Расчет мощности по сопротивлению: Расчет мощности по току и напряжению

Содержание

Онлайн калькулятор: Работа и мощность тока

Данный калькулятор можно использовать для проверки решений задач на тему «Постоянный ток. Работа и мощность тока», которая изучается в школьном курсе физики. Чтобы воспользоваться калькулятором, надо ввести известные в задаче значения, и оставить пустыми поля для неизвестных значений. Калькулятор, если ему хватает введенных данных, рассчитает и отобразит неизвестные значения.

Пример задачи: Подъемный кран потребляет ток силой 40А из сети с напряжением 380В. На подъем бетонной плиты кран затратил 3.5 минуты. Определите работу, которую совершил кран.

Для проверки решения этой задачи калькулятором надо ввести 40 в поле «Сила тока», 380 — в поле «Напряжение» и 3.5 — в поле «Время», поставив значение единиц времени в «минуты». В результате калькулятор рассчитает величину работы, а также мощности и сопротивления. Формулы расчета приведены под калькулятором.

Работа и мощность тока
ЕдиницымААмперкАМАЕдиницымВВольткВМВЕдиницымОмОмкОмМОмЕдиницыДжоульМДжкВт•час
ЕдиницыВатткВтМВтЕдиницысекундыминутычасыТочность вычисления

Знаков после запятой: 2

Сила тока, Ампер

 

Напряжение, Вольт

 

Сопротивление, Ом

 

Работа, Джоуль

 

Мощность, Ватт

 

Время, секунд

 

content_copy Ссылка save Сохранить extension Виджет

Работа и мощность тока

Под работой тока понимают работу, совершаемую электрическими силами по переносу заряженных частиц. Эта работа оценивается как произведение величины перенесенного заряда на величину разности потенциалов (напряжения) между начальной и конечной точками переноса.

С другой стороны, силу тока можно также выразить через величину перенесенного заряда

Откуда можно выразить работу тока, как скалярную величину, равную произведению силы тока, напряжения и времени, в течении которого шел ток

Кстати, исходя из этого соотношения, 1Дж = 1В·1А·1с

Применяя закон Ома для участка цепи

Можно получить производные формулы для работы:

Так как мощность это работа, совершенная за единицу времени, соответственно, мощность тока — это работа тока, совершенная за единицу времени.

Соответственно, мощность можно выразить как

Калькулятор расчета спирали из нихрома и фехраля для нагревателей :: информационная статья компании Полимернагрев

Электронагреватели могут производиться с нагревательными спиралями из различных материалов, но наиболее популярными все же являются нихром и фехраль. Нихром — это сплав никеля и хрома, а фехраль – сплав железа, хрома и алюминия. Они имеет высокую коррозионную стойкость и температуру плавления, поэтому и используется в электрических приборах и нагревателях.

Данная статья поможет вам разобраться в расчетах параметров греющих спиралей, а простые и удобные калькуляторы сделают быстрый подсчет нужной длины проволоки и переведут длину в вес и обратно. Воспользуйтесь этими онлайн-калькуляторами нихромовой проволоки, чтобы рассчитать сопротивление, площадь сечения, ток и длину нихромовой и фехралевой проволоки, просто указав мощность и напряжение.

Расчет длины спирали

Расчет веса и длины

Расчет спирали из нихрома и фехраля

Существует несколько способов расчета греющих спиралей, рассмотрим для начала более простой метод, учитывающий только сопротивление материала, а потом включим в расчет еще и изменение сопротивления под воздействием темепературы.

Способ расчета спирали по сопротивлению материала

В данном способе все довольно просто. Нам нужны первоначальные данные, на основе которых мы будем проводить вычисления. Они включают в себя:

  • Мощность нагревательного элемента, который хотите получить

  • Напряжение, при котором спираль будет работать

  • Диаметр и тип проволоки, который имеется в наличии

Предположим, у нас имеется электроприбор, который должен работать с мощностью 12 Вт под напряжением 24 В. При этом мы используем проволоку из нихрома с сечением 0,2 мм.

Для вычислений нам потребуется самая элементарная формула из общеобразовательного курса физики:

Мощность (Р) = Напряжение (U) * Сила тока (I)

Отсюда

І = Р: U = 12 : 24 = 0,5 А

Теперь воспользуемся законом Ома для определения сопротивления:

Сопротивление (R ) = Напряжение (U)  * Сила тока (I) = 24/0,5 = 48 Ом

Теперь нам нужна формула для определения длины проводника:

Длина (L) = Площадь сечения (S) * Сопротивление (R)  / Плотность материала (ρ)

Как же  узнать сопротивление нихромовой проволоки?  Помочь в решении данной задачи нам помогут таблицы плотности материалов или формулы для вычисления значения. Итак, если у нас проволока имеет диаметр 0,2, значит площадь сечения по формуле будет 0,0314 мм2, сопротивление смотрим по таблице и получаем длину проволоки 1,3 м.

Но это все чисто теоретически, ведь мы не знаем, сможет ли выдержать проволока данного диаметра такой ток. Посмотрим таблицу, в ней указаны максимальные значения тока для проволоки определенного диаметра. В нашем случае это 0,65, значит наше значение 0,5 лежит в допустимых пределах.

Также не забывайте учесть среду, в которой будет работать нагреватель. Если вы греете жидкость, можно смело увеличивать силу тока вдвое, а если замкнутое пространство – наоборот, уменьшать.



Способ расчета спирали по температуре

Тот, способ, который мы описывали выше, является не очень точным по той причине, что нами не было взято в расчет изменение сопротивления резистивной проволоки при росте температуры. Поэтому его можно применять только для не слишком высоких температур до 200-250 градусов. Для высокотемпературных печей данный расчет будет совсем неточным, поэтому рассмотрим второй метод.

Возьмем муфельную печь отжига и определим объем камеры и нужную мощность. Помогут с вычислениями нам такие два правила.

  • Если объем печи меньше 50 литров, то подбираем мощность 100 Вт на литр

  • Если же объем печи больше 100 литров, мощность рассчитывается как 50-70 Вт на литр

Допустим, наша печь отжига имеет объем 50 литров, мощность тогда будет 5 кВт. Если напряжение в сети должно быть стандартные 220 В, то сила тока и сопротивление будет равны:

І = 5000:220 = 22,7 А

R = 220:22,7 = 9,7 Ом

Подключение звездой при напряжении 380 В потребует деления мощности на 3 фазы, тогда наша мощность для одной фазы будет равна 5кВт / 3 = 1,66 кВт

Подключение звездой предполагает, что на каждую из фаз будет подаваться напряжение питания 220 В, следовательно значения сопротивления и силы тока будет такими:

І = 1660/220 = 7,54 А

R = 220/7,54 = 29,1 Ом

Второй тип подключения ТЭНов для напряжения в 380 В «треугольник» предполагает подачу линейного напряжения в 380 В, поэтому мы получим:

І = 1660/380 = 4,36 А

R = 380/4,36 = 87,1 Ом

При помощи ниже указанных таблиц мы можем найти удельную поверхностную мощность нагревательного элемента и вычислить на его основе длину проволоки.

Поверхностная мощность = βэф*α(коэффициент эффективности)


В итоге, чтобы наша печь нагрелась до 1000 С, нагревательный элемент должен производить температуру в 1100 градусов. Возьмем таблицы и выберем соответствующие значения. Тогда получим:

  • Поверхностная мощность (Вдоп)=4,3∙0,2=0,86Вт/см2=8600 Вт/м2

  • Диаметр определяется по формуле d=3√((4*Rt*P2)/(π2*U2доп))

Rt — удельное сопротивление материала при нужной температуре берем из таблицы


Если наша спираль изготовлена из нихрома марки Х80Н20, Rt будет равняться 1,025. Значит Рт=1,13 * 10

6 * 1,025 = 1,15 * 106 Ом на мм

При подключении типа «звезда»: диаметр равен 1,23 мм, длина = 42 м

Если же мы проверим результат по упрощенной формуле L=R/(p*k)

Получим 29,1/(0,82*1,033)= 34 м

Из этого мы видим, что не учитывая температуру мы получаем совсем другое значение длины проволоки и более правильным является выбор второго метода.

Итоги

Онлайн калькулятор для расчета спирали поможет вам с быстрыми предварительными расчетами, но для точного учета всех особенностей даже второго метода расчета с учетом температуры может быть не достаточно. На практике существует еще очень много факторов, которые нужно взять во внимание при расчете параметров нагревателя.

Если вам нужна помощь с расчетами нагревателей – обращайтесь к нам.

Наши специалисты имеют огромный опыт в проектировании нагревательных элементов для различного промышленного оборудования. Мы поможем с расчетами оптимальных параметров нагревательных элементов для вашего оборудования и можем изготовить любой тип нагревателей для Вас.


Онлайн калькулятор закона Ома для участка цепи

Рад приветствовать тебя, дорогой читатель, в этой первой статье моего блога! Ее я посвятил самому основному закону, который должен хорошо понимать современный человек, работающий с электричеством.

Мой онлайн калькулятор закона Ома создан для участка цепи. Он значительно облегчает электротехнические расчеты в домашней проводке, подходит для цепей переменного и постоянного тока.

Им просто пользоваться: прочти правила ввода данных и работай!

Содержание статьи

Правила работы на калькуляторе

В быту нас интересуют, как правило, четыре взаимосвязанных характеристики электричества:

  1. напряжение;
  2. ток;
  3. сопротивление;
  4. или мощность.

Если тебе известны две величины, входящие в закон Ома (U, R, I), то вводи их в соответствующие строки, а оставшийся параметр и мощность будут вычислены автоматически.

Будь внимательным, чтобы не допустить ошибки.

Все значения надо заполнять в одной размерности: амперы, вольты, омы, ватты без использования обозначений дольности или кратности.

Осуществить переход к ним тебе поможет наглядная таблица.

Онлайн калькулятор закона Ома

Простые примеры расчета

Бытовая сеть переменного тока

Пример №1.
Проверка ТЭНа.

В стиральную машину встроен трубчатый электронагреватель 1,25 кВт на 220 вольт. Требуется проверить его исправность замером сопротивления.
По мощности рассчитываем ток и сопротивление.

I = 1250 / 220 = 5,68 А; R = 220 / 5,68 = 38,7 Ом.

Проверяем расчет сопротивления калькулятором по току и напряжению. Данные совпали. Можно приступать к электрическим замерам.

Пример №2. Проверка сопротивления двигателя

Допустим, что мы купили моющий пылесос на 1,6 киловатта для уборки помещений. Нас интересует ток его потребления и сопротивление электрического двигателя в рабочем состоянии. Считаем ток:

I = 1600 / 220 = 7,3 А.

Вводим в графы калькулятора напряжение 220 вольт и ток 7,3 ампера. Запускаем расчет. Автоматически получим данные:

  • сопротивление двигателя — 30,1 Ома;
  • мощность 1600 ватт.

Цепи постоянного тока

Рассчитаем сопротивление нити накала галогенной лампочки на 55 ватт, установленной в фаре автомобиля на 12 вольт.

Считаем ток:

I = 55 / 12 = 4,6 А.

Вводим в калькулятор 12 вольт и 4,6 ампера. Он вычисляет:

  • сопротивление 2,6 ома.
  • мощность 5 ватт.

Здесь обращаю внимание на то, что если замерить сопротивление в холодном состоянии мультиметром, то оно будет значительно ниже.

Это свойство металлов позволяет создавать простые и относительно дешевые лампы накаливания без сложной пускорегулирующей аппаратуры, необходимой для светодиодных и люминесцентных светильников.

Другими словами: изменение сопротивления вольфрама при нагреве до раскаленного состояния ограничивает возрастание тока через него. Но в холодном состоянии металла происходит бросок тока. От него нить может перегореть.

Для продления ресурса работы подобных лампочек используют схему постепенной, плавной подачи напряжения от нуля до номинальной величины.

В качестве простых, но надежных устройств для автомобиля часто используется релейная схема ограничения тока, работающая ступенчато.

При включении выключателя SA сопротивление резистора R ограничивает бросок тока через холодную нить накала. Когда же она разогреется, то за счет изменения падения напряжения на лампе HL1 электромагнит с обмоткой реле KL1 поставит свой контакт на удержание.

Он зашунтирует резистор, чем выведет его из работы. Через нить накала станет протекать номинальный ток схемы.

Полезная информация для начинающего электрика

Как использовать закон Ома на практике

Почти два столетия назад в далеком 1827 году своими экспериментами Георг Ом выявил закономерность между основными характеристиками электричества.

Он изучил и опубликовал влияние сопротивления участка цепи на величину тока, возникающего под действием напряжения. Ее удобно представлять наглядной картинкой.

Любую работу всегда создает трудяга электрический ток. Он вращает ротор электрического двигателя, вызывает свечение электрической лампочки, сваривает или режет металлы, выполняет другие действия.

Поэтому ему необходимо создать оптимальные условия: величина электрического тока должна поддерживаться на номинальном уровне. Она зависит от:

  1. значения приложенного к цепи напряжения;
  2. сопротивления среды, по которой движется ток.

Здесь напряжение, как разность потенциалов приложенной энергии, является той силой, которая создает электрический ток.

Если напряжения не будет, то никакой полезной работы от подключённой электрической схемы не произойдёт из-за отсутствия тока. Эта ситуация часто встречается при обрыве, обломе или отгорании питающего провода.

Сопротивление же решает обратную для напряжения задачу. При очень большой величине оно так ограничивает ток, что он не способен совершить никакой работы. Этот режим применяется у хороших диэлектриков.

Примеры из жизни

№1: выключатель освещения разрывает цепь электрических проводов, по которым напряжение добирается до лампочки.

Между контактами образуется воздушный зазор. Он отличный изолятор, исключающий движение тока по осветительному прибору.

№2: клеммы розетки, как источника напряжения, замкнули между собой без сопротивления короткой проволокой. В этой ситуации создается короткое замыкание.

Ток КЗ способен сжечь электропроводку, вызвать пожар в квартире. Поэтому от таких ситуаций существует только одно спасение: использование защит, способных максимально быстро отключить питающее напряжение.

Для бытовой сети это функция автоматических выключателей или предохранителей, о работе которых я буду рассказывать в других статьях.

Используя сопротивление, следует понимать, что оно, само по себе, не вечно: обладая резервом противостояния приложенной энергии, оно может его израсходовать, не справиться со своей задачей и сгореть.

Поэтому для сопротивления вводится понятие мощности рассеивания, которая надежно отводится во внешнюю среду. Если тепловая энергия, развиваемая прохождением тока, превышает эту величину, то сопротивление сгорает.

Напряжение и сопротивление в комплексе формируют электрические процессы. Онлайн калькулятор закона Ома позволяет оптимально рассчитать величину тока, необходимую для совершения полезной работы.

Что такое участок цепи

Рассмотрим самую простую электрическую схему, состоящую из батарейки, лампочки и проводов. В ней циркулирует электрический ток.

Представленная схема или полная цепь состоит из двух контуров:

  1. Внутреннего источника напряжения.
  2. Внешнего участка: лампочки с подключенными проводами.

Те процессы, которые происходят внутри батарейки, нас интересуют в основном как познавательные. Их мы можем только ухудшить при неправильной эксплуатации.

Например, приходящая в квартиру электрическая энергия от трансформаторной подстанции нам не подвластна. Мы ей просто пользуемся. От неисправностей и аварийных режимов нас защищают автоматические выключатели, УЗО, реле РКН, ограничители перенапряжения или УЗИП, другие современные модули защит.

Внешний же, подключенный к источнику напряжения контур, является участком цепи, в котором мы, используя закон Ома, совершаем полезную для себя работу.

Как использовать треугольник закона Ома

Простое мнемоническое правило представлено тремя составляющими в виде частей треугольника. Оно позволяет легко запомнить взаимосвязи между током, сопротивлением и напряжением.

Вверху всегда стоит напряжение. Ток и сопротивление снизу. Когда вычисляем какую-то одну величину по двум другим, то ее изымаем из треугольника и выполняем арифметическое действие: деление или умножение.

Шпаргалка электрика для новичков

Треугольник закона Ома легко запоминается, но он не позволяет учитывать мощность потребления электроприбора. Этот четвертый параметр, важный для любого домашнего электрика, всегда надо учитывать. .

На всех бытовых электрических приборах указывают мощность потребления электрической энергии в ваттах или киловаттах. Ее формулы, совместно с предыдущими величинами, можно брать со следующей картинки.

Такая шпаргалка электрика позволяет делать простые вычисления в уме или на бумаге. Формулы из нее заложены в алгоритм, по которому работает мой онлайн калькулятор закона Ома.

Предлагаю провести одинаковые вычисления обоими методами и сравнить полученные результаты. Если вдруг найдете расхождения, то укажите в комментариях. Это будет ваша помощь моему проекту.

Я постарался кратко и просто рассказать о принципах работы закона Ома применительно к задачам, решаемым домашним мастером. Считаю, что это достаточно и не рассматриваю закон Ома для полной цепи в обычной форме, комплексных числах, или ином виде.

Если же вы хотите просмотреть видеоурок по этой теме, то воспользуйтесь материалами владельца Физика-Закон Ома.

Возможно, у вас остались вопросы о работе калькулятора? Задавайте. Я на них отвечу. Воспользуйтесь разделом комментариев.

Напоследок напоминаю, что у вас сейчас самое благоприятное время поделиться этим материалом с друзьями в соц сетях и подписаться на рассылку сайта. Тогда вы сможете своевременно получать информацию о новых публикуемых статьях.

Расчёт проволочного нагревателя | AlexGyver

Расчёт проволочного нагревателя нужен в первую очередь для определения потребного источника питания, то есть таких его параметров как напряжение и ток, ну и как следствие – мощности.

Хочу обратить ваше внимание, что существую онлайн-калькуляторы для расчёта сопротивления и остальных параметров проволочного нагревателя (примеры: раз, два)

Вот огромная подробная статья с расчётом ниромовых нагревателей.

Есть много различных сплавов с высоким удельным сопротивлением, из которых можно делать нагреватели. В нашем примере рассмотрим нихром и кантал. Для простоты расчётов ниже приведена таблица, содержащая в себе отношение диаметра проволоки к её сопротивлению на 1 метр (Ом/м).

Чтобы найти полное сопротивление отрезка проволоки, нужно:

  • Определить (задать) диаметр проволоки и её материал (это можно сделать при покупке =)
  • Согласно полученным (заданным) данным, найти его сопротивление (Ом/м) из таблицы
  • Умножить длину отрезка проволоки (в метрах!) на удельное, в итоге получится величина сопротивления (Ом).

Проделав эти шаги в обратной последовательности, можно найти ДЛИНУ проволоки, зная её сопротивление, и варьируя ПЛОЩАДЬ СЕЧЕНИЯ.

Зная сопротивление, можно “подключить” нашу проволоку к источнику питания, чтобы найти потребляемый ток. По закону Ома (I=U/R) ток равен напряжение (в Вольтах) / сопротивление (в Омах), на выходе получится ток в Амперах. Это нужно в такой ситуации: у вас есть блок питания например на 12 вольт и максимум на 3 Ампера. И вам нужно проверить, не будет ли ток от вашего нагревателя превышать максимальный допустимый ток с блока питания. Чтобы найти мощность нагревателя в Ваттах, нужно умножить ток на напряжение (P=U*I), где P – электрическая мощность в Ваттах.

Обратная задача: спроектировать нагреватель заданной мощности. Например, для стульчака с подогревом нужно около 30 Ватт.

  • Зададимся источником питания, пусть это будет БП на 12 Вольт от светодиодной ленты.
  • Смотрим, какой будет ток: I=P/U=30/12~2.5 Ампер. Значит, нужен блок питания как минимум на 3 Ампера, чтобы был запас по току.
  • Теперь можно найти сопротивление нагревателя из закона Ома: R=U/I=12/2,5=4.8 Ом.
  • Далее обращаемся к таблице сопротивлений, прикинув нужную длину проволоки. Допустим мне нужен нагреватель с длиной 0.5 метра. Это значит, что удельное сопротивление будет 4.8/0.5=9.6 Ом/м.
  • Ищем в таблице ближайшее удельное сопротивление (в моём примере это 9.06 Ом/м), и таким образом находим нужную нам площадь поперечного сечения провода (диаметр 0.46мм, значит площадь 0.16 мм2). Удельное будет слегка отличаться, так что можно провести проверочный расчёт, как в самом начале статьи. Зная новое удельное сопротивление (для выбранной проволоки), пересчитываем на наши 0.5 метров: 9.06*0.5=4.53 Ом. Таким образом, ток в цепи будет 12/4.53=2.65 Ампер, что несколько выше, чем мы хотели, но не выше 3 Ампер, как у нашего БП. Также увеличилась мощность, 2.65*12~32 Ватта. Если “реальное” значение вас не устраивает, можно слегка изменить ДЛИНУ нагревателя, и ток и мощность будут такие, как хотелось изначально. То есть берём не 0.5 метра, а чуть больше. Насколько чуть? Новую длину можно найти, разделив изначально нужно сопротивление на табличное удельное сопротивление, то есть в моём примере это 4.8/9.06~0.53 метра. Как видите, длина нашего нагревателя увеличилась на 3 сантиметра, но теперь мы получим нужные 30 Ватт.
  • Идём в магазин, и покупаем =)

Ещё одно важное дополнение: при последовательном соединении нагревателей их сопротивление складывается (R1+R2+R3…..). А вот при параллельном – складывается очень хитро.

Надеюсь данная статья будет полезна желающим разобраться “в сути вещей”. А так конечно можно использовать готовые калькуляторы =)

ПОХОЖИЕ ЗАПИСИ

Рассчитать мощность по сопротивлению и напряжению. Расчет мощности по току и напряжению

Расчет электрической мощности

В прошлой статье мы с вами вывели формулу для определения мощности в электрической цепи: умножая напряжение в «вольтах» на силу тока в «амперах», мы получаем мощность в «ваттах». Давайте применим ее к следующей схеме:

В этой схеме есть две известные нам величины: напряжение батареи составляет 18 вольт, а сопротивление лампы — 3 ома. Используя Закон Ома мы определим третью величину — силу тока:

Теперь, зная силу тока, мы можем умножить ее значение на напряжение и получить мощность:

Это означает что лампа рассеивает 108 ватт энергии в форме сета и тепла.

Давайте в этой же схеме увеличим напряжение батареи и посмотрим что произойдет. Интуиция подсказывает нам, что при увеличении напряжения и неизменном сопротивлении, сила тока в цепи также увеличится. А это значит, что увеличится и мощность:


В этой схеме напряжение батареи изменено и составляет 36 вольт вместо прежних 18. Сопротивление лампы не изменилось, и равно 3 омам. Сила тока теперь будет равна:

Давайте обсудим полученное значение. Если I=U/R, и мы удваиваем значение напряжения (U), оставляя неизменным сопротивление, то по логике вещей сила тока у нас тоже должна удвоиться. Действительно, сила тока в данной схеме имеет значение 12 ампер вместо прежних 6. А сейчас давайте вычислим мощность:

Обратите внимание, что мощность у нас также увеличилась по сравнению с предыдущим примером, и увеличилась она значительнее, чем увеличилась сила тока. Почему так получилось? Ответ на этот вопрос прост. Мощность является функцией напряжения умноженного на силу тока, а так как обе эти величины удвоились по сравнению с предыдущими значениями, то мощность увеличилась в 2х2 или в 4 раза. Вы можете проверить эту цифру разделив 432 ватта на 108 ватт и увидев, что соотношение между ними равно 4.

При проектировании любых электрических цепей выполняется расчет мощности. На его основе производится выбор основных элементов и вычисляется допустимая нагрузка. Если расчет для цепи постоянного тока не представляет сложности (в соответствии с законом Ома, необходимо умножить силу тока на напряжение — Р=U*I), то с вычислением мощности переменного тока — не все так просто. Для объяснения потребуется обратиться к основам электротехники, не вдаваясь в подробности, приведем краткое изложение основных тезисов.

В цепях переменного тока расчет мощности ведется с учетом законов синусоидальных изменений напряжения и тока. В связи с этим введено понятие полной мощности (S), которая включает в себя две составляющие: реактивную (Q) и активную (P). Графическое описание этих величин можно сделать через треугольник мощностей (см. рис.1).

Под активной составляющей (Р) подразумевается мощность полезной нагрузки (безвозвратное преобразование электроэнергии в тепло, свет и т.д.). Измеряется данная величина в ваттах (Вт), на бытовом уровне принято вести расчет в киловаттах (кВт), в производственной сфере – мегаваттах (мВт).

Реактивная составляющая (Q) описывает емкостную и индуктивную электронагрузку в цепи переменного тока, единица измерения этой величины Вар.

Рис. 1. Треугольник мощностей (А) и напряжений (В)

В соответствии с графическим представлением, соотношения в треугольнике мощностей можно описать с применением элементарных тригонометрических тождеств, что дает возможность использовать следующие формулы :

  • S = √P 2 +Q 2 , — для полной мощности;
  • и Q = U*I*cos⁡ φ , и P = U*I*sin φ — для реактивной и активной составляющих.

Эти расчеты применимы для однофазной сети (например, бытовой 220 В), для вычисления мощности трехфазной сети (380 В) в формулы необходимо добавить множитель – √3 (при симметричной нагрузке) или суммировать мощности всех фаз (если нагрузка несимметрична).

Для лучшего понимания процесса воздействия составляющих полной мощности давайте рассмотрим «чистое» проявление нагрузки в активном, индуктивном и емкостном виде.

Возьмем гипотетическую схему, в которой используется «чистое» активное сопротивление и соответствующий источник переменного напряжения. Графическое описание работы такой цепи продемонстрировано на рисунке 2, где отображаются основные параметры для определенного временного диапазона (t).


Рисунок 2. Мощность идеальной активной нагрузки

Мы можем увидеть, что напряжение и ток синхронизированы как по фазе, так и частоте, мощность же имеет удвоенную частоту. Обратите внимание, что направление этой величины положительное, и она постоянно возрастает.

Как видно на рисунке 3, график характеристик емкостной нагрузки несколько отличается от активной.


Рисунок 3. График идеальной емкостной нагрузки

Частота колебаний емкостной мощности вдвое превосходит частоту синусоиды изменения напряжения. Что касается суммарного значения этого параметра, в течение одного периода гармоники оно равно нулю. При этом увеличения энергии (∆W) также не наблюдается. Такой результат указывает, что ее перемещение происходит в обоих направлениях цепи. То есть, когда увеличивается напряжение, происходит накопление заряда в емкости. При наступлении отрицательного полупериода накопленный заряд разряжается в контур цепи.

В процессе накопления энергии в емкости нагрузки и последующего разряда не производится полезной работы.

Представленный ниже график демонстрирует характер «чистой» индуктивной нагрузки. Как видим, изменилось только направление мощности, что касается наращения, оно равно нулю.


Негативное воздействие реактивной нагрузки

В приведенных выше примерах рассматривались варианты, где присутствует «чистая» реактивная нагрузка. Фактор воздействия активного сопротивления в расчет не принимался. В таких условиях реактивное воздействие равно нулю, а значит, можно не принимать его во внимание. Как вы понимаете, в реальных условиях такое невозможно. Даже, если гипотетически такая нагрузка бы существовала, нельзя исключать сопротивление медных или алюминиевых жил кабеля, необходимого для ее подключения к источнику питания.

Реактивная составляющая может проявляться в виде нагрева активных компонентов цепи, например, двигателя, трансформатора, соединительных проводов, питающего кабеля и т.д. На это тратится определенное количество энергии, что приводит к снижению основных характеристик.

Реактивная мощность воздействует на цепь следующим образом:

  • не производит ни какой полезной работы;
  • вызывает серьезные потери и нештатные нагрузки на электроприборы;
  • может спровоцировать возникновение серьезной аварии.

Именно по этому, производя соответствующие вычисления для электроцепи, нельзя исключать фактор влияния индуктивной и емкостной нагрузки и, если необходимо, предусматривать использование технических систем для ее компенсации.

Расчет потребляемой мощности

В быту часто приходится сталкиваться с вычислением потребляемой мощности, например, для проверки допустимой нагрузки на проводку перед подключением ресурсоемкого электропотребителя (кондиционера, бойлера, электрической плиты и т.д.). Также в таком расчете есть необходимость при выборе защитных автоматов для распределительного щита, через который выполняется подключение квартиры к электроснабжению.

В таких случаях расчет мощности по току и напряжению делать не обязательно, достаточно просуммировать потребляемую энергию всех приборов, которые могут быть включены одновременно. Не связываясь с расчетами, узнать эту величину для каждого устройства можно тремя способами:


При расчетах следует учитывать, что пусковая мощность некоторых электроприборов может существенно отличаться от номинальной. Для бытовых устройств этот параметр практически никогда не указывается в технической документации, поэтому необходимо обратиться к соответствующей таблице, где содержатся средние значения параметров стартовой мощности для различных приборов (желательно выбирать максимальную величину).

Первое упоминание об электричестве встречается в опытах древнегреческого философа Фалеса. Именно он первым обнаружил, что предметы при трении притягиваются. Одноименный термин был введен в начале 17-го века английским физиком Гилбертом, после опытов, проведенных с магнитами. Отцом же науки об электричестве считается французский ученый Кулон — именно после открытия закона, получившего его имя, электротехника начала свою победную поступь, которая продолжается до сих пор. Этот закон утверждает, что два точечных заряда в безвоздушной среде взаимодействуют с силой, прямо пропорциональной их модулям и обратно — расстоянию между ними, возведенному в квадрат.

Выясним, что же представляет собой понятие электричество? Если коротко, то это — направленное движение потока заряженных частиц. Тела, через которые они проходят, называются проводниками. Каждый проводник имеет определенное сопротивление электрическому току, которое раз

И, перед тем, как перейти к основным законам, несколько слов о заряженных частицах: они бывают, условно говоря, положительными и отрицательными. Одноименные заряды отталкиваются, а разноименные — притягиваются.

А теперь, перейдем к главному.

Основа-основ науки об электричестве — закон Ома .

Эксперимент, который провел этот немецкий физик, привел его к следующему убеждению:

сила тока I, проходящего через металлический проводник, пропорциональна напряжению на его концах, или I = U/R

Здесь напряжением называется разность, образно говоря, «давлений», созданных двумя точками электрической цепи. Измеряют его в вольтах.

Электрический ток представляет собой число электронов, которые пропускает участок электрической цепи и измеряется в амперах.

Сопротивлением считается свойство цепи помешать этому движению. В честь упомянутого физика, его измеряют в омах.

Иначе говоря, проводник, через который проходит ток в 1 ампер при напряжении в 1 вольт, обладает сопротивлением в 1 ом .

Вся остальная электротехника «пляшет» от этого.

А теперь — о мощности электрического тока

В физике мощностью считают скорость выполнения работы. Неважно, какой. Чем эта операция проводится быстрее, тем большей считается мощность того, кто ее исполняет, будь то человек, механическое устройство или что-то еще.

Так же и в случае с электрическим током: ее мощность представляет собой отношение работы, произведенной движущимися электрическими зарядами к промежутку времени, которое для этого понадобилось.

Проще говоря, для того, чтобы получить электрическую мощность в 1 ватт, когда источник тока имеет напряжение 1 вольт, необходимо пропустить через проводник ток в 1 ампер. Другими словами, мощность (P) можно посчитать, перемножив друг на друга электрическое напряжение и ток:

P = U*I.

Запомнив эту нехитрую формулу, на практике можно рассчитать мощность. Например, если известны значения тока и сопротивления, а о напряжении сведений нет, можем воспользоваться законом Ома, подставив в формулу вместо него I*R. Получится, что мощность равна квадрату электрического тока, помноженному на сопротивление .

Этот закон точно так же придет на помощь, если известны величины напряжения и сопротивления. В этом случае подставив вместо значения тока I = U/R, получим значение мощности, равное квадрату напряжения, поделенному на сопротивление.

Вот так — ничего сложного!

Каждый человек ежедневно пользуется бытовыми приборами, которые имеют электрическую цепь. Онлайн расчет нагрузки в Амперах и Ватах. Это определенная «дорога» для электрического тока, вырабатываемая энергия передается агрегату и запускает его действие. Все устройства условно разделяются на три группы как источники электроэнергии (первичные и вторичные), преобразующие агрегаты (осветительные и тепловые приборы), а также элементы вспомогательного назначения – коммутаторы, провода, измерительное оборудование, обеспечивающие работу цепи в реальных условиях.

Все эти приборы входят в общий электромагнитный процесс и имеют свой класс электрической цепи, которая создается для обеспечения эффективной функциональности устройства, требуемого режима работы. Быстро узнать сколько Ват в Ампере поможет сервис расчета мощности.

Калькулятор мощности онлайн

Это надежный помощник в работе при расчете мощности электрической цепи, позволяющий за несколько секунд получить готовый 99,9% результат. Пользователь может за считанные минуты продумать массу вариантов и выбрать наиболее оптимальный. Вероятность ошибки сводится к минимуму.
J = U/R; U = R×J; R = U/J; P=U²/R
Чтобы осуществить расчет электрических цепей онлайн необходимо вести в готовую таблицу два значения, напряжение (В) и ток (А). А после нажать на кнопку «Вычислить» и получить сиюминутный результат данных сопротивления (Ом) и мощности (Вт) при заданных пользователем параметрах.

Данный онлайн калькулятор мощности для расчета электрических цепей является автоматической, нужно быть внимательными при введении всех показателей. Если число состоит из целой и дробной части, то разделять их нужно точкой, а не запятой.

Способы расчета сопротивления по математическим формулам

Чтобы сделать расчет сопротивления электрических цепей можно применить всем известную формулу Закона Ома

как вычислить мощность тока формулой, как рассчитать ампераж

Чтобы электропроводка и все электрическое оборудование, которое имеется в доме, работало исправно и правильно, необходимо правильно сделать вычисление мощности по току и электронапряжению, поскольку при неправильно подобранных показателях может возникнуть короткое замыкание или возгорание. Как сделать расчёт потребляемой мощности по току и напряжению, как вычисляется сила тока, формула через мощность и напряжение и другое, далее.

Как узнать силу тока, зная мощность и напряжения

Чтобы ответить на вопрос, как определить ток, необходимо поделить электронапряжение на общее число ватт. При этом сделать все необходимые вычисления можно самостоятельно, а можно прибегнуть к специальному онлайн-калькулятору.

Расчет мощностного показателя по амперам и ваттам

Узнать потребление электроэнергии по токовой силе резистора можно умножением первой на сопротивление, выражаемое в Омах. В итоге, получится значение, представленное в вольтах, перемноженных на ом. Получится ампер.

Обратите внимание! Если нет сопротивления, нужно поделить ваттный показатель на токовую энергию, то есть следует поделить ватты на амперы и получится значение электроэнергии в вольтах. Понять мощностное показание через величину электричества с электронапряжением, можно умножив соответствующие показания с устройства.

Расчет электроэнергии через электромощность и электронапряжение

Формулы для расчета тока в трехфазной сети

Подсчитать токовую энергию в трехфазной сети сложно, поскольку вместе одной фазы есть три. К тому же, сложность заключается в использовании нескольких схем соединения. Трудность состоит в симметрии или ее отсутствии во время распределения нагрузки по фазам.

Для определения силы тока в трехфазной сети, нужно общее число ватт поделить на показатель 1,73, перемноженный на напряжение и косинус мощностного коэффициента, который отражает активную и реактивную составляющую сопротивления нагрузки. Что касается однофазной сети, то из выражения для подсчета убирается показатель 1,73. Остается формула I = P/(U*cos φ).

Формула подсчета электротока в трехфазной сети

Как рассчитать ампераж

Ампераж является значением электротока, которое выражена в амперах. Рассчитать ампераж можно так: I=P/U.

Подсчет ампеража

Расчет потребляемой мощности

Электромощность является величиной, которая отвечает за факт скорости изменения или передачи электрической энергии. Есть полная и активная мощностная нагрузка, а также активная и реактивная. Полная вычисляется так: S = √ (P2 + Q2), где P является активной частью, а Q реактивной. Для нахождения потребляемого мощностного показателя необходимо знать число электротока, которое потребляется нагрузкой, а также питательное напряжение, которое выдается при помощи источника.

Что касается бытового определения потребляемой электрической энергии, необходимо вычислить общее количество ватт питания электрических приборов и паспортные данные номинальной силы электротока котла. Как правило, все электрические приборы работают с переменным током и напряжением в 220 вольт. Для вычисления тока проще всего воспользоваться амперметром. Зная первый и второй параметры, реально узнать величину потребляемой энергии.

Стоит указать, что измерить мощность через напряжение или сделать расчет мощности по сопротивлению и напряжению возможно не только формулой, но и прибором. Для этого можно воспользоваться мультиметром с токоизмерительными клещами или специализированным измерителем — ваттметром.

Обратите внимание! Оба работают по одному и тому же принципу, указанному в руководстве по их эксплуатации.

Подсчет потребляемой мощности

Мощность, ток и напряжение — три составляющие расчета проводки в доме. Узнать все необходимые параметры в любой сети просто при помощи формул, представленных выше. От этих значений будет зависеть исправность работы всей домашней электрики и безопасность ее владельца.

Зависимость мощности от силы тока, формула мощности, физический смысл

Первое упоминание об электричестве встречается в опытах древнегреческого философа Фалеса. Именно он первым обнаружил, что предметы при трении притягиваются. Одноименный термин был введен в начале 17-го века английским физиком Гилбертом, после опытов, проведенных с магнитами. Отцом же науки об электричестве считается французский ученый Кулон – именно после открытия закона, получившего его имя, электротехника начала свою победную поступь, которая продолжается до сих пор. Этот закон утверждает, что два точечных заряда в безвоздушной среде взаимодействуют с силой, прямо пропорциональной их модулям и обратно – расстоянию между ними, возведенному в квадрат.

Выясним, что же представляет собой понятие электричество?

Если коротко, то это – направленное движение потока заряженных частиц. Тела, через которые они проходят, называются проводниками. Каждый проводник имеет определенное сопротивление электрическому току, которое раз

И, перед тем, как перейти к основным законам, несколько слов о заряженных частицах: они бывают, условно говоря, положительными и отрицательными. Одноименные заряды отталкиваются, а разноименные – притягиваются.

А теперь, перейдем к главному.

Основа-основ науки об электричестве – закон Ома.

Эксперимент, который провел этот немецкий физик, привел его к следующему убеждению: сила тока I, проходящего через металлический проводник, пропорциональна напряжению на его концах, или I = U/R

Здесь напряжением называется разность, образно говоря, «давлений», созданных двумя точками электрической цепи. Измеряют его в вольтах. Электрический ток представляет собой число электронов, которые пропускает участок электрической цепи и измеряется в амперах. Сопротивлением считается свойство цепи помешать этому движению. В честь упомянутого физика, его измеряют в омах. Иначе говоря, проводник, через который проходит ток в 1 ампер при напряжении в 1 вольт, обладает сопротивлением в 1 ом.

Вся остальная электротехника «пляшет» от этого.

О мощности электрического тока

В физике мощностью считают скорость выполнения работы. Неважно, какой. Чем эта операция проводится быстрее, тем большей считается мощность того, кто ее исполняет, будь то человек, механическое устройство или что-то еще.

Так же и в случае с электрическим током: ее мощность представляет собой отношение работы, произведенной движущимися электрическими зарядами к промежутку времени, которое для этого понадобилось.

Проще говоря, для того, чтобы получить электрическую мощность в 1 ватт, когда источник тока имеет напряжение 1 вольт, необходимо пропустить через проводник ток в 1 ампер. Другими словами, мощность (P) можно посчитать, перемножив друг на друга электрическое напряжение и ток:

P = U*I.

Запомнив эту нехитрую формулу, на практике можно рассчитать мощность. Например, если известны значения тока и сопротивления, а о напряжении сведений нет, можем воспользоваться законом Ома, подставив в формулу вместо него I*R. Получится, что мощность равна квадрату электрического тока, помноженному на сопротивление.

Этот закон точно так же придет на помощь, если известны величины напряжения и сопротивления. В этом случае подставив вместо значения тока I = U/R, получим значение мощности, равное квадрату напряжения, поделенному на сопротивление.

Вот так – ничего сложного!

Расчет закона Ома с мощностью

В четырех таблицах ниже вы можете ввести два из четырех факторов закона Ома. Это Мощность (P) или (Вт), измеренная в ваттах, напряжение (V) или (E), измеренная в вольтах, , ток или сила тока (I), измеренная в ампер, ( ампер, ), и сопротивление (R), измеренное в Ом . Необходимый коэффициент будет рассчитан для вас, когда вы нажмете кнопку «Рассчитать» для этой таблицы.

Хотя это и не является частью первоначальной теории, в более поздние годы мы также относили коэффициент мощности к Ому.Мощность обычно обозначается сокращенно (Вт) и измеряется в Вт . Формула, обычно приводимая для мощности:
W = V x I или W = I 2 x R или W = V 2 / R. Другие основные формулы, включающие мощность:
I = W / V или I = (W / R) 2
V = (W x R) 2 или V = W / I
R = V 2 / W или R = W / I 2

Для исходных расчетов по закону Ома щелкните здесь .Чтобы проверить цветовую кодировку резисторов, используйте нашу таблицу цветовых кодов резисторов и калькулятор . Этот конвертер требует использования Javascript активных браузеров.

Факторы закона Ома при мощности

Расчет ватт

Вычислить амперы

Расчет напряжения

Рассчитать Ом

Удельное сопротивление (Вт-см) для обычных металлов при комнатной температуре
Алюминий 2.828 х 10 -6
Медь 1,676 x 10 -6
Серебро 1,586 x 10 -6
Золото 2,214 х 10 -6
Вольфрам 5,5 10 x 10 -6

Например, провод 10 калибра — 2.588 мм в диаметре.
Сопротивление на см толстой медной проволоки составляет
3,186 x 10 -5 Вт / см. Миля этого провода имеет сопротивление 5,13 Вт.

Основы: Рассеивание мощности и электронные компоненты

Постоянно существующей проблемой в проектировании электронных схем является выбор подходящих компонентов, которые не только выполняют свои намеченные задачи, но и выживут в предсказуемых условиях эксплуатации.Большая часть этого процесса — убедиться, что ваши компоненты будут оставаться в пределах своих безопасных рабочих ограничений с точки зрения тока, напряжения и мощности. Из этих трех «силовая» часть часто является самой сложной (как для новичков, так и для экспертов), потому что безопасная рабочая зона может очень сильно зависеть от особенностей ситуации.

Далее мы познакомим вас с некоторыми из основных концепций рассеяния мощности в электронных компонентах, чтобы понять, как выбирать компоненты для простых схем с учетом ограничений мощности.

— НАЧАЛО ПРОСТОГО —

Давайте начнем с одной из простейших схем, которую только можно вообразить: батарея, подключенная к единственному резистору:

Здесь у нас одна батарея на 9 В и одна батарея на 100? (100 Ом) резистор, соединенный проводами, чтобы сформировать полную цепь.

Достаточно просто, правда? Но теперь вопрос: если вы действительно хотите построить эту схему, насколько «большой» из 100? резистор нужно ли использовать, чтобы убедиться, что он не перегревается? То есть, можем ли мы просто использовать «обычный» резистор ¼ W, как показано ниже, или нам нужно увеличить?

Чтобы это выяснить, нам необходимо рассчитать мощность, рассеиваемую резистором.
Вот общее правило расчета рассеиваемой мощности:

Правило питания: P = I × В
Если ток I протекает через данный элемент в вашей цепи, теряя при этом напряжение В , то мощность, рассеиваемая этой схемой Элемент является произведением этого тока и напряжения: P = I × V .

В сторону :
Каким образом ток, умноженный на напряжение, может дать нам измерение «мощности»?

Чтобы понять это, нам нужно помнить, что физически представляют ток и напряжение.

Электрический ток — это скорость прохождения электрического заряда через цепь, обычно выражаемая в амперах, где 1 ампер = 1 кулон в секунду. (Кулон — это единица измерения электрического заряда в системе СИ.)

Напряжение или, более формально, электрический потенциал — это потенциальная энергия на единицу электрического заряда в рассматриваемом элементе схемы. В большинстве случаев вы можете думать об этом как о количестве энергии, которое «расходуется» в элементе на единицу проходящего заряда.Электрический потенциал обычно измеряется в вольтах, где 1 вольт = 1 джоуль на кулон. (Джоуль — единица энергии в системе СИ.)

Итак, если мы возьмем ток, умноженный на напряжение, это даст нам количество энергии, которое «израсходовано» в элементе на единицу заряда, умноженное на , количество этих единиц заряда, проходящих через элемент в секунду. :

1 ампер × 1 вольт =
1 (кулон / секунда) × 1 (джоуль / кулон) =
1 джоуль / секунда

Результирующая величина выражается в единицах один джоуль в секунду: скорость потока энергии, более известная как мощность.Единица измерения мощности в системе СИ — ватт, где 1 ватт = 1 джоуль в секунду.

Итак, у нас есть

1 ампер × 1 вольт = 1 ватт

Снова на нашу трассу! Чтобы использовать правило мощности ( P = I × V ), нам нужно знать как ток через резистор, так и напряжение на резисторе.

Во-первых, мы используем закон Ома ( В = I × R ), чтобы найти ток через резистор.
• Напряжение на резисторе В = 9 В.
• Сопротивление резистора R = 100 Ом.

Следовательно, ток через резистор равен:

I = В / R = 9 В / 100? = 90 мА

Затем мы можем использовать правило мощности ( P = I × V ), чтобы найти мощность, рассеиваемую резистором.
• Ток через резистор I = 90 мА.
• Напряжение на резисторе В = 9 В.

Следовательно, мощность, рассеиваемая на резисторе, составляет:

P = I × В = 90 мА × 9 В = 0,81 Вт

Так вы можете использовать резистор на 1/4 Вт?

Нет, потому что он, скорее всего, выйдет из строя из-за перегрева.
100? резистор в этой схеме должен быть рассчитан не менее чем на 0,81 Вт. Обычно выбирается следующий больший доступный размер, в данном случае 1 Вт.

Резистор мощностью 1 Вт обычно поставляется в гораздо более крупном физическом корпусе, как показано здесь:

(1 Вт, резистор 51 Ом, для сравнения размеров.)

Поскольку резистор на 1 Вт физически намного больше, он должен быть в состоянии справиться с рассеиванием большего количества энергии за счет большей площади поверхности и более широких выводов. (Он все еще может сильно нагреваться на ощупь, но не должен нагреваться настолько, чтобы выйти из строя.)

Вот альтернативное расположение, которое работает с четырьмя 25? резисторы в серии (а в сумме все равно 100?).В этом случае ток через каждый резистор по-прежнему составляет 90 мА. Но, поскольку на каждом резисторе есть только четверть напряжения, на каждом резисторе рассеивается только четверть мощности. Для этого достаточно, чтобы четыре резистора были рассчитаны на 1/4 Вт.

В сторону: прорабатываем этот пример.

Поскольку четыре резистора включены последовательно, мы можем сложить их значения, чтобы получить их общее сопротивление, равное 100 Ом. Использование закона Ома с этим общим сопротивлением снова дает нам ток 90 мА.И снова, поскольку резисторы включены последовательно, одинаковый ток (90 мА) должен протекать через каждый обратно к батарее. Напряжение через каждые 25? резистор тогда В = I × R , или 90 мА × 25? = 2,25 В. (Чтобы еще раз убедиться, что это разумно, обратите внимание, что напряжения на четырех резисторах в сумме составляют 4 × 2,25 В = 9 В.)

Сила на каждого человека 25? резистор P = I × В = 90 мА × 2,25 В? 0,20 Вт, безопасный уровень для использования с резистором 1/4 Вт.Интуитивно понятно, что если разделить 100? резистор на четыре равные части, каждая из которых должна рассеивать четверть общей мощности.

— ЗА РЕЗИСТОРАМИ —

Для нашего следующего примера давайте рассмотрим следующую ситуацию: предположим, что у вас есть схема, которая принимает входной сигнал от источника питания 9 В и имеет встроенный линейный регулятор для понижения напряжения до 5 В, где все работает. Ваша нагрузка на конце 5 В может достигать 1 А.

Как выглядит мощность в этой ситуации?

Регулятор, по сути, действует как большой переменный резистор, который регулирует свое сопротивление по мере необходимости для поддержания постоянного выходного напряжения 5 В. Когда выходная нагрузка составляет 1 А, выходная мощность, выдаваемая регулятором, составляет 5 В × 1 А = 5 Вт, а мощность, потребляемая в цепи источником питания 9 В, составляет 9 Вт. Напряжение, падающее на стабилизаторе. составляет 4 В, а при 1 А, это означает, что 4 Вт рассеивается линейным регулятором — также разница между входной и выходной мощностью.

В каждой части этой схемы соотношение мощности задается следующим образом: P = I × V . Две части — регулятор и нагрузка — это места, где рассеивается мощность. А в части цепи, подключенной к источнику питания, P = I × V описывает подачу мощности в систему — напряжение увеличивается на по мере прохождения тока по источнику питания.

Кроме того, стоит отметить, что мы, , не сказали, , какая нагрузка тянет этот 1 А.Энергия потребляется, но это не обязательно означает, что она преобразуется в (просто) тепловую энергию — например, это может быть питание двигателя или набора зарядных устройств для аккумуляторов.

В сторону:
Хотя такая установка линейного регулятора напряжения, как эта, является очень распространенной установкой для электроники, стоит отметить, что это также невероятно неэффективная схема : 4/9 входной мощности просто сгорает. как тепло, даже при работе на более низких токах.

— КОГДА НЕТ ПРОСТОЙ СПЕЦИФИКАЦИИ «МОЩНОСТЬ» —

Далее, немного более сложная часть: убедиться, что ваш регулятор может справиться с мощностью. В то время как на резисторах четко указана их мощность, на линейных регуляторах это не всегда. В приведенном выше примере регулятора предположим, что мы используем регулятор L7805ABV от ST (техническое описание здесь).


(Фото: типичный корпус TO-220, тип, обычно используемый для линейных регуляторов средней мощности)

L7805ABV — линейный стабилизатор 5 В в корпусе TO-220 (аналогичный показанному выше), рассчитанный на 1.Выходной ток 5 А и входное напряжение до 35 В.

Наивно, вы можете предположить, что вы можете подключить это прямо к входу 35 В и рассчитывать на выход 1,5 А, что означает, что регулятор будет излучать мощность 30 В * 1,5 А = 45 Вт. Но это крошечный пластиковый пакет; на самом деле он не может справиться с такой большой мощностью. Если вы посмотрите таблицу данных в разделе «Абсолютные максимальные характеристики», чтобы попытаться определить, с какой мощностью он может справиться, все, что там написано, является «внутренне ограниченным», что само по себе далеко не ясно.

Оказывается, существует фактическая номинальная мощность, но обычно она несколько «скрыта» в таблице данных. Вы можете понять это, посмотрев на пару связанных спецификаций:

• T OP , Диапазон рабочих температур перехода: от -40 до 125 ° C

• R thJA , Термическое сопротивление переход-окружающая среда: 50 ° C / Вт

• R thJC , Термическое сопротивление переходной коробки: 5 ° C / Вт

Рабочий диапазон температур перехода, T OP , определяет, насколько горячим может быть «переход» — активная часть интегральной схемы регулятора, прежде чем он перейдет в режим теплового отключения.(Тепловое отключение — это внутренний предел, который делает мощность регулятора «внутренне ограниченной».) Для нас это максимум 125 ° C.

Тепловое сопротивление переход-окружающая среда R thJA (часто обозначается как? JA ), сообщает нам, насколько нагревается переход, когда (1) регулятор рассеивает заданное количество мощности и (2) регулятор находится внутри на открытом воздухе при заданной температуре окружающей среды. Предположим, нам нужно спроектировать наш регулятор для работы только в скромных коммерческих условиях, температура которых не превышает 60 ° C.Если нам нужно поддерживать температуру перехода ниже 125 ° C, то максимальное повышение температуры, которое мы можем допустить, составляет 65 ° C. Если у нас R thJA 50 ° C / Вт, то максимальная рассеиваемая мощность, которую мы можем допустить, составит 65/50 = 1,3 Вт, если мы хотим предотвратить переход регулятора в состояние теплового отключения. Это значительно ниже 4 Вт, которые можно было бы ожидать при токе нагрузки 1 А. Фактически, мы можем выдержать только 1,3 Вт / 4 В = 325 мА среднего выходного тока, не отправляя регулятор в состояние теплового отключения.

Это, однако, относится к случаю, когда TO-220 излучает в окружающий воздух — почти наихудшая ситуация. Если мы сможем добавить радиатор или иным образом охладить регулятор, мы сможем добиться большего.

Противоположный конец спектра представлен другой термической спецификацией: корпус с термическим сопротивлением, R thJC . Это указывает, какую разницу температур можно ожидать между переходом и внешней стороной корпуса TO-220: всего 5 ° C / Вт. Это соответствующий номер , если вы можете быстро отвести тепло от корпуса, например, если у вас есть очень хороший радиатор, подключенный к внешней стороне корпуса TO-220.С большим радиатором и идеальным соединением с этим радиатором при мощности 4 Вт температура перехода повысится всего на 20 ° C по сравнению с температурой вашего радиатора. Это представляет собой абсолютный минимум нагрева, который можно ожидать в идеальных условиях.

В зависимости от технических требований вы можете начать с этого момента, чтобы построить полный бюджет мощности, чтобы учесть теплопроводность каждого элемента вашей системы, от самого регулятора до термоинтерфейсной площадки между ним и радиатором, к тепловой связи радиатора с окружающим воздухом.Затем вы можете проверить соединения и относительную температуру каждого компонента с помощью бесконтактного инфракрасного термометра с точечным считыванием. Но часто бывает лучше переоценить ситуацию и посмотреть, есть ли лучший способ сделать это.

В данной ситуации можно подумать о переходе на стабилизатор для поверхностного монтажа, который обеспечивает лучшую управляемость по мощности (за счет использования печатной платы в качестве радиатора), или, возможно, стоит подумать о добавлении силового резистора (или стабилитрона) до стабилизатор для снижения большей части напряжения за пределами блока регулятора , уменьшая нагрузку на него.Или, что еще лучше, посмотрите, есть ли способ построить вашу схему без каскада линейного регулятора с потерями.

— ПОСЛЕ СЛОВА —

Мы рассмотрели основы понимания рассеиваемой мощности в нескольких простых схемах постоянного тока.

Принципы, которые мы рассмотрели, являются довольно общими и могут быть использованы для понимания энергопотребления в большинстве типов пассивных элементов и даже в большинстве типов интегральных схем. Однако существуют реальные ограничения, и можно потратить всю жизнь на изучение нюансов энергопотребления, особенно при более низких токах или высоких частотах, когда малые потери, которыми мы пренебрегли, становятся важными.

В цепях переменного тока многие вещи ведут себя по-разному, но правило мощности все еще сохраняется в большинстве случаев: P (t) = I (t) × В (t) для изменяющихся во времени тока и напряжения. И не все регуляторы работают с потерями: импульсные источники питания могут преобразовывать (например) 9 В постоянного тока в 5 В постоянного тока с КПД 90% или выше — это означает, что при хорошем дизайне может потребоваться всего около 0,6 А при 9 В для производят 5 В при 1 А. Но это уже отдельная история.

Калькулятор

Ватт | Амперы, Ом, Ватты в Ватты

С помощью нашего ватт-калькулятора вы лучше поймете, что такое закон Ватта и какова единица измерения электрической мощности.Хотите узнать, как найти ватт? А что насчет того, что соединяет вольт, ампер, ватт и ом? Что ж, для этого нам нужно погрузиться в суть уравнения мощности!

Если вы хотите знать, как тип тока влияет на расчет ватт в цепи, ознакомьтесь с нашим калькулятором ватт в ампер.

Как рассчитать ватт? — Уравнение Ватта

Наш калькулятор основан на двух законах, описывающих простые электрические цепи. Один из них — закон Ватта — гласит:

Мощность = Напряжение * Ток — в символах: P = В * I .

Это уравнение мощности, как и силовой агрегат, названо в честь Джеймса Ватта — шотландского инженера. Один ватт — это мощность, при которой работа, выполняемая за одну секунду, равна одному джоулю:

1Вт = 1Дж / 1с

В электрических цепях один ватт определяется как скорость работы, когда ток в один ампер протекает через проводник, имеющий разность электрических потенциалов (напряжение) в один вольт :

1 Вт = 1 В * 1 А

Так что же такое мощность? Мощность в электрической цепи — это скорость передачи электрической энергии в единицу времени.

Закон Ома: вольты, амперы и омы

В нашем калькуляторе ватт используется вторая формула — закон Ома. В нем говорится, что:

Напряжение = ток * сопротивление или В = I * R

Что означают эти имена?

Электрический ток — это мера количества заряда (электронов), проходящего через любую точку провода за единицу времени. Его единица СИ — ампер [А].

Сопротивление описывает силу данного провода противодействовать потоку электронов.Единица измерения сопротивления — Ом [Ом].

Напряжение — это разность электрических потенциалов между двумя точками провода. Единица измерения напряжения в системе СИ — вольт [В].

Мощность, напряжение, сопротивление, ток

С помощью уравнений Ома и Ватта вы можете рассчитать четыре переменные — мощность, напряжение, сопротивление и ток. Если вам известны значения двух из этих переменных, вы можете преобразовать приведенные выше уравнения в соответствии с вашими потребностями. Ниже мы перечисляем все эти преобразования:

  1. Сопротивление:
  • R = V / I
  • R = V 2 / P
  • R = P / I 2
  1. Текущий:
  • I = V / R
  • I = P / V
  • I = √ (P / R)
  1. Напряжение:
  • V = I * R
  • V = P / I
  • V = √ (P * R)
  1. Мощность:
  • P = V * I
  • P = V 2 / R
  • P = I 2 * R

Продолжайте читать, чтобы увидеть пару примеров, где мы узнаем, как находить ватты и рассчитывать амперы из ватт и вольт!

Примеры преобразования между вольт, ампер, ватт и ом

Чтобы использовать наш калькулятор ватт, все, что вам нужно сделать, это ввести два числа, а все остальные поля будут заполнены самостоятельно.Но если вы хотите научиться рассчитывать эти вещи самостоятельно, вот несколько примеров, которые могут оказаться вам полезными:

Рассмотрим лампочку мощностью 60 Вт с электрическим потенциалом 120 В. Как рассчитать ампер из ватт и вольт? Найдите правильную формулу и введите числа в правильные места:

I = P / V = ​​60 Вт / 120 В = 0,5 A

Вашей лампочке требуется ток 0,5 ампер.

Давайте посмотрим на другой пример. Резистор имеет напряжение 4 вольта и сопротивление 8 Ом.Как найти ватты? Вам нужно объединить закон Ома и Ватта. Тогда вы получите:

P = V 2 / R = (4V) 2 / 8Ω = 2 Вт

Хотите немного испытать себя? Воспользуйтесь калькулятором коэффициента мощности, чтобы узнать больше об уравнении мощности и компонентах мощности: активной мощности, реактивной мощности и полной мощности!

Калькулятор закона Ома

Наш калькулятор закона Ома — это удобный небольшой инструмент, который поможет вам найти взаимосвязь между напряжением, током и сопротивлением в данном проводнике.Формула закона Ома и формула напряжения в основном используются в электротехнике и электронике. Кроме того, если вы знаете, как рассчитать мощность, вы можете найти его очень полезным при изучении электронных схем. Все эти расчеты вы производите с помощью нашего калькулятора сопротивления.

В остальной части статьи вы найдете:

  • Формула закона Ома
  • Как использовать формулу напряжения
  • Какое уравнение для мощности
  • Как рассчитать мощность
  • Закон Ома для анизотропных материалов

Формула закона Ома

Закон Ома — один из основных законов физики.Он описывает взаимосвязь между напряжением, силой тока (также известной как ток) и сопротивлением. Напряжение относится к разности потенциалов между двумя точками электрического поля. Сила тока связана с потоком носителей электрического заряда, обычно электронов или электронодефицитных атомов. Последний термин, сопротивление, — это сопротивление вещества потоку электрического тока.

Закон

Ома гласит, что ток течет через проводник со скоростью, которая пропорциональна напряжению между концами этого проводника.Другими словами, соотношение между напряжением и током постоянно:

I / V = ​​const

Формулу закона Ома можно использовать для расчета сопротивления как отношения напряжения и тока. Это может быть записано как:

R = V / I

Где:

  • R — сопротивление
  • В — напряжение
  • I — Текущий

Сопротивление выражается в омах. И устройство, и правило названы в честь Георга Ома — физика и изобретателя закона Ома.

Помните, что формула закона Ома относится только к веществам, которые способны вызывать энергию. такие как металлы и керамика. Однако есть много других материалов, для которых нельзя использовать формулу закона Ома, например, полупроводники и изоляторы. Закон Ома также действует только при определенных условиях, например, при фиксированной температуре.

Ищете практическое применение закона Ома? Обязательно ознакомьтесь с калькулятором светодиодного резистора!

Формула напряжения

Формула напряжения — это одно из трех математических уравнений, связанных с законом Ома.Это формула, приведенная в предыдущем абзаце, но переписанная так, чтобы вы могли рассчитать напряжение на основе тока и сопротивления, то есть формула напряжения является произведением тока и сопротивления. Уравнение:

В = ИК

Это значение измеряется в вольтах.

Какое уравнение мощности?

Другая величина, которую вы можете вычислить на основании закона Ома, — это мощность. Мощность — это произведение напряжения и тока, поэтому уравнение выглядит следующим образом:

P = V x I

С помощью этой формулы вы можете рассчитать, например, мощность лампочки.Если вы знаете, что напряжение батареи составляет 18V , а ток составляет 6A , вы можете, что мощность будет 108, с помощью следующего расчета:

P = 6A x 18V = 108 Вт

Как рассчитать мощность?

Если вы все еще не знаете, как рассчитать мощность по приведенным формулам, или просто хотите сэкономить время, вы можете использовать наш калькулятор закона Ома. Структура этого инструмента не слишком сложна, просто введите любые два из четырех значений, чтобы получить два других.Калькулятор закона Ома основан на формуле мощности вместе с формулой закона Ома. Все, что вам нужно сделать, чтобы получить значение мощности, это набрать:

  1. Напряжение (выраженное в вольтах)
  2. Ток (выраженный в амперах)

Затем калькулятор закона Ома выдаст вам два значения — сопротивление, выраженное в омах, и мощность, выраженное в ваттах. Если вам нужен этот результат в другом устройстве, вы можете использовать наш калькулятор ватт в ампер.

Закон Ома для анизотропных материалов

Существует еще одна версия закона Ома, которая использует положение электрических свойств внутри проводника.Некоторые предпочитают его предыдущей формуле из-за его размерного вида. Электропроводящие материалы подчиняются закону Ома, когда удельное сопротивление материалов не зависит от величины и направления приложенного электрического поля.

Вы можете найти следующую формулу, если нажмете кнопку Расширенный режим :

ρ = E / J , где

  • ρ — удельное сопротивление проводящего материала.

  • E — вектор электрического поля.

  • J — вектор плотности тока.

Что касается изотропных материалов, лучше всего использовать первую формулу, поскольку она намного менее сложна. Изотропные материалы — это материалы с одинаковыми электрическими свойствами во всех направлениях, например металлы и стекло. Эта формула может пригодиться при работе с анизотропными материалами, такими как дерево или графит.

Энергетика

  • Изучив этот раздел, вы сможете:
  • Выполните расчеты мощности, напряжения, тока и сопротивления.
  • • с использованием соответствующих единиц и подразделов.
  • Различайте мощность и энергию в электрических цепях.

Мощность резисторов

Когда через резистор протекает ток, электрическая энергия преобразуется в ТЕПЛОВУЮ энергию. Тепло, генерируемое в компонентах цепи, каждый из которых обладает хотя бы некоторым сопротивлением, рассеивается в воздухе вокруг компонентов. Скорость рассеивания тепла называется МОЩНОСТЬЮ, обозначается буквой P и измеряется в ваттах (Вт).

Количество рассеиваемой мощности может быть вычислено с использованием любых двух величин, используемых в расчетах по закону Ома. Помните, как и в любой формуле, в формуле должны использоваться ОСНОВНЫЕ КОЛИЧЕСТВА, то есть ВОЛЬТЫ, ОМЫ и АМПЕРЫ (не милли, мег и т. Д.).

Чтобы найти мощность P, используя V и I

Чтобы найти мощность P, используя V и R

Чтобы найти мощность P, используя I и R

Перед тем, как начать, подумайте об этих нескольких советах, они облегчат задачу, если следовать им.

1. Разработайте ответы с помощью карандаша и бумаги; в противном случае легко запутаться на полпути и получить неправильный ответ.

2. Конечно, ответ — это не просто число, это будет определенное количество ватт (или несколько или несколько единиц ватт). Не забудьте указать правильную единицу измерения (например, Вт или мВт и т. Д.), А также число, иначе ответ не имеет смысла.

3. Преобразуйте все вспомогательные единицы, такие как мВ или кОм, в ватты, указав их в соответствующей формуле.Ошибка здесь даст действительно глупые ответы, в тысячи раз слишком большие или слишком маленькие.

4. Хотя структура этих формул мощности кажется очень похожей на формулы закона Ома, есть небольшое различие — они содержат некоторые элементы в квадрате (I 2 и V 2 ). Будьте очень осторожны при использовании трюка с треугольником для транспонирования этих формул. Если вам нужно связать мощность с сопротивлением, то I или V необходимо возвести в квадрат (умножить на себя). Однако вы можете построить треугольник, который соответствует любой из формул для получения R, как показано ниже.

Не забудьте загрузить нашу брошюру «Подсказки по математике», в которой показано, как использовать калькулятор с показателями степени и инженерной нотацией, чтобы иметь дело с этими частями и каждый раз получать правильный ответ.

У вас нет научного калькулятора? Буклет «Подсказки по математике» объясняет, что вам нужно (и что вам не нужно, чтобы не тратить деньги без надобности). Если вы не хотите покупать научный калькулятор, вы всегда можете получить его бесплатно в сети.Пользователи ПК могут попробовать Calc98 на сайте www.calculator.org/download.html. Какой бы калькулятор вы ни выбрали, прочтите инструкции, чтобы ознакомиться с методами работы, которые вам следует использовать, поскольку они варьируются от калькулятора к калькулятору.

Важно помнить о влиянии рассеивания мощности в компонентах: чем больше мощность, тем больше тепла должно рассеиваться компонентом. Обычно это означает, что компоненты, рассеивающие большое количество энергии, нагреваются, а также они будут значительно больше по размеру, чем типы с низким энергопотреблением.Если компоненту требуется рассеивать больше энергии, чем он предназначен, он не сможет достаточно быстро избавиться от выделяемого тепла. Его температура повысится, и перегрев может вызвать полный выход из строя компонента и, возможно, повреждение других компонентов и самой печатной платы (PCB). В качестве меры предосторожности резисторы большой мощности часто устанавливают вне печатной платы с помощью более длинных выводных проводов, заключенных в керамические гильзы. Резисторы с проволочной обмоткой большой мощности могут даже быть заключены в металлический радиатор и прикреплены болтами к большой металлической поверхности, такой как корпус оборудования, чтобы избавиться от нежелательного тепла.Примеры резисторов большой мощности показаны на странице конструкции резистора.

Такие компоненты, как резисторы, имеют определенную номинальную мощность, указанную производителем (в ваттах или милливаттах). Этот рейтинг (параметр) необходимо проверять при замене компонента, чтобы не произошло завышения рейтинга. Это важный фактор безопасности при обслуживании электронного оборудования.

TIP

Тепло, выделяемое резисторами большой мощности, является основной причиной преждевременного выхода из строя многих цепей.Либо сам резистор выходит из строя из-за «разомкнутой цепи», особенно в резисторах с проволочной обмоткой. В резисторах из углеродного состава длительный перегрев может привести к изменению значения. Это может увеличиваться в типах с высоким сопротивлением или более опасно уменьшаться (позволяя увеличить ток) в типах с низким сопротивлением. Увеличение тока, вызванное этим уменьшением сопротивления, только ускоряет процесс, и в конечном итоге резистор (а иногда и другие связанные компоненты) сгорает!

Энергия в резисторах

Если определенное количество мощности рассеивается в течение заданного времени, то рассеивается ЭНЕРГИЯ.Энергия (мощность x время) измеряется в джоулях, и, включив время (t) в формулы мощности, можно рассчитать энергию, рассеиваемую компонентом или схемой.

Рассеиваемая энергия = Pt или VIt или V 2 t / R или даже I 2 Rt Джоули

Обратите внимание, что в формулах для энергии такие величины, как мощность, время, сопротивление, ток и напряжение, должны быть преобразованы в их основные единицы, например Ватты, секунды, Ом, Амперы, Вольт и т. Д.Никаких дополнительных единиц или нескольких единиц! Как описано в буклете «Советы по математике».

Все вышеперечисленные единицы являются частью интегрированной системы международно стандартизированных единиц; Система S.I. (Système International d´Unités). Эта система устанавливает основные единицы для любых электрических, механических и физических свойств и их отношения друг к другу. Он также включает стандартную форму кратных и долей кратных, описанную в буклете «Подсказки по математике».

Резисторы — учимся.sparkfun.com

Добавлено в избранное Любимый 50

Номинальная мощность

Номинальная мощность резистора — одна из наиболее скрытых величин. Тем не менее это может быть важно, и это тема, которая возникает при выборе типа резистора.

Мощность — это скорость, с которой энергия преобразуется во что-то другое. Он рассчитывается путем умножения разности напряжений в двух точках на ток, протекающий между ними, и измеряется в ваттах (Вт).Лампочки, например, превращают электричество в свет. Но резистор может превратить только электрическую энергию, проходящую через него, в тепла . Хит обычно не лучший товарищ по играм с электроникой; слишком много тепла приводит к дыму, искрам и пожару!

Каждый резистор имеет определенную максимальную номинальную мощность. Чтобы резистор не перегревался слишком сильно, важно убедиться, что мощность на резисторе не превышает его максимального значения. Номинальная мощность резистора измеряется в ваттах и ​​обычно находится между & frac18; Вт (0.125 Вт) и 1 Вт. Резисторы с номинальной мощностью более 1 Вт обычно называют силовыми резисторами и используются специально из-за их способности рассеивать мощность.

Определение номинальной мощности резистора

Номинальную мощность резистора обычно можно определить, наблюдая за размером его корпуса. Стандартные сквозные резисторы обычно имеют номинальную мощность ¼ или ½ Вт. Силовые резисторы более специального назначения могут указывать свою номинальную мощность на резисторе.

Эти силовые резисторы могут выдерживать гораздо большую мощность, прежде чем они сработают.Сверху справа в нижний левый приведены примеры резисторов 25 Вт, 5 Вт и 3 Вт со значениями 2 Ом, 3 Ом; 0,1 & Ом; и 22к & Ом. Меньшие силовые резисторы часто используются для измерения тока.

О номинальной мощности резисторов для поверхностного монтажа обычно можно судить также по их размеру. Резисторы типоразмера 0402 и 0603 обычно рассчитаны на 1/16 Вт, а резисторы 0805 могут потреблять 1/10 Вт.

Измерение мощности на резисторе

Мощность обычно рассчитывается путем умножения напряжения на ток (P = IV).Но, применяя закон Ома, мы также можем использовать значение сопротивления при расчете мощности. Если нам известен ток, протекающий через резистор, мы можем рассчитать мощность как:

Или, если мы знаем напряжение на резисторе, мощность можно рассчитать как:



← Предыдущая страница
Расшифровка маркировки резисторов

Калькулятор закона Ома и электрические формулы

Используйте закон Ома для расчета напряжения, тока, сопротивления или мощности в электрической цепи.Введите любые два известных значения, чтобы найти два других.

Например, введите напряжение и мощность, чтобы найти ток и сопротивление.

Что такое закон Ома?

Закон Ома определяет соотношение между электрическим током, сопротивлением и напряжением. Более конкретно, в нем говорится, что ток через элемент схемы прямо пропорционален приложенной к нему разности потенциалов и обратно пропорционален сопротивлению . [1]

Закон Ома позволяет рассчитать напряжение, ток, мощность и сопротивление электрической цепи, если вы знаете хотя бы два других значения.

Например, если вы знаете напряжение и сопротивление, воспользуйтесь калькулятором выше, чтобы найти мощность и ток по закону Ома. Кроме того, вы можете использовать калькулятор для вычисления мощности и сопротивления, если вы знаете напряжение и ток.

Формула закона Ома

Формула закона Ома: I = E / R, где I — ток через проводник, измеренный в амперах, E — разность потенциалов на проводнике, измеренная в вольтах, а R — измеренное сопротивление проводника. в ом. [2]

I = ER

Формула утверждает, что ток I равен напряжению E , деленному на сопротивление R .

Треугольник закона Ома

Треугольник закона Ома показывает, как рассчитать напряжение, ток или сопротивление. Чтобы использовать его, накройте единицу, которую вы хотите вычислить, чтобы открыть формулу для ее решения.

Треугольник закона Ома, где E представляет напряжение, I представляет ток, а R представляет сопротивление.

Например, чтобы найти вольты, прикройте E большим пальцем, и это покажет, что напряжение равно I × R.

Что означают буквы в формуле закона Ома?

В формуле закона Ома E представляет электродвижущую силу или напряжение, I представляет силу или ток, а R представляет сопротивление.

Георг Симон Ом создал закон Ома в статье, опубликованной в 1827 году, [3] задолго до того, как были определены единицы измерения напряжения, тока и сопротивления.

Вольт, ампер и ом были определены только в 1881 году, спустя более 50 лет после того, как был опубликован закон Ома. Это объясняет, почему буквы не относятся к современным единицам, используемым в формуле.

Формула силы

Формула мощности гласит, что электрическая мощность, измеренная в ваттах, равна току в цепи, умноженному на напряжение. Эта формула очень похожа на закон Ома и может помочь найти мощность или мощность.

Мы часто используем формулу мощности в сочетании с законом Ома для определения электрических свойств, когда мощность цепи известна.

P = I × E

Таким образом, формула мощности утверждает, что мощность P равна I , умноженному на напряжение E . [4]

Треугольник силы

Треугольник мощности иллюстрирует формулу для определения ватт, вольт или ампер. Как и в случае с другим треугольником, накройте единицу измерения, которую вы хотите решить, чтобы открыть формулу для ее решения.

Например, чтобы найти усилители, прикройте I большим пальцем, чтобы увидеть, что ток равен P / E.

Формула мощности, где P представляет мощность, I представляет ток, а E представляет напряжение.

Наш калькулятор ватт в ампер использует эту формулу, например, для преобразования мощности в ток в электрических цепях.

Колесо закона Ома

Мы можем использовать закон Ома для расчета вольт, ватт, ампер или ом, если известны как минимум два измерения. Формула позволяет нам вывести уравнения для расчета любого измерения с учетом двух других известных значений.

Колесо закона Ома показывает все формулы, которые вы можете использовать для определения вольт, ватт, ампер или ом. См. Все производные формулы ниже.

Колесо закона Ома со всеми формулами, которые можно использовать для расчета вольт, ампер, ом или ватт.

Формулы напряжения

Найдите напряжение, используя следующие формулы:

Напряжение = ток × сопротивление

Напряжение = мощность ÷ ток

Напряжение = мощность × сопротивление

Формулы мощности

Найдите мощность, используя следующие формулы:

Мощность = Напряжение × Ток

Мощность = Напряжение 2 ÷ Сопротивление

Мощность = Ток 2 × Сопротивление

Текущие формулы

Решите для тока, используя эти формулы:

Ток = Напряжение ÷ Сопротивление

Ток = Мощность ÷ Напряжение

Ток = мощность ÷ сопротивление

Формулы сопротивления

Найдите сопротивление, используя следующие формулы:

Сопротивление = Напряжение ÷ Ток

Сопротивление = Напряжение 2 ÷ Мощность

Сопротивление = Мощность ÷ Ток 2

Мы используем закон Ома для многих вещей, таких как определение максимального размера микроволн или максимального количества осветительных приборов, с которыми цепь может безопасно обращаться, не создавая опасности возгорания.

Наш калькулятор затрат на освещение может помочь определить потребление энергии на освещение, а наш калькулятор затрат на электроэнергию поможет определить затраты на питание электрических устройств.

Используйте закон Ома, чтобы определить размер электрической цепи или выяснить, какой размер нагревателя можно безопасно использовать в обычной розетке. Вы также можете найти наш калькулятор падения напряжения, чтобы определить падение напряжения, необходимый минимальный размер провода и максимальную длину провода для вашего следующего электрического проекта.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *