Расчет компаратора с гистерезисом: Расчет триггера Шмитта на ОУ

Содержание

3.4. Компаратор с гистерезисом

Соберите схему по рис. 3.13. Подайте на вход синусоидаль­ный сигнал минимальной амплитуды, необходимой для переключения компаратора, частотой 5002000 Гц. Вращая резистор R4, получите на выходе сигналы различной скважности. В режиме большого входного сигнала (Uвх ~ 13 В) определите скорость нарастания выходного напряжения (dUвых/dt) на частотах 1632 кГц.

П

Рис. 3.13. Схема компаратора на ОУ

одобная схема используется в качестве порогового устройства для подсчета импульсов с амплитудой больше заданного уровня. Положительная ОС предотвращает срабатывание схемы от шумов и наводок, уменьшает фронты импульсов на выходе.

Вопрос. Какова минимальная амплитуда входного сигнала при данных номиналах и

Еп? Как зависит длительность импульсов на выходе от глубины положительной ОС?

3. 5. Прецизионный выпрямитель

Соберите схему по рис. 3.10, а, добавив в нее цепь балансировки. Величина резисторов R – 10 кОм. Подавая на вход синусоидальный сигнал различной амплитуды и частоты, наблюдайте сигнал на обоих выходах. Определите минимальную амплитуду сигнала на частоте 1 кГц и верхнюю частоту сигнала с амплитудой 1 В, при которых форма сигнала на выходе визуально не отличается от изображенного на рис. 3.10, б.

3.6. Измерение эдс термопары

В схеме рис. 3.14 уберите резистор, задающий ток шунта (100 Ом), который используется в схеме измерения малых сопротивлений. К точкам А и Б подсоедините термопару. Подождите минуту-другую, пока выравнивается температура, и сбалансируйте ОУ. Далее, включая термостат (306090 ºС), измерьте напряжение на выходе ОУ при данных температурах Uвых(Tп). Это напряжение легко определить по замиранию показаний вольтметра (установлению через минуту-другую).

Вычислите ЭДС термопары. Считая температуру холодной термопары равной 303 K (30 ºС), оцените среднее значение U/T [мкВ/ºС] в данном интервале температур.

Рис. 3.14. Схема измерения ЭДС термопары

Содержание отчета

  1. Цель работы.

  2. Рисунки принципиальных схем в системе ОrCAD.

  3. Результаты измерений в виде таблиц, графиков, вычислений с необходимыми пояснениями.

  4. Выводы по работе. В выводах подчеркните результаты, полученные от каждой схемы, укажите, какие элементы оказывают наибольшее влияние на работу той или иной схемы, как влияют на конечные параметры схемы параметры самого ОУ.

Контрольные вопросы

1. Что такое виртуальное, или мнимое, заземление?

2. Привести формулы для KОС инвертирующего и неинвертирующего усилителя.

3. Какими причинами вызывается отличие выходного напряжения ОУ от нуля при заземленных входах?

4. Как зависит полоса усиления от глубины ООС?

5. Придумать схему двухполупериодного прецизионного выпрямителя.

6. Перечислить основные параметры ОУ и их характерные значения.

Список Литературы

1. Гринфилд Дж. Транзисторы и линейные ИС: Руководство по анализу и расчету. – М.: Мир, 1992.

2. Остапенко Г.С. Усилительные устройства: Учебное пособие для вузов. – М.: Радио и связь, 1989.

3. Алексенко А.Г. и др. Применение прецизионных аналоговых схем. – М.: Радио и связь, 1985.

4. Хоровиц П., Хилл У. Искусство схемотехники. – М.: Мир, 1984. – Т. 1.

5. Титце У., Шенк К. Полупроводниковая схемотехника. – М.: Мир, 1982.

6. Мячин Ю.А. 180 аналоговых микросхем: Справочник. – М.: Патриот, 1993.

приложение

Справочные данные некоторых ОУ

Тип ОУ

Вход

K0, тыс.

Uсм, мВ

Uсм/Т, мкВ/ºС

Iвх, нА 

Iвх

F1, МГц

dUвых/dt, В/мкс

Kсф,дБ

Uвых

Rвых, Ом Iвых, мА

Iпот, мА

Uп. ном Диапазон

140УД1Б

БП

112

7

20

8000

1500

8

0,8

60

+6,7/

–5,0

700

2,5

8

12,6

140УД5Б

БП

2,5

5

6

6000

3600

14

6

60

+6,4/

–4,0

700

3

13

12

613

140УД7Б

БП

45

10

50

550

200

0,8 вк

0,3

70

10

150

20/кз

3,5

15

520

1 40УД708

БП

30

6

300

400

200

0,8 вк

0,3

70

10,5

200

20/кз

3,5

15

517

140УД8А

ПТ

50

20

50

0,2

0,15

1 вк

5

64

10

200

5

15

518

140УД24

МОП

1000

0. 005

0.05

0,01

0,005

1

2,5

120

4,7

3,5

5

2,58

544УД1А

ПТ

100

15

20

0,05

0,02

1 вк

5

80

10

200

3,5

15

717

544УД2Б

ПТ

10

50

100

0,5

0,5

15

20

70

10

200

8

7

15

517

551УД1А

БП

500

1. 5

10

150

20

0,8

0,01

100

5

5

5

15

517

К553УД2

БП

20

7.5

20

1500

500

1

0,5

70

10

300

6

15

520

Примечание. вк – внутренняя коррекция; кз – защита от короткого замыкания на выходе.

ЛАБОРАТОРНАЯ РАБОТА № 4

Схема компаратора на операционном усилителе, lm393 принцип работы

Работа операционного усилителя без обратной связи

Как известно напряжение на выходе ОУ UВЫХ определяется произведением входного дифференциального напряжения UД (разность напряжений между входными выводами) на коэффициент усиления ОУ по напряжению КU



Операционные усилители имеют очень большой коэффициент усиления ОУ по напряжению КU = 105 … 106, а выходное напряжение не может выйти за пределы напряжения питания (обычно несколько меньше). Поэтому, для того чтобы ОУ работал в качестве усилителя напряжения максимальное входное дифференциальное напряжение не должно превышать нескольких десятков мкВ (при UПИТ = 15 В, КU = 105, UД ≈ 150 мкВ). С учётом вышесказанного можно сделать вывод, что без применения отрицательной обратной связи, которая снижает усиление ОУ в схеме, применение ОУ бесполезно, так как при входных напряжениях в несколько милливольт ОУ войдёт в насыщение с выходным напряжением равным напряжению питания.

Но существуют схемы, в которых операционные усилители применяются без обратной отрицательной связи, а в некоторых случаях специально вводят положительную обратную связь (ПОС) для увеличения коэффициента усиления схем. Одним из видов таких схем являются пороговые устройства, в состав которых входят различные компараторы, триггеры Шмитта, детекторы уровней напряжения.

Принцип работы компаратора

Простейшим пороговым устройством является компаратор. Он сравнивает напряжение, которое поступает на один из его входов, с опорным напряжением, которое присутствует на другом его входе. Простейший компаратор получается из операционного усилителя, в котором отсутствует отрицательная обратная связь. Рассмотрим принцип работы компаратора напряжений на основе ОУ, схема которого изображена ниже



Использование ОУ в качестве компаратора и графики входного и выходного напряжений.

В основе компаратора лежит ОУ на инвертирующий вход, которого поступает входное напряжение UBX, а неинвертирующий вход соединён с источником опорного напряжения UОП. Принцип работы компаратора изображённого на рисунке заключается в следующем: когда входное напряжение UBX больше опорного UОП, то выходное напряжение принимает значение отрицательного напряжения насыщения –UНАС и остаётся неизменным пока входное напряжение UBX не уменьшиться ниже опорного напряжения UОП, в этом случае на выходе будет напряжение положительного насыщения +UНАС.



На рисунке изображен компаратор с инвертирующим выходным сигналом по отношению к входному сигналу. Для того, чтобы не происходило инверсии на выходе необходимо поменять подключение выводов ОУ, то есть входной сигнал должен поступать на неивертирующий вход, а опорное напряжение на инвертирующий вывод. Тогда при превышении опорного напряжения на выходе ОУ будет положительное напряжение насыщения, а при входном напряжении меньше, чем опорное напряжение на выходе будет присутствовать отрицательное напряжение насыщения ОУ.



Основные схемы компаратора

Существует много разновидностей компараторов, но в из основе лежат две основные схемы: одновходовая и двухвходовая. Одновходовая схема позволяет сравнивать разнополярные напряжения по модулю, то есть по абсолютной величине. Двухвходовый же компаратор сравнивает два напряжения с учётом знака. Расссмотрим обе схемы подробнее.



Схема одновходового компаратора.

На рисунке выше изображён одновоходовый компаратор, позволяющий сравнивать два разнополярных напряжения по абсолютному значению (по модулю). В его основе лежит инвертирующий сумматор, в котором отсутствует отрицательная обратная связь, поэтому ослабления коэффициент усиления операционного усилителя не происходит. В результате чего на инвертирующем входе ОУ происходит суммирование входного напряжения UBX и опорного напряжения UОП приведённого к инвертирующему входу UПРИВ, а результат суммирования усиливается ОУ и выводится на его выход. Для того чтобы происходило сравнение необходимо фактически производить операцию вычитания, то есть напряжения на входах UBX и UПРИВ должны иметь разную полярность.

Приведённое напряжение UПРИВ можно вычислить по следующему выражению



Резистор R3 предназначен для компенсации входного тока смещения и должен быть равен величине параллельно соединённых резисторов R1 и R2



Основным недостатком данной схемы является необходимость использования стабилизированного отрицательного напряжения, что приводит к усложнению схемы. Поэтому одновходовый компаратор не получил широкого распространения.

Наибольшее распространение получила схема двухвходового компаратора, в котором отсутствует необходимость в отрицательном напряжении. Схема данного компаратора приведена ниже



Схема двухвходового компаратора.

В основе двухвходового компаратора лежит дифференциальный усилитель, в котором отсутствует отрицательная обратная связь, поэтому разность между входным напряжением UBX и UОП опорным напряжение усиливается ОУ, не имеющего снижения коэффициента усиления из-за отсутствуя ООС, и выделяется на выходе ОУ. В данной схеме входные резисторы R1 и R2 имеют одинаковое значение.

Компараторы применяются в широком спектре схем:

  1. Триггеры Шмитта и в схемах формирования сигнала, преобразующих сигнал произвольной формы в прямоугольный или импульсный сигнал.
  2. Детекторы уровня – схемы, в которых происходит индицирование момента достижения входным сигналом заданного уровня опорного напряжения.
  3. Генераторы импульсных сигналов, например, треугольной или прямоугольной формы.

При использовании компаратора в схемах, где входное напряжение медленно меняется и амплитуда сигнала очень близка к опорному напряжению, то шумы на входном выводе могут вызвать ложные срабатывания компаратора и на его выходе могут появиться дополнительные импульсы, что продемонстрировано на рисунке ниже



Появление ложных импульсов на выходе компаратора.

Для устранения таких ложных срабатываний компаратора, в его схему вводится некоторый гистерезис, путём добавления положительной обратной связи (ПОС) к операционному усилителю.

Триггер Шмитта

Как сказано выше для устранения ложных срабатываний компаратора, известных, как «дребезг контактов» необходимо использовать схему компаратора с петлёй гистерезиса, которая получила название триггера Шмитта.

В одной из статей я рассказывал о триггере Шмитта выполненном на транзисторах. Он характеризуется тем, что в отличие от компаратора имеет так называемую петлю гистерезиса. То есть компаратор переключается из высокого уровня напряжения в низкий при одной и той же величине входного напряжения, а триггер Шмитта имеет два уровня (порога) переключения. Данное различие иллюстрирует изображение ниже



Изменение входного и выходного напряжения компаратора (справа) и триггера Шмитта (слева).

Уровни напряжения, при которых происходит переключение триггера Шмитта называются верхним уровнем (порогом) срабатывания триггера UВП и нижним уровнем (порогом) срабатывания триггера UНП.

Для реализации триггера Шмитта применяют ОУ охваченные положительной обратной связью (ПОС), которая реализуется подачей на неинвертирующий вход части выходного напряжения. Схема триггера Шмитта изображена ниже



Триггер Шмитта на операционном усилителе.

Работа триггера Шмитта во многом похожа на работу компаратора, только в отличие от него в триггере опорное напряжение не постоянно, а зависит от разности выходного и опорного напряжений, то есть имеет различные значения.

Рассмотрим инвертирующий триггер Шмитта. В исходном входное напряжение не превышает верхнего уровня срабатывания триггера UВП, поэтому на выходе присутствует положительное напряжение насыщения UНАС+ (примерно на 1 – 2 В ниже положительного напряжения питания UПИТ+). Когда входное напряжение достигает верхнего порога переключения UВП выходное напряжение резко упадёт до уровня отрицательного напряжения насыщения UНАС-(примерно на 1 – 2 В выше отрицательного напряжения питания UПИТ-). Верхний уровень напряжения переключения триггера Шмитта определяется следующим выражением



Далее триггер остаётся в устойчивом состоянии до тех пор, пока входное напряжение не станет меньше нижнего порога срабатывания UНП, а на выходе триггера установится положительное напряжение насыщения UНАС+. Нижний порог срабатывания триггера определяется следующим выражением



Таким образом, петля гистерезиса будет зависеть от соотношения резисторов R2 и R3, а ширина петли гистерезиса UГИС определяется разностью верхнего порога срабатывания UВП и нижнего порога срабатывания UНП



Триггеры Шмитта на ОУ являются основой для построения различных генераторов импульсов, поэтому важнейшими характеристиками ОУ работающих в импульсных схемах является быстродействие, которое зависит от задержек срабатывания и времени нарастания выходного напряжения.

Ограничение уровня выходного напряжения компаратора и триггера Шмитта

Применение положительной обратной связи (ПОС) в компараторах и триггерах Шмитта ускоряет переключение схем, но в связи с тем, что выходное напряжение UВЫХ изменяется от UНАС+ до UНАС-, то время переключения составляет довольно значительную величину (от долей до единиц микросекунд).

Кроме того существует проблема несовместимостей уровней выходного напряжения, к примеру, при напряжении питания ОУ UПИТ = ±15 В, выходное напряжение составит UВЫХ ≈ ±14 В (UНАС+ ≈ +14 В, а UНАС- ≈ -14 В), в то время как уровни ТТЛ микросхем составляют около +5 В или 0 В.

Для устранения вышеописанных проблем применяют так называемую привязку или ограничение уровня выходного напряжения, для этого в компаратор или триггер Шмитта вводят ООС в виде различных схем ограничения. Простейшими ограничительными схемами являются диоды или стабилитроны. Схема триггера Шмитта с ограничение выходного напряжения показана ниже



Триггер Шмитта с ограничением выходного напряжения при помощи стабилитрона в цепи ООС.

Ограничение выходного напряжения в триггере Шмитта работает следующим образом. При поступлении на инвертирующий вход напряжения меньше, чем напряжение опорного уровня (UВХ ОП), то выходное напряжение UВЫХ начинает изменяться в положительном направлении и при достижении напряжения стабилизации стабилитрона UСТ напряжение на выходе перестанет расти, а будет изменяться только ток. При этом выходное напряжение будет равняться напряжению стабилизации стабилитрона (UВЫХ = UСТ).

В случае если входное напряжение начнёт увеличиваться, выше опорного напряжения, то на выходе напряжение начнёт уменьшаться и в этом случае направление тока через стабилитрон начнёт изменяться на противоположный, а стабилитрон начнёт вести себя как диод. В результате падение напряжения на нём составит примерно 0,7 В независимо от величины протекающего через него тока, а на выходе напряжение составит -0,7 В.

Таким образом, при использовании стабилитрона выходное напряжение триггера Шмитта составит: UВЫХ1 = UСТ (при отсутствии ограничения UНАС+) или UВЫХ2 ≈ 0,7 (при отсутствии ограничения UНАС-).

Для симметричного ограничения выходного напряжения могут применяться последовательно включенные диоды или стабилитроны, что показано на рисунке ниже



Триггер Шмитта с симметричным ограничением выходного напряжения.

В данной схеме реализуется симметричное ограничение выходного напряжения относительно опорного напряжения, причем выходное напряжение выше опорного напряжения ограничивается стабилитроном VD1, а напряжение при этом составит на 0,7 В больше напряжения стабилизации. В случае же выходного напряжения ниже опорного, то выходное напряжение будет на 0,7 В ниже напряжения стабилизации стабилитрона VD2.

При расчёте компараторов и триггеров Шмитта с ограничением выходного напряжения в качестве UНАС+ необходимо использовать UСТ (когда используется один стабилитрон) или UСТVD1 (при двухстороннем ограничении). А вместо UНАС- необходимо использовать значение падения напряжения на диоде примерно 0,7 В (при одном стабилитроне) или UСТVD2 (при двухстороннем ограничении).

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Прошло почти два года с тех пор, как я пытался приручить операционный усилитель УД708 для сравнения двух сигналов. Знаний тогда было мало, поэтому времени уходило много, а главное — еще и безрезультатно. Но в итоге для своей задачи я смог «договориться» с компаратором LM393N. А на днях перебирал поделку, в которой впервые использовал эту микросхему, и решил вспомнить, как работает компаратор. Заодно и другим рассказать.
Компаратор — это устройство, сравнивающее два аналоговых сигнала. В самом простом случае — операционный усилитель без обратных связей. На входы ему подаются два напряжения — эталонное, оно же опорное (известно заранее) и измеряемое. На выходе возможны два состояния:

«1» — когда напряжение на прямом входе больше, чем на инвертирующем;
«0» — когда напряжение на прямом входе меньше, чем на инвертирующем.

Некоторые компараторы самостоятельно формируют уровни логических нуля и единицы (например, «ноль» — это ноль, «единица» — плюс пять вольт), но LM393 — с открытым коллектором. Ей для создания выходного напряжения нужен внешний резистор, подключающийся либо к «плюсу» питания, либо к другому «плюсу» (в разумных пределах, конечно).

Первые две схемы — каноничное включение нагрузки под открытый коллектор. Я подключал внешний резистор к питающему «плюсу».

Включение 4


Измеряемое напряжение подается на инвертирующий вход, опорное — на прямой.


Пока напряжение на инвертирующем входе меньше, чем на прямом, компаратор выдает «ноль», и светодиод не горит. Иначе — «единица».

Вообще, лучше, конечно, пользоваться первыми двумя общепринятыми схемами, чтобы не было путаницы.


Еще один важный момент — подключение нагрузки (светодиода) к другому напряжению (как мог, изобразил 24 вольта). Справедливо для любого из ранее изображенных включений.

О нагрузке. В даташите о максимальном токе коллектора сказано, что больше 6-20 мА микросхема не выдаст. То есть включить один светодиод — не проблема, а вот что побольше…


Кусок светодиодной ленты, подключенный прямо к выходу компаратора (по третьей или четвертой схеме, без резистора R3) светил слабо (1 мА). Пришлось поддать напряжения до 12 вольт, и тогда ток коллектора вырос до 14 мА. При подключении ленты напрямую к блоку питания — 32 мА. Таким образом, как ни крути, а максимум, что можно получить конкретно от этой LM-ки — 14 мА.

Вывод — что-то прожорливое есть смысл пускать через транзистор, загнанный в ключевой режим. При этом каскаду с общим эмиттером, инвертирующему сигнал, как нельзя лучше подойдет третья или четвертая схемы включения. Ведь если сигнал инвертировать дважды — получится опять исходный сигнал.
Например, на прямом входе компаратора «единица» (по привычной логике — на прямом входе напряжение больше, чем на инвертирующем). Третья схема сделает из нее «ноль» на выходе. А каскад с общим эмиттером, «перевернув» этот «ноль», опять даст «единицу».


Стрелка цепляется к выходу компаратора (R1 — это R3 из предыдущей схемы). R2, возможно, придется подобрать: если он будет слишком маленьким, то транзистор может сгореть, а если слишком большим — не откроется (можно попробовать 4,7 кОм). При подаче «единицы» в базе транзистора должно быть примерно 0,7 В (для кремния). К R3 тоже есть вопросы, но слишком малым и он не должен быть.


Моделирование. Когда на входе «ноль» (а «ноль» третьей и четвертой схемы — это в нормальном включении «единица»), то на выходе — «единица», светодиод работает. С чего начали, к тому и пришли — «единица» опять стала сама собой.


Теперь, когда на входе «единица», то на выходе «ноль». Вот она, знаменитая инверсия каскада с общим эмиттером!

А если включать нагрузку в коллектор транзистора, то «единицы» и «нули» по входу и выходу будут совпадать.
В общем, простор для творчества — колоссальный.

Реклама

Эта статья содержит основную информацию о работе компараторов напряжения построенных на интегральных микросхемах и может быть использована в качестве справочного материала для построения различных схем.

В электронике, компаратор представляет собой устройство, которое сравнивает между собой два электрических сигнала и выводит цифровой сигнал, указывающий на увеличение одного входного сигнала над другим. Компаратор имеет два аналоговых входа и один цифровой выход.

Компаратор, как правило, построен на дифференциальном усилителе с высоким коэффициентом усиления. Компараторы широко используются в устройствах, которые измеряют и оцифровывают аналоговые сигналы, например, в аналого-цифровых преобразователях (АЦП)

Примеры работы компаратора приведены на основе микросхемы LM339 (счетверенный компаратора напряжений) и LM393 (сдвоенный компаратор напряжения). Эти две микросхемы по своему функционалу идентичны. Компаратор напряжения LM311 так же может быть использован в данных примерах, но он имеет ряд функциональных особенностей.

Компаратор напряжения — выход с открытым коллектором

Как правило, выход компаратора напряжения представляет собой выход с открытым коллектором.

Выход открытый коллектор имеет отрицательную полярность. Это означает, что на этом выходе не бывает положительного сигнала и нагрузка должна подключаться между этим выходом и источника питания.

В некоторых схемах к выходу компаратора подключают нагрузочный (подтягивающий) резистор для того, чтобы обеспечить сигнал высокого уровня поступающего на вход следующего элемента схемы.

Операционные усилители (ОУ), такие как LM324, LM358 и LM741 обычно не используются в радиоэлектронных схемах в качестве компаратора напряжения из-за их биполярных выходов. Тем не менее, эти операционные усилители могут быть использованы в качестве компараторов напряжения, если к выходу ОУ подключить диод или транзистор для того чтобы создать выход с открытым коллектором.

Ниже представлена логика работы компаратора имеющий выход с открытым коллектором:

Ток будет течь через открытый коллектор, когда напряжение на входе (+) будет ниже, чем напряжение на входе (-). И соответственно ток не будет протекать через открытый коллектор, когда напряжение на входе (+) будет выше, чем напряжение на входе (-).

Входное напряжение смещения компаратора

Компараторы не являются совершенными устройствами, и их работа может иметь недостаток от последствий такого параметра, как входное напряжение смещения. Входное напряжение смещения для многих компараторов может составлять всего несколько милливольт и в большинстве схем может быть проигнорировано.

В основном проблема, связанная с входным напряжением смещения возникает, когда входное напряжение изменяется очень медленно. Конечным результатом входного напряжения смещения является то, что выходной транзистор не полностью открывается или закрывается, когда входное напряжение находится недалеко от опорного напряжения.

Следующая диаграмма иллюстрирует эффект смещения входного напряжения возникающий в результате медленного изменения входного напряжения. Этот эффект возрастает при увеличении выходного тока транзистора. Поэтому, для уменьшения этого эффекта, необходимо обеспечить максимальное сопротивление резистора R4.

Последствия входного напряжения смещения можно уменьшить, добавив в схему гистерезис. Это приведет к тому, что опорное напряжение будет меняться, когда выход компаратора переходит на высокий или низкий уровень.

Входное напряжение смещения и гистерезис

Для большинства схем построенных на компараторах, величина гистерезиса является разностью напряжений входного сигнала, при котором выход компаратора либо полностью включен или полностью выключен. Гистерезис в компараторах, как правило, нежелателен, но он может потребоваться, когда необходимо уменьшить чувствительность к шуму или при медленном изменении входного сигнала.

Внешний гистерезис использует положительную обратную связь (ПОС) с выхода на неинвертирующий вход компаратора. В результате полученный триггер Шмитта обеспечивает дополнительную помехоустойчивость и более чистый выходной сигнал.

Эффект от использования гистерезиса в том, что при постепенном изменении входного напряжения, а опорное напряжение будет быстро изменяться в противоположном направлении. Это обеспечивает чистое переключение выхода компаратора.

Механический аналог гистерезиса может быть обнаружен в разнообразных тумблерах. Как только рукоятка тумблера перемещается мимо центральной точки, пружина в тумблере переводит контакты реле в гарантированное положение (открытое или закрытое).

Гистерезис является неотъемлемой частью большинства компараторов составляющая всего несколько милливольт и он обычно влияет только на схемы, где входное напряжение поднимается или падает очень медленно или имеет скачки напряжения, известные как «шум»…

Компаратор. Описание и применение. Часть 2

Компаратор напряжения на ОУ: принцип работы, схемы

Для управления электронными схемами применяются различные устройства, которые помогают настраивать и разветвлять сигналы. Для сравнения двух разных импульсов часто используется компаратор с однополярным питанием.

Обозначение и технические характеристики

Компаратор – это устройство, которое сравнивает два разных напряжения и силу тока, выдает конечный силовой сигнал, указывая на большее из них, одновременно производя расчет соотношения. У него есть две аналоговые вводные клеммы с положительным и отрицательным сигналом и один двоичный цифровой выход, как и у АЦП. Для отображения сигнала используется специальный индикатор.

УГО отображение компаратора выглядите следующим образом:

Фото — УГО компаратора

Изначально использовался только интегрированный компаратор напряжения (MAX 961ESA, PIC 16f628a), который известен как высокоскоростной. Он требует определенного дифференциального напряжения в определенном диапазоне, который существенно ниже, чем напряжение сети питания. Эти приборы не допускают никаких других внешних сигналов, которые находятся вне диапазона напряжения сети.

Сейчас гораздо чаще используется аналоговый цифровой компаратор (Attiny/ Atmega 2313), у которого транзисторный ввод. У него вводный потенциал сигнала находится в диапазоне менее 0,3 Вольт и не поднимается выше. Устройство может быть также ультра быстрого типа (стереокомпаратор), благодаря чему входной сигнал меньше обозначенного диапазона, к примеру, 0,2 Вольта. Как правило, используемый диапазон ограничивается только конкретным входным напряжением.

Фото — Компаратор

Помимо простого прибора, также существует видеоспектральный компаратор на ОУ (операционном усилителе). Это прибор, у которого очень тонко сбалансирована разница входа и высокого сопротивления сигнала. Благодаря такой характеристики, операционный компаратор используется в низкопроводимых схемах с небольшим вольтажем.

Фото — схема компаратора

В теории, частотный операционный усилитель работает в конфигурации с открытым контуром (без отрицательной обратной связи) и может быть использован в качестве компаратора низкой производительности. Но при этом, не инвертирующий вход (+ V) находится на более высоком напряжении, чем на инвертирующий (V-). Высокое усиление, выходящее из операционного усилителя, провоцирует выход низкого напряжения на входе в устройство.

Когда неинвертирующий вход падает ниже инвертирующего входа, выходной сигнал насыщается при отрицательном уровне питания, то он все равно может проводить импульсы. Выходное напряжение ОУ ограничивается только напряжением питания. Принципиальная электрическая схема ОУ работает в линейном режиме с отрицательной обратной связью, с помощью сбалансированного сплит-источника питания (питание от ± V S ). Многие приборы, работающие с компаратором, также имеют свойство фиксировать полученные данные при помощи видео-, фото- или документальной записи. Эти электронные принципы не работают в системах, где используются разомкнутые контуры и низкопроводящие элементы.

Фото — простой компаратор

Но у компараторного усилителя существует несколько существенных недостатков:

  1. Операционные усилители предназначены для работы в линейном режиме с отрицательной обратной связью. Но при этом, ОУ имеет более длительный режим восстановления;
  2. Почти все операционные усилители имеют конденсатор внутренней компенсации, который ограничивает скорость нарастания выходного напряжения для высокочастотных сигналов. Исходя из этого, данная схема немного задерживает импульс;
  3. Компаратор не имеет внутреннего гистерезиса.

Из-за этих недостатков, компаратор для управления различными схемами, в большинстве случаев, используется без усилителя, исключением является генератор.

Компаратор предназначен для производственных процессов с ограниченным выходным напряжением, которое легко взаимодействует с цифровой логикой. Поэтому его часто используются в различных термических приборах (терморегулятор, реле температуры). Также его применяют для сравнения сигналов и сопротивлений таких устройств, как таймер, стабилизатор и прочая схемотехника.

Фото — аналоговый компаратор

Видео: компараторы

Принцип работы

Для того, чтобы продемонстрировать, как работает быстродействующий компаратор с гистерезисом, нужно взять схему с двумя выходами.

Фото — схема работы компаратора

Схема включения, по которой можно понять принцип работы компаратора, показана выше. Используя аналоговый сигнал во + входе, именуемым «неинвертируемым», и выходе, который называется под названием «инвертируемый», устройство использует два аналогичных разнополярных сигнала. При этом если аналоговый вход больше, чем аналоговый выход, то выход будет «1», и это включит открытый коллектор транзистора Q8 на эквивалентной схеме LM339, которую нужно включить. Но, если вход находится на отрицательном уровне, то сигнал будет равняться «0», из-за чего, коллектор будет находиться в закрытом виде.

Практически всегда двухпороговый или фазовый компаратор (например, на транзисторах, без усилителя) воздействует на входы в логических цепях, соответственно, работает по уровню определенной сети питания. Это своеобразный элемент перехода между аналоговыми и цифровыми сигналами. Такой принцип действия позволяет не уточнять определенность или неопределенность выходов сигналов, т. к. компаратор всегда имеет некий захват петли гистерезиса (независимо от её уровня) или окончательный коэффициент усиления.

Назначение

Зачем нужен компаратор и как его использовать без усилителя? В большинстве случаев, этот прибор применяется в несложных компьютерных схемах, где нужно сравнивать сигналы входящего напряжения. Это может быть зарядное устройство для ноутбука или телефона, весы (определитель массы), датчик сетевого напряжения AVR, таймер (компоратор типа lm 358, микроконтроллер и т. д. Также его применяют различные интегральные микросхемы для контроля входных импульсов, обеспечивая связь между источником сигнала и его центром назначения.

Фото — компараторы для компьютера

Наиболее популярным примером является компаратор триггер (регулятор) Шиммера. Он работает в режиме многоканальности, соответственно, может сравнивать большое количество сигналов. В частности, данный триггер применяется для того, чтобы восстановить цифровой сигнал, который искажает связь в зависимости от уровня напряжения и расстояния источника питания.

Это аналог стандартного компаратора, просто с более расширенным функционалом, который обеспечивает измерение нескольких входящих сигналов.

Фото — ОУ компаратор

Также есть компаратор шероховатости. Это устройство, которое помогает визуально определить состояние поверхности, которая уже подвергалась обработке. Применение этого приспособления обосновано необходимостью определять допуски обработанных ранее поверхностей.

Программирование и компаратор

Компоратор используется не только как часть электрической схемы ШИМ и т. д., его часто используют для создания отдельных программ или их компонентов. Например, устройство часто используется для создания java-коллекций.

  1. Чтобы работать, Вам понадобится специальная программа Maven. Для начала Вам нужно создать проект, для полноценной работы необходимо подключение к интернету. Создаете новый проект, в структуре выберете два компонента: comparator и pojo. Наличие проверяется при помощи утилиты JUnit 4.11;
  2. Установите pom.xml и создайте новый файл. Прерывание процесса недопустимо, поэтому очень важно на каждом этапе сохранять. После осуществляется создание и настройка POJO, где указываются нужные настройки. Параметры зависят от требований к конкретной библиотеке. Это могут быть даты рождения, общая информация по проживанию и т. д.;
  3. И только после создается компаратор. Это класс, который используется для поверки данных и их распределения по нужным папкам. Использование данного класса необходимо, если нужно отсортировать определенную информацию по заданным параметрам (цвета, размеры, даты). Благодаря этому обеспечивается защита данных и их классификация по определенному принципу.

Купить готовый компаратор можно в любом магазине радиотехнических приборов и электротехники. Цена прибора варьируется в зависимости от его назначения и количества каналов.

Компаратор напряжения — Chip Stock

Как работает компаратор: характеристики и описание принципа действия, использование схем сравнения напряжения

В электронных приборах часто можно встретить различные интегральные микросхемы. Одной из них является компаратор.

Его применение очень обширно: начиная от сигнализационных датчиков и заканчивая промышленной и автомобильной электроникой.

Зная, как работает компаратор, можно самостоятельно собрать различные интересные схемы, например, зарядное устройство, индикаторный узел или даже генератор.

Обратите внимание

Несмотря на кажущуюся простоту, компаратор — куда более интересное устройство, чем может показаться на первый взгляд. В электронике им называют логическую микросхему, предназначенную для сравнения между собой двух электрических сигналов, подающихся на его вход. В зависимости от результатов этого измерения изменяется режим работы прибора.

Термин «компаратор» произошёл от латинского слова «comparare», что дословно переводится на русский язык как сравнивать. Конструктивно устройство может выпускаться в различных корпусах, например, DIP, SOIC, SSOP.

Простейшего вида сравнивающий элемент имеет два аналоговых входа и один цифровой выход. В основе его работы лежит дифференциальный каскад, имеющий высокий коэффициент усиления.

Поэтому компараторы широко используются в оборудовании, предназначенном для измерения или преобразования аналогового сигнала в цифровой (АЦП).

На схемах и в технической литературе графически устройство обозначается в виде равнобедренного треугольника с тремя выводами. С одной стороны выводы подписываются знаками «+» и «—», соответственно обозначающими неинвертирующий вход и инвертирующий, а с другой — изображается выход, который маркируется символом Uout.

Когда на прямом входе («+») микросхемы уровень сигнала будет больше, чем на инверсном («—»), то на её выходе образуется устойчивое значение. В зависимости от схемотехнического решения компаратора это значение может принимать вид логического ноля или единицы.

В цифровой электронике за единицу считается сигнал, уровень напряжения которого составляет пять вольт, а за ноль принимается его отсутствие. То есть состояние выхода устройства определяется как высокое или низкое.

Но на практике же за логический ноль принимается значение разности потенциалов до 2,7 В.

Важно

Один из входных сигналов, подаваемых на прибор, называется опорным или пороговым напряжением. Именно с этим значением и сравнивается величина сигнала на втором входе.

Опорное напряжение может подаваться как на инверсный, так и прямой вход. В зависимости от этого компараторы называются инвертирующими или неинвертирующими.

Когда прибор работает с одним опорным напряжением, его называют однопороговым, а если с разным — многовходовым.

Характеристики прибора

По сути, устройство можно рассматривать как простой вольтметр или АЦП. Компаратор, как и любой электронный прибор, имеет ряд технических характеристик, которые можно разделить на два вида: статические и динамические.

К статическим параметрам относятся следующие характеристики:

  1. Предельная чувствительность обозначает пороговые величины сигнала, которые прибор идентифицирует на входе и изменяет потенциал своего выхода на логический ноль или единицу.
  2. Величина смещения определяется передаточным моментом устройства относительно идеального положения.
  3. Входной ток — максимальное его значение, которое может пройти через любой вывод, не повредив устройства.
  4. Выходной ток — значение тока, появляющееся на выходе при переходе устройства в состояние единицы.
  5. Разность токов — это величина, находимая при вычитании значений токов, протекающих при закороченных входах.
  6. Гистерезис — разность уровней входного сигнала, приводящая к изменению устойчивого состояния на выходе.
  7. Коэффициент снижения синфазного сигнала определяется отношением синфазного и дифференциального сигнала, приводящим к переключению режима работы компаратора.
  8. Входной импеданс — полное сопротивление входа.
  9. Минимальная и максимальная рабочая температура — диапазон, в котором технические параметры устройства не изменяются.

Важной же динамической характеристикой является время переключения tn.

Она определяется интервалом времени от начала сравнения входного сигнала до момента, при котором на выходе компаратора наступает противоположное устойчивое состояние.

Это время определяется при одном значении порогового напряжения и его скачке на противоположном входе. Этот интервал времени разделяется на две части — задержки и нарастания.

Все значимые параметры компаратора представляются в виде переходной характеристики. Это график в декартовой плоской системе координат, в которой по оси Х указывается время в наносекундах, а Y — входное и выходное напряжение в вольтах.

Устройство и принцип работы

Схемотехника устройства построена на базе дифференциального операционника с довольно большим коэффициентом усиления. Её различия с простым линейным усилителем заключаются в выполнении входного и выходного каскада.

Вход устройства выдерживает сигнал в широком диапазоне до значений источника питания и полный интервал синфазных напряжений.

Выход компаратора совместим с технологиями ТТЛ и ЭСЛ из-за возможности выполнения этого каскада на транзисторе с открытым коллектором.

При работе устройства не используется отрицательная обратная связь как в операционном усилителе, а, наоборот, выход охватывается положительной связью, формирующей гистерезисную передаточную характеристику.

Двухпороговый компаратор называется триггером Шмита или троичным. Для сравнения в нём используется два напряжения. Сигналы в двоичном компараторе разделяются на три диапазона:

  1. Urf2 > Urf1;
  2. Uout1 = 0 при Uin Uref1;
  3. Uout2 = 0 при Uin Uref2.

Uref — напряжение нижнего и верхнего порогов переключения, Uout — уровень выходного сигнала, Uin — напряжение на входе прибора.

Внутренняя схема устройства представляет собой усилитель, собранный на транзисторах VT1-VT2, который нагружен каскадом VT5-VT6, включённым по схеме с общим эмиттером. Через дополнительный ключ VT4 происходит управление коллекторным режимом работы входного сигнала.

А через транзистор VT7, работающий в диодном режиме, контролируется уровень сигнала на VT8, что позволяет добиваться его независимости от изменений напряжения питания. Ключи VT5 и VT6 соединяются со стабилитроном VD1.

Совет

Поэтому через повторитель VT8 входной сигнал поступает на выход с коллекторного вывода VT6.

Если входной сигнал не превышает один вольт, то транзистор VT6 закрыт, а VT5 находится в режиме насыщения. Выходной сигнал не сможет превысить четырёх вольт, так как при большей величине откроется диод.

При обратном знаке VT6 насытится, и напряжение на выходе станет равным нулю. В современных устройствах используется стробирующий выход или триггеры-защелки, то есть элементы, контролирующие выход компаратора при обнаружении синхроимпульса.

Результаты сравнения могут появляться в двух видах: во время строба или в паузах между импульсами.

Простые конструкции

На практике компараторы напряжения нашли широкое применение в радиоэлектронных схемах различного направления. В радиомагазинах можно встретить довольно большое количество различных микросхем. Но наиболее часто используемыми микросхемами среди радиолюбителей являются:

  • LM311;
  • К554СА3;
  • LM339;
  • MAX934.

Они доступны в продаже, а их стоимость более чем демократична. Такие компараторы отличаются широким диапазоном входного напряжения и могут работать при однополярном и двуполярном питании.

К выходу устройства может подключаться любая нагрузка с током потребления, обычно не превышающим 50 мА.

Это может быть реле, резистор, светодиод, оптрон или любые исполнительные устройства, но с ограничивающими ток элементами.

А также возможно подключить и индуктивную нагрузку, но она обычно в этом случае шунтируется диодами. Для работы устройства применяются источники питания с выходным напряжение 5−36 вольт.

Фотореле контроля

Такое реле собирается навесным монтажом. Его можно использовать в охранной системе или для контроля уровня освещённости. Работа схемы заключается в следующем.

Входное напряжение поступает на делитель, состоящий из R1 и фотодиода VD3. Их общая точка соединения через ограничительные диоды VD1 и VD2 подключается к входам компаратора DA1.

В результате этого разница потенциалов на входе устройства отсутствует, а значит, и чувствительность прибора максимальная.

Для того чтобы сигнал на выходе инвертировался, понадобится создать разницу на входе всего в один милливольт. Из-за того, что к инверсному входу подключён конденсатор С1 и резистор R1, величина напряжения на нём будет возрастать с небольшой задержкой, равной времени заряда конденсатора.

Но этого времени хватит, чтобы на выходе появилась логическая единица, которая перестроит режим работы реле подключённого в качестве нагрузки. Как только освещение опять поменяется, ситуация повторится.

Таким образом, направив фотореле на какое-то место, в случае изменения его освещённости на входах компаратора появится разность напряжения.

Соответственно будет изменяться и работа реле, к которому может подключаться различного рода нагрузка.

Зарядный блок

Выполненный блок питания из исправных элементов начинает работать сразу. Его настройки сводятся лишь к установке номинального тока заряда и порогов срабатывания компаратора.

При включении устройства загорается зелёный светодиод, обозначающий подачу питания.

Во время зарядки должен же постоянно светиться красный светодиод, который потухнет, как только аккумулятор зарядится.

Подаваемое напряжение от блока питания регулируется R2, а ток зарядки выставляется R4. Настройка происходит с помощью резистора на 150 Ом, включающегося параллельно контактам держателя батарейки. Сам аккумулятор в него не ставится. Транзистор VT1 устанавливается на радиатор, вместо него можно использовать аналог КТ814Б.

Обратите внимание

Такую схему придётся собирать на печатной плате, но в итоге её размер не должен превысить 50 х 50 мм.

Можно собрать схему попроще, используя принцип работы стабилизатора тока. Подача опорного напряжения на вход LM358 происходит через стабилитрон. Второй вход микросхемы подключается после датчика тока. Если к выходу компаратора подключить разряженный аккумулятор, то в цепи начнёт возрастать ток, а часть напряжения упадёт на низкоомном резисторе.

Между двумя входами микросхемы возникнет разность напряжения. Схема начнёт компенсировать это различие, увеличивая силу тока на выходе. В процессе заряда аккумулятора напряжение на входе начнёт уменьшаться, что приведёт к снижению тока в цепи. Как только батарея зарядится, транзистор VT1 закроется и нагрузка отключится. Ток заряда же ограничивается с помощью изменения сопротивления R1.

Кварцевый генератор

Такой генератор прямоугольных импульсов, собранный по схеме на отечественном компараторе K544C3, работает на тактовой частоте 32768 Гц. Схема будет работоспособной в диапазоне входного напряжения от 7 до 11 вольт. Частота задаётся кварцем ZQ1, но для работы устройства свыше 50 кГц понадобится уменьшить сопротивление R5 и R6.

При замыкании второго вывода с нулевым проводом выход компаратора оказывается включённым по схеме с открытым коллектором, в которой R7 является нагрузкой. Подстройка частоты выполняется с помощью C1. За счёт резистора R4 происходит автозапуск генератора. Изменяя сопротивление R2, меняется скважность импульсов.

Подбирая ёмкости С1 и С2, генератор можно использовать как бесконтактный датчик жидкости. В качестве детектора для этого понадобится использовать микроконтроллер с программным обеспечением. Хотя можно применить и ещё один компаратор, который будет регистрировать изменения, выпрямленного диодами напряжения.

Таким образом, компаратор напряжения предназначен для сравнения уровней сигналов на своих входах. Если они начинают различаться, то в зависимости от этой разности выход устройства изменяет своё состояние. Этим их свойством и пользуются разработчики, конструируя различные электроприборы.

Источник: https://220v.guru/fizicheskie-ponyatiya-i-pribory/napryazhenie/komparator-napryazheniya-kak-rabotaet-i-primery-shem.html

Компаратор напряжения на ОУ: принцип работы, схемы

Для управления электронными схемами применяются различные устройства, которые помогают настраивать и разветвлять сигналы. Для сравнения двух разных импульсов часто используется компаратор с однополярным питанием.

Обозначение и технические характеристики

Компаратор – это устройство, которое сравнивает два разных напряжения и силу тока, выдает конечный силовой сигнал, указывая на большее из них, одновременно производя расчет соотношения. У него есть две аналоговые вводные клеммы с положительным и отрицательным сигналом и один двоичный цифровой выход, как и у АЦП. Для отображения сигнала используется специальный индикатор.

УГО отображение компаратора выглядите следующим образом:

Фото – УГО компаратора

Изначально использовался только интегрированный компаратор напряжения (MAX 961ESA, PIC 16f628a), который известен как высокоскоростной. Он требует определенного дифференциального напряжения в определенном диапазоне, который существенно ниже, чем напряжение сети питания. Эти приборы не допускают никаких других внешних сигналов, которые находятся вне диапазона напряжения сети.

Сейчас гораздо чаще используется аналоговый цифровой компаратор (Attiny/ Atmega 2313), у которого транзисторный ввод. У него вводный потенциал сигнала находится в диапазоне менее 0,3 Вольт и не поднимается выше.

Важно

Устройство может быть также ультра быстрого типа (стереокомпаратор), благодаря чему входной сигнал меньше обозначенного диапазона, к примеру, 0,2 Вольта.

Как правило, используемый диапазон ограничивается только конкретным входным напряжением.

Фото – Компаратор

Помимо простого прибора, также существует видеоспектральный компаратор на ОУ (операционном усилителе). Это прибор, у которого очень тонко сбалансирована разница входа и высокого сопротивления сигнала. Благодаря такой характеристики, операционный компаратор используется в низкопроводимых схемах с небольшим вольтажем.

Фото – схема компаратора

В теории, частотный операционный усилитель работает в конфигурации с открытым контуром (без отрицательной обратной связи) и может быть использован в качестве компаратора низкой производительности.

Но при этом, не инвертирующий вход (+ V) находится на более высоком напряжении, чем на инвертирующий (V-).

Высокое усиление, выходящее из операционного усилителя, провоцирует выход низкого напряжения на входе в устройство.

Когда неинвертирующий вход падает ниже инвертирующего входа, выходной сигнал насыщается при отрицательном уровне питания, то он все равно может проводить импульсы. Выходное напряжение ОУ ограничивается только напряжением питания.

Принципиальная электрическая схема ОУ работает в линейном режиме с отрицательной обратной связью, с помощью сбалансированного сплит-источника питания (питание от ± V S ). Многие приборы, работающие с компаратором, также имеют свойство фиксировать полученные данные при помощи видео-, фото- или документальной записи.

Эти электронные принципы не работают в системах, где используются разомкнутые контуры и низкопроводящие элементы.

Фото – простой компаратор

Совет

Но у компараторного усилителя существует несколько существенных недостатков:

  1. Операционные усилители предназначены для работы в линейном режиме с отрицательной обратной связью. Но при этом, ОУ имеет более длительный режим восстановления;
  2. Почти все операционные усилители имеют конденсатор внутренней компенсации, который ограничивает скорость нарастания выходного напряжения для высокочастотных сигналов. Исходя из этого, данная схема немного задерживает импульс;
  3. Компаратор не имеет внутреннего гистерезиса.

Из-за этих недостатков, компаратор для управления различными схемами, в большинстве случаев, используется без усилителя, исключением является генератор.

Компаратор предназначен для производственных процессов с ограниченным выходным напряжением, которое легко взаимодействует с цифровой логикой. Поэтому его часто используются в различных термических приборах (терморегулятор, реле температуры). Также его применяют для сравнения сигналов и сопротивлений таких устройств, как таймер, стабилизатор и прочая схемотехника.

Фото – аналоговый компаратор

Видео: компараторы

Принцип работы

Для того, чтобы продемонстрировать, как работает быстродействующий компаратор с гистерезисом, нужно взять схему с двумя выходами.

Фото – схема работы компаратора

Схема включения, по которой можно понять принцип работы компаратора, показана выше. Используя аналоговый сигнал во + входе, именуемым «неинвертируемым», и выходе, который называется под названием «инвертируемый», устройство использует два аналогичных разнополярных сигнала.

При этом если аналоговый вход больше, чем аналоговый выход, то выход будет «1», и это включит открытый коллектор транзистора Q8 на эквивалентной схеме LM339, которую нужно включить.

Но, если вход находится на отрицательном уровне, то сигнал будет равняться «0», из-за чего, коллектор будет находиться в закрытом виде.

Практически всегда двухпороговый или фазовый компаратор (например, на транзисторах, без усилителя) воздействует на входы в логических цепях, соответственно, работает по уровню определенной сети питания.

Это своеобразный элемент перехода между аналоговыми и цифровыми сигналами. Такой принцип действия позволяет не уточнять определенность или неопределенность выходов сигналов, т. к.

компаратор всегда имеет некий захват петли гистерезиса (независимо от её уровня) или окончательный коэффициент усиления.

Назначение

Зачем нужен компаратор и как его использовать без усилителя? В большинстве случаев, этот прибор применяется в несложных компьютерных схемах, где нужно сравнивать сигналы входящего напряжения.

Это может быть зарядное устройство для ноутбука или телефона, весы (определитель массы), датчик сетевого напряжения AVR, таймер (компоратор типа lm 358, микроконтроллер и т. д.

Также его применяют различные интегральные микросхемы для контроля входных импульсов, обеспечивая связь между источником сигнала и его центром назначения.

Фото – компараторы для компьютера

Наиболее популярным примером является компаратор триггер (регулятор) Шиммера. Он работает в режиме многоканальности, соответственно, может сравнивать большое количество сигналов. В частности, данный триггер применяется для того, чтобы восстановить цифровой сигнал, который искажает связь в зависимости от уровня напряжения и расстояния источника питания.

Обратите внимание

Это аналог стандартного компаратора, просто с более расширенным функционалом, который обеспечивает измерение нескольких входящих сигналов.

Фото – ОУ компаратор

Также есть компаратор шероховатости. Это устройство, которое помогает визуально определить состояние поверхности, которая уже подвергалась обработке. Применение этого приспособления обосновано необходимостью определять допуски обработанных ранее поверхностей.

Программирование и компаратор

Компоратор используется не только как часть электрической схемы ШИМ и т. д., его часто используют для создания отдельных программ или их компонентов. Например, устройство часто используется для создания java-коллекций.

  1. Чтобы работать, Вам понадобится специальная программа Maven. Для начала Вам нужно создать проект, для полноценной работы необходимо подключение к интернету. Создаете новый проект, в структуре выберете два компонента: comparator и pojo. Наличие проверяется при помощи утилиты JUnit 4.11;
  2. Установите pom.xml и создайте новый файл. Прерывание процесса недопустимо, поэтому очень важно на каждом этапе сохранять. После осуществляется создание и настройка POJO, где указываются нужные настройки. Параметры зависят от требований к конкретной библиотеке. Это могут быть даты рождения, общая информация по проживанию и т. д.;
  3. И только после создается компаратор. Это класс, который используется для поверки данных и их распределения по нужным папкам. Использование данного класса необходимо, если нужно отсортировать определенную информацию по заданным параметрам (цвета, размеры, даты). Благодаря этому обеспечивается защита данных и их классификация по определенному принципу.

Купить готовый компаратор можно в любом магазине радиотехнических приборов и электротехники. Цена прибора варьируется в зависимости от его назначения и количества каналов.

Источник: https://www.asutpp.ru/komparator.html

Компараторы. Устройство и работа. Виды и применение. Особенности

Компараторы — название произошло от принципа работы – сравнения. Так функционируют приборы, производящие измерения способом сравнивания с эталоном: весы с одинаковыми плечами, электрические потенциометры.

По своей принципиальной работе компараторы делятся на механические, электрические и оптические. Приборы с механической конструкцией применяются для проверки конечных мер длины.

Компараторы для таких целей впервые применены во Франции в 1792 году, об этом имеется информация в энциклопедиях. Такой компаратор на механической основе работал для поверки эталонного метра во время появления метрической системы Франции.

Точность таких замеров компаратора рычагами доходила до 0,0005 мм. Это большая точность для того периода времени.

Наша задача рассмотреть компараторы, применяющиеся в современное время в электротехнике для напряжения.

Принцип работы и виды интегральных компараторов

Компаратор с двумя входами и одним выходом. Причем один из входов является прямым, а другой инверсным. На эти входы поступает напряжение, которые устройство сравнивает.

В зависимости от этого сравнения на своем выходе устройство устанавливает либо логический ноль, когда напряжение на инверсном входе выше, чем на прямом, либо логическую 1, когда напряжение входа прямого выше, чем на инверсном.

На схеме видно стандартное обозначение компаратора. Компаратор сам по себе достаточно универсален и находит широкое применение в радиолюбительской деятельности. На основе компаратора можно собрать таймер, мультивибратор и даже драйвер для светодиодов.

При выборе компаратора следует обратить внимание на следующие параметры:

  • Диапазон напряжения питания.
  • Диапазон входных напряжений.
  • Максимальный ток на выходе компаратора.
  • Тип выхода.

Не все компараторы могут установить плюс питания на выходе. Рассмотрим работу компаратора на простой схеме.

Данная схема построена на переменном резисторе 20 кОм, двух постоянных резисторов 10 кОм, которые образуют собой делитель напряжения на постоянных резисторах. Они подключены к инвертирующему входу. К нему же подключен делитель напряжения на переменном резисторе.

Выход компаратора представляет собой коллектор внутреннего транзистора, эмиттер которого подключен к земле. Этот транзистор либо подключает выход к земле, либо отключает его, поэтому плюса питания на выходе быть не может. Поэтому мы подтягиваем выход компаратора через резистор номиналом 1 кОм к плюсу питания.

Важно

Когда на неинвертирующем входе напряжение выше, чем на инвертирующем, транзистор закрывается. Добавленный нами резистор подтягивает к его к плюсу питания, вследствие чего светодиод загорается. Когда на неинвертирующем входе напряжение ниже, чем на инвертирующем, то транзистор открывается и притягивает выход компаратора к земле, вследствие чего светодиод перестает светиться.

Если же на двух входах напряжение примерно одинаковое, то выход компаратора логично переключается из одного состояния в другое и обратно под воздействием внутренних и внешних помех. Для борьбы с помехами и четкого переключения компаратора из одного состояния в другое собираются схемы с гистерезисом.

Обозначения выводов выглядят следующим образом:

Первая ножка – это выход первого компаратора, вторая ножка – инвертирующий вход первого компаратора, третья – неинвертирующий вход первого компаратора, четвертая – земля, восьмая ножка – напряжение питания. Второй компаратор не используется.

Выход подключен желтым проводом к подтягивающему резистору и к светодиоду, зеленый провод подключен к делителю напряжения на постоянных резисторах, белый провод подключен к средней ножке переменного резистора, который является делителем напряжения.

При измерении напряжения питания на делителе напряжения на постоянных резисторах 10 кОм. При включении схемы загорается красный светодиод. Включаем мультиметр для измерения постоянного напряжения диапазона до 20 В, подключим его ко второй ножке микросхемы. Показания напряжения 2,4 В.

Это постоянные резисторы, делитель напряжения не будет изменять само напряжение. Так как переменный резистор установлен на неинвертирующем входе, то переключаемся на него. Показания 0,87 В. На неинвертирующем входе напряжение ниже, чем на инвертирующем. Следовательно светодиод не горит.

При превышении напряжения выше 2,4 В светодиод начинает светиться. При воздействии внешних помех происходит хаотичное переключение выхода компаратора. Здесь может пригодиться схема гистерезиса.

Компараторы применяются в интегральном исполнении в качестве составных деталей микросхем. Интегральные таймеры имеют в составе два входных компаратора. Этим определяется особенность работы прибора. Микроконтроллеры производят со встроенными компараторами. Независимо от конструкции и схемы принцип действия прибора не отличается.

Новые компараторы похожи на операционные усилители, у них высокий усиливающий коэффициент, не имеют обратной связи, входы такого же типа.

Работа компаратора напряжения

В различных описаниях работы устройства приводятся примеры сравнения с рычажными весами. На одну сторону весов ложится гиря – эталон, на другую товар. Когда вес товара станет равным массе гири, или больше, то гири поднимаются вверх, на этом взвешивание окончено.

С работой компаратора напряжения происходит похожий процесс. Вместо гирь выступает опорное напряжение, вместо товара – сигнал входа. При возникновении логической единицы на выходе устройства происходит сравнение напряжений. Это называют «пороговой чувствительностью» компаратора.

Для тестирования устройства не нужно сложной схемы. Необходимо включить вольтметр на выход устройства, а на входы подключить напряжение, которое регулируется. При изменении входного напряжения на вольтметре будет видна работа компаратора.

Характеристики компараторов

При применении приборов нужно учесть характеристики, делящиеся на динамические и статические. Статические – это параметры установившегося режима. Это пороговая чувствительность. Она является наименьшей разностью сигналов входа. При ней возникает логический сигнал на выходе.

Некоторые компараторы оснащены выводами для смещающего напряжения, осуществляющего смещение характеристики передачи от идеального положения. Важным параметром является гистерезис, то есть разница напряжений входа. Он обусловлен обратной связью положительного значения, предназначенного для устранения «дребезга» сигнала выхода при переключении компаратора.

Устройство

Схема прибора довольно сложная, большая и не слишком понятная. Рассмотрим простую функциональную схему по рисунку.

Показан дифференциальный каскад входа, схема уровневого смещения, логика выхода. Дифференциальный каскад производит основное усиление сигнала разности. Устройством смещения осуществляется оптимальное состояние выхода. Это дает возможность выбрать тип логики для работы. Такая настройка производится подстроченным резистором на выводах «балансировки».

Компаратор с памятью и стробированием

Современные инновационные компараторы оснащены стробирующим входом. Это значит, что сравнение сигналов входа осуществляется только при подаче импульса. Это дает возможность сравнить сигналы входа в необходимый момент.

Простая схема структуры устройства со стробированием.

Устройства по рисунку с парафазным выходом, подобно триггеру – прямой верхний выход, нижний (кружок) – инверсный. С – стробирующий вход. На рисунке а) стробирование сигналов входа осуществляется по высокому уровню входа С. На обозначении входа С изображают знак инверсии маленьким кружком.

Рисунке б) стробирующий вход с чертой /. Это значит, что стробирование проходит по восходящему импульсу. Стробирующий сигнал – разрешение сравнения. Итог сравнения появляется на выходе при действии импульса стробирования. На некоторых устройствах есть память (с триггером). Они сохраняют результат до следующего импульса.

Время импульса стробирования (фронта) должно хватать для того, чтобы сигнал входа успевал проходить через дифференциальный каскад до срабатывания ячейки памяти. Использование стробирования повышает защиту от помех, так как помеха изменяет состояние устройства за время импульса.

Классификация

Компараторы делятся на три группы: общего применения, прецизионные и быстродействующие. В практической деятельности чаще применяются устройства общего применения.

Такие устройства имеют особенности и свойства, привлекающие к себе внимание. Они потребляют небольшую мощность, могут работать при малом напряжении питания. В одном корпусе можно разместить 4 устройства. Эта группа иногда дает возможность производить полезные устройства.

Это простой преобразователь сигнала в унитарный цифровой код, который можно преобразовать в двоичный, цифровым преобразованием. На схеме имеется 4 компаратора.

Совет

Напряжение опорное подается на инвертирующие входы по делителю резистивного типа. При одинаковых резисторах на инвертирующих входах устройства напряжение будет равно n * Uоп / 4, n – номер устройства.

Напряжение входа подается на неинвертирующие входы, которые соединены вместе.

В итоге сравнения напряжения входа с опорным, на компараторных выходах образуется цифровой унитарный код напряжения входа.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/slabotochnye-seti/oborudovanie/komparatory/

Как работает компаратор на операционном усилителе(ОУ)

Прежде чем начнём разбираться с компаратором, давайте вспомним, что такое операционный усилитель(ОУ). Операционный усилитель имеет пять выводов и на схемах обозначается треугольником, как показано на рисунке ниже.

Давайте подробнее рассмотрим назначение выводов:

  • два вывода для подключения питания, плюс и минус напряжения питания;
  • два входа, один неинвертирующий, обозначенный V+ и один инвертирующий, обозначенный V-;
  • один выход, обозначенный Vвых;

Скорее всего, у того кто до этого не был знаком с операционным усилителем возникнет вопрос, что такое инвертирующий и неинвертирующий вход, давайте рассмотрим это на примере.
На рисунке выше видно, что если напряжение на неинвертирующем входе больше чем на инвертирующем, то на выходе будет плюс напряжение питания.Если, наоборот, напряжение на инвертирующем входе будет больше чем на неинвертирующем, то на выходе будет минус напряжение питания.

По сути мы рассмотрели как работает компаратор. Компаратор от английского слова compare – сравнить, то есть он сравнивает два напряжения и в зависимости от того на каком из входов оно выше, устанавливает на выходе плюс или минус напряжения питания. Также, можно сказать, что компараторэто схема включения ОУ без отрицательной обратной связи, обладающая большим коэффициентом усиления. Под отрицательной обратной связью понимают, соединение инвертирующего входа с выходом, напрямую или через электронный компонент, например, резистор, кондесатор или диод.

Для демонстрации, того как работает компаратор рассмотрим схему, изображённую ниже.
В этой схеме с помощью делителя, резисторами 10К и 100К, устанавливается на инвертирующем входе напряжение 0,45V, его ещё называют опорным. Пока напряжение на неинвертирующем входе меньше 0,45V, на выходе будет 0V и светодиод не загорится, как только напряжение на неинвертирующем входе превысит это значение, на выходе станет 5V и светодиод загорится. Таким образом, вращая потенциометр, мы можем зажигать и гасить светодиод. Схема непрактичная, но наглядная.

В одной из статей описывается как работает пиковый детектор, там как раз можно увидеть ОУ включённый как компаратор. Для увеличения можно кликнуть по фото.

Давайте немного упростим схему.
И подключим осциллограф к входам компаратора. Первый канал — неинвертирующий вход, второй — инвертирующий.

Во время хлопков в ладоши возникают всплески, если при этом амплитуда всплесков(жёлтые) превышает опорное напряжение(бирюзовый), на выходе появляется плюс напряжения питания, иначе минус.В этом случае в качестве датчика у нас выступает микрофон, также в качестве датчика может выступать фотодиод, для включения света при низком уровне освещенности, а его мы задаем опорным напряжением.

Ранее, мы договорились, что компаратор — это схема включения ОУ без отрицательной обратной связи. Но кроме отрицательной обратной связи существует, ещё положительная обратная связь.

Схема, изображенная выше, называется инвертирующий триггер Шмитта, по сути это тот же компаратор, только с положительной обратной связью. Принцип его работы заключается в следующем, помните на осциллограмме когда жёлтые линии пересекали бирюзовую, изменялось напряжение на выходе. Так вот здесь линий, которые можно пересечь две, при превышении верхней линии на выходе появляется минус напряжения питания, если значение опустится ниже нижней линии —плюс, а в промежутке между линиями система сохраняет своё состояние.

Так же существует неинвертирующий триггер Шмитта, он изображен на схеме ниже.

Логичным вопросом будет, почему того же Отто Герберт Шмитт не устроил обычный компаратор и он изобрел свой. Ответ прост, если на вход компаратора без положительной обратной связи подать зашумленный сигнал, это вызовет множество ложных срабатываний, для того чтобы избежать этого был придуман триггер Шмитта, у которого два порога переключения.Правда и у него тоже есть, что доработать. Хотелось бы избавиться от двуполярного питания и так как пороги срабатывания задаются с помощью делителя, то они симметричны относительно нуля, а хотелось бы выбирать их произвольно.

Пожалуй это всё, что хотелось рассказать про компараторы на ОУ, если появилось желание разобраться более подробно, добро пожаловать сюда.

Источник: https://hubstub.ru/circuit-design/53-kak-rabotaet-komparator-na-operacionnom-usiliteleou.html

Компаратор. Описание и применение. Часть 1

Эта статья содержит основную информацию о работе компараторов напряжения построенных на интегральных микросхемах и может быть использована в качестве справочного материала для построения различных схем.

В электронике, компаратор представляет собой устройство, которое сравнивает между собой два электрических сигнала и выводит цифровой сигнал, указывающий на увеличение одного входного сигнала над другим. Компаратор имеет два аналоговых входа и один цифровой выход.

Компаратор, как правило, построен на дифференциальном усилителе с высоким коэффициентом усиления. Компараторы широко используются в устройствах, которые измеряют и оцифровывают аналоговые сигналы, например, в аналого-цифровых преобразователях (АЦП)

Примеры работы компаратора приведены на основе микросхемы LM339 (счетверенный компаратора напряжений) и LM393 (сдвоенный компаратор напряжения). Эти две микросхемы по своему функционалу идентичны. Компаратор напряжения LM311 так же может быть использован в данных примерах, но он имеет ряд функциональных особенностей.

Структурная схема одного компаратора входящего в микросхему LM339 и LM393

Компаратор напряжения — выход с открытым коллектором

Как правило, выход компаратора напряжения представляет собой выход с открытым коллектором.

Выход открытый коллектор имеет отрицательную полярность. Это означает, что на этом выходе не бывает положительного сигнала и нагрузка должна подключаться между этим выходом и источника питания.

В некоторых схемах к выходу компаратора подключают нагрузочный (подтягивающий) резистор для того, чтобы обеспечить сигнал высокого уровня поступающего на вход следующего элемента схемы.

Операционные усилители (ОУ), такие как LM324, LM358 и LM741 обычно не используются в радиоэлектронных схемах в качестве компаратора напряжения из-за их биполярных выходов. Тем не менее, эти операционные усилители могут быть использованы в качестве компараторов напряжения, если к выходу ОУ подключить диод или транзистор для того чтобы создать выход с открытым коллектором.

Обратите внимание

Ниже представлена логика работы компаратора имеющий выход с открытым коллектором:

Ток будет течь через открытый коллектор, когда напряжение на входе (+) будет ниже, чем напряжение на входе (-). И соответственно ток не будет протекать через открытый коллектор, когда напряжение на входе (+) будет выше, чем напряжение на входе (-).

Схема эквивалента компаратора напряжения с однополярным источником питания

Принципиальная схема «компаратор напряжения» эквивалентна работе операционного усилителя, например, LM358 или LM324, имеющим на выходе два транзистора типа NPN (см. выше). Таким образом, можно сделать все 4 выхода ОУ (LM339) с открытым коллектором. Каждый такой выход может выдерживать ток нагрузки 15 мА и напряжение до 50 вольт.

Выход включается или выключается в зависимости от относительных напряжений на плюсовом (+) и минусовом (-) входах компаратора. Входы компаратора крайне чувствительны и разница напряжения между ними всего лишь в несколько милливольт приводит к переключению его выхода.

Схема эквивалента компаратора напряжения с двухполярным источником питания

Компараторы напряжения LM339, LM393 и LM311могут работать с одно- или двухполярным источником питания до 32 вольт максимум.

При работе с двухполярным питанием, режим сравнения напряжения остается таким же, за исключением того, что для большинства схем эмиттер выходного транзистора подключается к отрицательной шине питания, а не к общей цепи. Исключением из этого правила является операционный усилитель LM311, имеющий изолированный эмиттер, который можно подключить как к минусу однополярного источника питания, так или к общему проводу двухполярного.

При работе с двухполярным источником питания, входное напряжение может быть выше или ниже относительно общего провода блока питания. Кроме того, один из входов компаратора может быть подключен к общему проводу, таким образом создается детектор «пересечение нуля».

Описание работы компаратора

Следующий рисунок показывает простейшую конфигурацию для компаратора напряжения, а так же графическое изображение режима его работы.

 В этой схеме опорное напряжение составляет половину напряжения питания, а входное напряжение может меняться от нуля до напряжения питания.

 В теории опорное и входное напряжение могут иметь значение от нуля и до напряжения источника питания, но есть реальные ограничения, зависящие от конкретно используемого компаратора.

Сигнал на выходе:

  1. Ток будет течь через открытый коллектор, когда напряжение на входе плюс (+) ниже, чем напряжение на входе минус (-).
  2. Ток не будет протекать через открытый коллектор, когда напряжение на входе плюс выше, чем напряжение на входе минус.

Входное напряжение смещения компаратора

Компараторы не являются совершенными устройствами, и их работа может иметь недостаток от последствий такого параметра, как входное напряжение смещения. Входное напряжение смещения для многих компараторов может составлять всего несколько милливольт и в большинстве схем может быть проигнорировано.

В основном проблема, связанная с входным напряжением смещения возникает, когда входное напряжение изменяется очень медленно. Конечным результатом входного напряжения смещения является то, что выходной транзистор не полностью открывается или закрывается, когда входное напряжение находится недалеко от опорного напряжения.

Следующая диаграмма иллюстрирует эффект смещения входного напряжения возникающий в результате медленного изменения входного напряжения. Этот эффект возрастает при увеличении выходного тока транзистора. Поэтому, для уменьшения этого эффекта, необходимо обеспечить максимальное сопротивление резистора R4.

Последствия входного напряжения смещения можно уменьшить, добавив в схему гистерезис. Это приведет к тому, что опорное напряжение будет меняться, когда выход компаратора переходит на высокий или низкий уровень.

Входное напряжение смещения и гистерезис

Для большинства схем построенных на компараторах, величина гистерезиса является разностью напряжений входного сигнала, при котором выход компаратора либо полностью включен или полностью выключен. Гистерезис в компараторах, как правило, нежелателен, но он может потребоваться, когда необходимо уменьшить чувствительность к шуму или при медленном изменении входного сигнала.

Внешний гистерезис использует положительную обратную связь (ПОС) с выхода на неинвертирующий вход компаратора. В результате полученный триггер Шмитта обеспечивает дополнительную помехоустойчивость и более чистый выходной сигнал.

Эффект от использования гистерезиса в том, что при постепенном изменении входного напряжения, а опорное напряжение будет быстро изменяться в противоположном направлении. Это обеспечивает чистое переключение выхода компаратора.

Важно

Механический аналог гистерезиса может быть обнаружен в разнообразных тумблерах. Как только рукоятка тумблера перемещается мимо центральной точки, пружина в тумблере переводит контакты реле в гарантированное положение (открытое или закрытое).

Гистерезис является неотъемлемой частью большинства компараторов составляющая всего несколько милливольт и он обычно влияет только на схемы, где входное напряжение поднимается или падает очень медленно или имеет скачки напряжения, известные как «шум»…

Компаратор. Описание и применение. Часть 2

Источник: http://www.joyta.ru/7070-komparator-opisanie-i-primenenie-chast-1/

Компараторы, как они работают

Источник: http://vprl.ru/publ/tekhnologii/nachinajushhim/komparatory_kak_oni_rabotajut/9-1-0-16

Компаратор на основе операционного усилителя. Плюсы и минусы

Журнал РАДИОЛОЦМАН, февраль 2018

Lou Frenzel

Electronic Design

Вообще говоря, сделать из операционного усилителя хороший компаратор невозможно. Чтобы получить оптимальные характеристики и не тратить дополнительное время на отладку, лучше всего использовать специализированную микросхему компаратора.

Компаратор – отличная схема, поскольку обеспечивает почти идеальный переход от аналогового сигнала к цифровому. Компаратор выглядит как устройство с двумя линейными входными сигналами, уровень цифрового выхода которого может быть либо высоким, либо низким, в зависимости от соотношения входных сигналов. Просто, но очень полезно.

Если в вашем устройстве должна быть подобная схема, лучше всего использовать микросхему компаратора, предназначенную именно для таких приложений.

Обратите внимание

Однако многим разработчикам известно, что стандартный операционный усилитель (ОУ) также можно использовать в качестве компаратора.

Это особенно привлекательно в тех случаях, когда в устройстве остается незадействованный ОУ, и его использование не потребует ни дополнительных затрат, ни места на печатной плате.

Однако, весьма вероятно, что получившийся из ОУ компаратор не оправдает ваших ожиданий, и его характеристики, возможно, будут далеки от оптимальных.

Ошибки, обусловленные непрофессиональным подходом, могут привести к тому, что время разработки и отладки намного превысит планируемое.

Лучше всего, если вам нужен компаратор, и вы хотите избежать проблем и получить наилучший возможный результат, использовать микросхему компаратора.

В чем реальные различия между операционным усилителем и компаратором?

Основные различия между ними следующие:

  • Встроенные цепи фазовой коррекции, необходимые для обеспечения устойчивости ОУ, делают устройство слишком медленным для операций переключения.
  • Входные каскады ОУ обычно защищены диодами или дополнительными транзисторами, которые нередко препятствуют использованию ОУ в схеме компаратора.
  • Выходной каскад ОУ рассчитан на использование в линейном режиме. При двуполярном питании его выходное напряжение изменяется от одной шины питания до другой, и для использования в цифровых схемах требует смещения уровней.
  • Выходной каскад истинного компаратора сконструирован для работы в режиме насыщения со стандартными логическими уровнями сигналов. Часто его выход делается по схеме с отрытым коллектором (стоком).
  • Для установки коэффициента усиления и других характеристик схемы ОУ обычно включается с резисторами обратной связи. Компаратор, как правило, работает с разомкнутой петлей, то есть, без обратной связи.
  • По сравнению с ОУ компараторы имеют меньшие времена задержки и очень высокую скорость нарастания выходного напряжения.

Несмотря на внешнее сходство, две схемы различны и предназначены для разных приложений.

Так можно ли использовать ОУ в качестве компаратора? [1] Возможно. Многие инженеры используют. Нередко так делают, когда требуется лишь один компаратор, а в корпусе счетверенного ОУ остался «свободный» усилитель.

Необходимая для устойчивой работы ОУ фазовая коррекция означает, что такой компаратор будет очень медленным, но если особых требований к быстродействию не предъявляется, может быть достаточно и операционного усилителя.

Иногда такой подход вполне приемлем, но в некоторых случаях он непригоден.

Работа компаратора

Один из способов разобраться с работой компаратора – изучить базовую конфигурацию ОУ, показанную на Рисунке 1а. Усилитель имеет очень большой коэффициент усиления без обратной связи (AOL >> 1000). То, что он усиливает, – это разность между двумя входами V1 и V2. Выходное напряжение равно

Из-за высокого коэффициента усиления для положительного или отрицательного насыщения выхода большого входного дифференциального сигнала (V2 – V1) не требуется.

Например, при напряжении источника питания ±5 В и коэффициенте усиления без обратной связи, равном 100,000, выходное напряжение достигнет шины питания при дифференциальном входном сигнале с уровнем 5/100,000 = 50 мкВ или выше.

Передаточная характеристика вход-выход изображена на Рисунке 1б.

Компаратор – это операционный усилитель без обратной связи с большим коэффициентом усиления.

Поэтому, если подать на один его вход (например инверсный) какой то постоянный уровень опорного напряжения, а на другой вход (прямой) изменяющийся сигнал – выходное напряжение у него изменится скачком, от минимального до максимального в тот момент, когда уровень входного сигнала превысит уровень сигнала опорного напряжения, установленного на другом входе, и наоборот.

Компараторы имеют два входа, прямой и инверсный, и в зависимости от желаемого результата, опорное и сравниваемое напряжения, могут подключаться к любому входу. Если входное напряжение на прямом входе, превысит напряжение инверсного входа, выходной транзистор компаратора открывается, если станет ниже – закрывается.

То есть компаратор сравнивает напряжения. Вот мы и подошли к сути основного назначения компаратора – сравнивать между собой два напряжения (сигнала), и выдавать на выходе напряжение (сигнал) в том случае, когда сигнал на одном входе, стал больше или меньше уровня, установленного опорным напряжением другого входа.

На компараторах можно собирать различные устройства, такие как терморегуляторы, стабилизаторы, различные устройства автоматики – используя для изменения входного сигнала различные датчики, такие как, терморезисторы, фоторезисторы, индикаторы влажности и т.д. и т.п.

Выходные каскады компараторов рассчитаны таким образом, чтобы их выходное напряжение соответствовало бы входному логическому уровню многих цифровых микросхем, поэтому их ещё могу называть формирователями. В принципе на любом операционном усилителе можно построить компаратор (но не наоборот).

Рассмотрим самый распространённый компаратор К554СА3, (зарубежные аналоги LM-111, LM-211, LM-311). На выходе этого компаратора включен транзистор с открытыми коллектором и эмиттером, и в зависимости от необходимого результата на выходе, его можно подключать по схеме с общим эмиттером или эмиттерным повторителем.

Схема включения компаратора для одно-полярного питания изображена на рисунке 1, для двух-полярного питания на рисунке 2.

Рисунок 1.

Схема включения компаратора в одно-полярное питание. а – с общим эмиттером; б – эмиттерным повторителем.

Напряжение питания +5 вольт указано для уровня логики ТТЛ микросхем.

Для согласования выхода с логическими уровнями КМОП микросхем, напряжение питания соответственно может быть 9-15 вольт.

Рисунок 2. Схема включения компаратора в двух-полярное питание.

а – с общим эмиттером; б – эмиттерным повторителем.

Совет

В качестве нагрузки компаратора можно использовать любую нагрузку с током потребления не более 50 мА.

Это могут быть непосредственно обмотки реле, резисторы, светодиоды индикации и оптронов исполнительных устройств, с ограничивающими ток резисторами.

Индуктивные нагрузки желательно шунтировать диодами от обратного выброса напряжения.
Напряжение питания компаратора может быть 5 – 36 вольт одно-полярного (или сумма двух-полярного) напряжения.

Процессы переключения компараторов

Если входной сигнал будет изменяться очень медленно, то при достижении уровня входного сигнала опорному, выход компаратора может многократно с большой частотой менять свое состояние под действием незначительных помех (так называемый “дребезг”).

Для устранения этого явления в схему компаратора вводят положительную обратную связь (ПОС), которая обеспечивает характеристике компаратора небольшой гистерезис, то есть небольшую разницу между входными напряжениями включения и отключения компаратора. Некоторые типы компараторов уже имеют встроенную, упомянутую выше ПОС.

Её можно так же ввести в схему компаратора при необходимости, например, как изображено на рисунке ниже.

Рисунок 3.
Схема включения в компаратор ПОС (гистерезиса).

На рисунке 3 приведена схема включения компаратора с открытым коллектором на выходе, переходная характеристика которой имеет гистерезис (рис. 3б).
Пороговые напряжения для этой схемы определяются по формулам;

Хотя гистерезис вносит небольшую задержку в переключении компаратора, но благодаря ему, существенно уменьшается или даже устраняется полностью “дребезг” выходного напряжения.

Для того, кто желает более полного и подробного знакомства с компараторами, рекомендую прочитать статью Б. Успенского в ВРЛ № 97 стр.49.

 

Рисунок 1.Операционный усилитель в инвертирующем включении (а)
и его передаточная характеристика вход-выход (б).

Истинный компаратор работает от одного источника питания, как правило, того же, который используется для цифровой логики. Выход через подтягивающий резистор подключен к шине питания (Рисунок 2а).

На входы компаратора поданы опорное напряжение VREF и сигнал VIN, уровень которого сравнивается с опорным уровнем. В качестве опорного и сигнального может использоваться любой из двух выходов компаратора.

Обычно опорное напряжение постоянно, а входной сигнал изменяется. Компаратор может включаться в двух основных конфигурациях:

  • Инвертирующая:
    VIN подключается к инвертирующему входу усилителя (–), а VREF – к неинвертирующему (+) входу (Рисунок 2). Если VIN > VREF, уровень выходного напряжения низкий. Если VIN  
  • Неинвертирующая:
    (Подключение входов противоположное изображенному на Рисунке 2). VIN подключается к неинвертирующему входу усилителя (+), а VREF – к инвертирующему (–). Если VIN > VREF, уровень выходного напряжения высокий. Если VIN

На Рисунке 2 показана инвертирующая схема с фиксированным постоянным опорным напряжением и сигналом треугольной формы (Рисунок 2в).

Пока входное напряжение ниже порога, уровень выхода остается высоким (см. передаточную характеристику на Рисунке 2б). Когда входной сигнал превысит порог, выход переключится в низкое состояние.

Затем во время спада входного сигнала уровень выхода вновь станет высоким.

Рисунок 2.Типичное включение инвертирующего компаратора (а), его передаточная характеристика (б), а также сигналы

на входе и выходе (в).

Шумы

Одной из часто возникающих проблем является шум или многократные кратковременные переключения выхода вблизи пороговых уровней компаратора. Этот так называемый «дребезг» возникает при медленном изменении входного сигнала и может стать причиной неправильной работы приложения.

Это будет происходить даже при очень чистых входных сигналах, поскольку компараторы, как и ОУ, имеют собственные шумы.

К такому же эффекту иногда приводят помехи, возникающие при больших скачках выходного напряжения, которые могут проникать обратно на вход через шины питания или другие цепи.

Важно

Единственным способом решения этой проблемы может быть использование гистерезиса [2] (Рисунок 3). Опорное напряжение подается через два резистора, обеспечивающих регенеративную, или положительную обратную связь, которая увеличивает скорость переключения и практически полностью исключает дребезг.

Рисунок 3.Гистерезис в компараторе (а) позволяет устранить дребезг
при переключениях выхода (б).

Гистерезис устанавливает напряжения верхнего (VU) и нижнего (VL) порогов переключения вокруг опорного уровня. Небольшое окно, или мертвая зона, обеспечивает свободное от дребезга чистое переключение выхода. Резисторы R1 и R2 задают пороговые напряжения, уровни которых могут быть рассчитаны с помощью следующих выражений:

Узнайте больше

Если вы хотите больше узнать о специфике использования операционных усилителей в качестве компараторов, обратите внимание на учебные курсы Texas Instruments.

Урок 14 [3] посвящен принципам работы компаратора и описанию его ключевых характеристик по постоянному и переменному току.

Рассказано, как добавить гистерезис для защиты компаратора от входных шумов, а также приведены аргументы «за» и «против» использования ОУ в качестве компараторов.

Ссылки

Источник: https://www.rlocman.ru/review/article.html?di=500899

Приложения-компараторы — Comparator applications — qaz.wiki

Компаратор представляет собой электронный компонент , который сравнивает два входных напряжения. Компараторы тесно связаны с операционными усилителями , но компаратор предназначен для работы с положительной обратной связью и с насыщением его выхода на той или иной шине питания. При необходимости операционный усилитель можно использовать в качестве плохо работающего компаратора, но его скорость нарастания будет снижена.

Компаратор

Бистабильный выход, который указывает, какой из двух входов имеет более высокое напряжение. То есть,

Vвнезнак равно{VS+если V1>V2,VS-если V1<V2,0если V1знак равноV2,{\ displaystyle V _ {\ text {out}} = {\ begin {case} V _ {{\ text {S}} +} & {\ text {if}} V_ {1}> V_ {2}, \\ V_ {{\ text {S}} -} & {\ text {if}} V_ {1} <V_ {2}, \\ 0 & {\ text {if}} V_ {1} = V_ {2}, \ end {case}}}

где и — номинальные положительное и отрицательное напряжения питания (не показаны на схеме). VS+{\ displaystyle V _ {{\ text {S}} +}}VS-{\ displaystyle V _ {{\ text {S}} -}}

Пороговый детектор

Принципиальная схема порогового детектора с гистерезисом

Пороговый детектор с гистерезисом состоит из операционного усилителя и ряда резисторов , обеспечивающих гистерезис. Как и другие детекторы, это устройство работает как переключатель напряжения , но с одним важным отличием. На состояние выхода детектора напрямую влияет не входное напряжение, а падение напряжения на его входных клеммах (здесь обозначается как Va). Из Current закона Кирхгофа , эта величина зависит как от Vin и выходным напряжением самого порогового детектора, и умножается на коэффициент резистора.

Vазнак равнор1р1+р2Vяп+р5р1+р2VТЧАСротыт{\ displaystyle V_ {a} = {R_ {1} \ over {R_ {1} + R_ {2}}} V_ {in} + {R_ {5} \ over {R_ {1} + R_ {2}} } V_ {THRout}}

В отличие от детектора перехода через нуль, детектор с гистерезисом не переключается, когда Vin равно нулю, а на выходе становится Vsat +, когда Va становится положительным, и Vsat-, когда Va становится отрицательным. Дальнейшее изучение уравнения Va показывает, что Vin может превышать ноль (положительный или отрицательный) на определенную величину до того, как выходной сигнал детектора будет переключен. Регулируя значение R1, величина Vin, которая вызывает переключение детектора, может быть увеличена или уменьшена. Гистерезис полезен в различных приложениях. Он имеет лучшую помехозащищенность, чем датчик уровня, поэтому используется в интерфейсных схемах. Его положительная обратная связь имеет более быстрый переход, поэтому он используется в приложениях для измерения времени, таких как частотомеры. Он также используется в нестабильных мультивибраторах, используемых в таких инструментах, как генераторы функций.

Детектор пересечения нуля

Нулевой детектор пересечения является компаратором с набором опорного уровня в нуле. Он используется для обнаружения пересечения нуля сигналов переменного тока. Это может быть операционный усилитель с входным напряжением на его положительном входе (см. Принципиальную схему) .

Когда входное напряжение положительное, выходное напряжение — положительное значение, когда входное напряжение отрицательное, выходное напряжение — отрицательное значение. Величина выходного напряжения — это свойство операционного усилителя и его источника питания.

Приложения включают преобразование аналогового сигнала в форму, подходящую для использования для измерения частоты, в контурах фазовой автоподстройки частоты или для управления цепями силовой электроники, которые должны переключаться с определенной зависимостью от формы волны переменного тока.

Этот детектор использует свойство, состоящее в том, что мгновенная частота FM- волны приблизительно определяется как где — разница во времени между соседними нулевыми переходами FM-волны. жязнак равноΔт2{\ displaystyle f_ {i} = {\ frac {\ Delta t} {2}}}Δт{\ displaystyle \ Delta t}

Триггер Шмитта

Бистабильный мультивибратор выполнен в виде компаратора с гистерезисом .

В этой конфигурации, входное напряжение подается через делитель напряжения , образованный и (который может быть источником внутреннего сопротивления) на неинвертирующий вход и инвертирующий вход заземлен или ссылка. Кривой гистерезис неинвертирующий и пороги переключения являются , где самыми большой выходной величина операционного усилителя. р1{\ displaystyle {R_ {1}}}р2{\ displaystyle {R_ {2}}}±р1р2VСуббота{\ displaystyle \ pm {\ frac {R_ {1}} {R_ {2}}} V _ {\ text {sat}}}VСуббота{\ displaystyle V _ {\ text {sat}}}

В качестве альтернативы можно поменять местами источник входного сигнала и землю . Теперь входное напряжение подается непосредственно на инвертирующий вход и неинвертирующий вход заземлен или ссылка. Кривая гистерезиса инвертируется, а пороги переключения равны . Такая конфигурация используется в релаксационном генераторе, показанном ниже. ±р1р1+р2VСуббота{\ displaystyle \ pm {\ frac {R_ {1}} {R_ {1} + R_ {2}}} V _ {\ text {sat}}}

Осциллятор релаксации

Используя RC-цепь для добавления медленной отрицательной обратной связи к инвертирующему триггеру Шмитта , формируется релаксационный осциллятор . Обратная связь через RC-цепь заставляет выход триггера Шмитта колебаться в виде бесконечной симметричной прямоугольной волны (т. Е. Триггер Шмитта в этой конфигурации является нестабильным мультивибратором ).

Ссылки

6.7. Компараторы

Компаратор является одним из важнейших элементов преобразовательной техники, в частности, аналого-цифровых преобразователей, систем предельного контроля и т.п.

Простейший компаратор (рис. 10.28) состоит из ОУ без обратной связи; опорное напряжение Un подается на неинвертирующий вход ОУ. а на инвертирующий вход поступает суммарный входной сигнал Ui’ от источников Ui, Up (источник Up имитирует напряжение источника помехи, о чем более подробно сказано ниже). При Ui’>Un на выходе компаратора устанавливается напряжение Uo=-Us (отрицательное напряжение насыщения). В противоположном случае (Ui'< Un) получаем Uo=+Us. Если поменять местами входы, это приведет к инверсии выходного сигнала.


Рис. 10.28. Компаратор напряжения

На рис. 10.29, 10.30 показаны передаточная характеристика компаратора и осциллограммы напряжений.

Компаратор должен переключаться из одного состояния в другое с максимально возможной скоростью. В рассматриваемом компараторе ОУ используется с разомкнутой петлей обратной связи, поэтому отпадает необходимость в частотной коррекции, которая приводит к увеличению времени срабатывания. Время срабатывания — это время, необходимое для переключения компаратора из одного состояния в другое (из точки А в точку В передаточной характеристики на рис. 10.29). Максимальная скорость нарастания выходного напряжения показывает, насколько быстро изменяется выходной сигнал в процессе переключения.


Рис. 10.29. Передаточная характеристика компаратора



Ряс. 10.31. Компаратор с гистерезисом

Если напряжение Ui’, поступающее на вход компаратора, содержит помеху Up, то, как видно из осциллограмм на рис. 10.30, это приводит к ложным срабатываниям. Для их предотвращения применяют цепь положительной обратной связи, за счет которой часть выходного напряжения подается на неинвертирующий вход. Та— кой компаратор называется компаратором с гистерезисом, его принципиальная схема показана на рис. 10.31, а передаточная характеристика и осциллограммы сигналов — на рис. 10.32 и 10.33.

При введении в схему элементов положительной обратной связи (делитель на резисторах Rl, R2) изменяется опорное напряжение. При высоком уровне выходного напряжения +Us опорное напряжение Un возрастает на величину


В результате компаратор будет переключаться из состояния с высоким уровнем выходного напряжения при новом значении


Как только входное напряжение Ui превысит опорное напряжение Un’ (точка В на рис. 10.32), выходное напряжение компаратора начнет уменьшаться и через резистор R2 передаваться на неинвертирующий вход, стимулируя дальнейшее падение выходного напряжения. За счет положительной обратной связи этот процесс происходит лавинообразно, и компаратор быстро переключается в противоположное состояние (точка С на рис. 10.32). Поскольку на выходе компаратора действует теперь напряжение Uo=-Us, на его вход по цепи обратной связи передается напряжение


В этом случае устанавливается новое опорное напряжение для состояния с низким выходным уровнем

(точка D на рис. 10.32):


Как видно из осциллограммы на рис. 10.33, после введения положительной обратной связи составляющие помех во входном напряжении уже не вызывают ложных срабатываний компаратора. Ширина петли гистерезиса изменяется варьированием коэффициента передачи делителя на резисторах R1, R2.



Контрольные вопросы и задания

1. Что такое компаратор, в каких устройствах его применяют?

2. Проведите моделирование компаратора на рис. 10.28 при опорном напряжении Un=50 и 200 мВ.

3. Для компаратора на рис. 10.31 проведите моделирование при Un=0,5,0,6 и 0,7 В. Используйте полученные данные при проверке формулы для определения ширины гистерезиса


при напряжении насыщения ОУ 5 В [24].

4. Какие преимущества имеет компаратор с гистерезисом?

Прецизионный компаратор частоты на базе WWVB

Схема в предыдущей статье (рис. 1-2) использует шаговый двигатель в качестве «памяти скольжения» или «фазового аккумулятора». Каждый шаг представляет собой один цикл проскальзывания фазы. Совокупное проскальзывание представлено количеством шагов, отмеченных стрелкой, подключенной к валу шагового двигателя, указывающей на шкалу, по прошествии некоторого времени. Единственный другой ввод, необходимый для расчета стабильности тестируемого генератора, — это прошедшее время в секундах — время остановки теста минус время его начала.


Компьютер позволяет автоматизировать процесс долгосрочного тестирования. Поскольку у меня здесь есть компьютер, который работает круглосуточно без выходных (компьютер, на котором размещен этот веб-сайт), я решил создать интерфейс и написать какое-то программное обеспечение для обработки чисел.

На двух рисунках ниже показана схема компаратора с добавленным компьютерным интерфейсом (Рисунок 4), а также слегка измененная схема квадратурного смесителя (Рисунок 3).

(рисунок 3)

(рисунок 4)

Интерфейс (рис. 4) состоит из двух каскадных 4-битных двоичных счетчиков вверх / вниз CD4516, которые вместе составляют 8-битный двоичный счетчик вверх / вниз и линейный драйвер 74HC244.8 выходных линий драйвера линии подключаются через параллельный кабель принтера к параллельному порту ввода-вывода компьютера. (Параллельный порт использовался для подключения принтера в былые времена вычислительной техники.) Линия OE (разрешение вывода) передает сигнал от компьютера, сообщающий компаратору, когда он готов принять данные. Когда линия OE переходит в низкий уровень, выходы линейного драйвера включаются.

Счетчик — это счетчик «первого порядка» системы. Он отслеживает импульсы квадратурного смесителя.Обратите внимание, что есть два входа для счетчика, аналогичные двум входам для шагового двигателя. Один вход называется «часы» (C). Счетчик регистрирует счет каждый раз, когда тактовый сигнал меняется с низкого на высокий. Другой — «вверх / вниз» (U / D). Он сообщает счетчику, в каком направлении считать: вверху вверх, внизу вниз.

Тактовый сигнал выводится из отдельного триггерного затвора фильтра / Шмитта, показанного на рисунке 3, который называется «задержанным» I-каналом. (См .: LP-фильтр / триггер Шмитта *). Затвор I-канала с задержкой спроектирован с более широкой полосой гистерезиса, чем затвор I-канала под ним (обратите внимание на резистор 22 кОм и 100 кОм на конденсаторе обратной связи).

* LP фильтр / триггер Шмитта

Информация о фазе передается в рабочем цикле выходных импульсов компаратора, как показано на рисунке ниже. Первая строка показывает импульсы, поступающие от компаратора. Вторая линия показывает импульсы после интегрирования фильтром низких частот (состоящим из последовательного резистора 10 кОм и конденсатора обратной связи 0,1 мкФ). Третья строка показывает логический выход триггера Шмитта (два последовательных затвора инвертора и резистор обратной связи).Четвертая строка показывает «отложенный» логический вывод (задержанный вывод используется только для версии с компьютерным интерфейсом). Схема фильтра LP с задержкой / триггера Шмитта идентична во всех отношениях, за исключением замены резистора обратной связи меньшего номинала (22k) в цепи обратной связи. Резистор с меньшим номиналом приводит к более широкой полосе гистерезиса, что приводит к задержке около 45 градусов.

Без масштаба.

Задержанный сигнал I-канала далее обрабатывается U7b, который генерирует тактовый импульс как по переднему, так и по заднему фронту.Счетчик синхронизируется на через каждые шагов шагового двигателя, таким образом, эффективная частота дискретизации составляет 500 кГц. Результатом этих двух этапов обработки является гарантия того, что тактовый сигнал не может изменить состояние до того, как сигнал U / D изменит состояние, таким образом гарантируя, что один и только один счет будет зарегистрирован для каждого проскальзывания цикла.

Сигнал U / D генерируется путем объединения сигналов I-канала и Q-канала в U7a. Сигнал инвертируется (или не инвертируется) U7d, чтобы генерировать отсчеты в положительном направлении для положительных сдвигов фазы (или отрицательного направления, если выбрано перемычкой на землю на контакте 13).

Обратите внимание, что в счетчик встроена некоторая двусмысленность. После того, как он достигнет полного счета, двоичного числа 11111111 (dec 255), на следующем (восходящем) тактовом импульсе счетчик возвращается к значению 00000000, регистрируя огромный шаг назад. Аналогично, когда счетчик достигает значения 00000000, при следующем (понижающем) тактовом импульсе он переходит на 11111111, регистрируя огромный шаг вперед. Для упрощения аппаратного обеспечения двусмысленность устранена в программном обеспечении.

Приемник WWVB обеспечивает линию вывода индикатора потери несущей.Низкий уровень в этой строке указывает, что несущая из WWVB отсутствует или имеет низкое качество (низкое S / N). Этот сигнал используется для блокировки счетчика во время потери интервалов несущей, предотвращая накопление ложных счетчиков.

Что происходит при отключении электроэнергии?
Я обнаружил, что счетчики CD4516 могут удерживать счетчик проскальзываний при отключении электроэнергии, по крайней мере, на час или два (я никогда не проверял пределы). В конденсаторах накопителя энергии в источнике питания компаратора и в других местах может быть достаточно остаточного заряда, чтобы задействовать эту «функцию», или это может быть что-то, присущее микросхеме CD4516.Когда питание восстанавливается, накопление счетчика возобновляется, начиная со значения, которое было до сбоя питания, без единой вспышки. Это чистая интуиция. Эта возможность не была заложена в схему.

В разделе ниже представлены данные в реальном времени, собираемые компьютером, подключенным к компаратору частот WWVB, вместе с их оценкой.


Оценка данных проскальзывания фазы

Тестируемое устройство: модифицированный кварцевый генератор Hewlett-Packard 10544A

Накопленные данные о проскальзывании фазы и времени:

Через определенные промежутки времени веб-сервер вызывает программу, которая считывает выходные данные компаратора частоты WWVB через параллельный порт компьютера и добавляет текущий байт данных в файл аккумулятора.Самая старая запись в файле аккумулятора удаляется. Аккумулятор собирает 25 последовательных данных и показаний времени. Для текущего теста данные о проскальзывании считываются автоматически один раз в час (3600 секунд), а также могут считываться вручную чаще.

URL-адрес этой страницы вызывает программу (wwvb_computerized.php), которая отображает содержимое файла аккумулятора и вычисляет ошибку частоты на основе данных. Ошибка — это производная сдвигов фазы во времени:

Ошибка частоты * = d Nφ / d t,

где:
d N — количество сдвигов фазы,
φ — это фазовая ошибка, представленная каждым сдвигом в секундах,
и d t — истекшее время в секундах.

* Чаще называется смещением от номинала или просто смещением.

Каждое изменение на 1 точку в данных проскальзывания представляет собой проскальзывание фазы на 360 градусов (один цикл) на частоте 500 кГц, на которой сравниваются два источника (приемник WWVB и тестируемый источник). Таким образом, каждое проскальзывание представляет собой 1/500000 секунды (2 мкСм) фазовой ошибки. Расчет частотной ошибки принимает следующий вид:

Ошибка частоты = d N x 1/500000 x 1/ d t.

В таблице ниже показаны последние 25 выходных сырых данных от компаратора частоты (в десятичном формате), а также время записи данных.Последняя запись, записанная / рассчитанная за последний час, находится внизу.

1610771760 900
Сдвиг фазы
Счетчик, Н

d N
Компьютерное время,
t (секунды)

d t (секунды)
d N x 1/500000 x 1/ d t
Детали / 10 9 (округлено)
118 1610742960
118 0 1610746560 3600 0
118 0 1610750160 3600 0
118 0 1610753760 3600 086 0 1610757360 3600 0
119 1 1610760960 3600 0.6
119 0 1610764560 3600 0
119 0 1610768160 3600 0
119 0 0
119 0 1610775360 3600 0
119 0 1610778960 3600 0
119 0 161078

0
119 0 1610786160 3600 0
119 0 1610789760 3600 0
119 0 9009 3600 0
119 0 1610796960 9 0092 3600 0
120 1 1610800560 3600 0.6
119 -1 1610804160 3600 -0,6
119 0 1610807760 3600 0
119 0 1610811 3600 0
119 0 1610814960 3600 0
119 0 1610818560 3600 0
10 0
6010 3600 0
119 0 1610825760 3600 0
119 (последняя запись) 0 1610829360 3600 0

получить текущее чтение

24-часовой расчет:

Проскальзывания фазы ( d Н) (последняя запись минус ol конечная запись) = 1

Истекшее время ( d t) (последняя запись минус самая старая запись) = 86400 секунд

Расчетное смещение ( d N x 1/500000 x 1/ d t) = 2.3148148148148E-011

Коэффициент погрешности частоты, частей в 10 11 (округлено) = 2,3

Погрешность частоты (смещение от номинала) @:
1 МГц
= 2,3E-005 Гц
5 МГц = 0,000116 Гц
10 МГц = 0,00023 Гц


24-часовой рекорд:

Расширенный счет проскальзывания фазы (N) — 24-часовой график

Почасовые данные о сдвиге фазы за последние 24 часа отображаются на графике ниже.

  • Это расширенное графическое представление информации, показанной в левом столбце таблицы выше — счетчик фазовых сдвигов (N).
  • Вертикальная шкала: центральное число на красной линии координатной сетки показывает среднее значение сдвига фазы за 24 часа. Цифры над и под красной линией показывают отклонение от среднего.
  • Горизонтальная шкала: Час #
  • Последняя точка (# 24) была записана / рассчитана за последний час.

Резкие отклонения от нормы обычно возникают из-за того, что экспериментатор вручную настраивает тестируемое устройство или иным образом изменяет настройки теста.



31-дневный рекорд:

12-часовой средний счет фазового сдвига (N) и корректирующее напряжение — 31-дневный график

Данные о среднем сдвиге фазы и корректирующем напряжении (если применимо) два раза в день показаны на графике ниже. График показывает тенденцию за 31 день. Его плоскостность (или ее отсутствие) свидетельствует о внутренней устойчивости осциллятора.

  • Это еще одно представление информации о шаге, показанной в левом столбце выше.
  • Число фазовых сдвигов усредняется [(N 1 + N 2 + … + N 12 ) / 12] и строится с интервалом в 12 часов.
  • Левая вертикальная шкала: среднее абсолютное количество сдвигов фазы.
  • Правая вертикальная шкала: напряжение коррекции контроллера. Это напряжение вырабатывается частотным регулятором, показанным в третьей статье этой серии, и напрямую соотносится со счетчиком проскальзывания фазы. Напряжение имеет значение, только если контроллер используется для коррекции проверяемого генератора.(Контроллер — это , который в настоящее время используется для коррекции проверяемого генератора.)
  • Горизонтальная шкала: День #
  • Последняя точка (№31) была записана / рассчитана за последние 12 часов.

Резкие отклонения от нормы обычно возникают из-за того, что экспериментатор вручную настраивает тестируемое устройство или иным образом изменяет настройки теста.


Частота — 31-дневный график

Дважды в день вычисляется ошибка частоты, которая отображается на графике ниже.Показаны данные об ошибках за 31 день.

  • Вертикальная шкала: частей на 10 11
  • Горизонтальная шкала: День #
  • Последняя точка (31-й день) была рассчитана за последние 12 часов.

Итого:

Частота

— Расчетное смещение за 31 день

-0.42052 / 10 11

Когда проверяемый генератор настраивается контроллером, смещение частоты, усредненное за длительный период времени, будет приближаться к нулю.



Фото

HP10544A / Аналоговый вольтметр

Компаратор

Приемник WWVB

Схема, созданная с помощью DCCAD.

наверх ↑

Определение расчета Merriam-Webster

cal · cu · la · ция | \ ˌKal-kyə-ˈlā-shən \

Определение расчета

b : результат расчета

2a : изученная помощь при анализе или планировании

b : холодное бессердечное планирование продвигать личный интерес

Другие слова из расчета

расчетный \ ˌkal- kyə- ˈlāsh- nəl, — ˈlā- shə- nᵊl \ прилагательное

Синонимы для расчета

Синонимы

  • арифметика ,
  • исчисление,
  • шифрование,
  • вычисление,
  • фигур,
  • вычисление,
  • математика,
  • математика,
  • числовое вычисление,
  • чисел,
  • из расчета в предложении

    По расчетам экспертов , эта звезда взорвется в течение двух миллиардов лет.Компьютер может выполнять миллионы вычислений каждую секунду. Тщательный расчет требуется для определения необходимого количества топлива. Книга раскрывает холодных расчетов , которые стояли за политикой правительства. Его позиция основана на политическом расчете того, что хотят услышать избиратели.

    См. Другие недавние примеры в Интернете Расчет The Post отражает 703 000 ожидающих рассмотрения апелляций по всей стране и 529 000 человек, ожидающих решения о льготах в штатах, которые публично делятся этой информацией или которые ответили на запрос о комментарии. — Washington Post , «Спустя несколько месяцев более 1 миллиона американцев все еще ждут помощи по безработице», 4 января 2021 г. Готовность борцов за изменение климата позвонить Оссоффу свидетельствует о стратегическом расчете , а не о бессмертной лояльности.- Кейт Аронофф, The New Republic , «Прагматизм радикальных климатических левых», 30 декабря 2020 г. В расчет входят четыре фактора: доступная пропускная способность отделения интенсивной терапии, частота госпитализаций, среднее значение за семь дней заболеваемость коронавирусом и скорость передачи вируса. — Los Angeles Times , «Порядок проживания дома для большей части Калифорнии продлен из-за перегрузки больниц COVID-19», 29 декабря 2020 г. В законопроекте есть формулировка, которая исключает эти льготы из расчета права на доход во многих случаях .- New York Times, Star Tribune , «Пакет стимулов: что в нем для вас», 27 декабря 2020 г. Расчет был произведен доктором Чаком Клеландом, доцентом биостатистики в Школе Гроссмана Нью-Йоркского университета. Лекарство. — New York Times , «Изоляция помогает бездомному спастись от наихудшего вируса», 23 декабря 2020 г. Эти расхождения обычно могут возникать при наличии ошибок в расчетах или различий в сборах за электронную обработку, а также в случаях потенциального мошенничества.- Марк Маурер, WSJ , «Ранее внутренние аудиторы компаний тестировали другие риски, связанные с коронавирусом», 21 декабря 2020 г. Тьюринг доказал, что этот простой компьютер способен выполнять любые возможные вычисления при наличии правильных инструкций и достаточно времени. — Quanta Magazine , «Как самые медленные компьютерные программы освещают фундаментальные пределы математики», 10 декабря 2020 г. Но в своем расчете в начале декабря правительство использовало два числа, которые были ниже официальных цифр, опубликованных в других местах, согласно федеральным документам, рассмотренным Времена.- New York Times , «Мексика ввела в заблуждение граждан относительно серьезности коронавируса в ее столице», 21 декабря 2020 г.

    Эти примеры предложений автоматически выбираются из различных источников новостей в Интернете, чтобы отразить текущее употребление слова «расчет». Взгляды, выраженные в примерах, не отражают мнение компании Merriam-Webster или ее редакторов. Отправьте нам отзыв.

    Подробнее

    Первое использование вычисления

    14 век, в значении, определенном в смысле 1a

    Подробнее о вычислении

    Статистика для вычисления

    Процитируйте эту запись

    «Расчет.” Словарь Merriam-Webster.com , Merriam-Webster, https://www.merriam-webster.com/dictionary/calculation. Доступ 16 января 2021 г.

    MLA Chicago APA Merriam-Webster

    Дополнительные определения для расчета

    cal · cu · la · ция | \ ˌKal-kyə-ˈlā-shən \

    Kids Определение вычисления

    : процесс или результат сложения, вычитания, умножения или деления Требуется тщательный расчет .Наши расчеты указывают на небольшое увеличение.

    Комментарии к расчету

    Что заставило вас искать расчет ? Сообщите, пожалуйста, где вы это читали или слышали (включая цитату, если возможно).

    Номинальная, порядковая, интервальная, масштабная шкала с примерами

    Уровни измерения в статистике

    Для проведения статистического анализа данных важно сначала понять переменные и то, что следует измерять с помощью этих переменных.В статистике существуют разные уровни измерения, и данные, измеренные с их помощью, можно в целом разделить на качественные и количественные данные.

    Во-первых, давайте разберемся, что такое переменная. Величина, значение которой изменяется среди населения и может быть измерено, называется переменной. Например, рассмотрим выборку занятых лиц. Переменными для этой совокупности могут быть отрасль, местоположение, пол, возраст, навыки, тип работы и т. Д. Значение переменных будет отличаться для каждого сотрудника.

    Например, посчитать среднюю почасовую ставку рабочего в США практически невозможно. Таким образом, выборочная аудитория выбирается случайным образом, так что она надлежащим образом представляет большую популяцию. Затем рассчитывается средняя почасовая ставка этой выборочной аудитории. Используя статистические тесты, вы можете сделать вывод о средней почасовой ставке для большей части населения.

    Уровень измерения переменной определяет, какой тип статистического теста будет использоваться. Математическая природа переменной или, другими словами, способ измерения переменной считается уровнем измерения.

    Что такое номинальная, порядковая, интервальная шкала и шкала отношения?

    Номинальный, Порядковый, Интервальный и Отношение определяются как четыре основных уровня шкалы измерения, которые используются для сбора данных в форме опросов и анкет, каждый из которых представляет собой вопрос с несколькими вариантами ответов.

    Каждая шкала представляет собой инкрементный уровень измерения, что означает, что каждая шкала выполняет функцию предыдущей шкалы, и все шкалы вопросов опроса, такие как Лайкерта, семантическая дифференциация, дихотомия и т. Д., Являются производными этих 4 основных уровней измерения переменных. .Прежде чем мы подробно обсудим все четыре уровня шкал измерения с примерами, давайте кратко рассмотрим, что представляют собой эти шкалы.

    Номинальная шкала — это шкала именования, где переменные просто «именуются» или помечаются без определенного порядка. В порядковой шкале все переменные расположены в определенном порядке, помимо их именования. Шкала интервалов предлагает метки, порядок, а также определенный интервал между каждой из ее переменных параметров. Масштаб отношения имеет все характеристики интервальной шкалы, в дополнение к этому, она также может содержать значение «ноль» для любой из своих переменных.

    Подробнее о номинальном, порядковом, интервальном, соотношении: четыре уровня измерения в исследованиях и статистике.

    Номинальная шкала

    , также называемая категориальной шкалой переменных, определяется как шкала, используемая для обозначения переменных в различных классификациях, и не включает количественное значение или порядок. Эта шкала является самой простой из четырех шкал измерения переменных. Расчеты, выполненные с этими переменными, будут бесполезными, поскольку нет числового значения параметров.

    Есть случаи, когда эта шкала используется с целью классификации — числа, связанные с переменными этой шкалы, являются только тегами для категоризации или деления.Расчеты, сделанные на основе этих чисел, будут бесполезными, поскольку они не имеют количественного значения.

    Для такого вопроса, как:

    Где ты живешь?

    • 1- Пригород
    • 2- Городской
    • 3- Городок

    Номинальная шкала часто используется в исследовательских опросах и анкетах, где значение имеют только метки переменных.

    Например, опрос клиентов с вопросом «Какую марку смартфонов вы предпочитаете?» Варианты: «Apple» — 1, «Samsung» — 2, «OnePlus» — 3.

    • В этом вопросе опроса для исследователя, проводящего исследование потребителей, имеют значение только названия брендов. Для этих брендов нет необходимости в каком-либо конкретном заказе. Однако, собирая номинальные данные, исследователи проводят анализ на основе связанных меток.
    • В приведенном выше примере, когда респондент выбирает Apple в качестве предпочитаемого бренда, введенные и связанные данные будут иметь значение «1». Это помогло количественно оценить и ответить на последний вопрос — сколько респондентов выбрали Apple, сколько выбрали Samsung и сколько выбрали OnePlus — и какой из них самый высокий.
    • Это основа количественного исследования, а номинальная шкала — самая фундаментальная шкала исследования.
    Данные номинального масштаба и анализ

    Существует два основных способа сбора данных номинальной шкалы:

    1. Задавая открытый вопрос, ответы на который могут быть закодированы в соответствующий номер ярлыка, выбранный исследователем.
    2. Другой альтернативой для сбора номинальных данных является включение вопроса с несколькими вариантами ответов, в котором будут помечены ответы.

    В обоих случаях анализ собранных данных будет происходить с использованием процентов или режима, то есть наиболее распространенного ответа, полученного на вопрос. Для одного вопроса может быть несколько режимов, поскольку в целевой группе могут существовать два общих избранных вопроса.

    Примеры номинальной шкалы
    • Пол
    • Политические предпочтения
    • Место жительства
    Ваш пол? Каковы ваши политические предпочтения? Где ты живешь?
    • 1- Независимый
    • 2- Демократ
    • 3- республиканский
    • 1- Пригород
    • 2- Городской
    • 3- Городок

    Создать бесплатный аккаунт

    Номинальная шкала SPSS

    В SPSS вы можете указать уровень измерения в виде шкалы (числовые данные в интервале или шкале отношений), порядкового или номинального значения.Номинальные и порядковые данные могут быть строковыми, буквенно-цифровыми или числовыми.

    При импорте данных для любой переменной во входной файл SPSS он принимает их по умолчанию в качестве масштабной переменной, поскольку данные по существу содержат числовые значения. Важно изменить его либо на номинальное, либо на порядковое, либо оставить его в виде шкалы в зависимости от переменной, которую представляют данные.

    Порядковая шкала: 2 nd Уровень измерения

    Порядковая шкала

    определяется как шкала измерения переменных, используемая для простого отображения порядка переменных, а не разницы между каждой из переменных.Эти шкалы обычно используются для отображения нематематических идей, таких как частота, удовлетворение, счастье, степень боли и т. Д. Довольно просто запомнить реализацию этой шкалы, поскольку «Порядковый» звучит так же, как «Порядок». как раз цель этой шкалы.

    Порядковая шкала

    поддерживает описательные качества наряду с внутренним порядком, но лишена происхождения шкалы, и поэтому расстояние между переменными не может быть вычислено. Описательные качества указывают на свойства маркировки, аналогичные номинальной шкале, в дополнение к которой порядковая шкала также имеет относительное положение переменных.Начало этой шкалы отсутствует, из-за чего нет фиксированного начала или «истинного нуля».

    Примеры порядковой шкалы

    Статус на рабочем месте, рейтинг команд в турнирах, порядок качества продукции, а также порядок согласия или удовлетворения — некоторые из наиболее распространенных примеров порядковой шкалы. Эти шкалы обычно используются в исследованиях рынка для сбора и оценки относительной обратной связи об удовлетворенности продуктом, изменении восприятия при обновлении продукта и т. Д.

    Например, вопрос о шкале семантического дифференциала, такой как:

    Насколько вы довольны нашими услугами?

    • Совершенно не удовлетворен — 1
    • Неудовлетворительно — 2
    • нейтральный — 3
    • Удовлетворены — 4
    • Очень доволен — 5
    1. Здесь порядок переменных имеет первостепенное значение, как и маркировка.Очень неудовлетворенный всегда будет хуже, чем неудовлетворенный, а удовлетворенный будет хуже, чем полностью удовлетворенный.
    2. Здесь порядковая шкала — это ступенька выше номинальной шкалы — порядок имеет отношение к результатам, как и их наименования.
    3. Анализ результатов на основе порядка и имени становится удобным процессом для исследователя.
    4. Если они намереваются получить больше информации, чем то, что они собрали бы с использованием номинальной шкалы, они могут использовать порядковую шкалу.

    Эта шкала не только присваивает значения переменным, но также измеряет ранг или порядок переменных, например:

    • Марки
    • Удовлетворение
    • Счастье

    Насколько вы довольны нашими услугами?

    • 1- Очень неудовлетворен
    • 2- Неудовлетворительно
    • 3- Нейронный
    • 4- Доволен
    • 5- Очень доволен
    Порядковые данные и анализ

    Данные порядковой шкалы могут быть представлены в табличном или графическом формате, чтобы исследователь мог провести удобный анализ собранных данных.Кроме того, для анализа порядковых данных можно использовать такие методы, как U-критерий Манна-Уитни и H-критерий Краскела-Уоллиса. Эти методы обычно используются для сравнения двух или более порядковых групп.

    В U-тесте Манна-Уитни исследователи могут сделать вывод, какая переменная одной группы больше или меньше другой переменной случайно выбранной группы. Используя H-тест Краскела-Уоллиса, исследователи могут проанализировать, имеют ли две или более порядковые группы одинаковую медианную или нет.

    Узнать о: Номинальный vs.Порядковая шкала

    Интервальная шкала: 3 rd Уровень измерения

    Интервальная шкала определяется как числовая шкала, в которой известен порядок переменных, а также разница между этими переменными. Переменные, которые имеют знакомые, постоянные и вычислимые различия, классифицируются с использованием шкалы интервалов. Легко запомнить и первостепенную роль этой шкалы: «Интервал» указывает на «расстояние между двумя объектами», в достижении которого помогает интервальная шкала.

    Эти весы эффективны, так как открывают двери для статистического анализа предоставленных данных. Среднее значение, медиана или мода могут использоваться для расчета центральной тенденции в этой шкале. Единственный недостаток этой шкалы — отсутствие заранее определенной начальной точки или истинного нулевого значения.

    Интервальная шкала содержит все свойства порядковой шкалы, кроме того, она предлагает вычисление разницы между переменными. Основная характеристика этого масштаба — равноудаленное расстояние между объектами.

    Например, рассмотрим температурную шкалу Цельсия / Фаренгейта —

    • 80 градусов всегда выше 50 градусов, и разница между этими двумя температурами такая же, как разница между 70 и 40 градусами.
    • Кроме того, значение 0 является произвольным, поскольку отрицательные значения температуры действительно существуют, что делает шкалу температур Цельсия / Фаренгейта классическим примером интервальной шкалы.
    • Интервальная шкала часто выбирается в исследовательских случаях, когда разница между переменными является обязательной, чего нельзя достичь с помощью номинальной или порядковой шкалы.Шкала интервалов количественно определяет разницу между двумя переменными, тогда как две другие шкалы способны исключительно связывать качественные значения с переменными.
    • Среднее и медианное значения в порядковой шкале можно оценить, в отличие от двух предыдущих шкал.
    • В статистике часто используется интервальная шкала, поскольку числовое значение может не только быть присвоено переменным, но также может выполняться расчет на основе этих значений.

    Даже если интервальные шкалы великолепны, они не вычисляют значение «истинного нуля», поэтому на картинке появляется следующая шкала.

    Интервальные данные и анализ

    Все методы, применимые к номинальному и порядковому анализу данных, также применимы к интервальным данным. Помимо этих методов, существует несколько методов анализа, таких как описательная статистика, корреляционный регрессионный анализ, который широко используется для анализа интервальных данных.

    Описательная статистика — это термин, используемый для анализа числовых данных, который помогает описать, изобразить или суммировать данные значимым образом, а также помогает в вычислении среднего, медианы и режима.

    Примеры интервальной шкалы
    • Бывают ситуации, когда шкалы отношения считаются интервальными шкалами.
    • Помимо шкалы температур, время также является очень распространенным примером шкалы интервалов, поскольку значения уже установлены, постоянны и измеримы.
    • Календарные годы и время также подпадают под эту категорию измерительных шкал.
    • шкала Лайкерта, оценка Net Promoter Score, семантическая дифференциальная шкала, таблица биполярной матрицы и т. Д.являются наиболее часто используемыми примерами интервальной шкалы.

    Следующие вопросы подпадают под категорию интервальной шкалы:

    • Каков доход вашей семьи?
    • Какая температура в вашем городе?

    Создать бесплатный аккаунт

    Масштаб передаточного отношения: 4 th Уровень измерения

    Ratio Scale определяется как шкала измерения переменных, которая не только определяет порядок переменных, но и делает известными разницу между переменными вместе с информацией о значении истинного нуля.Он рассчитывается исходя из предположения, что переменные имеют нулевое значение, разница между двумя переменными одинакова и существует определенный порядок между вариантами.

    С опцией истинного нуля к переменным могут применяться различные методы логического вывода и описательного анализа. В дополнение к тому факту, что шкала отношений делает все, что могут делать номинальные, порядковые и интервальные шкалы, она также может устанавливать значение абсолютного нуля. Лучшими примерами шкал соотношений являются вес и рост.В исследованиях рынка шкала соотношений используется для расчета доли рынка, годовых продаж, цены предстоящего продукта, количества потребителей и т. Д.

    • Шкала отношений предоставляет наиболее подробную информацию, поскольку исследователи и статистики могут рассчитать центральную тенденцию с использованием статистических методов, таких как среднее значение, медиана, мода, и такие методы, как среднее геометрическое, коэффициент вариации или среднее гармоническое, также могут быть использованы для этого. шкала.
    • Шкала отношения вмещает характеристики трех других шкал измерения переменных, т.е.е. маркировка переменных, значимость порядка переменных и вычислимая разница между переменными (которые обычно эквидистантны).
    • Из-за наличия истинного нулевого значения шкала отношения не имеет отрицательных значений.
    • Чтобы решить, когда использовать шкалу отношений, исследователь должен проследить, обладают ли переменные всеми характеристиками шкалы интервалов наряду с наличием абсолютного нулевого значения.
    • Среднее значение, мода и медиана могут быть рассчитаны с использованием шкалы отношений.
    Соотношение данных и анализ

    На фундаментальном уровне данные шкалы соотношений носят количественный характер, благодаря чему все методы количественного анализа, такие как SWOT, TURF, кросс-табуляция, объединение и т. Д., Могут использоваться для расчета данных о соотношении. В то время как некоторые методы, такие как SWOT и TURF, будут анализировать данные о соотношении таким образом, чтобы исследователи могли создавать дорожные карты по улучшению продуктов или услуг, а кросс-табуляция будет полезна для понимания того, будут ли новые функции полезны для целевого рынка или нет.

    Примеры масштабного соотношения

    Следующие вопросы относятся к категории «Шкала отношения»:

    • Какой рост у вашей дочери сейчас?
      • Менее 5 футов.
      • 5 футов 1 дюйм — 5 футов 5 дюймов
      • 5 футов 6 дюймов — 6 футов
      • Более 6 футов
    • Какой у вас вес в килограммах?
      • Менее 50 кг
      • 51-70 килограмм
      • 71-90 килограмм
      • 91-110 килограмм
      • Более 110 килограммов

    Узнать больше: Интервал vs.Масштаб отношения

    Сводка — уровни измерения

    Четыре шкалы измерения данных — номинальная, порядковая, интервальная и относительная — довольно часто обсуждаются в академическом обучении. Приведенная ниже легко запоминающаяся диаграмма может помочь вам в тесте статистики.

    Предложения: Номинал Порядковый номер Интервал Передаточное отношение
    Последовательность переменных установлена ​​ Есть Есть Есть
    Режим Есть Есть Есть Есть
    Медиана Есть Есть Есть
    Среднее значение Есть Есть
    Разницу между переменными можно оценить Есть Есть
    Сложение и вычитание переменных Есть Есть
    Умножение и деление переменных Есть
    Абсолютный ноль Есть

    Создать бесплатный аккаунт

    .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *