа вы узнаете, как происходят великие изобретения и как некоторые яркие умы 1930-х годов, такие как Уолтер Браттейн (один из трех изобретателей транзисторов), работали вместе, чтобы принести великие изобретения в нашу жизнь

Характеристики блока питания выпрямителя

Наиболее важными характеристиками, которые необходимо указать для источника питания, являются требуемое выходное постоянное напряжение, средний и пиковый токи в диоде, пиковое обратное напряжение (PIV) диода, регулирование и коэффициент пульсации.

Преимущества и недостатки однополупериодного выпрямителя:

Однополупериодный выпрямитель на практике используется редко. Его никогда не используют в качестве источника питания аудиосхемы из-за очень высокого коэффициента пульсаций. Высокий коэффициент пульсации приведет к появлению шумов во входном аудиосигнале, что, в свою очередь, повлияет на качество звука.

Преимущество полуволнового выпрямителя только в том, что он дешев, прост и прост в изготовлении. Это дешево из-за небольшого количества задействованных компонентов.Просто благодаря прямолинейности схемотехники. Кроме того, у однополупериодного выпрямителя больше недостатков, чем достоинств!

Недостатки однополупериодного выпрямителя

1. Выходной ток в нагрузке содержит, помимо постоянной составляющей, составляющие переменного тока основной частоты, равной частоте входного напряжения. Коэффициент пульсаций высок, поэтому для обеспечения стабильного выхода постоянного тока требуется сложная фильтрация.

2.Выходная мощность и, следовательно, эффективность выпрямления довольно низкие. Это связано с тем, что мощность подается только в течение половины цикла входного переменного напряжения.

3. Низкий коэффициент использования трансформатора.

4. Насыщение сердечника трансформатора постоянным током, приводящее к току намагничивания, гистерезисным потерям и генерации гармоник.

Выход постоянного тока от однополупериодного выпрямителя не подходит для обычного источника питания. Однако его можно использовать для некоторых приложений, например для зарядки аккумулятора.

Полуволновой выпрямитель с конденсаторным фильтром

Выходное напряжение полуволнового выпрямителя не является постоянным напряжением постоянного тока. Из выходной диаграммы видно, что это пульсирующее постоянное напряжение с пульсациями переменного тока. В реальных приложениях нам нужен источник питания с плавной формой волны. Другими словами, нам нужен источник постоянного тока с постоянным выходным напряжением. Постоянное выходное напряжение от источника постоянного тока очень важно, поскольку оно напрямую влияет на надежность электронного устройства, которое мы подключаем к источнику питания.

Мы можем сделать выход полуволнового выпрямителя сглаженным, используя фильтр (конденсаторный фильтр или индуктивный фильтр) на диоде. В некоторых случаях также используется резистивно-конденсаторный фильтр (RC). На схеме ниже показан полуволновой выпрямитель с конденсаторным фильтром.

Полуволновой выпрямитель с конденсаторным фильтром — принципиальная схема и форма выходного сигнала

Анализ полуволнового выпрямителя

Следующие параметры будут объяснены для анализа полуволнового выпрямителя: —

1. Пиковое обратное напряжение (PIV)

Пиковое обратное напряжение (PIV) диода важно на этапах его проектирования. Это максимальное напряжение, которое выпрямительный диод должен выдерживать в течение периода обратного смещения.

Когда диод смещен в обратном направлении, во время отрицательного полупериода ток через нагрузочный резистор RL не протекает. Следовательно, на сопротивлении нагрузки RL не будет падения напряжения, которое приведет к появлению всего входного напряжения на диоде.Таким образом, на диоде появляется пиковое вторичное напряжение V SMAX . Следовательно,

Пиковое обратное напряжение (PIV) однополупериодного выпрямителя = В SMAX

2. Средние и пиковые токи в диоде

Если предположить, что напряжение на вторичной обмотке трансформатора синусоидально пиковым значениям V SMAX , мгновенное значение напряжения, подаваемого на выпрямитель, можно записать как

Мгновенное значение напряжения, приложенного к полуволновому выпрямителю

Предполагая, что диод имеет прямое сопротивление ВЧ Ом и бесконечное значение обратного сопротивления, ток, протекающий через выходное сопротивление нагрузки RL, равен

. Ток, протекающий через диод

I MAX = V SMAX / (R F + R L )

3. Выходной постоянный ток

Выходной постоянный ток равен

. Выходной постоянный ток полуволнового выпрямителя

Подставив значение I MAX в уравнение I MAX = V SMAX / (R F + R ), имеем

I постоянного тока = В SMAX / = V SMAX / R L если R L >> R F

4. Выходное напряжение постоянного тока

Значение постоянного напряжения на нагрузке равно

.

В постоянного тока = I постоянного тока R L = В SMAX / pi (R F + R L) В SMAX / {1 + R F / R L }

Если R L >> R F , V dc = V SMAX / pi

5. Среднеквадратичное значение тока

Действующее значение тока, протекающего через диод, равно

. Среднеквадратичное значение тока, протекающего через диод в полуволновом выпрямителе
6. Среднеквадратичное значение выходного напряжения

Действующее значение напряжения на нагрузке равно

.

В Lrms = I RMS R L = V SMAX R L /2 (R 4 F ) + = V SMAX /2 {1 + R F / R L }

Если R L >> R F , V Lrms = V SMAX /2

7. Эффективность выпрямления

Эффективность выпрямления определяется как отношение выходной мощности к входной мощности переменного тока.

КПД, Ƞ = мощность постоянного тока, подаваемая на нагрузку / мощность переменного тока на входе от трансформатора = P dc / P ac

Мощность постоянного тока, подаваемая на нагрузку, P постоянного тока = I 2 постоянного тока R L = (I макс. л

Входная мощность переменного тока на трансформатор, P ac = мощность, рассеиваемая на диодном переходе + мощность, рассеиваемая на сопротивлении нагрузки R L

= I 2 среднеквадратичное значение R F + I 2 среднеквадратичное значение R L = {I 14 4 МАКС. R Факс + Р Л ]

Итак, эффективность выпрямления, Ƞ = P dc / P ac = {4/ 2 } [ R L / (R F + L ) ] = 0.406/ {1+ R F / R L }

Максимальный КПД, который может быть получен с помощью полуволнового выпрямителя, составляет 40,6%. Это получается, если пренебречь R F .

8. Коэффициент пульсации

Фактически коэффициент пульсаций является мерой оставшихся переменных компонентов на выходе выпрямителя с фильтром. Это отношение действующего значения составляющих переменного тока напряжения (или тока), присутствующих на выходе выпрямителя, к составляющей постоянного тока в выходном напряжении (или токе).

Действующее значение тока нагрузки равно

.

I 2 = I 2 пост. I 2 постоянного тока + I 2 ac

Где, I 1 , I 2 , I 4 и т. Д. — среднеквадратичные значения основной, второй, четвертой и т. Д. Гармоник и I 2 ac — это сумма квадратов среднеквадратичных значений компонентов переменного тока.

Итак, коэффициент пульсации, γ = I ac / I dc = I 2 I 2 dc ) / I dc4 (I = dc4 I = rms / I dc 2 ) -1} = K f 2 — 1)

Где K f — форм-фактор входного напряжения. Для однополупериодного выпрямителя форм-фактор равен

.

K f = I среднеквадратичное значение / I среднее значение = (I макс / 2 ) / (I макс / pi) = pi / 2 = 1.57

Итак, коэффициент пульсации, γ = (1,57 2 — 1) = 1,21

9. Постановление

Изменение выходного напряжения в зависимости от постоянного тока нагрузки называется регулированием.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *