Как правильно проверить переменные конденсаторы. Сложно ли проверять «Конденсатор» на работоспособность? Как это сделать?
Конденсатор – это важный элемент, обеспечивающий эффективную работу электронных схем по своему функциональному назначению. Прежде чем ознакомиться с методами, как проверить конденсатор мультиметром, рассмотрим виды этих деталей и принципы их работы. Тогда проверку мультиметром работоспособности конденсаторов можно будет делать осознанно, с пониманием того, какие параметры в заданных пределах измеряются.
Проверяем конденсатор мультиметром
Устройство и принципы работы
Практически все электронные схемы включают в свой состав конденсаторы, за исключением отдельно взятых микросхем.
Конденсаторы выполняют роль накопителя энергии, применяются в электронных схемах разного назначения:
- в фильтрах выпрямителей и стабилизаторов источников питания;
- передают сигналы между каскадами усилительной аппаратуры;
- на их основе строятся частотные фильтры, разделяющие звуки на высокие и низкие частоты;
- в таймерах задаются временные интервалы пусковой системы электродвигателей стиральной машины или режимов микроволновки;
- в генераторах подбирается определенная частота колебаний и многие другие функции.
Классическая конструкция конденсатора представляет собой две токопроводящие пластины, расположенные друг против друга. Между ними находится диэлектрическая прокладка, в качестве которой может быть даже воздух.
Формула для расчета емкости
е – диэлектрическая проницаемость прокладки;
S – площадь пластин в кв/м;
С – фарады, емкость.
Соотношение формулы показывает, что емкость увеличивается при увеличении площади пластин и уменьшении расстояния между ними.
В промышленности плоские конденсаторы изготавливаются с малыми емкостями, для получения больших емкостей используются технологии изготовления деталей цилиндрической формы. Так, в цилиндрическом корпусе сворачиваются две полоски из фольги, между которыми бумажная лента, пропитанная трансформаторным маслом. Такая конструкция позволяет достичь больших площадей пластин, малых расстояний между ними, получить большую емкость конденсатора.
Классический пример работы конденсатора
Схема работы конденсатора
Конденсатор заряжается до напряжения источника питания за время Т = RC = 500 ОМ х 0,002 Ф = 1 сек. При переключении тумблера накопленный заряд разрядится на лампочку, при этом можно будет заметить кратковременную вспышку.
Виды конденсаторов
Все конденсаторы делятся на два вида: без полярности и полярные – электролитические,
По конструктивным особенностям их разделяют на:
- простые;
- диэлектрические;
- с фиксированной и переменной емкостью.
Электролитические полярные конденсаторы в схемах подключаются обязательно с соблюдением полярности: контакты со знаком «+» на плюсовую дорожку платы, «–» – на минусовую дорожку. Другие конденсаторы можно припаивать на плату любыми выводами, не обращая внимания на полярность.
Причины неисправности
Простые конденсаторы с постоянной или переменной емкостью практически не выходят из строя – нечему ломаться, если только при механическом повреждении токопроводящих пластин.
Электролитические диэлектрические конденсаторы имеют ограниченные сроки службы, со временем диэлектрический слой между пластинами теряет свои свойства.
Полярные конденсаторы в схемах подключаются строго по полюсам, ошибка приводит к потере конденсатором заданных параметров или полному пробою, обрыву цепи или короткому замыканию.
При замене конденсаторов даже новые надо обязательно проверять, электролитический слой может просто высохнуть за время его хранения.
Проверка конденсаторов мультиметром
Мультиметр – это универсальный прибор, с помощью которого можно измерять целый ряд параметров электротехнических цепей и отдельных деталей:
- величину переменного и постоянного тока;
- напряжение;
- сопротивление и другие элементы.
Рассмотрим, как проверить конденсатор.
Существует два вида мультиметров: аналоговые и цифровые. На цифровом варианте измеряемые параметры отображаются в виде чисел в жидкокристаллическом дисплее. Аналоговый прибор имеет стрелочный индикатор с градуировкой на шкале – для проверки конденсаторов этот вариант более удобный. Измеряемые параметры и пределы устанавливаются переключателем, который находится на корпусе, концы проводов для измерения оборудованы контактными клеммами и щупами.
Проще всего проверяются конденсаторы, которые не имеют полярности. Для этого надо установить переключатель мультиметра в режим измерения «мегомы», на шкале переключателя он обозначен как 2000k. Один провод вставить в гнездо со знаком VОм.mA, второй – в гнездо со знаком заземления. Затем нужно подсоединить концы щупов к контактам конденсатора; показания стрелки или чисел на дисплее должны быть на уровне 2Мом или выше. При сопротивлении ниже 2Мом конденсатор считается неработоспособным.
Двухполюсные электролитические конденсаторы надо проверять на исправность обязательно с соблюдением полярности. На корпусе конденсатора есть маркировка с указанием допустимого напряжения в вольтах и максимальной емкости в микрофарадах.
На импортных моделях со стороны отрицательного вывода на корпусе ставят знак минуса черным цветом. На отечественных конденсаторах возле ножек стоят знаки «–» и «+».
Маркировка на корпусе конденсатора для соблюдения полярности
Переключатель мультиметра выставляется в режим измерения сопротивления или прозвонки.
Затем подсоединяют щупы к выводам конденсатора, соблюдая полярность. На конденсатор подается постоянное напряжение с элементов питания мультиметра, он начинает заряжаться.Стрелка индикатора при этом постепенно отклоняется в правую сторону, на цифровом варианте значение цифры увеличивается, сопротивление растет. Значение сопротивления может дойти до бесконечности, это зависит от номиналов конденсатора.
Если стрелка прибора остается на значении «0», значит в цепи конденсатора есть обрыв; при резком повороте стрелки в пределы бесконечности пластины конденсатора короткозамкнуты. В этих случаях пробитые детали подлежат замене.
Особенности проверки
Для того чтобы правильно проверить работоспособность конденсаторов тестером или мультиметром, очень важно знать некоторые особенности этой методики.
По причине технических ограничений в пределах измерений мультиметром или тестером можно проверить только конденсаторы емкостью выше 0,25 микрофарад. Другие конденсаторы проверяются специальным прибором LC- метром.
Перед замерами конденсаторы надо обязательно разряжать, особенно высоковольтные – выше 100В. Для этого используются лампы накаливания. Если напряжение конденсатора более 220 Вольт, подключается несколько ламп последовательно.
В процессе эксплуатации заряд конденсатора может оставаться длительное время; при соединении его клемм с контактами ламп происходит разряд, при этом лампы могут кратковременно вспыхнуть. Низковольтные конденсаторы можно разряжать, перемыкая контакты отверткой. При таком замыкании максимум будет небольшая искра, которая не явится угрозой здоровью.
Нельзя прозванивать конденсаторы в схеме, обязательно надо выпаивать и проверять отдельно. Остальные детали в цепи схемы будут влиять на измерения, что помешает получить истинные значения сопротивления конденсатора. Допускается отпаять одну ножку и сделать замеры, но это не всегда удается, выводы на печатных платах у деталей очень короткие.
Проверяем конденсатор на пригодность
Не стоит тратить время на конденсаторы с явными признаками неисправности, отечественные изделия при превышении допустимого напряжения или ошибки в подключении полярности может разорвать на части.
В импортных электролитических конденсаторах предусмотрены крестообразные оттиски в верхней части корпуса. В этих местах толщина стенок тоньше, при пробое энергия прорывает эти полосы, остается маленькое выжженное отверстие. Внимательно осматривайте и отбраковывайте такие элементы.
Проверка. Видео
Видео на практике покажет, как проверить конденсатор мультиметром, чтобы у читателей и вовсе не осталось вопросов.
Довольно часто во время ремонта или замены электронных схем у молодых специалистов возникает вопрос, как проверить конденсатор на работоспособность. Большинство таких проверок выполняется с помощью мультиметра. Этот прибор совсем несложен в обращении, требует минимальных знаний и практических навыков. Существуют и другие способы проверки, которые нужно знать на случай отсутствия мультиметра.
Как проверить конденсатор мультиметром
Перед началом проверки конденсатора на исправность, он должен быть обязательно разряжен. Процедуру разрядки можно выполнить с помощью обычной отвертки. Ее жало касается сразу двух выводов прибора до возникновения искры. Небольшая вспышка будет свидетельствовать о разрядке, после чего осуществляется непосредственная проверка работоспособности конденсатора.
Для проверки чаще всего используется мультиметр. С помощью этого прибора возможно определить такие показатели, как емкость, возможный обрыв или короткое замыкание. Прежде всего нужно определить тип проверяемого конденсатора. Они могут быть полярными (электролитическими) или неполярными. В первом случае обязательно соблюдение полярности, то есть щуп должен прижиматься к соответствующей ножке — плюс к плюсу, а минус к минусу.
Неполярный конденсатор не требует соблюдения полярности, для его проверки существует собственная технология. После определения типа прибора, выполняется его поэтапная проверка.
Изме рение сопротивления
Прежде чем выполнять проверку сопротивления, необходимо отпаять конденсатор со своего места и пинцетом перенести на рабочий стол. Далее тестер необходимо переключить в режим изме рения сопротивления, после чего приложить щупы к выводам с соблюдением полярности. Данный момент имеет большое значение, поскольку в случае путаницы плюса и минуса произойдет мгновенный выход из строя конденсатора. Чтобы исключить такую возможность, на каждом устройстве отрицательный контакт отмечается галочкой.
После контакта щупа с ножками, дисплей мультиметра начинает отображать первое значение, которое быстро возрастает. Причиной такого состояния служит зарядка конденсатора при его контакте с изме рительным прибором.Через определенный промежуток времени на дисплее появится цифра 1, которая считается максимальным значением и указывает на исправность проверяемой детали.
Если единица появилась на дисплее сразу же после начала проверки, это свидетельствует о наличии обрыва внутри бочонка и его неисправности. Наличие на табло нуля означает короткое замыкание. Применение аналогового стрелочного мультиметра дает такие же результаты. Определение работоспособности в данном случае очень простое, достаточно только понаблюдать за ходом стрелки. При плавном повышении сопротивления полярный конденсатор считается пригодным к работе. Значение минимума и максимума указывает на неисправность.
Неполярный конденсатор довольно просто проверить самостоятельно в домашних условиях. Для этого нужно коснуться щупом ножек, не соблюдая полярность. Диапазон изме рений должен быть выставлен на значение 2 Мом. Цифровое значение, появившееся на дисплее, должно превышать двойку. Меньшее значение указывает на неисправность детали и необходимость ее замены. Данный способ подходит для проверки тех изделий, емкость которых превышает 0,25 мкФ. Конденсаторы с меньшим номиналом проверяются специальным тестером — LC-метром или мультиметром с функцией проверки таких деталей.
Изме рение емкости
Работоспособность конденсатора на пробой может проверяться путем и последующего их сравнения с номиналом, указанным на внешней оболочке изделия.
Изме рение емкости не представляет особой сложности и может быть выполнено самостоятельно. С этой целью переключатель переводится в изме рительный диапазон в соответствии с номиналом. Сама деталь вставляется в специальные посадочные гнезда.
В случае отсутствия гнезд, проверка емкости может проводиться щупами, так же, как и при изме рении сопротивления. После того как щупы подключены, на дисплее высвечиваются показатели емкости, приближенные к номинальному значению. Если прибор показывает другие цифры, значит деталь считается пробитой и требует замены.
Изме рение напряжения
Одним из способов проверки работоспособности конденсатора является изме рение его напряжения с помощью вольтметра или мультиметра. Для проведения изме рений необходимо воспользоваться источником питания с напряжением, меньшим, чем у конденсатора. Щупы прибора подключаются к ножкам детали с обязательным соблюдением полярности. Затем необходимо выдержать 4-5 секунд, необходимых для зарядки.
Следующим этапом будет перевод мультиметра в режим для изме рений напряжения. В начальной стадии замера на экране должно высветиться значение, сравнимое с номиналом. Если на дисплее будут другие показатели, значит конденсатор находится в нерабочем состоянии. Следует помнить, что подключенный вольтметр, способствует потере заряда конденсатора. Поэтому наиболее точные данные можно зафиксировать только в начальной стадии замера.
Как проверить конденсатор без приборов
Существует простой способ, позволяющий выполнить проверку без каких-либо приборов. Прежде всего это касается конденсаторов с большой емкостью. Вначале производится полная зарядка элемента на протяжении 4-5 секунд. После этого контакты замыкаются с помощью обыкновенной отвертки. При нормальной работоспособности бочонка наблюдается появление яркой искры. Если искра тусклая или ее нет вообще, значит конденсатор нерабочий и неспособен удерживать заряд.
Лампочка и два провода не могут обеспечить высокого качества проверки. Это самодельное средство для прозвонки обеспечивает лишь проверку на наличие короткого замыкания. Вначале нужно зарядить конденсатор, а затем концами проводов прикоснуться к ножкам. В случае нормальной работоспособности, будет хорошо заметна искра, после чего наступит моментальная разрядка конденсатора.
При проверке конденсатора на работоспособность, можно вполне обойтись без изме рительных приборов. В некоторых случаях достаточно визуального осмотра с целью определения внешнего состояния детали. Таким образом, определяется вздутие или пробой. Наиболее тщательно осматривается верхняя часть. Наличие разрушенной изоляции или подтеков прямо указывает на пробитие конденсатора, и дальнейшая проверка приборами уже не имеет смысла.
Рекомендуется очень внимательно осматривать корпус на предмет вздутия или потемнения. Конденсаторы довольно часто оказываются в таком состоянии. Также нужно тщательно проверять саму плату в том месте, где подключена деталь. Подобные неисправности можно заметить визуально, особенно при отслоении дорожек. В некоторых случаях изме няется цвет платы.
Проверка конденсатора должна проводиться только после его демонтажа с платы. Если этого не сделать, то проверка на месте даст большие погрешности в изме рениях, под влиянием элементов, расположенных рядом. Зная, как правильно выполнить проверку, вполне возможно самостоятельно проверить работоспособность конденсатора с помощью изме рительных приборов и подручных средств.
Знаете – ходит одна байка: для проверки конденсатора мультиметр излишен. Школьники-плохиши обижали ребят послабее экстравагантным методом. Заряжали большую емкость розеткой, били током. Проверить работоспособность основных конденсаторов импульсного блока питания не составит труда. В персональном компьютере напряжение достигает 650 вольт, тронешь — шарахнет сильно, уши задымятся. Избегайте также лезть отверткой. Температура дуги столь высока, что желание узнать емкость конденсатора может обернуться неплохими практическими навыками сварщика. Для целей разрядки народные умельцы применяют патрон, снабженный лампочкой Ильича. Высокий реактивный импеданс спирали позволит легко решить задачу, как проверить конденсатор мультиметром.
Процесс проверки конденсатора
Увидите, проверить мультиметром конденсатор может каждый. Вопрос составлен требуемой точностью. Как говаривал Кашпировский: даже 100% не стопроцентны. В остальном, неполярный конденсатор, керамический конденсатор, разницы дают мало, многое определяет номинал. Однако сюрпризы способна преподнести гибридная технология. Понятно, извлечь SMD конденсатор — дело нешуточное (большинству не под силу). Тогда проводите косвенные тесты, например, сравнение показаний с заведомо рабочим устройством.
Проверка конденсатора
Ищущие шуток ошибаются. Простейшим методом проверки конденсатора называют натурное испытание. Причем в составе изначальной схемы. Потрудитесь:
Итак, инструкция по работе с тестером понадобится, цвет проводов покажет, куда тыкать. Кажется смешным, пока не попытаешься измерить высокое напряжение, нарезаемое импульсами крошечной микросхемой. Будут мешаться рядом лежащий корпус, провода, много другого. В таких условиях применяют специальные тончайшие щупы, набор лишен аксессуаров. Рекомендуем заранее потренироваться мультиметром вести работу. Особенно внимательны будьте с пределами. В большинстве современных тестеров имеются следующие варианты ведения работ:
Проверить емкость конденсатора мультиметром
Мультиметр
Проще проверить электролитический конденсатор мультиметром. Начать лучше с визуального контроля. Неисправные электролитические конденсаторы ощутимо раздуваются. На зарубежных моделях в верхней части цилиндра делается специальная крестовидная прорезь для гарантированной индикации неисправности. Внешние признаки молчат — нужно хватать мультиметр. Сначала элемент гарантированно разрядим. Обычно напряжение отсутствует, но совать голую отвертку, кусок провода — бестолковая идея. Будет неплохо создать своими руками разрядник, воспользовавшись патроном, ввинченной лампочкой. Штуковина повсеместно используется мастерами ремонта телевизоров, импульсных блоков питания. Пара слов касаемо процесса, когда конденсатор разряжен, можно хватать тестер.
На контактах мультиметра в некоторых режимах выходит напряжение 5 вольт. Необходимо, чтобы оценить параметры. Например, при измерении сопротивлений мультиметр просто делит напряжение на ток, получает искомую величину. Первая цифра известна – 5 вольт (определяет модель тестера). Аналогично проводится прозвонка. Подаются 5 вольт на оба конца. Некоторые стабилитроны пробиваются. Прозвонить такие элементы на цифровых мультиметрах не представляется возможным.
Зная указанные вещи, можно представить, что делать дальше:
- Подключаем в режиме измерения сопротивления клеммы к контактам разряженного конденсатора.
- Образуется зарядная цепь, сформированная внутренним сопротивлением мультиметра, емкости. Вначале ток равен бесконечности, потом падает, достигая нуля.
- Попутно сопротивлению будет расти от нуля до бесконечности.
Любой конденсатор, обладающий рабочим напряжением выше 5 вольт, проверим таким способом. Единственный фокус могут выкинуть полярные, например, электролитические емкости. Параллельно отслеживаем правильность расположения щупов (красного, черного). Взорваться, по идее ничего не должно… Теперь проводим анализ. Выяснили, годен ли конденсатор, имеются некоторые особенности. Обсуждали 5 вольт на щупах мультиметра, значение сильно зависит от модели. Можем измерить на концах заведомо исправного конденсатора: пока звоним контакты, емкость зарядится до нужной величины.
Итак, напряжение испытуемого образца сильно отличается от эталонных показаний (нужно заранее позаботиться о получении), наверняка сломалось. Начинаем измерять напряжение конденсатора, внутреннее сопротивление прибора уступает бесконечности. Потенциал начнет потихоньку падать, заметим на экране. Делаем два вывода:
- Начальное значение напряжение намного ниже эталона (выдает на контакты тестер, режим прозвонки) — внутри наличествует утечка. Параметр нормально составляет часть формулы добротности, если конденсатор быстро разряжается самостоятельно (без намеренного замыкания контактов), элемент отслужил.
- По скорости разряда можно оценить размер емкости конденсатора. Можно, конечно, заморочиться с определением констант, формулами, проще провести тест с заведомо рабочими емкостями, после чего свести результаты таблицей. Станет возможным судить о номинале конденсатора по одной скорости разряда. Процесс напоминает оценку давления при помощи тонометра. Ориентируемся на глаз. Величина емкости определена скоростью падения напряжения на дисплее мультиметра.
Разумеется, делается больше навскидку, отличить мкФ от мФ удастся без труда. Жаждущим большего, можем сообщить: за время RC заряд падает на 63%. Каждый волен посчитать уровень вольт для мультиметра. Вычислить приблизительно внутреннее сопротивление, исходя из полученных данных, проводить приблизительный замер номинала емкости конденсатора.
Имеется простой способ проверить емкость конденсатора мультиметром. Купить тестер, у которого наличествует соответствующая шкала. Надписана буквой F (Farad). Прикупив прибор, избегаем выдумывать. Просто берется за ножки конденсатор, примерно выставляется диапазон, мультиметр сам проделает работу, описанную выше. Проверить конденсатор мультиметром, не выпаивая, может не выйти. Параллельно емкости включены резисторы, дроссели другие элементы (включая конденсаторы), мешающие оценить исправность. Будь то электролитический конденсатор, пленочный конденсатор, любой другой. Разумеется, многое определят конкретные номиналы.
Можно провести сравнение. Допустим, на исправной технике показывает фиксированное значение, на поломанной – нечто другое. Необязательно неисправный конденсатор мультиметром на плате нашли — цепь разряда барахлит. Пусковой конденсатор авто — можно вынуть, проверить (предварительно обработав разрядником), для электроники методика не всегда действенна.
Иногда возникает необходимость проверки электронных элементов, в том числе и конденсаторов.
По разнообразным причинам конденсаторы выходят из строя, это может быть внутреннее короткое замыкание, увеличение тока утечки пробой конденсатора в следствие превышения максимально допустимого напряжения или же обычное уменьшение емкости — причина которая со временем постигает почти все электролитические конденсаторы.
Методы проверки конденсатора, мы рассмотрим, довольно простые, здесь главное умение пользоваться тестером или мультиметром и правильно применять данную инструкцию.
Для начала необходимо знать что все конденсаторы разделяются на полярные и неполярные. К полярным относятся электролитические конденсаторы, к неполярным все остальные.
Полярные конденсаторы в схеме должны стоять таким образом чтоб на обозначенном минусовом выводе был минус питания, а на плюсовом контакте плюс, только так ы не иначе.
Если нарушить полярность то минимум что будет это конденсатор выйдет из строя, но при достаточном напряжение он вздуется и взорвется, для того чтоб при аварийной ситуации конденсатор не разрывало на осколки, в импортных конденсаторах, в верхней части корпус сделан с тонкого материала и нанесены специальные разделительные прорези, при взрыве такой конденсатор просто выстреливает вверх и не задевает при этом элементы вокруг себя.
Проверка конденсаторов
Перед проверкой конденсатор необходимо обязательно разрядить любым металлическим предметом закоротив его выводы, и так перед каждой проверкой.
Если проверяемый конденсатор находится на плате, необходимо хотя бы один его вывод освободить от схемы и приступить тогда уже к замерам. Но так как большинство современных конденсаторов имеют достаточно низкую посадку — лучше конденсатор выпаять полностью.
Проверка конденсатора мультиметром
С помощью мультиметра можно проверить практически любой конденсатор по емкости больше 0.25 микрофарад.
Полярность конденсатора обозначена на корпусе в виде поздовжной полосы с знаками минус — это минусовой вывод конденсатора.
И так выставляем тестер в режим или прозвонки или сопротивления. Мультиметр в таком режиме будет иметь на своих щупах постоянное напряжение.
Касаемся щупами контактов конденсатора и видим как показатель сопротивления плавно растет — конденсатор заряжается.
Скорость заряда будет напрямую зависеть от емкости конденсатора. Через определенное время конденсатор зарядится и на дисплее мультиметра будет значение «1» или по другому говоря «бесконечность» это уже говорит о том что конденсатор не пробит и не замкнут.
Но если при касание щупами контактов конденсатора мы сразу наблюдаем значение «1» то это говорит об внутреннем обрыве — конденсатор не исправен.
Бывает и другое, значение «000» или близкое очень малое значение которое не меняется (при зарядке) иногда мультиметр пищит, это говорит о пробое или коротком замыкание пластин внутри конденсатора.
Неполярные конденсаторы проверяются довольно просто, тестер выставляем в режим измерения сопротивления (мегаОмы), касаясь щупами контактов конденсатора — сопротивление должно быть не меньше 2 МегОм. Если наблюдается меньше то конденсатор неисправен, но убедитесь что вы в момент замера не касались пальцами щупов.
Проверка конденсаторов стрелочным тестером Проверяя стрелочным прибором. Суть проверки та же что и мультиметром, но здесь можно уже более наглядно наблюдать процесс зарядки конденсатора потому как мы видим отклонения стрелки а не мигающие цифры на дисплее.
Исправный конденсатор при контакте с щупами, не забываем разряжать, должен сначала отклонить стрелку а затем медленно и плавно возвращать стрелку назад, скорость возврата стрелки будет зависеть от емкости конденсатора.
Если стрелка не отклоняется или же отклонившись не возвращается это говорит о явной неисправности конденсатора.
Но если емкость конденсатора очень мала, «зарядки» можно и не заметить — практически сразу же стрелка уйдет в бесконечность, то есть не сдвинется с места. Для конденсатора же более 500 микрофарад — такая картина практически сразу же будет говорить о внутреннем обрыве.
Хорошим способом будет проверка заведомо исправного конденсатора (для наглядности) и сравнение с испытуемым. Такой способ даст возможность более уверено ответить на вопрос — рабочий ли конденсатор?
Проверка переменным напряжением
Так как невозможно наблюдать столь быстрый процесс заряда для проверки конденсаторов малой емкости есть специальный способ который с точностью определит нет ли обрыва в нем.Собирается небольшая схемка состоящая с последовательно соединенных конденсатора, амперметра переменного тока и токоограничительного резистора.
Соединенную цепь подключают к источнику переменного напряжения, с напряжением не больше 20% от максимального напряжения конденсатора.
Если стрелка амперметра не отклоняется это говорит об внутреннем обрыве конденсатора
Проверяем емкость конденсатора
Для проверки емкости нам нужно убедится что реальная емкость конденсатора соответствует указанной на его корпусе.Все электролитические конденсаторы со временем (в процессе работы) «подсыхают» и теряют свою емкость, это естественный процесс и для каждой конкретной схемы существуют свои припуски и отклонения.
Проверяют емкость мультиметром в режиме «Cx» выбирают примерную емкость с максимальным пределом.
Конденсатор разряжают об металлический предмет, например пинцет и вставляют в гнездо проверки конденсаторов.
Для более точных показаний необходимо следить за тем чтоб в мультиметре стояла новая и не розряженая «крона».
Применяют и специальные приборы внешне схожие с мультиметром, которые специализированы конкретно для проверки конденсаторов и имеют достаточно широкий диапазон измерений емкости, от единиц пикофарад до десятков тысяч микрофарад, не каждый профессиональный мультиметр может похвастаться и половиной того диапазона емкостей.
Но если у вас под рукой нет ни мультиметра ни «микрофарадметра» можно достаточно приблизительно замерить емкость стрелочным омметром .
Как писалось выше, конденсатор заряжают прикасаясь щупами к его контактам — «засекаем» время отклонения стрелки назад и сравниваем время с заведомо исправным (новым) конденсатором, если время сильно не отличается то емкость в пределах нормы и конденсатор исправен.
Таким же способом можно определить ток утечки конденсатора . Для этого конденсатор щупами заряжают до отклонения стрелки назад.
С интервалом несколько секунд (зависит от емкости) щупы прикладывают снова, если стрелка снова проделывает такой же весь путь то это говорит о повышенном токе утечки и уже частичном неисправности конденсатора. В исправного же конденсатора в течение несколько секунд, чем больше емкость тем больше времени, должен сохранятся «заряд» и стрелка уже не должна показывать столь низкое сопротивление вначале как при первой зарядке.
«Зарядка напряжением» .
Такой способ проверки аналогичной ситуации подходит для более высоковольтных конденсаторов так как на малом напряжение (от тестера) может быть не понятна вся ситуация.
И так суть способа заключается в том что конденсатор заряжают от источника постоянного напряжения, для этого напряжение выбирают немного меньше максимального и заряжают контакты конденсатора, как правило хватит 1-2 секунды. После чего «зарядку» отсоединяют и мультиметром измеряют напряжение на контактах конденсатора, оно должно быть практически таким же что и использовалось при зарядке, если это ни так и оно сильно занижено то у конденсатора большой ток утечки и он неисправен.
Мултиметром наблюдают напряжение в течение некоторого времени, конденсатор будит плавно терять напряжение, скорость будит зависеть от емкости и ESR (внутреннего сопротивления).
Как проверить конденсатор без приборов?
В некоторых ситуациях при отсутствие омметра или вольтметра, исправность электролитического конденсатора можно проверить только лишь при наличие источника подходяще допустимого напряжения. Конденсатор в течение 1-2 секунд заряжают, а затем нужно замкнуть его контакты металлической отверткой.
У исправного конденсатора должна появится яркая искра. Если же она тусклая или же едва заметная то это говорит о том что конденсатор неисправен и плохо держит заряд.
Многие бытовые приборы в электрических схемах содержат конденсаторы, часто выходящие из строя. Как проверить конденсатор на работоспособность в домашних условиях? Ведь эти детали стоят в кондиционерах, в микроволновых печах, в стиральных машинах и в другом оборудовании.
За 2-3 года работы или простоя техники они способны потерять свои технические характеристики, высохнуть. По этой причине их нужно иногда проверять на сохранение работоспособности.
Проверить работоспособность любых деталей электрической схемы проще всего с применением мультиметра, который часто называют тестером. Сама технология проверки конденсатора отличается простотой. Здесь самое главное — это умение пользоваться измерительным прибором.
Перед проверкой изделия нужно:
Изображение 1. Тестер для измерения сопротивления.
- разрядить его;
- определить тип изделия;
- измерить его внутреннее сопротивление;
- измерить емкость.
Чтобы разрядить проверяемый элемент, нужно обычной отверткой с изолированной рукояткой коснуться двух его выводов. В результате происходит искра, вспышка. После этого можно проверять все параметры работоспособности. Для этого нужно определить тип данного конденсатора. Он может быть полярным или неполярным.
Полярный — это электролитический.
При его проверке нужно соблюдать точно его полярность. Плюсовую клемму измерительного прибора следует подключать к плюсовой ножке, минусовую — к минусовой. При проверке неполярных деталей полярность не соблюдается.
Сначала измеряется сопротивление. Для этого бочонок нужно выпаять из схемы и положить его на стол. Если его не выпаивать, то в показаниях приборов будут отражаться ошибки из-за действия других элементов платы. Тестер (изображение № 1) переключается в режим, в котором производится измерение сопротивления.
Щупы подключаются к выводам проверяемых изделий с соблюдением полярности (изображение № 2). При неправильном подключении проверяемый элемент электросхемы просто может выйти из строя.
Изображение 2. Подключение щупов для измерения сопротивления.
Запомните, все производители делают на корпусе небольшую отметку в виде галочки. Ею отмечается минусовой контакт. При контакте щупов тестера с контактами конденсатора на дисплее измерительного прибора появятся цифры.
Они будут быстро расти, так как изделие начнет заряжаться от мультиметра. Через несколько секунд они должны превратиться в «1». Если это произошло, то конденсатор следует считать исправным.
Если значение «1» появилось на дисплее сразу, внутри бочонка есть обрыв. Значение «0» является свидетельством короткого замыкания. В обоих случаях бочонок считается неисправным и требует замены.
Как проверить конденсатор аналоговым тестером? Аналоговый тестер имеет шкалу со стрелкой (изображение № 3). По стрелке, по ее движению определить работоспособность элемента еще проще. Если стрелка стоит на минимальном или на максимальном значении — деталь непригодна к использованию. Если она плавно поднимается от нулевого значения — конденсатор нормальный.
Изображение 3. Шкала измерения сопротивления.
Неполярные элементы проверяются касанием щупов без соблюдения полярности. Диапазон измерений на тестере устанавливается на 2 МоМ. При рабочем изделии на дисплее должно появиться значение больше 2 МоМ. В противном случае его нужно менять.
Как проверить конденсатор другими способами? Можно измерить его емкостные характеристики и затем сравнить результаты измерения со значениями номинальными, которые написаны на корпусе детали. Измерить емкость довольно просто.
На тестере нужно выбрать необходимый диапазон и установить на это значение переключатель или клеммы. Диапазон устанавливается в пределах написанного на корпусе. Если на приборе есть специальные гнезда, то нужно просто вставить в них ножки проверяемого изделия (изображение № 4).
Если таких гнезд на тестере нет, проверка производится касанием выводов щупами. На дисплее или на экране должны отразиться цифры, близкие к номиналу. Если это произошло, конденсатор исправен.
Изображение 4. Мультиметр с гнездом для ножек конденсатора.
Можно проверить деталь замером напряжения. Такое измерение возможно с применением обычного вольтметра и источника питания. Источник питания нужен с показателями немного ниже номинальных. Если номинальное значение равно 25 В, источник питания достаточно иметь на 9 В.
Источник подключают с соблюдением полярности к ножкам конденсатора и в течение нескольких секунд заряжают его. Потом подключается вольтметр или мультиметр. Если он показывает в начале замера напряжение, близкое к номиналу, конденсатор исправен. Затем это значение будет падать, так как бочонок начнет терять заряд.
Пусковой конденсатор проверяется только после полного отключения пускового механизма. Конденсатор проверяется теми же методами, которые описаны выше.
Как проверить конденсатор без приборов?
Встречаются конденсаторы, имеющие большую емкость. Для их проверки совсем необязательно использовать измерительные приборы. Нужно лишь от источника питания полностью зарядить его и замкнуть отверткой контакты. Отвертка должна иметь изолированную рукоятку. Если бочонок исправен, то возникнет мощная и яркая искра. Если она тусклая и слабая — бочонок не держит заряд и требует замены.
Можно прозвонить бочонок с помощью лампочки и проводов. Сначала конденсатор нужно зарядить, затем коснуться к его ножкам проводами. Лампочка при исправной детали должна загореться и в течение нескольких секунд погаснуть.
Можно ограничиться внешним осмотром. Вышедший из строя конденсатор может иметь вздутие или пробой. Нужно внимательно осмотреть часть бочонка с нанесенным крестиком. Этот крестик в последние годы ставят специально для защиты изделия от взрыва. Если видно подтекание жидкости, разрушение по линиям крестика — конденсатор вышел из строя.
Вместо заключения по теме
Далеко не у каждого есть дома осциллограф, измеритель емкости и частотомер. Мультиметр есть почти у каждого мастера. С его помощью находят неисправности в электрических сетях и проверяют многие детали на их работоспособность.
Мультиметр способен проверить и целостность конденсатора.
Главное — уметь пользоваться этим измерительным прибором.
Как проверить конденсатор — используем мультиметр для проверки на работоспособность конденсатор
Без конденсаторов, пожалуй, не обходится ни одна электрическая или электронная схема. Этот довольно простой по строению и, в общем-то, нехитрый по принципу своего действия элемент – буквально незаменим. И выход из строя такого миниатюрного «звена» общей цепи вполне способен повлечь и общую неработоспособность всего прибора или устройства.
Как проверить конденсаторМногие конденсаторы способны служить десятилетиями, и при этом не потребовать замены. Но время от времени выход из строя или некорректная работа электронной схемы заставляет заниматься поисками «виновника». Подозрение порой падает и на эти элементы цепи. Поэтому необходимо знать, как проверить конденсатор, чтобы убедиться в его пригодности или, наоборот, необходимости замены.
Да и перед проведением электромонтажных работ тоже не мешает заранее проверять элементы, которые будут впаиваться на свое место в плату. В любой партии изделий может быть определенный процент заводского брака. И проще выявить нерабочий конденсатор до его установки, нежели потом искать неисправности по всей схеме.
Основные типы конденсаторовБуквально несколько минут внимания следует уделить принципам строения и работы конденсаторов, а также разновидностям этих элементов схемы. Так будет проще понять, на чем строится методика проверки их работоспособности.
Итак, конденсатор представляет собой очень распространенный элемент электрической цепи, в котором происходит накопление заряда. Устройство нехитрое – в отличие от многих других элементов здесь нет никаких полупроводниковых переходов. По сути – это всего лишь две значительные по площади токопроводящие пластины (их обычно называют обкладками) равных размеров, разнесенные на небольшое расстояние одна от другой, то есть непосредственного электрического контакта между ними нет и быть не должно. Этот просвет заполняется диэлектрическим материалом.
Принятое условное обозначение конденсатора на схемах как раз очень наглядно показывает принцип его устройства.
Разделенные тонким просветом токопроводящие пластины имеют свойство накапливать электрический заряд.Понятно, что в цепи постоянного тока проводимость через конденсатор отсутствует, так как цепь, по сути, разорвана. Но зато на его обкладках накапливается (конденсируется) электрический заряд. И чем больше площадь этих обкладок, тем больший заряд может быть накоплен. Показателем же этих возможностей является величина емкости конденсатора.
Эта физическая величина измеряется в фарадах (F). Один фарад – это способность накопить 1 кулон заряда при разности потенциалов на обкладках в 1 вольт. Но пусть эти «единички» не вводят в заблуждение: на самом деле 1 F – это просто огромный показатель. На деле же приходится иметь дело с куда меньшими величинами:
1 mF = 0.001F = F×10⁻³ — миллифарад;
1 μF = 0.001mF = F×10⁻⁶ — микрофарад;
1 nF = 0.001μF = F×10⁻⁹ — нанофарад;
1 pF = 0.001nF = F×10⁻¹² — пикофарад
Несмотря на общность принципа устройства и действия, по своей конструкции конденсаторы все же могут иметь существенные различия.
Многообразие конденсаторов и по эксплуатационным параметрам, и по размерам –очень широкоПрежде всего, их можно разделить на две большие группы – полярные и неполярные конденсаторы.
- Для неполярных элементов не имеет никакого значения взаимное расположение их обкладок в общей схеме. Такие конденсаторы выпускаются в следующих основных «обличиях».
Керамические конденсаторы – в качестве разделительного диэлектрического слоя между обкладками применяется керамический состав. Эти элементы характеризуются компактностью, широким диапазоном допустимых рабочих напряжений, дешевизной наряду с довольно высокой надежностью и долговечностью.
Керамические конденсаторыДля достижения более высоких показателей емкости требуется увеличивать площадь обкладок. Это достигается свертыванием в рулон (или в «гармошку») двух токопроводящих лент со специальным металлизированным покрытием (или даже лент из алюминиевой фольги) с размещённой между ними диэлектрической прокладкой. По такому принципу устроены бумажные, металлобумажные, слюдяные и пришедшие им на замену серебряно-слюдяные конденсаторы.
Серебряно-слюдяные конденсаторыК неполярным относятся и мощные пусковые конденсаторы, имеющиеся во многих моделях бытовой техники, оснащенной электроприводами. Они собираются в достаточно габаритном корпусе цилиндрической или кубической формы, имеют обкладки из металлизированной полипропиленовой пленки и заполняются диэлектрическим маслом.
Принцип устройства пускового конденсатора: 1 – металлический корпус; 2 – обкладки – полосы полипропиленовой пленки с вакуумным металлизированным напылением; 3 – диэлектрическая пленочная прокладка; 4 – наполнение из диэлектрического нетоксичного масла; 5 – выводы-контакты для подключения к электрической схеме прибора.Их не зря называют пусковыми – они способны накапливать очень значительный заряд для выработки мощного пускового импульса и для повышения коэффициента мощности электроустановок. Способны они и сглаживать значительные колебания в системах высокого напряжения.
- Полярные конденсаторы требуют, как понятно из названия, соблюдения полярности при установке их в схему.
Наиболее распространены на сегодняшний день полярные конденсаторы в алюминиевом цилиндрическом корпусе. Нередко такие элементы именуют еще «электролитическими». Такое название предопределяет тот факт, что свободное пространство между обкладками заполняется специальным электролитом. Диапазон габаритов и электротехнических показателей – очень широкий, но если неполярные компактные конденсаторы чаще всего по ёмкости максимально ограничиваются единицами микрофарад, то у электролитических счет может идти даже на тысячи μF, то есть единицы mF. На три порядка больше!
Электролитические полярные конденсаторыШагом вперед стало появление танталовых полярных конденсаторов, у которых соотношение размеров и возможных показателей емкости – намного выше. То есть это оптимальный вариант тех случаях, когда требуется компактность схемы наряду с высокой емкостью. Правда, такие детали значительно дороже, а кроме того – излишне чувствительны к пульсации токов и к превышениям допустимых напряжений, которые часто выводит их из строя.
Танталовые полярные конденсаторы – миниатюрные «капельки» с весьма внушительными показателями емкости.Здесь были рассмотрены далеко не все формы выпуска конденсаторов, но принцип их строения, независимо от внешности, остается тем же.
Какие неисправности могут случиться в конденсатореПрежде чем учиться искать неисправности конденсатора, необходимо разобраться, в чем же они могут заключаться. Иными словами – нужно знать, что искать.
Итак, полный выход из строя или неправильная работа этого элемента схемы может выражаться в следующем:
- Пробой между обкладками конденсатора. Обычно вызывается превышением допустимого напряжения на выводах. По сути, участок цепи, который должен «разрываться» конденсатором, получается замкнутым.
- Обрыв между выводом конденсатора и обкладкой. Может случиться из-за вибрационного или иного механического воздействия, от превышения допустимого напряжения. Нельзя исключить и производственный брак. На деле получается, что конденсатор в схеме попросту отсутствует – на его месте банальный разрыв цепи.
- Повышенный ток утечки – в связи с потерей диэлектрических качеств разделяющего обкладки слоя происходит «перетекание зарядов». Конденсатор не в силах сохранять полученный заряд достаточное для его корректной работы время.
- Недостаточная емкость конденсатора. Может вызываться повышенным током утечки или же опять, чего греха таить, производственным браком. В результате схема, в которую включен такой конденсатор, работает некорректно, неустойчиво, или вовсе становится неработоспособной.
- Для электролитических полярных конденсаторов выделяют еще один возможный дефект – это превышение эквивалентного последовательного сопротивления ЭПС (ESR). Как известно, такие конденсаторы, работая в схемах с высокочастотными токами, способны «фильтровать» постоянную составляющую и пропускать частотный сигнал. Но этот сигнал может «подавляться» повышенным ЭПС, по аналогии с обычным резистором, значительно снижая его уровень. Что, кстати, одновременно ведет и к нагреву таких элементов схемы.
ЭПС складывается из нескольких факторов:
— обычное активное сопротивление проволочных выводов, обкладок и точек их соединения.
— сопротивление, вызванное неоднородностью диэлектриков, наличием примесей или влаги.
— сопротивление электролита, которое способно изменяться (нарастать) по мере испарения, высыхания, постепенного изменения химического состава.
Для ответственных схем показатель ЭПС имеет очень важное значение. Но, к сожалению, именно эту величину оценить и сравнить с допустимой табличной без использования специфических приборов – невозможно.
Специальный прибор для диагностики конденсаторов, позволяющий оценить и их емкость, и показатель эквивалентного последовательного сопротивления (ESR)Справедливости ради надо сказать, что некоторые пытливые мастера самостоятельно заготавливают приборы-приставки для оценки ESR и используют их в связке с самыми обычными цифровыми мультиметрами. При желании в интернете можно отыскать немало схем подобных приставок.
Приставка к мультиметру типа DT, позволяющая оценивать показатель ESR электролитических конденсаторов.Пример таблицы допустимых значений эквивалентного последовательного сопротивления (в омах – Ω) для электролитических конденсаторов различных номиналов емкости (μF) и напряжения (V):
10 V | 16 V | 25 V | 35 V | 50 V | 63 V | 100 V | 160 V | 250 V | 350 V | 450 V | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 μF | — | — | 2.1 | 2.4 | 4.5 | 4.5 | 8.5 | 9.5 | 8.7 | 8.5 | 3.6 |
2.2 μF | — | — | 2.0 | 2.4 | 4.5 | 4.5 | 2.3 | 4.0 | 6.1 | 4.2 | 3.6 |
3.3 μF | — | — | 2.0 | 2.3 | 4.7 | 4.5 | 2.2 | 3.1 | 4.6 | 1.6 | 3.5 |
4.7 μF | — | — | 2.0 | 2.2 | 3.0 | 3.8 | 2.0 | 3.0 | 3.5 | 1.6 | 5.7 |
10 μF | — | 8.0 | 5.3 | 2.2 | 1.6 | 1.9 | 2.0 | 1.2 | 1.4 | 1.2 | 6.5 |
22 μF | 5.4 | 3.6 | 1.5 | 1.5 | 0.8 | 0.9 | 1.5 | 1.1 | 0.7 | 1.1 | 1.5 |
33 μF | 4.3 | 2.0 | 1.2 | 1.2 | 0.6 | 0.8 | 1.2 | 1.0 | 0.5 | 1.1 | — |
47 μF | 2.2 | 1.0 | 0.9 | 0.7 | 0.5 | 0.6 | 0.7 | 0.5 | 0.4 | 1.1 | — |
100 μF | 1.2 | 0.7 | 0.3 | 0.3 | 0.3 | 0.4 | 0.15 | 0.3 | 0.2 | — | — |
220 μF | 0.6 | 0.3 | 0.25 | 0.2 | 0.2 | 0.1 | 0.1 | 0.2 | 0.2 | — | — |
330 μF | 0.24 | 0.2 | 0.25 | 0.1 | 0.2 | 0.1 | 0.1 | 0.1 | 0.2 | — | — |
470 μF | 0.24 | 0.18 | 0.12 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.15 | — | — |
1000 μF | 0.12 | 0.15 | 0.08 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | — | — |
2200 μF | 0.12 | 0.14 | 0.14 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | — | — |
3300 μF | 0.13 | 0.12 | 0.13 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | — | — |
4700 μF | 0.12 | 0.12 | 0.12 | .01 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | — | — |
Если при некорректной работе или при полной неработоспособности схемы подозрение падает на конденсаторы, разумно будет первым делом произвести внимательный визуальный осмотр этих элементов. Не исключены внешние признаки, которые ясно дадут понять о возникших проблемах.
Аналогичную визуальную «ревизию» стоит проводить и при монтаже схемы, тем более в том случае, если для ее сборки используются радиодетали, уже бывшие в употреблении. Кстати, и среди абсолютно новых нет-нет, да и встречаются явно бракованные.
Обычно сразу становятся заметны конденсаторы с пробоем – это выражается в потемнении, вздутии, прогорании или растрескивании керамического корпуса. Понятно, что такие элементы подлежат безусловной замене, и даже не стоит терять время на их дальнейшую проверку – лучше сконцентрировать свое внимание на поиске возможных причин, приведших к таким последствиям.
Керамическая облицовка конденсатора растрескалась и осыпалась – явный признак пробоя и необходимости замены.А в этом случае, по всей видимости, пробой конденсатора сопровождался еще и не слабой электрической дугой.Даже если ставится новый керамический конденсатор, но он уже имеет трещины или сколы на корпусе, то его лучше сразу отложить в брак – не столь высока его стоимость, чтобы закладывать в схему «мину замедленного действия». Разумнее поставить полностью исправный и неповреждённый внешне элемент.
Пробои чаще встречаются на неполярных конденсаторах или на танталовых полярных (они очень чувствительны к превышениям напряжения).
Явными признаками выхода из строя, или же состояния, близкого к критическому, хорошо сигнализируют электролитические полярные конденсаторы. Это обусловлено самой особенностью их конструкции.
При превышении допустимого напряжения или же при изменении полярности на отводах внутри «бочонка» резко активизируются химические реакции, сопровождающиеся перегревом электролита и его испарением. Это может привести просто к пересыханию конденсатора, то есть к потере им своей номинальной емкости и повышению тока утечки. Но нередко увеличение давления внутри алюминиевого корпуса заканчивается и его разрывом.
Не характерный, но все же иногда встречающийся боковой разрыв корпуса алюминиевого полярного электролитического конденсатора.Чтобы свести к минимуму вероятность поражения соседних элементов схемы разорвавшимся электролитическим конденсатором, производители предусматривают утонченную верхнюю «крышку» цилиндра, на которую, кроме того, наносятся насечки в виде креста или звездочки. Таким образом, искусственно создаётся «слабое звено» корпуса, чтобы в случае взрыва (прорыва паров электролита) он был направлен вверх.
Вовремя не замеченный вздутый конденсатор может разорвать внутренним давлением – последствия показаны на фотографии. Лучше до этого не доводить!Но еще до этой критической ситуации конденсаторы начинают «сигнализировать» о скором «окончании своей карьеры» вздутием этой ослабленной стенки. По этому внешнему признаку следует сразу, не откладывая, производить выбраковку и замену элементов схемы. Проводить дополнительные проверки таких конденсаторов – вряд ли имеет смысл.
На четырех конденсаторах – явное вздутие верхней стенки, говорящее о необходимости замены. А на двух – еще и признаки потери герметичности и прорыва электролита наружу.Правда, следует проявлять внимательность, и обращать внимание еще на один признак. Случается, что даже при отсутствии деформации верхней стенки цилиндра конденсатора, превышение давления приводит к выжиму нижней диэлектрической пробки, через которую проходят отводы. Встречается такое не столь часто, но тем не менее…
Верхняя крышка вроде бы не имеет явной деформации, но вот нижняя пробка явно выдавлена наружу. Возможно, причина этому – заводской брак, но конденсатор однозначно нуждается в замене.Итак, если заметны явные внешние признаки выхода конденсатора из строя, не стоит тратить время на его последующую более тщательную проверку – даже если показатели будут в пределах, вроде бы, нормы, последующее использование все же крайне нежелательно.
Но в том случае, когда никаких признаков нет, но подозрения из-за неработоспособности схемы падают именно на конденсатор, его следует проверить доступными способами. Для этого прежде всего они выпаивается их схемы.
Многие спрашивают, а возможна ли проверка конденсатора без выпаивания с платы? Да, некоторые способы или хитрости на этот счет имеются, но они возможны далеко не всегда, и зачастую не дают достоверной картины. Подробнее мы на этом остановимся чуть ниже. Но для качественной проверки, не имея в распоряжении специальных приборов, элемент все же придется демонтировать.
Проверка конденсатора с помощью мультиметраВ распоряжении домашнего мастера – неспециалиста в области электроники, как правило, может иметься только обычный мультиметр. Но определенную диагностику и выбраковку вышедших из строя конденсаторов можно провести и с его помощью.
Проверка с помощью омметраЧаще всего первым шагом производится проверка конденсатора на пробой или обрыв с помощью омметра. Такая «ревизия», по сути, является косвенной, но все же может показать явные неполадки, то есть провести выбраковку. Правда, есть нюансы, которые зависят и от типа конденсатора, и от его номинальной емкости.
Любой конденсатор не должен пропускать постоянный ток. То есть – обладать очень высоким сопротивлением. Возможный ток утечки может быть – это зависит от качества диэлектрического разделительного слоя между обкладками, но в идеале – он настолько мал, что может не учитываться.
То есть при замере сопротивления между выводами конденсатора должно получиться очень высокое значение. Для рабочих неполярных элементов оно лежит в пределах выше 2 МОм.
Значит, мультитестер должен быть переведен в режим работы омметра на максимальном диапазоне. У наиболее распространенных моделей – это как раз и составляет предел измерений в 2000 кОм = 2 МОм.
Мультиметр установлен в режим измерения сопротивления с пределом до 2000 кОм или 2 МОмПеред проверкой любого конденсатора его следует «очистить» от возможного остаточного заряда. Для элементов небольшой емкости и с невысокими показателями напряжения это делается обычным перемыканием выводов с помощью отвертки, пинцета, щупа и т.п.
Разрядка конденсатора небольшой емкости простым перемыканием его контактов-выводов.Для разрядки конденсаторов ёмкостью более 100 μF, и в особенности – с рабочими напряжениями свыше 50 вольт, перемыкать контакты следует через резистор сопротивлением порядка 5÷20 кОм и мощностью не менее 1 Вт. В противном случае можно получить довольно мощную искру, что небезопасно. Перемыкание с помощью резистора проводят в течение двух-трех секунд для полной разрядки конденсатора.
Если проверяется неполярный конденсатор, то как уже говорилось, его сопротивление должно быть не менее 2 MОм. Если прибор типа DT установлен на максимальный предел измерений в 2000 кОм, то на дисплее следует ожидать единицы в крайнем левом разряде, говорящей о том, что цепь, по сути, разомкнута, то есть измеряемое значение лежит выше максимальной установленной границы. У мультиметров другого типа может быть и иная индикация отсутствия проводимости – например, буквенные символы «OL».
В любом случае, если дисплей показывает или полное отсутствие проводимости, или очень высокий показатель сопротивления (более 2 МОм) то можно с уверенностью говорить, что пробой не выявлен, а ток утечки если и есть – то в допустимых пределах.
В распоряжении автора статьи – мультиметр ZT102, в котором реализовано автоматическое определение пределов измерений. то есть достаточно просто установить режим работы на омметр, а единицы измерения прибор определит и покажет самостоятельно. Попробуем проверить на пробой керамический конденсатор ёмкостью 4700 pF = 4.7 nF
Мультиметр устанавливается в режим измерения электрического сопротивления.
Подготовка к замеру – установлен нужны режим. На дисплее символы, обозначающие отсутствие проводимости между щупами прибора.Щупы-зажимы подключены к выводам конденсатора. На дисплее – ничего не изменилось.После подключения конденсатора к щупам (полярность в данном случае не имеет никакого значения) на дисплее изменений не отмечено – все те же символы, говорящие об отсутствии проводимости.
Вывод – полного пробоя или недопустимо высокого тока утечки однозначно нет.
К сожалению, такая проверка не дает никакого вразумительного ответа, если ли обрыв на этом конденсаторе (обрыв характеризуется точно такими же показаниями дисплея). Просто ток, необходимый для зарядки столь невысокой емкости, настолько незначителен, а сама зарядка происходит так быстро, что мультитестер не успевает на это прореагировать изменением показаний.
Так что подобный метод на неполярных конденсаторах малой емкости, менее 1 μF, и с использованием приборов с невысокими пределами измерений, не дает однозначного ответа о полной исправности элемента. И для полноценной картины не обойтись без измерения емкости.
Теперь, для сравнения, посмотрим на проверку омметром неполярного конденсатора с более высоким показателем емкости – 1 μF.
Исходное положение – то же, но неполярный конденсатор уже с указанным номиналом мощности в 1 μF.Показания сопротивления на дисплее «стартуют» с сотен килоом, быстро пересекают рубеж мегаом и продолжают стремительно расти.Значения растут, показывая, что ток зарядки конденсатора стремительно снижается.Наконец, зарядка полностью окончена, и на дисплее – «разрыв цепи».Вот в этом случае можно смело констатировать, что и пробой отсутствует (заряженный конденсатор не проводит ток), и обрыва точно нет, так как мы наблюдали за процессом зарядки.
Справедливости ради заметим следующее – у показанного мультиметра предел измерений электрического сопротивления ограничивается 60 мегаомами. Именно это обстоятельство, скорее всего, и позволило наблюдать процесс зарядки этого сравнительно небольшого по емкости конденсатора. Был бы предел в 2 МОм – скорее всего, весь этот замер уложился бы в доли секунды, и стал практически незаметным. Ну что ж – явный плюс приборам с расширенным диапазоном.
Теперь проверим омметром полярные электролитические конденсаторы. Принцип не меряется. Правда, при использовании мультиметров с выделенными диапазонами рекомендуется установить предел примерно в 200 кОм. Дело в том, что для многих подобных конденсаторов считается нормальным сопротивление утечки более 100 кОм, для некоторых, наиболее качественных, заявляемый допустимый предел – 1 МОм. Так что в большинстве случаев если будет достигнуто сопротивление в 200 кОм — можно судить об отсутствии пробоя, обрыва и пригодности такого конденсатора к работе. Впрочем, на всякий случай можно установить тот же предел в 2000 кОм и даже, если не жаль элементов питания мультитестера – попытаться дождаться полной зарядки.
Попробуем поэкспериментировать с электролитическими конденсаторами разных номиналов емкости, применяя мультиметр ZT102, то есть с «плавающим» пределом измерений сопротивления.
Первым проверим конденсатор с номиналом 10 μF. Внешне на нем нет никаких признаков неисправностей.
Подготовка к измерениям – мультиметр переведен в режим омметраТо, что к выводам конденсатора в демонстрируемом примере припаяны проводки – никого не должно вводить в заблуждение. Если длина выводов позволяет проводить измерения напрямую щупами или зажимами-«крокодилами», то никакие удлинения не нужны. А в данном случае проводки припаяны только для того, чтобы освободить руки во время замера для фотографирования. При всех достоинствах этого мультитестера есть у него и недостаток – не предусмотрена отдельная контактная панель для проверки конденсаторов.
Безусловно, очень удобно, когда мультитестер имеет специальную колодку с гнёздами именно для проверки конденсаторов – можно не мучиться с проводамиРазный цвет припаянных проводков – чтобы не перепутать полярность, так как здесь это уже имеет значение. Черный измерительный провод (СОМ) мультитестера должен идти на «минус» конденсатора, красный, соответственно, на «плюс».
Подключаем щупы к конденсатору.
Показатели сопротивления неуклонно повышаютсяПоказатели на дисплее довольно быстро, буквально за секунду, пересекли рубеж в 1 мегаом и продолжают повышаться.
Достигнуто значение в 20 МОм – на этом решено остановиться.Рост показателей сопротивления, в отличие от неполярных конденсаторов, не столь стремительный. При выходе на 20 мегаом решено проверку закончить – и без того понятно, что ни обрыва, ни пробоя, ни значимого тока утечки нет.
Вторым на очереди – конденсатор с номиналом 470 μF. Если приглядеться к нему, то явно видно начинающееся вздутие крышки.
Намечающееся вздутие верхней стенки корпуса уже говорит о предполагаемой непригодности конденсатора. Но просто для интереса и сравнения проведем проверку.По идее – его и проверять-то не стоит, но все-таки посмотрим, в чем окажется выраженной его уже заметная внешне дефектность.
На первом этапе замера показатели сопротивления росли до определенного пределаПоначалу проверка шла «штатным образом» — сопротивление нарастало с сотен килоом до 5. 7 МОм. Но, в отличие от ранее проверяемых элементов, затем запустился обратный процесс – сопротивление стало неуклонно снижаться.
После достижения какого-то максимума сопротивление стало падать…Это уже явно говорит о нарастании тока утечки. Как знать, может утечка лежит пока в допустимых пределах, но признак явно тревожный. Тем более что снижение сопротивления не останавливается – просто опыт прекращен, чтобы не садить впустую питание мультиметра.
Падение показателя сопротивления продолжается – просто замер решено закончить, так как картина и без того проясняется.То есть вздутие конденсатора уже не прошло даром – дефект явно имеется. Дополнительно проверим этот элемент, когда перейдем к измерению емкостей.
Наконец, самый большой по емкости из взятых на проверку электролитический конденсатор – номинал в 2200 μF.
Первые показания сопротивления – около 50 кОм, но очень быстро повышаются.Показания на дисплее стартовали с уровня примерно в 50 кОм, но стабильно и довольно быстро растут — происходит зарядка конденсатора, а емкость у него весьма значительная. Вскорости показания превышают 500 кОм, и в районе 600 кОм стабилизируются.
На этом уровне рост прекращается, и показания достаточно стабильные, с небольшими колебаниями в несколько килоом в одну и другую стороны.Что ж, значение сопротивления достаточно велико и вполне входит в допустимые пределы для электролитического конденсатора столь высокой ёмкости. А стабильность показания на пике говорит и о стабильности тока разрядки, который также, по все видимости, не выходит за рамки дозволенного. Предварительный вывод: конденсатор в исправном состоянии – нет ни пробоя, ни обрыва, ни чрезмерного тока утечки.
Проверить конденсаторы измерением их сопротивления вполне можно и стрелочным (аналоговым) тестером. Кстати, там этот процесс выглядит даже более наглядно. При подключении тестируемого элемента стрелка обычно сначала отклоняется вправо, а затем начинает движение в сторону увеличения значения, то есть к левому краю, к «бесконечности».
При работе с аналоговым (стрелочным) прибором не забываем, что шкала сопротивления (в данном примере она верхняя, зеленого цвета) возрастает в не совсем привычном направлении – против часовой стрелки, справа налево.В остальном же принцип проверки никак не меняется. А наглядность подобной «ревизии» конденсаторов нередко у некоторых мастеров делает именно такой способ даже более предпочитаемым.
Проверка конденсаторов функцией измерения емкостиИтак, косвенная проверка с помощью омметра способна в некоторых случаях сразу обнаружить явно непригодные к дальнейшему использованию конденсаторы. Например, результаты измерений указывают на явный пробой между укладками или чрезмерно низкие показатели сопротивления. Но часто картина остается неполной – элемент попадает «под подозрение», но «приговор» выносить вроде бы еще нет оснований, так как налицо только косвенные признаки неисправности.
Кстати, в подобных случаях иногда выручает «сравнительная экспертиза». То есть если имеется заведомо исправный конденсатор с точно таким же номиналом, можно провести сравнения полученных значений сопротивления с вызывающим сомнения элементом. По идее, при испрвности они должны быть очень близки между собой.
Но опять же, например, диагностировать обрыв на конденсаторе малой емкости – практически невозможно. Показатели омметра мгновенно уходят в «бесконечность», что свойственно и для отсутствия пробоя.
Специальный прибор для измерения емкости конденсаторов, требующий предварительной установки предела измерений.Единственно действительным достоверным методом оценки в таких случаях видится замер емкости конденсатора. Для этого используются или специальные приборы для проверки конденсаторов (некоторые из них помимо емкости позволяют оценить и ESR), или мультиметры, в которых имеется такая функция.
В моем мультиметре ZT102 такая функция реализована, причем, тоже с «плавающей запятой», то есть не требующая установки единиц измерения и диапазонов – все это происходит автоматически. Поэтому попробуем проверить все те конденсаторы, которые ранее тестировались омметром – теперь уже на показатели ёмкости.
Начнем опять с неполярных конденсаторов.
Если вспомнить проверку омметром, то самый маленьким из тестируемых был керамический конденсатор 472. Что означает, согласно принятой маркировке, 47 pF × 10², то есть 4700 pF или 4,7 nF. Проверка сопротивления дала положительный результат, но не исключила возможности обрыва. Посмотрим, что покажет замер емкости.
Мультиметр переводится в соответствующий режим. На этом приборе, кстати, режим измерения емкости находится на том же положении переключателя, что и режим омметра, и выбирается кнопкой «SELECT».
Проверяется обычный керамический конденсатор, так что полярность роли не играет.
Проверка емкости маленького керамического конденсатора.Значение выведено очень быстро (сказывается малая емкость), прибор сам определил и вывел на дисплей единицы измерения – нанофарады, и показал значение — 4.59 nF. Показания довольно стабильные, с очень незначительными колебаниями вверх-вниз. Не в «самое яблочко», но результат очень близок к указанному номиналу.
Можно констатировать что этот конденсатор – абсолютно «здоровый» и пригоден для дальнейшего использования.
Вторым по очереди стоит конденсатор емкостью в 1 μF. Как мы помним, его проверка омметром дала основания исключить и пробой, и обрыв. Остается выяснить его реальную емкость. Подключаем щупы к выводам конденсатора (без соблюдения полярности).
Проверка емкости конденсатора номиналом в 1 μFНа дисплее, после небольшой паузы – 983,5 nF, что равно 0,98 μF. Опять – показатель емкости не идеально точен с номиналом, но очень близок к нему. И что важно – стабилен.
Конденсатор следует признать полностью исправным
Далее – тройка полярных электролитических конденсаторов. Проверяем их в порядке по нарастанию емкости. Здесь, понятно, уже требуется соблюдение полярности подключения щупов.
Проверяется емкость конденсатора с номиналом 10 μF – получены четкие и стабильные показатели.Конденсатор номиналом 10 μF дал при проверке значение 10,2 μF практически без колебаний в ту или иную сторону. Вопросов к нему – никаких нет.
Следующий – тот самый проблемный конденсатор номиналом 470 μF с признаками вздутия корпуса и повышенного тока разряда. Что покажет измерение емкости?
Так и есть – имеются явные дефекты и в этом вопросе:
Начальные показания после подключения «проблемного» конденсатора к щупам мультиметра.Даже первичные показания прибора сразу дают понять, что измеренная емкость практически на четверть ниже номинала – всего 329 μF. Но и это еще не всё…
Показания дисплея уже спустя несколько секунд – значение емкости падает…Показатель на дисплее нестабилен – имеется тенденция к снижению емкости, причем довольно быстрому. Уже через несколько секунд значение упало до 309 μF и продолжает уменьшаться. Дальнейший замер – совершенно излишен, так как картина неисправности конденсатора вырисовалась в полной ясности.
Это лишнее подтверждение тому, что попытки продолжать использовать электролитические конденсаторы с признаками вздутия корпуса – совершенно бесплодны. Да и на их тестирование, повторимся, даже жалко тратить время – такие детали уже отслужили свое и подлежат безусловной утилизации. Иначе – жди или некорректной работы схемы, или ее полного выхода из строя, или, что еще «веселее» — «фейерверка» со взрывом корпуса.
Остался последний конденсатор – емкостью 2200 μF. Внешне и по результатам проверки омметром он не вызывал беспокойства.
Проверка показывает, что емкость даже несколько выше номинальнойПроведенный замер показал, что с конденсатором – все в порядке, если не считать несколько завышенной его емкости. На дисплее высветилось 2,489 mF = 2489 μF – вполне укладывается в допустимые рамки (обычно допустимые отклонения для емкости оцениваются в ± 15%). Но зато измеренное значение стабильно, без тенденции к увеличению или снижению.
Вывод — конденсатор во вполне пригодном к дальнейшему использованию состоянии.
Позволим себе маленькую ремарку.
Показанная последовательность проверки, то есть сначала омметром, а затем измерением емкости, вовсе не является обязательной. Измерением сопротивления просто демонстрировался способ, которым во многих случаях можно выявить явно неисправный элемент, если отсутствует прибор контроля емкости. Но, как мы помним, достоверность такой проверки бывает и неполной.
То есть в том случае, когда имеется возможность замера емкости, начинать следует прямо с него. Он однозначно покажет работоспособность конденсатора по всем пунктам – в случае обрыва, пробоя или большой утечки емкость или просто не поддастся измерению, или ее показатель будет очень далек от номинала, или, как было показано в рассмотренном примере, индицируемое значение будет нестабильным, с тенденцией к быстрому снижению.
Косвенная проверка конденсатора вольтметромЭта проверка со вполне допустимой долей достоверности может показать, насколько хорошо конденсатор накапливает и удерживает полученный заряд. Правда, она возможна при довольно высоких показателях как емкости, так и напряжения, иначе используемый «визуальный подход» к оценке работы элемента может стать просто незаметным для восприятия.
Суть метода заключается в том, что вначале конденсатор следует зарядить от какого-то внешнего источника питания. Причем, рекомендуется, чтобы напряжение этого источника было примерно вдвое ниже указанного на конденсаторе предела. Скажем, для конденсатора, на котором указан предел в 25 вольт вполне подойдет блок питания на 12 вольт.
Обычно для зарядки хватает нескольких секунд. Кстати, пока идет зарядка будет нелишним для контроля проверить на клеммах источника питания, какое же точно напряжение подается на обкладки конденсатора.
После выполнения зарядки источник питания отключается. Мультитестер должен быть переведен в режим измерения постоянного напряжения в предполагаемом диапазоне (например, 20 вольт). Буквально через несколько секунд касаются щупами выводов конденсатора. Здесь важно проявить внимательность, так как главную ценность будет представлять показание вольтметра, снятое именно в момент первого касания – это значение должно быть максимально близким с напряжением, подаваемым при зарядке. Затем, естественно, по мере разрядки конденсатора через мультиметр, оно будет падать. Скорость его разрядки зависит от показателя емкости и от значения эквивалентного последовательного сопротивления (ЭПС).
Если первичное показание слишком далеко от «эталона» — это может говорить о слишком большом токе утечки и малопригодности конденсатора к нормальной работе.
Впрочем, такой способ все же таит в себе и субъективную составляющую, зависящую от личного восприятия быстро изменяющихся показаний. То есть говорить о его полной объективности – сложно. Хотя явный дефект он, пожалуй, выявить поможет. А в сомнительных случаях все же лучше изыскать возможность полноценной проверки емкости конденсатора.
«Народный» способ – проверка конденсатора коротким замыканиемК такому методу зачастую прибегают для «проверки» мощных, в том числе – пусковых конденсаторов, работающих с напряжениями свыше 200 вольт.
Смысл заключается в зарядке конденсатора, часто – просто от сети переменного напряжения 220 вольт. А затем — его разрядкой путем короткого замыкания выводов отвёрткой или отрезком изолированного провода. При замыкании возникает мощная искра, говорящая о том, что конденсатор способен накапливать нешуточный заряд.
Замыкание выводов конденсатора большой емкости сопровождается мощным искровым разрядом.Сразу будет сделана оговорка – не зря слово «проверка» выше было взято в кавычки. Автор этой публикации ни в коем случае не рекомендует выполнять подобное тестирование, особенно тем людям, кто делает только первые шаги на поприще электротехники.
- Во-первых, это крайне небезопасно. При малейшей неосторожности можно получить очень чувствительный, а иногда – и весьма опасный для здоровья электрический удар. Особую опасность представляет случайное замыкание контактов заряженного конденсатора обеими руками. Траектория тока «из руки в руку» проходит через наиболее уязвимую область тела человека, через сердце, что порой заканчивается очень печально.
- А во-вторых, объективной картины работоспособности конденсатора таким путем все равно получить невозможно. Признайтесь, сможете ли вы отличить искру, вызванную разницей потенциалов в 200 вольт, от искры, для которой потребовалось всего 100 вольт? Вряд ли. Так что говорить о полной пригодности, о полноценной емкости и допустимой утечке – все же преждевременно. Так стоит ли «огород городить»? Единственное, на что способна такая проверка — выявить совершенно неисправный конденсатор.
Для полноценной проверки конденсатора, уже стоящего в схеме, его все же рекомендуется выпаять из платы. Дело в том, что другие элементы схемы способны оказывать влияние на измеряемые показания, и картина получатся явно недостоверной.
Понятно, что лишний раз заниматься выпаиванием конденсатора никому не хочется, что и вызывает вынесенный в заголовок подраздела вопрос.
Однозначного ответа нет. Если точнее, то существует несколько методов, которые могут дать определенный эффект, но не всегда они просты и оправданы.
- Некоторые современные приборы, предназначенные именно для тестирования конденсаторов, сразу разрабатывались с учетом возможности проверок без проведения демонтажа элементов схемы. Если есть возможность воспользоваться подобным тестером – то это существенно упрощает решение вопроса.
Поднаторевшие в радиоэлектронике мастера зачастую создают некое подобие таких приборов и самостоятельно. Причем, охотно делятся и разработанными схемами, и опытом их эксплуатации. Например, ниже показана одна из таких схем с кратким ее описанием – возможно, кто-то возьмет себе на заметку.
Схема и описание самодельного прибора для «ревизии» конденсаторов без их выпаивания из платы.Если ничего из выше перечисленного нет, придётся обходиться другими мерами.
- Конденсатор можно выпаять частично, то есть одним выводом. После этого – провести проверку мультиметром. Правда, получается это далеко не всегда, так как в большинстве случаев эти детали изначально впаиваются с «низкой посадкой», а с электролитическими конденсаторами такой подход и вовсе невозможен.
- Одним из путей, когда выпаивание видится трудноосуществимым, может стать «изоляция» конденсатора на плате подрезкой дорожек, идущих к соседним элементам схемы.
Метод, конечно, «варварский», особенно в том случае, если идет поиск неисправного элемента – эдак можно и всю плату «перепахать». Кроме того, если плата – не с односторонней печатью, то к такому способу и вовсе не стоит прибегать.
- Возможно, если выпаивание конденсатора сопряжено с определенными сложностями, проще «поднять ножки» расположенных с ним в последовательной цепи элементов, например, резисторов. Так будет устранено их влияние на тестируемый элемент.
- Наконец, есть еще один способ убедиться в необходимости замены неработающего конденсатора. Заключается он в том, что непосредственно к выводам детали, работоспособность которой вызывает сомнения, параллельно припаивается новый конденсатор точно такого же номинала, но заранее проверенный и гарантированно рабочий. Естественно, если это полярный конденсатор, то с соблюдением правильного расположения «плюса» и «минуса».
После этого проводится тестовый запуск схемы (устройства). Если заметны улучшения, или работоспособность полностью восстановлена – можно провести выпаивание старого конденсатора и монтаж нового. Если же никаких позитивных изменений не последовало – следует продолжить поиск неисправности в ином месте, так как вряд ли именно исследуемый конденсатор послужил причиной неполадок.
Завершим сегодняшнюю публикацию демонстрацией видео, в котором также речь идет о неисправностях конденсаторов и возможных способах их выявления.
Видео: Какие неисправности случаются в конденсаторах, и как их выявить.✅ Как правильно измерить конденсатор
Как проверить конденсатор мультиметром
Приветствую всех друзья и читатели сайта «Электрик в доме». Думаю всем известно, что такое конденсатор. Если кто не видел данный элемент микросхем, то точно слушал о нем. Самой распространенной причиной неисправности в радиоэлектронике является повреждение именно этого элемента. Современная бытовая техника «начинена» электроникой и поломка такой крохотной детали приводит к потере функциональности всего механизма в целом.
Чтобы определить какой именно конденсатор в схеме вышел из строя их необходимо проверить на работоспособность. И желательно это делать с помощью электронный приборов, та как визуальный осмотр не дает заключения о неисправности.
Делать мы это будем с помощью недорогого и функционального прибора — мультиметра. В прошлой статье я писал о том, как с его помощью можно выполнить проверку сопротивления, а сегодня рассмотрим методику, как проверить конденсатор мультиметром.
Написать данную статью меня попросил один из подписчиков. Я как всегда постараюсь изложить материал доступным языком, но если останутся вопросы, не стесняйтесь задавать их в комментариях.
Проверка конденсатора мультиметром
Для начала давайте разберемся, что это за устройство, из чего он состоит, и какие виды конденсаторов существуют.
Конденсатор представляет собой устройство, которое способно накапливать электрический заряд. Внутри он состоит из двух металлических пластин параллельных между собой. Между пластинами расположен диэлектрик (прокладка). Чем больше пластины, тем соответственно больший заряд они могут накапливать.
Существует два вида конденсаторов:
Как можно догадаться по названию полярные имеют полярность (плюс и минус) и подключаются к электронным схемам со строгим соблюдением полярность: плюс к плюсу, минус к минусу. В противном случае конденсатор может выйти из строя.
Все полярные конденсаторы – электролитические. Бывают как с твердым, так и с жидким электролитом. Емкость колеблется в диапазоне 0.1 ÷ 100000 мкФ.
Неполярные конденсаторы без разницы как подключать или впаивать в схему, у них нет плюса или минуса. В неполярных кондерах диэлектрическим материалом является бумага, керамика, слюда, стекло. Их емкость не очень большая колеблется в приделах от несколько пФ (пикофарад) до единиц мкФ (микрофарад).
Друзья некоторые из Вас могут задаться вопросом, зачем эта ненужная информация? Какая разница полярный-неполярный? Все это влияет на методику измерений. И перед тем как проверить конденсатор мультиметром нужно понимать, какой именно тип устройства перед нами находится.
Как проверить конденсатор с помощью приборов
Прежде всего, выполняется внешний осмотр конденсатора на предмет трещин и вздутия. Нередко причиной неисправности является внутренние повреждения электролитов, что в свою очередь приводит к увеличению давления внутри корпуса, и как следствие вздутие оболочки.
Если конденсатор с виду цел, то без специальных приборов трудно сказать работоспособный он или нет. Поэтому в этом случае выполняется проверка конденсатора мультиметром. Этот простой прибор позволит нам определить емкость конденсатора и наличие обрывов внутри.
Перед тем, как приступить к проверке, нужно определиться какого рода конденсатор находится перед вами: полярный или неполярный. Помните, выше я писал, что это будет важно при измерениях.
Так вот при выполнении проверки полярных конденсаторов нужно соблюдать полярность и подключать щупы к ним соответственно: плюсовой к ножке «+», а минусовой к ножке «-».
При проверке неполярных «кондеров» полярность в подключении соблюдать не нужно, однако здесь есть одна особенность на которую нужно обращать внимание. Для проверки целостности кондера переключатель мультиметра нужно выставить на отметку 2 МОм. Если будет меньше то на дисплее будет отображаться — «1» (единица), можно ложно подумать что конденсатор неисправен.
Проверяем конденсатор мультиметром в режиме омметра
В нашей сегодняшней статье будем проверять четыре конденсатора: два полярных (диэлектрических) и два неполярных (керамических). Перед тем как выполнять проверку необходимо разрядить конденсатор. Для этого нужно замкнуть его выводы на металлический предмет.
Переключатель мультиметра устанавливаем в секторе измерения сопротивления (режим омметра). Режим сопротивления даст нам понять есть ли внутри кондера обрыв или короткое замыкание.
Проверим сначала полярные кондеры номиналом 5.6 мкФ и 3.3 мкФ соответственно (они мне достались от неисправных энергосберегающих лампочек).
Для этого выставляем переключатель на отметку 2 МОм и касаемся щупами выводов конденсатора. Как только щупы будут подключены, на дисплее можно увидеть стремительно растущее сопротивление.
Почему так происходит? Почему на дисплее можно наблюдать « плавающие значения сопротивления »? Все дело в том, что при касании щупами выводов к конденсатору прикладывается постоянное напряжение (батарейка прибора) – он начинает заряжаться. Чем дольше мы держим щупы, тем больше конденсатор заряжается, и сопротивление плавно увеличивается. Скорость заряда напрямую зависит от емкости. Спустя время конденсатор зарядится и его сопротивление будет равно «бесконечности», а на дисплее мультиметра мы увидим «1». Это показатель того что конденсатор исправен.
Не все удается передать фотографиями, но для экземпляра 5.6 мкФ сопротивление стартует с 200 кОм и плавно растет, пока не перевалит отметку в 2 МОм. Длится весь процесс, примерно 10 сек.
Со вторым конденсатором номиналом 3.3 мкФ происходит все аналогично. Начинает заряжаться, сопротивление растет, как только показания превысят отметку 2 МОм на дисплее можно увидеть «1» что соответствует «бесконечности». По времени процесс длится меньше, примерно 5 сек.
В случае со второй неполярной парой конденсаторов делаем все аналогично. Касаемся щупами выводов и наблюдаем за изменением сопротивления на приборе.
Первый из них кондер «104К» его сопротивление сначала немного снижается (до 900 кОм) потом начинает плавно расти, пока не перевалит за отметку. Заряжается дольше, чем остальные около 30 сек.
Второй пример проверка конденсатора мультиметром типа МБГО емкостью 1 мкФ. На фото можно видеть, как изменяется сопротивление при проверке. Только в этом случае переключатель нужно установить на отметку 20 МОм (сопротивление большое, на 2-ке очень быстро заряжается).
Сперва нужно снять заряд, для этого закорачиваем выводы отверткой:
На дисплее прибора наблюдаем как начинает изменятся сопротивление:
По результатам данной проверки можно сделать вывод, что все варианты конденсаторов находятся в исправном состоянии.
Как проверить емкость конденсатора мультиметром
Одной из основных характеристик любого конденсатора является «емкость». Для того чтобы понять рабочий конденсатор или нет необходимо измерить данную характеристику и сравнить показатели с теми которые указаны производителем на корпусе устройства. Если под рукой есть хороший прибор, то измерить емкость конденсатора мультиметром не составит труда. Но здесь есть свои нюансы.
Если пытаться измерить емкость с помощью щупов (как в моем случае с мультиметром DT9208A) то у Вас ничего не получится. Дело в том, что емкость нельзя проверить, просто подключив щупы к конденсатору. Так как проверить емкость конденсатора мультиметром и можно ли вообще это сделать?
Для этой цели на мультиметре есть специальные разъемы «гнезда» -CX+. «-» и «+» означают полярность подключения.
Давайте проверим емкость керамического кондера «104К». Напомню, маркировка 104 расшифровывается: 10 – значение в пФ, 4-количество нулей (100000 пФ = 100 нФ = 0.1 мкФ).
Выставляем переключатель мультиметра на необходимую отметку — ближайшее большее значение (я установил на отметке 200 нФ). Берем конденсатор и вставляем ножки в разъемы мультиметра -CX+. Какой стороной вставлять не важно, так как данный кондер — неполярный. На дисплее мы видим значение емкости – 102.6 нФ. Что соответствует номинальным характеристикам.
Следующий экземпляр электролитический конденсатор с номинальной емкостью 3.3 мкФ. Переключатель выставляем на отметке 20 мкФ. Теперь нужно правильно «воткнуть» кондер в разъемы с соблюдением полярности. Для этого нужно знать какая ножка «плюс», а какая «минус». Узнать это не составит труда, так как производитель уже позаботился об этом. Если присмотреться на корпусе видно специальная отметка — черная полоса с обозначением нуля. Со стороны этой ножки располагается «минус», с противоположной «плюс».
Вставляем наш конденсатор в посадочные гнезда мультиметра. На фото видно, что емкость данного экземпляра равна 3.58 мкФ, что соответствует номинальным параметрам. Таким простым способом выполняется проверка конденсатора мультиметром.
Другой пример кондер емкостью 5.6 мкФ. При проверке данный экземпляр показал емкость 5.9 мкФ, что тоже соответствует норме.
Кондер МБГО, емкостью 1 мкФ показал результат 1.08, что также соответствует норме.
Если при замерах окажется что емкость сильно отличается от номинальных значений (или вовсе равна нулю) это значит, что конденсатор неисправен и его нужно заменить.
Как проверить конденсатор тестером (стрелочным прибором)
Друзья завалялся у меня в гараже измерительный прибор времен СССР — Ц4313 . Он вполне рабочий, поэтому я решил поэкспериментировать и выполнить проверку им.
Почему я решил использовать его? Методика проверки не изменяется но, аналоговыми приборами (стрелочными) работу выполнять наглядно проще. Проще в плане визуального отслеживания. Здесь придется наблюдать не за изменением цифр на дисплее, а за отклонением стрелки прибора. Причем стрелка будет отклоняться сначала в одну сторону, затем в другую.
Чтобы настроить тестер Ц4313 на измерение сопротивления нужно нажать кнопку «rx». Вставляем щупы прибора в рабочие контакты. Для начала берем конденсатор и разряжаем его. Затем касаемся щупами контактов кондера. Если конденсатор исправный стрелка сначала отклонится , а затем по мере заряда плавно возвратится в исходное (нулевое) положение. Скорость перемещения стрелки зависит от того какой емкости испытуемый конденсатор.
Если стрелка прибора не отклоняется или отклонилась и зависла в определенном положении, это говорит о том, что конденсатор неисправный.
На этом все дорогие друзья, надеюсь, данная статья, как проверить конденсатор мультиметром цифровым и стрелочным была для вас интересной и раскрыла все вопросы. Если что, не стесняйтесь писать комментарии. Также особая благодарность за РЕПОСТ в соц.сетях.
Как проверить конденсатор мультиметром
Мультиметр – это электроизмерительное устройство с различными функциями. С его помощью можно проверять напряжение, силу тока, а также производные от этих величин – сопротивление и емкость. С помощью мультиметра можно проверить и работоспособность различных электронных компонентов. В этой статье мы с вами узнаем, как проверить мультиметром конденсатор и его емкость.
Конденсатор и емкость
Конденсаторы используются практически во всех микросхемах и являются частой причиной ее неработоспособности. Так что в случае неисправности устройства следует проверять в первую очередь именно этот элемент.
Виды конденсаторов по типу диэлектрика:
- вакуумные;
- с газообразным диэлектриком;
- с неорганическим диэлектриком;
- с органическим диэлектриком;
- электролитические;
- твердотельные.
Основные неисправности конденсаторов:
- Электрический пробой. Обычно вызван превышением допустимого напряжения.
- Обрыв. Связан с механическими повреждениями, встрясками, вибрациями. Причиной может служить некачественная конструкция и нарушение эксплуатационных условий.
- Повышенные утечки. Сопротивление между обкладками изменяется, и это приводит к низкой емкости конденсатора, которая не способна сохранять заряд.
Все эти причины приводят к тому, кто конденсатор становится непригодным для дальнейшего использования.
В данном случае присутствует протечка электролитаПеред проверкой конденсатора
Т.к. конденсаторы накапливают электрический заряд, перед проверкой их следует разряжать. Это можно сделать отверткой – жалом нужно прикоснуться к выводам, чтобы образовалась искра. Затем можно прозванивать компонент. Проверку конденсатора можно сделать как мультитестером, так и при помощи лампочек и проводов. Первый способ является более надежным и дает более точные сведения об электронном элементе.
До начала проверки следует осмотреть конденсатор. Если он имеет трещины, нарушение изоляции, подтеки или вздутие, поврежден внутренний электролит и прибор сломан. Его нужно поменять на работающее устройство. При отсутствии внешних повреждений придется использовать мультиметр.
Перед проведением измерений нужно определить вид конденсатора – полярный или неполярный. У первого обязательно должна соблюдаться полярность, иначе прибор выйдет из строя. Во втором случае определение плюсового и минусового выходов не требуется, но измерения будут проводиться по другой технологии.
Определить полярность можно по метке на корпусе. На детали должна быть черная полоса с обозначением нуля. Со стороны этой ножки расположен отрицательный контакт, а с противоположной – положительный.
Измерение емкости в режиме сопротивления
Переключатель мультиметра следует установить в режим сопротивления (омметра). В этом режиме можно посмотреть, есть ли внутри конденсатора обрыв или короткое замыкание. Для проверки неполярного конденсатора выставляется диапазон измерений 2 МОм. Для полярного изделия ставится сопротивление 200 Ом, так как при 2 МОм зарядка будет производиться быстро.
Сам конденсатор нужно отпаять от схемы и поместить его на стол. Щупами мультиметра нужно коснуться выводов конденсатора, соблюдая полярность. В неполярной детали соблюдать плюс и минус не обязательно.
Измерение в режиме сопротивленияКогда щупы прикоснутся к ножкам, на дисплее появится значение, которое будет возрастать. Это вызвано тем, что мультитестер будет заряжать компонент. Через некоторое время значение на экране достигнет единицы – это значит, что прибор исправен. Если при проверке сразу же загорается 1, внутри устройства произошел обрыв и его следует заменить. Нулевое значение на дисплее говорит о том, что внутри конденсатора произошло короткое замыкание.
Если проверяется неполярный конденсатор, значение должно быть выше 2. В ином случае прибор является не рабочим.
Аналоговое устройство
Вышеописанный алгоритм подходит для цифрового тестера. При использовании аналогового устройства проверка производится еще проще – нужно наблюдать лишь за ходом стрелки. Щупы подключаются так же, режим – проверка сопротивления. Плавное перемещение стрелки свидетельствует о том, что конденсатор исправен. Минимальное и максимальное значение при подключении говорят о поломке электронной детали.
Важно отметить, что проверка в режиме омметра производится для деталей с емкостью выше 0Ю25 мкФ. Для меньших номиналов используются специальные LC-метры или тестеры с высоким разрешением.
Как измерить ёмкость конденсатора мультиметром?
Ёмкость — это мера способности конденсатора накапливать заряды. Ёмкость измеряется в фарадах, по имени почетного члена Петербургского университета английского физика Майкла Фарадея.
Что такое емкость?
Если удалить одиночный электропроводник бесконечно далеко, исключить влияние заряженных тел друг на друга, то потенциал удаленного проводника станет пропорционален заряду. Но у отличающихся по размеру проводников потенциалы не совпадают.
Единицей емкости конденсатора в СИ является фарад. Коэффициент пропорциональности обозначают буквой С — это емкость, на которую влияет размер и внешняя структура проводника. Материал, фазовое состояние вещества электрода роли не играют — заряды распределяются на поверхности. Поэтому в международных правилах СГС ёмкость измеряется не в фарадах, а в сантиметрах.
Уединенный шар радиусом 9 млн км (1400 радиусов Земли) содержит 1 фарад. Отдельный проводящий элемент удерживает заряды в недостаточных для применения в технике количествах. По технологиям XXI в. создается ёмкость конденсаторов с единицами измерений выше 1 фарада.
Накапливать требуемое для работы электронных схем количество электричества способна структура из минимум 2 электродов и разделяющего диэлектрика. В такой конструкции положительные и отрицательные частицы взаимно притягиваются и сами себя держат. Диэлектрик между электронно-позитронной парой не допускает аннигиляции. Подобное состояние зарядов называется связанным.
Раньше для измерения электрических величин применяли громоздкое оборудование, не отличающееся точностью. Теперь, как измерить ёмкость тестером, знает даже начинающий радиолюбитель.
Маркировка на конденсаторах
Знать характеристики электронных приборов требуется для точной и безопасной работы.
Определение ёмкости конденсатора включает измерение величины приборами и чтение маркировки на корпусе. Обозначенные значения и полученные при измерениях отличаются. Это вызвано несовершенством производственных технологий и эксплуатационным разбросом параметров (износ, влияние температур).
На корпусе указана номинальная емкость и параметры допустимых отклонений. В бытовых устройствах используют приборы с отклонением до 20%. В космической отрасли, военном оборудовании и в автоматике опасных объектов разрешают разброс характеристик в 5-10%. Рабочие схемы не содержат значений допусков.
Номинальная емкость кодируется по стандартам IEC — Международной электротехнической комиссии, которая объединяет национальные организации по стандартам 60 стран.
Стандарт IEC использует обозначения:
- Кодировка из 3 цифр. 2 знака в начале — количество пФ, третий — число нулей, 9 в конце — номинал меньше 10 пФ, 0 спереди — не больше 1 пФ. Код 689 — 6,8 пФ, 152 — 1500 пФ, 333 — 33000 пФ или 33 нФ, или 0,033 мкФ. Для облегчения чтения десятичная запятая в коде заменяется буквой “R”. R8=0,8 пФ, 2R5 — 2,5 пФ.
- 4 цифры в маркировке. Последняя — число нулей. 3 первых — величина в пФ. 3353 — 335000 пФ, 335 нФ или 0,335 мкФ.
- Использование букв в коде. Буква µ — мкФ, n — нанофарад, p — пФ. 34p5 — 34,5 пФ, 1µ5 — 1,5 мкФ.
- Планерные керамические изделия кодируют буквами A-Z в 2 регистрах и цифрой, обозначающей степень числа 10. K3 — 2400 пФ.
- Электролитические SMD приборы маркируются 2 способами: цифры — номинальная емкость в пФ и рядом или во 2 строчке при наличии места — значение номинального напряжения; буква, кодирующая напряжение и рядом 3 цифры, 2 определяют емкость, а последняя — количество нулей. А205 значит 10 В и 2 мкФ.
- Изделия для поверхностного монтажа маркируются кодом из букв и чисел: СА7 — 10 мкФ и 16 В.
- Кодировки — цветом корпуса.
Маркировка IEC, национальные обозначения и кодировки брендов делают запоминание кодов бессмысленным. Разработчикам аппаратуры и мастерам-ремонтникам требуются справочные источники.
Вычисление с помощью формул
Вычисление номинальной емкости элемента требуется в 2 случаях:
- Конструкторы электронной аппаратуры рассчитывают параметр при создании схем.
- Мастера при отсутствии конденсаторов подходящей мощности и емкости используют расчет элемента для подбора из доступных деталей.
RC цепи рассчитывают с применением величины импеданса — комплексного сопротивления (Z). Rа — потери тока на нагревание участников цепи. Ri и Rе — учитывают влияние индуктивности и ёмкости элементов. На выводах резистора в RC цепи напряжение Uр обратно пропорционально Z.
Тепловое сопротивление увеличивает потенциал на нагрузке, а реактивное уменьшает. Работа конденсатора на частотах выше резонансных, когда растет реактивная составляющая комплексного сопротивления, приводит к потерям напряжения.
Частота резонанса обратно пропорциональна способности накапливать заряд. Из формулы для определения Fр вычисляют, какие значения Ск (емкости конденсатора) требуются для работы цепи.
Для расчета импульсных схем используют постоянную времени цепи, определяющую воздействие RC на структуру импульса. Если знают сопротивление цепи и время заряда конденсатора, по формуле постоянной времени вычисляют емкость. На истинность результата влияет человеческий фактор.
Мастера используют параллельные и последовательные соединения конденсаторов. Формулы расчета обратны формулам для резисторов.
Последовательное соединение делает емкость меньше меньшей в соединении элементов, параллельная схема суммирует величины.
Как измерить ёмкость конденсатора мультиметром?
Измеряя параметры, конденсатор предварительно разряжают, замкнув выводы между собой отверткой с изоляцией на ручке. Если этого не сделать, маломощный мультиметр выйдет из строя.
Ответ на вопрос, как проверить емкость конденсатора мультиметром с режимом “Сх” такой:
- Включить режим “Сх” и подобрать предел замера — 2000 пФ — 20 мкФ в стандартном приборе;
- Вставить конденсатор в гнезда в приборе или приложить щупы к выводам конденсатора и посмотреть значение на шкале прибора.
Амперовольтметром или мультиметром определяют наличие внутри корпуса короткого замыкания или обрыва.
Полярный конденсатор включают в цепь прибора с учетом направления тока. Электроды изделия производители маркируют. Конденсатор, рассчитанный для напряжения 1-3 В, при обратном токе выше нормы выйдет из строя.
Перед тем как измерить характеристики, полярный электролитический конденсатор выпаивают из платы. Включают мультиметр в режим измерения сопротивления или проверки полупроводников. Прикладывают щупы к электродам полярного конденсатора — плюс к плюсу, минус к минусу. Исправная емкость покажет плавный рост сопротивления. По мере заряда ток уменьшается, ЭДС растет и достигает напряжения источника питания.
Обрыв в конденсаторе будет выглядеть на мультиметре как бесконечное сопротивление. Прибор не отреагирует или стрелка на аналоговом экземпляре едва шевельнется.
При пробое элемента измеряемый параметр не соответствует номинальному значению в меньшую сторону, пропорционально величине пробоя.
Если задаться вопросом, как измерить мультиметром комплексное или эквивалентное последовательное сопротивление (ESR конденсатора), то без приставки сделать это проблематично. Реактивные свойства конденсатор проявляет при высокочастотном токе.
Как проверить конденсатор мультиметром
Одной из самых распространённых причин неисправности электронной техники, это выход из строя конденсатора. Любая электроника, бытовая техника и цифровые процессоры все имеют в своем оборудовании конденсаторы и достаточно одной незначительной неисправности конденсатора, что бы весь механизм прекратил выполнять свои функции.
Как проверить конденсатор мультиметромЯ рад снова видеть все вас на страницах сайта «Электрик в доме». Сегодня мы познакомимся и изучим одну из самых используемых деталей в электронике – конденсатор. История создания первого конденсатора относит нас назад в 1745 год («лейденская банка»).
В наше время, в век технологий нас со всех сторон окружает электротехнические машины и оборудование. Вы конечно хорошо знакомы с конденсатором и если не сталкивались технически, то слышали о нем однозначно.
Одной из самых распространённых причин неисправности электронной техники, это выход из строя конденсатора. Любая электроника, бытовая техника и цифровые процессоры все имеют в своем оборудовании конденсаторы и достаточно одной незначительной неисправности конденсатора, что бы весь механизм прекратил выполнять свои функции.
Вот почему, в случае неисправности оборудования, первым делом необходимо обратить ваше внимание на работоспособность в схеме конденсаторов. И сделать это можно только при помощи электронного прибора, так как визуально определить состояние невозможно, если нет внешних повреждений.
Для этих целей и предназначен недорогой прибор мультиметр, выполняющий многие функции. Об одной из них — проверки сопротивления, я уже знакомил вас в своей предыдущей статье. Этот же материал предназначен для изучения методики проверки конденсатора мультиметром.
С этой проблемой ко мне обратился один из моих подписчиков. Следуя уже своей традиции, я как всегда, буду излагать материал просто и доступно для легко понимания всем желающим.
Проверка конденсатора мультиметромДля лучшего усвоения материала, начнем с небольшой теории:
- Устройство и принцип работы мультиметра;
- Виды и особенности конденсаторов.
Устройство (прибор) предназначенное для накопления электрического заряда – это основное определение конденсатора. Конструктивно он состоит из определенного корпуса, внутри которого расположены две параллельные металлические пластины. Между пластинами установлена прокладка (диэлектрик). Площадь пластин напрямую влияет на величину электрического заряда. Чем больше площадь пластин, тем больше величина накопленного заряда.
Конденсаторы могут быть двух видов: полярными и неполярными.
Конденсаторы полярные.
Определить какой вид конденсаторов достаточно не сложно, уже название вам дает подсказку, что «полярные» должны иметь полярность, то есть иметь (+ плюс) и (- минус). Их подключение в электросхему строго регламентировано в соответствие полярности. Плюс подключается к плюсу, минус к минусу. При нарушении этого правила — конденсатор не будет работать, а вместе с ним и вся схема.
Все полярные конденсаторы заполнены электролитом (твердым или жидким), поэтому их классифицируют как электролитические. Их физические параметры (емкость) находится в следующих параметрах 0.1 ÷ 100000 мкФ.
Конденсаторы неполярные
Неполярные конденсаторы, как вы уже поняли, не имеют полярности и не требуют строгого соблюдения условий подключений. У них нет ни плюса, ни минуса. Роль диэлектрика у них могут выполнять: бумага, стекло, керамика и слюда. Их физические параметры (емкость) незначительна и находится в следующем диапазоне (от нескольких микрофарад до нескольких пикофарад).
Забегая вперед, сразу хочу ответить на ваши вопросы, зачем нам с вами необходимо знать эти технические тонкости. Это очень важно, так как к каждому типу конденсаторов применима своя методика проверки мультиметром. И пред началом проверки, мы должны первым делом, установить тип конденсатора. Это очень важный момент. Прошу вас обратить на это внимание!
Как проверить конденсатор с помощью приборовЛюбую проверку конденсаторов необходимо начинать с внешнего осмотра, на наличие внешних признаков повреждений корпуса (трещин, вздутия). Достаточно часто происходит повреждение электролита, что приводит к повышению давления на внутреннюю поверхность оболочки и последующее ее вздутие.
После того как визуальный осмотр окончен и мы не установили внешних повреждений конденсатора, необходимо продолжить проверку специальным прибором, в нашем случае мультиметром. Этот простейший прибор поможет нам установить емкость конденсатора и обрывы внутри.
Перед проверкой незабываем, установить тип конденсатора, более подробно об этом написано выше. Продолжаем процесс проверки с соблюдением полярности, для этого подключаем плюсовой щуп к плюсовому контакту конденсатора и соответственно минусовой щуп к контакту минус.
Проверяя неполярный конденсатор, подключение мультиметра проводим произвольно без соблюдения правила полярности. Единственное, что здесь необходимо выполнить, это выставить переключатель мультиметра на отметку 2 Мом. Это важно, так как при меньшем значении дисплей прибора отобразит — «1» (единицу), что укажет на неисправность конденсатора.
Проверяем конденсатор мультиметром в режиме омметраДля примера мы свами выполним проверку четырех конденсаторов: два полярных (диэлектрических) и два неполярных (керамических).
Но перед проверкой мы должны обязательно разрядить конденсатор , при этом достаточно замкнуть его контакты при помощи любого металла.
Для того чтобы перейти в режим (омметра) сопротивления, мы перемещаем переключатель в группу измерения сопротивления, для того чтобы установить наличие обрыва или короткого замыкания.
Итак, первым делом проверим полярные кондиционеры (5.6 мкФ и 3.3 мкФ), установленных ранее у неработающих энергосберегающих лампочек
Разряжаем конденсаторы путем замыкания их контактов обычной отверткой. Вы можете использовать, удобный для вас, любой другой металлический предмет. Главное чтобы к нему плотно прилегали контакты. Это позволит нам получить точные показания прибора.
Следующим шагом выставляем переключатель на шкалу 2 МОм и соединяем контакты конденсатора и щупы прибора. Далее наблюдаем на дисплее быстро увиливающие параметры сопротивления.
Вы спросите меня, в чем дело и почему на дисплее мы наблюдаем «плавающие показатели» сопротивления? Это объяснить довольно просто, поскольку питание прибора (батарейка) имеет постоянное напряжение и за счет этого происходит зарядка конденсатора.
С течением времени конденсатор все больше и больше накапливает заряд (заряжается), тем самым увеличивая сопротивление. Емкость конденсатора влияет на скорость зарядки. Как только конденсатор получит полную зарядку, значение его сопротивления будет соответствовать значению бесконечности, а мультиметр на дисплее покажет «1». Это параметры рабочего конденсатора.
Нет возможности показать картинку на фотографии. Так для следующего экземпляра емкостью 5.6 мкФ, показатели сопротивления начинаются с 200 кОм и плавно возрастают до тех пор, пока не преодолеют показатель 2 МОм. Эта процедура не занимает более -10 сек.
Для следующего конденсатора емкостью 3.3 мкФ происходит все аналогично, но время процесса занимает менее — 5 сек.
Проверить следующую пару неполярных конденсаторов можно точно также по аналогии с предыдущими конденсаторами. Соединяем щупы прибора и контакты, следим за состоянием сопротивления на дисплее прибора.
Рассмотрим первый «150nК». Вначале его сопротивление несколько снизится примерно до 900 кОм, затем следует его плавное увеличение до определенной отметки. Время процесса занимает — 30 сек.
При этом на мультиметре модели МБГО переключатель устанавливаем на шкалу 20 МОм (сопротивление приличное, очень быстро идет зарядка)
Процедура классическая, снимаем заряд при помощи замыкания контактов отверткой:
Смотрим на дисплей, отслеживая показатели сопротивления:
Делаем вывод, что в результате проверки все представленные конденсаторы исправны.
Как проверить емкость конденсатораГлавный показатель, основная характеристика всех конденсаторов — это «емкость». Измеряя эту характеристику и сравнивая ее с указанными параметрами на корпусе, мы сможем выяснить, исправен кондиционер или нет. Есть приборы, которые легко позволят вам выполнить эту проверку.
Но можно ли проверить емкость конденсатора, как в нашем случае, мультиметром . Если вы будет проверять емкость при помощи щупов, вы не получите желаемого результата. Как же быть?
В этом нам помогут разъемы «гнезда» -CX+(«-» и «+» — это полярность подключения)
Для этого примера мы будем использовать кондер «150нФ». Маркировка 150nK:
Устанавливаем переключатель на отметку – ближайшее большее значение. В нашем случае это 200 нФ. Следующим шагом вставляем ножки конденсатора в разъемы -CX+. (не обращаем внимание на полярность, наш кондер неполярный). Дисплей показывает значение емкости– 160.3 нФ, что совпадает с номинальными показателями.
Продолжаем проверку конденсатора с емкостью 4700 пФ. Устанавливаем переключатель на шкале в положение 20 n.
Теперь вставляем ножки в разъёмы прибора и наблюдаем на дисплее параметры 4750 пФ. Вы это можете увидеть на фото. Параметры точно соответствуют параметрам заявленным производителем.
Запомните, если показатели сильно отличаются от номинальных параметров или вообще равны нулю, это говорит нам, что конденсатор не рабочий и его необходимо заменить.
Как проверить конденсатор при помощи прибора ESR-METR
Недавно я приобрел ESR-METR и я решил выполнить им ту же самую проверку.
Методика проверки очень проста. Прибор необходимо откалибровать, в моем случае в комплекте идет специальная перемычка, при помощи которой замыкается нужная группа контактов на колодке 1-4. Нажимаем кнопку и прибор автоматический калибруется, сообщив нам об этом на своем экране. После калибровки не забываем разрядить конденсатор и подключаем его к нужным нам разъемам. и производим измерение.
Каждый конденсатор обладает и паразитными свойствами, например сопротивлением. Из фото видно, что емкость конденсатора соответствует заявленным характеристикам, а также присутствует паразитное последовательное сопротивление номиналом 1.2 Ом, из за этого потери на данном конденсаторе составляют 0,5%.В нашем случает этот показатель великоват, что говорит о высыхании конденсатора, устанавливать его в схему не рекомендуется.На этом все. Если у Вас есть замечания или предложения по данной статье, прошу написать администратору сайта.
Как определить емкость конденсатора?
Основной характеристикой конденсатора является его емкость. Очень часто замеры емкости требуется проводить в электролитическом конденсаторе. В отличие от керамических и оксидных конденсаторов, которые редко выходят из строя (разве что в результате пробоя диэлектрика), электролитическим деталям свойственна потеря ёмкости из-за высыхания электролита. Поскольку работа электронных схем сильно зависит от емкостных характеристик, то необходимо знать, как определить емкость конденсатора.
Существуют разные способы определения ёмкости:
- по кодовой или цветной маркировке деталей;
- с помощью измерительных приборов;
- с использованием формулы.
Измерить емкость проще всего с помощью измерителя C и ESR. Для этого контакты измерительных щупов подсоединяют к выводам конденсатора, соблюдая полярность электролитических деталей. При этом результаты измерений выводятся на дисплей. (Рисунок 1). Радиолюбители, которым часто приходится делать измерения, приобретают такой прибор или изготавливают его самостоятельно.
Рис. 1. Измерение ёмкости с помощью измерителя C и ESRС использованием мультиметра и формул
Если в вашем распоряжении есть мультиметр с функцией измерения параметра «Cx», то измерить ёмкость конденсатора довольно просто: следует переключить прибор в режим «Сх», после чего выбрать оптимальный диапазон измерения, соответствующий параметрам конденсатора. Ножки конденсатора вставляем в соответствующее гнездо (соблюдая полярность подключения) и считываем его параметры.
Режим «Сх» в мультиметреМенее точно можно определить ёмкость с помощью тестера, у которого нет режима «Сх». Для этого потребуется источник питания, к которому подключают конденсатор по простой схеме (рис. 2).
Рис. 2. Схема подключения конденсатораАлгоритм измерения следующий:
- Измерьте напряжение источника питания щупами контактов измерительного прибора.
- Образуйте RC-цепочку с конденсатором и выводами резистора номиналом 1 – 10 кОм.
- Закоротите выводы конденсатора и подключите RC-цепочку к источнику питания.
- Замерьте напряжение образованной цепи с помощью мультиметра.
- Если напряжение изменилось, необходимо подогнать его до значения, близкого к тому, которое вы получили на выходе источника питания.
- Вычислите 95% от полученного значения. Запишите показатели измерений.
- Возьмите секундомер и включите его одновременно с убиранием закоротки.
- Как только мультиметр покажет значение напряжения, которое вы вычислили (95%), остановите секундомер.
- По формуле С = t/3R, где t – время падения напряжения, вычисляем ёмкость конденсатора в фарадах, если единицы измерения сопротивление резистора выразили в омах, а время в секундах.
Подчеркнём ещё раз, что точность измерения ёмкости данным способом не слишком высока, но определить работоспособность радиоэлемента на основании такого измерения вполне возможно. Некоторые узлы электронных приборов исправно работают, если есть небольшие отклонения от номинальных емкостей, главное, чтобы не было электрического пробоя.
Таким же методом можно вычислить параметры керамического радиоэлемента. Для этого необходимо подключить RC-цепочку через трансформатор и подать переменное напряжение. Значение ёмкости в данном случае определяем по формуле: C = 0.5*π*f*Xc , где f – частота тока, а Xc – ёмкостное сопротивление.
Осциллографом
С приемлемой точностью можно определить ёмкость конденсатора с помощью цифрового или обычного электронного осциллографа. Принцип похож на метод измерения ёмкости тестером. Разница только в том, что не потребуется секундомер, так как с высокой точностью время зарядки конденсатора отображается на экране осциллографа. Если применить генератор частоты и последовательную RC-цепочку (рис. 4), то ёмкость можно рассчитать по простой формуле: C = UR / UC* ( 1 / 2*π*f*R ).
Рис. 4. Простая схемаАлгоритм вычисления простой:
- Подключите осциллограф к электрической схеме. При подключении щупов прибора к электролитам соблюдайте полярность электрического тока.
- Измерьте амплитуды напряжений на конденсаторе и на резисторе.
- Путём подстройки частоты генератора добивайтесь, чтобы значения амплитуд на обоих элементах сравнялись (хотя бы приблизительно).
- Подставьте полученные значения в формулу и вычислите ёмкость конденсатора.
При измерении ёмкостей неполярных конденсаторов часто вместо RC-цепочки собирают мостовую схему с частотным генератором (показано на рис. 5), а также другие сборки. Сопротивления резисторов подбирают в зависимости от параметров номинальных напряжений измеряемых деталей. Ёмкость вычисляют из соотношения: r4 / Cx = r2 / C.
Рисунок 5. Мостовая схемаГальванометром
При наличии баллистического гальванометра также можно определить ёмкость конденсатора. Для этого используют формулу:
C = α * Cq / U , где α – угол отклонения гальванометра, Cq – баллистическая постоянная прибора, U – показания гальванометра.
Из-за падения сопротивления утечки ёмкость конденсаторов уменьшается. Энергия теряется вместе с током утечки.
Описанные выше методики определения ёмкости позволяют определить исправность конденсаторов. Значительное отклонение от номиналов говорит, что конденсаторы неисправны. Пробитый электролитический радиоэлемент легко определяется путём измерения сопротивления. Если сопротивление стремится к 0 – изделие закорочено, а если к бесконечности – значит, есть обрыв.
Следует опасаться сильного электрического разряда при подключениях щупов к большим электролитам. Они могут накапливать мощный электрический заряд от постоянного тока, который молниеносно высвобождается током разряда.
По маркировке
Напомним, что единицей емкости в системе СИ является фарада ( обозначается F или Ф). Это очень большая величина, поэтому на практике используются дольные величины:
- миллифарады (mF, мФ ) = 10 -3 Ф;
- микрофарады (µF, uF, mF, мкФ) = 10 -3 мФ = 10 -6 Ф;
- нанофарады (nF, нФ) = 10 -3 мкФ =10 -9 Ф;
- пикофарады (pF, mmF, uuF) = 1 пФ = 10 -3 нФ = 10 -12 Ф.
Мы перечислили название единиц и их сокращённое обозначение потому, что они часто встречаются в маркировке крупных конденсаторов (см. рис. 6).
Рис. 6. Маркировка крупных конденсаторовОбратите внимание на маркировку плоского конденсатора (второй сверху): после трёхзначной цифры стоит буква М. Данная буква не обозначает единицы измерения «мегафарад» – таких просто не существует. Буквами обозначены допуски, то есть, процент отклонения от ёмкости, обозначенной на корпусе. В нашем случае отклонение составляет 20% в любую сторону. Надпись 102М на большом корпусе можно было бы написать: 102 нФ ± 20%.
Теперь расшифруем надпись на корпусе третьего изделия. 118 – 130 MFD обозначает, что перед нами конденсатор, ёмкость которого находится в пределах 118 – 130 микрофарад. В данном примере буква М уже обозначает «микро». FD – обозначает «фарады», сокращение английского слова «farad».
На этом простом примере видно, какая большая путаница в маркировке. Особенно запутана кодовая маркировка, применяемая для крохотных конденсаторов. Дело в том, что можно встретить конденсаторы, маркировка которых выполнена старым способом и детали с современной кодировкой, в соответствии со стандартом EIA. Одни и те же символы можно по-разному интерпретировать.
По стандарту EIA:
- Две цифры и одна буква. Цифры обозначают ёмкость, обычно в пикофарадах, а буква – допуски.
- Если буква стоит на первом или втором месте, то она обозначает либо десятичную запятую (символ R), либо указывает на название единицы измерения («p» – пикофарад, «n» – нанофарад, «u» – микрофарад). Например: 2R4 = 2.4 пФ; N52 = 0,52 нФ; 6u1 = 6,1 мкф.
- Маркировка тремя цифрами. В данном коде обращайте внимание на третью цифру. Если её значение от 0 до 6, то умножайте первые две на 10 в соответствующей степени. При этом 10 0 =1; 10 1 = 10; 10 2 = 100 и т. д. до 10 6 .
Цифры от 7 до 9 указывают на показатель степени со знаком «минус»: 7 условно = 10 -3 ; 8 = 10 -2 ; 9 = 10 -1 .
- 256 обозначает: 25× 10 5 = 2500 000 пФ = 2,5 мкФ;
- 507 обозначает: 50 × 10 -3 = 50 000 пФ = 0, 05 мкФ.
Возможна и такая надпись: «1B253». При расшифровке необходимо разбить код на две части – «1B» (значение напряжения) и 253 = 25 × 10 3 = 25 000 пФ = 0,025 мкФ.
В кодовой маркировке используются прописные буквы латинского алфавита, указывающие допуски. Один пример мы рассмотрели, анализируя маркировку на рис. 6.
Приводим полный список символов:
- B = ± 0,1 пФ;
- C = ± 0,25 пФ;
- D = ± 0,5 пФ или ± 0,5% (если емкость превышает 10 пФ).
- F = ± 1 пФ или ± 1% (если емкость превышает 10 пФ).
- G = ± 2 пФ или ± 2% (для конденсаторов от 10 пФ»).
- J = ± 5%.
- K = ± 10%.
- M = ± 20%.
- Z = от –20% до + 80%.
Изделия с кодовой маркировкой изображены на рис. 7.
Рис. 7. Пример кодовой маркировкиЕсли в кодировке отсутствует символ из приведённого выше списка, а стоит другая буква, то она может единицу измерения емкости.
Важным параметром является его рабочее напряжение конденсатора. Но так как в данной статье мы ставим задачу по определению ёмкости, то пропустим описание маркировки напряжений.
Отличить электролитический конденсатор от неполярного можно по наличию символа «+» или «–» на его корпусе.
Цветовая маркировка
Описывать значение каждого цвета не имеет смысла, так как это понятно из следующей таблицы (рис. 8):
Рис. 8. Цветовая маркировкаЗапомнить символику кодовой и цветовой маркировки довольно трудно. Если вам не приходится постоянно заниматься подбором конденсаторов, то проще пользоваться справочниками или обратиться к информации, изложенной в данной статье.
Как проверить конденсатор мультиметром не выпаивая
Как проверить электролитический конденсатор мультиметром
Все накопители заряда устроены примерно одинаково, только с применением разных материалов. Например, электролитические конденсаторы имеют две пластины из алюминиевой фольги (электроды), а между ними диэлектрик, материал с большим сопротивлением.
Электролитические неполярные конденсаторыВ качестве диэлектрика в электролитических конденсаторах используется бумага пропитанная электролитом, а для неполярных пленочных конденсаторов диэлектриком является керамика, стекло. Сопротивление бумаги ниже, чем керамики, поэтому электролитические конденсаторы имеют больший ток утечки (саморазряд) по сравнению с пленочными накопителями заряда.
Неисправность конденсаторовВ случае замыкания пластин выделяется тепло, испаряется электролит и происходит взрыв, который выворачивает все внутренности накопителя заряда. Чтобы электролитические конденсаторы не взрывались, на торце его корпуса выдавливается крест. При закипании электролита разрывается торец корпуса по линии креста и пары электролита выходят наружу, не разрывая корпус.
Поэтому на некоторых неисправных конденсаторах образуется вспучивание на торцах корпуса. По типу конденсаторы разделяется на полярные и неполярные. Полярные электролитические конденсаторы работают только при правильном подключении плюса и минуса к маркированным выводам конденсатора. В противном случае накопитель заряда выходит из строя.
Существуют также и электролитические неполярные конденсаторы, которые предназначены для работы в сетях переменного напряжения. Накопители пленочного типа относятся к неполярным емкостям. Соблюдение полярности в схемах для них не обязательно. Состояние конденсатора проверяется мультиметром на сопротивление или в режиме измерения емкости некоторыми мультиметрами (если имеется такой режим).
Проверка конденсаторов цифровым мультометромСопротивление диэлектрика электролитического конденсатора меняется от 100 Ком до 1 Мом. Перед проверкой электрического конденсатора нужно его разрядить. Если конденсатор небольшой емкости, то разрядить его можно, замкнув металлической отверткой вывода. Когда емкость большая и его номинальное напряжение высокое, разряжают накопитель через резистор 10 Ком, держа сопротивление инструментом с изолированными ручками.
Разряжать конденсаторы нужно в целях безопасности (особенно высоковольтные) и сохранения работоспособности мультиметра. Оставшееся напряжение на накопителе легко может вывести из строя измерительный прибор. При проверке электролитического полярного конденсатора мультиметром щупы прикладывают к его выводам в соответствии с полярностью, плюс прибора к плюсу накопителя.
Величину измеряемого сопротивления на приборе ставят от 100 Ком до 1 Мом, в зависимости от величины емкости. Для измерения большой емкости предел измерения сопротивления ставят 1 Мом. В начале измерения мультиметр покажет небольшое сопротивление, которое достигнет наибольшего значения при полной зарядке конденсатора. Если дисплей покажет ноль, значит неисправность ёмкости в коротком замыкании, а единица указывает на обрыв выводов.
Работоспособность ёмкости можно проверить, если зарядить ее от источника питания и замерить величину напряжения накопителя мультиметром. Если его рабочее напряжение 25 В, заряжают емкость от источника напряжением 9 – 12 В, в соответствии с полярностью. Показания на дисплее снимаются в момент прикосновения щупов к выводам ёмкости, потому что емкость начинает разряжаться через мультиметр, и напряжение будет падать.
Как проверить пусковой неполярный керамический конденсатор мультиметром
Электролитический неполярный конденсатор используется в схеме запуска однофазного и трехфазного электродвигателей в однофазной сети. Этот конденсатор можно проверить мультиметром таким же способом, как и электролитический полярный накопитель заряда. Для него полярность мультиметра, при проверке работоспособности не имеет значения. Проверяются они на тех же пределах измерения резисторов, что и полярные ёмкости.
Проверка конденсаторов мультиметром V 890D в режиме измерения емкостиКерамические емкости имеют диэлектрик с большим сопротивлением (керамика, стекло), поэтому при проверке емкости сопротивление должна быть более 2 Мом. Если сопротивление меньше, это говорит о неисправности ёмкости. Таким образом проверяются накопители заряда от 0,25 мкф и выше. Ёмкости ниже 0,25 мкф проверить обычным мультиметром невозможно. Для этих целей имеются измерители LC.
Хотя функцию измерения емкостей до 200 мкф можно встретить в некоторых типах мультиметров. Проверить конденсатор мультиметром не выпаивая из схемы, тоже возможно. При этом необходимо соблюдать полярность при прозвонке и не касаться щупов руками. Погрешность проверки ёмкостей установленных на плате будет выше, так как на заряд накопителя влияют элементы схемы.
Проверить работоспособность емкости приблизительно можно и на искру, т. е. зарядить рабочим напряжением ёмкость, и далее закоротить металлической отверткой с изолированной ручкой ее вывода. По силе разряда можно приблизительно судить о работоспособности ёмкости. При проверке накопителя на искру предназначенных для работы в сети 220 В и выше, нужно предпринимать меры безопасности и разряжать емкости через резистор 10 Ком.
Проверка конденсаторов стрелочным тестером Ц 4353Стрелочный тестер более удобен при проверке работоспособности накопителей. Стрелка тестера во время измерения емкости плавно перемещается по циферблату, что дает более правильную картину проверки, чем мелькающие цифры цифрового мультиметра. Неисправность накопителей заряда также можно определить визуально по вспучиванию торца корпуса, тёмным пятнам и прожженным отверстиям на элементе.
Как проверить работает ли конденсатор. Как можно проверить конденсатор мультиметром, не выпаивая его.
Начинающие радиолюбители неоднократно задают вопрос, как проверить исправность конденсатора ? Этот важный элемент электрической цепи при неисправности может спровоцировать отказ всей схемы или заставить глючить один из ее узлов.
Как проверить исправность конденсатора?
В процессе проверки конденсатора желательно выпаять и визуально осмотреть радиокомпонент на наличия видимых дефектов:
- вздутия, трещины;
- почернения, следы гари;
- вытекшего электролита.
Но, увы, конденсатор, который нормально выглядит, еще не является залогом того, что он полностью исправен.
Для более точной диагностики необходим мультиметр, желательно с возможностью проверки емкости конденсаторов. В таком устройстве необходимо всего лишь выбрать диапазон измерения необходимой емкости и подключить конденсатор в специальное гнездо (если оно имеется) или к щупам прибора.
На практике если показания мультиметра отличаются от номинала конденсатора +/-15% , можно считать такой конденсатор исправным. Подопытный наш образец имеет: 5,6 мкФ , показания прибора составляют: 5,8мкФ. Вердикт — конденсатор рабочий.
Как проверить электролитический конденсатор мультиметром?
Если функция измерения емкости не предусмотрена на вашем приборе, тогда простейшая проверка конденсатора мультиметром поможет выявить в нем замыкание, но потерю емкости измерить не получится. Для такой проверки необходимо мультиметр включить в режим измерения сопротивления и смотреть на показания индикатора. В первоначальный момент конденсатор накапливает заряд, и его сопротивление уменьшается, спустя определенное время сопротивление конденсатора начнет сильно увеличиваться.
По скорости изменения сопротивления субъективно можно судить о реальной емкости конденсатора.
Как проверить исправность конденсатора тестером?Вышеописанные действия с легкостью можно повторять не только цифровым, но и стрелочным прибором, в котором отклонение стрелки будет визуально даже лучше видно. Диапазон измерений прибора лучше выставить в пределах 2МОм . Но данный метод проверки способен выявить работоспособный конденсатор лишь емкостью не менее 1мкФ .
Как проверить конденсатор на плате?
Все предыдущие действия можно проводить на плате. Проверить конденсатор мультиметром не выпаивая таким способом не составит труда. Но надо знать, что другие радиокомпоненты будут влиять на показания прибора. Влияние будет зависеть уже от конкретной схемы прибора.
Перед тем, как проверить исправность конденсатора необходимо помнить:
- проверять только разряженные конденсаторы (замкнув на несколько секунд их выводы). Не соблюдая данную меру предосторожности есть шанс, что мультиметр выйдет из строя;
- не браться за металлические выводы щупов руками. Проводимость человеческого тела непосредственно влияет на показания прибора;
- лучше всего проверять любой конденсатор, который выпаян из основной схемы.
Вконтакте
Вышедшие из строя радиоэлементы можно обнаружить с помощью различных техник и приборов. Но всё становится не так просто, когда нам необходимо с помощью мультитестера протестировать емкостные элементы, так как обычным прозвоном таких элементов не обойтись.
Мультиметр – это электроизмерительный прибор универсального типа. С его помощью можно замерить параметры переменного и постоянного тока, мощность электрической сети, сопротивление сети, радиодеталей, емкости конденсаторов.
Мультиметры делятся на два типа: аналоговый и цифровой. В аналоговом мультиметре измеряемые параметры отображаются на стрелочной шкале. В цифровом мультиметре результаты отображаются на цифровом табло.
На корпусе мультиметра установлен переключатель, регулятор. Иногда таких регуляторов бывает две штуки. Служат они для переключения величин измерений, режимов работы прибора. Для измерения параметров используются щупы. Щуп – это провод, на одном конце которого имеется металлический наконечник, на втором – разъем.
Конденсаторы по используемым в конструкции материалам делятся на конденсаторы простые и диэлектрические. Конденсаторы бывают с постоянной фиксированной емкостью и с переменной емкостью. Основная единица измерения емкости – Фарад и производные от нее, нанофарады, микрофарады, пикофарады.
Конденсаторы имеют одно неприятное свойство. Со временем они теряют свою способность накапливать и удерживать энергию, емкость. В народе говорят, что они сохнут. В результате этого электросхема теряет свою работоспособность.
Сохнут даже не включенные в схему конденсаторы. Поэтому перед установкой в электросхему конденсатора его нужно обязательно проверять, совпадают ли указанные на нем номиналы с реально существующими на данный момент.
Обязательно проверяют так же и конденсаторы, уже включённые в электросхему. Делается такая проверка обычно раз в два года. Именно за этот срок конденсатор теряет свои свойства. Пришедшие в негодность конденсаторы необходимо выпаять из схемы и заменить новыми.
Как проверить конденсатор
Прежде всего, стоит просто осмотреть его. Со временем корпус конденсатора может разрушиться, ножки могут начать качаться. На электролитических конденсаторах могут появиться подтеки. Конденсатор может изменить свой цвет. Это означает, что произошел пробой конденсатора.
Пробой – это такое состояние детали, когда диэлектрик, лежащий между двумя разноименными прокладками, разрушился, со временем или под воздействием внешних причин, и между прокладками проскочил электрический заряд. В результате конденсатор пришел в негодность. В этом случае, как и в случае появления вышеописанных дефектов, конденсатор подлежит замене.
При визуальном осмотре не всегда удается вывить неисправности конденсатора. Поэтому воспользуемся мультиметром.
Подготовительные работы
Перед проверкой конденсатора его рекомендуется выпаять из электросхемы. Дело в том, что рядом стоящие детали могут вносить искажения в показания прибора. Выпаиваем конденсатор и разряжаем его. Разряжать конденсатор нужно для того, чтобы сбросить накопленную им во время работы емкость. Мощные конденсаторы, рассчитанные на 220 и 380 вольт, лучше разряжать с помощью пробника. Пробник – электропатрон с лампочкой и двумя проводами. Если конденсатор рассчитан на 220 вольт, то пробник может быть с одной лампочкой. Если на 380 вольт, то лучше в пробник поставить несколько лампочек, включенных последовательно. Лампочка на мгновение вспыхнет и погаснет. Конденсатор разрядился.
Для того чтобы разрядить менее мощные конденсаторы можно воспользоваться отверткой с изолированной ручкой. Жалом отвертки замыкаем концы конденсатора. Проскочит небольшая искорка. Конденсатора разряжен.
Проверки сопротивления, как метод выявление вышедших из строя деталей
Сначала проверим его на сопротивление. При этом надо учесть, что электролитические конденсаторы относятся к полярному типу конденсаторов. То есть одна из прокладок у него положительно заряжена, другая – отрицательно. На корпусе конденсатора они помечены знаками «+» и « — « Полярными бывают только электролитические конденсаторы.
Устанавливаем на мультиметре режим измерения сопротивления. Если проверяем электролитический конденсатор, плюсовым концом щупа прибора касаемся плюса конденсатора, а минусовым – минуса. Если конденсатор исправен, то сразу высветится минимальное значение сопротивления. Потом оно будет плавно возрастать до максимума. Сопротивление может так же возрасти и до бесконечности. Только при исправном конденсаторе рост его происходит плавно. Не рывками.
Если конденсатор неисправен, то в одном случае прибор не показывает никакого сопротивления, т.е. ноль. При этом прибор может пищать. Это означает, что конденсатор пробит, произошло короткое замыкание. Если при касании щупом ножек конденсатора, прибор сразу показывает бесконечность, то в конденсаторе есть обрыв. И в том и в другом случае конденсатор не пригоден для дальнейшего использования, и его следует заменить.
Остальные типы конденсаторов, они, кстати, относятся к неполярным конденсаторам, проверять на сопротивление проще. Не имеет значения, каким контактом вы коснетесь ножки конденсатора, плюсом или минусом. Для измерения сразу устанавливаем величину сопротивления в Мегаомах. Сопротивление неисправного конденсатора никогда не превышает величину в 2 Мегаома. У исправного сопротивление или равно, или больше этой величины.
Проверка на неисправности с помощью измерения ёмкости
Замеряя сопротивление конденсатора, мы только проверяем его исправность. Нам еще нужно определить его емкость — самый главный номинал конденсатора.
Учтите, что на пробой с помощью мультитестора можно проверить только те конденсаторы, емкость которых меньше 0,25 микрофарад.
Для этого устанавливаем соответствующий режим работы прибора с помощью регулятора. Задаем предел измерения. Он должен соответствовать номиналу проверяемого конденсатора. Если на корпусе мультиметра предусмотрены гнезда для установки конденсатора, то вставляем его в эти гнезда. Если нет, вставляем в гнезда концы щупа и касаемся ножек конденсатора. При проверке электролитического конденсатора соблюдаем полярность. При проверке переменного конденсатора замеряем максимальную и минимальную величины емкости.
Как мы видим, нет ничего сложного в проверке с помощью мультиметра работоспособности конденсатора и соответствии его заявленным номиналам. Мы уже говорили, что со временем конденсаторы утрачивают свою способность накапливать и распределять энергию. Они попросту высыхают. Поэтому нужно регулярно проверять свои электронные и электрические схемы и отбраковывать пришедшие в негодность конденсаторы. Этим вы обеспечите надежную и качественную работу своей аппаратуры.
Видео о проверке конденсатора мультиметром
В видео достаточно подробно объясняются нюансы проверки конденсаторов. Обязательно посмотрите его и узнаете новые методы проверки, о которых ещё не слышали.
Одной из наиболее распространенных причин неисправности радиоэлектронной техники является поломка одного или нескольких конденсаторов, которые составляют неотъемлемую часть ее платы. И чтобы выяснить, какой же именно конденсатор оказался слабым звеном, необходимо проверить их работоспособность. В этой статье описывается, как прозванивают конденсатор. Независимо от того, занимаетесь ли вы электронной аппаратурой профессионально или вы просто любитель, вам это вполне под силу. Для этого вам понадобится мультиметр. Ниже мы рассмотрим, мультиметром самостоятельно.
Виды конденсаторов и их проверка
Прежде чем разобраться, как мультиметром прозвонить конденсатор, давайте выясним, какие существуют. Все конденсаторы делятся на полярные и неполярные. Разница между ними заключается в том, что полярные, как можно догадаться из названия, имеют полярность. Проверять их нужно строго соответствующим образом: «плюс» к «плюсу», «минус» к «минусу», так как в противном случае они придут в негодность и могут взорваться. Все полярные конденсаторы являются электролитическими. Если конденсатор еще советского производства, то при взрыве электролит может попасть вам на кожу. В современных конденсаторах для таких случаев предусмотрено специальное сечение на поверхности, которое разрывается в определенном направлении и не дает проводящему веществу разбрызгаться в разные стороны.
Каким образом выполнить проверку, зависит от характера поломки, так как мультиметром проверить конденсатор на работоспособность можно двумя способами: в режиме замера сопротивления его диэлектрика и измеряя его емкость.
Пробой конденсатора
Наиболее распространенной проблемой конденсаторов является пробой диэлектрика. Диэлектрик — это слой материала между двумя проводниками внутри конденсатора, который имеет большое сопротивление, чтобы не допустить протекания тока между проводниками.
В исправном конденсаторе допускается небольшое пропускание тока через этот изолятор, это называется «ток утечки», и он ничтожно мал. При пробое диэлектрика его сопротивление резко падает, и, по сути, он превращается в обыкновенный проводник. Причиной такого пробоя, как правило, является резкий перепад напряжения в сети, к которой подключено оборудование. К характерным признакам пробоя относятся вздутие корпуса конденсатора, его потемнение и появление черных пятен. Перед тем как проверить конденсатор на исправность, осмотрите его визуально на предмет внешних дефектов.
Проверка неполярного конденсатора в режиме омметра
Проверка мультиметром сопротивления диэлектрика в конденсаторе осуществляется в режиме омметра. В неполярных конденсаторах диэлектрик может быть выполнен из стекла, керамики, бумаги или даже в виде воздушной прослойки. Таким образом обеспечивается крайне высокое сопротивление, и в исправном конденсаторе покажет фактически бесконечную величину. Если же электрический пробой имеет место, то уровень сопротивления будет в пределах нескольких Ом, максимум нескольких десятков.
Перед тем как мультиметром прозвонить конденсатор, включите на соответствующий режим, выставив на нем максимально возможный уровень измерения сопротивления. Подведите к выводам конденсаторы щупы мультиметра и посмотрите на табло: если конденсатор в порядке, то там должна появиться единичка, что говорит о том, что сопротивление выше установленного максимума. Если же на дисплее мультиметра высветится какое-то конкретное значение, меньшее чем измерительный максимум, то это может быть свидетельством неисправности проверяемого конденсатора.
Помните о технике безопасности и не держитесь одновременно и за щупы прибора и за выводы конденсатора, так как из-за меньшего сопротивления электрический ток пойдет через ваше тело.
Проверка полярного конденсатора в режиме омметра
По сравнению с неполярными конденсаторами в полярных сопротивление диэлектрика на порядок меньше, поэтому максимум сопротивления на мультиметре нужно выставлять соответствующее. Большинство таких конденсаторов имеют не менее 100 кОм сопротивления, особо мощные и до 1 мОма. Перед тем как мультиметром прозвонить конденсатор, замкните выводы накопителя, чтобы разрядить его полностью.
Установив соответствующий предел измерения, подключите щупы прибора к конденсатору, соблюдая при этом полярность. Электролитические конденсаторы имеют сравнительно большую емкость, и поэтому при подключении они тут же начинают заряжаться. В течение того времени, пока идет зарядка, сопротивление будет прямо пропорционально расти, что будет отображаться на экране прибора. Конденсатор можно считать исправным в большинстве случаев, когда сопротивление переваливает за отметку в 100 кОм.
Как мультиметром прозвонить конденсатор (аналоговый измеритель)
Ту же самую процедуру можно проделать при помощи аналогового (стрелочного) измерителя. Емкость электролитического конденсатора можно определить по скорости движения стрелки прибора в сторону максимума. Чем медленнее двигается стрелка, тем дольше заряжается конденсатор и тем, соответственно, больше его емкость. Если емкость составляет от 1 до 100 микрофарадов (мкФ), стрелка достигнет правого края циферблата практически моментально. При емкости от 1000 мкФ ее путь может занять несколько секунд.
Как мультиметром прозвонить конденсатор: инструкция по проверке емкости накопителя
Хотя конденсаторы часто проверяют омметром, более надежным способом выяснить его исправность считается измерение емкости. Повышенная утечка (в том числе из-за пробоя) в электролитическом конденсаторе приводит к частичной потере емкости, и ее действительная величина уже не соответствует заявленной на корпусе накопителя. Измеряя очень трудно определить данный дефект, для этого требуется измеритель емкости. Следует иметь в виду, что далеко не у всех мультиметров имеется такая функция, поэтому убедитесь в том, что ваш прибор способен выполнять такое измерение.
Прежде чем проверять таким образом электролитический конденсатор, его обязательно необходимо полностью разрядить. Заряженный конденсатор может попросту испортить ваш мультиметр. Особенно это касается полярных накопителей с высоким рабочим напряжением и большой емкостью. Как правило, такие конденсаторы используются в импульсных блоках в качестве фильтрующих накопителей.
Разрядка конденсатора
Для разрядки низковольтных конденсаторов достаточно просто закоротить их выводы, но в случае с высоковольтными и большой емкостью к выводам следует подключить 5-10-килоомный резистор. Резистор необходим, чтобы избежать возникновения искры во время замыкания. Помните о безопасности и ни в коем случае не прикасайтесь к выводам конденсатора, иначе замыкание произойдет на вас.
Обрыв конденсатора
Обрыв — довольно редкая для конденсаторов неисправность. Как правило, он возникает при механических повреждениях накопителя. В результате обрыва конденсатор полностью теряет свою накопительную функцию и имеет нулевую емкость. Фактически он превращается в два изолированных друг от друга проводника. Обнаружить обрыв при помощи омметра практически невозможно. Своеобразным симптомом обрыва в полярных электролитических конденсаторах при является отсутствие какого-либо изменения в показаниях прибора. Так как исправный неполярный конденсатор малой емкости имеет высокое сопротивление, проверить его на обрыв, таким образом, не представляется возможным. Единственный выход — измерение емкости.
Потеря емкости конденсатора
Для того чтобы определить, потерял ли конденсатор свою емкость, как ни странно, нужно замерить эту самую емкость. Выставьте на мультиметре соответствующий предел измеряемой емкости, разрядите проверяемый конденсатор, подключите щупы измерителя к соответствующим гнездам на нем, соблюдая правильную полярность, и наконец, прикоснитесь щупами к выводам конденсатора. Очевидно, что разобраться, как мультиметром проверить конденсатор кондиционера или любого другого бытового прибора на предмет потери емкости, не столь сложно.
Измерение напряжения конденсатора
Также, чтобы убедиться в исправности конденсатора, следует проверить, соответствует ли его реальное напряжение номинальному. Для этого вам потребуется режим вольтметра на вашем мультиметре и источник питания для зарядки конденсатора. Напряжение он должен выдавать меньше, чем то, на которое рассчитан накопитель. Подсоедините щупы к выводам и подождите немного, пока конденсатор полностью зарядится. Переведя прибор в режим вольтметра, проверьте выдаваемое накопителем напряжение. Значение, появившееся на экране мультиметра сразу же в начале тестирования, должно соответствовать заявленному.
Учтите, что при проверке накопитель теряет свой заряд и напряжение, соответственно, будет быстро падать, поэтому важно увидеть цифру, которая появилась в самом начале.
Есть и более простой способ проверки, но он действенен только для конденсаторов с достаточно большой емкостью. Зарядив накопитель полностью, возьмите обыкновенную отвертку с изолированной рукояткой, поднесите ее металлическую часть к его выводам и замкните их. Если в результате проскочила яркая искра, значит, элемент рабочий. Если же искра очень слабая или вовсе отсутствует, значит, конденсатор не держит заряд.
Заключение
В данной статье мы попытались разобрать все наиболее часто встречающиеся поломки конденсаторов, а также способы их проверки. Важный момент: многие начинающие мастера думают, как прозвонить конденсатор мультиметром, не выпаивая его из платы, однако в таком случае в процессе измерений будет иметь место очень большая погрешность. Единственный способ в таком случае — это визуальный осмотр на предмет наличия внешних признаков, таких как взбухание, потемнение или изменение цвета поверхности.
Чаще всего конденсаторы «летят» в таких видах бытовой техники, как стиральные машины, телевизоры, микроволновые печи и др. Поэтому если перед вами стала проблема, как прозвонить конденсатор кондиционера мультиметром, можете смело использовать нашу инструкцию.
Знаете – ходит одна байка: для проверки конденсатора мультиметр излишен. Школьники-плохиши обижали ребят послабее экстравагантным методом. Заряжали большую емкость розеткой, били током. Проверить работоспособность основных конденсаторов импульсного блока питания не составит труда. В персональном компьютере напряжение достигает 650 вольт, тронешь — шарахнет сильно, уши задымятся. Избегайте также лезть отверткой. Температура дуги столь высока, что желание узнать емкость конденсатора может обернуться неплохими практическими навыками сварщика. Для целей разрядки народные умельцы применяют патрон, снабженный лампочкой Ильича. Высокий реактивный импеданс спирали позволит легко решить задачу, как проверить конденсатор мультиметром.
Процесс проверки конденсатора
Увидите, проверить мультиметром конденсатор может каждый. Вопрос составлен требуемой точностью. Как говаривал Кашпировский: даже 100% не стопроцентны. В остальном, неполярный конденсатор, керамический конденсатор, разницы дают мало, многое определяет номинал. Однако сюрпризы способна преподнести гибридная технология. Понятно, извлечь SMD конденсатор — дело нешуточное (большинству не под силу). Тогда проводите косвенные тесты, например, сравнение показаний с заведомо рабочим устройством.
Проверка конденсатора
Ищущие шуток ошибаются. Простейшим методом проверки конденсатора называют натурное испытание. Причем в составе изначальной схемы. Потрудитесь:
Итак, инструкция по работе с тестером понадобится, цвет проводов покажет, куда тыкать. Кажется смешным, пока не попытаешься измерить высокое напряжение, нарезаемое импульсами крошечной микросхемой. Будут мешаться рядом лежащий корпус, провода, много другого. В таких условиях применяют специальные тончайшие щупы, набор лишен аксессуаров. Рекомендуем заранее потренироваться мультиметром вести работу. Особенно внимательны будьте с пределами. В большинстве современных тестеров имеются следующие варианты ведения работ:
Проверить емкость конденсатора мультиметром
Мультиметр
Проще проверить электролитический конденсатор мультиметром. Начать лучше с визуального контроля. Неисправные электролитические конденсаторы ощутимо раздуваются. На зарубежных моделях в верхней части цилиндра делается специальная крестовидная прорезь для гарантированной индикации неисправности. Внешние признаки молчат — нужно хватать мультиметр. Сначала элемент гарантированно разрядим. Обычно напряжение отсутствует, но совать голую отвертку, кусок провода — бестолковая идея. Будет неплохо создать своими руками разрядник, воспользовавшись патроном, ввинченной лампочкой. Штуковина повсеместно используется мастерами ремонта телевизоров, импульсных блоков питания. Пара слов касаемо процесса, когда конденсатор разряжен, можно хватать тестер.
На контактах мультиметра в некоторых режимах выходит напряжение 5 вольт. Необходимо, чтобы оценить параметры. Например, при измерении сопротивлений мультиметр просто делит напряжение на ток, получает искомую величину. Первая цифра известна – 5 вольт (определяет модель тестера). Аналогично проводится прозвонка. Подаются 5 вольт на оба конца. Некоторые стабилитроны пробиваются. Прозвонить такие элементы на цифровых мультиметрах не представляется возможным.
Зная указанные вещи, можно представить, что делать дальше:
- Подключаем в режиме измерения сопротивления клеммы к контактам разряженного конденсатора.
- Образуется зарядная цепь, сформированная внутренним сопротивлением мультиметра, емкости. Вначале ток равен бесконечности, потом падает, достигая нуля.
- Попутно сопротивлению будет расти от нуля до бесконечности.
Любой конденсатор, обладающий рабочим напряжением выше 5 вольт, проверим таким способом. Единственный фокус могут выкинуть полярные, например, электролитические емкости. Параллельно отслеживаем правильность расположения щупов (красного, черного). Взорваться, по идее ничего не должно… Теперь проводим анализ. Выяснили, годен ли конденсатор, имеются некоторые особенности. Обсуждали 5 вольт на щупах мультиметра, значение сильно зависит от модели. Можем измерить на концах заведомо исправного конденсатора: пока звоним контакты, емкость зарядится до нужной величины.
Итак, напряжение испытуемого образца сильно отличается от эталонных показаний (нужно заранее позаботиться о получении), наверняка сломалось. Начинаем измерять напряжение конденсатора, внутреннее сопротивление прибора уступает бесконечности. Потенциал начнет потихоньку падать, заметим на экране. Делаем два вывода:
- Начальное значение напряжение намного ниже эталона (выдает на контакты тестер, режим прозвонки) — внутри наличествует утечка. Параметр нормально составляет часть формулы добротности, если конденсатор быстро разряжается самостоятельно (без намеренного замыкания контактов), элемент отслужил.
- По скорости разряда можно оценить размер емкости конденсатора. Можно, конечно, заморочиться с определением констант, формулами, проще провести тест с заведомо рабочими емкостями, после чего свести результаты таблицей. Станет возможным судить о номинале конденсатора по одной скорости разряда. Процесс напоминает оценку давления при помощи тонометра. Ориентируемся на глаз. Величина емкости определена скоростью падения напряжения на дисплее мультиметра.
Разумеется, делается больше навскидку, отличить мкФ от мФ удастся без труда. Жаждущим большего, можем сообщить: за время RC заряд падает на 63%. Каждый волен посчитать уровень вольт для мультиметра. Вычислить приблизительно внутреннее сопротивление, исходя из полученных данных, проводить приблизительный замер номинала емкости конденсатора.
Имеется простой способ проверить емкость конденсатора мультиметром. Купить тестер, у которого наличествует соответствующая шкала. Надписана буквой F (Farad). Прикупив прибор, избегаем выдумывать. Просто берется за ножки конденсатор, примерно выставляется диапазон, мультиметр сам проделает работу, описанную выше. Проверить конденсатор мультиметром, не выпаивая, может не выйти. Параллельно емкости включены резисторы, дроссели другие элементы (включая конденсаторы), мешающие оценить исправность. Будь то электролитический конденсатор, пленочный конденсатор, любой другой. Разумеется, многое определят конкретные номиналы.
Можно провести сравнение. Допустим, на исправной технике показывает фиксированное значение, на поломанной – нечто другое. Необязательно неисправный конденсатор мультиметром на плате нашли — цепь разряда барахлит. Пусковой конденсатор авто — можно вынуть, проверить (предварительно обработав разрядником), для электроники методика не всегда действенна.
Конденсаторы бывают полярные (электролитические) и неполярные, например, керамические. В данном типе устройства в качестве диэлектрика можно использовать различные материалы, такие как стекло, воздух, бумага. Процесс измерения емкости устройства с керамическим диэлектриком такой:
- Необходимо переключить мультиметр в режим измерения сопротивления.
- Необходимо, чтобы на цифровом мультиметре был выставлен самый максимальный предел измерения.
- Настроив прибор, щупы приставляют к ножкам конденсатора.
Если деталь рабочая, то на приборе будет показана величина, которая превышает 2 мегаом. Если полученное сопротивление не превышает 2 МОм, он неработоспособен.
Важно отметить, что во время измерений не нужно прикасаться к щупам руками, так как это может существенно повлиять на качество измерений. Произойдет это по той причине, что сопротивление человеческого тела очень мало, а сопротивление утечки значительно его превышает. Следовательно, ток пройдет через тело, то есть путем меньшего сопротивления, а не через конденсатор. На мультиметре будет показано сопротивление человека, что к нашей проблеме никак не относится.
Измерить конденсатор можно также с помощью омметра, который является составляющей мультиметра. Видео проверки в таком случае будет немного отличаться от того видео, в котором проверяют работоспособность керамического конденсатора. Сопротивление утечки качественных полярных конденсаторов будет превышать 100МОм. Пошаговая инструкция:
- Перед началом проверки важно его предварительно разрядить. Разрядку можно осуществить, закоротив ножки устройства.
- На приборе необходимо выставить режим измерения, который отвечает величине сопротивления 100 кОм.
- Двумя выводами мультиметра необходимо притронуться к ножкам конденсатора. Важно, чтобы красный вывод прикасался к положительному контакту, а левый – к отрицательному.
- Если при первой проверке на экране значение сопротивления превысило величину 100кОм, деталь работает хорошо.
Мультиметр с измерением емкости необходим для того, чтобы определить такие неисправности, как потеря емкости или обрыв. Если произошел обрыв, конденсатор полностью теряет свою емкость. С помощью режима измерения емкости можно также проверить пусковой конденсатор. Померить емкость конденсатора можно следующим образом:
- Настраиваем мультиметр на режим измерения емкости.
- Подключаем щупы конденсатора к выводам мультиметра дважды (во время второго подключения выводы нужно поменять местами).
- Ждем результата измерений и сравниваем их.
- Если при первом измерении на экране ноль, а при втором – линия, это означает, что деталь рабочая. Если результаты измерений не отличаются, то неисправна.
Вышеописанные инструкции решают вопрос, который состоит в том, как прозвонить конденсатор. Прозвонка поможет определить потерю работоспособности детали и заменить ее.
Как измерить мультиметром ёмкость конденсатора?
Ответ мастера:
Чтобы измерить ёмкость конденсатора, можно воспользоваться любым цифровым мультиметром. Некоторые их этих инструментов могут измерить ёмкость непосредственно, а некоторые позволяют это сделать при использовании косвенных методов измерения.
Убедившись, что в вашем мультиметре присутствует необходимая функция измерения ёмкости, его следует подключить к конденсатору и переключателем выбрать самый точный предел измерения ёмкости. Если на индикаторе отобразится сообщение о перегрузке, нужно переключить инструмент на менее точный предел. Совершайте эти манипуляции до того момента, пока прибор не выдаст показания.
В случае, когда для измерения ёмкости используется мостовая приставка, следует работать с мультиметром, как с устройством для определения баланса моста. Подключите его через детектор с фильтрующим конденсатором к выводам моста. Установите на приборе режим микроамперметра постоянного тока. Теперь подключите конденсатор к мосту, сбалансируйте последний до минимума показаний. Прочтите полученные значения по шкале моста.
Если в вашем мультиметре нет возможности измерять ёмкость, и нет мостовой приставки, то следует использовать следующий метод. Вам понадобится генератор стандартных сигналов, на котором нужно установить известную амплитуду сигнала, которая равна нескольким вольтам. Затем последовательно включайте мультиметр (который в зависимости от условий измерения работает как микроамперметр или миллиамперметр переменного тока), генератор и конденсатор, объём которого необходимо измерить.
Установите частоту, при которой мультиметр покажет ток, не превышающий в первом случае 200 мкА, а во втором – 2 мА. При слишком малой частоте прибор ничего не покажет. Далее следует поделить амплитудное значение напряжения, выраженного в вольтах, на квадратный корень из двух. Таким образом получаем его действующее значение. Переведите ток в амперы, поделите напряжение на ток. Полученное значение – ёмкостное сопротивление конденсатора в омах. Используйте значение частоты и ёмкостного сопротивление в формуле для вычисления ёмкости:
Установите такую частоту, чтобы мультиметр показал ток, не превышающий в первом случае 200 мкА, а во втором — 2 мА (если частота слишком мала, он не покажет ничего). Затем поделите амплитудное значение напряжения, выраженного в вольтах, на квадратный корень из двух, чтобы получить действующее его значение. Ток переведите в амперы, после чего поделите напряжение на ток, и вы получите емкостное сопротивление конденсатора, выраженное в омах. Затем, зная частоту и емкостное сопротивление, вычислите емкость по формуле: C=1/(2πfR), где C — емкость в фарадах, π — математическая константа «пи», f — частота в герцах, R — емкостное сопротивление в омах.
Вычисленное значение ёмкости переведите в более удобные единицы измерения: пикофарады, нанофарады или микрофарады.
Помните, что такой метод нельзя применять для замера ёмкости оксидных конденсаторов.
Перед его измерением конденсатор нужно разрядить, используя безопасный способ.
Как можно проверить электрический конденсатор электролит на пригодность простым мультиметром, электронным тестером.
Тема: как измерить кондер на его работоспособность с помощью пробника.
Простые модели мультиметров, такие как DT830 (наиболее распространенные в быту, имеющие малую стоимость) не содержат в себе специальной функции для измерения электрических конденсаторов. Хотя проверку можно сделать косвенным образом, и это достаточно просто. К сожалению, величину емкости мы при этом не увидим, только сможем оценить ее наличие, а также целостность компонента – пробит или нет. При ремонте схем вовсе не обязательно измерять величину емкости конденсатора. А вот состояние – пробит или цел, это да. Хотя и емкость можно приблизительно оценить с помощью обычного мультиметра, хотя у электролитических конденсаторов от 0,1 и более микрофарад.
Итак, основными неисправностями конденсаторов, которые чаще всего можно встретить, можно считать его пробой (когда он закорочен внутри и становится обычным проводником) и значительная потеря емкости (это в большей степени относится к электролитическим конденсаторам). Реже, но также иногда бывают случаи большой утечки. То есть, это когда конденсатор не полностью пробит, но при этом имеет пониженное внутреннее сопротивление, через которое накопленный на нем электрический заряд достаточно быстро сходит на ноль. И эта утечка заряда происходит именно внутри самого конденсатора.
Теперь о том, как именно конденсаторы проверять мультиметром. Итак, выставляем на электронном тестере измерение сопротивления на пределе 200 Ом. Далее прикасаемся щупами измерителя к выводам конденсатора. Конденсаторы емкостью до 0,1 мкф не должны ничего показывать при этом. То есть их сопротивление должно быть бесконечно большим. Конденсаторы где-то от 0,1 мкф при начальном прикосновении к ним щупами, уже кратковременно могут показать некоторые изменения на экране тестера. То есть, когда конденсатор полностью разряжен в начальный момент через него начинает проходить ток, идущий от мультиметра, и на момент заряда тестер попытается показать какое-то сопротивление. И чем больше емкость компонента, тем длительнее будет это показание тестера. Причем это значение будет плавно меняться с меньшего на большее.
Именно по этому плавному изменению показаний в момент начального измерения конденсатора мы можем судить о величине емкости элемента. К примеру, у конденсатора с емкостью 10 мкф длительность показаний будет длится около 1 секунды. Я такие электролитические конденсаторы привык проверять не через сопротивление на мультиметре, а через звуковую прозвонку (просто эта прозвонка имеется не на всех простых мультиметрах). По звуку для меня как-то проще это делать. Допустим, ставлю на мультиметре эту звуковую функцию. Далее беру конденсатор (этот звук можно распознать у емкостей от 0,1 и выше, поскольку у меньших емкостей слишком малая длительность) и подсоединяю к щупам тестера. В самый начальный момент будет слышен писк. Чем больше емкость конденсатора, тем длиннее по времени он будет звучать. У конденсатора уже с емкостью в 1000 мкф длительность звука будет около 3 сек, примерно.
У пробитого конденсатора малое сопротивление мультиметр будет показывать постоянно, или пищать без перерыва. Стоит учесть, что у емкостей около 10 000 мкф пищать, показывать сопротивление тестер может несколько секунд, так что учитывайте емкость и старайтесь выжидать соответствующее время. Чтобы заведомо хороший компонент не забраковать по ошибке. Величину пробивного напряжения конденсатора увы не измерить, нужно основываться на том, что пишут на самом корпусе конденсатора. Также, как я уже сказал выше, ток чрезмерной утечки конденсатора будет проблематично оценить. В таких случаях если ваше подозрение все же пало не определенный компонент, в нашем случае конденсатор, то его просто нужно заменить на заведомо хороший, годный. После чего проверять схему на работоспособность.
Естественно, если вы на схеме обнаружили деформированный конденсатор (да и как любой другой компонент) его обязательно нужно заменить. Даже если конденсатор немного вздулся, на нем появилась небольшая вмятина. Это явные признаки потенциально бракованных частей схемы, подлежащие замене. Чаще всего приходится сталкиваться с заменой именно электролитических конденсаторов, поскольку они имеют тенденцию со временем высыхать, в результате чего у них сильно уменьшается емкость. И именно в этих случаях уже пригодится более качественный мультиметр, позволяющий проверять величину имеющейся емкости конденсатора. Если после измерения она окажется значительно меньше той, что указана на корпусе кондера, его нужно заменить. Пленочные конденсаторы такой проблемы не имеют, они выходят из строя значительно реже. Так что учтите эти моменты, когда будете иметь дело с проверкой конденсаторов на их пригодность.
Видео по этой теме:
P.S. Ну, те кто занимается электроникой, наверняка у себя в запасе имеют различные конденсаторы, которыми быстро можно заменить подозрительный или явно неисправный (если его корпус в достаточной степени деформирован). Ведь бывают случаи, когда простым мультиметром сложно оценить нормальную работоспособность конденсатора. Он при измерении может показывать, что рабочий, не пробит, а в самой схеме является причиной неисправности, поломки. Ведь его неработоспособность может проявиться только при подачи на него достаточного напряжения. Так что учтите этот момент.
Как измерить емкость ~ Как измерить
Какой самый недорогой способ измерения емкости? У меня есть конденсаторы для фотовспышки, на которых не указана их емкость. Я пошел в радиорубку, и самый дешевый мультиметр, который это измерил, стоил около 60 долларов. Есть ли дешевый способ узнать номинал моих конденсаторов?
Обсуждения
Очевидно, вы достаточно умны в этой области, поэтому я задаю вам вопрос.
Как мне узнать, какая емкость мне нужна? Есть ли уравнение? Мне нужно 5 В, разряженное за 2 секунды от конденсатора для моего проекта своими руками, но никто не может дать мне прямой ответ на значение емкости, которая мне нужна.Какие-либо предложения?
Ответ 8 лет назад
Яцек, посмотрите эту страницу:
и используйте предоставленную формулу. Здесь вы вводите 5 вольт в качестве начального напряжения, а затем устанавливаете время, равное 2 секундам. Затем вы можете найти значение RC.
Я не знаю, как точно измерить емкость конденсатора, но я могу оценить емкость конденсатора, близкую к фактической, с помощью дешевых деталей.
Все, что вам нужно сделать, это подключить резистор с известным значением (в Мегаомах), цифровой мультиметр и конденсатор, который будет измеряться параллельно.
Перед тем, как соединить конденсатор с резистором и мультиметром параллельно,
зарядите конденсатор известным источником постоянного напряжения (лучше всего подойдет аккумулятор). После того, как конденсатор полностью зарядится, подготовьте секундомер и дайте секундомеру начать отсчет, как только вы подключите конденсатор параллельно.
Установите опорное напряжение таким образом, чтобы вы останавливали отсчет секундомера после того, как вы наблюдали значение опорного напряжения, отображаемое мультиметром, то есть 100 мВ.(-t / CR)
ln (V) = ln (Vo) -t / CR
ln (V / Vo) = -t / CR
ln (Vo / V) = t / CR
Наконец,
C = t / [ln (Vo / V) R], в Фараде
Поскольку конденсатор и мультиметр имеют внутреннее сопротивление, измеренное значение будет немного отличаться от фактического. Я пробовал это раньше, и он оценивает емкость неизвестного конденсатора.
Надеюсь, это поможет.
Ответ 9 лет назад
Что делать, если во время экзамена я не могу вспомнить формулу.
Первый метод на этой странице — это RC-цепочка времени. он указывает, что вы никогда не сможете измерить это время, потому что оно такое маленькое, но это неверно, если у вас есть микроконтроллер, подобный базовому штампу 2.
в цепи времени RC, сопротивление в Ом, умноженное на емкость в Фарады равняются времени в секундах. следовательно, емкость равна секундам, разделенным на сопротивление. C = T / R
вот как будет выглядеть схема:
—————————> к входному выводу основного штампа
| |
неизвестно C известно R
| |
—————————> на землю
, так что вы устанавливаете высокий вывод на несколько миллисекунд, чтобы зарядить конденсатор.затем вы меняете контакт на вход, запускаете счетчик и указываете базовому штампу следить за низким логическим уровнем.
, конечно, вам нужно сначала «откалибровать» ваш базовый штамп, измерив, сколько времени требуется для прохождения счетной области кода. например, скажите ему, чтобы он прошел цикл счета десять тысяч раз, а затем измерьте, сколько времени потребуется, с помощью секундомера. более высокое значение даст вам хорошее среднее значение после нескольких калибровок. базовый штамп работает в миллисекундах, поэтому десять тысяч циклов могут быть близки к десяти секундам, но это зависит от сложности цикла и множества переменных теории хаоса.
, так что теперь, когда вы знаете, сколько времени занимает каждый счет в вашем счетчике, вы можете вставить фактическое время в секундах в уравнение, чтобы найти очень хорошее приближение емкости.
Я бы пошел на www.dealextreme.com и заказал там дешевый мультиметр. Вы можете получить один с функцией измерения емкости за 12 $ или меньше с бесплатной доставкой.
Схема, описанная orksecurity, очень увлекательна в изготовлении и стоит меньше доллара (шестнадцатеричные инверторы с триггером Шмитта великолепны, таймеры 555 тоже подойдут), хотя, по моему опыту, вам понадобится осциллограф (дороже, чем мультиметр), или мультиметр с функцией подсчета частоты, чтобы использовать его с приемлемым удобством и точностью.Вы можете включать и выключать множество известных емкостей, пока не перестанете слышать сигнал. но этот метод меня не особо привлекает!
Более дешевый и удобный метод может заключаться в том, чтобы УБЕДИТЬСЯ, что они сначала разряжены, затем зарядить их батареей 9 В или 12 В и подключить их последовательно к резистору и светодиоду. Вам нужно будет уметь считать и пользоваться секундомером.
Из таблицы данных светодиодов вы можете увидеть падение напряжения на светодиоде (или используйте мультиметр с функцией проверки диодов).Когда приложенное напряжение упадет ниже этого порога, он выключится. Выходное напряжение конденсатора через резистор представляет собой функцию затухания, как описано здесь: http://en.wikipedia.org/wiki/Capacitor#DC_circuits
Вы в основном используете светодиод как примитивный индикатор напряжения. Я предлагаю красный цвет из-за низкого напряжения холостого хода. Время, в течение которого светодиод остается включенным, позволит вам рассчитать емкость, так как теперь вы знаете, сколько времени потребовалось для спада от известного начального напряжения до известного конечного напряжения на известном сопротивлении.Резистор большего размера даст более точные результаты (из-за внутреннего сопротивления конденсатора и более длительного времени, в течение которого светодиод будет включен), но светодиод будет более тусклым; найти хороший баланс. Сначала попробуйте несколько сотен Ом.
Конечно, если у вас есть мультиметр с функцией измерения напряжения, просто подключите его параллельно через конденсатор (при заряде 9 В или 12 В это не проблема), он будет намного более чувствительным, чем светодиод. Вы увидите падение напряжения на резисторе, и вы можете рассчитать время до произвольной точки.
По моему (ограниченному) опыту и (очень ограниченной) памяти, конденсаторы вспышки камеры рассчитаны примерно на 330 В и имеют разную емкость от примерно 100 до 300 мкФ. Знание емкости не говорит о безопасном номинальном напряжении, ОЧЕНЬ ОСОЗНАЙТЕ это. Соединение их последовательно и наивное предположение, что это увеличивает допуск по напряжению, также может привести к катастрофическим сбоям.
Мультиметр определяет емкость, заряжая конденсатор известным током, измеряя полученное напряжение, а затем вычисляя емкость.
Предупреждение: Хороший конденсатор сохраняет электрический заряд и может оставаться под напряжением после отключения питания. Перед тем, как дотронуться до него или произвести измерение: а) выключите все питание, б) используйте мультиметр, чтобы убедиться, что питание отключено, и в) осторожно разрядите конденсатор, подключив резистор к его проводам (как указано в следующем абзаце). Обязательно используйте соответствующие средства индивидуальной защиты.
Для безопасной разрядки конденсатора: После отключения питания подключите 5-ваттный резистор 20 000 Ом к клеммам конденсатора на пять секунд.Используйте мультиметр, чтобы убедиться, что конденсатор полностью разряжен.
- Используйте цифровой мультиметр (DMM), чтобы убедиться, что питание цепи отключено. Если конденсатор используется в цепи переменного тока, установите мультиметр на измерение переменного напряжения. Если он используется в цепи постоянного тока, установите цифровой мультиметр на измерение постоянного напряжения.
- Осмотрите конденсатор. Если утечки, трещины, вздутия или другие признаки износа очевидны, замените конденсатор.
- Поверните циферблат в режим измерения емкости.Символ часто разделяет точку на циферблате с другой функцией. В дополнение к регулировке шкалы обычно необходимо нажать функциональную кнопку, чтобы активировать измерение. За инструкциями обратитесь к руководству пользователя мультиметра.
4. Для правильного измерения необходимо удалить конденсатор из цепи. Разрядите конденсатор, как описано в предупреждении выше.
Примечание: Некоторые мультиметры поддерживают относительный (REL) режим. При измерении малых значений емкости можно использовать относительный режим для удаления емкости измерительных проводов.Чтобы перевести мультиметр в относительный режим измерения емкости, оставьте измерительные провода открытыми и нажмите кнопку REL. Это удаляет значение остаточной емкости измерительных проводов.
Обзор измерения емкости
Поиск и устранение неисправностей однофазных двигателей — одно из наиболее практичных применений функции емкости цифрового мультиметра.
Однофазный двигатель с конденсаторным пуском, который не запускается, является признаком неисправного конденсатора. Такие двигатели будут продолжать работать после запуска, что затрудняет поиск и устранение неисправностей. Отказ конденсатора жесткого пуска компрессоров HVAC — хороший пример этой проблемы.Двигатель компрессора может запуститься, но вскоре перегреется, что приведет к срабатыванию выключателя.
Однофазные двигатели с такими проблемами и однофазные двигатели с конденсаторами с шумом требуют мультиметра для проверки правильности работы конденсаторов. Почти все моторные конденсаторы имеют значение в микрофарадах, указанное на конденсаторе.
Трехфазные конденсаторы коррекции коэффициента мощности обычно защищены плавкими предохранителями. Если один или несколько из этих конденсаторов выйдут из строя, это приведет к неэффективности системы, скорее всего, увеличатся счета за коммунальные услуги и могут произойти непреднамеренные отключения оборудования.Если предохранитель конденсатора перегорел, необходимо измерить предполагаемое значение микрофарад конденсатора и убедиться, что оно находится в пределах диапазона, указанного на конденсаторе.
Стоит знать о некоторых дополнительных факторах, связанных с емкостью:
- Конденсаторы имеют ограниченный срок службы и часто являются причиной неисправности.
- Неисправные конденсаторы могут иметь короткое замыкание, разрыв цепи или могут физически выйти из строя до точки отказа.
- При коротком замыкании конденсатора может перегореть предохранитель или повредить другие компоненты.
- Когда конденсатор размыкается или выходит из строя, цепь или ее компоненты могут не работать.
- Износ также может изменить значение емкости конденсатора, что может вызвать проблемы.
Конденсаторы — одни из самых полезных из всех электронных компонентов. А емкость — это термин, который относится к способности конденсатора накапливать заряд. Это также измерение, используемое для определения того, сколько энергии может хранить конкретный конденсатор. Чем больше емкость конденсатора, тем больше заряда он может хранить.
Емкость измеряется в единицах, называемых фарад (сокращенно F). Определение одного фарада обманчиво простое. Конденсатор емкостью в одну фарад держит напряжение на пластинах ровно один вольт, когда он заряжается током ровно один ампер в секунду.
Обратите внимание, что в этом определении часть «один ампер в секунду тока» на самом деле относится к количеству заряда, присутствующего в конденсаторе. Нет правила, согласно которому ток должен течь целую секунду.Это может быть один ампер за одну секунду, или два ампера за полсекунды, или полампер за две секунды. Или это может быть 100 мА в течение 10 секунд или 10 мА в течение 100 секунд.
Один ампер в секунду соответствует стандартной единице измерения электрического заряда, называемой кулоном . Итак, другой способ определить значение одного фарада — сказать, что это величина емкости, которая может хранить один кулон при напряжении в один вольт на пластинах.
Оказывается, одна фарада — это огромная емкость просто потому, что один кулон — это очень большое количество заряда.Для сравнения: общий заряд, содержащийся в среднем разряде молнии, составляет около пяти кулонов, и вам нужно всего пять конденсаторов емкостью один фарад, чтобы сохранить заряд, содержащийся в ударе молнии. (Некоторые удары молнии намного мощнее, до 350 кулонов.)
Предполагается, что конденсатор потока Дока Брауна находился в диапазоне фарад, потому что Док зарядил его ударом молнии. Но конденсаторы, используемые в электронике, заряжаются от гораздо более скромных источников. Намного скромнее.
На самом деле, самые большие конденсаторы, которые вы, вероятно, будете использовать, имеют емкость, которая измеряется в миллионных долях фарада, называемая микрофарад и сокращенно мк F. И меньшие из них измеряются в миллионных долях микрофарад, также называется пикофарад и сокращенно пФ.
Вот еще несколько вещей, которые вам следует знать об измерениях конденсаторов:
Как и резисторы, конденсаторы не производятся до совершенства.Вместо этого у большинства конденсаторов есть предел погрешности, также называемый допуском . В некоторых случаях погрешность может достигать 80%. К счастью, такая степень впечатления редко оказывает заметное влияние на большинство схем.
μ в μ F не является курсивной буквой u ; это греческая буква mu , которая является распространенным сокращением для micro .
Обычно значения 1000 пФ или более выражаются в мкФ, а не в пФ.Например, 1000 пФ записывается как 0,001 мкФ, а 22000 пФ записывается как 0,022 мкФ.
Как цифровые мультиметры (DMM) измеряют емкость через их типичное входное / выходное сопротивление 10 МОм?
Обеспечивая логический уровень 3,3 В, попытка измерения 1F будет означать постоянную времени 10 миллионов секунд (R x C), таким образом, повышение напряжения на конденсаторе будет неизмеримым (в минимальном уровне шума). Они также делают это в течение секунды. или около того с точностью 3%. Как же это достигается?
3 ответа 3
Существует много способов измерения емкости. Если у вас есть генератор сигналов, вы можете использовать прямоугольный сигнал и измерить время нарастания.Или синусоидой и измерить ток и напряжение. Если вы знаете ток и напряжение, вы знаете, какова ваша нагрузка. Если нагрузка представляет собой конденсатор, вам также потребуется информация о фазе. По ссылкам ниже подробно описано, как это делается. Вместо генератора сигналов цифровые мультиметры обычно имеют более простую схему (обычно генерирующую только одну или несколько частот). Вместо схем осциллографа, которые измеряют фазу и амплитуду для вычислений.
Замечательно то, что если у вас есть осциллограф и генератор сигналов, вы также можете измерить емкость, иногда лучше, чем цифровой мультиметр.Это также работает для индуктивности до.
Источник: https://meettechniek.info/passive/capacitance.html
Источник: https://meettechniek.info/passive/capacitance.html
Емкость конденсатора — это способность конденсатора накапливать электрический заряд на единицу напряжения на своих пластинах конденсатора. Емкость определяется делением электрического заряда на напряжение по формуле C = Q / V. Его единица — Фарад.
Формула
Его формула имеет следующий вид:
Где C — емкость, Q — напряжение, а V — напряжение.Мы также можем найти заряд Q и напряжение V, переписав приведенную выше формулу как:
Фарад — единица измерения емкости. Один фарад — это величина емкости, когда один кулон заряда хранится с одним вольт на пластинах.
Большинство конденсаторов, которые используются в электронике, имеют значения емкости, которые указаны в микрофарадах (мкФ) и пикофарадах (пФ). Микрофарад — это одна миллионная фарада, а пикофарад — одна триллионная фарада.
Какие факторы влияют на емкость конденсатора?
Зависит от следующих факторов:
Площадь плит
Емкость прямо пропорциональна физическому размеру пластин, определяемому площадью пластины A.Большая площадь пластины дает большую емкость и меньшую емкость. На рисунке (а) показано, что площадь пластины конденсатора с параллельными пластинами равна площади одной из пластин. Если пластины перемещаются относительно друг друга, как показано на рис (b), площадь перекрытия определяет эффективную площадь пластины. Это изменение эффективной площади пластины является основным для определенного типа переменного конденсатора.
Пластины разделительные
`Емкость обратно пропорциональна расстоянию между пластинами.Разделение пластин обозначено буквой d, как показано на рис. (А). Чем больше разделение пластин, тем меньше емкость, как показано на рис. (B). Как обсуждалось ранее, напряжение пробоя прямо пропорционально расстоянию между пластинами. Чем дальше разделены пластины, тем больше напряжение пробоя .
Диэлектрическая проницаемость материала
Как известно, изоляционный материал между пластинами конденсатора называется диэлектриком. Диэлектрические материалы имеют тенденцию уменьшать напряжение между пластинами при заданном заряде и, таким образом, увеличивать емкость.Если напряжение фиксировано, из-за наличия диэлектрика может храниться больше заряда, чем может храниться без диэлектрика. Мера способности материала создавать электрическое поле называется диэлектрической постоянной или относительной диэлектрической проницаемостью и обозначается как ∈ r .
Емкость прямо пропорциональна диэлектрической проницаемости. Диэлектрическая проницаемость вакуума определяется как 1, а диэлектрическая проницаемость воздуха очень близка к 1. Эти значения используются в качестве справочных, а для всех других материалов значения ∈r указаны по отношению к таковым для вакуума или воздуха.Например, материал с εr = 8 может иметь емкость в восемь раз большую, чем у воздуха, при прочих равных условиях.
Диэлектрическая проницаемость ∈r безразмерна, поскольку является относительной мерой. Это отношение абсолютной диэлектрической проницаемости материала, ∈r, к абсолютной диэлектрической проницаемости вакуума, ∈ 0 , которое выражается следующей формулой:
Ниже приведены некоторые общие диэлектрические материалы и типичные диэлектрические постоянные для каждого из них. Значения могут варьироваться, потому что они зависят от конкретного состава материала.
Материал Типичные значения ∈r
- Воздух 1.0
- тефлон 2,0
- Бумага 2.5
- Масло 4.0
- Слюда 5,0
- Стекло 7,5
- Керамика 1200
Диэлектрическая проницаемость ∈r безразмерна, поскольку является относительной мерой. Это отношение абсолютной диэлектрической проницаемости материала, ∈r, к абсолютной диэлектрической проницаемости вакуума, ∈0, которое выражается следующей формулой:
Значение ∈0 составляет 8,85 × 10-12 Ф / м.
Формула емкости по физическим параметрам
Вы видели, как емкость напрямую связана с площадью пластины, A, и диэлектрической проницаемостью, ∈r, и обратно пропорциональна расстоянию между пластинами, d. Точная формула для расчета емкости по этим трем величинам:
Емкость параллельного вывода конденсатора
Рассмотрим конденсатор с параллельными пластинами. Размер пластины большой, а расстояние между пластинами очень маленькое, поэтому электрическое поле между пластинами однородно.
Электрическое поле «E» между конденсаторами с параллельными пластинами составляет:
Емкость цилиндрических конденсаторов физика
Рассмотрим цилиндрический конденсатор длиной L, образованный двумя коаксиальными цилиндрами с радиусами «a» и «b». Предположим, что L >> b, так что на концах цилиндров нет окаймляющего поля.
Пусть «q» — это заряд конденсатора, а «V» — это разность потенциалов между пластинами. Внутренний цилиндр заряжен положительно, а внешний цилиндр — отрицательно.Мы хотим узнать выражение емкости для цилиндрического конденсатора. Для этого мы рассматриваем цилиндрическую гауссовскую поверхность радиуса «r», такую что теги
В этой статье мы рассмотрим различные тесты, которые мы можем использовать, чтобы определить, исправен ли конденсатор, все с использованием функций цифрового мультиметра.
Мы можем провести множество проверок, чтобы убедиться, что конденсатор работает должным образом. Мы будем использовать и использовать характеристики и поведение, которые должен проявлять конденсатор, если он исправен, и, таким образом, определять, исправен он или неисправен.
Проверка конденсатора омметром мультиметра
Очень хороший тест, который вы можете сделать, — это проверить конденсатор с помощью мультиметра, настроенного на настройку омметра.
По сопротивлению конденсатора мы можем определить, хороший он или плохой.
Для проведения этого теста берем омметр и помещаем щупы на выводы конденсатора. Ориентация не имеет значения, потому что сопротивление не поляризовано.
Если мы прочитаем очень низкое сопротивление (около 0 Ом) на конденсаторе, мы знаем, что конденсатор неисправен.Он читается так, как будто на нем короткое замыкание.
Если мы увидим очень высокое сопротивление конденсатора (несколько МОм), это признак того, что конденсатор, вероятно, тоже неисправен. Считывается, что на конденсаторе есть разрыв.
Нормальный конденсатор имел бы сопротивление где-то между этими двумя крайними значениями, скажем, где-нибудь в десятках тысяч или сотнях тысяч Ом. Но не 0 Ом или несколько МОм.
Это простой, но эффективный метод определения неисправности конденсатора.
Проверить конденсатор мультиметром при настройке емкости
Еще одна проверка, которую вы можете сделать, это проверить емкость конденсатора с помощью мультиметра, если у вас есть измеритель емкости на вашем мультиметре. Все, что вам нужно сделать, это определить емкость, которая находится на внешней стороне конденсатора, взять щупы мультиметра и поместить их на выводы конденсатора. Полярность не имеет значения.
Это то же самое, что и настройка для первой иллюстрации, только теперь мультиметр настроен на настройку емкости.
Вы должны прочитать значение рядом с номинальной емкостью конденсатора. Из-за допуска и того факта, что (в частности, электролитические конденсаторы) могут высохнуть, вы можете прочитать значение немного меньше, чем номинальная емкость. Это отлично. Если он немного ниже, это все еще хороший конденсатор. Однако, если вы обнаружите значительно меньшую емкость или ее отсутствие вообще, это верный признак того, что конденсатор неисправен и его необходимо заменить.
Проверка емкости конденсатора — отличный тест для определения того, исправен ли конденсатор.
Проверка конденсатора вольтметром
Еще один тест, который вы можете провести, чтобы проверить, исправен ли конденсатор, — это проверка напряжения.
В конце концов, конденсаторы — это накопители. Они накапливают на своей пластине разность потенциалов зарядов, которые представляют собой напряжения. На аноде есть положительное напряжение, а на катоде — отрицательное напряжение.
Тест, который вы можете провести, — это проверить, нормально ли работает конденсатор, — это зарядить его напряжением, а затем измерить напряжение на клеммах.Если он считывает напряжение, до которого вы его заряжали, значит, конденсатор выполняет свою работу и может сохранять напряжение на своих выводах. Если он не заряжается и не считывает напряжение, это признак неисправности конденсатора.
Чтобы зарядить конденсатор напряжением, подайте напряжение постоянного тока на выводы конденсатора. Сейчас полярность очень важна для поляризованных конденсаторов (электролитических конденсаторов). Если вы имеете дело с поляризованным конденсатором, вы должны соблюдать полярность и правильное назначение выводов.Положительное напряжение идет на анод (более длинный вывод) конденсатора, а отрицательное или заземление идет на катод (более короткий вывод) конденсатора. Подайте напряжение, которое меньше номинального напряжения конденсатора, на несколько секунд. Например, подайте на конденсатор 25 В 9 вольт и позвольте 9 вольт заряжать его в течение нескольких секунд. Пока вы не используете огромный конденсатор, он заряжается за очень короткий период времени, всего за несколько секунд. После завершения заряда отключите конденсатор от источника напряжения и снимите его напряжение с помощью мультиметра.Напряжение сначала должно быть около 9 вольт (или любого другого напряжения), которое вы ему подавали. Обратите внимание, что напряжение будет быстро разряжаться и упадет до 0 В, потому что конденсатор разряжает свое напряжение через мультиметр. Тем не менее, вы должны сначала прочитать значение заряженного напряжения, прежде чем оно резко упадет. Это поведение исправного и хорошего конденсатора. Если напряжение на нем не сохраняется, значит, он неисправен и его следует заменить.
Итак, у вас есть 3 сильных теста, которые вы можете провести (все или либо / или), чтобы проверить, исправен ли конденсатор.
Мультиметр определяет емкость, заряжая конденсатор известным током, измеряя полученное напряжение, а затем вычисляя емкость.
Предупреждение: Хороший конденсатор сохраняет электрический заряд и может оставаться под напряжением после отключения питания. Перед тем, как дотронуться до него или произвести измерение: а) выключите все питание, б) используйте мультиметр, чтобы убедиться, что питание отключено, и в) осторожно разрядите конденсатор, подключив резистор к его проводам (как указано в следующем абзаце).Обязательно используйте соответствующие средства индивидуальной защиты.
Для безопасной разрядки конденсатора: После отключения питания подключите 5-ваттный резистор 20 000 Ом к клеммам конденсатора на пять секунд. Используйте мультиметр, чтобы убедиться, что конденсатор полностью разряжен.
- Используйте цифровой мультиметр (DMM), чтобы убедиться, что питание цепи отключено. Если конденсатор используется в цепи переменного тока, установите мультиметр на измерение переменного напряжения. Если он используется в цепи постоянного тока, установите цифровой мультиметр на измерение постоянного напряжения.
- Осмотрите конденсатор. Если утечки, трещины, вздутия или другие признаки износа очевидны, замените конденсатор.
- Поверните циферблат в режим измерения емкости. Символ часто разделяет точку на циферблате с другой функцией. В дополнение к регулировке шкалы обычно необходимо нажать функциональную кнопку, чтобы активировать измерение. За инструкциями обратитесь к руководству пользователя мультиметра.
4. Для правильного измерения необходимо удалить конденсатор из цепи.Разрядите конденсатор, как описано в предупреждении выше.
Примечание: Некоторые мультиметры поддерживают относительный (REL) режим. При измерении малых значений емкости можно использовать относительный режим для удаления емкости измерительных проводов. Чтобы перевести мультиметр в относительный режим измерения емкости, оставьте измерительные провода открытыми и нажмите кнопку REL. Это удаляет значение остаточной емкости измерительных проводов.
Обзор измерения емкости
Поиск и устранение неисправностей однофазных двигателей — одно из наиболее практичных применений функции емкости цифрового мультиметра.
Однофазный двигатель с конденсаторным пуском, который не запускается, является признаком неисправного конденсатора.Такие двигатели будут продолжать работать после запуска, что затрудняет поиск и устранение неисправностей. Отказ конденсатора жесткого пуска компрессоров HVAC — хороший пример этой проблемы. Двигатель компрессора может запуститься, но вскоре перегреется, что приведет к срабатыванию выключателя.
Однофазные двигатели с такими проблемами и однофазные двигатели с конденсаторами с шумом требуют мультиметра для проверки правильности работы конденсаторов. Почти все моторные конденсаторы имеют значение в микрофарадах, указанное на конденсаторе.
Трехфазные конденсаторы коррекции коэффициента мощности обычно защищены плавкими предохранителями.Если один или несколько из этих конденсаторов выйдут из строя, это приведет к неэффективности системы, скорее всего, увеличатся счета за коммунальные услуги и могут произойти непреднамеренные отключения оборудования. Если предохранитель конденсатора перегорел, необходимо измерить предполагаемое значение микрофарад конденсатора и убедиться, что оно находится в пределах диапазона, указанного на конденсаторе.
Стоит знать о некоторых дополнительных факторах, связанных с емкостью:
- Конденсаторы имеют ограниченный срок службы и часто являются причиной неисправности.
- Неисправные конденсаторы могут иметь короткое замыкание, разрыв цепи или могут физически выйти из строя до точки отказа.
- При коротком замыкании конденсатора может перегореть предохранитель или повредить другие компоненты.
- Когда конденсатор размыкается или выходит из строя, цепь или ее компоненты могут не работать.
- Износ также может изменить значение емкости конденсатора, что может вызвать проблемы.
Мне нужно измерить или измерить емкость от 0 до 5 пФ с точностью 0,1 пФ или выше. Я знаю, что микросхемы цифрового преобразования утверждают, что это делают, но есть ли более простой / легкий способ смонтировать схему для измерения этих сверхмалых емкостей?
У меня есть небольшой концентрический цилиндр, в котором внешний цилиндр физически закреплен (и связан с некоторым потенциалом), а внутренний двигается внутрь и наружу.Это движение мне нужно отслеживать. Изменение площади перекрытия между двумя цилиндрами приводит к изменению емкости. Таким образом, я постоянно отслеживаю его положение, отслеживая изменение емкости.
1 ответ 1
Довольно просто обнаружить изменение на емкости на 0,1 пФ в виде отношения. Самым простым, возможно, является создание релаксационного генератора и измерение частоты и изменения частоты в цифровом виде при подключении испытательного конденсатора.
Очень сложно точно определить, сколько эффективной емкости имеется в остальной части цепи, а также о любых соединительных приспособлениях, парах, клеммах, выводах, относительно которых измеряется соотношение.
Преимущество релаксационного генератора заключается в том, что один вывод конденсатора заземлен, поэтому паразитные помехи относительно стабильны. Недостатком является то, что паразиты могут быть большими, довольно легко большими по сравнению с 5 пФ.
Альтернативой является измерение с 3 защитными контактами, которое невосприимчиво к паразитной емкости на любом из выводов конденсатора и чувствительно только к паразитным помехам на нем.Третий вывод — заземление. Метод заключается в следующем.
1) Подайте синусоидальное напряжение относительно земли на одну клемму испытательного конденсатора от известного напряжения. Паразитные помехи от этой клеммы к земле приводятся к точно такому же напряжению, нас не интересует, сколько тока требуется для их зарядки, измерения напряжения достаточно.
2) Удерживая вторую клемму заземления, измерьте ток, необходимый для этого. Наиболее распространенный способ сделать это — использовать виртуальный наземный операционный усилитель.Паразитные помехи от второго вывода к земле удерживаются на уровне 0 В, поэтому ток в них не течет, поэтому измерение тока является точным.
3) Теперь мы знаем ток через конденсатор при заданном напряжении на нем. Вычислите емкость по импедансу и частоте. Емкостная обратная связь, а не резистивная на ОУ виртуального заземления, позволяет исключить частоту из уравнения.
Даже несмотря на то, что защищенное измерение устраняет влияние паразитного замыкания на землю, любые паразитные колебания конденсатора, усиленные вашим испытательным приспособлением, возможно, пластиковая прижимная площадка, удерживающая SMD-компонент на посадочной поверхности, изменит измерение по сравнению с тем, что он был бы в цепи без этой колодки.
Конденсаторы параллельно
Задача 1:
Конденсаторы серии
Когда конденсаторы подключаются друг за другом, это называется последовательным соединением. Это показано ниже. Чтобы рассчитать общую общую емкость двух конденсаторов, подключенных таким образом, вы можете использовать следующую формулу:
Итого = | C1 x C2 | и так далее |
C1 + C2 |
Пример: чтобы вычислить общую емкость для этих двух последовательно соединенных конденсаторов.
Задача 2:
Три или более конденсатора последовательно
Задача 3:
ответов
Задача 1
Задача 2
Задача 3
© Kitronik Ltd — Вы можете распечатать эту страницу и добавить ссылку на нее, но не должны копировать страницу или ее часть без предварительного письменного согласия Kitronik.
22 октября 2019 г., 07:27
Хорошие задания мне помогли
03 сентября 2019 в 10:48
03 сентября 2019 в 08:22
Этот сайт был полезен для многих из нас.Спасибо, китроник!
21 февраля 2019 в 14:06
Привет, на данный момент у нас нет руководства, показывающего это, но мы должны добавить его. Вы правильно угадали, как рассчитать общую емкость вашей цепи. Надеюсь, это помогло.
20 февраля 2019 в 18:57
Были ли у вас какие-либо задачи, разработанные с подобными изображениями, как показано выше? Я пытаюсь решить эту же проблему. У меня есть два конденсатора, параллельные друг другу, но также последовательно с одним другим конденсатором.Могу ли я сложить два числа параллельно, а затем использовать это число в уравнении для ряда? Любые советы полезны, спасибо!
01 февраля 2019 в 12:16
Это действительно помогло мне, так что большое спасибо
04 января 2019 в 10:47
МНЕ НРАВИТСЯ ЭТО РАСЧЕТ
27 октября 2018 г., 03:49
Очень хорошая информация спасибо kitronik
20 сентября 2018 в 10:58
Привет, Эммануэль, Вы можете рассчитать емкость каждой из областей по отдельности, а затем выяснить, как найти общую емкость, метод будет определяться тем, как различные области расположены по отношению друг к другу.Они могут быть последовательно или параллельно. Надеюсь, это поможет.
19 сентября 2018 01:21
Как рассчитать конденсаторы, подключенные параллельно и последовательно
16 января 2018 в 18:42
— это очень полезный инструмент для изучения основ электротехники. спасибо
14 июля 2017 в 10:41
Привет, Кин, осталось сделать еще один шаг в ваших вычислениях, вам нужно разделить 1 на 3, и тогда вы получите свой ответ на сумму C.Надеюсь это поможет.
13 июля 2017 г., 04:54
Формула для последовательной емкости не работает для 1Ф. Если вы добавите 1 + 1 + 1, вы получите 3F вместо .333F. Пожалуйста, объясни.
19 мая 2017 в 08:17
Очень-очень полезный сайт Мне нравится .. Будучи учеником 10 класса, я понял, как решить вопрос о последовательном и параллельном сочетании проводов ..
10 мая 2017 в 11:00
Мне нравится этот сайт. Спасибо большое, буду писать экзамены.Теперь моя проблема с конденсаторами решена полностью. еще раз спасибо
19 апреля 2017 в 09:40
Это может быть что-то, для чего мы в какой-то момент создаем ресурс, но пока попробуйте Google, так как в Интернете уже есть много информации об этом.
16 апреля 2017 в 14:11
Мне нужно больше разъяснений о ЗАКОНЕ ЭЛЕКТРОСТАТИКИ КУЛУМБСА и ЕГО РАСЧЕТАХ.
03 апреля 2017 в 06:27
Мне нравится этот сайт, он мне действительно помогает
13 декабря 2016 в 22:05
Awwnnn….это действительно потрясающе, это очень помогает.
30 ноября 2016 г., 09:40
вау !! Мне очень нравится этот сайт, он очень полезен.
01 ноября 2016 в 20:47
Моя проблема с конденсатором решена
20 октября 2016 в 16:18
Привет, мне нравится этот расчет последовательного и параллельного
03 мая 2016 в 10:02
Привет, Дуглас, Примеры расчетов будут работать независимо от номиналов отдельных конденсаторов.
25 апреля 2016 г., 04:55
Привет, похоже, что в ваших примерах речь идет только о конденсаторах различной емкости.Было бы полезно включить примеры идентичных конденсаторов, соединенных последовательно и параллельно. Идентичные конденсаторы, соединенные последовательно… .. Общая емкость = Номинальная емкость, деленная на общее количество конденсаторов. EG .. 3000 Фарад ÷ (X5 последовательно),… 3000F / 5 = 600F. Идентичные конденсаторы, соединенные параллельно …… Общая емкость = Номинальная емкость, умноженная на общее количество конденсаторов ………. 3000Farad X (X5 параллельно)… 3000FX5 = 15,000F Покончим со всей «ерундой с длинными делениями»
01 апреля 2015 в 11:52
Привет, напряжение осталось бы прежним.Роб
12 марта 2015 в 23:36
Объяснение понятно, а как насчет рабочего напряжения двух конденсаторов параллельно? Остается ли оно прежним или номинальное напряжение отдельного конденсатора суммируется. Предположим, что оба конденсатора имеют одинаковое рабочее напряжение
.Белко Царь Соломон
24 февраля 2015 в 13:23
это объяснение простое и легкое для понимания и оно нравится.
07 декабря 2014 в 00:57
Пока это единственное объяснение, которое я смог понять.Спасибо
23 мая 2014 в 12:17
Спасибо, я исправил это сейчас!
21 мая 2014 в 22:04
Я думаю, что задача 3 должна быть 1,167F, а не 1,67F
Информационный бюллетень Китроника
Зарегистрируйтесь сейчас, чтобы узнавать первыми о последних продуктах и ресурсах!
Мультиметр определяет емкость, заряжая конденсатор известным током, измеряя полученное напряжение, а затем вычисляя емкость.
Предупреждение: Хороший конденсатор сохраняет электрический заряд и может оставаться под напряжением после отключения питания.Перед тем, как дотронуться до него или произвести измерение: а) выключите все питание, б) используйте мультиметр, чтобы убедиться, что питание отключено, и в) осторожно разрядите конденсатор, подключив резистор к его проводам (как указано в следующем абзаце). Обязательно используйте соответствующие средства индивидуальной защиты.
Для безопасной разрядки конденсатора: После отключения питания подключите 5-ваттный резистор 20 000 Ом к клеммам конденсатора на пять секунд. Используйте мультиметр, чтобы убедиться, что конденсатор полностью разряжен.
- Используйте цифровой мультиметр (DMM), чтобы убедиться, что питание цепи отключено. Если конденсатор используется в цепи переменного тока, установите мультиметр на измерение переменного напряжения. Если он используется в цепи постоянного тока, установите цифровой мультиметр на измерение постоянного напряжения.
- Осмотрите конденсатор. Если утечки, трещины, вздутия или другие признаки износа очевидны, замените конденсатор.
- Поверните циферблат в режим измерения емкости (
Обзор измерения емкости
Поиск и устранение неисправностей однофазных двигателей — одно из наиболее практичных применений функции емкости цифрового мультиметра.
Однофазный двигатель с конденсаторным пуском, который не запускается, является признаком неисправного конденсатора. Такие двигатели будут продолжать работать после запуска, что затрудняет поиск и устранение неисправностей. Отказ конденсатора жесткого пуска компрессоров HVAC — хороший пример этой проблемы. Двигатель компрессора может запуститься, но вскоре перегреется, что приведет к срабатыванию выключателя.
Однофазные двигатели с такими проблемами и однофазные двигатели с конденсаторами с шумом требуют мультиметра для проверки правильности работы конденсаторов.Почти все моторные конденсаторы имеют значение в микрофарадах, указанное на конденсаторе.
Трехфазные конденсаторы коррекции коэффициента мощности обычно защищены плавкими предохранителями. Если один или несколько из этих конденсаторов выйдут из строя, это приведет к неэффективности системы, скорее всего, увеличатся счета за коммунальные услуги и могут произойти непреднамеренные отключения оборудования. Если предохранитель конденсатора перегорел, необходимо измерить предполагаемое значение микрофарад конденсатора и убедиться, что оно находится в пределах диапазона, указанного на конденсаторе.
Стоит знать о некоторых дополнительных факторах, связанных с емкостью:
- Конденсаторы имеют ограниченный срок службы и часто являются причиной неисправности.
- Неисправные конденсаторы могут иметь короткое замыкание, разрыв цепи или могут физически выйти из строя до точки отказа.
- При коротком замыкании конденсатора может перегореть предохранитель или повредить другие компоненты.
- Когда конденсатор размыкается или выходит из строя, цепь или ее компоненты могут не работать.
- Износ также может изменить значение емкости конденсатора, что может вызвать проблемы.
Мультиметр определяет емкость, заряжая конденсатор известным током, измеряя результирующее напряжение, а затем вычисляя емкость.
Предупреждение: исправный конденсатор сохраняет электрический заряд и может оставаться под напряжением после отключения питания. Перед тем, как дотронуться до него или произвести измерение: а) выключите все питание, б) используйте мультиметр, чтобы убедиться, что питание отключено, и в) осторожно разрядите конденсатор, подключив резистор к его проводам (как указано в следующем абзаце). Обязательно используйте соответствующие средства индивидуальной защиты.
Для безопасной разрядки конденсатора: После отключения питания подключите резистор 20 000 Ом, 5 Вт к клеммам конденсатора на пять секунд.Используйте мультиметр, чтобы убедиться, что конденсатор полностью разряжен.
- Используйте цифровой мультиметр (DMM), чтобы убедиться, что питание цепи отключено. Если конденсатор используется в цепи переменного тока, установите мультиметр на измерение переменного напряжения. Если он используется в цепи постоянного тока, установите цифровой мультиметр на измерение постоянного напряжения.
- Осмотрите конденсатор. Если утечки, трещины, вздутия или другие признаки износа очевидны, замените конденсатор.
- Поверните циферблат в режим измерения емкости ().Символ часто разделяет точку на циферблате с другой функцией. В дополнение к регулировке шкалы обычно необходимо нажать функциональную кнопку, чтобы активировать измерение. За инструкциями обратитесь к руководству пользователя мультиметра.
Для правильного измерения необходимо удалить конденсатор из цепи. Разрядите конденсатор, как описано в предупреждении выше.
Примечание. Некоторые мультиметры поддерживают относительный (REL) режим. При измерении малых значений емкости можно использовать относительный режим для удаления емкости измерительных проводов.Чтобы перевести мультиметр в относительный режим измерения емкости, оставьте измерительные провода открытыми и нажмите кнопку REL. Это удаляет значение остаточной емкости измерительных проводов.
Обзор измерения емкости
Поиск и устранение неисправностей однофазных двигателей — одно из наиболее практичных применений функции емкости цифрового мультиметра.
Однофазный двигатель с конденсаторным пуском, который не запускается, является признаком неисправного конденсатора. Такие двигатели будут продолжать работать после запуска, что затрудняет поиск и устранение неисправностей. Отказ конденсатора жесткого пуска компрессоров HVAC — хороший пример этой проблемы.Двигатель компрессора может запуститься, но вскоре перегреется, что приведет к срабатыванию выключателя.
Однофазные двигатели с такими проблемами и однофазные двигатели с конденсаторами с шумом требуют мультиметра для проверки правильности работы конденсаторов. Почти все моторные конденсаторы имеют значение в микрофарадах, указанное на конденсаторе.
Трехфазные конденсаторы коррекции коэффициента мощности обычно защищены плавкими предохранителями. Если один или несколько из этих конденсаторов выйдут из строя, это приведет к неэффективности системы, скорее всего, увеличатся счета за коммунальные услуги и могут произойти непреднамеренные отключения оборудования.Если предохранитель конденсатора перегорел, необходимо измерить предполагаемое значение микрофарад конденсатора и убедиться, что оно находится в пределах диапазона, указанного на конденсаторе.
Стоит знать о некоторых дополнительных факторах, связанных с емкостью:
- Конденсаторы имеют ограниченный срок службы и часто являются причиной неисправности.
- Неисправные конденсаторы могут иметь короткое замыкание, разрыв цепи или могут физически выйти из строя до точки отказа.
- При коротком замыкании конденсатора может перегореть предохранитель или повредить другие компоненты.
- Когда конденсатор размыкается или выходит из строя, цепь или ее компоненты могут не работать.
- Износ может также изменить значение емкости конденсатора, что может вызвать проблемы
Тестирование рабочего конденсатора | Клиника ремонта своими руками
Если электродвигатель вентилятора вашего центрального воздушного конденсатора или электродвигателя вентилятора печи не работает, или ваша микроволновая печь не нагревается, причиной может быть неисправный рабочий конденсатор. Рабочий конденсатор — мощный компонент.Настолько мощный, что сохраняет мощный электрический заряд, даже когда прибор или продукт, в который он установлен, отключен от сети или отключен источник питания.
Что делает рабочий конденсатор?
Проще говоря, одинарный или двойной рабочий конденсатор накапливает электрический заряд, а затем высвобождает его. Компонент чаще всего используется для привода двигателей и компрессоров, его можно найти в центральных компрессорных установках, печах и других системах отопления и охлаждения. Конденсаторы также можно найти в таких приборах, как микроволновые печи, холодильники и даже стиральные машины.Конденсатор одиночной работы поддерживает одиночный электродвигатель и обычно используется в небольших кондиционерах и микроволновых печах; двойной рабочий конденсатор будет поддерживать два двигателя, первый из которых является компрессором, а второй — двигателем вентилятора. Продукты, которые имеют как компрессор, так и двигатель вентилятора, такие как печи и центральные воздушные конденсаторы, всегда будут полагаться на конденсатор двойного хода.
Как определить неисправность конденсатора
Со временем рабочий конденсатор может ослабнуть и потерять способность удерживать полный заряд.Он также может полностью выйти из строя. Двигатель или компрессор, питаемые от конденсатора, будут иметь проблемы с плавной работой или могут вообще не работать. Часто вы можете сказать, что конденсатор вышел из строя, потому что его корпус вздувается или протекает. Если вы заметите какое-либо вздутие или утечку, конденсатор потребует немедленной замены. Если нет видимых признаков повреждения, конденсатор можно проверить, чтобы определить, правильно ли он работает.
Проверка рабочего конденсатора мультиметром
Вы можете использовать аналоговый омметр, чтобы проверить способность конденсатора накапливать и высвобождать электрический заряд.Вы также можете протестировать компонент, чтобы определить, имеет ли он надлежащую номинальную емкость, измерив микрофарады, присутствующие в конденсаторе. Этот второй тест можно выполнить с помощью тестера конденсаторов или мультиметра с функцией тестирования конденсаторов. ВАЖНО: Во избежание поражения электрическим током перед работой с конденсатором следует высвободить потенциально накопленный электрический заряд, поместив лезвие отвертки на каждый набор клемм. При этом не дотрагивайтесь до лезвия отвертки.
Вот как вы можете использовать аналоговый омметр, чтобы убедиться, что один рабочий конденсатор может правильно накапливать и высвобождать заряд:
- Поверните диск выбора диапазона измерителя на значение 1000 Ом или выше.
- Откалибруйте глюкометр, если необходимо, соприкоснув красный и черный щупы вместе при установке стрелки на «0».
- Используйте один щуп для прикосновения к одной из клемм конденсатора, а другой щуп для прикосновения к другой клемме. Стрелка измерителя должна отклониться в сторону нуля Ом и вернуться к бесконечному сопротивлению.
- Поменяйте местами датчики, и вы должны получить тот же результат.
- Если стрелка не двигается или остается около нуля Ом, конденсатор неисправен.
При проверке двойного рабочего конденсатора вы будете проверять между общей клеммой и каждой из других клемм:
- Чтобы проверить цепь вентилятора, прикоснитесь одним датчиком к общей клемме (часто обозначается буквой «C»), а другой датчик — к клемме вентилятора (обычно обозначается как «FAN»).Как отмечалось выше, стрелка должна отклониться в сторону нуля Ом, а затем вернуться к бесконечному сопротивлению.
- Вы можете повторить тест, чтобы определить, правильно ли работает третий терминал, обычно обозначаемый как «HERM» или «COMP».
Для определения замыкания конденсатора на массу также можно использовать стандартный омметр:
- Поместите по одному щупу на каждую из клемм, прикасаясь вторым щупом к стороне корпуса. Ни один терминал не должен отображать непрерывность — непрерывный электрический путь.
- Если на индикаторе счетчика отображается непрерывность электрической цепи, значит, в конденсаторе произошло короткое замыкание, и его необходимо заменить.
Также важно подтвердить, что номинальная емкость конденсатора действительно соответствует значению на этикетке компонента. Для этого теста вам потребуется специальный тестер конденсаторов или мультиметр с функцией тестирования конденсаторов. Чтобы определить номинальную емкость одного рабочего конденсатора:
- Обратите внимание на номинал в микрофарад на этикетке конденсатора (Пример: 7.5%).
- Выберите аналогичную настройку на тестере или измерителе.
- Подключите щупы к клеммам и нажмите кнопку тестера или измерителя, чтобы отобразить рейтинг в микрофарадах. Рейтинг должен быть близок к тому, который указан на этикетке. Если на дисплее показано, что микрофарады ниже, конденсатор разрядился и его следует заменить.
Конденсаторы двойного хода имеют два номинала микрофарад: более высокий номинал типичен для схемы HERM или COMP (пример: + 6%), а более низкий номинал типичен для цепи вентилятора (пример: -6%).Вам следует протестировать каждую цепь отдельно, чтобы определить, соответствуют ли показания дисплея значениям, указанным на этикетке.
Найдите подходящий рабочий конденсатор в Repair Clinic
Поскольку доступны буквально тысячи конденсаторов, убедитесь, что покупаете подходящую замену. Здесь вам может помочь Repair Clinic. Начните с ввода полного номера модели деталей вашего прибора или изделия для обогрева и охлаждения в строке поиска веб-сайта Repair Clinic.Затем выберите «Конденсатор» в фильтре категорий деталей, за которым следует соответствующее название детали, если необходимо, чтобы определить конкретный конденсатор, который вам нужен для вашего приложения. В Repair Clinic есть оригинальные конденсаторы от ведущих производителей, таких как Goodman, Lennox, Carrier, GE, Samsung, LG, Frigidaire и Whirlpool, поэтому вы обязательно найдете то, что вам нужно.
Измерение емкости с помощью мультиметра
Использование мультиметра: Глава 5
В этом модуле мы научим вас использовать мультиметр для измерения емкости.
Перейти к викторине!1. Настройки
Напомним, что емкость относится к системе, в которой хранится электрический заряд. Напомним, что фарады — это единица измерения конденсатора. На изображении справа показан рабочий конденсатор, используемый в системах HVAC. Давайте узнаем, как настроить измеритель на измерение емкости.
Для измерения емкости вам необходимо подключить провода к правильным портам на мультиметре. Ваш красный провод входит в порт, отмеченный символом «- | (-».Это символ емкости. Ваш черный провод будет подключен к порту, помеченному «COM».
Перед выполнением любых измерений вам необходимо настроить шкалу мультиметра на измерение емкости. Поверните циферблат, пока он не укажет на символ «- | (-». См. Пример на изображении справа. Все мультиметры используют символ «- | (-» для обозначения емкости.
На некоторых мультиметрах вам потребуется используйте желтую «функциональную» кнопку, чтобы установить мультиметр на емкость. Напомним, что каждое положение шкалы на мультиметре может иметь несколько измерений.В этом случае нажимайте желтую функциональную клавишу до тех пор, пока на дисплее не появится символ «- | (-».
Для измерения фарад конденсатора, конденсатор должен быть отключен от цепи. Вы должны быть осторожны при обращении с Вы рискуете получить электрошок при прикосновении к конденсатору, так как он накапливает электрический заряд.
Даже при отключенном питании конденсатор будет накапливать энергию. Если вы дотронетесь до конденсатора до того, как он разрядится, вы получите шок или травму.Давайте узнаем, как разрядить конденсатор, прежде чем вынимать его из схемы.
После отключения питания необходимо разрядить конденсатор. Разрядите конденсатор, прикоснувшись к клеммам 5-ваттным резистором 20 000 Ом на клеммах конденсатора в течение пяти секунд. В полевых условиях технические специалисты обычно касаются металлической части изолированной отверткой между двумя клеммами, чтобы разрядить ее.
Когда измеритель измеряет емкость, он пропускает через конденсатор небольшой испытательный ток.Мультиметр считывает этот тестовый ток, чтобы определить фарады конденсатора. Чтобы точно измерить этот испытательный ток, необходимо разрядить конденсатор.
2. Как измерить емкость с помощью мультиметра?
Начните с подтверждения того, что ваш черный провод подключен к порту «COM», а красный провод подключен к порту, помеченному «- | (-». Установите циферблат так, чтобы стрелка указывала на «-» | (- »символ. Выключите питание цепи.Разрядите конденсатор. Убрать конденсатор из цепи.
Выключите питание цепи. Разрядите конденсатор, коснувшись металлического конца изолированной отвертки на обеих клеммах. Убедитесь, что вы не касаетесь металлического конца отвертки. Убрать конденсатор из цепи. При работе с любым типом электрического оборудования надевайте изолирующие перчатки и защитные очки.
Подсоедините по одному выводу к каждой клемме конденсатора. Смотрите картинку справа.На картинке они измеряют отключенный конденсатор. Следите за тем, чтобы руки не касались конденсатора. Это может помешать измерению.
Когда вы прикоснетесь щупами к конденсатору, на дисплее появится значение. Когда на экране мультиметра отображается постоянное значение, это ваша емкость. Обратите внимание на единицы измерения, отображаемые на глюкометре. Например, измеритель может отображать микрофарады.
Напомним, что некоторые мультиметры требуют ручной установки диапазона измерения.Если ваш мультиметр не поддерживает автоматический выбор диапазона, вам может потребоваться отрегулировать диапазон, чтобы получить точный результат. Сделайте это, медленно повернув циферблат в положение более низкого диапазона. Остановитесь, как только получите точное значение.
3. Заключение
В этом разделе вы узнали, как измерить емкость отключенного конденсатора. В следующем разделе мы научим вас измерять непрерывность.
Вопрос № 1: «- | (-» — это универсальный символ емкости мультиметра.
True
False
Прокрутите вниз, чтобы найти ответ …
Ответ: True
Верно, символ «- | (-» всегда означает емкость на мультиметре . Это включает циферблат и порт.
Вопрос № 2: Конденсатор получает питание после отключения питания цепи.
True
False
Прокрутите вниз, чтобы найти ответ…
Ответ: True
Правда конденсатор будет держать заряд после отключения питания. Конденсатор используется для хранения электрической энергии.
Вопрос № 3: Что нужно сделать перед удалением конденсатора из схемы:
Отключить питание
Разрядить конденсатор
Надеть все необходимое защитное снаряжение
Все из вышеперечисленных
Прокрутите вниз, чтобы найти ответ…
Ответ: Все вышеперечисленное
Перед тем, как вы сможете измерить емкость, вы должны отключить питание, разрядить его и надеть защитное снаряжение.
Вопрос № 4: Где следует размещать выводы на компоненте:
Один вывод на каждом выводе конденсатора
Оба вывода на одном выводе
Используйте только один вывод на одном терминал
Все вышеперечисленное
Прокрутите вниз, чтобы найти ответ…
Ответ: По одному выводу на каждую клемму конденсатора
Для измерения емкости необходимо разместить оба вывода на входе и выходе компонента.
Вопрос № 5: Можно держать конденсатор в руке, пока вы измеряете его емкость.
Верно
Ложно
Прокрутите вниз, чтобы найти ответ …
Ответ: Ложно
Ложно, прикосновение к измеряемому компоненту может помешать работе мультиметра. точное чтение.
Как проверить конденсатор потолочного вентилятора с помощью мультиметра?
Проверка конденсатора аналоговым мультиметром
- Убедитесь, что предполагаемый конденсатор полностью разряжен.
- Возьмите счетчик АВО .
- Выберите аналоговый метр на ОМ (Всегда выбирайте более высокий диапазон Ом).
- Подключите выводы измерителя к клеммам конденсатора .
- Примечание Прочтите и сравните со следующими результатами.
Щелкните, чтобы увидеть полный ответ.
Из этого, как проверить конденсатор потолочного вентилятора?
Как проверить пусковые конденсаторы двигателя вентилятора
- Отсоедините провода, подающие питание на двигатель, с помощью соответствующих отверток.
- Переключите аналоговый вольтметр с ома на вольт.
- Отсоедините провода, идущие от конденсатора к двигателю.
- Обратите внимание на движение стрелки измерителя в сторону бесконечного сопротивления.
что происходит, если конденсатор потолочного вентилятора выходит из строя? В большинстве потолочных вентиляторов используется двигатель, известный как двигатель с постоянным разделением конденсаторов . Если корпус каким-либо образом сгорел или расплавился, это также является признаком неисправного конденсатора , и его следует заменить. Учтите, что в цепи могут быть и другие компоненты с неисправным конденсатором .
Также как проверить конденсатор мультиметром?
Чтобы проверить конденсатор с помощью мультиметра , установите измеритель на считывание в диапазоне высоких сопротивлений, где-то выше 10 кОм и 1 Ом.Прикоснитесь к выводам измерителя к соответствующим выводам на конденсаторе , красный к плюсу и черный к минусу. Измеритель должен начинать с нуля, а затем медленно приближаться к бесконечности.
Может ли вентилятор работать без конденсатора?
Конденсатор используется не только для запуска вентилятора , но и для его работы. Итак, чтобы просто ответить на ваш вопрос, вентилятор не будет работать без конденсатора , даже если вы повернете его вручную, потому что конденсатор необходим для создания магнитного потока, который заставляет вентилятор вращаться.
Измерение емкости, температуры и проверка целостности цепи — Analyze A Meter
Необходимые файлы cookie помогают сделать веб-сайт пригодным для использования, обеспечивая такие основные функции, как навигация по страницам и доступ к защищенным областям веб-сайта. Веб-сайт не может работать должным образом без этих файлов cookie.
Мы не используем файлы cookie этого типа.
Маркетинговые файлы cookie используются для отслеживания посетителей на веб-сайтах. Намерение состоит в том, чтобы отображать рекламу, которая актуальна и интересна для отдельного пользователя и, следовательно, более ценна для издателей и сторонних рекламодателей.
Мы не используем файлы cookie этого типа.
Файлы cookie аналитики помогают владельцам веб-сайтов понять, как посетители взаимодействуют с веб-сайтами, путем анонимного сбора и передачи информации.
Мы не используем файлы cookie этого типа.
Файлы cookie предпочтений позволяют веб-сайту запоминать информацию, которая меняет его поведение или внешний вид, например, ваш предпочтительный язык или регион, в котором вы находитесь.
Мы не используем файлы cookie этого типа.
Неклассифицированные файлы cookie — это файлы cookie, которые мы классифицируем вместе с поставщиками отдельных файлов cookie.
Мы не используем файлы cookie этого типа.
Устранение неисправностей конденсатора — выход для запчастей HVAC
Устранение неполадок конденсатора
Как измерить емкость со стандартными рабочими конденсаторами и двойными рабочими конденсаторами.
Сначала давайте определим разницу между рабочим конденсатором и двойным рабочим конденсатором.
Конденсатор слева — это «двойной рабочий цикл», а конденсатор справа — «рабочий овал».
Как определить клеммы на двойном рабочем конденсаторе.
Это верхняя часть двойного рабочего конденсатора, и если вы посмотрите очень внимательно, вы увидите клеммы «c», «herm» и «fan». Другой способ узнать типы терминалов — это подсчитать количество соединений, которые расположены на каждом терминале. Это характерно для большинства двойных конденсаторов. Вентилятор имеет 2 точки подключения, герметик или компрессор — 3, а общий или c — 4.
Как измерить емкость рабочего конденсатора.
Вот как проверить рабочий конденсатор с помощью стандартного мультиметра с опцией MFD. Просто поместите щупы на оба терминала. В этом случае значение составляет 7,7 мкФ / мфд. Рейтинг — 7,5 мкФ / м / д. Это нормально и проверяет конденсатор.
Как измерить емкость двойного рабочего конденсатора.
Вот как проверить конденсатор двойного хода с помощью стандартного мультиметра с опцией MFD. Просто поместите один из датчиков на клемму герметика или вентилятора (в зависимости от того, что вы проверяете), а другой датчик на общую клемму.В этом случае значение составляет 43,8 мкФ / мфд. Номинальное значение для терминала Herm составляет 45 мкФ / мсф. Затем вы можете проверить вентилятор, переместив датчик от герметика к клемме вентилятора и оставив второй датчик на общей клемме.
Цель данного руководства — дать представление о работе печи. Он не предназначен для использования в качестве практического учебного пособия или помощника. Все оборудование HVAC должно обслуживаться лицензированным специалистом по HVAC. Проконсультируйтесь с местными, городскими и государственными законами, постановлениями и постановлениями перед тем, как получить доступ к любому оборудованию HVAC, задействовать его, устранить неисправности, отремонтировать или обслужить его.
ПРИМЕЧАНИЕ ПО ТЕХНИКЕ БЕЗОПАСНОСТИ — ВСЕГДА ВЫКЛЮЧАЙТЕ ГЛАВНЫЙ СИЛОВОЙ И ГАЗОВЫЙ КЛАПАН ПЕРЕД ОБСЛУЖИВАНИЕМ ЛЮБОГО ОБОРУДОВАНИЯ HVAC. МОЖЕТ ПРОИЗОЙТИ СЕРЬЕЗНЫЕ ТРАВМЫ.
Как проверить конденсатор мультиметром в цепи?
Метод 1 Проверка конденсатора с помощью мультиметра с настройкой емкости
Это один из самых простых, быстрых и точных способов проверки конденсатора. Для этого нам понадобится цифровой мультиметр с функцией измерителя емкости. Большинство цифровых мультиметров среднего и высокого уровня имеют эту функцию.
Измеритель емкости на цифровых мультиметрах часто отображает емкость конденсатора, но несколько счетчиков отображают другие параметры, такие как ESR, утечку и т. Д.
Чтобы проверить конденсатор с помощью цифрового мультиметра с измерителем емкости, можно выполнить следующие шаги.
Отсоедините конденсатор от печатной платы и полностью разрядите его.
Если номинальные параметры конденсатора видны на его корпусе, запишите это. Обычно емкость в фарадах (часто микрофарадах) печатается на корпусе вместе с номинальным напряжением.
На цифровом мультиметре установите ручку настройки емкости.
Подключите щупы мультиметра к клеммам конденсатора. В случае поляризованного конденсатора подключите красный щуп к положительной клемме конденсатора (обычно более длинный провод), а черный щуп к отрицательной клемме. В случае неполяризованного конденсатора, подключите его в любом случае, поскольку они не имеют полярности.
Теперь проверьте показания цифрового мультиметра. Если показания мультиметра ближе к реальным значениям (указанным на конденсаторе), то конденсатор можно считать хорошим конденсатором.
Если разница между фактическим значением и измеренным показанием значительно (или иногда равна нулю), то вам следует заменить конденсатор, так как он мертв.
Используя этот метод, можно измерить емкость конденсаторов от нескольких нанофарад до нескольких сотен микрофарад.
Метод 1
Метод 2 Проверка конденсатора с помощью мультиметра без настройки емкости
Большинство недорогих цифровых мультиметров не имеют измерителя емкости или настроек емкости.Даже с этими мультиметрами мы можем проверить конденсатор.
Снимите конденсатор со схемы или платы и убедитесь, что он полностью разряжен.
Настройте мультиметр на измерение сопротивления, т. Е. Установите ручку в положение «Ом» или «Настройки сопротивления». Если существует несколько диапазонов измерения сопротивления, выберите более высокий диапазон (часто от 20 кОм до 200 кОм).
Подключите щупы мультиметра к выводам конденсатора (красный к плюсу и черный к минусу в случае поляризованных конденсаторов).
Цифровой мультиметр покажет значение сопротивления на дисплее и вскоре отобразит сопротивление разомкнутой цепи (бесконечность). Запишите показания, отображаемые за этот короткий период.
Отсоедините конденсатор от мультиметра и повторите проверку несколько раз.
Каждая попытка теста должна показывать на дисплее аналогичный результат для исправного конденсатора.
Если при дальнейших испытаниях сопротивление не изменилось, конденсатор неисправен.
Этот метод тестирования конденсатора может быть неточным, но позволяет различать хорошие и плохие конденсаторы. Этот метод также не дает данных о емкости конденсатора.
Метод 2
.