что это такое, как проверить, характеристики
Развитие электроники требует все более высоких стандартов от радиодеталей. Для работы на высоких частотах используют диод Шоттки, который по своим параметрам превосходит кремниевые аналоги. Иногда можно встретить название диод с барьером Шоттки, что в принципе означает то же самое.
Конструкция
Отличается диод Шоттки от обыкновенных диодов своей конструкцией, в которой используется металл-полупроводник, а не p-n переход. Понятно, что свойства здесь разные, а значит, и характеристики тоже должны отличаться.
Действительно, металл-полупроводник обладает такими параметрами:
- Имеет большое значение тока утечки,
- Невысокое падение напряжения на переходе при прямом включении,
- Восстанавливает заряд очень быстро, так как имеет низкое его значение.
Диод Шоттки изготавливается из таких материалов, как арсенид галлия, кремний, намного реже, но также может использоваться – германий. Выбор материала зависит от свойств, которые нужно получить, однако в любом случае максимальное обратное напряжение, на которое могут изготавливаться данные полупроводники, не выше 1200 вольт – это самые высоковольтные выпрямители. На практике же намного чаще их используют при более низком напряжении – 3, 5, 10 вольт.
На принципиальной схеме диод Шоттки обозначается таким образом:
Но иногда можно увидеть и такое обозначение:
Это означает сдвоенный элемент: два диода в одном корпусе с общим анодом или катодом, поэтому элемент имеет три вывода. В блоках питания используют такие конструкции с общим катодом, их удобно использовать в схемах выпрямителей. Часто на схемах рисуется маркировка обычного диода, но в описании указывается, что это Шоттки, поэтому нужно быть внимательными.
Диодные сборки с барьером Шоттки выпускаются трех типов:
1 тип – с общим катодом,
2 тип – с общим анодом,
3 тип – по схеме удвоения.
Такое соединение помогает увеличить надежность элемента: ведь находясь в одном корпусе, они имеют одинаковый температурный режим, что важно, если нужны мощные выпрямители, например, на 10 ампер.
Но есть и минусы. Все дело в том, что малое падение напряжения (0,2–0,4 в) у таких диодов проявляется на небольших напряжениях, как правило – 50–60 вольт. При более высоком значении они ведут себя как обычные диоды. Зато по току эта схема показывает очень хорошие результаты, ведь часто бывает необходимо – особенно в силовых цепях, модулях питания – чтобы рабочий ток полупроводников был не ниже 10а.
Еще один главный недостаток: для этих приборов нельзя превышать обратный ток даже на мгновение. Они тут же выходят из строя, в то время как кремниевые диоды, если не была превышена их температура, восстанавливают свои свойства.
Но положительного все-таки больше. Кроме низкого падения напряжения, диод Шоттки имеет низкое значение емкости перехода. Как известно: ниже емкость – выше частота. Такой диод нашел применение в импульсных блоках питания, выпрямителях и других схемах, с частотами в несколько сотен килогерц.
Вольтамперная характеристика светодиода (ВАХ)
ВАХ такого диода имеет несимметричный вид. Когда приложено прямое напряжение, видно, что ток растет по экспоненте, а при обратном – ток от напряжения не зависит.
Все это объясняется, если знать, что принцип работы этого полупроводника основан на движении основных носителей – электронов. По этой же самой причине эти приборы и являются такими быстродействующими: у них отсутствуют рекомбинационные процессы, свойственные приборам с p-n переходами. Для всех приборов, имеющих барьерную структуру, свойственна несимметричность ВАХ, ведь именно количеством носителей электрического заряда обусловлена зависимость тока от напряжения.
Миниатюризация
С развитием микроэлектроники стали широко применяться специальные микросхемы, однокристальные микропроцессоры. Все это не исключает использования навесных элементов. Однако если для этой цели использовать радиоэлементы обычных размеров, то это сведет на нет всю идею миниатюризации в целом. Поэтому были разработаны бескорпусные элементы – smd компоненты, которые в 10 и более раз меньше обычных деталей. ВАХ таких компонентов ничем не отличается от ВАХ обычных приборов, а их уменьшенные размеры позволяют использовать такие запчасти в различных микросборках.
Компоненты smd имеют несколько типоразмеров. Для ручной пайки подходят smd размера 1206. Они имеют размер 3,2 на 1,6 мм, что позволяет их впаивать самостоятельно. Другие элементы smd более миниатюрные, собираются на заводе специальным оборудованием, и самому, в домашних условиях, их паять невозможно.
Принцип работы smd компонента также не отличается от его большого аналога, и если, к примеру, рассматривать ВАХ диода, то она в одинаковой степени будет подходить для полупроводников любого размера. По току изготавливаются от 1 до 10 ампер. Маркировка на корпусе часто состоит из цифрового кода, расшифровка которого приводится в специальных таблицах. Протестировать на пригодность их можно тестером, как и большие аналоги.
Использование на практике
Выпрямители Шоттки используется в импульсных блоках питания, стабилизаторах напряжения, импульсных выпрямителях. Самыми требовательными по току – 10а и более – это напряжения 3,3 и 5 вольт. Именно в таких цепях вторичного питания приборы Шоттки используют чаще всего. Для усиления значений по току их включают вместе по схеме с общим анодом или катодом. Если каждый из сдвоенных диодов будет на 10 ампер, то получится значительный запас прочности.
Одна из самых частых неисправностей импульсных модулей питания – выход из строя этих самых диодов. Как правило, они либо полностью пробиваются, либо дают утечку. В обоих случаях неисправный диод нужно заменить, после чего проверить мультиметром силовые транзисторы, а также замерить напряжения питания.
Тестирование и взаимозаменяемость
Проверить выпрямители Шоттки можно так же, как и обычные полупроводники, так как они имеют похожие характеристики. Мультиметром необходимо прозвонить его в обе стороны – он должен показать себя так же, как и обычный диод: анод-катод, при этом утечек быть не должно. Если он показывает даже незначительное сопротивление – 2–10 килоом, это уже повод для подозрений.
Проверка диода Шоттки мультиметром
Диод с общим анодом или катодом можно проверить как два обычных полупроводника, соединенных вместе. Например, если анод общий, то это будет одна ножка из трех. На анод ставим один щуп тестера, другие ножки – это разные диоды, на них ставится другой щуп.
Можно ли его заменить на другой тип? В некоторых случаях диоды Шоттки меняют на обычные германиевые. К примеру, Д305 при токе 10 ампер давал падение всего 0,3 вольта, а при токах 2–3 ампера их вообще можно ставить без радиаторов. Но главная цель установки Шоттки – это не малое падение, а низкая емкость, поэтому заменить получится не всегда.
Как видим, электроника не стоит на месте, и дальнейшие варианты применения быстродействующих приборов будет только увеличиваться, давая возможность разрабатывать новые, более сложные системы.
Как проверить диод? Всё, что необходимо об этом знать.
Проверка диода цифровым мультиметром
Чтобы определить исправность диода можно воспользоваться приведённой далее методикой его проверки цифровым мультиметром.
Но для начала вспомним, что представляет собой полупроводниковый диод.
Полупроводниковый диод – это электронный прибор, который обладает свойством однонаправленной проводимости.
У диода имеется два вывода. Один называется катодом, он является отрицательным. Другой вывод – анод. Он является положительным.
На физическом уровне диод представляет собой один p-n переход.
Напомню, что у полупроводниковых приборов p-n переходов может быть несколько. Например, у динистора их три! А полупроводниковый диод, по сути является самым простым электронным прибором на основе всего лишь одного p-n перехода.
Запомним, что рабочие свойства диода проявляются только при прямом включении. Что значит прямое включение? А это означает, что к выводу анода приложено положительное напряжение (+), а к катоду – отрицательное, т.е. (—). В таком случае диод открывается и через его p-n переход начинает течь ток.
При обратном включении, когда к аноду приложено отрицательное напряжение (—), а к катоду положительное (+), то диод закрыт и не пропускает ток.
Так будет продолжаться до тех пор, пока напряжение на обратно включённом диоде не достигнет критического, после которого происходит повреждение полупроводникового кристалла. В этом и заключается основное свойство диода – односторонняя проводимость.
У подавляющего большинства современных цифровых мультиметров (тестеров) в функционале присутствует возможность проверки диода. Эту функцию также можно использовать для проверки биполярных транзисторов. Обозначается она в виде условного обозначения диода рядом с разметкой переключателя режимов мультиметра.
Небольшое примечание! Стоит понимать, что при проверке диодов в прямом включении на дисплее показывается не сопротивление перехода, как многие думают, а его пороговое напряжение! Его ещё называют падением напряжения на p-n переходе. Это напряжение, при превышении которого p-n переход полностью открывается и начинает пропускать ток. Если проводить аналогию, то это величина усилия, направленного на то, чтобы открыть «дверь» для электронов. Это напряжение лежит в пределах 100 – 1000 милливольт (mV). Его то и показывает дисплей прибора.
В обратном включении, когда к аноду подключен минусовой (—) вывод тестера, а к катоду плюсовой (+), то на дисплее не должно показываться никаких значений. Это свидетельствует о том, что переход исправен и в обратном направлении ток не пропускает.
В документации (даташитах) на импортные диоды пороговое напряжение именуется как Forward Voltage Drop (сокращённо Vf), что дословно переводится как «падение напряжения в прямом включении«.
Само по себе падение напряжения на p-n переходе нежелательно. Если помножить протекающий через диод ток (прямой ток) на величину падения напряжения, то мы получим ни что иное, как мощность рассеивания – ту мощность, которая бесполезно расходуется на нагрев элемента.
Узнать подробнее о параметрах диода можно здесь.
Проверка диода.
Чтобы было более наглядно, проведём проверку выпрямительного диода 1N5819. Это диод Шоттки. В этом мы скоро убедимся.
Производить проверку будем мультитестером Victor VC9805+. Также для удобства применена беспаечная макетная плата.
Обращаю внимание на то, что во время измерения нельзя держать выводы проверяемого элемента и металлические щупы двумя руками. Это грубая ошибка. В таком случае мы измеряем не только параметры диода, но и сопротивление своего тела. Это может существенно повлиять на результат проверки.
Держать щупы и выводы элемента можно только одной рукой! В таком случае в измерительную цепь включен только сам измерительный прибор и проверяемый элемент. Данная рекомендация справедлива и при измерении сопротивления резисторов, а также при проверке конденсаторов. Не забывайте об этом важном правиле!
Итак, проверим диод в прямом включении. При этом плюсовой щуп (красный) мультиметра подключаем к аноду диода. Минусовой щуп (чёрный) подключаем к катоду. На фотографии, показанной ранее, видно, что на цилиндрическом корпусе диода нанесено белое кольцо с одного края. Именно с этой стороны у него вывод катода. Таким образом маркируется вывод катода у большинства диодов импортного производства.
Как видим, на дисплее цифрового мультиметра показалось значение порогового напряжения для 1N5819. Так как это диод Шоттки, то его значение невелико – всего 207 милливольт (mV).
Теперь проверим диод в обратном включении. Напоминаем, что в обратном включении диод ток не пропускает. Забегая вперёд, отметим, что и в обратном включении через p-n переход всё-таки протекает небольшой ток. Это так называемый обратный ток (Iобр). Но он настолько мал, что его обычно не учитывают.
Поменяем подключение диода к измерительным щупам мультиметра. Красный щуп подключаем к катоду, а чёрный к аноду.
На дисплее покажется «1» в старшем разряде дисплея. Это свидетельствует о том, что диод не пропускает ток и его сопротивление велико. Таким образом, мы проверили диод 1N5819 и он оказался полностью исправным.
Многие задаются вопросом: «Можно ли проверить диод не выпаивая его из платы?» Да, можно. Но в таком случае необходимо выпаять из платы хотя бы один его вывод. Это нужно сделать для того, чтобы исключить влияние других деталей, которые соединены с проверяемым диодом.
Если этого не сделать, то измерительный ток потечёт через все, в том числе, и через связанные с ним элементы. В результате тестирования показания мультиметра будут неверными!
В некоторых случаях данным правилом можно пренебречь, например, когда чётко видно, что на печатной плате нет таких деталей, которые могут повлиять на результат проверки.
Неисправности диода.
У диода есть две основные неисправности. Это пробой перехода и его обрыв.
Пробой. При пробое диод превращается в обычный проводник и свободно пропускает ток хоть в прямом направлении, хоть в обратном. При этом, как правило, пищит буззер мультиметра, а на дисплее показывается величина сопротивления перехода. Это сопротивление очень мало и составляет несколько ом, а то и вообще равно нулю.
Обрыв. При обрыве диод не пропускает ток ни в прямом, ни в обратном включении. В любом случае на дисплее прибора – «1«. При таком дефекте диод представляет собой изолятор. «Диагноз» — обрыв можно случайно поставить и исправному диоду. Особенно легко это сделать, когда щупы тестера порядком изношены и повреждены. Следите за исправностью измерительных щупов, провода у них ох какие «жиденькие» и при частом использовании легко рвутся.
А теперь пару слов о том, как по значению порогового напряжения (падению напряжения на переходе — Forward Voltage Drop (Vf)) можно ориентировочно судить о типе диода и материале из которого он изготовлен.
Вот небольшая подборка, составленная из конкретных диодов и соответствующих им величин Vf, которые были получены при их тестировании мультиметром. Все диоды были предварительно проверены на исправность.
Марка диода | Измеренное пороговое напряжение, мВ (mV) | Тип диода, материал полупроводника |
1N5822 | 167 | выпрямительный диод Шоттки |
1N5819 | 200 | выпрямительный диод Шоттки |
RU4 | 419 | быстрый выпрямительный диод |
Д20 | 358 | точечный германиевый диод |
Д9 | 400 | точечный германиевый диод |
2Д106А | 559 | диффузионный кремниевый диод |
Д104 | 717 | точечный кремниевый диод |
Как видим, наименьшее падение напряжения на переходе (Vf) у диодов Шоттки 1N5822 и 1N5819. Это отличительная черта всех диодов на основе перехода металл-полупроводник (барьера Шоттки).
При прямом протекании тока через их переход (барьер Шоттки), на нём падает очень малое напряжение. Сказать проще – диод практически не оказывает никакого сопротивления протекающему току и не расходует драгоценные ватты. Противоположенная ситуация у кремниевых диодов. Прямое падение напряжения у них, как правило, не меньше 0,5 вольт, а то и больше. Кремниевые диоды и диоды с барьером Шоттки очень активно используются для выпрямления переменного тока. Например, в составе диодного моста.
Германиевые диоды имеют прямое падение напряжения равное 300 – 400 милливольт. Например, проверенный нами точечный германиевый диод Д9, который ранее применялся в качестве детектора в радиоприёмниках, имеет пороговое напряжение около 400 милливольт.
Диоды Шоттки имеют Vf в районе 100 – 250 mV;
У германиевых диодов Vf, как правило, равно 300 – 400 mV;
Кремниевые диоды имеют самое большое падение напряжения на переходе равное 400 – 1000 mV.
Таким образом, с помощью описанной методики можно не только определить исправность диода, но и ориентировочно узнать, из какого материала и по какой технологии он изготовлен. Определить это можно по величине Vf.
Возможно, после прочтения данной методики у вас появится вопрос: «А как же проверить диодный мост?» На самом деле, очень просто. Об этом я уже рассказывал здесь.
Главная » Радиоэлектроника для начинающих » Текущая страница
Также Вам будет интересно узнать:
Как проверить диод Шоттки мультиметром
Приветствую. Диоды Шоттки благодаря своему быстродействию зачастую используются в импульсных стабилизаторах, а также в выпрямителях блоках питания ПК. Проверка на исправность диода Шоттки ничем особо не отличается от проверки самого обычного диода, она проводиться по единому принципу.
Единственным моментом будет, который нужно учесть, что диоды Шоттки, используемые в хороших и качественных блоках питания зачастую встречаются сдвоенными в общий корпус и имеют общий катод. И так, сегодня мы расскажем вам, как проверить диод Шоттки мультиметром и выявить все его дефекты?
Как проверить диод Шоттки мультиметром?
Для наглядности мы, проведем небольшую проверку диода Шоттки SBL3045PT. Этот диод от блока питания ПК, рассчитан производителем до 45 В, 30 А. (т.е. по 15 А на каждый диод).
При использовании сдвоенных подобных диодов в выпрямителях необходимо учитывать этот момент, что производитель часто указывает ток на сборку целиком, а не на каждый диод в сборке.
Схематическая проверка сдвоенного диода Шоттки с общим катодом изображена ниже.
Мы видим, что поочередно необходимо проверить каждый из двух диодов.
Наглядно продемонстрируем как проверить диод Шоттки мультиметром?
Важно! При проверке диода можно и важно найти дефекты не только обрыв или пробой. Необходимо пытаться учитывать такой неприятный дефект, как небольшая «утечка».
Если мы производили проверку мультиметром с режимом «диод», и выявили вполне рабочий элемент, но у нас есть подозрение подобную на утечку, тогда необходимо попробовать измерять обратное сопротивление диода, предварительно включив на мультиметре режим омметра. На диапазоне «20 кОм» мультиметр должен показывать обратное сопротивление диода как бесконечно большое. Но если тестер показывает даже небольшое сопротивление, например, около 2—3 кОм, тогда к такому диоду необходимо относиться с большим подозрением и лучше сразу заменить новым.
Одним из самых больших недостатков у диодов Шоттки является то, что они моментально выходят из строя при превышении допустимого напряжения. Учитывая все моменты при самостоятельном ремонте импульсных блоков питания, в случае обнаружения дефектных диодов и после их замены, сразу же необходимо проверять на исправность все силовые транзисторы.
Если вам нравиться изложенный материал, предлагаю подписаться на уведомления в Вконтакте и Одноклассниках, что бы не пропустить новые материалы. Так же можете подписаться на обновления по электронной почте в колонке справа.
С ув. Эдуард
Источник http://diodnik.com/
Принцип работы диода Шоттки, как его проверить и чем заменить
В большом семействе полупроводников есть так называемый диод Шоттки. Он назван по фамилии учёного Shottky, открывшего этот эффект. В радиоэлектронике занимает свою нишу благодаря своим параметрам. Что это за прибор и чем он отличается от обычных обсуждаем ниже.
Диоды Шоттки (Shottky) могут выглядеть так
Содержание статьи
Основные характеристики диодов
Для начала вспомним, что такое обычный диод и как он работает. Это полупроводниковый прибор, который стоит из двух зон. При определённых условиях через этот переход перемещаются электроны.
Устройство и обозначение диода
Основное свойство элемента — он пропускает ток в одном направлении, и не пропускает в другом. Диоды Шоттки имеет такие же характеристики, как и обычные. На некоторых заострим внимание поподробнее. Это падение напряжения, обратный ток, обратное напряжение, частота.
Диод Шоттки отличается от обычных кремниевых диодовДиод Шоттки делают из кремния (Si), арсенида галлия (GaAs) и редко — на основе германия (Ge). Металл в соединении с полупроводником определяет многие параметры диода. Этим металлом, может быть, золото (Au), ралладий (Pd), платина (Pt), вольфрам (W) которые наносятся на полупроводники.
А также как и обычный диод соединение полупроводник-металл обладает односторонней проводимостью с рядом положительных, а также отрицательных качеств.
Вольт-амперная характеристика диода шоттки
Вольт-амперная характеристика диода Шоттки отличается от обычного полупроводникового большей нелинейностью.
Что дает использование соединения металл-полупроводник? Два положительных момента:
- Очень небольшое падение напряжения на прямом переходе — 0,2-0,4 В. Для кремниевого диода «среднее» значение этого параметра — 0,7 В. Правда, малое падение напряжения имеют только приборы с небольшим напряжением пробоя — до 100 В. Для более мощных это падение только чуть ниже, чем у кремниевых.
- Высокое быстродействие. То есть, он быстро меняет своё состояние. Переход из открытого состояния в закрытое и обратно происходит за очень короткий промежуток времени и определяется только барьерной ёмкостью. Их применяют в системах коммутации, где важна скорость реакции.
Что такое диод Шоттки и как он обозначается на схеме
Есть у них и минусы. При повышении температуры у них значительно возрастает обратный ток.
Второй недостаток — при превышении максимально допустимого обратного напряжения происходит необратимый пробой. То есть, прибор выходит из строя. Есть и ещё один минус — малое падение прямого напряжения только у диодов Шоттки с малым напряжением пробоя (до сотни вольт). У вариантов с более высоким напряжением потери сравнимы с кремниевыми.
Применение в электронике
Такие свойства, как быстродействие и малое падение напряжения позволяет использовать диоды Шоттки в высокочастотных схемах. Например, в силовых высокочастотных выпрямителях (до сотен килогерц), где они работают как высокочастотные выпрямители. Применяют их и в усилителях звука, так как по сравнению с обычными диодами они дают меньший уровень помех.
Если вы посмотрите на плату источника питания, точно увидите диод Шоттки
Ещё одна область применения — составная часть более сложных полупроводниковых приборов. Например, МОП — транзисторы, диодные сборки и силовые диоды со встроенным диодом Шоттки имеют лучшие характеристики.
Сфера применения изделий велика, но наиболее часто их применяют в блоках питания компьютеров. А также в схемах для модуляции света в приёмниках излучения, солнечных батареях.
Условное обозначение и характеристики
На схеме диод Шоттки имеет особое обозначение. Отличие от обычного состоит в том, что перекладина у треугольника имеет загнутые края. Не один, как у стабилитрона, а оба. И края эти загнуты в разные стороны. На рисунке приведено обозначение по ГОСТу.
Диод Шоттки на схеме: условное обозначение
Про характеристики уже говорили. Это три основных параметра:
- Падение напряжения при прямом переходе. Для диодов Шоттки оно ниже, чем у обычных кремневых. При мощности обратного пробоя до 100 В оно будет порядка 0,2-0,4 В (у кремниевых в среднем 0,6–07 В).
- Напряжение пробоя. Обычное значение — до 200 В, но есть и изделия с напряжением более 1000 вольт.
Параметры популярной серии диодов Шоттки 1N58**
- Обратный ток. В нормальных условиях (до 20 °C) он не слишком велик — порядка 0,05 мА, но при повышении температуры резко повышается.
Приведённые параметры — средние. Есть довольно серьёзный разбег и для каждого случая можно подобрать нужные характеристики по каждому из пунктов. Иногда ещё важен такой параметр, как скорость переключения (быстродействие).
Виды диодов Шоттки
В настоящее время в электронных устройствах обычно применяют именно этот тип диодов. Бывают следующих видов:
- Одинарные.
- Сдвоенные
- с общим анодом;
- с общим катодом;
Два варианта корпусов для сдвоенных диодов Шоттки
- последовательно соединенные.
Сдвоенные диоды Шоттки (или диодные сборки) выполнены в одном корпусе, похожи на силовые ключи, имеют три вывода. Диоды в сборке имеют одинаковые или очень близкие параметры, так как выполняются в одном технологическом цикле.
Часто диоды Шоттки выглядят именно так, но есть еще и в виде обычных диодов и СМД варианты. Как видите, на пластиковых стоит обозначение связки двух диодов — с общим анодом
Деталь имеет обычный корпус в виде небольших цилиндров с двумя проволочными выводами. Катод помечен полосой.
Таблица названий и характеристик
Диоды Шоттки выпускаются определёнными сериями. Не так много производителей в мире, несколько десятков серий. В таблице собраны наиболее часто встречающиеся элементы отечественного и импортного производства (некитайского).
Отечественные диоды Шоттки | Импортные диоды Шоттки | U max, V | Imax, А | Тип |
---|---|---|---|---|
1N5817 | 20-25 | 1 | Одинарный | |
1N5820 | 20-25 | 3 | Одинарный | |
КД269 А, АС | 20-25 | 5 | Одинарный/сдвоенный | |
КД238АС | 20-25 | 7,5 | Сдвоенный | |
КД270 А, АС | 20-25 | 7,5 | Одинарный/сдвоенный | |
КД271 А, АС | 20-25 | 10 | Одинарный/сдвоенный | |
КД272 А, АС | SR1620 | 20-25 | 15 | Одинарный/сдвоенный |
КД273 А, АС | 20-25 | 20 | Одинарный/сдвоенный | |
1N5818 | 30-35 | 1 | Одинарный | |
1N5821 | 30-35 | 3 | Одинарный | |
КД638 А, АС | 30-35 | 5 | Сдвоенные | |
КД238 А, АС | 30-35 | 7,5 | Сдвоенные | |
10TQ0.5 | 30-35 | 10 | Одинарный | |
12TQ035 | 30-35 | 15 | Одинарный | |
20TQ035 | 30-35 | 20 | Одинарный | |
SR5030 | 30-35 | 50 | Сдвоенные | |
1N5819 | 40-45 | 1 | Одинарный | |
1N5822 | 40-45 | 3 | Одинарный | |
КД638 АС | SR540 | 40-45 | 5 | Одинарный |
КД238 АС | 6TQ045 | 40-45 | 7.5 | Сдвоенные |
10TQ045 | 40-45 | 10 | Одинарный | |
12TQ045 | 40-45 | 15 | Одинарный | |
20TQ045 | 40-45 | 20 | Одинарный | |
SR350 | 50 | 3 | Одинарный | |
КД269 Б, БС | 50 | 5 | Одинарный/сдвоенный | |
КД270 Б, БС | SR850 | 50 | 7.5 | Одинарный/сдвоенный |
КД271 Б, БС | 50 | 10 | Одинарный/сдвоенный | |
КД272 Б, БС | 50 | 15 | Одинарный/сдвоенный | |
КД273 Б, БС | 18TQ050 | 50 | 20 | Одинарный/сдвоенный |
SR160 | 60 | 1 | Одинарный | |
SR360 | 60 | 3 | Одинарный | |
КД638 БС | SR560 | 60 | 5 | Сдвоенные |
КД636 АС | SR1660 | 60 | 15 | Сдвоенные |
КД637 АС | 60 | 25 | Сдвоенные | |
КД269 В, ВС | 50SQ080 | 75 | 5 | Одинарный/сдвоенный |
КД270 В, ВС | 8TQ060 | 75 | 7,5 | Одинарный/сдвоенный |
КД271 В, ВС | 75 | 10 | Одинарный/сдвоенный | |
КД272 В, ВС | 75 | 15 | Одинарный/сдвоенный | |
КД273 В, ВС | 75 | 20 | Одинарный/сдвоенный | |
30CPQ80 | 75 | 30 | Сдвоенные | |
11DQ09 | 90-100 | 1.1 | Одинарный | |
31DQ10 | 90-100 | 3.3 | Одинарный | |
КД638 ВС | 90-100 | 5 | Сдвоенные | |
КД269 Г, ГС | 50SQ100 | 90-100 | 5 | Одинарный/сдвоенный |
КД270 Г, ГС | 8TQ100 | 90-100 | 7.5 | Одинарный/сдвоенный |
КД271 Г, ГС | 90-100 | 10 | Одинарный/сдвоенный | |
КД272 Г, ГС | 90-100 | 15 | Одинарный/сдвоенный | |
КД273 Г, ГС | 90-100 | 20 | Одинарный/сдвоенный | |
30CPQ100 | 90-100 | 30 | Сдвоенные | |
КД638 ГС | 150 | 5 | Сдвоенные | |
КД269 Д, ДС | 150 | 5 | Одинарный/сдвоенный | |
КД638 ДС | 150 | 5 | Сдвоенные | |
КД270 Д, ДС | 150 | 7,5 | Одинарный/сдвоенный | |
КД271 Д, ДС | 10CTQ150 | 150 | 10 | Одинарный/сдвоенный |
КД636 БС | 150 | 15 | Сдвоенные | |
КД272 Д, ДС | 150 | 15 | Одинарный/сдвоенный | |
КД273 Д, ДС | 150 | 20 | Одинарный/сдвоенный | |
КД637 БС | 150 | 25 | Одинарный/сдвоенный | |
30CPQ150, SF303 | 150 | 30 | Сдвоенные | |
UF4003, SF14 | 200 | 1 | Одинарный | |
SF24 | 200 | 2 | Одинарный | |
SF34, HER303 | 200 | 3 | Одинарный | |
КД369 Е, ЕС | 200 | 5 | Одинарный/сдвоенный | |
КД638 ЕС | 200 | 5 | Сдвоенные | |
КД270 Е, ЕС | 200 | 7,5 | Одинарный/сдвоенный | |
КД271 Е, ЕС | 200 | 10 | Одинарный/сдвоенный | |
КД272 Е, ЕС | 200 | 15 | Одинарный/сдвоенный | |
КД638 ВС | 200 | 15 | Сдвоенные | |
КД273 Е, ЕС | 200 | 20 | Одинарный/сдвоенный | |
КД637 ВС | 200 | 25 | Сдвоенные | |
SF304, 30EPF02 | 200 | 30 | Одинарный | |
UF4004. SF16 | 400 | 1 | Одинарный | |
SF26 | 400 | 2 | Одинарный | |
SF26, HER305 | 400 | 3 | Одинарный | |
КД640 А, АС | 400 | 8 | Одинарный/сдвоенный | |
КД271 К, КС, К1 | 10ETF04 | 400 | 10 | Одинарный/сдвоенный |
КД272 К, КС, К1 | 16CTU04 | 400 | 15 | Одинарный/сдвоенный |
КД641 А, АС | 400 | 15 | Одинарный/сдвоенный | |
КД636ГС | 400 | 15 | Сдвоенные | |
КД273К, КС, К1 | 400 | 20 | Одинарный/сдвоенный | |
КД637ГС | 30CPF04 | 400 | 25 (30) | Сдвоенные |
КД640 Б, БС | 500 | 8 | Одинарный/сдвоенный | |
КД640 Е, ЕС | 500 | 8 | Одинарный/сдвоенный | |
КД271 Л, ЛС, Л1 | 500 | 10 | Одинарный/сдвоенный | |
КД272 Л, ЛС, Л1 | 500 | 15 | Одинарный/сдвоенный | |
КД640 Б, БС | 500 | 15 | Одинарный/сдвоенный | |
КД640 Е, ЕС | 500 | 15 | Одинарный/сдвоенный | |
КД273 Л, ЛС, Л1 | 500 | 20 | Одинарный/сдвоенный | |
UF4005, SF17 | 600 | 1 | Одинарный | |
SF27 | 600 | 2 | Одинарный | |
SF37, HER306 | 600 | 3 | Одинарный | |
HFA04TB60 | 600 | 4 | Одинарный | |
КД640 В, ВС | HFA08TB60, HFA08pB60 | 600 | 8 | Одинарный/сдвоенный |
КД271, М, МС, М1 | 10ETF06 | 600 | 10 | Одинарный/сдвоенный |
КД636 ДС | 600 | 12 | Сдвоенные | |
КД272, М, МС, М1 | 600 | 15 | Одинарный/сдвоенный | |
КД641В, ВС | 600 | 15 | Одинарный/сдвоенный | |
КД273, М, МС, М1 | 600 | 20 | Одинарный/сдвоенный | |
КД637 ДС | 600 | 25 | Сдвоенные | |
30СPF06 | 600 | 30 | Одинарный/сдвоенный | |
40EPF06 | 600 | 40 | Одинарный | |
60EPF06 | 600 | 60 | Одинарный | |
КД640 Г, ГС | 700 | 8 | Одинарный/сдвоенный | |
КД640 Г, ГС | 700 | 15 | Одинарный/сдвоенный | |
UF4006, SF18 | 800 | 1 | Одинарный | |
SF28 | 800 | 2 | Одинарный | |
SF38, HER307 | 800 | 3 | Одинарный | |
КД636 ЕС | 800 | 12 | Сдвоенные | |
КД637 ЕС | 20ETF08 | 800 | 25 | Сдвоенные |
UF4007, SF19 | 1000-1200 | 1 | Одинарный | |
SF29 | 1000-1200 | 2 | Одинарный | |
SF39, HER308 | 1000-1200 | 3 | Одинарный | |
HFA06TB120 | 1000-1200 | 6 | Одинарный | |
HFA08TB120, HFA06PB120 | 1000-1200 | 8 | Одинарный | |
20ETF12 | 1000-1200 | 20 | Одинарный | |
30ETF12 | 1000-1200 | 30 | Одинарный/сдвоенный | |
60ETF12 | 1000-1200 | 60 | Одинарный |
Для удобства они отсортированы по напряжению пробоя. Внутри группы прямой ток идет по возрастающей. Так удобнее ориентироваться.
Отличия в графическом изображении диода Шоттки и обычного
Некоторые из перечисленных супербыстрые: SF 17/18/19 в группе с высоким обратным напряжением (от 600 В). В группе с напряжением пробоя 400 В их несколько — всё по списку начиная от тока 8А. Такая же картина наблюдается с пробоем на 300 В. В этой группе почти все отличатся высоким быстродействием. Только три позиции (UF4003 и SF 24 и 34) имеют «нормальную» для диодов Шоттки скорость срабатывания. Она всё равно намного выше, чем у обычных кремниевых деталей.
Если проанализировать таблицу, можно заметить, что диоды с малым обратным током почти без исключений импортного производства.
Как проверить
Вообще, он проверяется как обычный диод. Проверка основана на том, что они в одном направлении пропускают ток и имеют малое сопротивление, во втором ток не пропускают и сопротивление имеют высокое — почти обрыв.
Чтобы проверить диод Шоттки мультиметром, переводим его в режим прозвонки. Прикладываем щупы к выводам проверяемой детали. В одном положении должно «звониться», поменяв щупы, должна получить обрыв. Если «звонится» и в любом положении щупов — переход пробит и диод неисправен. Но никакие другие характеристики мультиметром вы не проверите. Можно только сказать работает он или пробит, а также где анод и катод.
Можно проверить диод Шоттки имея обычный мультиметр. В обратном положении должен показывать «обрыв».
Где анод, а где катод? Анод там где положительный щуп, катод — где земляной при таком положении когда диод ток пропускает. В обычном исполнении (КД) катод там, где корпус имеет расширение.
Проверить исправность диода Шоттки вообще не проблема, если имеете универсальный тестер. В слоты вставляем ножки детали и нажимаем на кнопку тестирования. На экране должен высветиться символ диода и характеристики, которыми он обладает. Перечень характеристик зависит от модели измерителя, но падение напряжения на прямом переходе, напряжение пробоя и обратный ток должны быть обязательно. А ещё вам распишут, к какому слоту подключён анод, а к какому катод. Если он сдвоенный, то и общий коллектор/база будут прописаны.
Чем заменить
Заменить диод диодом Шоттки вполне возможно, лишь бы подходил по основным характеристикам, напряжение и ток. А вот обратная замена нежелательна. Дело в том, что Шоттки в силу своих характеристик, меньше греются. При такой замене он быстро выйдет из строя. Конечно если проанализировать схему, то можно подобрать аналог с запасом по мощности.
Ss24 диод шоттки как проверить
В данной статье объясним как проверить диод мультиметром. Полупроводниковый диод, как компонент электронной схемы, довольно часто выходит из строя по различным причинам, например, превышение максимально допустимого прямого тока, обратного напряжения и тому подобное. Различают два вида неисправности диода – пробой и короткое замыкание.
Действие диода, как полупроводникового прибора с p-n переходом, заключается в том, что он пропускает электрический ток только в одном направлении (от анода к катоду), в обратном же направлении (от катода к аноду) ток не течет.
Зная это свойство диода можно легко проверить его на неисправность при помощи обычного мультиметра.
Как проверить диод мультиметром
Обычные диоды, так же как и стабилитроны, можно проверить с помощью мультиметра. Чтобы проверить этот полупроводниковый прибор с помощью цифрового мультиметра, установите переключатель мультиметра в режим проверки диодов, обычно данный режим имеет значок диода:
Следует отметить, что при проверке в данном режиме, на мультиметре отображается прямое напряжение, а не сопротивление, когда просто прозванивают диод в режиме сопротивления.
Признаки исправного диода:
- При подключении плюсового щупа (красный) мультиметра к аноду диода, а минусового щупа (черный) к катоду диода на экране мультиметра должна высветиться определенная величина прямого напряжения данного диода. У разных типов диодов прямое напряжение отличается. Так у германиевых диодов оно составляет примерно 0,3…0,7 вольт, у кремниевых диодов 0,7…1,0 вольта. Хотя некоторые типы мультиметров могут показывать более низкое значение прямого напряжения в режиме проверки.
- И на оборот, при подключении минусового щупа мультиметра к аноду диода, а плюсового щупа к катоду диода на экране будет ноль.
При иных показаниях мультиметра можно утверждать о неисправности проверяемого диода.
Альтернативный способ проверки исправности диода
В том случае, если у вас мультиметр не снабжен режимом проверки диодов, то проверить диод можно по простой схеме, которая приведена ниже.
При данной проверке, мультимет необходимо перевести в режим измерения постоянного напряжения. При том подключении исправного диода, как указано на схеме, вольтметр покажет прямое напряжение на диоде. Если теперь выводы диода поменять местами, то он не будет проводить ток, а вольтметр укажет напряжение питания (в данном случае 5 вольт).
Так же можно прозвонить диод и определить его общее состояние путем измерения сопротивления, как в прямом, так и в обратном направлении.
Для этого необходимо перевести мультиметр в режим измерения сопротивления, диапазон до 2 кОм. При подключении диода в прямом направлении (красный к аноду, черный к катоду) измерительный прибор покажет сопротивление несколько сотен Ом, в обратном направлении прибор покажет символ разрыва цепи, что говорит об очень большом сопротивлении.
Как проверить диодный мост
Прежде чем перейти к вопросу проверки диодного моста, вкратце приведем его описание. Диодный мост представляет собой сборку из четырех диодов, соединенных таким образом, что переменное напряжение (AC), подаваемое к двум из четырех выводов диодного моста, переходит в постоянное напряжение (DC) снимаемое с двух других его выводов.
Таким образом, предназначение диодного моста – выпрямление переменного напряжения с целью получения постоянного напряжения.
Диодный (выпрямительный) мост представляет собой четыре выпрямительных диода соединенных по определенной схеме:
Поскольку диодный мост предназначен для выпрямления переменного напряжения (синусоиды), то при первой полуволне переменного напряжения в работе участвуют одна пара диодов:
а при следующей полуволне работает другая пара выпрямительных диодов:
Проверка диодного моста ничем не отличается от проверки обычного диода. Просто необходимо определиться, к каким выводам подключать мультиметр. Условно пронумеруем выводы выпрямителя от 1 до 4:
Отсюда следует, что для проверки диодного моста нам достаточно прозвонить 4 диода:
- 1-й: выводы 1 – 2;
- 2-й: выводы 2 – 3;
- 3-й: выводы 1 – 4;
- 4-й: выводы 4 – 3;
При проверке, необходимо руководствоваться на показания мультиметра, как и при проверке обычных диодов.
Диоды относятся к популярным и широко применяемым электронным элементам, обладающим различным уровнем проводимости.
Перед тем, как проверить диод мультиметром (прозвонить диод и стабилитрон тестером), нужно узнать особенности такого тестирующего прибора и наиболее важные правила его использования.
Классификация
Диоды представляют собой электропреобразующие и полупроводниковые устройства, имеющие один электрический переход и два выхода в виде р-n-перехода.
- в соответствии с назначением, диоды чаще всего бывают устройствами выпрямительного, высокочастотного и сверхвысокочастотного, импульсного, туннельного, обращенного, опорного типа, а также варикапами;
- в соответствии с конструктивно-технологическим характеристиками диоды бывают представлены плоскостными и точечными элементами;
- в соответствии с исходным материалом диоды могут быть германиевого, кремниевого, арсенидо-галлиевого и другого типа.
В соответствии с классификацией, самые важные параметры и характеристики диодов представлены:
- предельно допускаемыми показателями обратного уровня напряжения постоянного типа;
- предельно допускаемыми показателями обратного уровня напряжения импульсного типа;
- предельно допускаемыми показателями прямого тока постоянного типа;
- предельно допускаемыми показателями прямого тока импульсного типа;
- номинальными показателями прямого тока постоянного типа;
- прямым токовым напряжением постоянного типа в условиях номинальных показателей, или так называемым «падением напряжения»;
- постоянным током обратного типа, указываемым в условиях максимально допускаемого обратного напряжения;
- разбросом рабочих частот и ёмкостными показателями;
- уровнем напряжения пробивного типа;
- уровнем теплового корпусного сопротивления, в зависимости от типа установки;
- предельно возможными показателями рассеивающей мощности.
В зависимости от уровня мощности, полупроводниковые элементы могут быть маломощными, мощными или среднего уровня мощности.
Проверка выпрямительного диода и стабилитрона
В плане самостоятельного диодного тестирования мультиметром, особый интерес представляет проверка:
- обычных диодов на основе p-n-перехода;
- диодных элементов Шоттки;
- стабилитронов, стабилизирующих потенциал.
Обычное тестирование, в этом случае, позволяет определить только целостность p-n-перехода, и именно по этой причине в таких устройствах рабочая точка должна быть смещена.
Схема простейшего метода проверки напряжения стабилитрона
Достаточно использовать простенькую схему, включающую в себя обычный источник питания и резистор для ограничения тока. Мультиметр при нестандартной проверке применяется для замера напряжения, в условиях плавного повышения питающего потенциала.
Сборка схемы
Стандартная схема, выполняемая посредством навесного монтажа, состоит из нескольких основных элементов, представленных:
- блоком питания на 16-18 В;
- резистором на 1,5-2 кОм;
- цифровым или стрелочным вольтметром;
- проверяемым устройством.
Как проверить диод шоттки мультиметром
Особенностью некоторых мультиметров является наличие функции «проверка диода». В таких условиях на приборе отображаются фактические показатели прямого диодного напряжения при токовой проводимости.
Тестер, оснащенный специальной функцией, регистрирует немного заниженный уровень прямого напряжения, что обусловлено незначительной токовой величиной, которая задействована при проверке.
В магазине можно встретить самые разные светодиодные лампы для дома. Как выбрать качественный прибор, знают не все. Если интересно, читайте подробную информацию.
Инструкция по сборке светодиодного фонаря своими руками представлена здесь.
Многие выбрасывают светодиодную лампу, если она сломалась. На самом деле большинство таких приборов можно починить. Все о ремонте светодиодных ламп вы можете почитать по ссылке.
Настройка мультиметра
Тестирование полупроводникового элемента посредством цифрового мультиметра потребует переключения прибора в режим проверки диодов. Альтернативным вариантом, при отсутствии переключения в положение «проверка диода», является тестирование в режиме сопротивления, при диапазоне не более 2,0 кОм.
В таком случае выполняется прямое подключение: красный провод подводится на анод, а черный – на катод. При такой настройке мультимера, замеры показывают сопротивление, равное нескольким сотням Ом, в обратное направление фиксирует разрыв цепи.
Следует отметить, что разные типы диодных устройств могут в значительной степени отличаться показателями прямого напряжения.
Например, для германиевых устройств характерно наличие напряжения в пределах 0,3-0,7 В, а для кремниевых элементов допустимы показатели в 0,7-1,0 В.
Как показывает практика, некоторые виды приборов-тестеров при проверке диодных элементов показывают более низкие значения уровня прямого напряжения.
Включение блока питания
Если проверка работоспособности диодов мультиметром предполагает переключение тестера в положение на значок «диод» с подключением черного щупа на вывод «СОМ», а красного — на вывод «V ΩmA», то наличие блока питания заключается в выявлении следующих неполадок:
- подключение блока сопровождается «дерганьем» питания вентилятора, остановкой, отсутствием выходного напряжения и блокировкой источника питания;
- подключение блока сопровождается пульсацией напряжения на выходе и срабатыванием защиты без блокирования источника питания.
Измерение переменного тока
Достаточно часто признаком утечки на диодах Шоттки становится самопроизвольное отключение питающего блока. Также очень важно учитывать, что неправильная схемотехника на блоках питания, может спровоцировать утечку диодных выпрямителей и перегрузку первичной цепи.
Подключение мультиметра
- пробоем, сопровождаемым токовой проводимостью вне зависимости от направления, а также фактическим отсутствием сопротивления;
- обрывом, сопровождаемым отсутствием токового проведения;
- утечкой, сопровождаемой наличием незначительного обратного тока.
Методика настройки прибора для проверки и последовательного тестирования является очень простой.
Соединение анода и щупа мультиметра на «+», а также катода и p-n-перехода на «-» должны быть открытыми. В этом случае прибор подаёт характерный звуковой сигнал. Обратный вариант подключения с закрытым p-n-переходом индицируется единицей.
Знаете ли вы, что светодиодные лампы могут иметь разное устройство? Устройство светодиодных ламп на 220 Вольт – типы приборов и способы сборки.
Инструкция по замене люминесцентных ламп на светодиодные представлена тут.
Как показываем практика самостоятельного тестирования, токовое прохождение, независимо от показателей полярности подключения, чаще всего сопровождает короткое замыкание, а отсутствие прозвона в обе стороны наблюдается при разрыве в цепи.
Видео на тему
Как уже отмечалось, неисправность диодов Шоттки является одной из основных проблем современных блоков питания. Так по каким же предварительным признакам можно предположительно определить их неисправность? Таких признаков несколько.
Во-первых, при пробоях и утечках вторичных выпрямительных диодов, как правило, срабатывает защита, и блок питания не запускается. Это может проявляться по-разному:
· При включении блока питания вентилятор «дергается», т.е. совершает несколько оборотов и останавливается; после этого выходные напряжения полностью отсутствуют, т.е. источник питания блокируется.
· После включения блока питания вентилятор «дергается» постоянно, на выходах блока питания можно наблюдать пульсации напряжения, т.е. защита срабатывает периодически, но блок питания при этом полностью не блокируется.
· Признаком неисправности диодов Шоттки является чрезвычайно сильный разогрев вторичного радиатора, на котором они установлены.
· Признаком утечки диодов Шоттки может являться самопроизвольное выключение блока питания, а значит и компьютера, при увеличении нагрузки (например, при запуске программ, обеспечивающих 100% загрузку процессора), а также невозможность запустить компьютер после «апгрейда», хотя мощность блока питания является достаточной.
Кроме того, необходимо осознавать, что в блоках питания с плохой и непродуманной схемотехникой, утечки выпрямительных диодов приводят к перегрузкам первичной цепи и к всплескам тока через силовые транзисторы, что может стать причиной их отказа. Таким образом, профессиональный подход к ремонту блоков питания, диктует обязательную проверку вторичных выпрямительных диодов при каждой замене силовых транзисторов-ключей первичной части блока питания.
Проверка и точная диагностика диодов Шоттки, на практике, является достаточно непростым делом, т.к. многое здесь определяется типом используемого измерительного прибора и опытом подобных измерений, хотя определить обычный пробой одного или двух диодов диодной сборки Шоттки не составляет особого труда. Для этого необходимо выпаять диодную сборку и проверить тестером так, как это делается для обычных диодов. При подобной диагностике тестер необходимо установить в режим проверки диодов. Неисправный диод в обоих направлениях покажет одинаковое сопротивление (как правило, очень малое, т.е. покажет короткое замыкание), что и указывает на его непригодность для дальнейшего использования. Однако явные пробои диодных сборок в практике встречаются очень и очень редко.
В основном же, приходится иметь дело с утечками (причем зачастую с тепловыми утечками) диодов Шоттки. А вот утечки, выявить таким способом невозможно. «Утекающий» диод при проверках тестером в режиме «диод» является в подавляющем большинстве случаев полностью исправным. Гарантированную точность диагностики, на наш взгляд, позволяет дать только такой метод, как замена диода на заведомо исправный аналогичный прибор.
Но все-таки, выявить «подозрительный» диод можно попытаться с помощью методики, заключающейся в измерении сопротивления его обратного перехода. Для этого будем пользоваться не режимом проверки диодов, а обычным омметром. Внимание! При использовании этой методики следует помнить, что разные тестеры могут давать отличающиеся показания, что объясняется различием самих тестеров.
Итак, устанавливаем предел измерений на значение (20К) и измеряем обратное сопротивление диода. Как показывает практика, исправные диоды на этом пределе измерений должны показывать бесконечно большое сопротивление. Если же при измерении выявляется некоторое, как правило, небольшое сопротивление (2-10 КОм), то такой диод можно считать «очень подозрительным» и его лучше заменить, или хотя бы проверить методом замены. Если же проводить проверку на пределе измерений (200К), то даже исправные диоды могут показывать в обратном направлении очень небольшое сопротивление (единицы и десятки кОм), поэтому и рекомендуется использовать предел (20К). Естественно, что на больших пределах измерений (2 Мом, 20 Мом и т.д.) даже абсолютно исправный диод оказывается полностью открытым, т.к. его p-n переходу прикладывается слишком высокое (для диодов Шоттки) обратное напряжение. На пределе (200К) можно проводить проверку сравнительным методом, т.е. брать гарантированно-исправный диод, измерять его обратное сопротивление и сравнивать с сопротивлением проверяемого диода. Значительные отличия в этих измерениях будут указывать на необходимость замены диодной сборки.
Иногда встречаются ситуации, когда выходит из строя только один из диодов сборки. В этом случае неисправность также легко выявляется методом сравнения обратного сопротивления двух диодов одной сборки. Диоды одной сборки должны иметь одинаковое сопротивление.
Предложенную методику можно дополнить еще и проверкой на термическую устойчивость. Суть этой проверки заключается в следующем. В тот момент времени, когда проверяется сопротивление обратного перехода на пределе измерений (20K), необходимо коснуться разогретым паяльником контактов диодной сборки, обеспечивая тем самым прогрев ее кристалла. Неисправная диодная сборка практически мгновенно начинает «плыть», то есть ее обратное сопротивление начинает очень быстро уменьшаться, в то время как исправная диодная сборка достаточно долго удерживает обратное сопротивление на бесконечно большом значении. Эта проверка очень важна, т.к. при работе диодная сборка сильно нагревается (не зря же ее размещают на радиаторе) и вследствие нагрева изменяет свои характеристики. Рассмотренная методика обеспечивает проверку устойчивости характеристик диодов Шоттки к температурным колебаниям, ведь увеличение температуры корпуса до 100 или 125 °C увеличивает значение обратного тока утечки в сто раз.
Вот так можно попытаться проверить диод Шоттки, однако предложенными методиками не стоит злоупотреблять, т.е. не следует проводить проверки на слишком большом пределе измерений сопротивления и слишком сильно разогревать диод, т.к. теоретически, все это может привести к повреждению диода.
Кроме того, из-за возможности отказа диодов Шоттки под действием температуры, необходимо строго соблюдать все рекомендуемые условия пайки (температурный режим и время пайки). Хотя надо отдать должное производителям диодов, так как многие из них добились того, что монтаж сборок можно в течение 10 секунд осуществлять при высокой температуре.
Как проверить диод не выпаивая из схемы. Как проверить диод и светодиод мультиметром. Как найти диодный мост на плате
Во многих устройствах, работающих от сети 220 В, установлен диодный мост. Это устройство, состоящее из четырех (для однофазной сети) или шести (для трехфазной) полупроводниковых кремниевых диодов. Оно нужно для преобразования переменного тока в постоянный. На его вход подается переменный ток, на выходе получается пульсирующее напряжение постоянное по знаку. Данные элементы схемы часто выходят из строя, утягивая за собой предохранитель. Давайте разберемся, как выполняется проверка диодного моста на исправность разными способами.
Что нужно знать о диодных мостах
Для начала мы рассмотрим, какими бывают и что внутри диодного моста. Встречаются данные элементы схемы в двух исполнениях:
В любом случае выпрямительный однофазный диодный мост состоит из четырех полупроводниковых диодов, соединенных между собой последовательно-параллельным образом. Переменное напряжение подается на две точки, в которых соединены анод с катодом (разноименные полюса диодов). Постоянное напряжение снимается с точек соединения одноименных полюсов: плюс с катодов, минус с анодов.
На схеме место подключения переменного напряжения обозначено символами AC или «~», а выходы с постоянным напряжением «+» и «-«. Зарисуйте себе эту схему, она нам пригодится при проверке.
Если представить реальный диодный мост и совместить его с этой схемой получится что-то вроде:
Расположение диодного моста на плате и меры предосторожности
Диодные мосты устанавливаются в блоках питания как импульсных так и трансформаторных. Стоит отметить, что в импульсных блоках, которые сейчас используются во всей бытовой технике, мост установлен на входе 220В. На его выходе напряжение достигает 310В — это амплитудное напряжение сети. В трансформаторных блоках питания устанавливаются они в цепи вторичной обмотки обычно с пониженным напряжением.
Если устройство не работает и вы обнаружили сгоревший предохранитель, не спешите включать прибор после его замены. Во-первых, при наличии проблем на плате предохранитель сгорит повторно. Такой блок питания нужно включать через лампочку.
Для этого возьмите патрон и вкрутите в него лампу накаливания на 40-100 Вт и подключите её в разрыв фазного провода для подключения к сети. Если вы собираетесь часто ремонтировать блоки питания, можно сделать удлинитель с патроном, установленным в разрыв питающего провода для подключения лампы, это поможет сохранить ваше время.
Если на плате есть — при включении в сеть через неё потечет высокий ток, перегорит предохранитель или дорожка на плате, или провод, или выбьет автомат. Но если мы вставили в разрыв лампочку, сопротивление спирали которой ограничит ток, она загорится во весь накал, сохранив целостность всего вышеперечисленного.
Если короткого замыкания нет или блок исправен допустимо либо легкое свечение лампы, либо полное его отсутствие.
Простейшая и грубая проверка
Нам понадобится индикаторная отвертка. Она стоит копейки и должна быть в наборе инструментов в каждом доме. Нужно просто прикоснуться сначала ко входу 220В выпрямителя, если на фазном проводе загорится индикатор, значит напряжение присутствует, если нет, проблема явно не в диодном мосте и нужно проверить кабель. При наличии напряжения на входе проверяем напряжение на плюсовом выходе выпрямителя, оно в этой точке может доходить до 310 В, индикатор вам его покажет. Если индикатор не светится — диодный мост в обрыве.
К сожалению, больше ничего мы узнать с помощью индикаторной отверткой не сможем. О том, можете узнать из нашей статьи.
Прозвонка диодного моста мультиметром
Любую деталь на плате можно выпаять для проверки или прозвонить не выпаивая. Однако точность проверки в таком случае снижается, т.к. возможно, отсутствие контакта с дорожками платы, при видимой «нормальной» пайке, влияние других элементов схемы. К диодному мосту это тоже относится, можно его не выпаивать, но лучше и удобнее для проверки его выпаять. Мост, собранный из отдельных диодов, довольно удобно проверять и на плате.
Почти в каждом современном мультиметре есть режим проверки диодов, обычно он совмещен со звуковой прозвонкой цепи.
В этом режиме выводится падение напряжение в милливольтах между щупами. Если красный щуп подсоединен к аноду диода, а черный к катоду, такое подключение называется в прямом или проводящем направлении. В этом случае падение напряжения на PN-переходе кремниевого диода лежит в диапазоне 500-750 мВ, что вы можете наблюдать на картинке. Кстати на ней изображена проверка в режиме измерения сопротивлений, так тоже можно, но есть и специальный режим проверки диодов, результаты будут, в принципе, аналогичны.
Если поменять щупы местами – красный на катод, а черный на анод, на экране будет либо единица, либо значение более 1000 (порядка 1500). Такие измерения говорят о том, что диод исправен, если в одном из направлений измерения отличаются, значит, диод неисправен. Например, сработала прозвонка – диод пробит, в обоих направлениях высокие значения (как при обратном включении) – диод оборван.
Важно! Диоды Шоттки имеют меньшее падение напряжения, порядка 300 мВ.
Есть еще экспресс проверка диодного моста мультиметром. Порядок действий следующий:
- Ставим щупы на вход диодного моста (~ или AC), если сработала прозвонка – он пробит.
- Ставим красный щуп на «–», а красный на «+» — на экране высветилось значение около 1000, меняем щупы местами – на экране 1 или 0L, или другое высокое значение — диодный мост исправен. Логика такой проверки в том, что диоды соединены последовательно в две ветви, обратите внимание на схему, и они проводят ток. Если плюс питания подан на – (точка соединения анодов), а минус питания на «+» (точка соединения катодов), это и происходит при прозвонке. Если один из диодов в обрыве, ток может потечь по другой ветке и вы можете сделать ошибочные измерения. А вот если один из диодов пробит – на экране высветится падение напряжения на одном диоде.
На видео ниже наглядно показано, как проверить диодный мост мультиметром:
Полная проверка диодного моста
Также проверить диодный мост мультиметром можно по следующей инструкции:
- Устанавливаем красный щуп на «–», а черным по очереди касаемся выводов, к которым подключается переменное напряжение «~», в обоих случаях должно быть порядка 500 на экране прибора.
- Ставим черный щуп на «–», красным касаемся выводов «~ или AC», на экране мультиметра единица, значит, диоды не проводят в обратном направлении. Первая половина диодного моста исправна.
- Черный щуп на «+», а красным касаемся входов переменного напряжения, результаты должны быть как в 1 пункте.
- Меняем щупы местами, повторяем измерения, результаты должны быть как в пункте 2.
То же самое можно сделать «цэшкой» (универсальный измерительный прибор советского производства). Как проверить диодный мост стрелочным мультиметром, рассказывается на видео.
Самый эффективный способ проверить светодиод на работоспособность заключается в применении специального прибора — мультиметра, который иначе нередко называется тестером. Устройство представляет собой измерительный прибор, который может выполнять несколько функций. Выбирать их можно с помощью ручки, расположенной на передней панели.
Тестирование в режиме прозвонки
У каждого мультиметра, независимо от того, насколько дорогостоящим он является и какой фирмой был произведен, обязательно имеется функция проверки работоспособности светодиода. Это так называемая прозвонка.
Перед тем как прозвонить светодиод мультиметром, необходимо ручку переключения режимов тестера установить на режим прозвонки. Затем к контактам проверяемого прибора приложить черный и красный щупы мультиметра. Благодаря такому способу проверки, можно также определить, какой мощностью обладает светодиод.
При подключении тестера необходимо учитывать полярности проверяемого объекта. Его анод должен быть соединен со щупом красного цвета, а катод — с черным. Если подключить щупы неправильно, прибор ничего не покажет. При верном подключении светодиод должен начать излучать свет.
Проверяя диод на работоспособность, важно учитывать такую особенность: электроток тестера, настроенного на режим прозвонки, довольно слабый, поэтому он может не оказать никакого воздействия на лампочку. Проверяемый объект может быть вполне работоспособны м, но светиться не будет из-за недостаточной силы тока.
Может быть и другое последствие слабого тока: светодиод начнет светиться, но излучение его будет настолько мизерным, что при обычном дневном свете разглядеть его не удастся. Перед тем как приступать к проверке, рекомендуется уменьшить яркость внешнего света. Если же по каким-либо причинам этого сделать нельзя, следует обращать внимание не на сам прибор, а на измерительный прибор, точнее, на его показания. Если он исправен, то цифра, показываемая тестером, должна отличаться от единицы.
Можно даже очень мощный диод прозвонить мультиметром. Однако недостаток способа состоит в том, что провести проверку элементов, которые впаяны в микросхему, не получится. Для проверки светодиода, находящегося в микросхеме, нужно использовать специальные переходники, которые присоединяются к щупам тестера.
Проверка без выпаивания
Чтобы проверить мультиметром, не выпаивая светодиод из микросхемы, можно использовать небольшие металлические наконечники, роль которых могут играть, например, обычные канцелярские скрепки. Для надежной изоляции проводов, к которым присоединены наконечники, следует использовать текстолитовую прокладку. Вся конструкция при этом должна быть обмотана изолентой.
После выполнения всех этих простых действий получится надежный переходник , посредством которого легко можно добиться контакта щупов тестера с катодом и анодом проверяемого на работоспособность светодиода.
Также без выпаивания из микросхемы можно проверить диод на исправность . Для этого достаточно:
- Установить измерительный прибор в режим прозвонки.
- Присоединить щупы посредством переходника к контактам проверяемого объекта.
- Проверить, засветится лампочка или нет.
Как и в случае с обычной прозвонкой, которая проводится без переходника, возможно, придется выключить внешнее освещение или ослабить его, чтобы заметить неяркое свечение лампочки прибора.
Работоспособность светоизлучающих диодов в фонариках
Проверить на работоспособность светодиод, находящийся в маленьком фонарике, можно без особых сложностей.
Такая проверка проводится в несколько этапов :
Сразу после этого станет ясно, является ли исправным проверяемый элемент. Если он засветится, значит, с ним все в порядке. Если же излучения нет, значит, светодиод в неисправном состоянии.
Чтобы проверить светодиод тестером, важно уметь различать катод и анод. На самом деле различие легко обнаруживается визуально: катод обычно заметно короче, чем анод. Можно запомнить так: слово «катод» начинается с буквы «к», следовательно, этот контакт короткий. Впрочем, даже если подключить мультиметр без соблюдения полярности, ничего страшного не произойдет. Просто светодиодный элемент не получит ток и поэтому не будет светиться.
Вместо того, чтобы всякий раз при проверке угадывать, какой контакт является «положительным», а какой «отрицательным», лучше один раз запомнить навсегда. Это позволит сэкономить время. Нередко, чтобы проверить, работает ли светодиод, измеряют сопротивление. Однако такой метод проверки не очень широко распространен, ведь перед его применением необходимо определить технические параметры прибора.
Как видно, проверка на работоспособность светодиода с помощью тестера — довольно простая процедура . Для этого не понадобится много времени. Никаких физических усилий также прикладывать не придется. Да и финансовые затраты на такую проверку практически ничтожны, так как используемый прибор продается по очень низкой цене.
В современной осветительной технике достаточно часто применяются светодиоды (led). Как известно, они гораздо надежнее обычных лампочек, но все же иногда могут выходить из строя. Для того, чтобы проверить светодиод на работоспособность применяется несколько методов. Рассмотрим подробнее каждый из них.
Способы проверки
Светодиод, имеет свои электрические параметры, это максимальный рабочий ток, а так же прямое падение напряжения. Значение первого параметра производители указывают для каждого изделия индивидуально, а второго составляет 1.8 – 2.2 вольта для оранжевых, желтых и красных диодов. Для белых, зеленых и синих 3 – 3.6 вольта. Проверить эти значения параметров при наличии мультиметра, не составит труда.
Еще один способ проверить led диод на работоспособность, это подать на него питание от нескольких параллельно подключенных пальчиковых батареек или одной батарейки крона. На основе этого способа можно самостоятельно изготовить универсальный тестер для светодиодов, при помощи подручных элементов. Подробный процесс определения работоспособности показан в видео.
Определить неисправный светодиод, можно используя в качестве источника тока для проверки, старые зарядные устройства от мобильных телефонов. Для этого необходимо отрезать штекер подключения к телефону, и зачистить провода. Красный провод, это плюс, его нужно прижать к аноду, черный — минус, его подключают на катод. Если напряжения источника питания достаточно, то он должен загореться.
Для проверки некоторых диодов, напряжения от зарядки телефона может быть недостаточно, тогда можно попробовать проверить с помощью более мощного устройства, например зарядки от фонарика. Таким способом вполне можно проверить на работоспособность диоды в led лампе. Как это сделать, смотрите видео.
Проверка мультиметром
Мультиметр — это универсальный измерительный прибор. С его помощью можно измерить основные параметры практически любого электронного изделия и не только. Для проверки светодиода, потребуется мультиметр в котором есть режим «прозвонки», или его еще называют режимом проверки диодов. Обозначение режима проверки диодов на мультиметре показано на изображении ниже.
Для того чтобы проверить светодиод при помощи мультиметра, нужно установить переключатель прибора в положение соответствующее режиму «прозвонки» и подключить его контакты к щупам тестера.
В процессе подключения необходимо учитывать полярность диода. Анод, следует подключить к красному щупу, а катод к черному. В случаях, когда нет информации какой электрод анод, а какой катод, можно перепутать полярность – это ничего страшного, со светодиодом ничего не произойдет. При неправильном подключении, мультиметр не изменит своих изначальных показаний. При правильном подключении, светодиод должен загореться.
Есть один нюанс, ток «прозвонки» достаточно низкий для нормальной работы светодиода, и стоит приглушить освещение, для того чтобы увидеть как он светится. Если нет возможности этого сделать, можно ориентироваться на показания измерительного прибора. Как правило, если светодиод рабочий, то мультиметр покажет значение отличное от единицы.
Второй вариант — проверить светодиод тестером, это воспользоваться блоком PNP. Данный разъем предназначенный для проверки диодов, позволяет включить светодиод на мощность, достаточную для визуального определения его работоспособности. Анод подключается в разъем, обозначенный буквой Е (эмиттер), а катод диода в разъем колодки, обозначенный буквой С (коллектор).
Светодиод должен гореть при включении мультиметра в не зависимости от режима выбранного регулятором.
Данный способ позволяет проверить даже достаточно мощные светодиоды. Его неудобство в том, что, диоды обязательно нужно выпаивать. Для проверки мультиметром не выпаивая, необходимо изготовить переходники для щупов.
Существует вариант проверки светодиода методом измерения сопротивления, но для этого необходимо знать его характеристики, что достаточно не практично.
Как проверить не выпаивая
Для того чтобы подключить щупы мультиметра к разъемам в колодке PNP, нужно припаять на них небольшие фрагменты, обычной канцелярской скрепки. Между проводами, на которые припаяны скрепки, для изоляции можно установить небольшую текстолитовую прокладку и замотать изолентой. Таким образом, получим простой по конструкции и надежный переходник, для подключения щупов.
Далее необходимо подключить щупы к ножкам светодиода, не выпаивая его из схемы изделия. Вместо тестера, для проверки led диода можно использовать одну батарейку крона, или несколько пальчиковых батареек. Подключение проводится аналогично, просто вместо переходника, для подключения к выходам батарейки щупов, можно использовать небольшие зажимы «крокодильчики».
Рассмотрим на конкретном примере, как проверить led, не выпаивая из схемы.
Как проверить светодиоды в фонарике
Для проверки необходимо разобрать фонарик и вынуть плату, на которой они установлены. Проверка происходит с помощью тестера со щупами, подключенными на PNP разъем. Светодиоды можно не выпаивать, а подключать контакты щупа на них прямо на плате, при этом необходимо помнить о соблюдении полярности.
Определить пробитый светодиод, можно и при помощи измерения сопротивления в схеме подключения. Например, если светодиоды в фонарике подключены параллельно, измерив сопротивление и получив результат близкий к нулю на любом из них, можно быть уверенным, что, по крайней мере, один из них точно неисправен. После этого можно приступать к проверке каждого из светодиодов методами описанными выше.
Проверка светодиодов не сложный процесс, и любой, кто имеет несколько рабочих батареек и пару проводов, может проверить и определить его неисправность в том или ином приборе.
как проверить диод мультиметром (прозвонить тестером)
Как и большинство измерительных приборов, мультиметры (тестеры) делятся на аналоговые и цифровые. Основное их отличие состоит в том, что информация о результатах измерений первой разновидности передаются с помощью определенной шкалы и стрелок на ней, во втором же случае эти данные отображаются в цифровом виде, на жидкокристаллическом экране.
Аналоговые устройства появились ранее, их главным достоинством является невысокая цена, а недостатком — неточности измерений. Следовательно, если отметка должна быть максимально верна, рекомендуется приобрести цифровой мультиметр.
Все варианты тестеров обладают как минимум двумя выводами — красным и черным.
- Первый используется непосредственно для измерений, также иногда называется потенциальным,
- Второй является общим. В современных моделях обычно также есть переключатель, благодаря которому возможно установить максимальные предельные значения.
Как проверять диод мультиметром?
Диод является элементом, проводящим электричество в одном направлении. Если же развернуть это направление, диод будет закрыт. Только в случае выполнения этого условия элемент считается работоспособным. В большинстве моделей тестеров уже есть такая функция, как проверить диод тестером.
Перед началом проверки рекомендуется соединить между собой два щупа мультиметра, чтобы убедиться в его работоспособности, а затем выбрать “режим проверки диодов”. Если тестер аналоговый, данная операция производится с помощью режима омметра.
Проверка диодов мультиметром не требует дополнительных навыков. Чтобы убедиться в функционировании элемента, необходимо произвести прямое включение, следовательно, подключить анод к плюсовому значению (красный щуп), а катод — к минусовому (черный). На экране или шкале прибора должно появиться значение пробивного напряжения диода, эта цифра в среднем составляет от 100 до 800 мВ. Если же произвести обратное включение (поменять местами электроды), значение будет не больше единицы. Из этого можно сделать вывод, что сопротивление прибора огромно и электричество он не проводит. Если все происходит именно так, как описано выше, электронный элемент исправен и дееспособен.
Бывают ситуации, когда при подключении щупов диод пропускает ток в обоих направлениях, либо же не пропускает вообще (значения при прямом и обратном включениях равны единице). В первом случае это означает, что диод пробит, а во втором — он перегорел либо же находится в обрыве. Такие электронные элементы являются неисправными и это легко проверить тестером.
Как проверять светодиод?
Если речь идет о светодиоде, алгоритм проверок аналогичен, но дополнительно облегчит задачу тот факт, что при прямом включении этот вид диода будет светиться. Разумеется, это позволит окончательно убедиться в том, что он в порядке.
Но случается такое, что необходима проверка стабилитронов. Стабилитрон является одной из разновидностей диодов, его главное предназначение — сохранение стабильного выходного напряжения вне зависимости от изменений уровня тока.
К сожалению, выделенной функции для проверки данного вида электронных элементов пока не внедрили в мультиметры. Тем не менее часто прозвонить их можно с помощью такого же принципа, как с диодами. Но многие опытные радиолюбители заявляют, что произвести проверку стабилитрона с помощью цифрового тестера весьма проблематично. Причиной этого является тот факт, что напряжение стабилитрона должно быть ниже, чем напряжение на выходах мультиметра. Это связано с тем, что из-за низкого напряжения возможно посчитать рабочей неисправную модель, точность показаний падает.
Если при проверке диода необходимо обратить внимание на значение пробивного напряжения, в случае со стабилитронами показательным станет сопротивление. Эта цифра должна составлять от 300 до 500 Ом. И аналогично алгоритму действий с диодами:
- Если ток пропускается в обе стороны это называется пробивом,
- Если сопротивление слишком велико это обрыв.
Также немаловажно помнить, что цифровое значение при прозвоне стабилитрона будет выше значения обычных диодов. Если нужно отличить один элемент от другого, такая проверка окажет помощь.
Как проверить стабилитрон
Стабилитроны, проверка которых не принесла желаемых результатов, изобретатели часто тестируют с помощью дополнительных приборов, иногда конструируя их самостоятельно. Одним из наиболее простых способов является использование для проверки блока питания с возможностью переключения напряжения. Необходимо сначала подсоединить к аноду резистор, имеющий значение сопротивления, оптимальное для стабилитрона, а затем подключить блок питания. Затем замеряется напряжение на диоде, параллельно поднимается на блоке. По достижении уровня напряжения стабилизации, эта цифра должна перестать расти. В этом случае стабилитрон в норме, при любых отличиях от вышеприведенной схемы он неисправен.
elektro.guru
Как проверить светодиод мультиметром, не выпаивая из схемы
Тестирование этой радиодетали класса полупроводник особых трудностей не представляет. Разница лишь в том, что одним п/п приборам этой группы для свечения нужно питание 1,5 В (ряда красных, зеленых малой мощности), другим чуть больше – порядка 3,3±0,3. Сложность в том, что для проверки светодиода его придется выпаять, а это не всегда возможно (учитывая плотность компоновки схемы) или целесообразно (например, по причине дефицита времени). Что можно предпринять?
Решение простое – изготовить специальные приспособления, так как стандартные щупы, идущие в комплекте с мультиметром, для этих целей не подойдут. Они понадобятся (например, от старого прибора), но только после некоторой «модернизации».
Способ 1
Что приготовить:
- Небольшой фрагмент текстолита, буквально кусочек, но обязательно с двухсторонним фольгированием. На каждую необходимо наложить «пятно» припоя, чтобы в дальнейшем можно было легко зафиксировать провода и выводы приспособления для проверки светодиода.
- Щупы от мультиметра, с которых следует срезать (или отпаять, а потом все восстановить) штеккера. Свободные концы нужно зачистить и залудить, то есть подготовить к пайке.
- Скрепки – 2 штуки. Им придается форма, хорошо видимая на рисунке внизу. Это будут выводы приспособления (аналог штеккеров), которые присоединяются к мультиметру. Хотя это и не единственный вариант. Вместо скрепок можно использовать гибкую стальную проволоку, отрезав пару кусочков нужной длины. Главное – чтобы эти выводы слегка амортизировали, тогда их будет намного проще подключить к гнезду мультиметра.
- Паяльная кислота. Использовать традиционный сосновый флюс – дело бесперспективное. Скрепки изготовлены из стали, потому обычная методика для их надежной фиксации на текстолите малопригодна.
- Паяльник. Мощность – не менее 65 Вт. Пытаться закрепить на плате скрепку монтажным инструментом (на 24, 36 Вт) – пустая трата времени. Понадобится уложить расплав относительно толстым слоем, и маломощный (миниатюрный) паяльник в этом случае бесполезен.
- Мультиметр. Эти бытовые приборы выпускаются в нескольких модификациях. Их основное отличие – в функционале, то есть возможностях измерений тех или иных параметров цепи и деталей. Понадобится мультиметр, которым можно тестировать транзисторы.
В принципе все, что нужно для того, чтобы сделать простейшее приспособление для проверки светодиода мультиметром, под рукой всегда есть. В итоге должно получиться примерно так.
Чтобы не путаться с полярностью присоединения щупов к светодиоду, выводы приспособления стоит несколько сместить от осевой линии. Тогда несложно запомнить, где условные «+» и «–».
Проверка светодиода
Нужно воткнуть «контакты» приспособления в вилку для тестирования Тр (анодный вывод – на разъем Е, катодный – на С), поставить переключатель мультиметра в позицию «Измерение транзисторов» (hFE) и приложить щупы к плате, в точках, где впаяны ножки п/п прибора (с лицевой или обратной стороны, как удобнее). Если он исправен и полярность соблюдена (плюс – к аноду), то начнет светиться.
Способ 2
Он значительно проще, и если позволяет компоновка схемы, а до ножек можно дотянуться, то проверка светодиода производится с помощью щупов любого мультиметра так же, как и для тестирования сопротивления. Подробно об этом рассказывается здесь.
Вот и все, ничего сложного. Данная технология опробована многократно, причем ни один светодиод из строя в процессе такого тестирования не вышел.
electroadvice.ru
Как проверить диод? — Diodnik
Начиная проверку диода на работоспособность, необходимо понимать, что визуально неисправный диод иногда фактически невозможно отличить от рабочего. О том, как проверить диод мы детально расскажем в нашей статье.
Также, перед проверкой необходимо знать, что основные неисправности диодов бывают трех видов:
- пробой диода (наиболее распространенный дефект). В результате такого дефекта диод проводит ток в любом направлении, фактически не имея собственного сопротивления:
- обрыв диода (на практике встречается реже). В данном случае такой диод перестает полностью проводить ток, независимо от направления течения тока.
- утечка. В этом случае диод проводит незначительный обратный ток.
Как проверить диод мультиметром?
При любой проверки диодов лучше всего их выпаивать с основной схемы полностью.
Подопытный диод 1n5844 – это 5А диод Шоттки. Проверка производится мультиметром Unit 151B.Любой диод имеет два вывода: катод и анод. Катод помечен серебристой полоской.
Для того, чтобы ток протекал через диод, на анод должно поступать положительное напряжение, а к катоду отрицательное. Включив необходимый режим измерений на мультиметре, можно приступать к проверке диода.
Необходимо помнить, рабочий диод проводит ток лишь в одном направлении.
Подключив щупы, к аноду (красный +), а к катоду (черный -), мы видим значения на дисплее — это пороговое напряжение диода. Из этого можно сделать вывод, p-n переход открыт.
Подключив щупы, к катоду (красный -), а к аноду (черный +), значений на дисплее нет, кроме 1.
На этом процедура проверки диода закончена – диод исправен.
Если независимо от полярности подключения диода прибор показывает значение 0 или 001, (и иногда слышим характерный звуковой сигнал), это свидетельствует о том, что диод пробит. Такой диод проводит ток в любом направлении.Если независимо от полярности подключения диода прибор показывает значение 1, такой диод имеет обрыв. Он вообще не проводит ток.
Как проверить диод, в случае когда, под рукой нет мультиметра с функцией проверки диода? Можно использовать для этой цели обычный омметр. Установив значение предела измерений до 20кОм, проверку диода таким тестером производят по схеме, описанной выше.
Иногда можно столкнутся со сдвоенными диодами. Такие диоды имеют три вывода, в одном корпусе заключены сразу два диода. Они имеют общий анод или катод. Проверка такой сдвоенной сборки абсолютно ничем не отличается от проверки обычного диода, только проверять нужно каждый диод в сборке. Более детально о том, как проверить диод Шоттки читаем в этой статье.
Вконтакте
Одноклассники
Comments powered by HyperComments
diodnik.com
типы и особенности, инструкция по тестированию, определение работоспособности моста
Печально, но начинать нужно с теории. Придётся изучить виды диодов, область и цели применения. Не углубляясь в физические основы электроники, пробежимся по поисковым запросам. Важно понимать, что все диоды объединяет способность пропускать ток в одном направлении, блокируя движение частиц противоположном, образуя своеобразные вентили. Затем обсудим, как проверить мультиметром диод.
Разновидности диодов
Итак, диоды пропускают ток в прямом направлении и блокируют в обратном. На электрических схемах диоды обозначают черными стрелками, ограниченными поперечной чертой. Символ показывает направление тока в физическом смысле – направленное движение положительных частиц. Чтобы создать прямой ток, к концу стрелки прикладывают минусовой потенциал, к началу – плюсовой. В противном случае диод окажется в «запертом» состоянии.
При движении электронов за счёт неидеальности молекулярной решётки теряется тепло, что влечёт падение напряжения и в прямом направлении. У кремниевых диодов прямой потенциал выше, на германиевых ниже. Диоды Шоттки характеризует меньшее падение потенциала за счет замены одного полупроводникового слоя металлическим, т.е. в нем нет p-n перехода. Ток потерь увеличивается, а падение напряжения на открытом ключе в прямом направлении рекордно низкое.
Эффект характерен не в любых диапазонах напряжения. Максимально эффективны диоды Шоттки при напряжениях, равных десяткам вольт. Их применяют в выходных фильтрах импульсных блоков питания. Вспомните: номиналы напряжения системника составляют 5, 12, 3 В. Методика построения схем на диоде Шоттки типичная.
Популярная разновидность диодов – стабилитрон. Его рабочая зона – область пробоя. Там, где обычный диод выходит из строя, стабилитрон защищает оборудование. Процесс характеризуется ростом напряжения до номинала и резкой стабилизацией. Через стабилитроны запитывают от высоковольтных линий чувствительные и слабые микросхемы контроллеров импульсных блоков питания, чтобы они нарезали напряжение импульсами большой амплитуды. Без стабилитронов запитывание микросхем решается архисложными методами.
Оценивая диод-стабилитрон при помощи мультиметра, учитывают, что рабочая зона – обратная ветвь. Технически напряжение пробоя для проверки получают от батареек, включенных последовательно, затем проверяют наличие стабилизация. Прямое включение стабилитрона используется крайне редко, прозвон традиционным способом – плохая идея. К стабилитронам относят и лавинный диод, где для стабилизации тока применён эффект ударной ионизации.
Обозначение диода на схемах
Случается, что специфика устройства непонятна. Печатные платы маркированы – каждому элементу соответствует строго определённое обозначение, и мощные диоды выпрямительного моста не спутать с крошечным стеклянным стабилитроном. Худший вариант – клубок проводников с непонятными элементами: то ли диод, то ли резистор необычного вида, либо экзотический конденсатор.
Столкнувшись с подобной ситуацией, аккуратно делают увеличенное фото, потом ищут в интернете по изображению. Хотя маркировка стабилитронов неразборчива, отыскать информацию в сети возможно. Данный шаг намного ускоряет процесс идентификации и оценки работоспособности прибора.
Инфракрасный диод мультиметром проверяется аналогично: снимаем прямое напряжение, потом убеждаемся, что обратно ток не идёт. Для проверки свечения используют видоискатель ночной видеокамеры. Он регистрирует непосредственно инфракрасное излучение объектов. Исправный ИК диод заметен на видоискателе – словно звездочка. Проверяют свечение с тепловизорами, приборами ночного видения, соблюдая осторожность: мощность излучения свето- и ИК-диодов велика, сопоставима с мощностью лазерного излучения.
Надпись внутри принтера о наличии лазера нельзя считать шуткой. И ею пренебрегать. Держите сетчатку глаз подальше от инфракрасного диода.
Схема проверки диода
Как проверить диод при помощи тестера
Для проверки диодов мультиметры снабжены специальной шкалой, маркированной соответствующим значком – схематическим обозначение диода. При включении режима низкие сопротивления включают зуммер, высокие характеризуются номиналом либо падающим на нем напряжении. По показаниям судят о характеристиках диода, к примеру, о сопротивлении прямого включения.
Для правильной интерпретации показаний, важно учитывать характеристики тестера: напряжение постоянного рода и низкого номинала, служащего для оценки. Пример: при измерении сопротивления тестер пропускает по нему ток, прикладывая к щупам некое напряжение. Любая модель мультиметра характеризуется уникальными параметрами. Напряжение узнают по заряду конденсатор: включает мультиметр в режим прозвона или тестирования диодов, через короткое время на обкладках конденсатора сформируется разность потенциалов. Измеряют штатной шкалой тестера. Значение колеблется от сотен милливольт (долей вольта) до единиц вольта.
Зная напряжение, приложенное к диоду, по его вольт-амперной характеристике сверяют достоверность показания. Вводят поисковый запрос на Яндексе, знакомятся с полной технической документацией на исследуемый элемент. Потом прикладывают в нужном месте шкалы абсцисс линейку, чтобы найти выходной ток. По формуле Ома вычисляют сопротивление открытого состояния: R = U/I, где U – вспомогательное напряжение, формируемое тестером. Сравнивают найденную по графику величину с указанной на табло.
Это одна из многочисленных методик. Важно знать, как находить правильные пути, анализировать и сопоставлять данные. Первый шаг — поиск обобщенной информации: что такое диоды, их характеристики (прежде всего, вольт-амперные), тонкости работы конкретного прибора. Зная теоретические основы, легко оперировать информацией, делать правильные выводы из результатов исследований.
Перейдём к жизненному примеру: исследуем диодный мост из генератора автомобиля!
Как определить работоспособность диодного моста
Автомобилю нужна электроэнергия — для систем кондиционирования (наряду с энергией двигателя), дворников, освещения наружного и внутреннего. Нагружать постоянно аккумулятор, что делается во время стоянки, не экономично. Задача решается подключением синхронного генератора переменного тока к валу двигателя. Ранее пользовались коллекторной схемой. Но щётки не переносят тряски, возникала необходимость частого обслуживания.
Ныне устанавливают трёхфазные генераторы. Т.к. обороты постоянно скачут, постоянство выходных характеристик поддерживают изменением тока подпитки ротора. В результате напряжённость переменного магнитного поля статора отслеживает каждое изменение работы мотора. Расплата – нестабильность выходного напряжения. Его выпрямляют и фильтруют, используя схему диодного моста Ларионова.
Глубокие технические подробности избыточны, ограничимся лёгкими знаниями:
- При любом способе соединения обмоток генератора, выходных точек три. Каждая посредством диода замыкается на массу в отрицательный полупериод, а на потребителей сети авто – в положительный.
- Итого, диодов получается шесть.
- Мост представляет собой две изолированных друг от друга серповидных плоскости, выполненные из прочного сплава. На каждой лежат три диода, электрические соединения проводятся согласно схеме (см. рисунок).
Схема соединений на трёхфазном диодном мосте
Из схемы видно:
- Три диода прозваниваются попарно с нулевым сопротивлением между катодом (отрицательная полярность) и анодом (положительная полярность). Сюда выходят клеммы генератора.
- Две тройки диодов (лежащие в одной серповидной плоскости) звонятся между собой катодами или анодами. В зависимости от того, какой электрод выдаёт короткое замыкание, определяют ветвь — нагрузочная или уходящая на массу.
Создав правильную схему раскладки электрических соединений, начинают проверку каждого диода по отдельности. Ветвь, идущую на массу, тестируют со стороны генератора, другую – со стороны нагрузки. Направление известно из схемы Ларионова. Проверяем диодный мост мультиметром, касаясь красным щупом основания чёрной стрелки (см. рисунок) каждого элемента, черным – острия того же элемента. Одновременно проверяют изоляцию контактов с серповидным плоскостями, в т.ч. соседней. По полученным данным оценивают необходимость продолжения поиска неисправности.
Вывод: диод, не выпаивая, проверяют мультиметром на грубой конструкции вроде моста генератора автомобиля. Прозвон электронной платы сложнее. Любую проверку проводят щупами специальной формы. Для грубых конструкций берут захваты-крокодилы, материнскую плату проверяют тонкими игловидными пробниками. В последнем случае появляется шанс прозвонить диод мультиметром на плате под напряжением с риском спалить тестер.
Надеемся, что теперь читатель понял, как проверить диод мультиметром.
vashtehnik.ru
Проверка стабилитрона на плате прибором мультиметр
Каждый радиолюбитель знает, как бывает иногда важно знать, исправна ли та или иная радиодеталь или нет. Не в последнюю очередь это касается стабилитронов. В качестве тестера для проверки электрокомпонентов на предмет наличия напряжения стабилизации служит мультиметр.
Пригодность электродеталей определяется мультиметром
Стабилитрон и его свойства
Для работы электронных схем на выходе нужны стабилизированные показатели напряжения. Они получаются с помощью включения в схему полупроводниковых стабилитронов, которые дают одинаковое выходное напряжение, не зависящее от величины пропускаемого электротока. Без этих элементов многие слаботочные системы не работают. Так, например, почти каждый радиолюбитель хотя бы раз в жизни паял стабилизатор напряжения l7805cv или его аналоги.
Стабилитрон помогает стабилизировать напряжение
У стабилитронов нелинейные вольт-амперные характеристики, по свойствам, а также по внешнему виду (в стекле или металле) они напоминают обычный диод, однако, задачи у них несколько другие. Стабилитроны подключают в схему параллельно с потребителем и, если напряжение резко повышается, ток идет через стабилитрон, и вольтаж в сети выравнивается. Если сильный ток воздействует длительное время, возникает тепловой пробой.
Порядок проверки
Для того чтобы определить, годен ли данный стабилитрон или же вышел из строя, мультиметр надо перевести в режим, которым проверяются диоды (или в режим омметра), – проверка стабилитронов методом прозвона осуществляется аналогичным образом.
Щупы мультиметра подсоединяют к выводам стабилитрона и наблюдают за показаниями индикатора. Проверку следует проводить в двух направлениях:
- плюсовым щупом аппарата прикасаются к катоду детали – на индикаторе показывается бесконечное сопротивление;
- мультиметр подсоединяют к аноду стабилитрона – на экране будет индицироваться сопротивление в единицах или десятках ом (падение напряжения).
Такие показатели появляются потому, что рабочий стабилитрон (как и обычный диод) способен проводить только однонаправленный электрический ток, а проверка не должна вызывать короткое замыкание в сети.
Проверка мультиметром исправного стабилитрона
Если при прозвоне в обоих направлениях мультиметр показывает бесконечное сопротивление, стабилитрон является дефектным, поскольку оборван электронно-дырочный переход, и ток через электродеталь не проходит.
Картина при проверке нерабочего стабилитрона
Обратите внимание! Иногда случается, что при измерениях стабилитрона мультиметром выдается сопротивление в несколько десятков или сотен ом в обоих направлениях. В случае обычных диодов такое положение обозначает, что деталь пробита. Однако, для стабилитрона это неверно, потому что у него имеется напряжение пробоя: при соприкосновении щупа мультиметра с оконцовками стабилитрона сказывается внутреннее напряжение электропитания измерительного прибора. Если его напряжение оказывается больше напряжения пробоя, то на индикаторе появятся показатели многоомного сопротивления.
Так, при напряжении батареи мультиметра в 9 вольт у стабилитронов с напряжением ниже этого значения будет индицироваться пробой. Поэтому специалисты не рекомендуют делать проверку стабилитронов с невысоким стабилизационным напряжением с помощью цифровых мультиметров. Для этих целей лучше подойдет старый добрый тестер – аналог.
Аналоговый тестер старого образца поможет проверить стабилитроны с низким напряжением, избежав пробоя
Как проверить стабилитрон на плате
Если стабилитрон впаян в плату, то порядок его проверки не отличается от того, что применяется для свободного электронного устройства такого типа.
Важно! При измерительных и ремонтных манипуляциях с платой обязательно соблюдать меры безопасности для защиты от электроудара. При прозвоне впаянного стабилитрона все другие элементы, кроме проверяемого, могут выдавать сильно измененные показатели, это тоже необходимо учитывать.
Если при проверке на плате получены сомнительные результаты пригодности стабилитрона, то стоит его выпаять и проверить мультиметром только этот элемент, изолировав его от влияния остальных деталей схемы. Также иногда можно использовать приставку к мультиметру, которую можно спаять своими руками из доступных деталей.
Каждому радиолюбителю желательно знать, как проверить стабилитрон мультиметром, – это поможет собирать работающие схемы и экономить радиодетали, выявляя неработающие. Однако при такой проверке нельзя получить 100%-ный достоверный результат. Гарантию пригодности стабилитрона может дать только включение его в электросхему: если устройство будет работать, значит, стабилизирующий элемент функционирует.
Видео
elquanta.ru
Как проверить диод мультиметром — подробная инструкция
Диоды относятся к популярным и широко применяемым электронным элементам, обладающим различным уровнем проводимости.
Перед тем, как проверить диод мультиметром (прозвонить диод и стабилитрон тестером), нужно узнать особенности такого тестирующего прибора и наиболее важные правила его использования.
Классификация
Диоды представляют собой электропреобразующие и полупроводниковые устройства, имеющие один электрический переход и два выхода в виде р-n-перехода.
Общепринятая в настоящее время классификация таких устройств, следующая:
- в соответствии с назначением, диоды чаще всего бывают устройствами выпрямительного, высокочастотного и сверхвысокочастотного, импульсного, туннельного, обращенного, опорного типа, а также варикапами;
- в соответствии с конструктивно-технологическим характеристиками диоды бывают представлены плоскостными и точечными элементами;
- в соответствии с исходным материалом диоды могут быть германиевого, кремниевого, арсенидо-галлиевого и другого типа.
В соответствии с классификацией, самые важные параметры и характеристики диодов представлены:
- предельно допускаемыми показателями обратного уровня напряжения постоянного типа;
- предельно допускаемыми показателями обратного уровня напряжения импульсного типа;
- предельно допускаемыми показателями прямого тока постоянного типа;
- предельно допускаемыми показателями прямого тока импульсного типа;
- номинальными показателями прямого тока постоянного типа;
- прямым токовым напряжением постоянного типа в условиях номинальных показателей, или так называемым «падением напряжения»;
- постоянным током обратного типа, указываемым в условиях максимально допускаемого обратного напряжения;
- разбросом рабочих частот и ёмкостными показателями;
- уровнем напряжения пробивного типа;
- уровнем теплового корпусного сопротивления, в зависимости от типа установки;
- предельно возможными показателями рассеивающей мощности.
В зависимости от уровня мощности, полупроводниковые элементы могут быть маломощными, мощными или среднего уровня мощности.
При выборе диода нужно помнить, что условное обозначение таких элементов может быть представлено не только стандартной маркировкой, но и УГО, наносимым на электрические схемы, имеющие принципиальное значение.
Проверка выпрямительного диода и стабилитрона
В плане самостоятельного диодного тестирования мультиметром, особый интерес представляет проверка:
- обычных диодов на основе p-n-перехода;
- диодных элементов Шоттки;
- стабилитронов, стабилизирующих потенциал.
Обычное тестирование, в этом случае, позволяет определить только целостность p-n-перехода, и именно по этой причине в таких устройствах рабочая точка должна быть смещена.
Схема простейшего метода проверки напряжения стабилитрона
Достаточно использовать простенькую схему, включающую в себя обычный источник питания и резистор для ограничения тока. Мультиметр при нестандартной проверке применяется для замера напряжения, в условиях плавного повышения питающего потенциала.
Если в условиях повышения напряжения питания отмечается постоянная, а также равная заявленным показателям разница потенциалов, то диодное устройство принято считать рабочим, не подлежащим замене.
Сборка схемы
Стандартная схема, выполняемая посредством навесного монтажа, состоит из нескольких основных элементов, представленных:
Как проверить диод шоттки мультиметром
Особенностью некоторых мультиметров является наличие функции «проверка диода». В таких условиях на приборе отображаются фактические показатели прямого диодного напряжения при токовой проводимости.
Тестер, оснащенный специальной функцией, регистрирует немного заниженный уровень прямого напряжения, что обусловлено незначительной токовой величиной, которая задействована при проверке.
В магазине можно встретить самые разные светодиодные лампы для дома. Как выбрать качественный прибор, знают не все. Если интересно, читайте подробную информацию.
Инструкция по сборке светодиодного фонаря своими руками представлена здесь.
Многие выбрасывают светодиодную лампу, если она сломалась. На самом деле большинство таких приборов можно починить. Все о ремонте светодиодных ламп вы можете почитать по ссылке.
Настройка мультиметра
Тестирование полупроводникового элемента посредством цифрового мультиметра потребует переключения прибора в режим проверки диодов. Альтернативным вариантом, при отсутствии переключения в положение «проверка диода», является тестирование в режиме сопротивления, при диапазоне не более 2,0 кОм.
В таком случае выполняется прямое подключение: красный провод подводится на анод, а черный – на катод. При такой настройке мультимера, замеры показывают сопротивление, равное нескольким сотням Ом, в обратное направление фиксирует разрыв цепи.
Мультиметр UNI-T
Следует отметить, что разные типы диодных устройств могут в значительной степени отличаться показателями прямого напряжения.
Например, для германиевых устройств характерно наличие напряжения в пределах 0,3-0,7 В, а для кремниевых элементов допустимы показатели в 0,7-1,0 В.
Как показывает практика, некоторые виды приборов-тестеров при проверке диодных элементов показывают более низкие значения уровня прямого напряжения.
Менее распространенные сдвоенные диоды отличаются наличием в одном корпусе трёх выводов, общего анода или катода, но проверка таких элементов не имеет отличий от тестирования стандартного диодного устройства.
Включение блока питания
Если проверка работоспособности диодов мультиметром предполагает переключение тестера в положение на значок «диод» с подключением черного щупа на вывод «СОМ», а красного — на вывод «V ΩmA», то наличие блока питания заключается в выявлении следующих неполадок:
- подключение блока сопровождается «дерганьем» питания вентилятора, остановкой, отсутствием выходного напряжения и блокировкой источника питания;
- подключение блока сопровождается пульсацией напряжения на выходе и срабатыванием защиты без блокирования источника питания.
Измерение переменного тока
Достаточно часто признаком утечки на диодах Шоттки становится самопроизвольное отключение питающего блока. Также очень важно учитывать, что неправильная схемотехника на блоках питания, может спровоцировать утечку диодных выпрямителей и перегрузку первичной цепи.
Тестирование заключается в установке предела измерений на значение в 20 К, и замере обратного диодного сопротивления. При таком способе исправный диод показывает на приборе бесконечно большой уровень сопротивления.
Подключение мультиметра
Основные, наиболее распространённые диодные неисправности, могут быть представлены:- пробоем, сопровождаемым токовой проводимостью вне зависимости от направления, а также фактическим отсутствием сопротивления;
- обрывом, сопровождаемым отсутствием токового проведения;
- утечкой, сопровождаемой наличием незначительного обратного тока.
Методика настройки прибора для проверки и последовательного тестирования является очень простой.
Соединение анода и щупа мультиметра на «+», а также катода и p-n-перехода на «-» должны быть открытыми. В этом случае прибор подаёт характерный звуковой сигнал. Обратный вариант подключения с закрытым p-n-переходом индицируется единицей.
Знаете ли вы, что светодиодные лампы могут иметь разное устройство? Устройство светодиодных ламп на 220 Вольт — типы приборов и способы сборки.
Инструкция по замене люминесцентных ламп на светодиодные представлена тут.
Как показываем практика самостоятельного тестирования, токовое прохождение, независимо от показателей полярности подключения, чаще всего сопровождает короткое замыкание, а отсутствие прозвона в обе стороны наблюдается при разрыве в цепи.
Видео на тему
proprovoda.ru
Как правильно проверить диодный мост мультиметром
Диодный мост есть практически в любой аппаратуре, и выход его из строя – очень распространенная причина поломки электронного прибора. Проверка же и замена диодного моста в мастерской стоят неоправданно дорого. Тем не менее самостоятельно выявить неисправность выпрямительного блока и при необходимости починить или заменить мост можно самостоятельно с минимальными затратами. Для этого нужно знать, как проверить диодный мост. Именно эту задачу мы и постараемся сегодня решить.
Что такое диодный мост и что у него внутри
Прежде чем мы займемся проверкой диодного моста, необходимо узнать, что вообще такое диодный мост и из чего он состоит. Мост представляет собой схему, собранную из четырех диодов, соединенных определенным образом, и служит для преобразования переменного напряжения в постоянное. Используется такая схема практически во всей аппаратуре, питающейся от сети – ведь почти всей электронике для своего питания нужно постоянное напряжение, а в сети оно переменное. Но для начала выясним, что такое диод и какими свойствами он обладает.
Диод и принцип его работы
Диод – двухэлектродный полупроводниковый прибор, способный проводить ток только в одном направлении. Его часто так и называют — полупроводник. Если включить полупроводник в цепь постоянного тока анодом к плюсовому выводу источника питания, то через него потечет ток. Если к минусовому – тока в цепи не будет. Во втором случае говорят, что диод закрыт. А теперь включим наш полупроводник в цепь переменного напряжения.
Выпрямление переменного напряжения при помощи полупроводников
Из рисунка хорошо видно, что полупроводник пропустил положительную полуволну и срезал отрицательную. Если включить его в другой полярности, то срезанной окажется положительная полуволна.
Чем диодный мост лучше диода
Теоретически используя лишь один полупроводник, ты смог бы преобразовать переменное напряжение в постоянное. Практически же ты получишь на выходе сильно пульсирующее напряжение, которое мало годится для питания электронных схем. Но если включить несколько диодов определенным образом, то лишнюю полуволну можно не срезать, а в буквальном смысле перевернуть ее. А теперь взгляни на схему ниже:
Диодный мост по схеме Гретца
При положительной полуволне работают диоды под номером 1 и 3: первый пропускает плюс, второй — минус. Полупроводники 2 и 4 в это время заперты и в процессе не участвуют – к ним приложено обратное напряжение, и сопротивление их pn-переходов велико. При отрицательной полуволне в работу включаются диоды 2 и 4. Первый перенаправляет отрицательную полуволну на положительный выход, второй служит минусом. На этом этапе запираются приборы 1 и 3. В результате отрицательная полуволна не пропадает, а просто переворачивается:
Результат работы мостового выпрямителя
Вот так при помощи трех дополнительных полупроводников мы повысили эффективность выпрямления вдвое. Конечно, напряжение на выходе все равно пульсирующее, но с такой пульсацией легко справится сглаживающий конденсатор относительно небольшой емкости.
К содержанию
Как найти диодный мост на плате
Прежде чем прозвонить диодный мост, его необходимо сначала найти на плате. Для этого, конечно, нужно знать, как он может выглядеть. Внешний вид у него зависит от разновидности корпуса. Выпрямители могут состоять как из четырех отдельных полупроводников, впаянных рядышком, так и из диодов, собранных в одном корпусе. Такой сборный прибор так и называют – выпрямительная сборка. Вот лишь несколько видов таких сборок:
Внешний вид выпрямительной диодной сборки
Несмотря на обилие форм, распознать интегральный диодный мост несложно. Он, как ты заметил, четырехвыводной, и два его вывода отмечены знаками «+» и «-». Это выход выпрямителя. На входные выводы подается переменное напряжение, поэтому они обозначаются символом «~», буквами «АС» (аббревиатура от английского «переменный ток») либо могут не обозначаться совсем.
Располагается диодный мост рядом с проводами подачи переменного напряжения: с трансформатора либо для импульсных блоков питания непосредственно из розетки (сетевой шнур).
Мнение эксперта
Алексей Бартош
Задать вопрос эксперту
Как правило, рядом с выпрямителем ставится сглаживающий электролитический конденсатор – такой бочонок относительно больших размеров.
На рисунках, приведенных ниже, выпрямительные диодные мосты обозначены зеленой стрелкой:
Примеры расположения выпрямительных диодных сборок и мостов на дискретных элементах к содержанию
Как проверить диодный мост
Проверить диодный мост можно двумя способами:
- При помощи тестера (мультиметра).
- При помощи лампочки.
Первый способ, конечно, предпочтительнее: он весьма точен и безопасен для диодного моста. Но если с мультиметром проблемы, то можно воспользоваться лампой от карманного фонаря и батарейкой на напряжение 5-12 В.
Теперь если диодный мост найден, прежде всего нужно провести внешний осмотр всей платы устройства. Элементы должны иметь естественный цвет, не быть обуглены или разрушены. Осмотри место пайки и целостность дорожек: важно, чтобы ничего не отпаялось и не лопнуло. Заодно внимательно осмотри электролитические конденсаторы (те самые бочонки). Они тоже должны быть в порядке: не поврежденные и не вздувшиеся. Если какой-то конденсатор вздулся или взорвался, его надо выпаять — все равно он потребует замены, чтобы не мешал проведению измерений.
Если конденсатор взорвался, после его демонтажа всю плату нужно тщательно промыть спиртом. Разлетевшиеся части конденсатора – это электролит, который не только проводит ток, но и имеет свойства кислоты.
Прозвонка диодного моста при помощи тестера
Теперь переходим к проверке, или, как говорят, к прозвонке диодного моста, которую нередко приходится проводить в два этапа:
- Предварительная прозвонка на месте.
- Точная проверка.
Первый этап удобен тем, что диодный мост можно не выпаивать, а проверять его прямо в схеме. Второй метод более трудоемок, но в случае неудачи с первым вариантом поможет провести точную проверку.
Для работы нам понадобится тестер: стрелочный или цифровой. В первом случае прибор должен уметь измерять сопротивление, во втором – иметь режим проверки полупроводников. Этот режим обозначается значком диода:
Проверить диодный мост можно лишь в этом положении переключателяМнение эксперта
Алексей Бартош
Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.
Задать вопрос эксперту
Никогда не проверяй полупроводниковые приборы цифровым тестером в режиме измерения сопротивления. В этом режиме практически все подобные приборы проводят измерение переменным током, и прозвонка полупроводников ничего не покажет.
Прозвонка диодного моста на месте
Итак, стрелочный прибор переводим в режим сопротивления на предел измерения около 1 кОм, цифровой включаем на проверку диодов. Теперь вспоминаем схему диодного моста:
Электрическая схема диодного моста
Твоя задача — прозвонить каждый из диодов, подключив к нему щупы тестера сначала в одной, а потом в другой полярности. Как видно из схемы, добраться до каждого диодика в отдельности не составляет труда, достаточно лишь выбрать соответствующие ножки сборки. Если выпрямитель собран на отдельных полупроводниках, проблемы вообще нет: просто прозванивай каждый, касаясь щупами прибора его выводов.
Что говорят измерения после прозвонки? Для каждого из отдельных полупроводников результат измерений должен быть следующим: в одном направлении тестер показывает маленькое сопротивление (значение около 200-700 Ом), в другом невозможно прозвонить вообще – прибор показывает «бесконечность».
Мнение эксперта
Алексей Бартош
Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.
Задать вопрос эксперту
На самом деле цифровой тестер в режиме проверки диодов показывает не сопротивление цепи, а величину падения напряжения на открытом диоде. Это имеет большое значение для измерения параметров полупроводников, но совершенно не существенно для прозвонки. Таким образом, алгоритм работы с любым типом тестера одинаков, а напряжение падения можешь принимать хоть за милливольты, хоть за Омы.
Если самостоятельно вычислить каждый из диодов по выводам тебе сложно, то ориентируйся на картинку ниже, в которой в качестве примера показана прозвонка диодной сборки GBU25M.
Прозвонка диодного моста при помощи мультиметраОбрати внимание, что цифры на экране тестера, изображенного на рисунке, условны. Падение напряжения на диоде и его сопротивление могут колебаться и зависят от типа полупроводника и его рабочего напряжения.
Точная проверка
Если результаты твоих измерений совпали с теми, которые описал я, то диодный мост можно считать исправным. Но если что-то пошло не так и ты не получил желаемых результатов, то диодный мост придется выпаять и провести проверку еще раз. Дело в том, что большинство схемотехнических решений предусматривают «обвязку» выпрямителя дополнительными элементами: конденсаторами, фильтрами, катушками и пр. Все это может внести искажения в измерения, и ты просто не увидишь, почему и что не так.
Включаем паяльник и выпаиваем диодный мост. Если он состоит из отдельных диодов, то их достаточно отпаять лишь с одной стороны, приподняв по одной ножке каждого диода над платой. Теперь проводи повторное измерение. Методика та же, что и в первом случае: каждый из диодов прозванивай в обе стороны, меняя полярность подключения щупов прибора.
Если и сейчас показания прибора не соответствуют норме, можно с полной уверенностью сказать, что сборка или отдельный диод неисправны. Если в обоих направлениях измерения высокие значения сопротивления, переход диода выгорел, он в обрыве. Звонится в обе стороны – диод пробит, замкнут накоротко. Если пробита диодная сборка, то придется заменить ее целиком. Если диоды стоят отдельно, достаточно заменить неисправный прибор однотипным.
Мнение эксперта
Алексей Бартош
Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.
Задать вопрос эксперту
В Интернете полно поисковых запросов типа «как проверить диодный мост индикаторной отверткой». Индикаторная отвертка, точнее, указатель напряжения предназначен для абсолютно других целей, и проверять диоды с его помощью не только бессмысленно, но и опасно!
Прозвонка моста индикаторной лампой
Если в твоем распоряжении не оказалось мультиметра, то для проверки диодного моста можно обойтись и подручными средствами: лампочкой и батарейкой. Тебе понадобится батарейка или кассета с несколькими пальчиковыми батарейками с общим напряжением 5-12 В и маломощная лампочка накаливания приблизительно с таким же, как у батареи, напряжением питания.
Лампу нужно брать минимальной мощности, чтобы не сжечь диод чрезмерно большим током. Подойдет, к примеру, лампочка от маломощного карманного фонаря. Если в качестве батареи ты используешь аккумулятор на 12 В, то подойдет и лампочка от подсветки приборной панели или габаритных фар («подфарников»).
Ты, конечно, помнишь, что диод проводит ток в одну сторону, поэтому взгляни на две предложенные мной схемы:
Схема проверки диода при помощи лампы накаливания
На схеме слева диод включен в прямом направлении и пропускает ток – лампа должна загореться. На правом рисунке диод включен в обратном направлении и тока не пропускает – лампа погашена. Понял идею? Собирай тестер и щупами А1 и А2 прозванивай диодный мост, ориентируясь не на экран мультиметра, а на лампу. Горит – маленькое сопротивление, погашена – большое. Вот и вся хитрость.
К содержанию
Проверка диодного моста генератора автомобиля
Если у тебя есть автомобиль, то тебя наверняка заинтересует этот раздел статьи. Выход из строя генератора авто – серьезная проблема, решение которой стоит немалых денег. Но и тут причиной поломки может оказаться неисправность диода выпрямительного моста, который установлен в генераторе. А это значит, что вопрос можно попытаться решить своими силами. Взглянем на упрощенную схему генератора:
Схема диодного моста генератора автомобиля
Перед тобой такой же диодный мост, только трехфазный, с шестью, а не с четырьмя диодами. Это означает, что прозвонить его не составит никакого труда!
Итак, разбирай генератор и снимай диодный мост, который выглядит примерно вот так:
Диодный мост автомобильного генератора
Зелеными стрелками я отметил силовые диоды, но еще есть три вспомогательных, они помечены красными стрелками. Звонить будем и те и другие – все на виду и легкодоступны.
Промывай подковку в бензине, чтобы смыть всю грязь и масло, которые могут быть причиной неисправности. Когда мост высохнет, начинай прозванивать каждый диод, используя методику, описанную выше. Для работы можно использовать как мультиметр, так и лампу от габаритов в комплекте с автомобильным аккумулятором.
Мнение эксперта
Алексей Бартош
Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.
Задать вопрос эксперту
Обрати внимание! Диоды, стоящие на разных подковках, только с виду одинаковые. На самом деле у одних на центральном выводе анод, у других – катод. Это сделано для того, чтобы диоды можно было расположить на одной подковке, одновременно исполняющей роль радиатора, без изолирующих прокладок.
К содержанию
Техника безопасности
Подавляющее большинство современной аппаратуры имеет импульсные высоковольтные блоки питания. Это означает, что диодные мосты в них работают под напряжением до 300 В. Поэтому, прежде чем начать измерение, отключи прибор от сети и, главное, разряди сглаживающие электролитические конденсаторы, которые могут «держать» опасный для жизни заряд часами. Для наглядности я пометил их красными стрелками:
Плата блока питания ПК с диодным мостом и сглаживающими конденсаторами
Чтобы разрядить их, замкни на секунду выводы конденсатора отверткой, держа ее за изолирующую ручку. В противном случае ты не только сожжешь мультиметр, но и можешь попасть под смертельное напряжение.
И последний совет: после ремонта прибора не спеши втыкать сетевую вилку в розетку. Для начала включи его в сеть через лампу накаливания мощностью 150-200 Вт. Если все сделано правильно, лампа будет едва светиться. О неудавшемся ремонте лампа просигнализирует тебе ярким светом в полный накал, указывающим на короткое замыкание.
Делая всевозможные сетевые переключения, береги глаза. Очень многие элементы импульсных блоков питания при неудачном ремонте способны взрываться не хуже осколочной гранаты. А разрыв электролитического конденсатора, как я уже писал выше, грозит огромным разлетом не только осколков алюминия и клочьев бумаги, но и разбрызгиванием кислоты.
Вот ты и научился проверять исправность диодных мостов. Надеюсь, в будущем эти знания будут полезны и сохранят не только твои деньги и время, но и нервы. Провести самостоятельную дефектовку электронного прибора, а затем и его ремонт – это круто. Не так ли? Пиши ответ в комментариях
Чтобы определить исправность диода можно воспользоваться приведённой далее методикой его проверки цифровым мультиметром.
Но для начала вспомним, что представляет собой полупроводниковый диод.
Полупроводниковый диод – это электронный прибор, который обладает свойством однонаправленной проводимости.
У диода имеется два вывода. Один называется катодом, он является отрицательным. Другой вывод – анод. Он является положительным.
На физическом уровне диод представляет собой один p-n переход.
Напомню, что у полупроводниковых приборов p-n переходов может быть несколько. Например, у динистора их три! А полупроводниковый диод, по сути является самым простым электронным прибором на основе всего лишь одного p-n перехода.
Запомним, что рабочие свойства диода проявляются только при прямом включении. Что значит прямое включение? А это означает, что к выводу анода приложено положительное напряжение (+ ), а к катоду – отрицательное, т.е. (— ). В таком случае диод открывается и через его p-n переход начинает течь ток .
При обратном включении, когда к аноду приложено отрицательное напряжение (— ), а к катоду положительное (+ ), то диод закрыт и не пропускает ток .
Так будет продолжаться до тех пор, пока напряжение на обратно включённом диоде не достигнет критического, после которого происходит повреждение полупроводникового кристалла. В этом и заключается основное свойство диода – односторонняя проводимость.
У подавляющего большинства современных цифровых мультиметров (тестеров) в функционале присутствует возможность проверки диода. Эту функцию также можно использовать для проверки биполярных транзисторов . Обозначается она в виде условного обозначения диода рядом с разметкой переключателя режимов мультиметра.
Небольшое примечание! Стоит понимать, что при проверке диодов в прямом включении на дисплее показывается не сопротивление перехода, как многие думают, а его пороговое напряжение ! Его ещё называют падением напряжения на p-n переходе . Это напряжение, при превышении которого p-n переход полностью открывается и начинает пропускать ток. Если проводить аналогию, то это величина усилия, направленного на то, чтобы открыть «дверь» для электронов. Это напряжение лежит в пределах 100 – 1000 милливольт (mV). Его то и показывает дисплей прибора.
В обратном включении, когда к аноду подключен минусовой (— ) вывод тестера, а к катоду плюсовой (+ ), то на дисплее не должно показываться никаких значений. Это свидетельствует о том, что переход исправен и в обратном направлении ток не пропускает.
В документации (даташитах) на импортные диоды пороговое напряжение именуется как Forward Voltage Drop (сокращённо V f ), что дословно переводится как «падение напряжения в прямом включении «.
Само по себе падение напряжения на p-n переходе нежелательно. Если помножить протекающий через диод ток (прямой ток) на величину падения напряжения, то мы получим ни что иное, как мощность рассеивания – ту мощность, которая бесполезно расходуется на нагрев элемента.
Узнать подробнее о параметрах диода можно .
Проверка диода.
Чтобы было более наглядно, проведём проверку выпрямительного диода 1N5819. Это диод Шоттки . В этом мы скоро убедимся.
Обращаю внимание на то, что во время измерения нельзя держать выводы проверяемого элемента и металлические щупы двумя руками. Это грубая ошибка. В таком случае мы измеряем не только параметры диода, но и сопротивление своего тела. Это может существенно повлиять на результат проверки.
Держать щупы и выводы элемента можно только одной рукой! В таком случае в измерительную цепь включен только сам измерительный прибор и проверяемый элемент. Данная рекомендация справедлива и при измерении сопротивления резисторов, а также при проверке конденсаторов . Не забывайте об этом важном правиле!
Итак, проверим диод в прямом включении. При этом плюсовой щуп (красный ) мультиметра подключаем к аноду диода. Минусовой щуп (чёрный ) подключаем к катоду. На фотографии, показанной ранее, видно, что на цилиндрическом корпусе диода нанесено белое кольцо с одного края. Именно с этой стороны у него вывод катода. Таким образом маркируется вывод катода у большинства диодов импортного производства.
Как видим, на дисплее цифрового мультиметра показалось значение порогового напряжения для 1N5819. Так как это диод Шоттки, то его значение невелико – всего 207 милливольт (mV).
Теперь проверим диод в обратном включении. Напоминаем, что в обратном включении диод ток не пропускает. Забегая вперёд, отметим, что и в обратном включении через p-n переход всё-таки протекает небольшой ток. Это так называемый обратный ток (I обр ). Но он настолько мал, что его обычно не учитывают.
Поменяем подключение диода к измерительным щупам мультиметра. Красный щуп подключаем к катоду, а чёрный к аноду.
На дисплее покажется «1 » в старшем разряде дисплея. Это свидетельствует о том, что диод не пропускает ток и его сопротивление велико. Таким образом, мы проверили диод 1N5819 и он оказался полностью исправным.
Многие задаются вопросом: «Можно ли проверить диод не выпаивая его из платы?» Да, можно. Но в таком случае необходимо выпаять из платы хотя бы один его вывод. Это нужно сделать для того, чтобы исключить влияние других деталей, которые соединены с проверяемым диодом.
Если этого не сделать, то измерительный ток потечёт через все, в том числе, и через связанные с ним элементы. В результате тестирования показания мультиметра будут неверными!
В некоторых случаях данным правилом можно пренебречь, например, когда чётко видно, что на печатной плате нет таких деталей, которые могут повлиять на результат проверки.
Неисправности диода.
У диода есть две основные неисправности. Это пробой перехода и его обрыв .
Пробой . При пробое диод превращается в обычный проводник и свободно пропускает ток хоть в прямом направлении, хоть в обратном. При этом, как правило, пищит буззер мультиметра, а на дисплее показывается величина сопротивления перехода. Это сопротивление очень мало и составляет несколько ом, а то и вообще равно нулю.
Обрыв . При обрыве диод не пропускает ток ни в прямом, ни в обратном включении. В любом случае на дисплее прибора – «1 «. При таком дефекте диод представляет собой изолятор. «Диагноз» — обрыв можно случайно поставить и исправному диоду. Особенно легко это сделать, когда щупы тестера порядком изношены и повреждены. Следите за исправностью измерительных щупов, провода у них ох какие «жиденькие» и при частом использовании легко рвутся.
А теперь пару слов о том, как по значению порогового напряжения (падению напряжения на переходе — Forward Voltage Drop (V f )) можно ориентировочно судить о типе диода и материале из которого он изготовлен.
Вот небольшая подборка, составленная из конкретных диодов и соответствующих им величин V f , которые были получены при их тестировании мультиметром. Все диоды были предварительно проверены на исправность.
Марка диода | диодного моста . Германиевые диоды имеют прямое падение напряжения равное 300 – 400 милливольт. Например, проверенный нами точечный германиевый диод Д9, который ранее применялся в качестве детектора в радиоприёмниках, имеет пороговое напряжение около 400 милливольт. Диоды Шоттки имеют V f в районе 100 – 250 mV; У германиевых диодов V f , как правило, равно 300 – 400 mV; Кремниевые диоды имеют самое большое падение напряжения на переходе равное 400 – 1000 mV. Таким образом, с помощью описанной методики можно не только определить исправность диода, но и ориентировочно узнать, из какого материала и по какой технологии он изготовлен. Определить это можно по величине V f . Возможно, после прочтения данной методики у вас появится вопрос: «А как же проверить диодный мост?» На самом деле, очень просто. Об этом я уже рассказывал . |
Проверка диодов мультиметром
Добавлено 3 февраля 2017 в 21:10
Сохранить или поделиться
И для любителей, и для профессионалов электроники очень важным умением является способность определить полярность (где катод, а где анод) и работоспособность диода. Так как мы знаем, что диод, по сути, является не более, чем односторонним клапаном для электричества, то вероятно, мы можем проверить его однонаправленный характер с помощью омметра, измеряющего сопротивление по постоянному току (питающегося от батареи), как показано на рисунке ниже. При подключении диода одним способом мультиметр должен показать очень низкое сопротивление на рисунке (a). При подключении диода другим способом мультиметр должен показать очень большое сопротивление на рисунке (b) (некоторые модели цифровых мультиметров в этом случае показывают «OL»).
Определение полярности диода: (a) Низкое сопротивление указывает на прямое смещение, черный щуп подключен к катоду, а красный – к аноду. (b) Перемена щупов местами показывает высокое сопротивление, указывающее на обратное смещение.Конечно, чтобы определить, какое вывод диода является катодом, а какой – анодом, вы должны точно знать, какой вывод мультиметра является положительным (+), а какой – отрицательным (-), когда на нем выбран режим «сопротивление» или «Ω». В большинстве цифровых мультиметров, которые я видел, красный вывод используется, как положительный, а черный, как отрицательный, в соответствии с соглашением о цветовой маркировке электроники.
Одна из проблем использования омметра для проверки диода заключается в том, что мы имеем только качественное значение, а не количественное. Другими словами, омметр говорит вам, только в каком направлении диод проводит ток; полученное при измерении низкое значение сопротивления бесполезно. Если омметр показывает значение «1,73 ома» при прямом смещении диода, то число 1,7 Ом не представляет для нас, как для техников или разработчиков схем, никакой реально полезной количественной оценки. Оно не представляет собой ни прямое падение напряжения, ни величину сопротивления материала полупроводника самого диода; это число скорее зависит от обеих величин и будет изменяться в зависимости от конкретного омметра, используемого для измерения.
По этой причини, некоторые производители цифровых мультиметров оснащают свои измерительные приборы специальной функцией «проверка диода», которая показывает реальное прямое падение напряжения на диоде в вольтах, а не значение «сопротивления» в омах. Эти измерительные приборы работают, пропуская через диод небольшой ток и измеряя падение напряжения между двумя измерительными щупами (рисунок ниже).
Мультиметр с функцией «Проверка диода», вместо низкого сопротивления, показывает прямое падение напряжения 0,548 вольт.Показание прямого напряжения, полученное таким образом с помощью мультиметра обычно меньше, чем «нормальное» падение в 0,7 вольта для кремниевых диодов и 0,3 вольта для германиевых диодов, так как ток, обеспечиваемый измерительным прибором, довольно мал. Если у вас нет мультиметра с функцией проверки диодов, или вы хотели бы измерить прямое падение напряжения на диоде при другом токе, то можно собрать схему из батареи, резистора и вольтметра.
Измерение прямого напряжения диода с помощью мультиметра без функции «проверка диода»: (a) Принципиальная схема. (b) Схема соединенийПодключение диода в этой тестовой схеме в обратном направлении просто приведет к тому, что вольтметр покажет полное напряжение батареи.
Если эта схема была разработана для обеспечения протекания через диод тока постоянной (или почти) величины, несмотря на изменения прямого падения напряжения, то она может быть использована в качестве основы для инструмента, измеряющего температуру: измеренное на диоде напряжение будет обратно пропорционально температуре перехода диода. Конечно, ток через диод должен быть минимален, чтобы самонагревания (значительного количества рассеиваемой диодом мощности), которое могло бы помешать измерению температуры.
Помните, что некоторые цифровые мультиметры, оснащенные функцией «проверка диода», при работе в обычном режиме «сопротивление» (Ω) могут выдавать очень низкое тестовое напряжение (менее 0,3 вольт), слишком низкое для полного схлопывания (сжатия) обедненной области PN перехода. Суть в том, что тестирования полупроводниковых приборов здесь должна использоваться функция «проверка диода», а функция «сопротивления» – для всего остального. Использование очень низкого тестового напряжения для измерения сопротивления облегчает процесс измерения сопротивления неполупроводниковых компонентов, подключенных к полупроводниковым компонентам, так как переходы полупроводникового компонента не будут смещены такими низкими напряжениями в прямом направлении.
Рассмотрим пример резистора и диода, соединенных параллельно и припаянных к печатной плате. Как правило, перед измерением сопротивления резистора необходимо было бы выпаять его из схемы (отсоединить резистор от остальных компонентов), в противном случае любые параллельно подключенные компоненты будут влиять на полученные показания. При использовании мультиметра, который выдает на щупы очень низкое тестовое напряжение в режиме «сопротивление», на PN переход диода не будет подано напряжение, достаточное для того, чтобы он был смещен в прямом направлении, и, следовательно, диод будет пропускать незначительный ток. Следовательно, измерительный прибор «видит» диод, как разрыв, и показывает сопротивление только резистора (рисунок ниже).
Омметр, оснащенный очень низким тестовым напряжением (< 0,7 В), не видит диодов, что позволяет ему измерять параллельно подключенные к диоду резисторы.Если использовать такой омметр для проверки диода, он покажет очень высокое сопротивление (много мегаом), даже если подключить диод в «правильном» (для прямого смещения) направлении (рисунок ниже).
Омметр, оснащенный очень низким тестовым напряжением, слишком низким для прямого смещения диодов, не видит диодов.Величина обратного напряжения диода измеряется не так легко, так как превышение обратного напряжения на обычном диоде приводит к его разрушению. Хотя существуют специальные типы диодов, разработанные для «пробоя» в режиме обратного смещения без повреждения диода (так называемые стабилитроны), которые тестируются в той же схеме источник/резистор/вольтметр при условии, что источник напряжения обеспечивает величину напряжения, достаточную для перехода диода в область пробоя. Более подробную информацию об этом читайте в одной из следующих статей этой главы.
Подведем итоги
- Омметр может быть использован для качественной оценки работоспособности диода. При подключении диода в одном направлении должно получено низкое сопротивление, а подключении в другом направлении – очень высокое сопротивление. При использовании для этой цели омметра, убедитесь, что знаете, какой из тестовых щупов положительный, а какой отрицательный!
- Некоторые мультиметры имеют функцию «проверка диода», которая отображает фактическое прямое напряжение диода, когда он проводит ток. Такие измерительные приборы обычно показывают слегка заниженное значение прямого напряжения, по сравнению с «номинальным» значением, из-за очень маленькой величины тока, используемой для проверки.
Оригинал статьи:
Теги
ДиодМультиметрОбучениеЭлектроникаСохранить или поделиться
Как проверить диод [Полное руководство]
Диоды — один из часто используемых компонентов в электронных устройствах. Таким образом, чтобы убедиться, что диод подходит для конкретного (согласно требованиям) использования, важно проверить диод. Мы можем тестировать обычные диоды и стабилитроны с помощью цифрового или аналогового мультиметра.
Поскольку диоды используются в схемах защиты, выпрямления и т. Д., Именно они выходят из строя в первую очередь в случае какой-либо неисправности в системе. Несколько примеров схем могут быть двухполупериодным выпрямителем, однополупериодным выпрямителем, схемой драйвера светодиода.Эта причина дает еще более веский повод всегда проверять диод перед его использованием. Кроме того, у нас есть два режима диода, а именно режим прямой проводимости и режим обратной блокировки. Таким образом, оба из них необходимо тестировать отдельно.
Как проверить диод
Можно проверить с помощью мультиметра. В практическом диоде мы имеем сопротивление как в прямом, так и в обратном направлении. Всегда лучше проверить схему перед ее сборкой. Но если мы этого не сделаем, и результаты также не соответствуют нашим ожиданиям, мы можем запутаться в том, есть ли проблема в схеме или компоненты (диод, другие электронные устройства) не работают должным образом.
Диод лучше всего тестировать, когда он смещен в прямом направлении. Рассчитывается падение напряжения из-за его прямого сопротивления. В прямом смещении диод действует как переключатель (если сопротивление игнорируется). Давайте теперь узнаем, как тестировать диоды.
Тестирование диодов
с цифровыми счетчиками
В настоящее время большинство цифровых мультиметров снабжено специальным диапазоном «проверки диодов». Это сделано для обеспечения идеального измерения, поскольку другие напряжения могут не преодолеть потенциал прямого перехода диодов (и, следовательно, отсутствие проводимости в прямом направлении).
Но здесь возникает один вопрос: а что, если у нас нет диапазона проверки диодов в цифровом мультиметре!
Что ж, у нас есть еще один метод, который поможет проверить исправность диода. Мы могли бы установить мультиметр в режим сопротивления (метод омметра), а затем продолжить.
Разберемся с порядком проведения проверки исправности диодов обоими способами.
с диапазоном проверки диодов в мультиметре
Для проверки диода используется следующая процедура:
- Сначала определите два вывода диода, а именно катод и анод.Также имейте в виду, что если анодное напряжение больше, чем катодное напряжение, то диод проводит в прямом направлении, а если меньше, то в обратном смещении.
- Убедитесь, что в цепи отключено все питание. Кроме того, если диод установлен в цепи переменного тока, он может накапливать заряды в конденсаторе или катушке индуктивности. Следовательно, их необходимо разрядить перед испытанием диода.
- Установите ручку цифрового мультиметра в соответствии с требованиями, например, для напряжения постоянного или переменного тока.
- Удерживайте ручку в режиме проверки диодов (если есть).
- Возьмите провода цифрового измерителя и удерживайте их на двух выводах диода, чтобы измерить напряжение на них. Запишите наблюдение.
- Теперь, чтобы рассчитать обратное напряжение (режим обратной блокировки), поменяйте местами провода измерителя и запишите наблюдение.
Следующий шаг — как проанализировать данные и решить, готов ли диод быть частью схемы или нет. Проверяем, хорошо это или плохо!
Тестирование диодов
Анализ диодных испытаний, проведенных
- По указанному значению просто проверьте падение напряжения в прямом направлении.Если для кремния он находится в диапазоне 0,7 0,1, то диод исправен, иначе не подходит. Для германия диапазон падения, необходимый для хорошего диода, составляет 0,3 0,05.
- При переключении диода, если он показывает OL, диод исправен (исправен). OL указывает на разомкнутый контур / цепь. Это связано с тем, что исправный диод не проводит обратное смещение. Так что это может быть еще одна проверка на исправность диода или плохого состояния здоровья
- Если цифровой мультиметр показывает OL как при прямом, так и при обратном смещении, диод неисправен.
- С другой стороны, может быть случай, когда цифровой мультиметр покажет отклонение для падения напряжения в обоих условиях смещения. Такой диод представляет собой закороченный диод.
Испытательный диод в режиме сопротивления
Давайте посмотрим, как определить, исправен ли диод, обрыв (OL) или короткое замыкание. Выполните следующие шаги для проведения теста.
- То же, что и выше, идентифицирует катодную и анодную клеммы диода. Если
V Анод > V Катод — прямое смещение
В Анод <В Катод — обратное смещение
- Сначала проверьте диод на наличие прямого смещения.Помните, что в этом случае требования к сопротивлению высоки. Это связано с тем, что ток течет в прямом направлении и, следовательно, требует высокого сопротивления (от 1 кОм до 10 МОм).
- Кроме того, для обратного смещения требования к сопротивлению меньше, так как в идеале он должен быть разомкнут (без тока) при обратном.
- Перед тем, как начать проверку диода, убедитесь, что все источники питания ВЫКЛЮЧЕНЫ. Следовательно, на диоде не должно быть никакого напряжения, а также все подключенные конденсаторы или катушки индуктивности должны быть проверены на сохраненное напряжение.Если он заряжен, разрядите его перед запуском.
- В соответствии с требованиями схемы установите ручку мультиметра на переменный или постоянный ток.
- Удерживайте другую ручку в режиме сопротивления ().
- Теперь проверьте диод, подключив провода счетчика. Наблюдайте и записывайте показания.
- Поменяйте местами выводы, чтобы получить показания с обратным смещением. Наблюдайте и записывайте.
- Хороший диод: если
в прямом режиме, сопротивление от 1 кОм до 10 МОм
и в обратном режиме цифровой счетчик показывает OL
имеют одинаковые или близкие значения.Если показания не соответствуют вышеперечисленным условиям, то это тоже плохо.
Этот метод тестирования сопротивления можно сделать более эффективным, если сравнивать показания с уже протестированным исправным диодом.
Давайте теперь узнаем о тестировании некоторых конкретных диодов.
Тест стабилитрона
Стабилитрон — это диод, который также проводит обратное смещение (если обратное напряжение больше, чем напряжение пробоя стабилитрона). Это требует некоторых изменений в предыдущей схеме тестирования.Ниже приводится процедура проверки стабилитрона:
.Тест стабилитрона
Процедура проверки диода
- Как и в случае диода с p-n переходом, сначала проверьте катодную и анодную клеммы диода.
- Схема должна соответствовать показанной схеме.
- Установите ручку цифрового мультиметра в режим измерения напряжения и поместите выводы измерителя на анод и катод, чтобы проверить диод.
- Теперь медленно измените напряжение (в положительном направлении) и посмотрите на счетчик.Наблюдаемое значение на измерителе также должно увеличиваться с увеличением входного сигнала. И при определенном значении (напряжении пробоя) значение счетчика должно насыщаться (становиться постоянным). Это означает, что после пробоя напряжения, несмотря на любое изменение на входе, значение на измерителе (выходе) остается на постоянном уровне.
- Если это произойдет, то стабилитрон исправен, иначе нет.
Например, если напряжение пробоя составляет 3 В, и вы подаете питание на 10 В, тогда счетчик также будет показывать значение около 3 В.
Светодиод (светоизлучающий диод) Тест
Этот светодиод несколько отличается от того, который мы изучили до сих пор (с точки зрения внешнего вида). Следовательно, чтобы определить его анодный и катодный выводы, нам нужно увидеть его длину. Более длинная ветвь (вывод) является анодом, а более короткая — катодом. Еще один способ проверить клеммы — это увидеть поверхность светодиода. Сторона с более плоской поверхностью — это катод, а другая сторона — очевидный анод.
Тестирование светодиодов
Процедура проверки диода
- Если диод в цепи, убедитесь, что питание отключено и конденсаторы разряжены.
- С помощью описанного выше метода проверьте анодные и катодные выводы.
- Поместите щупы мультиметра так, чтобы диод находился в прямом смещении (красный щуп к аноду, а черный к катоду).
- Теперь вам не нужно ничего делать, кроме как посмотреть, светится ли светодиод.Если он светится, значит, он здоров, иначе — нет.
А теперь скажите, можно ли проверить светодиод при обратном смещении? Считать!!
Конечно, нет. Просто потому, что светодиод не работает при обратном смещении.
Тест диодов Шоттки
Подобно другим обычным диодам, он также ограничивает ток в одном направлении. Но у него более быстрое время отклика по сравнению с другими диодами того же семейства.
Проверка диодов Шоттки
Процедура проверки диода Шоттки
- Обеспечьте катод и анод диода Шоттки.Часть, которая находится ближе к нарисованной линии, является катодом, а другая сторона — анодом.
- Подключите щупы измерителя к клеммам диода. Красный зонд к аноду и черный к катоду, чтобы сделать его в прямом смещении.
- Теперь мультиметр должен издавать «гудение» или «гудок». Если это так, значит, диод исправен, иначе неисправен.
- Аналогичным образом поменяйте местами подключение датчика, чтобы заставить его работать в режиме обратного смещения.Снова внимательно попробуйте прислушаться, нет ли звука. Если да, то диод неисправен и его необходимо заменить, а если нет, то он исправен.
Тестирование слабосигнальных диодов
Малосигнальные диоды
Сигнальные диоды — это диоды, которые работают с меньшей мощностью и более высокой частотой. Это делает их более полезными для переключения. Тестирование этих малосигнальных диодов очень похоже на методы, описанные выше. Единственная разница в том, что на цифровом мультиметре меньше значение, когда вводится входной сигнал.Кроме того, диапазон входного сигнала, который может подаваться на эти диоды, меньше по сравнению с диодами с большим сигналом.
Испытание больших сигнальных диодов
Большие сигнальные диоды — это диоды, которые имеют сравнительно большую мощность и несколько меньшую частоту по сравнению с малосигнальными диодами. Следовательно, при проверке диода диапазон напряжений выше, а также вход, который может подаваться на входные клеммы, имеет более широкий диапазон.
Процедура проверки малого / большого диода
- Обеспечьте катод и анод диода.
- Для прямого смещения держите красный зонд на аноде, а черный — на катоде.
- Он должен выдавать значение напряжения (в зависимости от номинала). Это показывает, что диод ведет себя как короткое замыкание, что он также должен делать. Запиши это.
- Поменяйте местами подключение и снова проверьте значение. Если он показывает «OL», то диод в хорошем состоянии, в противном случае его необходимо заменить, т. Е. Он плохой.
Давайте теперь научимся проверять диод с помощью аналогового измерителя.
Как проверить диод с помощью аналогового мультиметра
Здесь следует отметить один важный момент: ноль на шкале напряжения и сопротивления в аналоговом измерителе инвертирован. Следовательно, нам нужно перевернуть щупы измерителя. Как и для проверки диода в прямом смещении, нам нужно подключить красный зонд к катоду, а черный — к аноду. Точно так же мы можем перевернуть щупы, чтобы получить обратное смещение. Это основное отличие при тестировании диода с помощью цифрового и аналогового измерителя.
Тестирование аналоговыми счетчиками
Производитель указывает аналоговый диапазон измерителя, чтобы его можно было использовать, или можно использовать уже проверенные хорошие значения диодов в качестве справочных. Еще один важный момент, который следует отметить, это то, что некоторые счетчики используют сопротивление, а некоторые — напряжение перехода. Так что вы должны следить за этим, прежде чем начинать тест.
Нравится:
Нравится Загрузка …
Вы также можете увидетьТестирование диода Шоттки и его применения
Применение и тестирование диодного выпрямителя
Диоды Шоттки
Диод Шоттки или выпрямитель с барьером Шоттки разработан для использования в высокоэффективном выпрямлении, необходимом для приложений , таких как схема импульсного источника питания (SMPS), импульсный стабилизатор и т. Д.Если вы посмотрите на какие-либо электронные схемы и схему, символ выпрямителя Шоттки выглядит точно так же, как и обычный диод.
Даже внешний вид, форма и конструкция не отличаются от обычного диода. Основное различие между обычным диодом и диодом с барьером Шоттки — это номер детали. Из-за того же взгляда, многие мастера по ремонту электроники думают, что измерение диодов Шоттки — это то же самое, что и , проверяющий нормальный диод. Если вы используете обычный метод проверки диода для проверки диода Шоттки, то высока вероятность, что вы не решите проблему.
В этой статье я покажу вам основной правильный метод проверки диода Шоттки, чтобы вы больше не запутались. Используя книгу данных по полупроводникам и с помощью поисковых систем, вы легко узнаете, является ли проверяемый диод Шоттки, нормальным диодом, сверхбыстрым или даже демпферным диодом. При ремонте электроники вы не должны угадывать, что это за компонент, просто найдите данные и подтвердите их, чтобы вы были на 100% уверены, какие методы лучше всего проверить.
После того, как вы убедились, что тестируемый диод является диодом Шоттки, вы должны использовать правильный способ его измерения. Используя аналоговый мультиметр, установите его на диапазон 10 кОм, поместите красный щуп к катоду, а черный щуп к аноду. Вы должны увидеть, что указатель переместился на полную шкалу. Теперь переверните зонд, и вы получите некоторые показания утечки. Другими словами, указатель немного переместится вверх. Это хорошая характеристика диода Шоттки при таком показании.Однако, если вы проверяете нормальный диод и обнаруживаете, что он имеет два показания, то считается, что диод неисправен и нуждается в замене.
Закороченный диод с барьером Шоттки покажет два значения полной шкалы, зарегистрированные на
.метр панели. Если предположить, что мастер по ремонту электроники не знает, как проверить диод Шоттки, он или она может подумать, что диод зарегистрировал некоторую утечку, и заменить его. Диод Шоттки непросто получить у местного дистрибьютора электроники.
Поиск замены диода Шоттки займет у вас время, и в этом нет необходимости, если вы знаете, как это проверить. Мастер по ремонту электроники может просто заменить «нормальный диод» в качестве замены и надеяться, что он будет работать. Что ж, оборудование все равно не будет работать, потому что вы заменили рабочий диод (диод Шоттки) другим хорошим нормальным диодом! Фактическая неисправность все еще существует, а не диод Шоттки.
Иногда замена диода Шоттки на нормальный диод может вызвать нестабильность оборудования, особенно в чувствительной цепи.Лучше всего заменить его оригинальным номером детали или спецификацией с более высоким напряжением и током, чем у оригинального диода. Типичные номера деталей для диода Шоттки: 1N5818, 1N5819, 1N5820 и SB530. Обратитесь к своей любимой книге по замене полупроводников, чтобы узнать тип таблицы и узнать спецификации этих номеров деталей. Если он у вас есть, попробуйте проверить его с помощью аналогового измерителя, и вы будете удивлены, увидев два показания, но не замкнутые.
Нажмите здесь, чтобы получить мою БЕСПЛАТНУЮ электронную книгу и другие качественные электронные статьи по ремонту прямо сейчас!
Диод Шоттки — диод Шоттки
Тестирование диода Шоттки — правильный способ его тестирования.
— это диод Шоттки или выпрямители с барьером Шоттки, предназначенные для высокоэффективного выпрямления
, необходимого для таких приложений, как импульсные источники питания (SMPS)
, импульсный стабилизатор и
и т. Д. Если вы посмотрите на электронную принципиальную схему, символ диода Шоттки
выглядит так же, как нормальный диод. Даже форма
и спроектирована как обычный диод. Основное различие
между обычным диодом и диодом Шоттки — это номер детали.
Из-за этого многие техники думают, что проверка диода Шоттки
ничем не отличается от проверки нормального диода.На самом деле существует правильный метод
для идентификации диода Шоттки и предлагаемый способ его проверки.
Поиск в Интернете номера детали диода Шоттки и просмотр
через руководство по замене полупроводников может быстро дать
ответ на вопрос, является ли проверяемый вами компонент
нормальным диодом, диодом сверхбыстрого восстановления или диодом Шоттки.
Если вы подтвердили, что диод является диодом Шоттки, тогда вы,
, должны использовать точный способ его проверки.
Установите аналоговый мультиметр на 10 кОм. Поместите красный датчик
на катод, а черный датчик на анод. Вы должны увидеть
, стрелка поднимается на полную шкалу. Перевернув зонд,
покажет некоторую утечку, что означает, что игла немного сдвинется вверх. Это
хорошая характеристика диода Шоттки при проверке на нем. Однако
, если вы измеряете нормальный диод и обнаруживаете, что у
два показания, тогда диод считается испорченным и его необходимо заменить.
Закороченный диод с барьером Шоттки покажет два показания полной шкалы
, зарегистрированные панельным измерителем.
может подумать, что в диоде есть утечка и его необходимо заменить. Хуже всего
— это diodo schottky, который нелегко найти на рынке.
Поиск замены диода Шоттки займет у вас время, а
в этом нет необходимости, если вы знаете, как это проверить. Техник может
просто заменить «нормальный диод» и надеяться, что он будет работать.
Что ж, оборудование все равно не будет работать, потому что вы заменили
рабочий диод (диод Шоттки) на другой хороший диод! Фактический виновник
все еще существует, а не диод Шоттки.
Иногда замена диода Шоттки на нормальный диод
может привести к нестабильности оборудования, особенно в чувствительной цепи. Лучше всего заменить
оригинальным диодом или спецификацией, которая на
больше, чем у оригинального диода. Типичный номер детали для диода Шоттки
— 1N5819.Посмотрите этот номер детали в вашей любимой поисковой системе
и в справочнике по полупроводникам.
Вот и все, дружище. Спасибо за чтение. Я пришлю вам еще
советов. А пока желаю вам всего наилучшего в ремонте электроники
.
Как проверить диод с помощью аналогового и цифрового мультиметра (DMM)?
В этом руководстве мы узнаем, как проверить диод. Диоды — один из основных и важных компонентов в электронных схемах, которые используются для защиты, выпрямления, переключения и многих других приложений.Они являются одними из первых компонентов, которые повреждаются в случае неисправности, и, следовательно, необходимо знать, как проверить, правильно ли работает диод или нет.
Введение
Если вы начинаете разрабатывать свой собственный проект электроники или хотите устранить неполадки в какой-либо электронной схеме или проекте, то вы должны хорошо разбираться в основных электронных компонентах и их работе. Вам не нужно понимать его конструкцию и внутреннюю работу, но нужно иметь хотя бы некоторые базовые знания о том, как работает компонент, как тестировать компонент и видеть, работает ли компонент должным образом или нет.
Узнайте больше об основах полупроводниковых диодов.
Знание того, как тестировать компонент, и оценка его работоспособности — очень хороший навык поиска и устранения неисправностей в электронных схемах.
Во избежание получения нежелательных результатов рекомендуется проверить все основные компоненты, такие как резисторы, диоды, светодиоды и т. Д., На их нормальную работу или работу перед сборкой компонентов в схему (печатную плату). В худшем случае, если мы не проводим никаких тестов перед сборкой, и если результат не соответствует ожиданиям, тогда очень сложно определить источник проблемы, и мы должны протестировать все компоненты (что очень сложно после сборки ).
Давайте сосредоточимся на тестировании диодов в этом руководстве. Как упоминалось ранее, диоды являются одним из важных компонентов в электронных схемах, особенно в источниках питания (и есть много других применений диодов).
Как проверить диод?
Идентификация выводов диодаДиод представляет собой полупроводниковое устройство с двумя выводами, которое позволяет току течь только в одном направлении. Они используются в различных приложениях, таких как выпрямители, зажимы, машинки для стрижки и т. Д.
Когда вывод анода диода сделан положительным по отношению к катоду, диод называется смещенным в прямом направлении. Падение напряжения на диоде с прямым смещением обычно составляет 0,7 В для кремниевых диодов. Это минимальная разность потенциалов между анодом и катодом диода для смещения в прямом направлении.
Перед тестированием диода мы должны сначала идентифицировать выводы диода, то есть его анод и катод. Большинство диодов с PN-переходом имеют белую полосу на корпусе, а вывод рядом с этой белой полосой является катодом.А оставшийся анод. Эту маркировку имеют как сквозные диоды, так и диоды для поверхностного монтажа.
Некоторые диоды могут иметь различную цветовую полосу (например, некоторые стабилитроны имеют черную маркировку на красном / оранжевом корпусе), но клемма рядом с этой цветной меткой почти всегда является катодом.
Тестирование диода можно проводить по-разному, однако здесь мы привели некоторые основные процедуры тестирования диода.
ПРИМЕЧАНИЕ: Приведенные ниже процедуры тестирования предназначены только для нормального PN-диода.
ПРИМЕЧАНИЕ: Если диод, который вы хотите протестировать, уже находится в цепи (на печатной плате), вы можете выполнить следующие упомянутые тесты, удалив / распаяв только один вывод диода.
Как проверить диод с помощью цифрового мультиметра?
Тестирование диодов с помощью цифрового мультиметра (DMM) может выполняться двумя способами, потому что в цифровом мультиметре доступны два режима для проверки диода. Это следующие режимы:
- Режим диода
- Режим омметра (или режим сопротивления)
Режим тестирования диода — лучший способ проверить диод, поскольку он зависит от характеристик диода.В этом методе на диод подается прямое смещение, и падение напряжения на диоде измеряется с помощью мультиметра. Нормально работающий диод позволяет току течь в прямом смещении и должен иметь падение напряжения.
В режиме проверки сопротивления диода измеряется сопротивление прямого и обратного смещения диода. Для хорошего диода сопротивление прямого смещения должно составлять от нескольких сотен Ом до нескольких килоомов, а сопротивление обратного смещения должно быть очень высоким (обычно обозначается как OL — разомкнутая петля в мультиметре).
Процедура тестирования диодного режима
Тестирование диодного режима с помощью цифрового мультиметра- Определите анодные и катодные выводы диода.
- Удерживайте цифровой мультиметр (DMM) в режиме проверки диодов, повернув центральную ручку в положение, где отображается символ диода. В этом режиме мультиметр может подавать ток примерно 2 мА между измерительными выводами.
- Подключите красный щуп мультиметра к аноду, а черный щуп к катоду.Это означает, что диод смещен в прямом направлении.
- Наблюдайте за показаниями на дисплее мультиметра. Если отображаемое значение напряжения находится в диапазоне от 0,6 до 0,7 (для кремниевого диода), то диод исправен и идеален. Для германиевых диодов это значение находится в диапазоне от 0,25 до 0,3.
- Теперь переверните клеммы измерителя, т.е. подключите красный зонд к катоду, а черный — к аноду. Это состояние обратного смещения диода, когда через него не течет ток. Следовательно, измеритель должен показывать OL или 1 (что эквивалентно разомкнутой цепи), если диод исправен.
Если измеритель показывает значения, не соответствующие двум вышеуказанным условиям, то диод неисправен. Дефект диода может быть как открытым, так и коротким.
Открытый диод означает, что диод ведет себя как разомкнутый переключатель как в обратном, так и в прямом смещении. Таким образом, ни в одном из состояний смещения ток через диод не протекает. Следовательно, измеритель будет показывать OL (или 1) как в обратном, так и в прямом смещении.
Закороченный диод означает, что диод ведет себя как замкнутый переключатель, поэтому ток течет через него независимо от смещения, а падение напряжения на диоде будет от 0 В до 0.4В. Таким образом, мультиметр покажет нулевое значение напряжения, но в некоторых случаях он будет отображать очень маленькое напряжение в виде падения напряжения на диоде.
Процедура тестирования режима омметра (сопротивления)
Подобно методу тестирования диодов, режим сопротивления также является простым методом проверки состояния диода, исправен ли он, короткое замыкание или обрыв.
- Обозначьте выводы диода, т. Е. Анод и катод.
- Удерживайте цифровой мультиметр (DMM) в режиме измерения сопротивления или омметра, повернув центральную ручку или переключатель в то место, где отображается символ сопротивления или значения резистора.Установите переключатель в режим низкого сопротивления (может быть 1 кОм) для прямого смещения и оставьте его в режиме высокого сопротивления (100 кОм) для процедуры тестирования обратного смещения.
- Подключите красный датчик к аноду, а черный датчик к катоду. Это означает, что диод смещен в прямом направлении. Когда диод смещен в прямом направлении, сопротивление диода очень мало.
Если на индикаторе прибора отображается умеренно низкое значение, то есть несколько десятков Ом, то диод неисправен. Но если показание сопротивления составляет от нескольких сотен до нескольких килограммов, диод исправен и работает нормально.
- Теперь переверните клеммы мультиметра так, чтобы анод был подключен к черному щупу, а катод — к красному щупу. Таким образом, диод имеет обратное смещение.
- Если измеритель показывает очень высокое значение сопротивления или OL на дисплее, то диод исправен и работает нормально. Поскольку в обратном смещении диод имеет очень высокое сопротивление.
Из вышесказанного ясно, что для правильной работы диода цифровой мультиметр должен считывать некоторое низкое сопротивление в состоянии прямого смещения и очень высокое сопротивление или OL в состоянии обратного смещения.
Если измеритель показывает очень высокое сопротивление или OL как в прямом, так и в обратном смещении, то диод считается разомкнутым. С другой стороны, если измеритель показывает очень низкое сопротивление в обоих направлениях, то говорят, что диод закорочен.
Как проверить диод с помощью аналогового мультиметра?
Большинство аналоговых мультиметров обычно не имеют специального режима проверки диодов. Итак, мы будем использовать режим сопротивления в аналоговом мультиметре, который аналогичен тестированию диода в режиме омметра цифрового мультиметра.
Проверка диодов с помощью аналогового мультиметра- Удерживайте селекторный переключатель мультиметра в положении низкого сопротивления.
- Подключите диод в прямом смещении, подключив положительную клемму к аноду и отрицательную к катоду.
- Если счетчик показывает низкое значение сопротивления, значит диод исправен.
- Теперь переведите селектор в положение высокого сопротивления и поменяйте местами выводы измерителя, подключив положительный полюс к катоду, а отрицательный — к аноду.В этом случае говорят, что диод имеет обратное смещение.
- Если счетчик показывает OL или очень высокое сопротивление, то это указывает на безупречное состояние диода.
- Если счетчик не показывает вышеуказанные показания, диод считается неисправным или неисправным.
Речь идет о простой проверке диодов PN с помощью цифровых и аналоговых мультиметров. Эта процедура тестирования может быть применима не для всех типов диодов. Итак, теперь давайте посмотрим, как проверить светодиод и стабилитрон.
Как проверить светодиод (светоизлучающий диод)?
Как уже говорилось выше, перед тестированием любого диода мы должны знать его контакты (выводы). Клеммы светодиода можно определить по длине проводов. Более длинный — анод, более короткий — катод. Кроме того, в другом способе используется структура поверхности, в которой плоская поверхность обозначает катод, а другая — анод.
Идентификация клемм светодиодаДавайте теперь посмотрим, как проверить светодиод с помощью цифрового мультиметра.
- Определите анодные и катодные выводы светодиода.
- Установите переключатель / ручку мультиметра в диодный режим.
- Подключите щупы измерителя к светодиоду так, чтобы он был смещен в прямом направлении.
- Если светодиод работает правильно, то он светится, в противном случае светодиод неисправен.
- Тестирование с обратным смещением невозможно для светодиода, так как он не работает в состоянии с обратным смещением.
Как проверить стабилитрон?
По сравнению с проверкой нормального диода, проверка стабилитрона требует дополнительных схем.Потому что стабилитрон проводит в состоянии обратного смещения и только в том случае, если приложенное обратное напряжение больше, чем напряжение пробоя стабилитрона.
- Определите клеммы анода и катода стабилитрона, и процесс их идентификации аналогичен обычному PN-диоду (с помощью метки).
- Подключите тестовую схему, как показано на рисунке выше.
- Установите ручку мультиметра в режим измерения напряжения.
- Подключите измерительные щупы к стабилитрону, как показано на рисунке.
- Постепенно увеличивайте входную мощность диода и наблюдайте за напряжением на дисплее измерителя. Это показание на измерителе должно быть таким, чтобы при увеличении переменного питания выход измерителя должен увеличиваться до напряжения пробоя диода. Кроме того, за этой точкой счетчик должен показывать постоянное значение напряжения независимо от увеличения подачи входной переменной. Если это так, то стабилитрон исправен, в противном случае неисправен.
Предположим, если мы подадим на стабилитрон 12 В (с напряжением пробоя 6 В) от батареи через резистор, то мультиметр должен показать показание, которое примерно равно 6 В, если стабилитрон исправен.
Заключение
Полное руководство для начинающих по тестированию диодов. Узнайте, как определять клеммы диода, тестировать диод с помощью цифрового мультиметра (DMM), аналогового мультиметра, тестовых светодиодов и стабилитронов.
Испытательные диоды
- Изучив этот раздел, вы должны уметь:
- • Опишите методы тестирования диодов с помощью цифровых или аналоговых мультиметров.
- • Распознавайте типичные неисправности диодов.
- • Обрыв цепи.
- • Короткое замыкание.
- • Дырявый.
Рис. 2.8.1 Цифровой измеритель
Мультиметр для проверки диодов
Диоды можно проверить с помощью мультиметра. Обычно проверяется сопротивление диода в прямом и обратном направлениях. Однако при тестировании диодов следует помнить о нескольких моментах.
с цифровыми счетчиками
Большинство цифровых мультиметров подходят для тестирования диодов и во многих случаях имеют специальный диапазон «тестирования диодов», обычно отмеченный символом диода.Этот диапазон всегда следует использовать при тестировании диодов или любого другого полупроводникового прибора. Причина этого в том, что измеритель проверяет диод, подавая напряжение на диодный переход. Нормальные напряжения, используемые измерителем в других диапазонах сопротивления, могут быть недостаточно высокими, чтобы преодолеть потенциал прямого перехода диода, и поэтому диод не будет проводить, даже в прямом направлении. Это указывало бы на то, что диод был разомкнут (очень высокое сопротивление). Если используется диапазон диодов, испытательное напряжение, прикладываемое измерителем, в большинстве случаев будет достаточно высоким, чтобы преодолеть потенциал прямого перехода, и диод будет проводить.Следовательно, в прямом направлении (положительный вывод измерителя к аноду диода и отрицательный вывод к катоду) можно измерить сопротивление диода.
Фактическое значение сопротивления будет зависеть от наклона прямой характеристики диода при напряжении, подаваемом измерителем, и поэтому будет варьироваться от устройства к устройству и от измерителя к измерителю, поэтому точное значение не может быть дано. При измерении исправного кремниевого диода (не подключенного к какой-либо цепи) можно ожидать показания в прямом направлении примерно от 500 Ом до 1 кОм, аналогичного или немного меньшего для германиевых диодов.Если провода измерителя перевернуты, следует ожидать выхода за пределы диапазона (бесконечность) или разомкнутой цепи (обычно отображается на дисплее вроде «1» на цифровом измерителе, как показано на рис. 2.8.1).
Если диод уже включен в цепь, на измеренные сопротивления, всегда при выключенной цепи, будут влиять любые параллельные цепи. Поэтому показания будут ниже указанных выше. Однако очень низкие или нулевые показания могут указывать на короткое замыкание диода (наиболее частая неисправность диодов), поэтому стоит удалить хотя бы один конец диода из цепи, если нет другой очевидной причины очень низкого показания. цепи и еще раз проверьте прямое и обратное сопротивление диода.
С аналоговыми счетчиками
Рис. 2.8.2 Аналоговый счетчик
Если аналоговый измеритель используется для тестирования, следует помнить, что, поскольку ноль на шкале сопротивления и напряжения меняются местами из-за внутренней работы измерителя, полярность зондов при использовании аналоговых измерителей для измерения сопротивления также меняется на противоположную. по сравнению с цифровыми счетчиками. Поэтому при измерении сопротивления диода аналоговым измерителем в любом диапазоне ЧЕРНЫЙ провод является положительным, а КРАСНЫЙ — отрицательным.Это означает, что черный провод должен быть подключен к аноду, а красный — к катоду для измерения ПЕРЕДНЕГО сопротивления диода. Некоторые аналоговые измерители имеют определенный диапазон тестирования диодов, но большинство аналоговых измерителей вполне подходят для тестирования диодов. Наиболее подходящий аналоговый диапазон обычно указывается в инструкциях для пользователя, но, как и в случае с цифровыми измерителями, необходимо проверить фактическое напряжение, используемое в диапазоне тестирования, чтобы понять его влияние на ожидаемое прямое и обратное сопротивление.
ПРИМЕЧАНИЕ: приведенный выше абзац относится только к истинным аналоговым счетчикам, многие современные «аналоговые» модели, как правило, представляют собой цифровые счетчики с аналоговым дисплеем. В этом случае следует следовать методу, описанному для цифровых счетчиков. Какой у вас счетчик? Можно использовать простой тест сопротивления заведомо исправного диода; подключите черный отрицательный вывод к катоду, а красный положительный вывод к аноду. Если измеритель показывает ожидаемое прямое сопротивление, полярность проводов измерителя не изменена.
Это также является обычным явлением для измерения прямого сопротивления некоторых светодиодов, особенно таких, как синие светодиоды, у которых есть более высокий потенциал прямого перехода, который во время тестирования кажется очень высоким (бесконечным), если напряжение измерителя на диодном диапазоне низкое, даже когда светодиод в порядке.Однако измеритель с испытательным напряжением около 3 В должен давать некоторое свечение светодиода. Также доступны некоторые мультиметры, которые вместо отображения сопротивления диода в диапазоне проверки диода отображают потенциал перехода (в вольтах). Поэтому важно убедиться, что вы знаете, какие условия использует измеритель, прежде чем тестировать какие-либо полупроводники.
Рис. 2.8.3 Подключение цифрового измерителя
для проверки диода
Проведение испытаний
На схеме ниже показано, как подключить цифровой измеритель для проверки диода.Следует помнить следующее:
- • Убедитесь, что вы используете диодный диапазон.
- • Используя цифровой измеритель, подключите черный провод к катоду, а красный — к аноду (прямое смещение — около 1 кОм).
- • Поменяйте местами подключения счетчика (обратное смещение — показание на бесконечность).
ПОМНИТЕ — Если вы используете аналоговый измеритель для измерения сопротивления, полярность измерительных проводов меняется на обратную.
НЕКОТОРЫЕ СЧЕТЧИКИ при измерении сопротивления диода дают показания, указывающие потенциал перехода (в вольтах), а не сопротивление диода (в омах). ПРОВЕРЬТЕ ИНСТРУКЦИИ К СЧЕТЧИКУ, чтобы быть уверенным в том, что показывает показание измерителя.
Определение соединений диодов
Рис. 2.8.4 Маркировка полярности диодов.
Катодное соединение диода маркируется различными способами. В случае мостового выпрямителя входные клеммы переменного тока и выходные клеммы постоянного тока обычно помечены символом синусоидальной волны и знаками плюс / минус соответственно, как показано.
Мостовые выпрямителиможно тестировать как обычные диоды, если каждый диод тестируется отдельно.Контакты корпуса следует сравнить со схемой внутреннего расположения четырех диодов, как показано на рис. 2.8.4, чтобы вы могли проверить прямое и обратное сопротивление каждого диода. Одиночные диоды обычно обозначаются полосой для обозначения катода, но в выпрямителях шпилечного типа на корпусе обычно печатается символ диода.
Индикация неисправностей
Короткое замыкание
Диоды могут быть повреждены высоким напряжением, особенно диоды, работающие с высоким напряжением или мощными приложениями, такими как источники питания, и в результате обычно происходит короткое замыкание 0 Ом при измерении в любом направлении.Когда диод в источнике питания замыкается накоротко, могут протекать большие токи и возникают очевидные повреждения, такие как «сварившиеся» диоды и / или перегорающие предохранители. Неповрежденные короткозамкнутые диоды показывают 0 Ом или очень низкое сопротивление как в прямом, так и в обратном направлении.
Обрыв цепи
Иногда диоды (особенно малосигнальные диоды) могут размыкать цепь и показывать очень высокое сопротивление или бесконечность (отображается цифрой 1 на цифровых индикаторах) как в прямом, так и в обратном направлении.
Дырявый
Иногда сигнальный диод может стать «негерметичным». В то время как его прямое сопротивление может быть нормальным, его обратное сопротивление может быть ниже ожидаемой бесконечности. Этот тип неисправности обычно ограничивается небольшими сигнальными диодами, поскольку, если силовые диоды выходят из строя, дополнительный обратный ток почти наверняка будет генерировать достаточно тепла, чтобы быстро разрушить диод. В диодах с малым сигналом эта неисправность может быть надежно измерена только при удалении диода из схемы, поскольку параллельные сопротивления любых других компонентов, подключенных поперек диода, будут иметь тенденцию давать более низкое, чем ожидалось, обратное сопротивление.
Тестирование стабилитронов
Все стабилитроны имеют определенное напряжение, и если напряжение, измеренное на них в рабочих условиях, выше, чем указанное в руководстве по схеме (или на диоде, если вы видите маркировку), то диод неисправен (возможно, разомкнутая цепь) и подлежит замене. Стабилитроны имеют такие же короткое замыкание и обрыв цепи, что и другие диоды, но, кроме того, могут стать «шумными». Обычно очень стабильное напряжение на них страдает от очень быстрых колебаний, аналогичных постоянным шипениям «фонового шума» при плохом звуковом сигнале.Поскольку стабилитроны часто используются для стабилизации линий электропитания, эти быстрые колебания напряжения могут вызвать странные неисправности, в зависимости от того, что подается от рассматриваемого источника питания. Мораль такова: если цепь ведет себя странно и подозревается шум в источнике питания, проверьте любой стабилитрон, стабилизирующий эту линию, заменив его заведомо исправным диодом.
Тестирование светодиодов
Тестирование светодиодов описано в Модуле диодов 2.5
Начало страницы
Диод с барьером Шоттки — обзор
6.1.2 Система определения характеристик переключения для силового устройства
В настоящее время доступным алмазным силовым устройством является SBD, но в настоящее время нет алмазного силового транзистора. Рабочее состояние диода зависит от его состояния, поэтому переключение диода не может регулироваться самопроизвольно. Операция переключения схемы инициируется обычным полевым МОП-транзистором, и во время теста наблюдается переключение алмазного SBD.
Обычно в силовой электронике используются индуктивные нагрузки; е.g., нагрузка постоянного тока, подключенная через трансформаторы или индукторы, или нагрузки переменного тока вращающейся электрической машины; например, индукционная машина и двигатель с постоянными магнитами. Следовательно, характеристика переключения силового полупроводникового прибора обычно оценивается с помощью испытательной схемы с двумя импульсами, показанной на рис. 6.1.1A.
Рисунок 6.1.1. Тест двойного импульсного переключения. (A) Конфигурация схемы. (B) Последовательность испытаний.
Нагрузкой в схеме на рис. 6.1.1A является индуктор L, что придает индуктивность работе.Транзистор Q в плече стороны высокого напряжения инициирует операции включения и выключения и оценивает сопутствующее переключение диода D в плече стороны низкого напряжения. Точная регулировка скорости переключения полевого МОП-транзистора регулируется скоростью изменения тока канала в зависимости от сопротивления затвора, поскольку полевой МОП-транзистор является устройством униполярного типа. Большой сглаживающий конденсатор C подключен к выводу источника питания постоянного тока для подачи достаточной переходной мощности в последовательности операций переключения. В этой цепи нет токоограничивающего элемента сопротивления нагрузки, ток цепи продолжает увеличиваться для непрерывных последовательных импульсных операций схемы.Следовательно, характеристика переключения силового устройства оценивается за ограниченное количество импульсных операций. Определение характеристик переключения обычно выполняется с помощью двух импульсов, что называется тестом с двумя импульсами. Краткий обзор теста с двойным импульсом представлен ниже [5].
Последовательность сигнала управления затвором полевого МОП-транзистора и упрощенное поведение напряжения и тока цепи в тесте с двойным импульсом показаны на рис. 6.1.1B. Ток в любой части цепи не течет до того, как будет подан первый импульс при t <0.Индуктор L в цепи эквивалентен проводнику в состоянии постоянного тока, тогда постоянное напряжение не подается на анод и катод диода, который закорочен с параллельно подключенным индуктором постоянного тока. Все напряжение источника питания подается на сток и исток полевого МОП-транзистора. Напряжение источника питания регулируется как условие напряжения для характеристики режима переключения.
Стробирующий сигнал применяется для включения полевого МОП-транзистора при t = 0. Канал полевого МОП-транзистора открывается и проводит в соответствии с напряжением на затворе.Напряжение источника питания распределяется между полевым МОП-транзистором и диодом при переключении, когда полевой МОП-транзистор включается и начинает проводить. Хотя подаваемое на диод напряжение питания имеет обратную полярность, диод находится в состоянии блокировки. Но небольшой зарядный ток истощает полупроводниковый слой, блокирующий напряжение, в диоде в момент подачи напряжения источника питания. Ток в катушке индуктивности протекает через полевой МОП-транзистор и увеличивается со скоростью V / L (А / с) в соответствии с V = L (di / dt).Период первого импульса t1 регулируется так, чтобы в достаточной степени проверить условие амплитуды тока для характеристики режима переключения.
Сигнал затвора изменяется на отключение полевого МОП-транзистора при t = t1. MOSFET переходит из состояния проводимости в состояние блокировки, закрывая канал, когда напряжение затвора падает, чтобы уменьшить напряжение. Канальный ток отключается, когда напряжение затвора превышает пороговое значение напряжения затвора. Электродвижущая сила (ЭДС) в катушке индуктивности генерируется для протекания тока по другому пути в ответ на прерывание тока в MOSFET для непрерывности тока в катушке индуктивности.Диод включается и образует токовую петлю через катушку индуктивности и диод в результате отключения полевого МОП-транзистора. Ток катушки индуктивности практически не уменьшается или увеличивается в этом состоянии схемы из-за отсутствия источника питания или реальной нагрузки на пути тока, за исключением падения напряжения на диоде. Этот режим работы называется текущим свободным ходом.
Применяемый сигнал затвора изменяется, чтобы инициировать включение полевого МОП-транзистора в момент t = t2. МОП-транзистор начинает проводить, когда напряжение затвора превышает пороговое напряжение, а затем напряжение источника питания подается на диод и катушку индуктивности.Приложенное напряжение сначала нарастает на диоде, а затем начинает перекрывать ток диода. Вышеупомянутое явление обратного восстановления возникает в процессе выключения диода в момент отключения тока прямой проводимости. Серьезность явления обратного восстановления оценивается как зависимость от напряжения источника питания, тока прямой проводимости, скорости изменения тока при выключении (di / dt) и рабочей температуры.
Напряжение на аноде и катоде уже установилось, когда ток диода начинает уменьшаться.Затем интеграл по времени от потерь мощности в диоде, который получается как произведение напряжения и тока в диоде, приводит к потерям при переключении при выключении. Наконец, сигнал затвора для выключения MOSFET применяется в t = t4 после наблюдения явления обратного восстановления.
Остальной ток проходит через катушку индуктивности и диод. Испытание заканчивается рассеиванием энергии, накопленной в индукторе, с потерями проводимости в цепи; например, прямое падение напряжения на диоде и омические потери в обмотке индуктора и проводке цепи.В этом тесте с двумя импульсами диод проводит короткое время, чтобы наблюдать явление обратного восстановления, затем потери проводимости во время теста низкие. Операция переключения — одна для каждого включения и выключения, и потери переключения также низкие.
Тогда самонагрев с потерей в устройстве незначителен для теста двойным импульсом. Этот метод испытаний не влияет на рабочие условия во время испытания.
Общие сведения о характеристиках диода Шоттки Технические характеристики »Электроника
Хотя диоды Шоттки имеют много общих параметров с другими формами диодов, их характеристики отличаются, как и некоторые технические характеристики и параметры.
Учебное пособие по диодам с барьером Шоттки Включает:
диод с барьером Шоттки
Технология диодов Шоттки
Характеристики диода Шоттки
Выпрямитель мощности на диоде Шоттки
Другие диоды: Типы диодов
Хотя диод Шоттки имеет много общих характеристик с более традиционными формами диодов, он все же имеет некоторые существенные отличия.
Понимание спецификаций и параметров диодов Шоттки помогает использовать их наиболее эффективно в любых схемах, в которых они могут использоваться.
Обозначение схемы диода с барьером ШотткиОсновные характеристики диода Шоттки
Диод Шоттки является основным носителем, т.е. электронами в материале N-типа.
Это дает ему значительное преимущество с точки зрения скорости, поскольку он не зависит от рекомбинации дырок или электронов, когда они попадают в область противоположного типа, как в случае обычного диода.
Кроме того, уменьшив размеры устройств, можно уменьшить постоянную времени обычного RC-типа, что сделает эти диоды на порядок быстрее, чем обычные PN-диоды.Этот фактор является основной причиной того, почему они так популярны в радиочастотных приложениях, а также во многих других энергетических приложениях, где важна скорость переключения, например в импульсных источниках питания.
Диод Шоттки также имеет гораздо более высокую плотность тока, чем обычный PN переход. Это означает, что прямое падение напряжения намного меньше. Это делает диод идеальным для использования в выпрямительных устройствах.
Основным недостатком диода Шоттки является уровень его обратного пробоя, который намного ниже, чем у диода PN.
Еще одним недостатком является относительно высокий уровень обратного тока. Для многих случаев использования это может не быть проблемой, но это фактор, на который стоит обратить внимание при использовании в более требовательных приложениях.
Общая ВАХ показана ниже. Можно видеть, что диод Шоттки имеет типичную характеристику прямого полупроводникового диода, но с гораздо более низким напряжением включения. При высоких уровнях тока он выравнивается и ограничивается последовательным сопротивлением или максимальным уровнем подачи тока.В обратном направлении происходит пробой выше определенного уровня. Механизм аналогичен ударно-ионизационному пробою в PN-переходе.
ВАХ диода Шоттки
ВАХ обычно такая, как показано ниже. В прямом направлении ток растет экспоненциально, имея излом или напряжение включения около 0,2 В. В обратном направлении наблюдается больший уровень обратного тока, чем при использовании более обычного диода с PN-переходом.
Кроме того, напряжение обратного пробоя также обычно ниже, чем у эквивалентного кремниевого диода с PN переходом.
ВАХ диода ШотткиИспользование защитного кольца, включенного в структуру некоторых диодов Шоттки, улучшает его характеристики как в прямом, так и в обратном направлении.
Основным преимуществом включения защитного кольца в конструкцию является улучшение характеристики обратного пробоя. Разница в напряжении пробоя между ними составляет около 4: 1.Некоторые малосигнальные диоды без защитного кольца могут иметь обратный пробой всего от 5 до 10 В. Хотя это может быть приемлемо для некоторых приложений с низким уровнем сигнала, это не идеально для большинства ситуаций.
Основные характеристики и параметры диода Шоттки
Существует несколько ключевых характеристик диодов Шоттки, которые необходимо понимать при использовании этих диодов — они сильно отличаются от характеристик обычного диода с PN переходом.
- Прямое падение напряжения: Ввиду низкого прямого падения напряжения на диоде, этот параметр вызывает особую озабоченность.Как видно из ВАХ диода Шоттки, напряжение на диоде изменяется в зависимости от протекающего тока. Соответственно, любая приведенная спецификация обеспечивает прямое падение напряжения для заданного тока. Обычно предполагается, что напряжение включения составляет около 0,2 В.
- Обратный пробой: Диоды Шоттки не имеют высокого напряжения пробоя. Цифры, относящиеся к этому, включают максимальное пиковое обратное напряжение, максимальное постоянное напряжение блокировки и другие аналогичные названия параметров.Если эти цифры превышены, существует вероятность обратного пробоя диода. Следует отметить, что среднеквадратичное значение для любого напряжения будет в 1 / √2 раза больше постоянного значения. Верхний предел обратного пробоя невысок по сравнению с обычными диодами с PN переходом. Максимальные значения, даже для выпрямительных диодов, достигают только около 100 В. Выпрямители на диодах Шоттки редко превышают это значение, потому что устройства, которые будут работать выше этого значения даже в умеренных количествах, будут иметь прямое напряжение, равное или превышающее эквивалентные выпрямители с PN переходом.
- Емкость: Параметр емкости имеет большое значение для ВЧ-приложений с малым сигналом. Обычно площади переходов диодов Шоттки небольшие, и поэтому емкость мала. Типичные значения в несколько пикофарад являются нормальными. Поскольку емкость зависит от любых областей истощения и т. Д., Емкость должна быть указана при заданном напряжении.
- Время обратного восстановления: Этот параметр важен, когда диод используется в приложении переключения.Это время, необходимое для переключения диода из его прямого проводящего состояния или состояния «ВКЛ» в обратное состояние «ВЫКЛ». Заряд, который течет в течение этого времени, называется «зарядом обратного восстановления». Время для этого параметра для диода Шоттки обычно измеряется в наносекундах, нс. Некоторые выставляют времена 100 пс. Фактически, то небольшое время восстановления, которое требуется, в основном связано с емкостью, а не с рекомбинацией основных носителей. В результате наблюдается очень небольшой выброс обратного тока при переключении из состояния прямой проводимости в состояние блокировки обратного хода.
- Обратный ток утечки: Параметр обратной утечки может быть проблемой для диодов Шоттки. Установлено, что повышение температуры значительно увеличивает параметр тока обратной утечки. Обычно на каждые 25 ° C повышения температуры диодного перехода происходит увеличение обратного тока на порядок величины при том же уровне обратного смещения.
- Рабочая температура: Максимальная рабочая температура соединения Tj обычно ограничивается диапазоном от 125 до 175 ° C.Это меньше того, что можно использовать с обычными кремниевыми диодами. Следует позаботиться о том, чтобы теплоотвод силовых диодов не допускал превышения этого значения.
Обзор характеристик диода Шоттки
Диод Шоттки используется во многих приложениях из-за его характеристик, которые заметно отличаются от некоторых характеристик более широко используемых стандартных диодов с PN переходом.
Диод Шоттки / Сравнение диодов PN | ||
---|---|---|
Характеристика | Диод Шоттки | PN Соединительный диод |
Механизм прямого тока | Основной транспортный транспорт. | Из-за диффузионных токов, т.е. переноса неосновных носителей заряда. |
Обратный ток | Результаты большинства перевозчиков, преодолевших барьер. Это меньше зависит от температуры, чем для стандартного PN-перехода. | Результат диффузии неосновных носителей заряда через обедненный слой. Имеет сильную температурную зависимость. |
Включить напряжение | Малый — около 0,2 В. | Сравнительно большие — около 0.7 В. |
Скорость переключения | Fast — в результате использования основных носителей, поскольку рекомбинация не требуется. | Ограничено временем рекомбинации введенных неосновных носителей. |
Пример спецификации диода Шоттки
Чтобы дать некоторое представление об ожидаемых характеристиках диодов Шоттки, ниже приводится пара реальных примеров. В них кратко излагаются основные технические характеристики, чтобы дать представление об их производительности.
1N5828 Силовой выпрямительный диод с барьером Шоттки
Этот диод описывается как диод Шоттки стержневого типа, то есть для выпрямления мощности. Он показывает, как работает силовой диод Шоттки.
Типичные характеристики / технические характеристики диода Шоттки 1N5258 | |||
---|---|---|---|
Характеристика | Типичное значение | Блок | Детали |
Максимальное рекуррентное пиковое обратное напряжение | 40 | В | |
Максимальное напряжение блокировки постоянного тока | 40 | В | |
Средний прямой ток, IF (AV) | 15 | A | T = 100 ° C |
Пиковый прямой импульсный ток, IFSM | 500 | A | |
Максимальное мгновенное прямое напряжение, VF | 0.5 | В | При IFM = 15 A и Tj = 25 ° C |
Максимальный мгновенный обратный ток при номинальном напряжении блокировки, IR | 10 250 | мА | Tj = 25 ° C Tj = 125 ° C |
1N5711 Переключающий диод с барьером Шоттки
Этот диод описывается как сверхбыстрый переключающийся диод с высоким уровнем обратного пробоя, низким прямым падением напряжения и защитным кольцом для защиты перехода.
Типовой 1N5711 Характеристики / Технические характеристики | |||
---|---|---|---|
Характеристика | Типичное значение | Блок | Детали |
Макс.напряжение блокировки постоянного тока, В | 70 | В | |
Максимальный постоянный ток в прямом направлении, Ifm | 15 | мА | |
Напряжение обратного пробоя, В (БР) R | 70 | В | при обратном токе 10 мкА |
Обратный ток утечки, IR | 200 | мкА | При VR = 50 В |
Прямое падение напряжения, VF | 0.41 1,00 | В | при IF = 1,0 мА IF = 15 мА |
Емкость перехода, Кдж | 2,0 | пФ | VR = 0 В, f = 1 МГц |
Время обратного восстановления, trr | 1 | нС |
Несмотря на то, что приведенные здесь примеры дают характеристику обратного напряжения 40 В, что довольно типично, обычно можно получить максимум около 100 В.
Следует отметить, что даже несмотря на то, что эти цифры приведены в качестве примеров цифр, которые можно ожидать для типичных диодов Шоттки, цифры даже для данного номера устройства также будут незначительно отличаться между разными производителями.
Другие электронные компоненты:
резисторы
Конденсаторы
Индукторы
Кристаллы кварца
Диоды
Транзистор
Фототранзистор
Полевой транзистор
Типы памяти
Тиристор
Разъемы
ВЧ разъемы
Клапаны / трубки
Аккумуляторы
Переключатели
Реле
Вернуться в меню «Компоненты».