Припой медь сталь – Пайка стали, меди, алюминия, нержавейки, оцинковки

Содержание

ПРИПОЙ ДЛЯ ПАЙКИ [алюминия, меди, стали]

[Припой для проведения пайки алюминия] используется не только в промышленности, но и в домашних условиях. Можно провести пайку мягким, твердым припоем в зависимости от вида металла.

Считается, что алюминий сложно паять. Если для пайки применять обычные припои, флюсы, которые используют для соединения нержавейки, латуни, меди, стали, то могут возникнуть сложности.

Причиной является образование оксидной пленки, которая отличается высокой стойкостью, тугоплавкостью. Она не дает возможности смачивания поверхности припоем, основной металл не растворится в нем.

После того как поверхность алюминия будет зачищена изделием из нержавейки, на ней появится оксидная пленка.

Перед пайкой ее обязательно нужно удалять, так как затрудняется процесс.

Не все знают, как это сделать в домашних условиях. Есть специальные составы, которые изготавливают для соединения алюминия.

Применяя их, сложности в пайке алюминия не будет.

Чем паять алюминий и его сплавы?

Чтобы пайка алюминия осуществлялась на качественном уровне, следует применять припои, в состав которых входит кремний, алюминий, серебро, медь, цинк.

В продаже можно найти состав, в котором различное соотношение данных составляющих.

При выборе припоя следует учесть, что наибольшую стойкость к коррозии, прочность имеет то соединение, которое паяли с помощью припоя с высоким содержанием цинка.

Чем больше его в составе, тем выше показатели.

Припои на основе олова и свинца применять для пайки алюминия можно.

При этом стоит хорошо подготовить поверхность материала, качественно зачистить щеткой из нержавейки и приобрести высокоактивные флюсы.

Все же специалисты не рекомендуют применять такой припой — алюминий в нем плохо растворяется.

Видео:

Кроме этого, соединение будет подвержено коррозии, оно нуждается в покрытии лакокрасочными составами.

Припои, которые применяются для пайки алюминия, являются высокотемпературными. Подходящими для работы можно считать алюминиево-кремниевый, алюминиево-медно-кремниевый состав.

Припой из серебра

Для пайки чистое серебро не используют. Чаще всего для соединения латуни используют сплавы, в состав которых кроме серебра входит цинк, кадмий, никель, другие металлы.

Медь с серебром хорошо расплавляется, шов, который остается от плавки, отличается высокой прочностью.

Если в составе припоя серебра 10%, то его можно использовать для соединения деталей из стали.

Латунные и другие поверхности имеют после спаивания аккуратный, чистый шов.

Флюсы

Выбирая флюсы, стоит оценивать их характеристики. Не все из них проявляют активность по отношению к алюминию, особенно, если применяются припои, состав которых содержит олово и свинец, составы с серебром.

При покупке стоит приобрести флюсы, которые так и называются «Для пайки алюминия».

Видео:

Также можно купить флюс: виды 34А, Ф61А, Ф59А (высокотемпературный), а можно проконсультироваться с продавцом.

Канифоль

Что делать, если под рукой отсутствует припой, флюс, предназначенный для работы с алюминием. Можно воспользоваться припоями, куда в состав входят олово, свинец.

При этом оксидную пленку нужно будет разрушать канифолью. Таким образом, новая пленка не будет образовываться при нанесении на поверхности канифоли.

Если образуется немного пленки, то ее необходимо потереть специальным скребком из нержавейки. Можно добавить немного металлических опилок.

Производя трение по поверхности элементами из нержавейки, пленка будет разрушаться. Канифоль защитит от воздействия алюминия с воздухом.

Вместе с этим, происходит воздействие припоем. Такой метод специалисты рекомендуют применять в крайнем случае.

Если есть возможность, лучше приобрести флюс, припой, изготовленный для работы с поверхностями из алюминия, его сплава.

Как подготовить детали к пайке?

Перед тем, как приступать к пайке своими руками, часть детали необходимо соответствующим образом подготовить. Поверхность материала следует обезжирить.

Для этого можно использовать бензин, ацетон, любой другой растворитель. Чтобы удалить оксидную пленку, нужно применить физическое воздействие.

Для этого можно использовать различные материалы: сетку из нержавейки, щетку, абразивные круги.

Для удаления оксидной пленки можно использовать кислоты, такой способ достаточно трудоемкий, чтобы использовать его в домашних условиях.

После обработки поверхности металла, применяя изделие из нержавейки, старая пленка удалится, но на ее месте образуется новая.

Она будет более слабая, тонкая. Флюс растворит ее намного быстрее, чем ту, что сняли предварительно. Поверхность из латуни, меди, стали зачищать намного легче.

Видео:

Прежде чем припаять одну деталь к другой, стоит их нагреть. Если предметы из стали отличаются большими размерами, для нагрева следует использовать паяльную лампу или специальные газовые горелки.

Нагревая  помощью горелки, нужно быть осторожным и все время следить за работой горелки. Основной материал перегреться не должен, так как расплавится и потеряет свою форму.

Необходим постоянный контроль температуры горелки. Для этого стержень припоя нужно кратковременно прикладывать к поверхности. Когда температура достигнет рабочей, припой расплавится.

Стоит обращать внимание на пламя горелки, которым нагреваются детали.

Газовые составы смеси для горелки должны быть сбалансированными и не иметь недостатка/переизбытка кислорода.

Если кислорода будет больше нормы, то поверхность металла будет окисляться. Подобная ситуация не случится, если работать с поверхностями из стали, латуни, меди.

Во время работы с маленькими деталями горелки не применяют, обычно пользуются паяльниками, работающими от электросети.

Если необходимо соединить несколько компонентов, применяется пайка волной припоя. На видео показано, как работать с мягкими, твердыми припоями.

Технология работы припоем алюминия, его сплавов

Детали необходимо очистить от пыли, жира, грязи и установить в то положение, в котором они будут подвергаться пайке. В место, где будет осуществляться пайка, нужно нанести флюс.

Место с флюсом нагревается. Для этого стержнем нужно прикоснуться к поверхности. Важно не перегреть место соединения, так как металл будет плавиться.

При работе с припоем без флюса стоит знать особенность: оксидную пленку на поверхности нужно разрушить, так как припой не сможет проникнуть через нее.

Разрушать ее можно с помощью нержавейки или прутком из стали, для этого нужно произвести чиркающие действия по поверхности. В результате оксидная пленка теряет целостность.

Если поверхность большая, то разрушить пленку поможет щетка из стали. Ею нужно водить по поверхности, затем соединить детали между собой.

Проблема работы алюминия — оксидная пленка образовывается мгновенно после того, как ее счистят. Она является инертной и расплавленным металлом смачивается с трудом.

Что же делать, чтобы такую пленку снять и прочно запаять деталь? Можно очищать поверхность, налив на нее слой масла. Металл в этом случае не будет контактировать с воздухом, соответственно пленка не сможет образоваться.

Видео:

Вода не должна входить в состав масла. Для этого его хорошо прогревают до температуры 180-200 градусов. Специалисты рекомендуют применять вакуумные, минеральные масла.

Есть еще способ снять оксидную пленку. Покрыть поверхность канифолью. Она, как и масло, будет препятствовать попаданию воздуха на металл.

Опилками из стали или щеткой из нержавейки нужно проводить чиркающие движения по алюминию, пленка утратит свою прочность.

Лучший метод удалить оксидную пленку своими руками — применить механические действия элементами из стали плюс воздействие активным флюсом.

Применяя пайку, можно восстановить предметы из алюминия любой конструкции, величины, сложности. Такой метод ремонта используется не только для предметов, используемых в быту.

К автомобилям, мотоциклам, прочей технике предъявляются повышенные требования прочности. Их также ремонтируют путем пайки.

Иногда такой способ соединения деталей является предпочтительнее, чем сварочные работы. Ведь он не деформирует металл, не меняет его состав.

При помощи спаивания можно отремонтировать кондиционеры, насосы.

В домашних условиях можно отреставрировать алюминиевый желоб водостока, сайдинг, лестницу, посуду. После ремонта сплав окажется очень прочным.

Как паять сплавы алюминия?

Сплавы алюминия своими руками можно спаять, если купить припой и флюс марки 34А.

Проще всего запаять авиаль, сплав Амц. А вот литейные сплавы, дуралюмин, АК4, В95 паять очень сложно, так как у них низкая температура плавления.

Видео:

Если возникла необходимость запаять какую-либо деталь из таких сплавов, действовать нужно крайне осторожно.

В противном случае можно получить пережог. Потеря прочности сплава составит при этом около 30 процентов в том месте, где производилась пайка. Иногда металл полностью плавится.

Сплавы дуралюмин, В95 при нагреве могут деформироваться, поэтому прогревать их с помощью горелки нельзя.

Мелкие изделия можно нагреть в специальной печи, так будет удобнее контролировать температуру.

Чтобы снять с поверхности сплава оксидную пленку нужно обработать ее флюсом, у которого активность повышенная. Широко известны такие марки — флюс 34А, НИТИ-18.

Их чаще всего применяют при работе с алюминиевыми сплавами. Важно знать, что флюс марки 34А может привести к сильной коррозии металла.

Чтобы этого не допустить, после проведения спаивания деталей, флюс, который остался на поверхности, нужно убрать.

Для этого необходимо провести ряд действий:

  • изделие нужно помыть водой около 20 минут, применяя щетку. Вода должна быть горячей — примерно 80 градусов;
  • около получаса промыть изделие в холодной воде;
  • сделать раствор хромового ангидрида и обработать в нем изделие;
  • после обработки поверхность должна просохнуть при высокой температуре около 25-30 минут.

Припои для других металлов

Если изделия, трубы состоят из меди, то специалисты не рекомендуют использовать сварочные работы.

В этом случае рекомендуется пайка медных труб твердым припоем, виды которых можно купить в любом специализированном магазине.

В отличие от алюминия, в припой для пайки медных труб может входить серебро, а также медно-фосфорный состав.

Спайка изделий из этого металла может осуществляться твердым, мягким припоем. Припой для пайки меди можете увидеть на видео ниже.

Видео:

Пайка твердыми припоями с серебром требует наличия специального оборудования — газовой горелки.

Популярностью пользуются припои с содержанием серебра. В составе припоя может находиться до 55 процентов этого металла.

Среди особенностей такого припоя можно отметить низкую температуру, при которой плавится металл. Серебро в составе вещества хорошо смачивает поверхности металла.

Серебро способствует хорошему заполнению щелей, которые образовываются между соединяемыми поверхностями. При использовании такого припоя образуются плотно-вакуумные швы.

Пайка меди твердым припоем отличается от пайки мягким. Применяя твердый припой, необходимо создать условия, при которых пайка волной припоя происходит при температуре, которая выше 420-425 градусов.

Стоит помнить, что при этом температура не должна превышать температуру, при которой соединяемые металлы плавятся.

Пайка, где используется мягкий припой для медных труб, должна происходить при температуре, которая составляет менее 425 градусов.

Флюс с составом серебра, который при этом используется, не дает возможности оксидной пленки образовываться.

Сплав меди и цинка называется латунный сплав. При пайке латуни есть свои особенности. Когда происходит термическое воздействие на латунный элемент, сплав выделяет цинк.

Видео:

При этом образовывается пленка из оксида меди, цинка. Удалить ее довольно сложно. Флюсы и припой при этом выбираются в зависимости от того, какой состав имеет сплав.

Серебряный припой, флюсы применяются для латуни, в составе которых есть медь. Если латунь включает в себя больше цинка, то серебряный припой должен быть ПСр40 и выше.

Когда поверхность латуни соединяется с серебряными припоями, то латунный слой может сильно расплавиться, поэтому следует контролировать нагрев металла и время всего процесса.

rezhemmetall.ru

Особенности припоев для пайки нержавейки

К нержавеющим сталям относится большая группа сплавов на основе железа и углерода, в которые для придания устойчивости к окислению и последующему образованию ржавчины, введены специальные легирующие металлы.

В качестве добавок обычно применяют хром, никель, молибден. В зависимости от характера дополнительных компонентов, условий эксплуатации сплавов они подразделяются на несколько подгрупп. В большинстве случаев нержавейку сваривают. Тонкостенные детали и склонные к короблению стальные сплавы нужно паять.

C низкой температурой плавления

Все жаропрочные, многие нержавеющие стали предназначены для высоких температурных нагрузок. Мягкие припои для их паяния применяются редко.

В некоторых случаях пайку проводят, используя припой для нержавеющей стали из олова и свинца. Детали нагревают пламенем горелки или паяльника. Рабочие части окунают в расплав.

В маркировке припоев рядом с сокращением ПОС присутствуют цифры, указывающие на содержание олова. Так, в составе ПОС-18 содержится 18 % олова, до 2,5 % сурьмы, десятые доли процента меди, висмута, мышьяка, все остальное составляет свинец.

Припой ПОС-30 включает 30 % олова, до 1,5 % сурьмы, мизерные количества меди, висмута, мышьяка. Остальную часть массы занимает также свинец. Состав ПОС-40 вмещает до 40 % олова, около 2 % сурьмы, незначительные примеси меди, висмута, мышьяка, почти 58 % свинца.

Для проведения успешной пайки нержавеющих сталей необходим флюс. Образованию хорошего шва способствует смесь хлористого цинка и соляной кислоты. Можно как флюс использовать 40 %-й раствор ортофосфорной кислоты в воде.

Иногда облегчает спайку нержавейки предварительное омеднение электролизом. Если электролитическая установка имеется в зоне доступа, процесс не составляет труда, приводит к хорошему спаиванию.

Серебряные

Для пайки нержавеющих сталей широко используются припои на основе серебра. Кроме благородного металла смесь включает цинк и медь. Иногда применяют припойные массы, в которые дополнительно введены никель, фосфор, кадмий, палладий.

Припой для пайки нержавейки с содержанием серебра от 25 % до 45 % при добавлении в зону пайки флюсов гарантирует образование прочного соединения.

Прибавление кадмия приводит к уменьшению температуры плавления массы, увеличивает ее текучесть, способствует образованию прочного и пластичного шва. Важно обратить внимание на процентное содержание серебра.

Если в сплаве содержится кадмий, то минимальная концентрация благородного металла должна составлять 40 %. Иначе качество шва на нержавеющей стали будет плохим.

Добавление никеля и кадмия увеличивают текучесть расплава. Введение фосфора позволяет без флюсов паять омедненные поверхности нержавейки и жаропрочных материалов, используя любые способы нагревания.

Это удобный метод соединения деталей с ограниченным доступом в тех случаях, когда флюс применять сложно. Остатки флюсовой смеси невозможно удалять в труднодоступных местах.

Для особых видов пайки нержавеющей стали применяют серебряные припойные составы, включающие до 15 % марганца или до 28 % меди и 0,5 % лития. Пайка нержавейки твердым припоем, содержащим немного лития, проводится в среде инертных газов.

Жаропрочные сплавы паяют таким составом, используя газообразны флюсы. Прибавление лития в массу увеличивает ее смачиваемость и текучесть. Иногда для улучшения качества соединения при проведении процесса в атмосфере нейтральных газов применяют припойные смеси с добавкой палладия.

Медные

Медь и ее сплавы для пайки нержавеющей стали применяют редко. Это можно делать только при температуре 1120 ℃ в специально очищенных, осушенных средах восстановительного характера.

Если в нержавеющих сталях повышено содержание хрома, алюминия, кремния и титана, в связи с низкой текучестью меди процесс можно проводить только с флюсами в атмосфере пламени ацетилена и кислорода.

В некоторых ситуациях применяют твердый припой для нержавейки из меди и цинка с содержанием последнего до 40 %. При этом добавляют в рабочую зону твердые флюсы.

Такие средства имеют недостатки, связанные с возможностью выгорания цинка. Шов может получаться не очень прочным, хрупким при высоких температурах. Работа требует особой квалификации исполнителя.

Хороший результат дают средства ВПр-1, ВПр-, ВПр-4, в которых основным компонентом является медь. Никеля в этих составах содержится около 30 %, кремния – до 2 %, железа – до 1,5 %, бора – в следовых количествах. Такими средствами можно паять любые нержавеющие стали в печах или пламени горелки.

Специфические особенности имеет припой ВПр- 41. Он относится к самофлюсующимся композитам. Функции флюсов выполняют добавки калия, натрия, лития и фосфора.

Они удаляют имеющиеся оксиды, препятствуют образованию новых продуктов окисления, улучшают поверхностное натяжение припоя. Пайку можно проводить без применения защитных газов под действием токов высокой частоты, обеспечивающих быстрый нагрев.

Никелевые

Среди нержавеющих сталей отдельную группу составляют жаропрочные сплавы. К ним предъявляются особые требования.

Припои, в основе которых содержатся серебро, медь, марганец обеспечить должную стойкость швов при высоких температурах не могут.

Для таких нержавеющих сталей подходят припои из никеля, хрома и небольших количеств бора, бериллия или кремния. Они выпускаются в виде порошков или паст.

В вакууме, среде инертных газов данные смеси успешно растекаются по нержавеющей стали. Образующиеся швы не окисляются, обладают термической стойкостью, но имеют низкую пластичность. Несколько повысить пластические свойства соединения можно проведением отжига параллельно с пайкой.

Для пайки всех нержавеющих сталей, включая жаропрочные, также применяют припои, состоящие из 70 % марганца и 30 % никеля. Встречаются разновидности данных смесей с добавками хрома или хрома с железом.

Полученные швы отличаются стойкостью при любых температурах. За границей применяется аналогичный припой с примесью палладия. Стоимость этого металла велика. Однако цена оправдывается высокими показателями качества шва, возможностью пайки деталей с большими зазорами.

Как выбрать

Существует большое количество марок нержавеющих сталей. При выборе припоя нужно обратить внимание на состав сплава, из которого сделаны детали, планируемый метод пайки, конструкцию изделия в целом. Следует определиться со сроками выполнения пайки и требованиями к качеству соединения.

Желательно провести пробную пайку с конкретным материалом, проверить при выполнении работы в конкретных условиях достоверность всех заявленных свойств.

svaring.com

Пайка нержавейки с медью — технология и выбор припоя для пайки

Соединение двух различных металлов, куда относится и пайка нержавейки с медью, всегда является достаточно сложной процедурой. С учетом того, что нержавеющая сталь имеет довольно сложное поредение при температурной обработке, а также плохо взаимодействует с остальными металлами, то для качественного результата спаивания нужно подбирать четко выверенную технологию. Если с медью, как правило, проблем не возникает, то с нержавеющей сталью это бывает нередко.

Пайка нержавейки с медью

Сам процесс регулируется ГОСТ 17349-79, но здесь есть одна очень важная особенность. Ведь у каждого металла свои особенности соединения при данном процессе, так что для них требуется использовать различный припой и флюс, подобранный под их параметры. Но при соединении различных металлов требуется брать какие-либо средние или узкоспециализированные материалы.

Такой вид пайки применяется как в домашних условиях, так и в промышленных, для создания герметичных емкостей, припаивания медных трубок и прочих вещей. Данный процесс встречается не так часто, как остальные виды пайки, но при необходимости следует знать все особенности такого метода.

Можно ли спаять нержавейку с медью?

Пайка меди с нержавейкой хоть и является достаточно сложным процессом, но и это все же возможно. Дело в том, что соединение нержавейки с нержавейкой и меди с медью происходит намного чаще, так как итоговое качество соединение выходит значительно лучше. Но в различных ситуациях, когда требуется сделать такое соединение, то приходится уступать качеством. Специально для подобных случаев выпускают особые припои, которые позволяют сделать надежное соединение, отвечающее эксплуатационным требованиям. Если для других типов пайки использование флюса далеко не всегда обязательно, то здесь требуется провести полный спектр процедур, включая лужение, а также использовать все дополнительные материалы.

Преимущества

  • Данный метод позволяет решать сложные технологические операции;
  • Это один из немногих способов достичь подобного соединения;
  • Сама процедура происходит достаточно быстро и не требует дополнительных инструментов, так как для этого достаточно обыкновенной горелки;
  • Современные разработки припоев обеспечивают относительно высокую совместимость металлов при спаивании;
  • Процесс доступен как для домашнего проведения, так и для промышленных потребностей.

Недостатки

  • Качество пайки уступает другим методам по надежности;
  • Трудно подобрать правильный припой;
  • Флюс быстро окисляется, так что действия приходится проводить, не затягивая начало температурной обработки;
  • Зачастую используются легкоплавные припои, что делает процесс обработки более сложным, так как нужно четко отрегулировать температуру и следить, чтобы ничего не растеклось.

Способы

Существует несколько способов, как сделать соединение такого рода и зависят они больше не от того какой используется припой для пайки нержавейки с медью, а от инструмента обработки. Таким образом, в качестве основных выделяются два – пайка паяльником и горелкой.

В первом случае, при использовании паяльника, данный инструмент используется для относительно небольших деталей. Им удобней соединять небольшие вещи, так как нет риска перепалить их слишком большой температурой. В то же время сам паяльник уступает по мощности горелке и не может работать с твердоплавными материалами. Также им неудобно обрабатывать большие поверхности, так как в данном случае процесс будет слишком длительным и флюс может окислиться уже к тому времени.

Горелка является более часто используемым способом. Ею может проводиться пайка нержавейки с медью латунью и другими припоями. Здесь можно легко обрабатывать большие поверхности, делать герметические соединения. Сам процесс происходит намного быстрее, чем с паяльником, а также появляется возможность подогреть заготовки до нужной температуры. Скорость проведения процедур не позволяет флюсу окисляться.

Пайка меди с нержавейкой горелкой

Выбор припоя

От правильного подбора припоя зависит итоговый результат работы, так как он обеспечивает заполнение места соединения, которое должно быть полностью покрыто материалом, что должен быть хорошо схвачен на поверхности. Одним из самых простых вариантов является пайка нержавейки латунью. Ведь это очень распространенный припой, который используется также и для пайки нержавейки с нержавейкой. В некоторых случаях его можно использовать без флюса.

«Обратите внимание!

Он уступает другим по своим свойствам, но является более распространенным и доступным, так что он подходит преимущественно для простых соединений, на которых не лежит большая ответственность.»

Также проходит пайка нержавейки медно-фосфорным припоем, который улучшает качества соединения с медью. Это более дорогостоящий материал, но для ответственных соединений подходит лучше.

Оловянно-серебряный припой, такой как Castolin 157, является отличным способом пайки, но стоимость материала является более высокой, чем у остальных.

В самых простых случаях может использоваться радиотехнический припой, но по технологии производства лучше выбирать специализированные расходные материалы.

Технология пайки нержавейки с медью

Пайка нержавеющей стали латунью, или другими припоями, начинается с подготовки поверхности.

  • Материал нужно очистить от всего лишнего и снять все налеты, очистить от жира и возможной ржавчины;
  • Затем подготовить флюс, подвергнуть лужению места соединения заготовок и сам припой;
  • После того, как флюс будет нанесен на места соединения, следует приставить в нужное место заготовку и выложить припой;

«Важно!

Не следует затягивать этот процесс, так как флюс имеет свойство окисляться.»

  • Затем следует постепенно подогревать все горелкой, пока припой не начнет плавиться;
  • Нужно следить, чтобы он равномерно растекся по поверхности соединения;
  • Дать остыть естественным способом.

Контроль качества

Качество пайки контролируется по ГОСТ 19249-73. Существует несколько основных профессиональных методов, которые включают:

  • Радиоскопический метод;
  • Радиационный контроль;
  • Технический осмотр.
Техника безопасности

При работе с горелкой следует следить за соединением баллона с газом и его местом положения, так как он представляет собой наибольшую опасность. Также нужно аккуратно обращаться с горячими предметами, которые могли не остыть после пайки. Не стоит контактировать с флюсом непосредственно, а лучше использовать защитные перчатки.

svarkaipayka.ru

как проводят лужение, паяют нержавейку и подбирают флюс для надежного соединения металлов

Пайка, как технология создания неразъёмных соединений металлических изделий имеет древнюю историю. И сегодня, несмотря на лидирующую позицию сварочных процессов, пайка стали, алюминия, меди, и многих других металлов и сплавов продолжает успешно применяться в различных отраслях техники.

Процесс пайки разных по составу металлических сплавов имеет свои особенности. Это связано с различной температурой плавления и химическим составом сплавов. К некоторым маркам стали пайка не применяется.

Сущность паяльной технологии

Пайкой называют соединение металлических деталей с помощью припоя, являющегося более легкоплавким металлом, который, будучи расплавленным, смачивает соединяемые поверхности.

Таким образом, процесс паяния связан с нагреванием и протекает при температуре, превышающей точку плавления припоя, но не достигающей температуры плавления соединяемого металла.

В процессе пайки соединяемые детали основного металла не изменяют форму, поскольку сами не подвергаются плавлению.

Прочность создаваемого соединения определяется механическими свойствами, которыми обладает припой для пайки. Когда стальные детали припаивают друг к другу, соединение всегда уступает по прочности основному материалу.

Главным препятствием для создания паяных соединений является окисел, образующийся на поверхности любого металла. Слой окисла не позволяет расплавленному припою равномерно смочить поверхность детали, поэтому металл должен предварительно зачищаться.

Для защиты поверхностей от окисления в процессе спаивания, применяются специальные вещества – флюсы. Для соединения разных материалов используются различные флюсы. Например, для того, чтобы спаять нержавейку, применяют буру. Флюсами для стали могут служить канифоль, паяльная кислота.

Основным процессом, сопровождающим создание паяного соединения, является нагрев заготовок. В зависимости от массы спаиваемых деталей и вида применяемого припоя, нагрев может осуществляться следующими способами:

  • паяльником;
  • газовой горелкой;
  • высокочастотным индуктором;
  • в специальных печах.

Например, проволоку небольшого диаметра можно легко прогреть обычным паяльником, при пайке стальных труб понадобится газовая горелка, а массивную заготовку придётся помещать в печь.

Низколегированной

Низколегированная углеродистая сталь относится к сплавам железа, наиболее легко подвергаемым процессу пайки.

Это объясняется тем, что на поверхности сталей данного типа образуется сравнительно непрочная плёнка окислов, легко устраняемая применением обычных флюсов.

Процесс пайки чёрных металлов может проходить при относительно низкой температуре, не превышающей 450 ℃ в случае применения мягких и легкоплавких свинцово-оловянных припоев.

Для получения паяного соединения, обладающего большей твёрдостью и механической прочностью, следует применять более твёрдые тугоплавкие припои, например на основе меди. Такая пайка осуществляется при температуре до 750 ℃.

Конструктивной

Этот вид сталей характеризуется наличием хрома, применяемого в качестве легирующей добавки. Благодаря хрому сталь приобретает необходимые механические характеристики.

Однако наличие этого легирующего компонента существенно затрудняет процесс пайки, так как на поверхности конструкционных сталей образуется довольно прочная и с трудом разрушаемая плёнка окисла.

Припаять сталь с добавкой хрома можно, применяя активный флюс, содержащий кислоты. Кроме этого, для получения качественного результата, используются специальные приспособления, создающие защитную атмосферу в зоне осуществления пайки.

Кроме этого, стальную поверхность, подготовленную для пайки, покрывают слоем порошка, содержащего металлические компоненты. Этот защитный слой предотвращает окисление стальной поверхности и выгорание легирующих элементов в процессе нагревания.

Паяное соединение легированных сталей производится с применением твёрдых припоев, содержащих медь, серебро или никель.

Инструментальной

Инструментальная сталь отличается очень высокой твёрдостью. Однако виды инструментальной стали, не имеющие в своём составе вольфрама, изменяют свои механические свойства при нагревании до 200 ℃ и более, значительно теряя при этом прочность.

Такие виды стали не подлежат пайке. Для устранения этого недостатка инструментальные стали, подлежащие нагреву в процессе эксплуатации, производятся с вольфрамовыми добавками. Такая сталь может подвергаться нагреву до 600 ℃, не утрачивая при этом ценных механических свойств.

Спаять инструментальную сталь можно припоем на основе никеля или ферросплавов. Нагревание заготовок обычно производят индукционным способом. При этом применяются флюсы, содержащие бор и фтор.

Последовательность операций

Процесс пайки стальных деталей начинается с тщательной очистки заготовок от грязи, ржавчины и следов масел. Для этого пользуются шлифовальной шкуркой, напильником, стальной щёткой. Ржавые детали можно обработать преобразователем ржавчины на основе ортофосфорной кислоты. Жировые загрязнения удаляются растворителем или щелочным раствором.

После очистки и обезжиривания, на поверхность деталей наносится слой флюса. Если в качестве припоя служит олово, детали предварительно лудят. Лужение представляет собой равномерное смачивание поверхности расплавленным оловом.

После этого, детали собирают и надёжно фиксируют в том положении, в котором они должны находиться после соединения.

Далее, детали нагреваются подходящим способом. Нагрев производится до температуры, несколько превышающей температуру плавления применяемого припоя, который должен быть помещён в область соединения.

При расплавлении он затекает в зазор между деталями, образуя соединение. После остывания и кристаллизации припоя, шов зачищают, следы флюса удаляют.

svaring.com

Делаем сами — Приложение №15 Припои, флюсы для пайки

Прочность пайки зависит, в первую очередь, от правильного подбора припоя и флюса и, во вторую очередь, от тщательности подготовки спаиваемых деталей.

Это значит, что их поверхности должны быть очищены от окислов, которые мешают проникать припою в спаиваемые детали (диффундировать).

При пайке надо всегда помнить, что температура плавления припоя должна быть ниже максимальной рабочей температуры флюса.

Там, где в тексте эта температура не приводится, дается разъяснение, какими припоями можно паять с данной маркой флюса.


Припои

Основные свойства, которыми должен обладать припой, можно сформулировать так:

  • температура его плавления должна быть ниже температуры плавления спаиваемых металлов;
  • он должен хорошо смачивать спаиваемый металл;
  • припой должен быть относительно прочным;
  • при пайке не должны образовываться пары (металл — припой), отрицательные в электрохимическом отношении, в противном случае паяный шов быстро разрушится;
  • металлы, входящие в состав припоя, должны быть недефицитными и недорогими.

Припои по своим физическим свойствам делятся на две группы:

  • легкоплавкие припои (их еще называют мягкими припоями) с температурой плавления до 500°
  • и тугоплавкие (твердые) с температурой плавления выше 500°.

Наиболее широко распространены легкоплавкие припои на основе сплава олово-свинец

Таблица 1
Припои на основе олово-свинец










Марки припоя Температура
плавления оС
Применение
Олово 232 Для лужения
ПОС 90 220 То же
ПОС 61 185 Для пайки меди и стали
ПОС 50 210 Для пайки меди, латуни, никеля, серебра и т.д.
ПОС 40 235 То же
ПОС 30 256
ПОС 18 277 Для пайки свинца, цинка, луженной жести
ПОС 4-6 265 Для пайки меди и стали
Примечание

Все припои содержат небольшой процент примеси сурьмы. Последний припой содержит 5 — 6% сурьмы.
В (табл. 1) приведены припои на основе сплава олово-свинец, для сравнения сюда включено олово.
Цифра в марке припоя говорит о количестве (в %) олова в данном припое, остальное — свинец.

Из тугоплавких применяются припои на основе меди и серебра

Кроме припоев для пайки стальных и никельсодержащих сплавов пользуются иногда медью марок МО, Ml, M2, МЗ и М4.

Употребляется медь в виде:

  • проволоки,
  • ленты,
  • фольги
  • и порошка.

Температура пайки медью лежит в пределах 1150—1200°.

Латуни (сплавы медь-цинк) и специальные медно-цинковые припои хороши тем, что температура их плавления несколько ниже, чем у меди. Соединения, спаянные латунью, более прочны, чем спаянные медью.
В (табл. 2) приведены три широко распространенных медно-цинковых припоя и некоторые марки латуней, применяемых в качестве припоев.

Таблица 2
Медно-цинковые и латунные припои







Марки припоя
(латуни)
Температура
плавления, оС
Применение
ПМЦ 36 825 Для пайки латуни марки Л 62
ПМЦ 48 865 Для пайки медных сплавов
ПМЦ 54 880 для пайки меди и сплавов из стали
Л 62 905 Для пайки меди и стали
Л 68 938 То же

Медно-фосфорные припои отличаются относительно низкой температурой плавления и хорошей затекаемостью в расплавленном состоянии. Наличие в припоях фосфора при пайке меди и ее сплавов позволяет иногда обходиться без флюса, так как фосфор обладает флюсующими свойствами.

При пайке медно-фосфорными припоями латуни Л62, нейзильбера*, алюминиевой бронзы и медно-никелевых сплавов необходимо применять борсодержащие флюсы.
По ГОСТу пайка стали медно-фосфорными припоями не допускается из-за хрупкости паяного шва. Однако при отсутствии медно-цинковых или серебряных припоев можно применять и медно-фосфорные.

К основным медно-фосфорным припоям относятся так называемые фосфористые меди марок МФ-1, МФ-2, МФ-3.

  • Температура плавления первых двух — 750°
  • третьего — 700°.

Из тугоплавких (твердых) припоев наиболее примечательными являются припои на основе серебра

Их универсальность (можно паять все металлы, кроме алюминия, магния и легкоплавких металлов),

  • прочность,
  • пластичность,
  • коррозионная стойкость,
  • высокая температура плавления

ставят их в первый ряд среди других припоев.
Даже относительная дороговизна нисколько не умаляет их достоинств.

Из припоев на основе серебра некоторые умельцы отливают мормышки!

В (табл. 3) приведены основные марки серебряных припоев. Цифра в марке припоя показывает количество (в %) серебра, остальное — в основном медь.

Таблица 3
Основные марки серебряных припое








Марка припоя Температура
плавления, оС
Марка припоя Температура
плавления, оС
ПСр 72 779 ПСр 44 800
ПСр 71 795 ПСр 40 605
ПСр 70 755 ПСр 37,5 810
ПСр 62 700 ПСр 25 775
ПСр 50 850 ПСр 12М 825
ПСр 45 725 ПСр 10 850

Флюсы

Назначение флюсов при пайке:

  • защита зачищенных деталей от окисления,
  • удаление с поверхности металла пленки окислов,
  • улучшение смачивания припоем спаиваемых деталей.

Все многообразие флюсов можно разделить на три группы:

  • некоррозионные
  • слабокоррозионные
  • и коррозионные.

Некоррозионные флюсы (их еще называют защитными)
не растворяют пленку окислов на металле, а лишь защищают при пайке тщательно зачищенную поверхность.
После окончания пайки остатки флюса можно не удалять с поверхности спаянных деталей, так как он не вызывает коррозии.

Слабокоррозионные флюсы
участвуют в разрушении пленки окислов. Остатки флюса необходимо удалять.

Коррозионные (активные) флюсы
энергично разрушают пленку окислов, поэтому иногда удается спаивать незачищенные металлические детали.
Удалять остатки флюса после пайки обязательно!

Отдельную группу составляют борсодержащие флюсы для пайки тугоплавкими припоями

К некоррозионным флюсам относятся неактивированные флюсы на основе канифоли (табл. 4).

Максимальная рабочая температура этих флюсов 300°!

Таблица 4
Флюсы на основе канифоли



Компоненты, % вес. Что и чем паяется





Канифоль-40, бензин-50
керосин — 10
Канифоль-30, Этиловый спирт — 70
Канифоль-24, стеарин -1, Этиловый спирт — 75
Канифоль-6,глицерин-16,
Этиловый спирт (денатурат)-78
Пайка меди и ее сплавов, серебра (редко — стали) свинцово-оловянистыми припоями

К слабокоррозионным флюсам относится большая группа активированных флюсов на основе канифоли, но есть и такие, где канифоль отсутствует (табл. 5).

  • первые флюсы имеют максимальную рабочую температуру — 300°
  • вторые — 350°
Таблица 5
Флюсы на основе канифоли, глицерина и спирта





Компоненты, % вес. Что и чем паяется




Канифоль — 30, Этиловый спирт — 60, уксусная кислота — 10
Канифоль — 38, Этиловый спирт — 50, ортофосфорная кислота — 12
Канифоль — 24, Этиловый спирт — 75, хлористый цинк — 1




 
Для>пайки>меди,>ее сплавов, серебра, никеля, цинка, свинцово- оловянистыми припоями
 



Канифоль — 28, Этиловый спирт — 65, хлористый цинк — 5, хлористый аммоний — 2
Глицерин 22,хлористый аммоний — 4, хлористый натрий — 0,12, раствор хлористого цинка — 73,88
Для пайки меди и цинка



Глицерин — 35, солянокислый гидразин — 5, вода — 60
Этиловый спирт — 46, ортофосфорная кислота — 9, вода — 45
Для пайки меди и сплавов, никеля, серебра, стали

Основу почти всех коррозионных (активных) флюсов составляют хлориды металлов и, в частности, хлористый цинк.

Максимальная рабочая температура этих флюсов до 400°! (табл. 6)

Таблица 6
Флюсы на основе хлоридов металлов






Компоненты, % вес Применение





Хлористый цинк — 40, вода — 60
Хлористый цинк — 30, хлористый амоний — 10, вода — 60
Хлористый цинк — 30, солянная кислота — 30, вода — 40
Хлористый цинк — 70, хлористый натрий — 15, хлористый амоний — 15
Для пайки и лужения стали, меди, ее сплавов, никеля, серебра.
Хлористый цинк — 40, двухлористое олово — 5, хлорная медь — 0,5, соляная кислота — 3,5, вода — 51 Пайка стали припоями с большим содержанием свинца
Хлористый цинк — 40, хлористый натрий — 5, хлорная медь — 1, хлористый калий — 1, соляная кислота — 1, вода — 52 Пайка стали и меди (и сплавов) припоями с большим содержанием свинца и цинка.
Хлористый натрий — 15, хлористый амоний — 1,5, соляная кислота — 36, спирт денатурат — 12,8, ортофосфорная кислота — 2,2, хлористое железо — 0,6, вода — 31,9 Пайка углеродистых сталей.

В отдельной таблице приводятся флюсы для пайки нержавеющих сталей

Максимальная рабочая температура этих флюсов 400°!

Таблица 7
Флюсы для пайки нержавеющих сталей



Компоненты, % вес Применение








Хлористый цинк (насыщенный раствор) — 100
Хлористый цинк (насыщенный раствор) — 75, соляная кислота — 25
Хлористый цинк (насыщенный раствор) — 90, уксусная кислота — 10
Ортофосфорная кислота — 100
Ортофосфорная кислота — 99, сернокислая медь — 50
Хлористый цинк — 30, хлористый амоний — 10, хлорная медь — 10, соляная кислота — 50
Хлористый цинк — 50, хлористый амоний — 5, соляная кислота — 1, вода — 44
Пайка нержавеющей
стали

Как уже было сказано, флюсы для пайки тугоплавкими припоями сводятся в отдельную группу, состоящую из двух подгрупп:

— флюсы для пайки медными припоями (табл. 8)

Таблица 8
Флюсы для пайки медными припоями






Компоненты, % вес Применение
Бура (прокаленная) -100 Пайка углеродистых сталей и
меди медно-цинковыми припоями
Бура (прокаленная) — 80, борная кислота — 20 Пайка молоуглеродистых сталей и меди
Бура (прокаленная) -50, борная кислота — 50, все разводится концентрированным раствором хлористого цинка Пайка нержавеющих сталей, меди медными припоями
Бура (прокаленная) — 12, борная кислота — 78, флористый кальций — 10 Пайка нержавеющих сталей, меди медными припоями

— флюсы для пайки серебряными припоями (табл. 9)

Табица 9
Флюсы для пайки серебряными припоями



Компоненты, % вес Применение





Хлористый кальций — 50, хлористый барий — 50
Бура (прокаленная) — 80, борная кислота — 20
Бура (прокаленная) — 50, борная кислота — 35, фтористый кальций — 15
Бура (прокаленная) — 30, тетрафторборат калия — 70
Пайка серебрянными припоями всех металлов и сплавов, кроме алюминия и магния

Порядок изготовления флюса влияет на его качество

Ниже (табл. 10) приводится порядок приготовления некоторых флюсов.
Взяв за основу приготовление одного флюса, можно правильно приготовить другой флюс с такими же компонентами или несколько отличными.

Таблица 10
Приготовление флюса










Компоненты Порядок приготовления

Канифоль, этиловый спирт, уксусная кислота

Размолотую в порошок канифоль растворить в подогретом спирте и после охлаждения добавить уксусную кислоту

Канифоль, стеарин, хлористый цинк, хлористый аммоний, вазелин, вода

Размолотую канифоль тщательно смешать со стеарином. Порошок хлористого цинка и хлористого аммония залить водой и размешать, Разогреть то и другое. Второй раствор влить в расплавленную канифоль со стеарином. Размешать и добавить вазелин.

Ортофосфорная кислота, этиловый спирт, вода

Этиловый спирт разбавляют водой и к раствору добавляют ортофосфориую кислоту

Хлористый цинк, хлористый аммоний, вода

В горячей воде растворяется хлористый аммоний.

После охлаждения раствора к нему добавляется хлористый цинк.

Хлористый цинк, двухло-ристое олово, хлорная медь, хлористый калий, соляная кислота, вода

В части горячей воды с соляной кислотой растворить днухлористое олово и хлорную медь. В другой части воды растворить хлористый цинк и хлористый калий. Первый раствор влить во вто-рой и тщательно перемешать.

Хлористый калий, хлористый литий, фтористый натрий, хлористый цинк

Псе порошкообразные компоненты смешан., расплавить и после остывания размолоть. Хранить в плотно закрывающейся стеклянной посуде.

Бура Расплавить буру, охладить и размолоть до порошкообразного состояния. Хранить в плотно закрывающейся стеклянной посуде.
Бура, борная кислота Прокаленую и размолотую буру смешать с нужным количеством борной кислоты. Хранить в плотно закрывающейся стеклянной посуде.

Для изготовления припоя из отдельных компонентов пользуются правилом:
сначала расплавляют более тугоплавкий металл, а в нем остальные помере убывания температуры плавления.

www.del-sami.ru

Пайка нержавейки с медью

Любое соединение двух металлических деталей априори не простая процедура. Пайка нержавеющей стали с помощью меди относится к данному виду процедур. Работать с нержавейкой даже сложнее чем с другими типами материалов, так как она довольно сложно поддается плавлению и очень плохо соединяется с другими материалами. Поэтому для спаивания деталей из нержавеющей стали нужно использовать годами проверенные методы. При пайке любого другого материала, как правило, не возникает никаких проблем, но только не с нержавеющей сталью.

Весь процесс спаивания четко регулируется государственным стандартом, однако, здесь есть одна необычная особенность. Каждый вид металла по-разному соединяется с тем или иным материалом, соответственно, для каждого вида нужно применять разный припой и флюс, который будет подобран исключительно под данный материал. Но если вам нудно соединить не однородные (разные) металла требуется использовать достаточно редкие расходные материалы узкой специализации.

Данный вид пайки нержавеющей стали широко применяется как на больших производствах, так и в бытовых условиях. С его помощью можно создать герметичные емкости, припаять медные детали и т.д. Этот метод пайки встречается не так часто, как другие, но все равно нужно знать, как его выполнять и все его особенности.

Можно ли спаять нержавеющую сталь с помощью меди?

Для начала нужно сказать, что данный процесс имеет повышенный уровень сложности выполнения. Но, несмотря на это, спаять нержавеющую сталь с помощью меди возможно. Чаще всего соединения подвергаются детали из одного металла, то есть если соединять детали только из нержавейки или только из меди качества шва будет высоко. Но рано или поздно возникнет ситуации, когда нужно спаять эти два материала между собой и в этом случае приходится уступать качеству итогового результата.

Для выполнения данной манипуляции были созданы специальные припои, с их помощью удается создать соединения достаточно высокой прочности и ее вполне хватает для того, чтобы использовать вещь в стандартном режиме. Если при пайке какого-либо другого материала отсутствует обязательная необходимость использования флюса, то здесь требуется полное проведения подготовительных процедур, вплоть до лужения.

Как и любой другой способ пайки, данный имеет свои преимущества и недостатки. Для начала стоит рассмотреть плюсы применения:

  • с помощью этого метода пайки моно решить достаточно сложные технологические задачи;
  • альтернативы этому способу, которая бы позволяла соединить медь с нержавеющей сталью на таком же уровне, просто нет;
  • непосредственно сам процесс пайки не занимает много времени, для его выполнение не требуется наличие инструментов узкой специализации, вполне достаточно будет обычной горелки;
  • современные технологии позволяют создавать припои, которые достаточно хорошо справляются с соединением разнородных металлов;
  • спаять нержавеющую сталь с медью можно как в промышленных масштабах, так и в бытовых условиях.

Минусы:

  • качество итогового результата находится на достаточно низком уровне относительно других методов пайки;
  • возникают определенные сложности при подборке нужного вида припоя;
  • используемый флюс очень быстро подвергается процессу окисления, поэтому начинать паять нужно  сразу же, не затягивая действие температурной обработки;
  • в большинстве случаев для пайки используется «легкий» припой, что значительно повышает сложность процедуры из-за того, что появляется необходимость в четкой настройке используемого температурного режима.

Способы пайки нержавеющей стали с медью

Для того чтобы выполнить соединение подобного рода можно воспользоваться несколькими различными способами. Как ни странно, различаются они не типом припоя, а инструментом, с помощью которого будет выполнена процедура. Чаще всего предпочтение отдается соединению с помощью паяльника или же газовой горелки.

Паяльник чаще всего применяется в работе с деталями небольшого размера. С его помощью осуществлять это достаточно удобно во многом из-за того, что в процессе работы инструмент нагревается не сильно, что снижает риск прожечь деталь насквозь. Но есть и обратная сторона этого метода, паяльник значительно уступает горелке в мощности, что делает обработку деталей из твердых металлов просто невозможной. Помимо этого, с помощью паяльника сложно подвергать обработке большие поверхности, так как это займет достаточно много времени, скорее всего, к концу работы флюс уже окислится.

Газовая горелка используется гораздо чаще. Ее можно использовать не только для пайки нержавеющей стали с помощью меди, а также с латунью, никелем и другими припоями. Газовая горелка позволяет обрабатывать достаточно большие поверхности, создавая соединения с высоким уровнем герметичности. Высокая скорость работы не позволяет флюсу успеть окислиться.

Как выбрать припой?

Итоговой результата качества выполненной работы во многом зависит от выбора припоя определенного вида. Он обеспечивает полное заполнение обрабатываемой поверхности. Самым распространенным и доступным способом является использование припоя из латуни для пайки нержавеющей стали с медью. В некоторых частных ситуация его можно применять даже не используя флюс.

Важно: использования данного типа припоя во многом уступает по физическим свойствам другим способам, однако в силу своей доступности и простоты его можно использовать для пайки простых соединений, которые не будут нести на себе высокий уровень ответственности.

Помимо вышеописанного способа, можно также использовать припои из следующих материалов:

  • медно-фосфорный материал – он позволяет значительно  улучшить качество итогового соединения, однако стоимость этого припоя достаточно высока;
  • оловянно-серебряный материал – использование данного вида припоя лучше всего подходит для соединения нержавеющей стали с медью, однако применение этого способа связано с большими затратами в финансовом плане;
  • для создания простейших соединений можно использовать обычный радиотехнический расходный материал, но лучше всего выбрать специализированный материал.

Как спаять нержавеющую сталь с медью?

Спаивание нержавеющей стали с медью с помощью латуни или припоев из других материалов происходит следующим образом.

  1. Предварительно нужно подготовить поверхность к обработке, для этого нужно полностью очистить ее от различных загрязнений, следов коррозии, эрозии и т.д. Для этого можно использовать практически любой растворитель.
  2. После этого нужно подготовить к работе флюс и выполнить лужение деталей в той области, в которой они будут соединяться между собой.
  3. Как только флюс будет ровно расположен на деталях в местах их соединения нужно положить припой в нужное место.
  4. Далее нужно его нагревать с помощью горелки до тех пор, пока расходный материал не начнет плавиться. Выполнению этого пункта нужно уделить особое внимание, так как нужно следить припоем: необходимо чтобы он ровно растекся по всей поверхности места соединения. Стоит отметить, что данный пункт нужно выполнять достаточно быстро, нужно сделать все до того, как флюс начнет окисляться.
  5. В конце операции нужно дать остыть месту пайки. Для этого не нужно выполнять никакие вмешательства, детали должны остыть естественным способом.

При выполнении всего процесса работ в обязательном порядке нужно следовать технике безопасности. Весь процесс работы нужно проводить строго в защитных перчатках, так как прямой контакт кожи с припоем может негативно повлиять на ее состояние. Заниматься выполнением данной манипуляции должен профессионально подготовленный человек, который имеет «за плечами» опыт работу и необходимые знания.

svarkagid.com

Технология пайки меди и ее сплавов

Технически чистая медь обладает высокой теплопроводностью и электропроводностью и достаточно высокой коррозионной стойкостью. Она устойчива против атмосферной коррозии вследствие образования на ее поверхности тонкой защитной пленки, состоящей из CuS04-3Cu (ОН)2. Медь — относительно прочный (σв = 21 кгс/см2 и пластичный металл (б = 45 ÷ 50%).

С уменьшением содержания в меди газовых примесей пластичность ее возрастает до 62%. При повышенных температурах прочность меди уменьшается, а пластичность возрастает. Ценным свойством меди является ее способность сохранять высокую пластичность вплоть до температуры жидкого гелия 4,2 К (-269°С).

Для повышения прочности и придания меди особых свойств (жаропрочности и коррозионной стойкости и др.) ее легируют различными добавками. Сплавы на основе меди обладают высокими механическими и другими ценными качествами.

Поэтому во многих отраслях техники для изделий, работающих в условиях повышенных и криогенных температур, в качестве основного металла широко применяются медь и ее сплавы, обладающие необходимым комплексом свойств. Пайка этих материалов может производиться всеми известными способами.

Наиболее широкое распространение в промышленности получила пайка паяльником, газовыми горелками, погружением в расплавленный припой и в печах.

Пайка низкотемпературными припоями нашла большое применение благодаря простоте и общедоступности этого способа. Ограничения в ее применении вызваны лишь тем, что паяльником можно осуществлять пайку только тонкостенных деталей при температуре 350° С.

Массивные детали вследствие большой теплопроводности, превышающей в 6 раз теплопроводность железа, паяют газовыми горелками.

Для трубчатых медных теплообменников применяется пайка погружением в расплавы солей и припоев. При пайке погружением в расплавы солей используют, как правило, соляные ванны-печи. Соли обычно служат источником тепла и оказывают флюсующее действие, поэтому дополнительного флюсования при пайке не требуется.

При пайке погружением в ванну с припоем предварительно офлюсованные детали нагревают в расплаве припоя, который при температуре пайки заполняет соединительные зазоры. Зеркало припоя защищают активированным углем или инертным газом.

Недостатком пайки в соляных ваннах является невозможность в ряде случаев удаления остатков солей или флюса.

Широкое распространение в промышленности находит пайка в печах, поскольку при этом обеспечивается равномерный нагрев соединяемых деталей без деформации даже при больших габаритах изделий.

При пайке изделий из меди оловянно-свинцовыми и другими легкоплавкими припоями используют обычно канифолыно-спиртовые флюсы, водные растворы хлористого цинка или хлористого аммония.

Пайка серебряными припоями успешно идет при применении флюсов на основе соединений бора и фтористых соединений калия. Эти флюсы хорошо очищают поверхность меди от окисной пленки и способствуют растеканию припоя.

Недостатком флюсовой пайки меди является трудность получения герметичных соединений. Кроме того, остатки флюса являются очагами коррозии. Поэтому пайку чаще всего осуществляют в восстановительных или нейтральных газовых средах.

Пайку меди в азоте можно осуществлять при температуре 750-800°С.

К недостаткам этого метода можно отнести сложность оборудования по очистке азота, а также отсутствие возможности осуществлять пайку при температуре ниже

Имеются сведения о применении пайки меди в среде аргона припоем ЛС 59-1 с дополнительным флюсованием мест пайки водным раствором буры.

Пайку в вакууме успешно применяют для соединений многих металлов, в том числе и меди. Этот вид пайки достаточно экономичен, совершенно безопасен и производится в вакуумных печах или контейнерах, загруженных в обычные печи. Паяные швы, полученные при применении нагрева в вакууме, отличаются чистотой, прочностью металла шва и высокой коррозионной стойкостью.

К недостаткам способа пайки в вакууме следует отнести сложность применяемого оборудования.

Соединение меди при низкотемпературной пайке производится стандартными оловянно-свинцовыми припоями ПОССу 30-0,5; ПОС 40; ПОССу 40-0,5, ПОС 61 и свинцово-серебряными припоями ПСр 1,5; ПСр 2,5; ПСр 3 с использованием флюсов на основе хлористого цинка или канифольно-спиртовых.

Соединения, паянные оловянно-свинцовыми припоями, теплостойки до температур 100-120°С.

При снижении температуры до -196÷-253°С предел прочности этих соединений увеличивается в 1,5-2,5 раза, достигая 4,5-7,5 кгс/мм2; при этом пластичность резко снижается.

Хрупкость оловянно-свинцовых припоев и паянных ими соединений при низких температурах объясняется аллотропическим превращением олова и образованием в шве хрупких интерметаллидов, которые при низких температурах являются очагами развития трещин.

Для оловянно-свинцовых сплавов, содержащих менее 15% олова, падение ударной вязкости не происходит. Это обусловлено тем, что свинец, являясь основой сплава, с понижением температуры увеличивает ударную вязкость, давая во всех случаях вязкий излом.

Высокая пластичность свинца делает его нечувствительным к надрезу. Поэтому вполне закономерны стремления применять для пайки изделий криогенной техники припои на основе свинца с содержанием олова менее 15%.

Однако практика их применения показала, что они нетехнологичны, плохо смачивают основной металл и не затекают в соединительные зазоры.

Например, применение припоя, на основе свинца, легированного серебром (припой ПСр 3), позволяет получать теплостойкие и хладостойкие соединения из меди.

Введение в этот припой 5% Sn (ПСр 2,5) улучшило его технологические свойства, однако при комнатной температуре соединения, паянные припоями ПСр 3 и ПСр 2,5, обладают низкой прочностью. Предел прочности при срезе равен 1,2-1,8 гкс/мм2.

Легирование свинца оловом до 16% и кадмием до 5% делает припой ПСр 1,5 более технологичным, однако он становится малопластичным даже при температуре 20° С.

Применение кадмиевых припоев требует специального навыка, так как технологичность их значительно ниже, чем у оловяно-свинцовых. Соединения меди кадмиевыми припоями ПСр 5 КЦН, ПСр 8 КЦН теплостойки до температуры 350° С, но малопрочны (σв = 2,9 кгс/мм2) из-за образования в шве хрупких интерметаллидов и нехладостойки.

Припои на основе цинка редко применяют для пайки меди ввиду интенсивного растворения ее в расплаве припоя. При этом предел прочности на срез не превышает 1,5 кгс/мм2.

Цинковые припои, легированные медью и серебром, также плохо растекаются по меди. Легирование этих припоев оловом и кадмием (ПЦА8М, ПЦКд, СрСУ 25-5-5) хотя и несколько улучшает их растекаемость, но швы становятся хрупкими.

Для пайки меди находят также применение припои на основе медно-фосфористой эвтектики с добавлением серебра. Швы, паянные этими припоями, достаточно прочны (σв = 25 -7- 30 кгс/мм2), теплостойки до температуры 800° С, но непластичны. В условиях низких температур прочность соединений меди, паянных этими припоями, увеличивается, но пластичность резко падает.

Широкое применение для пайки медных конструкций находят припои ПСр 45, ПСр 40, ПСр 25, ПСр 12.

Пайку этими припоями осуществляют нагревом ацетилено-кислородным пламенем или в печах с использованием коррозионно-активных флюсов № 209, 284. После пайки конструкций остатки флюса необходимо удалять промывкой в горячей воде. Пайку теплообменной аппаратуры осуществляют с применением припоя ПСр 72 или ПСр 71 в вакууме.

При пайке деталей из медных сплавов, конструкция которых позволяет производить пайку под давлением, в качестве припоя можно использовать серебряное покрытие (10-25 мкм) или тонкую серебряную фольгу.

При нагреве выше 779° С медь взаимодействует с серебром с образованием в шве сплава типа припоя ПСр 72. Пайка этим (контактно-реактивным) методом осуществляется без применения флюса в вакууме или в инертной среде.

Припои на медной основе тугоплавки и вызывают растворение (эрозию) основного металла, поэтому для пайки меди их применяют реже, чем серебряные. Диффузионная пайка меди может быть выполнена галлием, индием, оловом, свинцом, припоями ПОССу 40-2, ПОС 61 путем поджатая деталей в вакууме или аргоне при температурах 650-800°С и длительных выдержках.

Припой в месте пайки можно наносить напылением в вакууме, гальваническим способом или в виде тонкой фольги.

Капиллярную пайку меди низкотемпературными припоями можно производить при зазорах 0,05-0,5мм и температурах 650-900°С в вакууме или аргоне. При этом соединения меди, паянные индием, галлием, оловом, припоями ПОС 61 и ПОС 40, хрупкие и малопрочные, предел прочности на срез не превышает 4-7 кгс/мм2.

При пайке меди свинцом соединения хотя и малопрочны, но пластичны. При применении припоя системы Pb — Ag — Sn — Ni (ПСр 7,5) можно обеспечить предел прочности при растяжении 14 кгс/мм2 с достаточно высокой пластичностью, угол изгиба образца, паянного встык, 130°.

www.prosvarky.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о