Расчет сечения проводов и кабелей по потребляемой мощности, таблицы
В современном технологическом мире электричество практически стало на один уровень по значимости с водой и воздухом. Применяется оно в практически любой сфере человеческой деятельности. Появилось такое понятие, как электричество еще в далеком 1600 году, до этого мы знали об электричестве не больше древних греков. Но со временем оно начало более широко распространяться, и только в 1920 году оно начало вытеснять керосиновые лампы с освещения улиц. С тех пор электрический ток начал стремительно распространяться, и сейчас он есть даже в самой глухой деревушке как минимум освещая дом и для коммуникаций по телефону.
Само электричество представляет из себя поток направленных зарядов, движущихся по проводнику. Проводником является вещество способное пропускать через себя эти сами электрические заряды, но у каждого проводника есть сопротивление (кроме так называемых сверхпроводников, сопротивление у сверхпроводников равняется нулю, такое состояние достижимо за счет понижения температуры до -273,4 градуса по Цельсию).
Но в быту сверхпроводников, конечно же, еще нету, да и появиться в промышленных масштабах еще нескоро. В повседневности, как правило, ток пропускается через провода, а в качестве жилы используется в основном медные или алюминиевые провода. Медь и алюминий популярны прежде всего, за счет своих свойств проводимости, которая обратно электрическому сопротивлению, а также из-за дешевизны, по сравнению, например, с золотом или серебром.
Как разобраться в сечениях медных и алюминиевых кабелей, для прокладки проводки?
Данная статья предназначена научить вас как рассчитать сечение провода. Это как чем больше воды вы хотите подать, тем большего диаметра труба вам нужна. Так и здесь, чем больше потребление электрического тока, тем больше должно быть сечение кабелей и проводов. Вкратце опишу что это такое: если вы перекусите кабель или провод, и посмотреть на него с торца, то вы как раз и увидите его сечение, то есть толщину провода, которая определяет мощность которую данный провод способен пропустить, разогреваясь до допустимой температуры.
Для того чтобы правильно подобрать сечение силового провода нам нужно учитывать максимальную величину потребляемой нагрузки тока. Определить значения токов можно, зная паспортную мощность потребителя, определяется по такой формуле: I=P/220, где P — это мощность потребителя тока, а 220 — это количество вольт в вашей розетке. Соответственно если розетка на 110 или 380 вольт, то подставляем данное значение.
Важно знать, что расчет значения для однофазных, и трехфазных сетей различается. Для того чтобы узнать на сколько фаз сеть вам нужно, требуется подсчитать общую сумму потребления тока в вашем жилище. Приведем пример среднестатистического набора техники, которая может быть у вас дома.
Простой пример расчета сечения кабеля по потребляемому току, сейчас мы вычислим сумму мощностей подключаемых электроприборов. Основными потребителями в среднестатистической квартире являются такие приборы:
- Телевизор — 160 Вт
- Холодильник — 300 Вт
- Освещение — 500 Вт
- Персональный компьютер — 550 Вт
- Пылесос — 600 Вт
- СВЧ-печь — 700 Вт
- Электрочайник — 1150 Вт
- Утюг — 1750 Вт
- Бойлер (водонагреватель) — 1950 Вт
- Стиральная машина — 2650 Вт
- Всего 10310 Вт = 10,3 кВт.
Когда мы узнали общее потребление электричества, мы можем по формуле рассчитать сечение провода, для нормального функционирования проводки. Важно помнить что для однофазных и трехфазных сетей формулы будут разные.
Расчет сечения провода для сети с одной фазой (однофазной)
Расчет сечения провода осуществляется с помощью следующей формулы:
I = (P × K и ) / (U × cos(φ) )
где:
I — сила тока;
- P — мощность всех потребителей энергии в сумме
- K и — коэффициент одновременности, как правило, для расчетов принимается общепринятое значение 0,75
- U — фазное напряжение, которое составляет 220V но может колебаться в пределах от 210V до 240V.
- cos(φ) — для бытовых однофазных приборов эта величина сталая, и равняется 1.
Если есть необходимость рассчитать ток быстрее, то можно опустить значение cos(φ) и значение K и . Результат в таком случае отличается в меньшую сторону на 15%, если мы применим формулу:
I = P / U
Когда мы нашли мощность потребления тока по формуле, можно начать выбирать кабель, который подходит нам по мощности. Вернее, его площади сечения. Ниже приведена специальная таблица в которой предоставлены данные, где сопоставляется величина тока, сечение кабеля и потребляемая мощность.
Данные могут различаться для проводов изготовленных из разных металлов. Сегодня для применения в жилых помещениях, как правило, используется медный, жесткий кабель. Алюминиевый кабель практически не применяется. Но все же во многих старых домах, алюминиевый кабель все еще присутствует.
Таблица расчетной мощности кабеля по току. Выбор сечения медного кабеля, производится по следующим параметрам:
Также приведем таблицу для расчета потребляемого тока алюминиевого кабеля:
Если значение мощности получилось среднее между двумя показателями, то необходимо выбрать значение сечения провода в большую сторону. Так как запас мощности должен присутствовать.
Расчет сечения провода сети с тремя фазами (трехфазной)
А теперь разберем формулу подсчета сечения провода для трехфазных сетей.
Для рассчета сечения питающего кабеля воспользуемся следующей формулой:
I = P / (√3 × U × cos(φ))
Где:
- I — сила тока, по которой выбирается площадь сечения кабеля
- U — фазовое напряжение, 220V
- Cos φ — угол сдвига фаз
- P — показывает общее потребление всех электроприборов
Cos φ — в приведенной формуле крайне важен, так как самолично влияет на силу тока. Он различается для разного оборудования, с этим параметром чаще всего можно ознакомиться в технической документации, или соответствующей маркировкой на корпусе.
Общая мощность находится очень просто, мы суммируем значение всех показателей мощности, и используем получившееся число в расчетах.
Отличительной особенностью в трехфазной сети, является то, что более тонкий провод способен выдержать большую нагрузку. Подбирается необходимое нам сечение провода, по нижеприведенной таблице.
Расчет сечения провода по потребляемому току применяемый в трехфазной сети, используется с применением такой величины как √3. Это значение нужно для упрощения внешнего вида самой формулы:
U линейное = √3 × U фазное
Данным образом при возникновении необходимости заменяется произведение корня и фазного напряжения на линейное напряжение. Эта величина равняется 380V (U линейное = 380V).
Понятие длительного тока
Также один не менее важный момент при выборе кабеля для трехфазной и однофазной сети состоит в том, что необходимо учитывать такое понятие, которое звучит как допустимый длительный ток. Этот параметр показывает нам силу тока в кабеле, которую может выдержать провод в течение неограниченного количества времени. Определить эго можно в специальной таблице. Также для алюминиевых и медных проводников они существенно различаются.
В случае когда данный параметр превышает допустимые значения, начинается перегрев проводника. Температура нагрева является обратно пропорциональной силе тока.
Температура на некоторых участках может увеличиваться не только из-за неверно подобранного сечения провода, а и при плохом контакте. К примеру, в месте скрутки проводов. Такое довольно часто происходит в месте контакта медных кабелей и алюминиевых. В связи с этим поверхность металлов подвергается окислению, покрываясь оксидной пленкой, что весьма сильно ухудшает контакт. В таком месте кабель будет нагреваться выше допустимой температуры.
Когда мы провели все расчеты, и сверились с данными из таблиц, можно смело идти в специализированный магазин и покупать необходимые Вам кабели для прокладки сети у себя дома или на даче. Главное ваше преимущество перед, например, вашим соседом будет в том что вы полностью разобрались в данном вопросе с помощью нашей статьи, и сэкономите кучу денег, не переплачивая за то, что вам хотел продать магазин. Да и знать о том, как рассчитать сечение тока для медных или алюминиевых проводов никогда не будет лишним, и мы уверены что знания полученные у нас, неоднократно пригодятся на вашем жизненном пути.
Сечение ток кабеля. Расчет сечения провода по мощности и по плотности тока: правила, алгоритм, электротехнические тонкости
расчет и подбор сечения жили провода
При ремонте и проектировании электрооборудования появляется необходимость правильно выбирать провода. Можно воспользоваться специальным калькулятором или справочником. Но для этого необходимо знать параметры нагрузки и особенности прокладки кабеля.
Для чего нужен расчет сечения кабеля
К электрическим сетям предъявляются следующие требования:
- безопасность;
- надежность;
- экономичность.
Если выбранная площадь поперечного сечения провода окажется маленькой, то токовые нагрузки на кабели и провода будут большими, что приведет к перегреву. В результате может возникнуть аварийная ситуация, которая нанесет вред всему электрооборудованию и станет опасной для жизни и здоровья людей.
Если же монтировать провода с большой площадью поперечного сечения, то безопасное применение обеспечено. Но с финансовой точки зрения будет перерасход средств. Правильный выбор сечения провода — это залог длительной безопасной эксплуатации и рационального использования финансовых средств.
Осуществляется расчет сечения кабеля по мощности и току. Рассмотрим на примерах. Чтобы определить, какое сечение провода нужно для 5 кВт, потребуется использовать таблицы ПУЭ ( «Правила устройства электроустановок»). Данный справочник является регламентирующим документом. В нем указывается, что выбор сечения кабеля производится по 4 критериям:
- Напряжение питания (однофазное или трехфазное).
- Материал проводника.
- Ток нагрузки, измеряемый в амперах (А), или мощность — в киловаттах (кВт).
- Месторасположение кабеля.
В ПУЭ нет значения 5 кВт, поэтому придется выбрать следующую большую величину — 5,5 кВт. Для монтажа в квартире сегодня необходимо использовать провод из меди. В большинстве случаев установка происходит по воздуху, поэтому из справочных таблиц подойдет сечение 2,5 мм². При этом наибольшей допустимой токовой нагрузкой будет 25 А.
В вышеуказанном справочнике регламентируется ещё и ток, на который рассчитан вводный автомат (ВА). Согласно «Правилам устройства электроустановок», при нагрузке 5,5 кВт ток ВА должен равняться 25 А. В документе указано, что номинальный ток провода, который подходит к дому или квартире, должен быть на порядок больше, чем у ВА. В данном случае после 25 А находится 35 А. Последнюю величину и необходимо брать за расчетную. Току 35 А соответствуют сечение 4 мм² и мощность 7,7 кВт. Итак, выбор сечения медного провода по мощности завершен: 4 мм².
Чтобы узнать, какое сечение провода нужно для 10 кВт, опять воспользуемся справочником. Если рассматривать случай для открытой проводки, то надо определиться с материалом кабеля и с питающим напряжением. Например, для алюминиевого провода и напряжения 220 В ближайшая большая мощность будет 13 кВт, соответствующее сечение — 10 мм²; для 380 В мощность составит 12 кВт, а сечение — 4 мм².
Выбираем по мощности
Перед выбором сечения кабеля по мощности надо рассчитать ее суммарное значение, составить перечень электроприборов, находящихся на территории, к которой прокладывают кабель. На каждом из устройств должна быть указана мощность, возле нее будут написаны соответствующие единицы измерения: Вт или кВт (1 кВт = 1000 Вт). Затем потребуется сложить мощности всего оборудования и получится суммарная.
Если же выбирается кабель для подключения одного прибора, то достаточно информации только о его энергопотреблении. Можно подобрать сечения провода по мощности в таблицах ПУЭ.
Сечение токопроводящей жилы, мм² | Для кабеля с медными жилами | |||
Напряжение 220 В | Напряжение 380 В | |||
Ток, А | Мощность, кВт | Ток, А | Мощность, кВт | |
1,5 | 19 | 4,1 | 16 | 10,5 |
2,5 | 27 | 5,9 | 25 | 16,5 |
4 | 38 | 8,3 | 30 | 19,8 |
6 | 46 | 10,1 | 40 | 26,4 |
10 | 70 | 15,4 | 50 | 33 |
16 | 85 | 18,7 | 75 | 49,5 |
25 | 115 | 25,3 | 90 | 59,4 |
35 | 135 | 29,7 | 115 | 75.9 |
50 | 175 | 38.5 | 145 | 95,7 |
70 | 215 | 47,3 | 180 | 118,8 |
95 | 260 | 57,2 | 220 | 145,2 |
120 | 300 | 66 | 260 | 171,6 |
Сечение токопроводящей жилы, мм² | Для кабеля с алюминиевыми жилами | |||
Напряжение 220 В | Напряжение 380 В | |||
Ток, А | Мощность, кВт | Ток, А | Мощность, кВт | |
2,5 | 20 | 4,4 | 19 | 12,5 |
4 | 28 | 6,1 | 23 | 15,1 |
6 | 36 | 7,9 | 30 | 19,8 |
10 | 50 | 11,0 | 39 | 25,7 |
16 | 60 | 13,2 | 55 | 36,3 |
25 | 85 | 18,7 | 70 | 46,2 |
35 | 100 | 22,0 | 85 | 56,1 |
50 | 135 | 29,7 | 110 | 72,6 |
70 | 165 | 36,3 | 140 | 92,4 |
95 | 200 | 44,0 | 170 | 112,2 |
120 | 230 | 50,6 | 200 | 132,2 |
Кроме того, надо знать напряжение сети: трехфазной соответствует 380 В, а однофазной — 220 В.
В ПУЭ дана информация и для алюминиевых, и для медных проводов. У обоих есть свои преимущества и недостатки. Достоинства медных проводов:
- высокая прочность;
- упругость;
- стойкость к окислению;
- электропроводность больше, чем у алюминия.
Недостаток медных проводников — высокая стоимость. В советских домах использовалась при постройке алюминиевая электропроводка. Поэтому если происходит частичная замена, то целесообразно поставить алюминиевые провода. Исключение составляют только те случаи, когда вместо всей старой проводки (до распределительного щита) устанавливается новая. Тогда есть смысл применять медь. Недопустимо, чтобы медь с алюминием контактировали напрямую, т. к. это приводит к окислению. Поэтому для их соединения используют третий металл.
Можно самостоятельно произвести расчет сечения провода по мощности для трехфазной цепи. Для этого надо воспользоваться формулой: I=P/(U*1.73), где P — мощность, Вт; U — напряжение, В; I — ток, А. Затем из справочной таблицы выбирается сечение кабеля в зависимости от рассчитанного тока. Если же там не будет необходимого значение, тогда выбирается ближайшее, которое превышает расчетное.
Как рассчитать по току
Величина тока, проходящего через проводник, зависит от длины, ширины, удельного сопротивления последнего и от температуры. При нагревании электрический ток уменьшается. Справочная информация указывается для комнатной температуры (18°С). Для выбора сечения кабеля по току используют таблицы ПУЭ.
Площадь сечение проводника, мм² | Ток, А, для проводов, проложенных | |||||
открыто | в одной трубе | |||||
двух одно- жильных | трех одно- жильных | четырех одно- жильных | одного двухжи- льного | одного трехжи- льного | ||
0,5 | 11 | — | — | — | — | — |
0,75 | 15 | — | — | — | — | — |
1 | 17 | 16 | 15 | 14 | 15 | 14 |
1,2 | 20 | 18 | 16 | 15 | 16 | 14,5 |
1,5 | 23 | 19 | 17 | 16 | 18 | 15 |
2 | 26 | 24 | 22 | 20 | 23 | 19 |
2,5 | 30 | 27 | 25 | 25 | 25 | 21 |
3 | 34 | 32 | 28 | 26 | 28 | 24 |
4 | 41 | 38 | 35 | 30 | 32 | 27 |
5 | 46 | 42 | 39 | 34 | 37 | 31 |
6 | 50 | 46 | 42 | 40 | 40 | 34 |
8 | 62 | 54 | 51 | 46 | 48 | 43 |
10 | 80 | 70 | 60 | 50 | 55 | 50 |
16 | 100 | 85 | 80 | 75 | 80 | 70 |
25 | 140 | 115 | 100 | 90 | 100 | 85 |
35 | 170 | 135 | 125 | 115 | 125 | 100 |
50 | 215 | 185 | 170 | 150 | 160 | 135 |
70 | 270 | 225 | 210 | 185 | 195 | 175 |
95 | 330 | 275 | 255 | 225 | 245 | 215 |
120 | 385 | 315 | 290 | 260 | 295 | 250 |
150 | 440 | 360 | 330 | — | — | — |
185 | 510 | — | — | — | — | — |
240 | 605 | — | — | — | — | — |
300 | 695 | — | — | — | — | — |
400 | 830 | — | — | — | — | — |
Для расчета алюминиевых проводов применяют таблицу.
Площадь сечения проводника, мм² | Ток, А, для проводов, проложенных | |||||
открыто | в одной трубе | |||||
двух одно- жильных | трех одно- жильных | четырех одно- жильных | одного двухжи- льного | одного трехжи- льного | ||
2 | 21 | 19 | 18 | 15 | 17 | 14 |
2,5 | 24 | 20 | 19 | 19 | 19 | 16 |
3 | 27 | 24 | 22 | 21 | 22 | 18 |
4 | 32 | 28 | 28 | 23 | 25 | 21 |
5 | 36 | 32 | 30 | 27 | 28 | 24 |
6 | 39 | 36 | 32 | 30 | 31 | 26 |
8 | 46 | 43 | 40 | 37 | 38 | 32 |
10 | 60 | 50 | 47 | 39 | 42 | 38 |
16 | 75 | 60 | 60 | 55 | 60 | 55 |
25 | 105 | 85 | 80 | 70 | 75 | 65 |
35 | 130 | 100 | 95 | 85 | 95 | 75 |
50 | 165 | 140 | 130 | 120 | 125 | 105 |
70 | 210 | 175 | 165 | 140 | 150 | 135 |
95 | 255 | 215 | 200 | 175 | 190 | 165 |
120 | 295 | 245 | 220 | 200 | 230 | 190 |
150 | 340 | 275 | 255 | — | — | — |
185 | 390 | — | — | — | — | — |
240 | 465 | — | — | — | — | — |
300 | 535 | — | — | — | — | — |
400 | 645 | — | — | — | — | — |
Кроме электрического тока, понадобится выбрать материал проводника и напряжение.
Для примерного расчета сечения кабеля по току его надо разделить на 10. Если в таблице не будет полученного сечения, тогда необходимо взять ближайшую большую величину. Это правило подходит только для тех случаев, когда максимально допустимый ток для медных проводов не превышает 40 А. Для диапазона от 40 до 80 А ток надо делить на 8. Если устанавливают алюминиевые кабели, то надо делить на 6. Это объясняется тем, что для обеспечения одинаковых нагрузок толщина алюминиевого проводника больше, чем медного.
Расчет сечения кабеля по мощности и длине
Длина кабеля влияет на потерю напряжения. Таким образом, на конце проводника напряжение может уменьшится и оказаться недостаточным для работы электроприбора. Для бытовых электросетей этими потерями можно пренебречь. Достаточно будет взять кабель на 10-15 см длиннее. Этот запас израсходуется на коммутацию и подключение. Если концы провода подсоединяются к щитку, то запасная длина должна быть еще больше, т. к. будут подключаться защитные автоматы.
При укладке кабеля на большие расстояния приходиться учитывать падение напряжения. Каждый проводник характеризуется электрическим сопротивлением. На данный параметр влияют:
- Длина провода, единица измерения — м. При её увеличении растут потери.
- Площадь поперечного сечения, измеряется в мм². При ее увеличении падение напряжения уменьшается.
- Удельное сопротивление материала (справочное значение). Показывает сопротивление провода, размеры которого 1 квадратный миллиметр на 1 метр.
Падение напряжения численно равняется произведению сопротивления и тока. Допустимо, чтобы указанная величина не превышала 5%. В противном случае надо брать кабель большего сечения. Алгоритм расчета сечения провода по максимальной мощности и длине:
- В зависимости от мощности P, напряжения U и коэффициента cosф находим ток по формуле: I=P/(U*cosф). Для электросетей, которые используются в быту, cosф = 1. В промышленности cosф рассчитывают как отношение активной мощности к полной. Последняя состоит из активной и реактивной мощностей.
- С помощью таблиц ПУЭ определяют сечение провода по току.
- Рассчитываем сопротивление проводника по формуле: Rо=ρ*l/S, где ρ — удельное сопротивление материала, l — длина проводника, S — площадь поперечного сечения. Необходимо учесть ток факт, что ток идет по кабелю не только в одну сторону, но и обратно. Поэтому общее сопротивление: R = Rо*2.
- Находим падение напряжения из соотношения: ΔU=I*R.
- Определяем падение напряжения в процентах: ΔU/U. Если полученное значение превышает 5%, тогда выбираем из справочника ближайшее большее поперечное сечение проводника.
Открытая и закрытая прокладка проводов
В зависимости от размещения проводка делится на 2 вида:
- закрытая;
- открытая.
Сегодня в квартирах монтируют скрытую проводку. В стенах и потолках создаются специальные углубления, предназначенные для размещения кабеля. После установки проводников углубления штукатурят. В качестве проводов используют медные. Заранее всё планируется, т. к. со временем для наращивания электропроводки или замены элементов придется демонтировать отделку. Для скрытой отделки чаще используют провода и кабели, у которых плоская форма.
При открытой прокладке провода устанавливают вдоль поверхности помещения. Преимущества отдают гибким проводникам, у которых круглая форма. Их легко установить в кабель-каналы и пропустить сквозь гофру. Когда рассчитывают нагрузку на кабель, то учитывают способ укладки проводки.
Похожие статьи
odinelectric.ru
Онлайн расчет сечения кабеля по мощности, току и длине провода
Правильный подбор электрического кабеля важен для того чтобы обеспечить достаточный уровень безопасности, экономически эффективно использовать кабель и полноценно применить все возможности кабеля. Грамотно рассчитанное сечение должно быть способно постоянно работать под полной нагрузкой, без повреждений, выдерживать короткие замыкания в сети, обеспечивать нагрузку с соответствующим напряжением тока (без чрезмерного падения напряжения тока) и обеспечивать работоспособность защитных приспособлений во время недостатка заземления. Именно поэтому производится скрупулёзный и точный расчёт сечения кабеля по мощности, что сегодня можно сделать при помощи нашего онлайн-калькулятора достаточно быстро.
Вычисления делаются индивидуально по формуле расчёта сечения кабеля отдельно для каждого силового кабеля, для которого нужно подобрать определённое сечение, или для группы кабелей со схожими характеристиками. Все методы определения размеров кабеля в той или иной степени следуют основным 6 пунктам:
- Сбор данных о кабеле, условиях его установки, нагрузки, которую он будет нести, и т. д
- Определение минимального размера кабеля на основе расчёта силы тока
- Определение минимального размера кабеля основанные на рассмотрении падения напряжения тока
- Определение минимального размера кабеля на основе повышении температуры короткого замыкания
- Определение минимального размера кабеля на основе импеданса петли при недостатке заземления
- Выбор кабеля самых больших размеров на основе расчётов пунктов 2, 3, 4 и 5
Онлайн калькулятор расчета сечения кабеля по мощности
Чтобы применить онлайн калькулятор расчёта сечения кабеля необходимо произвести сбор информации, необходимой для выполнения расчёта размеров. Как правило, необходимо получить следующие данные:
- Детальную характеристику нагрузки, которую будет поставлять кабель
- Назначение кабеля: для трёхфазного, однофазного или постоянного тока
- Напряжение тока системы и (или) источника
- Полный ток нагрузки в кВт
- Полный коэффициент мощности нагрузки
- Пусковой коэффициент мощности
- Длина кабеля от источника к нагрузке
- Конструкция кабеля
- Метод прокладки кабеля
Таблицы сечения медного и алюминиевого кабеля
Таблица сечения медного кабеляТаблица сечения алюминиевого кабеляПри определении большинства параметров расчётов пригодится таблица расчёта сечения кабеля, представленная на нашем сайте. Так как основные параметры рассчитываются на основании потребности потребителя тока все исходные могут быть достаточно легко посчитаны. Однако так же важную роль влияет марка кабеля и провода, а также понимание конструкции кабеля.
Основными характеристиками конструкции кабеля являются:
- Материал-проводника
- Форма проводника
- Тип проводника
- Покрытие поверхности проводника
- Тип изоляции
- Количество жил
Ток, протекающий через кабель создаёт тепло за счёт потерь в проводниках, потерь в диэлектрике за счёт теплоизоляции и резистивных потерь от тока. Именно поэтому самым основным является расчёт нагрузки, который учитывает все особенности подвода силового кабеля, в том числе и тепловые. Части, которые составляют кабель (например, проводники, изоляция, оболочка, броня и т. д.), должны быть способны выдержать повышение температуры и тепло, исходящее от кабеля.
Пропускная способность кабеля — это максимальный ток, который может непрерывно протекать через кабель без повреждения изоляции кабеля и других компонентов. Именно этот параметр и является результатом при расчёте нагрузки, для определения общего сечения.
Кабели с более большими зонами поперечного сечения проводника имеют более низкие потери сопротивления и могут рассеять тепло лучше, чем более тонкие кабели. Поэтому кабель с 16 мм2 сечения будет иметь большую пропускную способность тока, чем 4 мм2 кабель.
Однако такая разница в сечении — это огромная разница в стоимости, особенно когда дело касается медной проводки. Именно поэтому следует произвести очень точный расчёт сечения провода по мощности, чтобы его подвод был экономически целесообразным.
Для систем переменного тока обычно используется метод расчёта перепадов напряжения на основе коэффициента мощности нагрузки. Как правило, используются полные токи нагрузки, но если нагрузка была высокой при запуске (например, двигателя), то падение напряжения на основе пускового тока (мощность и коэффициент мощности, если это применимо), должны также быть просчитаны и учтены, так как низкое напряжение так же является причиной выхода из строя дорогостоящего оборудования, несмотря на современные уровни его защиты.
Видео-обзоры по выбору сечения кабеля
Воспользуйтесь другими онлайн калькуляторами:
electrikmaster.ru
Зависимость сечения кабеля и провода от токовых нагрузок и мощности
При проектировании схемы любой электрической установки и монтаже, выбор сечения проводов и кабелей является обязательным этапом. Чтобы правильно подобрать силовой провод нужного сечения, необходимо учитывать величину максимального потребления.
Сечения проводов измеряется в квадратных милиметрах или «квадратах». Каждый «квадрат» алюминиевого провода способен пропустить через себя в течение длительного времени нагреваясь до допустимых пределов максимум — только 4 ампера, а медный провода 10 ампер тока. Соответственно, если какой-то электропотребитель потребляет мощность равную 4 киловаттам (4000 Ватт), то при напряжении 220 вольт сила тока будет равна 4000/220=18,18 ампер и для его питания достаточно подвести к нему электричество медным проводом сечением 18,18/10=1,818 квадрата. Правда в этом случае провод будет работать на пределе своих возможностей, поэтому следует взять запас по сечению в размере не менее 15%. Получим 2,091 квадрата. И теперь подберем ближайший провод стандартного сечения. Т.е. к этому потребителю мы должны вести проводку медным проводом сечением 2 квадратных миллиметра именуемого нагрузкой тока. Значения токов легко определить, зная паспортную мощность потребителей по формуле: I = Р/220. Алюминиевый провод будет соответственно в 2,5 раза толще.
Из расчета достаточной механической прочности открытая силовая проводка обычно выполняется проводом с сечением не менее 4 кв. мм. Если требуется с большей точностью знать длительно допустимую токовую нагрузку для медных проводов и кабелей, то можно воспользоваться таблицами.
Медные жилы проводов и кабелей |
||||
Сечение токопроводящей жилы, мм. | Напряжение, 220 В | Напряжение, 380 В | ||
ток, А | мощность, кВт | ток, А | мощность, кВт | |
1,5 | 19 | 4,1 | 16 | 10,5 |
2,5 | 27 | 5,9 | 25 | 16,5 |
4 | 38 | 8,3 | 30 | 19,8 |
6 | 46 | 10,1 | 40 | 26,4 |
10 | 70 | 15,4 | 50 | 33,0 |
16 | 85 | 18,7 | 75 | 49,5 |
25 | 115 | 25,3 | 90 | 59,4 |
35 | 135 | 29,7 | 115 | 75,9 |
50 | 175 | 38,5 | 145 | 95,7 |
70 | 215 | 47,3 | 180 | 118,8 |
95 | 260 | 57,2 | 220 | 145,2 |
120 | 300 | 66,0 | 260 | 171,6 |
Алюминиевые жилы проводов и кабелей |
||||
Сечение токопроводящей жилы, мм. | Напряжение, 220 В | Напряжение, 380 В | ||
ток, А | мощность, кВт | ток, А | мощность, кВт | |
2,5 | 20 | 4,4 | 19 | 12,5 |
4 | 28 | 6,1 | 23 | 15,1 |
6 | 36 | 7,9 | 30 | 19,8 |
10 | 50 | 11,0 | 39 | 25,7 |
16 | 60 | 13,2 | 55 | 36,3 |
25 | 85 | 18,7 | 70 | 46,2 |
35 | 100 | 22,0 | 85 | 56,1 |
50 | 135 | 29,7 | 110 | 72,6 |
70 | 165 | 36,3 | 140 | 92,4 |
95 | 200 | 44,0 | 170 | 112,2 |
120 | 230 | 50,6 | 200 | 132,0 |
Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами к примеру кабель МКЭШВнг |
||||||
Сечение токопроводящей жилы, мм. | Открыто | Ток, А, для проводов проложенных в одной трубе | ||||
Двух одножильных | Трех одножильных | Четырех одножильных | Одного двухжильного | Одного трехжильного | ||
0,5 | 11 | — | — | — | — | — |
0,75 | 15 | — | — | — | — | — |
1 | 17 | 16 | 15 | 14 | 15 | 14 |
1,2 | 20 | 18 | 16 | 15 | 16 | 14,5 |
1,5 | 23 | 19 | 17 | 16 | 18 | 15 |
2 | 26 | 24 | 22 | 20 | 23 | 19 |
2,5 | 30 | 27 | 25 | 25 | 25 | 21 |
3 | 34 | 32 | 28 | 26 | 28 | 24 |
4 | 41 | 38 | 35 | 30 | 32 | 27 |
5 | 46 | 42 | 39 | 34 | 37 | 31 |
6 | 50 | 46 | 42 | 40 | 40 | 34 |
8 | 62 | 54 | 51 | 46 | 48 | 43 |
10 | 80 | 70 | 60 | 50 | 55 | 50 |
16 | 100 | 85 | 80 | 75 | 80 | 70 |
25 | 140 | 115 | 100 | 90 | 100 | 85 |
35 | 170 | 135 | 125 | 115 | 125 | 100 |
50 | 215 | 185 | 170 | 150 | 160 | 135 |
70 | 270 | 225 | 210 | 185 | 195 | 175 |
95 | 330 | 275 | 255 | 225 | 245 | 215 |
120 | 385 | 315 | 290 | 260 | 295 | 250 |
150 | 440 | 360 | 330 | — | — | — |
185 | 510 | — | — | — | — | — |
240 | 605 | — | — | — | — | — |
300 | 695 | — | — | — | — | — |
400 | 830 | — | — | — | — | — |
Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами |
||||||
Сечение токопроводящей жилы, мм. | Открыто | Ток, А, для проводов проложенных в одной трубе | ||||
Двух одножильных | Трех одножильных | Четырех одножильных | Одного двухжильного | Одного трехжильного | ||
2 | 21 | 19 | 18 | 15 | 17 | 14 |
2,5 | 24 | 20 | 19 | 19 | 19 | 16 |
3 | 27 | 24 | 22 | 21 | 22 | 18 |
4 | 32 | 28 | 28 | 23 | 25 | 21 |
5 | 36 | 32 | 30 | 27 | 28 | 24 |
6 | 39 | 36 | 32 | 30 | 31 | 26 |
8 | 46 | 43 | 40 | 37 | 38 | 32 |
10 | 60 | 50 | 47 | 39 | 42 | 38 |
16 | 75 | 60 | 60 | 55 | 60 | 55 |
25 | 105 | 85 | 80 | 70 | 75 | 65 |
35 | 130 | 100 | 95 | 85 | 95 | 75 |
50 | 165 | 140 | 130 | 120 | 125 | 105 |
70 | 210 | 175 | 165 | 140 | 150 | 135 |
95 | 255 | 215 | 200 | 175 | 190 | 165 |
120 | 295 | 245 | 220 | 200 | 230 | 190 |
150 | 340 | 275 | 255 | — | — | — |
185 | 390 | — | — | — | — | — |
240 | 465 | — | — | — | — | — |
300 | 535 | — | — | — | — | — |
400 | 645 | — | — | — | — | — |
Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной, найритовой или резиновой оболочке, бронированных и небронированных |
|||||||
Сечение токопроводящей жилы, мм. | Ток*, А, для проводов и кабелей | ||||||
одножильных | двухжильных | трехжильных | |||||
при прокладке | |||||||
в воздухе | в воздухе | в земле | в воздухе | в земле | |||
1,5 | 23 | 19 | 33 | 19 | 27 | ||
2,5 | 30 | 27 | 44 | 25 | 38 | ||
4 | 41 | 38 | 55 | 35 | 49 | ||
6 | 50 | 50 | 70 | 42 | 60 | ||
10 | 80 | 70 | 105 | 55 | 90 | ||
16 | 100 | 90 | 135 | 75 | 115 | ||
25 | 140 | 115 | 175 | 95 | 150 | ||
35 | 170 | 140 | 210 | 120 | 180 | ||
50 | 215 | 175 | 265 | 145 | 225 | ||
70 | 270 | 215 | 320 | 180 | 275 | ||
95 | 325 | 260 | 385 | 220 | 330 | ||
120 | 385 | 300 | 445 | 260 | 385 | ||
150 | 440 | 350 | 505 | 305 | 435 | ||
185 | 510 | 405 | 570 | 350 | 500 | ||
240 | 605 | — | — | — | — |
* Токи относятся к кабелям и проводам с нулевой жилой и без нее.
Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных |
|||||||
Сечение токопроводящей жилы, мм. | Ток, А, для проводов и кабелей | ||||||
одножильных | двухжильных | трехжильных | |||||
при прокладке | |||||||
в воздухе | в воздухе | в земле | в воздухе | в земле | |||
2,5 | 23 | 21 | 34 | 19 | 29 | ||
4 | 31 | 29 | 42 | 27 | 38 | ||
6 | 38 | 38 | 55 | 32 | 46 | ||
10 | 60 | 55 | 80 | 42 | 70 | ||
16 | 75 | 70 | 105 | 60 | 90 | ||
25 | 105 | 90 | 135 | 75 | 115 | ||
35 | 130 | 105 | 160 | 90 | 140 | ||
50 | 165 | 135 | 205 | 110 | 175 | ||
70 | 210 | 165 | 245 | 140 | 210 | ||
95 | 250 | 200 | 295 | 170 | 255 | ||
120 | 295 | 230 | 340 | 200 | 295 | ||
150 | 340 | 270 | 390 | 235 | 335 | ||
185 | 390 | 310 | 440 | 270 | 385 | ||
240 | 465 | — | — | — | — |
Допустимые длительные токи для четырехжильных кабелей с пластмассовой изоляцией на напряжение до 1 кВ могут выбираться по данной таблице как для трехжильных кабелей, но с коэффициентом 0,92.
Сводная таблица сечений проводов, тока, мощности и характеристик нагрузки | |||||
Сечение медных жил проводов и кабелей, кв.мм | Допустимый длительный ток нагрузки для проводов и кабелей, А | Номинальный ток автомата защиты, А | Предельный ток автомата защиты, А | Максимальная мощность однофазной нагрузки при U=220 B | Характеристика примерной однофазной бытовой нагрузки |
1,5 | 19 | 10 | 16 | 4,1 | группа освещения и сигнализации |
2,5 | 27 | 16 | 20 | 5,9 | розеточные группы и электрические полы |
4 | 38 | 25 | 32 | 8,3 | водонагреватели и кондиционеры |
6 | 46 | 32 | 40 | 10,1 | электрические плиты и духовые шкафы |
10 | 70 | 50 | 63 | 15,4 | вводные питающие линии |
В таблице приведены данные на основе ПУЭ, для выбора сечений кабельно-проводниковой продукции, а также номинальных и максимально возможных токов автоматов защиты, для однофазной бытовой нагрузки чаще всего применяемой в быту.
Наименьшие допустимые сечения кабелей и проводов электрических сетей в жилых зданиях | |
Наименование линий | Наименьшее сечение кабелей и проводов с медными жилами, кв.мм |
Линии групповых сетей | 1,5 |
Линии от этажных до квартирных щитков и к расчетному счетчику | 2,5 |
Линии распределительной сети (стояки) для питания квартир | 4 |
Надеемся данная информация была полезна для Вас. Мы же напоминаем что у нас Вы можете купить кабель МКЭКШВнг отличного качества по низкой цене.
rostech.info
Расчет сечения провода по мощности и по плотности тока: формулы и примеры
Грамотный подбор кабеля для восстановления или прокладки электропроводки гарантирует безупречную работу системы. Приборы будут получать питание в полноценном объеме. Не случится перегрева изоляции с последующими разрушительными последствиями. Разумный расчет сечения провода по мощности избавит и от угроз воспламенения, и от лишних затрат на покупку недешевого провода. Давайте разберемся в алгоритме расчетов.
Упрощенно кабель можно сравнить с трубопроводом, транспортирующим газ или воду. Точно так же по его жиле перемещается поток, параметры которого ограничены размером данного токоведущего канала. Следствием неверного подбора его сечения являются два распространенных ошибочных варианта:
- Слишком узкий токоведущий канал, из-за которого в разы возрастает плотность тока. Рост плотности тока влечет за собой перегрев изоляции, затем ее оплавление. В результате оплавления по минимуму появятся «слабые» места для регулярных утечек, по максимуму пожар.
- Излишне широкая жила, что, в сущности, совсем неплохо. Причем, наличие простора для транспортировки электро-потока весьма положительно отражается на функционале и эксплуатационных сроках проводки. Однако карман владельца облегчится на сумму, примерно вдвое превышающую по факту требующиеся деньги.
Первый из ошибочных вариантов представляет собой откровенную опасность, в лучшем случае повлечет увеличение оплаты за электроэнергию. Второй вариант не опасен, но крайне нежелателен.
«Протоптанные» пути вычислений
Все существующие расчетные способы опираются на выведенный Омом закон, согласно которому сила тока, помноженная на напряжение, равняется мощности. Бытовое напряжение – величина постоянная, равная в однофазной сети стандартным 220 В. Значит, в легендарной формуле остаются лишь две переменные: это ток с мощностью. «Плясать» в расчетах можно и нужно от одной из них. Через расчетные значения тока и предполагаемой нагрузки в таблицах ПУЭ найдем требующийся размер сечения.
Обратите внимание, что сечение кабеля рассчитывают для силовых линий, т.е. для проводов к розеткам. Линии освещения априори прокладывают кабелем с традиционной величиной площади сечения 1,5 мм².
Если в обустраиваемом помещении нет мощного диско-прожектора или люстры, требующей питания в 3,3кВт и больше, то увеличивать площадь сечения жилы осветительного кабеля не имеет смысла. А вот розеточный вопрос – дело сугубо индивидуальное, т.к. подключать к одной линии могут такие неравнозначные тандемы, как фен с водонагревателем или электрочайник с микроволновкой.
Тем, кто планирует нагрузить силовую линию электрической варочной поверхностью, бойлером, стиральной машиной и подобной «прожорливой» техникой, желательно распределить всю нагрузку на несколько розеточных групп.
Если технической возможности разбить нагрузку на группы нет, бывалые электрики рекомендуют без затей прокладывать кабель с медной жилой сечением 4-6 мм². Почему с медной токоведущей сердцевиной? Потому что строгим кодексом ПУЭ прокладка кабеля с алюминиевой «начинкой» в жилье и в активно используемых бытовых помещениях запрещена. Сопротивление у электротехнической меди гораздо меньше, тока она пропускает больше и не греется при этом, как алюминий. Алюминиевые провода используются при устройстве наружных воздушных сетей, кое-где они еще остались в старых домах.
Обратите внимание! Площадь сечения и диаметр жилы кабеля – вещи разные. Первая обозначается в квадратных мм, второй просто в мм. Главное не перепутать!
Для поиска табличных значений мощности и допустимой силы тока можно пользоваться обоими показателями. Если в таблице указан размер площади сечения в мм², а нам известен только диаметр в мм, площадь нужно найти по следующей формуле:
Расчет размера сечения по нагрузке
Простейший способ подбора кабеля с нужным размером — расчет сечения провода по суммарной мощности всех подключаемых к линии агрегатов.
Алгоритм расчетных действий следующий:
- для начала определимся с агрегатами, которые предположительно могут использоваться нами одновременно. Например, в период работы бойлера нам вдруг захочется включить кофемолку, фен и стиралку;
- затем согласно данным техпаспортов или согласно приблизительным сведениям из приведенной ниже таблицы банально суммируем мощность одновременно работающих по нашим планам бытовых агрегатов;
- предположим, что в сумме у нас вышло 9,2 кВт, но конкретно этого значения в таблицах ПУЭ нет. Значит, придется округлить в безопасную большую сторону – т.е. взять ближайшее значение с некоторым превышением мощности. Это будет 10,1 кВт и соответствующее ему значение сечения 6 мм².
Все округления «направляем» в сторону увеличения. В принципе суммировать можно и силу тока, указанную в техпаспортах. Расчеты и округления по току производятся аналогичным образом.
Как рассчитать сечение по току?
Табличные значения не могут учесть индивидуальных особенностей устройства и эксплуатации сети. Специфика у таблиц среднестатистическая. Не приведены в них параметры максимально допустимых для конкретного кабеля токов, а ведь они отличаются у продукции с разными марками. Весьма поверхностно затронут в таблицах тип прокладки. Дотошным мастерам, отвергающим легкий путь поиска по таблицам, лучше воспользоваться способом расчета размера сечения провода по току. Точнее по его плотности.
Допустимая и рабочая плотность тока
Начнем с освоения азов: запомним на практике выведенный интервал 6 — 10. Это значения, полученные электриками многолетним «опытным путем». В указанных пределах варьирует сила тока, протекающего по 1 мм² медной жилы. Т.е. кабель с медной сердцевиной сечением 1 мм² без перегрева и оплавления изоляции предоставляет возможность току от 6 до 10 А спокойно достигать ожидающего его агрегата-потребителя. Разберемся, откуда взялась и что означает обозначенная интервальная вилка.
Согласно кодексу электрических законов ПУЭ 40% отводится кабелю на неопасный для его оболочки перегрев, значит:
- 6 А, распределенные на 1 мм² токоведущей сердцевины, являются нормальной рабочей плотностью тока. В данных условиях проводник работать может бесконечно долго без каких-либо ограничений по времени;
- 10 А, распределенные на 1 мм² медной жилы, протекать по проводнику могут краткосрочно. Например, при включении прибора.
Потоку энергии 12 А в медном миллиметровом канале будет изначально «тесно». От тесноты и толкучки электронов увеличится плотность тока. Следом повысится температура медной составляющей, что неизменно отразиться на состоянии изоляционной оболочки.
Обратите внимание, что для кабеля с алюминиевой токоведущей жилой плотность тока отображает интервал 4 – 6 Ампер, приходящийся на 1 мм² проводника.
Выяснили, что предельная величина плотности тока для проводника из электротехнической меди 10 А на площадь сечения 1 мм², а нормальные 6 А. Следовательно:
- кабель с жилой сечением 2,5 мм² сможет транспортировать ток в 25 А всего лишь несколько десятых секунды во время включения техники;
- он же бесконечно долго сможет передавать ток в 15А.
Приведенные выше значения плотности тока действительны для открытой проводки. Если кабель прокладывается в стене, в металлической гильзе или в пластиковом кабель канале, указанную величину плотности тока нужно помножить на поправочный коэффициент 0,8. Запомните и еще одну тонкость в организации открытого типа проводки. Из соображений механической прочности кабель с сечением меньше 4 мм² в открытых схемах не используют.
Изучение схемы расчета
Суперсложных вычислений снова не будет, расчет провода по предстоящей нагрузке предельно прост.
- Сначала найдем предельно допустимую нагрузку. Для этого суммируем мощность приборов, которые предполагаем одновременно подключать к линии. Сложим, например, мощность стиральной машины 2000 Вт, фена 1000 Вт и произвольно какого-либо обогревателя 1500 Вт. Получили мы 4500 Вт или 4,5 кВт.
- Затем делим наш результат на стандартную величину напряжения бытовой сети 220 В. Мы получили 20,45…А, округляем до целого числа, как положено, в большую сторону.
- Далее вводим поправочный коэффициент, если в нем есть необходимость. Значение с коэффициентом будет равно 16,8, округленно 17 А, без коэффициента 21 А.
- Вспоминаем о том, что рассчитывали рабочие параметры мощности, а нужно еще учесть предельно допустимое значение. Для этого вычисленную нами силу тока умножаем на 1,4, ведь поправка на тепловое воздействие 40%. Получили: 23,8 А и 29,4 А соответственно.
- Значит, в нашем примере для безопасной работы открытой проводки потребуется кабель с сечением более 3 мм², а для скрытого варианта 2,5 мм².
Не забудем о том, что в силу разнообразных обстоятельств порой включаем одновременно больше агрегатов, чем рассчитывали. Что есть еще лампочки и прочие приборы, незначительно потребляющие энергию. Запасемся некоторым резервом сечения на случай увеличения парка бытовой техники и с расчетами отправимся за важной покупкой.
Видео-руководство для точных расчетов
Какой кабель лучше купить?
Следуя жестким рекомендациям ПУЭ, покупать для обустройства личной собственности будем кабельную продукцию с «литерными группами» NYM и ВВГ в маркировке. Именно они не вызывают нареканий и придирок со стороны электриков и пожарников. Вариант NYM – аналог отечественных изделий ВВГ.
Лучше всего, если отечественный кабель будет сопровождать индекс НГ, это означает, что проводка будет пожароустойчивой. Если предполагается прокладывать линию за перегородкой, между лагами или над подвесным потолком, купите изделия с низким дымовыделением. У них будет индекс LS.
Вот таким нехитрым способом рассчитывается сечение токопроводящей жилы кабеля. Сведения о принципах вычислений помогут рационально подобрать данный важный элемент электросети. Необходимый и достаточный размер токоведущей сердцевины обеспечит питанием домашнюю технику и не станет причиной возгорания проводки.
Оцените статью: Поделитесь с друзьями!stroy-banya.com
Расчет сечения кабеля
Здравствуйте, уважаемые читатели сайта http://elektrik-sam.info.
В предыдущей статье я подробно показывал, как рассчитать основную характеристику автоматического выключателя — его номинальный ток, в этой статье мы подробно рассмотрим, как выполнить расчет сечения кабеля.
Итак, нам необходимо знать расчетный ток в линии.
Рабочий ток электропроводки ограничен максимально допустимой температурой нагрева провода при протекании по нему тока. При превышении этой температуры изоляция начинает перегреваться и плавиться, что приводит к разрушению кабеля. Для скрытой электропроводки теплопроводность провода меньше, чем для открытой проводки, провод хуже охлаждается и соответственно, меньше допустимый рабочий ток.
При продолжительной работе кабеля с температурой, превышающей допустимую, изоляция быстро теряет свои изоляционные и механические свойства. Длительно допустимая температура нагрева жил кабелей с резиновой или пластмассовой изоляцией составляет 70°С. А при токах короткого замыкания максимально допустимая температура 160°С, причем продолжительность такого воздействия не должна превышать 4с. Сечение провода необходимо выбирать таким, чтобы он не нагревался выше допустимой для его нормальной работы температуры.
Номинальный ток автоматического выключателя выбирается больше или равным расчетному току линии, и не должен превышать максимально допустимую нагрузку в электрической цепи или кабеле:
Iрасч<=Iн<=Iдоп
Для обеспечения защиты от перегрузки по току, номинальный ток срабатывания автоматического выключателя должен быть на 45% меньше, чем максимально допустимая нагрузка для электрической цепи или кабеля:
Максимальный ток, который выдерживает электропроводка, можно определить по таблице расчета сечения кабеля табл.1.3.4 Правил устройства электроустановок. Скрытая электропроводка, когда провод проложен в штробе под штукатуркой, приравнивается к прокладке в трубе.
Согласно норм, электропроводка в квартирах должна выполняться трехпроводной, и заземляющий проводник в расчет не принимается. Поэтому для домашней электропроводки пользуемся столбцом «один двухжильный провод, проложенный в трубе»:
Внутренняя электропроводка, согласно требованием ПУЭ п.7.1.34, должна выполняться только кабелями с медными жилами.
Если у вас старый дом, в котором электропроводка выполнена алюминиевым проводом, тогда для определения сечения кабеля необходимо пользоваться таблицей 1.3.5., в которой указан допустимый длительный ток для проводов с алюминиевыми жилами:
Выбирая сечение провода, необходимо учитывать требования к его механической прочности. Согласно ПУЭ табл.7.1.1, для внутренней электропроводки жилых зданий минимальное сечение проводников групповых линий должно быть 1,5 мм2. То есть, если в результате расчета получается, что необходим провод сечением 1 мм2, необходимо применять провод минимум 1,5 мм2.
Знакомясь с время-токовыми характеристиками автоматических выключателей, мы рассматривали, пороги срабатывания тепловых и электромагнитных расцепителей настраиваются на заводе по стандарту. Эти данные обычно приводятся в каталогах производителей.
Параметры срабатывания автоматических выключателей
Из таблицы (и из графика время-токовой характеристики) видно, что при токах до 1,13Iн автомат не сработает. При возникновении перегрузки цепи на 13% больше номинального тока (1,13Iн), автоматический выключатель отключиться не ранее, чем через час, а при перегрузке до 45% (1,45Iн), тепловой расцепитель автомата должен сработать в течение одного часа (т.е. может сработать и через час). Таким образом, в диапазоне токов 1,13-1,45 от номинального тока Iн тепловой расцепитель автомата сработает за время от нескольких минут, до нескольких часов.
Из всего этого видно, что номинальный ток выбранного автоматического выключателя, с учётом уставки теплового рацепителя, как минимум, не должен превышать допустимых токовых нагрузок электропроводки, находящейся в зоне действия автомата.
Для чего при выборе автоматического выключателя учитывать уставку теплового расцепителя? Для наглядности рассмотрим пример.
Возьмем автомат номиналом 16А, ток перегрузки при котором этот автомат сработает в течение часа будет равным не 16А, а 16·1,45= 23,2А (уставка теплового расцепителя — 1,45Iн). Соответственно, под этот ток необходимо подобрать сечение кабеля. Смотрим таблицу для меди: при скрытой электропроводке это минимум 2,5мм2 (длительно выдерживает ток в 25А).
Соответственно, для автомата номиналом 10А, ток при котором этот автоматический выключатель сработает в течение часа будет равным не 10А, а 10·1,45= 14,5А (уставка теплового расцепителя). По таблице: при скрытой проводке это минимум 1,5мм2 .
Довольно часто встречается, что для защиты группы, выполненной проводом 2,5 мм2 устанавливают автомат защиты 25А (ведь по таблице мы видим, что он выдерживает длительный допустимый ток 25А). В этом случае получится, что ток при котором автомат отключится в течении часа составит не 25А, а 25·1,45=36,25А. За это время провод перегорит и возможен пожар.
В настоящее время с большой вероятностью можно приобрести кабель с уменьшенным фактическим сечением (например, вместо сечения 2,5 мм2 окажется только 2,0 мм2).
В связи с этим, чтобы увеличить безопасность, надежность и долговечность электропроводки, для использование в быту оптимальны такие соотношения сечения применяемого провода и номинала, устанавливаемого в эту цепь автоматического выключателя:
1,5 мм2 — 10 А — нагрузка до 2,2 кВт
2,5 мм2 — 16 А — нагрузка до 3,5 кВт
4,0 мм2 — 25 А — нагрузка до 5,5 кВт
6,0 мм2 — 32 А — нагрузка до 7 кВт
10 мм2 — 50 А — нагрузка до 11 кВт
На срабатывание автоматических выключателей, помимо величины тока, протекающего в защищаемой цепи, влияет также нагрев от установленных рядом автоматов и температура окружающей среды.
Летом, когда жарко, а внутри электрического щита температура еще выше, вдобавок установлено несколько автоматов в ряд, номинальный ток автоматического выключателя снизится. Если в линии включено много потребителей (т.е. нагрузка близка к максимальной), возможны срабатывания теплового расцепителя. Это необходимо учитывать при выборе автомата. Подробно влияние температуры на работу автоматического выключателя я уже рассматривал в статье Почему в жару срабатывает автоматический выключатель.
После того, как выбрали сечения провода, проводят проверку на допустимую потерю напряжения. При большой протяженности проводов напряжение к потребителям может доходить существенно ниже номинального.
Допустимая потеря напряжения в проводах не должна превышать 5% номинального напряжения. Если она окажется больше допустимой, то необходимо выбрать провод большего сечения. В рамках этой статьи мы проверку по потере напряжения рассматривать не будем.
Подробное видео Как рассчитать сечение кабеля:
Рекомендую материалы по теме:
Расчет сечения кабеля. Ошибки.
Автоматические выключатели УЗО дифавтоматы — подробное руководство.
Как выбирать автоматические выключатели, УЗО, дифавтоматы?
Автоматические выключатели — конструкция и принцип работы.
Номинал токовые характеристики автоматических выключателей.
Автоматические выключатели технические характеристики.
Номиналы групповых автоматов превышают номинал вводного?
Менять ли автоматический выключатель, если его «выбивает»?
Конструкция (устройство) УЗО.
Устройство УЗО и принцип действия.
Работа УЗО при обрыве нуля.
Как проверить тип УЗО?
Почему УЗО выбирают на ступень выше?
elektrik-sam.info
Провода для электропроводки. Расчет и таблица допустимого сечения электрических проводов
РАСЧЕТ — ТАБЛИЦА
Ниже я приведу таблицу сечения проводов, но рекомендую набраться терпения, прочитав до конца эту небольшую теоретическую часть. Это позволит Вам быть более осознанным в выборе проводов для монтажа электропроводки, кроме того, Вы сможете самостоятельно сделать расчет сечения провода, причем, даже «в уме».
Прохождение тока по проводнику всегда сопровождается выделением тепла (соответственно нагревом), которое прямо пропорционально мощности, рассеиваемой на участке электропроводки. Ее величина определяется формулой P=I2*R, где:
- I — величина протекающего тока,
- R — сопротивление провода.
Чрезмерный нагрев может привести к нарушению изоляции, как следствие — короткому замыканию и (или) возгоранию.
Ток протекающий по проводнику находится в зависимости от мощности нагрузки (P), определяемой формулой
I=P/U
(U — это напряжение, которое для бытовой электрической сети составляет 220В).
Сопротивление провода R зависит от его длины, материала и сечения. Для электропроводки в квартире, даче или гараже длиной можно пренебречь, а вот материал и сечение при выборе проводов для электропроводки необходимо учитывать.
РАСЧЕТ СЕЧЕНИЯ ПРОВОДА
Сечение провода S определяется его диаметром d следующим образом (здесь и далее я буду максимально упрощать формулы):S=π*d2/4=3.14*d2/4=0.8*d2.
Это может Вам пригодится, если вы уже имеете провод, причем без маркировки, которая указывает сразу сечение, например, ВВГ 2х1.5, эдесь 1,5 — сечение в мм2, а 2 — количество жил.
Чем больше сечение, тем большую токовую нагрузку выдерживает провод. При одинаковых сечениях медного и алюминиевого проводов — медные могут выдержать больший ток, кроме того они менее ломкие, хуже окисляются, поэтому наиболее предпочтительны.
Очевидно, что при скрытой прокладке, а также провода, проложенные в гофрошланге, электромонтажном коробе из-за плохого теплообмена нагреваться будут сильнее, значит следует их сечение выбирать с определенным запасом, поэтому пришло время рассмотреть такую величину как плотность тока (обозначим ее Iρ).
Характеризуется она величиной тока в Амперах, протекающего через единицу сечения проводника, которую мы примем за 1мм2. Поскольку эта величина относительная, то с ее использованием удобно производить расчет сечения по следующим формулам:
- d=√1.27*I/Iρ=1.1*√I/Iρ — получаем значение диаметра провода,
- S=0.8*d2 — ранее полученная формула для расчета сечения,
Подставляем первую формулу во вторую, округляем все что можно, получаем очень простое соотношение:
S=I/Iρ
Остается определиться с величиной плотности тока Iρ), поскольку рабочий ток I) определяется мощностью нагрузки, формулу я приводил выше.
Допустимое значение плотности тока определяется множеством факторов, рассмотрение которых я опущу и приведу конечные результаты, причем с запасом:
Материал провода | Скрытая проводка | Открытая проводка |
Медь | Iρ=6 А/мм2 | Iρ=10 А/мм2 |
Алюминий | Iρ=4 А/мм2 | Iρ=6 А/мм2 |
Пример расчета:
Имеем: суммарная мощность нагрузки в линии — 2,2 кВт, проводка открытая, провод — медный. Для расчета используем следующие единицы измерения: ток — Ампер, мощность — Ватт (1кВт=1000Вт), напряжение — Вольт.
S=I/Iρ=(2200/220)/10=1мм2
Если провести соответствующие расчеты для всего ряда сечений проводов, то можно получить соответствующую таблицу.
В начало
ТАБЛИЦА СЕЧЕНИЯ ПРОВОДОВ
Сразу предупреждаю, данные из различных источников могут отличаться. Это различие определяется величиной запаса по мощности. Приводя расчеты я этот запас взял по максимуму, памятуя, что лучше купить более мощные, соответственно более дорогие провода, нежели потом переделывать сгоревшую электропроводку.
Предлагаю Вашему вниманию обещанную в начале статьи таблицу:
Лишний раз настоятельно рекомендую использовать провода с медными жилами.
В начало
© 2012-2018 г. Все права защищены.
Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов
eltechbook.ru
Расчет сечения провода, кабеля по допустимой токовой нагрузке
Провода и кабели, по которым протекает электрический ток, являются важнейшей частью электропроводки.
Расчет сечения провода необходимо производить затем, чтобы убедится, что выбранный провод соответствует всем требованиям надежности и безопасной эксплуатации электропроводки.
Безопасная эксплуатация заключается в том, что если вы выберете сечение не соответствующее его токовым нагрузкам, то это приведет к чрезмерному перегреву провода, плавлению изоляции, короткому замыканию и пожару.
Поэтому к вопросу о выборе сечения провода необходимо отнестись очень серьезно.
Что нужно знать для правильного выбора провода?
Основным показателем, по которому рассчитывают провод, является его длительно допустимая токовая нагрузка. Проще говоря, это такая величина тока, которую он способен пропускать на протяжении длительного времени.
Чтобы найти величину номинального тока, необходимо подсчитать мощность всех подключаемых электроприборов в доме. Рассмотрим пример расчета сечения провода для обычной двухкомнатной квартиры. Перечень необходимых приборов и их примерная мощность указана в таблице.
Электроприбор | Мощность, Вт |
LCD телевизор | 140 |
Холодильник | 300 |
Бойлер | 2000 |
Пылесос | 650 |
Утюг | 1700 |
Электрочайник | 1200 |
Микроволновая печь | 700 |
Стиральная машина | 2500 |
Компьютер | 500 |
Освещение | 500 |
Всего | 10190 |
После того как мощность будет известна расчет сечения провода или кабеля сводится к определению силы тока на основании этой мощности. Найти силу тока можно по формуле:
1) Формула расчета силы тока для однофазной сети 220 В:
- где Р — суммарная мощность всех электроприборов, Вт;
- U — напряжение сети, В;
- КИ= 0.75 — коэффициент одновременности;
- — для бытовых электроприборов.
2) Формула для расчета силы тока в трехфазной сети 380 В:
Зная величину тока, сечение провода находят по таблице. Если окажется что расчетное и табличное значения токов не совпадают, то в этом случае выбирают ближайшее большее значение. Например расчетное значение тока составляет 23 А, выбираем по таблице ближайшее большее 27 А — с сечением 2.5 мм2 (для медного многожильного провода прокладываемого по воздуху).
Представляю вашему вниманию таблицы допустимых токовых нагрузок кабелей с медными и алюминиевыми жилами с изоляцией из поливинилхлоридного пластика.
Все данные взяты не из головы, а из нормативного документа ГОСТ 31996—2012 «КАБЕЛИ СИЛОВЫЕ С ПЛАСТМАССОВОЙ ИЗОЛЯЦИЕЙ».
ВНИМАНИЕ! Для четырехжильных и пятижильных кабелей, у которых все жилы равного сечения при использовании их в четырех-проводных сетях значение из таблицы нужно умножить на коэффициент 0,93. |
Например у Вас трехфазная нагрузка мощностью Р=15 кВ. Необходимо выбрать медный кабель (прокладка по воздуху). Как рассчитать сечение? Сперва необходимо рассчитать токовую нагрузку исходя из данной мощности, для этого применяем формулу для трехфазной сети: I = P / √3 · 380 = 22.8 ≈ 23 А.
По таблице токовых нагрузок выбираем сечение 2.5 мм2 (для него допустимый ток 27А). Но так как кабель у Вас четырехжильный (или пяти- тут уже особой разницы нет) согласно указаний ГОСТ 31996—2012 выбранное значение тока нужно умножить на коэффициент 0.93. I = 0.93 * 27 = 25 А. Что допустимо для нашей нагрузки (расчетного тока).
Хотя в виду того что многие производители выпускают кабели с заниженным сечением в данном случае я бы советовал взять кабель с запасом, с сечением на порядок выше — 4 мм2.
Какой провод лучше использовать медный или алюминиевый?
На сегодняшний день для монтажа как открытой электропроводки так и скрытой, конечно же большой популярностью пользуются медные провода. Медь, по сравнению с алюминием, более эффективна:
1) она прочнее, более мягкая и в местах перегиба не ломается по сравнению с алюминием;
2) меньше подвержена коррозии и окислению. Соединяя алюминий в распределительной коробке, места скрутки со временем окисляются, это приводит к потере контакта;
3) проводимость меди выше чем алюминия, при одинаковом сечении медный провод способен выдержать большую токовую нагрузку чем алюминиевый.
Недостатком медных проводов является их высокая стоимость. Стоимость их в 3-4 раза выше алюминиевых. Хотя медные провода по стоимости дороже все же они являются более распространенными и популярными в использовании чем алюминиевые.
Расчет сечения медных проводов и кабелей
Подсчитав нагрузку и определившись с материалом (медь), рассмотрим пример расчета сечения проводов для отдельных групп потребителей, на примере двухкомнатной квартиры.
Как известно, вся нагрузка делится на две группы: силовую и осветительную.
В нашем случае основной силовой нагрузкой будет розеточная группа установленная на кухне и в ванной. Так как там устанавливается наиболее мощная техника (электрочайник, микроволновка, холодильник, бойлер, стиральная машина и т.п.).
Для этой розеточной группы выбираем провод сечением 2.5мм2. При условии, что силовая нагрузка будет разбросана по разным розеткам. Что это значит? Например на кухне для подключения всей бытовой техники нужно 3-4 розетки подключенных медным проводом сечением 2.5 мм2 каждая.
Если вся техника подключается через одну единственную розетку, то сечения в 2.5 мм2 будет недостаточно, в этом случае нужно использовать провод сечением 4-6 мм2. В жилых комнат для питания розеток можно использовать провод сечением 1.5 мм2 но окончательный выбор нужно принимать после соответствующих расчетов.
Питание всей осветительной нагрузки выполняется проводом сечением 1.5 мм2.
Необходимо понимать что мощность на разных участках электропроводки будет разной, соответственно и сечение питающих проводов тоже разным. Наибольшее его значение будет на вводном участке квартиры, так как через него проходит вся нагрузка. Сечение вводного питающего провода выбирают 4 – 6 мм2.
При монтаже электропроводки применяют провода и кабели марки ПВС, ВВГнг, ППВ, АППВ.
Наиболее распространенные марки проводов и кабелей:
ППВ — медный плоский двух- или трехжильный с одинарной изоляцией для прокладки скрытой или неподвижной открытой проводки;
АППВ — алюминиевый плоский двух- или трехжильный с одинарной изоляцией для прокладки скрытой или неподвижной открытой проводки;
ПВС — медный круглый, количество жил — до пяти, с двойной изоляцией для прокладки открытой и скрытой проводки;
ШВВП – медный круглый со скрученными жилами с двойной изоляцией, гибкий, для подключения бытовых приборов к источникам питания;
ВВГ — кабель медный круглый, до четырех жил с двойной изоляцией для прокладки в земле;
ВВП — кабель медный круглый одножильный с двойной ПВХ (поливинилхлорид) изоляцией, П — плоский (токопроводящие жилы расположены в одной плоскости).
electricvdome.ru
Расчет сечения провода по мощности и по плотности тока: формулы и примеры
Грамотный подбор кабеля для восстановления или прокладки электропроводки гарантирует безупречную работу системы. Приборы будут получать питание в полноценном объеме. Не случится перегрева изоляции с последующими разрушительными последствиями. Разумный расчет сечения провода по мощности избавит и от угроз воспламенения, и от лишних затрат на покупку недешевого провода. Давайте разберемся в алгоритме расчетов.
Упрощенно кабель можно сравнить с трубопроводом, транспортирующим газ или воду. Точно так же по его жиле перемещается поток, параметры которого ограничены размером данного токоведущего канала. Следствием неверного подбора его сечения являются два распространенных ошибочных варианта:
- Слишком узкий токоведущий канал, из-за которого в разы возрастает плотность тока. Рост плотности тока влечет за собой перегрев изоляции, затем ее оплавление. В результате оплавления по минимуму появятся «слабые» места для регулярных утечек, по максимуму пожар.
- Излишне широкая жила, что, в сущности, совсем неплохо. Причем, наличие простора для транспортировки электро-потока весьма положительно отражается на функционале и эксплуатационных сроках проводки. Однако карман владельца облегчится на сумму, примерно вдвое превышающую по факту требующиеся деньги.
Первый из ошибочных вариантов представляет собой откровенную опасность, в лучшем случае повлечет увеличение оплаты за электроэнергию. Второй вариант не опасен, но крайне нежелателен.
«Протоптанные» пути вычислений
Все существующие расчетные способы опираются на выведенный Омом закон, согласно которому сила тока, помноженная на напряжение, равняется мощности. Бытовое напряжение – величина постоянная, равная в однофазной сети стандартным 220 В. Значит, в легендарной формуле остаются лишь две переменные: это ток с мощностью. «Плясать» в расчетах можно и нужно от одной из них. Через расчетные значения тока и предполагаемой нагрузки в таблицах ПУЭ найдем требующийся размер сечения.
Обратите внимание, что сечение кабеля рассчитывают для силовых линий, т.е. для проводов к розеткам. Линии освещения априори прокладывают кабелем с традиционной величиной площади сечения 1,5 мм².
Если в обустраиваемом помещении нет мощного диско-прожектора или люстры, требующей питания в 3,3кВт и больше, то увеличивать площадь сечения жилы осветительного кабеля не имеет смысла. А вот розеточный вопрос – дело сугубо индивидуальное, т.к. подключать к одной линии могут такие неравнозначные тандемы, как фен с водонагревателем или электрочайник с микроволновкой.
Тем, кто планирует нагрузить силовую линию электрической варочной поверхностью, бойлером, стиральной машиной и подобной «прожорливой» техникой, желательно распределить всю нагрузку на несколько розеточных групп.
Если технической возможности разбить нагрузку на группы нет, бывалые электрики рекомендуют без затей прокладывать кабель с медной жилой сечением 4-6 мм². Почему с медной токоведущей сердцевиной? Потому что строгим кодексом ПУЭ прокладка кабеля с алюминиевой «начинкой» в жилье и в активно используемых бытовых помещениях запрещена. Сопротивление у электротехнической меди гораздо меньше, тока она пропускает больше и не греется при этом, как алюминий. Алюминиевые провода используются при устройстве наружных воздушных сетей, кое-где они еще остались в старых домах.
Обратите внимание! Площадь сечения и диаметр жилы кабеля – вещи разные. Первая обозначается в квадратных мм, второй просто в мм. Главное не перепутать!
Для поиска табличных значений мощности и допустимой силы тока можно пользоваться обоими показателями. Если в таблице указан размер площади сечения в мм², а нам известен только диаметр в мм, площадь нужно найти по следующей формуле:
Расчет размера сечения по нагрузке
Простейший способ подбора кабеля с нужным размером — расчет сечения провода по суммарной мощности всех подключаемых к линии агрегатов.
Алгоритм расчетных действий следующий:
- для начала определимся с агрегатами, которые предположительно могут использоваться нами одновременно. Например, в период работы бойлера нам вдруг захочется включить кофемолку, фен и стиралку;
- затем согласно данным техпаспортов или согласно приблизительным сведениям из приведенной ниже таблицы банально суммируем мощность одновременно работающих по нашим планам бытовых агрегатов;
- предположим, что в сумме у нас вышло 9,2 кВт, но конкретно этого значения в таблицах ПУЭ нет. Значит, придется округлить в безопасную большую сторону – т.е. взять ближайшее значение с некоторым превышением мощности. Это будет 10,1 кВт и соответствующее ему значение сечения 6 мм².
Все округления «направляем» в сторону увеличения. В принципе суммировать можно и силу тока, указанную в техпаспортах. Расчеты и округления по току производятся аналогичным образом.
Как рассчитать сечение по току?
Табличные значения не могут учесть индивидуальных особенностей устройства и эксплуатации сети. Специфика у таблиц среднестатистическая. Не приведены в них параметры максимально допустимых для конкретного кабеля токов, а ведь они отличаются у продукции с разными марками. Весьма поверхностно затронут в таблицах тип прокладки. Дотошным мастерам, отвергающим легкий путь поиска по таблицам, лучше воспользоваться способом расчета размера сечения провода по току. Точнее по его плотности.
Допустимая и рабочая плотность тока
Начнем с освоения азов: запомним на практике выведенный интервал 6 — 10. Это значения, полученные электриками многолетним «опытным путем». В указанных пределах варьирует сила тока, протекающего по 1 мм² медной жилы. Т.е. кабель с медной сердцевиной сечением 1 мм² без перегрева и оплавления изоляции предоставляет возможность току от 6 до 10 А спокойно достигать ожидающего его агрегата-потребителя. Разберемся, откуда взялась и что означает обозначенная интервальная вилка.
Согласно кодексу электрических законов ПУЭ 40% отводится кабелю на неопасный для его оболочки перегрев, значит:
- 6 А, распределенные на 1 мм² токоведущей сердцевины, являются нормальной рабочей плотностью тока. В данных условиях проводник работать может бесконечно долго без каких-либо ограничений по времени;
- 10 А, распределенные на 1 мм² медной жилы, протекать по проводнику могут краткосрочно. Например, при включении прибора.
Потоку энергии 12 А в медном миллиметровом канале будет изначально «тесно». От тесноты и толкучки электронов увеличится плотность тока. Следом повысится температура медной составляющей, что неизменно отразиться на состоянии изоляционной оболочки.
Обратите внимание, что для кабеля с алюминиевой токоведущей жилой плотность тока отображает интервал 4 – 6 Ампер, приходящийся на 1 мм² проводника.
Выяснили, что предельная величина плотности тока для проводника из электротехнической меди 10 А на площадь сечения 1 мм², а нормальные 6 А. Следовательно:
- кабель с жилой сечением 2,5 мм² сможет транспортировать ток в 25 А всего лишь несколько десятых секунды во время включения техники;
- он же бесконечно долго сможет передавать ток в 15А.
Приведенные выше значения плотности тока действительны для открытой проводки. Если кабель прокладывается в стене, в металлической гильзе или в пластиковом кабель канале, указанную величину плотности тока нужно помножить на поправочный коэффициент 0,8. Запомните и еще одну тонкость в организации открытого типа проводки. Из соображений механической прочности кабель с сечением меньше 4 мм² в открытых схемах не используют.
Изучение схемы расчета
Суперсложных вычислений снова не будет, расчет провода по предстоящей нагрузке предельно прост.
- Сначала найдем предельно допустимую нагрузку. Для этого суммируем мощность приборов, которые предполагаем одновременно подключать к линии. Сложим, например, мощность стиральной машины 2000 Вт, фена 1000 Вт и произвольно какого-либо обогревателя 1500 Вт. Получили мы 4500 Вт или 4,5 кВт.
- Затем делим наш результат на стандартную величину напряжения бытовой сети 220 В. Мы получили 20,45…А, округляем до целого числа, как положено, в большую сторону.
- Далее вводим поправочный коэффициент, если в нем есть необходимость. Значение с коэффициентом будет равно 16,8, округленно 17 А, без коэффициента 21 А.
- Вспоминаем о том, что рассчитывали рабочие параметры мощности, а нужно еще учесть предельно допустимое значение. Для этого вычисленную нами силу тока умножаем на 1,4, ведь поправка на тепловое воздействие 40%. Получили: 23,8 А и 29,4 А соответственно.
- Значит, в нашем примере для безопасной работы открытой проводки потребуется кабель с сечением более 3 мм², а для скрытого варианта 2,5 мм².
Не забудем о том, что в силу разнообразных обстоятельств порой включаем одновременно больше агрегатов, чем рассчитывали. Что есть еще лампочки и прочие приборы, незначительно потребляющие энергию. Запасемся некоторым резервом сечения на случай увеличения парка бытовой техники и с расчетами отправимся за важной покупкой.
Видео-руководство для точных расчетов
Какой кабель лучше купить?
Следуя жестким рекомендациям ПУЭ, покупать для обустройства личной собственности будем кабельную продукцию с «литерными группами» NYM и ВВГ в маркировке. Именно они не вызывают нареканий и придирок со стороны электриков и пожарников. Вариант NYM – аналог отечественных изделий ВВГ.
Лучше всего, если отечественный кабель будет сопровождать индекс НГ, это означает, что проводка будет пожароустойчивой. Если предполагается прокладывать линию за перегородкой, между лагами или над подвесным потолком, купите изделия с низким дымовыделением. У них будет индекс LS.
Вот таким нехитрым способом рассчитывается сечение токопроводящей жилы кабеля. Сведения о принципах вычислений помогут рационально подобрать данный важный элемент электросети. Необходимый и достаточный размер токоведущей сердцевины обеспечит питанием домашнюю технику и не станет причиной возгорания проводки.
Основные особенности расчета кабеля по его длине
Одним из самых важных критериев в процессе выбора кабеля, который обеспечивает электропитание, является определенное количество величин, потому стоит обращать внимание на такой способ, как расчет сечения кабеля по нагрузке, а также расчет по сечению. Для того чтобы обеспечить высокий уровень безопасности и предельной надежности, очень важно обратить внимание на длину каждого из элементов линии, кроме того, всей линии в целом. Стоит отметить, что практически все современные приспособления в первую очередь рассчитаны на какие-то определенные максимальные значения рабочего напряжения, которое может быть равно показателям от 185 до 240 Вольт. Именно по этой причине, если при расчете не учитывать показатели потери напряжения, которые связаны именно с длиной кабеля, появляется большая вероятность того, что напряжение на конце линии будет значительно меньше, чем то, что требуется для обеспечения нормальной работы всех имеющихся устройств. В свою очередь это может привести к невозможности их эксплуатации или, что еще более неприятно, могут вообще выйти из строя. Таким образом, проводя подобные расчеты сечения кабеля по показателям длины, можно обеспечить безопасность и качественную работу всей системы в целом.
Расчет сечения кабеля по длине в быту
Прежде всего, подобный метод идеально подойдет в быту. Как правило, такой расчет в данных условиях необходим в процессе изготовления удлинителей, которые рассчитаны на достаточно большие расстояния. Что касается остальных случаев, то при прокладке кабеля в бытовых условиях подобные сложные расчеты не требуются. Это основано на том, что длина линий в быту отличается относительно небольшой длиной, потому все потери напряжения настолько малы, что ими вполне можно пренебречь. Несмотря на это, в процессе прокладки линии всегда следует оставлять определенный запас, равный примерно 15 см, причем оставлять его требуется с каждой стороны на проведение таких процессов, как коммутация проводов, их подключение, где осуществляется такой процесс, как пайка, сварка или обжим. Что касается концов кабелей, то те, которые входят в щиток, должны иметь еще больший запас для подключения защитной автоматики и достаточно аккуратной укладки.
Говоря иными словами, в бытовых условиях на той поверхности, где планируется прокладывать кабель, прежде всего, стоит проставить определенные отметки мест расположения розеток, выключателей, электропотребителей, коммутационных коробок и иных подобных приспособлений. После этого рулеткой осуществляется замер расстояния и отрезается кабель, но с небольшим запасом. По окончании данных работ крепится непосредственно сам кабель к поверхности, но в строго соответствии со всеми требованиями ПУЭ.
Многие монтажники, имеющие большой опыт работы в данной сфере деятельности, а также те, которые имеют напарника, поступают еще более просто, что позволяет им сэкономить немалое количество времени. В самом начале производится разметка расположения таких устройств, как коммутационные коробочки, выключатели и розетки. Затем, без предварительного замера осуществляется прокладка и крепление кабеля, но с запасом, после чего отрезается.
Расчет сечения кабеля по длине в промышленности
Что касается области промышленности, то здесь требуемый расчет сечения кабеля по длине осуществляется уже на этапе проектирования электрических сетей. Подобные расчеты важно сделать в том случае, если на кабель будут возложены долговременные и достаточно серьезные нагрузки.
Практически все проводники по причине своих свойств, обладают определенной величиной электрического сопротивления, которое может вызвать потери в процессе прохождения по проводам электрического тока. Стоит отметить такие факторы, влияющие на параметры величины потерь и сопротивления, как материал, из которого выполнен проводник, то есть алюминий и медь, имеет значение сечение проводника, как правило, чем меньше сечение, тем потери больше. Кроме того, важна длина проводника, то есть чем больше данный параметр, тем соответственно больше и потери.
На основании всех вышеперечисленных факторов становится ясно, по какой причине в проводниках присутствует явление некоторого падения напряжения, которое, как правило, равно величине тока, умноженного на показатели сопротивления проводника. Согласно установленным правилам, примерное значение падения показателей напряжения должно быть равно 5%. Если данный параметр немного выше, проводник следует подобрать с большим сечением.
Как осуществляется расчет сечения кабеля по длине
Для осуществления подобных расчетов, как правило, используется специальная формула. В ней содержаться показатели длины, удельное сопротивление самого проводника, площадь сечения. При этом сопротивление определяется по специальным справочным таблицам, при этом можно убедиться в том, что много здесь зависит от марки провода и самого кабеля. После определения всех необходимых составляющих, определяются особые расчетные значения тока. Для этой цели суммарная мощность нагрузки разделяется на величину показателей напряжения в сети. По специальной справочной формуле рассчитывается величина падения в сети или в линии напряжения. Оценка величины соотношения в процентах к значению изначального напряжения, а также выбор оптимального сечения проводника, который должен укладываться в пятипроцентный барьер.
Важно обратить внимание, что для промышленных и иных предприятий со средним и крупным товарооборотом, рекомендуется производить специальный комплексный расчет, в процессе которого учитываются все необходимые требования для тех или иных конкретных условий эксплуатации. Для проведения подобных расчетов можно обратиться за помощью к специалистам, которые на самом высоком профессиональном уровне, с определенными гарантиями обеспечения работоспособности сети в процессе рабочих нагрузок произведут все расчеты. Кроме того, будут выполнены расчеты, которые обеспечат минимальные затраты, если есть необходимость произвести наращивание производственной мощности.
Пример расчета бытовой сфере
Если после осуществления подсчета суммарной мощности потребителей было получено 3,8 кВт, находится сила тока по такой формуле — I = P/U·cosφ. Здесь P – представляет собой суммарную мощность, (Вт), I — это сила тока, (А), cosφ – коэффициент, который равен 1, но только если сети бытовые, а также U — напряжение в сети, (В).
В данном случае, если 3,8 кВт разделить на напряжение 220 В, получится число, равное 17,3 А. Применяя специальные таблицы ПУЭ под номерами 1.3.4 и 1.3.5 определяется необходимое сечение медного кабеля или выполненное из алюминия. Что касается материала, то в быту рекомендуется использовать именно медь, потому при полученных показателях силы тока потребуется кабель из меди с сечением 1,5 кв. мм.
После этого, как правило, рассчитывается показатель сопротивления, по формуле R = p·L/S, где R — это сопротивление провода, (Ом), указатель p представляет собой значение удельного сопротивления, (Ом·мм2/м), L – это параметр длины провода или кабеля, (м), а S — площадь поперечного сечения, который выражается в мм2. Стоит отметить, что удельное сопротивление Р – это постоянная величина, которая прямо зависит от материала. Если это медь, то удельное сопротивление равно 0,0175, если алюминий, то он равен 0,0281. На основании проведенных расчетов для одной жилы в кабеле, длина которого составляет 20 м, получается R = 0,0175·20/1,5 = 0,232 Ом. По той причине, что ток проходит только по одной жиле, а по другой возвращается, параметр длины удваивается, то есть получается Rобщ = 0,464 Ом.
При необходимости рассчитать потери напряжения используется формула dU = I·R. В данной формуле I — это сила тока, (А),dU – потери напряжения, (В), а R — показывает сопротивление кабеля или провода в Ом. После проведения расчетов получается такой пример dU = 17,3·0,464 = 4,06 В = 8,02 В.
Что касается расчета потерь в процентном соотношении, то данный показатель выводится так — 8,02 В / 220 В х 100% = 3,65%. Как видно, полученный показатель не превышает 5% то есть допустимое значение, а соответственно выбор был осуществлен верно. В ситуации, если цифра будет больше данной величины, рекомендуется подобрать медный кабель с параметром сечения не 1,5 мм, а 2,5 кв. мм.
Таблица зависимости сечения кабеля от тока (мощности).
При прокладке электропроводки в частном доме или квартире важно правильно подобрать сечение используемых проводов (кабелей). Если взять слишком толстый кабель (большого сечения) — это «влетит вам в копеечку», так как его цена сильно зависит от диаметра токопроводящих жил. Применение же тонкого кабеля, приводит к его перегрузке и, при несрабатывании защиты, перегреву, оплавлению изоляции, короткому замыканию и пожару. Правильным будет выбор сечения провода в зависимости от тока, что отражено в приведенных ниже таблицах.
Сечение кабеля
Сечение кабеля — это площадь среза токоведущей жилы. Если срез жилы круглый (как в большинстве случаев) и состоит из одной проволочки — то площадь/сечение определяется по формуле площади круга. Если в жиле много проволочек, то сечением будет сумма сечений всех проволочек в данной жиле.
Величины сечения во всех странах стандартизированы, причем стандарты бывшего СНГ и Европы в этой части полностью совпадают. В нашей стране документом, которым регулируется этот вопрос, являются «Правила устройства электроустановок» или кратко — ПУЭ.
Сечение кабеля выбирается исходя из нагрузок с помощью специальных таблиц, называемых «Допустимые токовые нагрузки на кабель.» Если нет никакого желания разбираться в этих таблицах — то Вам вполне достаточно знать, что на розетки желательно брать медный кабель сечением 1,5-2,5 мм², а на освещение — 1,0-1,5 мм².
Для ввода одной фазы в рядовую 2-3 комнатную квартиру вполне хватит 6,0 мм². Все равно на Ваших 40-80 м² большего оборудования не поместиться, даже с учетом электроплиты.
Многие электрики для «прикидки» нужного сечения считают, что 1 мм² медного провода может пропустить через себя 10А электрического тока: соответственно 2,5 мм² меди способны пропустить 25А, а 4,0 мм² — 40А и т.д. Если Вы немного проанализируете таблицу выбора сечения кабеля, то увидите, что такой метод годится только для прикидки и только для кабелей сечением не выше 6,0 мм².
Ниже дана сокращенная таблица выбора сечения кабеля до 35 мм² в зависимости от токовых нагрузок. Там же для Вашего удобства приведена суммарная мощность электрооборудования при 1-фазном (220В) и 3-фазном (380В) потреблении.
При прокладке кабеля в трубе (т.е. в любых закрытых пространствах) возможные токовые нагрузки на кабель должны быть меньше, чем при прокладке открыто. Это связано с тем, что кабель в процессе эксплуатации нагревается, а теплоотдача в стене или в земле значительно ниже, чем на открытом пространстве.
Когда нагрузка называется в кВт — то речь идет о совокупной нагрузке. Т.е. для однофазного потребителя нагрузка будет указана по одной фазе, а для трехфазного — совокупно по всем трем. Когда величина нагрузки названа в амперах (А) — речь всегда идет о нагрузке на одну жилу (или фазу).
Таблица нагрузок по сечению кабеля:
Сеч. каб. мм² | Открытая проводка | Скрытая проводка | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
медь | алюминий | медь | алюминий | |||||||||
ток, А | мощность, кВт | ток, А | мощность, кВт | ток, А | мощность, кВт | ток, А | мощность, кВт | |||||
220В | 380В | 220В | 380В | 220В | 380В | 220В | 380В | |||||
0.5 | 11 | 2.4 | ||||||||||
0.75 | 15 | 3.3 | ||||||||||
1 | 17 | 3.7 | 6.4 | 14 | 3 | 5.3 | ||||||
1.5 | 23 | 5 | 8.7 | 15 | 3.3 | 5.7 | ||||||
2.5 | 30 | 6.6 | 11 | 24 | 5.2 | 9.1 | 21 | 4.6 | 7.9 | 16 | 3.5 | 6 |
4 | 41 | 9 | 15 | 32 | 7 | 12 | 27 | 5.9 | 10 | 21 | 4.6 | 7.9 |
6 | 50 | 11 | 19 | 39 | 8.5 | 14 | 34 | 7.4 | 12 | 26 | 5.7 | 9.8 |
10 | 80 | 17 | 30 | 60 | 13 | 22 | 50 | 11 | 19 | 38 | 8.3 | 14 |
16 | 100 | 22 | 38 | 75 | 16 | 28 | 80 | 17 | 30 | 55 | 12 | 20 |
25 | 140 | 30 | 53 | 105 | 23 | 39 | 100 | 22 | 38 | 65 | 14 | 24 |
35 | 170 | 37 | 64 | 130 | 28 | 49 | 135 | 29 | 51 | 75 | 16 | 28 |
Для самостоятельного расчета необходимого сечение кабеля, например, для ввода в дом, можно воспользоваться кабельным калькулятором или выбрать необходимое сечение по таблице.
Настоящая таблица касается кабелей и проводов в резиновой и пластмассовой изоляции. Это такие широко распространенные марки как: ПВС, ВВП, ВПП, ППВ, АППВ, ВВГ. АВВГ и ряд других. На кабели в бумажной изоляции есть своя таблица, на не изолированные провода и шины — своя.
При расчетах сечения кабеля специалист должен также учитывать методы прокладки кабеля: в лотках, пучками и т.п.
Кроме того, величины из таблиц о допустимых токовых нагрузках должны быть откорректированы следующими снижающими коэффициентами:
- поправочный коэффициент, соответствующий сечению кабеля и расположению его в блоке;
- поправочный коэффициент на температуру окружающей среды;
- поправочный коэффициент для кабелей, прокладываемых в земле;
- поправочный коэффициент на различное число работающих кабелей, проложенных рядом.
Расчет сечения кабеля
Начнем не с таблицы, а с расчета. То есть, каждый человек, не имея под рукой интернет, где в свободном доступе ПУЭ с таблицами имеется, может самостоятельно определить сечение кабеля по току. Для этого потребуется штангенциркуль и формула.
Если рассмотреть сечение кабеля, то это круг с определенным диаметром.
Существует формула площади круга: S= 3,14*D²/4, где 3,14 – это Архимедово число, «D» — диаметр измеренной жилы. Формулу можно упростить: S=0,785*D².
Если провод состоит из нескольких жил, то замеряется диаметр каждой, вычисляется площадь, затем все показатели суммируются. А как вычислить сечение кабеля, если каждая его жила состоит из нескольких тоненьких проводков?
Процесс немного усложняется, но не сильно. Для этого придется подсчитать количество проводков в одной жиле, измерить диаметр одного проводка, вычислить его площадь по описанной формуле и умножить данный показатель на количество проводков. Это и будет сечение одной жилы. Теперь необходимо это значение умножить на количество жил.
Если нет желания считать проводки и измерять их размеры, надо просто замерить диаметр одной жилы, состоящий из нескольких проводов. Снимать размеры надо аккуратно, чтобы не смять жилу. Обратите внимание, что этот диаметр не является точным, потому что между проводками остается пространство.
Соотношение тока и сечения
Чтобы понять, как работает электрический кабель, необходимо вспомнить обычную водопроводную трубу. Чем больше ее диаметр, тем больше воды через нее будет проходить. То же самое и с проводами.
Чем больше их площадь, тем большей силы ток, через них пройдет, тем большую нагрузку такой провод выдерживает. При этом кабель не будет перегреваться, что является самым важным требованием правил пожарной безопасности.
Поэтому связка сечение – ток является основным критерием, который используется в подборе электрических проводов в разводке. Поэтому вам необходимо сначала разобраться, сколько бытовых приборов и какой общей мощности будет подключены к каждому шлейфу.
Сечение жилы провода, мм2 | Медные жилы | Алюминиевые жилы | ||
---|---|---|---|---|
Ток, А | Мощность, Вт | Ток, А | Мощность, Вт | |
0.5 | 6 | 1300 | ||
0.75 | 10 | 2200 | ||
1 | 14 | 3100 | ||
1.5 | 15 | 3300 | 10 | 2200 |
2 | 19 | 4200 | 14 | 3100 |
2.5 | 21 | 4600 | 16 | 3500 |
4 | 27 | 5900 | 21 | 4600 |
6 | 34 | 7500 | 26 | 5700 |
10 | 50 | 11000 | 38 | 8400 |
16 | 80 | 17600 | 55 | 12100 |
25 | 100 | 22000 | 65 | 14300 |
К примеру, на кухне обязательно устанавливается холодильник, микроволновка, кофемолка и кофеварка, электрочайник иногда посудомоечная машина. То есть, все эти прибору могут в один момент быть включены одновременно. Поэтому в расчетах и используется суммарная мощность помещения.
Узнать потребляемую мощность каждого прибора можно из паспорта изделия или на бирке.
Для примера обозначим некоторые из них:
- Чайник – 1-2 кВт.
- Микроволновка и мясорубка 1,5-2,2 кВт.
- Кофемолка и кофеварка – 0,5-1,5 кВт.
- Холодильник 0,8 кВт.
Узнав мощность, которая будет действовать на проводку, можно подобрать ее сечение из таблицы. Не будем рассматривать все показатели данной таблицы, покажем те, которые преобладают в быту.
Чем отличается кабель от провода
Прежде чем перейти к основному содержимому, нам необходимо понять, что же мы все-таки хотим рассчитать, сечение провода или кабеля, в чем различия одного от другого!? Несмотря на то, что обыватель применяет эти два слова как синонимы, подразумевая под этим что-то свое, но если быть дотошными, то разница все же имеется.
Так провод это одна токопроводящая жила, будь то моножила или набор проводников, изолированная в диэлектрик, в оболочку. А вот кабель, это уже несколько таких проводов, объединенных в единое целое, в своей защитной и изоляционной оболочке. Для того, чтобы вам было лучше понятно, что к чему, взгляните на картинку.
Так вот, теперь мы в курсе, что рассчитывать нам необходимо именно сечение провода, то есть одного токопроводящего элемента, а второй будет уже уходить от нагрузки, обратно к питанию.
Однако мы порой и сами забываемся не лучше Вашего, так что если вы нас подловите на том, что где-то все же встретится слово кабель, то не сочтите уж за невежество, стереотипы делают свое дело.
Выбор кабеля
Делать внутреннюю разводку лучше всего из медных проводов. Хотя алюминиевые им не уступят. Но тут есть один нюанс, который связан с правильно проведенном соединении участков в распределительной коробке. Как показывает практика, места соединений часто выходят из строя из-за окисления алюминиевого провода.
Еще один вопрос, какой провод выбрать: одножильный или многожильный? Одножильный имеет лучшую проводимость тока, поэтому именно его рекомендуют к применению в бытовой электрической разводке. Многожильный имеет высокую гибкость, что позволяет его сгибать в одном месте по несколько раз без ущерба качеству.
Одножильный или многожильный
При монтаже электропроводки обычно применяют провода и кабели марки ПВС, ВВГнг, ППВ, АППВ. В этом списке встречаются как гибкие кабели, так и с моножилой.
Здесь мы хотели бы сказать вам одно правило. Если ваша проводка стационарная, то есть это не удлинитель, не место сгиба, которое постоянно меняет свое положение, то используют моножилу.
Вы спросите почему? Все просто! Не смотря на то, насколько хорошо не были бы уложены в защитную изоляционною оплетку проводники, под нее все же попадет воздух, в котором содержится кислород. Происходит окисление поверхности меди.
В итоге, если проводников много, то площадь окисления намного больше, а значит токопроводящее сечение «тает» на много больше. Да, это процесс длительный, но и мы не думаем, что вы собрались менять проводку часто. Чем больше она проработает, тем лучше.
Особенно это эффект окисления будет сильно проявляться у краев реза кабеля, в помещениях с перепадом температуры и при повышенной влажности. Так что мы вам настоятельно рекомендуем использовать моножилу! Сечение моножилы кабеля или провода изменится со временем незначительно, а это так важно, при наших дальнейших расчетах.
Медь или алюминий
В СССР большинство жилых домов оснащались алюминиевой проводкой, это было своеобразной нормой, стандартом и даже догмой. Нет, это совсем не значит, что страна была бедная, и не хватало на меди. Даже в некоторых случая наоборот.
Но видимо проектировщики электрических сетей решили, что экономически можно много сэкономить, если применять алюминий, а не медь. Действительно, темпы строительства были огромнейшие, достаточно вспомнить хрущевки, в которых все еще живет половина страны, а значит эффект от такой экономии был значительным. В этом можно не сомневаться.
Тем не менее, сегодня другие реалии, и алюминиевую проводку в новых жилых помещениях не применяют, только медную. Это исходит из норм ПУЭ пункт 7.1.34 «В зданиях следует применять кабели и провода с медными жилами…».
Так вот, мы вам настоятельно не рекомендуем экспериментировать и пробовать алюминий. Минусы его очевидны. Алюминиевые скрутки невозможно пропаять, так же очень трудно сварить, в итоге контакты в распределительных коробках могут со временем нарушиться. Алюминий очень хрупкий, два-три изгиба и провод отпал.
Будут постоянные проблемы с подключением его к розеткам, выключателем. Опять же если говорить о проводимой мощности, то медный провод с тем же сечением для алюминия 2,5 мм.кв. допускает длительный ток в 19А, а для меди в 25А. Здесь разница больше чем 1 КВт.
Так что еще раз повторимся — только медь! Далее мы и будем уже исходить из того, что сечение рассчитываем для медного провода, но в таблицах приведем значения и для алюминия. Мало ли что.
Зачем производится расчет
Провода и кабели, по которым протекает электрический ток, являются важнейшей частью электропроводки.
Расчет сечения провода необходимо производить затем, чтобы убедится, что выбранный провод соответствует всем требованиям надежности и безопасной эксплуатации электропроводки.
Безопасная эксплуатация заключается в том, что если вы выберете сечение, не соответствующее его токовым нагрузкам, то это приведет к чрезмерному перегреву провода, плавлению изоляции, короткому замыканию и пожару.
Поэтому к вопросу о выборе сечения провода необходимо отнестись очень серьезно.
Что нужно знать
Основным показателем, по которому рассчитывают провод, является его длительно допустимая токовая нагрузка. Проще говоря, это такая величина тока, которую он способен пропускать на протяжении длительного времени.
Чтобы найти величину номинального тока, необходимо подсчитать мощность всех подключаемых электроприборов в доме. Рассмотрим пример расчета сечения провода для обычной двухкомнатной квартиры.
Электроприбор | Потребляемая мощность, Вт | Сила тока, А |
---|---|---|
Стиральная машина | 2000 – 2500 | 9,0 – 11,4 |
Джакузи | 2000 – 2500 | 9,0 – 11,4 |
Электроподогрев пола | 800 – 1400 | 3,6 – 6,4 |
Стационарная электрическая плита | 4500 – 8500 | 20,5 – 38,6 |
СВЧ печь | 900 – 1300 | 4,1 – 5,9 |
Посудомоечная машина | 2000 – 2500 | 9,0 – 11,4 |
Морозильники, холодильники | 140 – 300 | 0,6 – 1,4 |
Мясорубка с электроприводом | 1100 – 1200 | 5,0 – 5,5 |
Электрочайник | 1850 – 2000 | 8,4 – 9,0 |
Электрическая кофеварка | 630 – 1200 | 3,0 – 5,5 |
Соковыжималка | 240 – 360 | 1,1 – 1,6 |
Тостер | 640 – 1100 | 2,9 – 5,0 |
Миксер | 250 – 400 | 1,1 – 1,8 |
Фен | 400 – 1600 | 1,8 – 7,3 |
Утюг | 900 –1700 | 4,1 – 7,7 |
Пылесос | 680 – 1400 | 3,1 – 6,4 |
Вентилятор | 250 – 400 | 1,0 – 1,8 |
Телевизор | 125 – 180 | 0,6 – 0,8 |
Радиоаппаратура | 70 – 100 | 0,3 – 0,5 |
Приборы освещения | 20 – 100 | 0,1 – 0,4 |
После того как мощность будет известна расчет сечения провода или кабеля сводится к определению силы тока на основании этой мощности. Найти силу тока можно по формуле:
1) Формула расчета силы тока для однофазной сети 220 В:
расчет силы тока для однофазной сети
где Р — суммарная мощность всех электроприборов, Вт;
U — напряжение сети, В;
КИ= 0.75 — коэффициент одновременности;
cos для бытовых электроприборов- для бытовых электроприборов.
2) Формула для расчета силы тока в трехфазной сети 380 В:
расчет силы тока для трехфазной сети
Зная величину тока, сечение провода находят по таблице. Если окажется что расчетное и табличное значения токов не совпадают, то в этом случае выбирают ближайшее большее значение. Например, расчетное значение тока составляет 23 А, выбираем по таблице ближайшее большее 27 А — с сечением 2.5 мм2.
Какой провод лучше использовать
На сегодняшний день для монтажа, как открытой электропроводки, так и скрытой, конечно же большой популярностью пользуются медные провода.
Медь, по сравнению с алюминием, более эффективна:
- она прочнее, более мягкая и в местах перегиба не ломается по сравнению с алюминием;
- меньше подвержена коррозии и окислению. Соединяя алюминий в распределительной коробке, места скрутки со временем окисляются, это приводит к потере контакта;
- проводимость меди выше чем алюминия, при одинаковом сечении медный провод способен выдержать большую токовую нагрузку чем алюминиевый.
Недостатком медных проводов является их высокая стоимость. Стоимость их в 3-4 раза выше алюминиевых. Хотя медные провода по стоимости дороже все же они являются более распространенными и популярными в использовании чем алюминиевые.
Расчет сечения медных проводов и кабелей
Подсчитав нагрузку и определившись с материалом (медь), рассмотрим пример расчета сечения проводов для отдельных групп потребителей, на примере двухкомнатной квартиры.
Как известно, вся нагрузка делится на две группы: силовую и осветительную.
В нашем случае основной силовой нагрузкой будет розеточная группа, установленная на кухне и в ванной. Так как там устанавливается наиболее мощная техника (электрочайник, микроволновка, холодильник, бойлер, стиральная машина и т.п.).
Для этой розеточной группы выбираем провод сечением 2.5 мм2. При условии, что силовая нагрузка будет разбросана по разным розеткам. Что это значит? Например, на кухне для подключения всей бытовой техники нужно 3-4 розетки подключенных медным проводом сечением 2.5 мм2 каждая.
Если вся техника подключается через одну единственную розетку, то сечения в 2.5 мм2 будет недостаточно, в этом случае нужно использовать провод сечением 4-6 мм2. В жилых комнатах для питания розеток можно использовать провод сечением 1.5 мм2, но окончательный выбор нужно принимать после соответствующих расчетов.
Питание всей осветительной нагрузки выполняется проводом сечением 1.5 мм2.
Необходимо понимать, что мощность на разных участках электропроводки будет разной, соответственно и сечение питающих проводов тоже разным. Наибольшее его значение будет на вводном участке квартиры, так как через него проходит вся нагрузка. Сечение вводного питающего провода выбирают 4 – 6 мм2.
При монтаже электропроводки применяют провода и кабели марки ПВС, ВВГнг, ППВ, АППВ.
Сечение кабеля по мощности (таблица)
Вот мы добрались и до сути нашей статьи. Однако всё, что было выше, упускать нельзя, а значит и мы умолчать не могли.
Если попытаться изложить мысль логично и по-простому, то через каждое условное сечение проводника может пройти ток определенной силы. Заключение это вполне логичное и теперь лишь осталось узнать эти соотношения и соотнести для разных диаметров провода, исходя из его типоряда.
Также нельзя умолчать, что здесь, при расчете сечения по току, в «игру вступает» и температура. Да, это новая составляющая – температура. Именно она способна повлиять на сечение. Как и почему, давайте разбираться.
Все мы знаем о броуновском движении. О постоянном смещении ионов в кристаллической решетке. Все это происходит во всех материалах, в том числе и в проводниках. Чем выше температура, тем больше будут эти колебания ионов внутри материала. А мы знаем, что ток — это направленное движение частиц.
Так вот, направленное движение частиц будет сталкиваться в кристаллической решетке с ионами, что приведет к повышению сопротивления для тока.
Чем выше температура, тем выше электрическое сопротивление проводника. Поэтому по умолчанию, сечение провода для определенного тока принимается при комнатной температуре, то есть при 18 градусах Цельсия. Именно при этой температуре приведены все справочные значения в таблицах, в том числе и наших.
Несмотря на то, что алюминиевые провода мы не рассматриваем в качестве проводов для электропроводки, по крайней мере, в квартире, тем не менее, они много где применяются. Скажем для проводки на улице. Именно поэтому мы также приведем значения зависимостей сечения и тока и для алюминиевых проводов.
Итак, для меди и алюминия будут следующие показатели зависимости сечения провода (кабеля) от тока (мощности). Смотрите таблицу.
Таблица проводников под допустимый максимальный ток для их использования в проводке:
С 2001 года алюминиевые провода для проводки в квартирах не применяются. (ПЭУ)
Да, здесь как заметил наш читатель, мы фактически не привели расчета, а лишь предоставили справочные данные, сведенные в таблицу, на основании этих расчетов. Но смеем вас замерить, что для расчетов необходимо перелопатить множество формул, и показателей. Начиная от температуры, удельного сопротивления, плотности тока и тому подобных.
Поэтому такие расчеты мы оставим для спецов. При этом необходимо заметить, что и они не являются окончательными, так как могут незначительно разнится, в зависимости от стандарта на материал и запаса провода по току, применяемого в разных странах.
А вот о чем мы еще хотели бы сказать, так это о переводе сечения провода в диаметр. Это необходимо, когда имеется провод, но по каким-то причинам маркировки на нем нет. В этом случае по диаметру провода можно вычислить сечения и наоборот из сечения диаметр.
Общепринятые сечения для проводки в квартире
Мы с вами много говорили о наименованиях, о материалах, об индивидуальных особенностях и даже о температуре, но упустили из вида жизненные обстоятельства.
Так если вы нанимаете электрика для того, чтобы он провел вам проводку в комнатах вашей квартиры или дома, то обычно принимаются следующие значения. Для освещения сечения провода берется в 1,5 мм 2, а для розеток в 2,5 мм 2.
Если проводка предназначена для подключения бойлеров, нагревателей, плит, то здесь уже рассчитывается сечение провода (кабеля) индивидуально.
Выбор сечения провода исходя из количества потребителей
О чем еще хотелось сказать, так это о том, что лучше использовать несколько независимых линий питания для каждого из помещений в комнате или квартире. Тем самым вы не будете применять провод с сечением 10 мм 2 для всей квартиры, проброшенный во все комнаты, от которого идут отводы.
Такой провод будет приходить на вводный автомат, а затем от него, в соответствии с мощностью потребляемой нагрузки будут разведены выбранные сечения проводов, для каждого из помещений.
Типовая принципиальная схема электропроводки для квартиры или дома с электрической плитой (с указанием сечения кабеля для электроприборов)
Токовые нагрузки в сетях с постоянным током
В сетях с постоянным током расчет сечения идет несколько по-другому. Сопротивление проводника постоянному напряжению гораздо выше, чем переменному (при переменном токе сопротивлением на длинах до 100 м вообще пренебрегают).
Кроме этого, для потребителей постоянного тока как правило очень важно, чтобы напряжение на концах было не ниже 0,5В (для потребителей переменного тока, как известно колебания напряжения в пределах 10% в любую сторону допустимы).
Есть формула, определяющая насколько упадет напряжение на концах по сравнению с базовым напряжением, в зависимости от длины проводника, его удельного сопротивления и силы тока в цепи:
U = ((p l) / S) I
где:
- U — напряжение постоянного тока, В
- p — удельное сопротивление провода, Ом*мм2/м
- l — длина провода, м
- S — площадь поперечного сечения, мм2
- I — сила тока, А
Зная величины указанных показателей достаточно легко рассчитать нужное Вам сечение: методом подстановки, или с помощью простейших арифметических действий над данным уравнением.
Если же падение постоянного напряжения на концах не имеет значения, то для выбора сечения можно пользоваться таблицей для переменного тока, но при этом корректировать величины тока на 15% в сторону уменьшения, т.е. при постоянном токе справочные сечения кабеля могут пропускать тока на 15 % меньше, чем указано в таблице.
Подобное правило также работает для выбора автоматических выключателей для сетей с постоянным током, например: для цепей с нагрузкой в 25А, нужно брать автомат на 15% меньшего номинала, в нашем случае подходит предыдущий типоразмер автомата — 20А.
Кабель, передающий электрический ток, – один из важнейших элементов электрической сети. В случае выхода кабеля из строя работа всей системы становится невозможной, поэтому для предотвращения отказов, а также опасности возгорания от перегрева, следует произвести точный расчёт сечения кабеля по нагрузке.
Такой расчёт дает уверенность в безопасной и надёжной работе сети и приборов, но что ещё важнее – безопасности людей.
Выбор сечения, недостаточного для токовой нагрузки, приводит к перегреву, оплавлению и повреждению изоляции, а это, в свою очередь, – к короткому замыканию и даже пожару. Так что для проведения расчётов и тщательного выбора подходящего кабеля есть масса причин.
Основной показатель, помогающий рассчитать сечение и марку кабеля – предельно допустимая длительная нагрузка (по току). Если проще, то это – величина тока, которую кабель способен пропускать в условиях его прокладки без перегрева достаточно долго.
Для этого необходимо простое арифметическое суммирование мощностей всех электроприборов, которые будут включаться в сеть.
Следующим важным этапом, позволяющим достичь безопасности, является расчёт сечения кабеля по нагрузке, для чего необходимо подсчитать силу тока, используя формулу:
Для однофазной сети напряжением 220 В:
Где:
- Р – это суммарная мощность для всех электроприборов, Вт;
- U — напряжение сети, В;
- COSφ — коэффициент мощности.
Для трёхфазной сети напряжением 380 В:
Наименование прибора | Примерная мощность, Вт |
---|---|
LCD-телевизор | 140-300 |
Холодильник | 300-800 |
Пылесос | 800-2000 |
Компьютер | 300-800 |
Электрочайник | 1000-2000 |
Кондиционер | 1000-3000 |
Освещение | 300-1500 |
Микроволновая печь | 1500-2200 |
Получив точное значение величины тока, следует обратиться к таблицам, позволяющим найти кабель или провод требуемого сечения и материала. Но если полученное значение величины тока не совсем совпадает с табличным значением, то не стоит «экономить», а лучше выбрать ближайшее, но большее значение сечения кабеля.
Пример: при напряжении сети 220 В полученное значение величины тока составило 22 ампера, ближайшее большее значение (27 А) имеет медный провод или кабель из меди, сечением 2,5 мм кв. Это означает, что оптимальным выбором станет именно такой кабель, а не с сечением 1,5 мм кв., имеющим значение допустимого длительного тока 19 А.
Сечение токо- проводящих жил, мм | Медные жилы проводов и кабелей | |||
---|---|---|---|---|
Напряжение 220В | Напряжение 380В | |||
Ток, А | Мощность, кВт | Ток, А | Мощность, кВт | |
1,5 | 19 | 4,1 | 16 | 10,5 |
2,5 | 27 | 5,9 | 25 | 16,5 |
4 | 38 | 8,3 | 30 | 19,8 |
6 | 46 | 10,1 | 40 | 26,4 |
10 | 70 | 15,4 | 50 | 33 |
16 | 85 | 18,7 | 75 | 49,5 |
25 | 115 | 25,3 | 90 | 59,4 |
35 | 135 | 29,7 | 115 | 75,9 |
50 | 175 | 38,5 | 145 | 95,7 |
70 | 215 | 47,3 | 180 | 118,8 |
95 | 260 | 57,2 | 220 | 145,2 |
120 | 300 | 66 | 260 | 171,6 |
Если выбирается кабель с алюминиевыми жилами, то лучше взять сечение жилы не 2,5, а 4 мм кв.
Сечение токо- проводящих жил, мм | Алюминиевые жилы проводов и кабелей | |||
---|---|---|---|---|
Напряжение 220В | Напряжение 380В | |||
Ток, А | Мощность, кВт | Ток, А | Мощность, кВт | |
2,5 | 20 | 4,4 | 19 | 12,5 |
4 | 28 | 6,1 | 23 | 15,1 |
6 | 36 | 7,9 | 30 | 19,8 |
10 | 50 | 11 | 39 | 25,7 |
16 | 60 | 13,2 | 55 | 36,3 |
25 | 85 | 18,7 | 70 | 46,2 |
35 | 100 | 22 | 85 | 56,1 |
50 | 135 | 29,7 | 110 | 72,6 |
70 | 165 | 36,3 | 140 | 92,4 |
95 | 200 | 44 | 170 | 112,2 |
120 | 230 | 50,6 | 200 | 132 |
Расчёт для помещений
Предыдущий расчёт позволил точно вычислить материал и сечение вводного кабеля, по которому будет идти общая максимальная нагрузка. Теперь следует произвести аналогичные расчёты по каждому помещению и его группам. И вот почему: нагрузка на розеточные группы может значительно отличаться.
Так, розетки с подключённой стиральной машиной и феном нагружены гораздо больше, чем розетка для миксера и кофеварки на кухне. Поэтому не стоит «упрощать» задачу, без раздумий укладывая провод сечением 2,5 квадрата на розетки, так как иногда этого просто не хватит.
Следует помнить, что суммарная нагрузка в помещении состоит из 1) силовой и 2) осветительной. И если с осветительной нагрузкой всё ясно – она выполняется медным проводом с сечением в 1,5 мм кв., то с розетками не так всё просто.
Следует помнить, что обычно кухня и ванная комната – наиболее «нагруженные» линии, так как именно там расположены холодильник, электрочайник, бойлер, микроволновка, а иногда и стиральная машинка. Поэтому лучше всего распределить эту нагрузку по различным розеточным группам, а не использовать блок на 5-6 розеток.
Иногда от «специалистов» можно услышать, что для розеток в остальных помещениях достаточно и «кабеля-полторушки», однако выдели бы вы те чёрные полосы, видные из-под обоев, которые оставляет после себя прогоревший кабель после включения в него масляного обогревателя или тепловентилятора!
Наиболее распространенные марки проводов и кабелей:
- ППВ — медный плоский двух- или трехжильный с одинарной изоляцией для прокладки скрытой или неподвижной открытой проводки;
- АППВ — алюминиевый плоский двух- или трехжильный с одинарной изоляцией для прокладки скрытой или неподвижной открытой проводки;
- ПВС — медный круглый, количество жил — до пяти, с двойной изоляцией для прокладки открытой и скрытой проводки;
- ШВВП – медный круглый со скрученными жилами с двойной изоляцией, гибкий, для подключения бытовых приборов к источникам питания;
- ВВГ — кабель медный круглый, до четырех жил с двойной изоляцией для прокладки в земле;
- ВВП — кабель медный круглый одножильный с двойной ПВХ (поливинилхлорид) изоляцией, П — плоский (токопроводящие жилы расположены в одной плоскости).
Подбор кабеля
Первоочередным параметром для выбора сечения кабеля (провода) является ток нагрузки.
В том случае, если в качестве входного параметра известна потребляемая мощность (P),
ток нагрузки (I) расчитывается следующим образом:
Одна фаза, либо постоянное напряжение, U:
I = P / U
Три фазы (переменное напряжение), U:
I = P / (1,73*U)
* Данный алгоритм подбора сечения кабеля носит информативный характер.Для получения более точной информации следует обратиться к специалисту.
Номинальное сечение жилы, мм2 | |||||||||
Допустимые токовые нагрузки кабелей с алюминиевыми жилами с изоляцией из поливинилхлоридного пластиката, напряжение до 3 кВ включительно, А | |||||||||
одножильных | двужильных | трехжильных | четырехжильных | пятижильных | |||||
на воздухе | на земле | на воздухе | на земле | на воздухе | на земле | на воздухе | на земле | на воздухе | на земле |
Номинальное сечение жилы, мм2 | |||||||||
Допустимые токовые нагрузки кабелей с медными жилами с изоляцией из поливинилхлоридного пластиката, напряжение до 3 кВ включительно, А | |||||||||
одножильных | двужильных | трехжильных | четырехжильных | пятижильных | |||||
на воздухе | на земле | на воздухе | на земле | на воздухе | на земле | на воздухе | на земле | на воздухе | на земле |
Расчет сечения кабеля, таблицы, программа
Расчет сечения кабеля (провода) — не менее важный этап при проектировании электрической схемы квартиры или дома. От правильности выбора и качества электромонтажных работ зависит безопасность и стабильность работы потребителей электроэнергии. На начальной стадии необходимо принять во внимание такие исходные данные, как планируемая мощность потребления, длинна проводников и их тип, род тока, способ монтажа проводки. Для наглядности рассмотрим методику определения сечения, основные таблицы и формулы. Также, вы можете воспользоваться специальной программой расчета, представленной в конце основного материала.
Расчет сечения кабеля по мощности
Оптимальная площадь сечения позволяет пропускать ток без возможного перегрева проводов. Поэтому при проектировании электрической разводки, в первую очередь, находят оптимальное сечение провода в зависимости от потребляемой мощности. Для вычисления этого значения следует подсчитать общую мощность всех приборов, которые планируется подключать. При этом, учитывайте тот факт, что не все потребители будут подключаться одновременно. Проанализируйте данную периодичность для выбора оптимального диаметра жилы проводника (подробнее в следующем пункте «Расчет по нагрузке»).
Таблица: Ориентировочная мощность потребления бытовых электроприборов.
Наименование | Мощность, Вт |
---|---|
Осветительные приборы | 1800-3700 |
Телевизоры | 120-140 |
Радио и аудио аппаратура | 70-100 |
Холодильники | 165-300 |
Морозильники | 140 |
Стиральные машины | 2000-2500 |
Джакузи | 2000-2500 |
Пылесосы | 650-1400 |
Электроутюги | 900-1700 |
Электрочайники | 1850-2000 |
Посудомоечная машина с подогревом воды | 2200-2500 |
Электрокофеварки | 650-1000 |
Электромясорубки | 1100 |
Соковыжималки | 200-300 |
Тостеры | 650-1050 |
Миксеры | 250-400 |
Электрофены | 400-1600 |
Микроволновые печи | 900-1300 |
Надплитные фильтры | 250 |
Вентиляторы | 1000-2000 |
Печи-гриль | 650-1350 |
Стационарные электрические плиты | 8500-10500 |
Электрические сауны | 12000 |
Для домашней сети с напряжением 220 вольт значение силы тока (в амперах, А) определяется по следующей формуле:
I = P / U, где:
- P – электрическая полная нагрузка (представлена в таблице и, также, указывается в техническом паспорте устройства), Вт (ватт).
- U – напряжение электрической сети (в данном случае 220), В (вольт).
Если напряжение в сети 380 вольт, то формула расчета следующая:
I = P /√3× U= P /1,73× U, где:
- P — общая потребляемая мощность, Вт.
- U — напряжение в сети (380), В.
Допустимая нагрузка у медного кабеля составляет 10 А/мм², а у алюминиевого – 8 А/мм². Для расчета необходимо полученную величину тока (I) разделить на 10 или 8 (в зависимости от выбранного проводника). Полученное значение и будет ориентировочным размером необходимого сечения.
Расчет сечения кабеля по нагрузке
На начальном этапе рекомендуется сделать поправку по нагрузке. Об этом упоминалось выше, но все же повторимся, что в быту редко возникают ситуации, когда все потребители энергии включаются одновременно. Чаще всего одни приборы работают, а другие нет. Поэтому для уточнения следует полученную величину сечения умножить на коэффициент спроса (Kс). Если же вы уверены, что будете эксплуатировать все приборы сразу, то использовать указанный коэффициент не нужно.
Таблица: Коэффициенты спроса различных потребителей (Kс).
Наименование приемника | Коэффициент спроса |
---|---|
Освещение ОРУ (открытого распределительного устройства ): | |
при одном | 0,5 |
при нескольких | 0,35 |
Освещение помещений | 0,6-0,7 |
Телевизор | 0,7 |
Бытовая электроника | 0,2 |
Холодильник | 0,8 |
Стиральная машина | 0,1 |
Пылесос | 0,1 |
Охлаждение трансформаторов | 0,8-0,85 |
Компрессоры | 0,4 |
Зарядные устройства | 0,12 |
Подогрев и электроотопление | 1,0 |
Влияние длины проводника на сечение
Длина проводника важна при строительстве сетей промышленного масштаба, когда кабель нужно тянуть на значительные расстояния. За время прохождения тока по проводам происходят потери мощности (dU), которые рассчитываются по следующей формуле:
dU = I×p×L/S, где:
- I – сила тока.
- p – удельное сопротивление (для меди — 0,0175, для алюминия — 0,0281).
- L – длина кабеля.
- S – просчитанная площадь сечения проводника.
Согласно техническим условиям, максимальная величина падения напряжения по длине провода не должна превышать 5 %. Если падение значительно, то следует подобрать другой кабель. Это можно сделать с помощью таблиц, где уже отражена зависимость величины мощности и силы тока от величины сечения.
Таблица: Подбор провода при напряжении 220 В.
Сечение жилы провода, мм2 | Диаметр жилы проводника, мм | Медные жилы | Алюминиевые жилы | ||
Ток, А | Мощность, Вт | Ток, А | Мощность, кВт | ||
0,50 | 0,80 | 6 | 1300 | ||
0,75 | 0,98 | 10 | 2200 | ||
1,00 | 1,13 | 14 | 3100 | ||
1,50 | 1,38 | 15 | 3300 | 10 | 2200 |
2,00 | 1,60 | 19 | 4200 | 14 | 3100 |
2,50 | 1,78 | 21 | 4600 | 16 | 3500 |
4,00 | 2,26 | 27 | 5900 | 21 | 4600 |
6,00 | 2,76 | 34 | 7500 | 26 | 5700 |
10,00 | 3,57 | 50 | 11000 | 38 | 8400 |
16,00 | 4,51 | 80 | 17600 | 55 | 12100 |
25,00 | 5,64 | 100 | 22000 | 65 | 14300 |
Пример расчета сечения кабеля
Планируя схему проводки в квартире, сначала необходимо определить места, где будут находиться розетки и осветительные приборы. Нужно определить, какие приборы будут задействованы и где. Далее можно составить общую схему подключения и подсчитать длину кабеля. Исходя из полученных данных, считается размер сечения кабеля по формулам, приведенным выше.
Предположим, нам необходимо определить размер кабеля для подключения стиральной машины. Мощностью возьмем из таблицы — 2000 Вт и определим силу тока:
I=2000 Вт / 220 В=9,09 А (округлим до 9 А). Для увеличения запаса прочности можно добавить несколько ампер и подобрать в зависимости от вида проводника и метода укладки соответствующее сечение. Под рассмотренный пример подойдет трехжильный кабель с сечением медной жилы от 1,5 мм².
Если решите просчитать свои варианты, то вам пригодиться все рассмотренные таблицы, в том числе и следующая — выбор сечения проводника, тока, максимальной мощности нагрузки и токовых характеристик автомата защиты:
Сечение медной жилы проводника, мм² | Допустимый длительный ток нагрузки, А | Максимальная мощность однофазной нагрузки для напряжения 220 В, кВт | Номинальный ток автомата защиты, А | Предельный ток автомата защиты, А | Возможные потребители |
1,5 | 19 | 4,1 | 10 | 16 | группы освещения и сигнализации |
2,5 | 27 | 5,9 | 16 | 25 | розеточные группы и электрические полы |
4 | 38 | 8,3 | 25 | 32 | водонагреватели и кондиционеры |
6 | 46 | 10,1 | 32 | 40 | электрические плиты и духовые шкафы |
10 | 70 | 15,4 | 50 | 63 | вводные питающие линии |
Программа расчета кабеля cable 2.1
Ознакомившись с методикой расчета и специальными таблицами, для удобства, вы можете воспользоваться данной программой. Она избавит вас от самостоятельных вычислений и подберет оптимальное сечение кабеля по заданным параметрам.
В программе cable 2.1 имеется два вида расчета:
- Расчет сечения по заданной мощности или току.
- Расчет максимального тока и мощности по сечению.
Рассмотрим каждый из них.
В первом случае нужно ввести:
- Значение мощности (в рассмотренном примере 2 кВт).
- Выбрать род тока, тип проводника, способ прокладки и количество жил.
- Нажав кнопку «Рассчитать», программа выдаст требуемое сечение, силу тока, рекомендуемый автоматический выключатель и устройство защитного отключения (УЗО).
Во втором случае, по определенному сечению проводника, программа подбирает максимально допустимые:
- Мощность.
- Силу тока.
- Рекомендуемый ток автомата защиты.
- Рекомендуемое УЗО.
Как видим, интерфейс калькулятора довольно простой, а конечные результаты полезны и информативны.
Полноценная установка не требуется. Откройте архив и запустите файл «cable.exe».
Видео по теме
По кабелю невозможно пропустить больше определенного количества тока. Проектируя и монтируя электропроводку в квартире или доме, подбирайте правильное сечение проводника. Это позволит в дальнейшем избежать перегрева проводов, короткого замыкания и незапланированного ремонта.
Взаимосвязь между площадью поперечного сечения провода и силой тока __Hongle cable
Общий метод расчета безопасности медных проводов:
Безопасная допустимая нагрузка по току для медного шнура питания 2,5 квадратных миллиметра-28A.
Безопасная токовая нагрузка медного шнура питания 4 квадратных миллиметра-35А.
Безопасная токовая нагрузка 6 квадратных миллиметров, медный шнур питания-48А.
Безопасная токовая нагрузка 10 квадратных миллиметров, медный шнур питания-65А.
Безопасная токовая нагрузка медного шнура питания-91A площадью 16 квадратных миллиметров.
Безопасная токовая нагрузка 25 квадратных миллиметров, медный шнур питания-120А.
Если это алюминиевая проволока, диаметр проволоки должен быть в 1,5-2 раза больше, чем у медной проволоки.
Если ток по медному проводу меньше 28 А, безопасно использовать 10 А на квадратный миллиметр.
Если ток по медному проводу больше 120 А, возьмите 5 А на квадратный миллиметр.
Ток, который может нормально проходить через площадь поперечного сечения провода, можно выбрать в соответствии с общим количеством токов, которые он должен проводить, и обычно его можно определить следующим образом:
Десять меньше пяти, сто на два , два, пять, три, пять, четыре, три царства, семнадцать пять и два с половиной раза, количество обновлений медного провода.
Чтобы вам это объяснить, это алюминиевый провод, имеющий меньше 10 квадратов, и квадратный миллиметр умножается на 5. Если это медный провод, он будет увеличен на один уровень, например, медный провод на 2,5 квадрата, он будет рассчитан на 4 кв. Все они представляют собой площадь поперечного сечения, умноженную на 2, 25 квадратов или меньше, умноженных на 4, 35 квадратов или более, умноженных на 3, семь и 95 квадратов, умноженные на 2,5, эти несколько формул должно быть легко запомнить,
Пояснение: Это можно использовать только как оценку, не очень точную.
Кроме того, если вы помните о медном проводе менее 6 квадратных миллиметров в комнате, безопасно, что ток на квадрат не превышает 10А. С этой точки зрения вы можете выбрать медный провод квадратного метра 1,5 или алюминиевый провод 2,5 квадрата.
В пределах 10 метров плотность тока в проводе составляет 6 А / мм2, 10-50 метров, 3 А / мм2, 50-200 метров, 2 А / мм2 и менее 1 А / мм2 на высоте более 500 метров. С этой точки зрения, если это не очень далеко, вы можете выбрать 4-х квадратный медный провод или 6-ти квадратный алюминиевый провод.
Если источник питания действительно находится на расстоянии 150 метров (не говоря уже о том, высокое ли это здание), необходимо использовать 4 квадратных медных провода.
Импеданс провода прямо пропорционален его длине и обратно пропорционален диаметру провода. Пожалуйста, обратите особое внимание на материал проводов и диаметр входных и выходных проводов при использовании источника питания. Для предотвращения несчастных случаев из-за перегрева проводов из-за чрезмерного тока.
Ниже приводится таблица диаметра провода и максимального тока, который медный провод может выдерживать при различных температурах.
Диаметр проволоки обычно рассчитывается по следующей формуле:
Медная проволока: S = IL / 54,4 * U`
Алюминиевая проволока: S = IL / 34 * U`
В формуле: I— — максимальный ток, проходящий через провод (А)
L — длина провода (М)
U` — — допустимое падение мощности (В)
S — — Площадь поперечного сечения провода (мм2 )
Описание:
1. Падение напряжения U` может быть выбрано с учетом диапазона оборудования (например, детекторов), используемого во всей системе, до номинального напряжения источника питания системы.
2. Наклоните расчетную площадь поперечного сечения.
Оценка допустимой токовой нагрузки изолированных проводов
Взаимосвязь между допустимой нагрузкой по току и поперечным сечением изолированного проводника с алюминиевым сердечником
截面 (мм² ) | 1 | 1,5 | 2,5 | 4 | 6 | 10 | 16 | 25 | 35 | 50 | 120 | |
载 流 是 截面 倍数 | 9 | 9 | 9 | 8 | 7 030 | 4 | 3.5 | 3 | 3 | 2,5 | 2,5 | |
载 流量 (A) | 9 | 14 | 32 | 42 | 60 | 90 | 100 | 123 | 150 | 210 | 238 4210 | 238 4 |
Формула оценки: умножьте на девять, получив 2.5 и идти вверх и минус один. Тридцать пять умножить на три и пять, и обе группы минус пять. Условия изменяются, добавляется конверсия, а также высокотемпературная модернизация 10% меди. Количество прокалываемых труб составляет два, три, четыре и восемь или семьдесят шесть процентов тока полной нагрузки.
Описание:
(1) Формула в этом разделе не указывает напрямую допустимую нагрузку по току (безопасный ток) различных изолированных проводов (провода с резиновыми и пластиковыми изоляциями), а указывает «сечение, умноженное на определенное кратное», которое получается путем мысленного расчета.Из таблицы видно, что кратность уменьшается с увеличением сечения.
(2) «Два с половиной пять раз вниз на девять, вверх и вниз на один» относится к изолированным проводам с алюминиевым сердечником различного сечения сечением 2,5 мм2 и ниже, и их допустимая нагрузка по току составляет около В 9 раз больше сечений. Например, провод 2,5 мм2, допустимая нагрузка по току составляет 2,5 × 9 = 22,5 (А). Множественное соотношение между допустимой токовой нагрузкой проводов сечением 4 мм2 и выше и количеством поперечных сечений должно совпадать по номеру провода, а кратные числа последовательно уменьшаются на 1, а именно 4 × 8, 6 × 7, 10 × 6, 16 × 5, 25 × 4.
(3) «Тридцать пять раз по 3,5, удваивается в группах минус пять» означает, что допустимая токовая нагрузка провода 35 мм2 в 3,5 раза превышает количество поперечных сечений, то есть 35 × 3,5 = 122,5 (А). Для провода сечением 50 мм2 и более кратное соотношение между допустимой нагрузкой по току и числом поперечных сечений становится группой из двух номеров проводов, и кратные числа последовательно уменьшаются на 0,5. То есть допустимая токовая нагрузка проводов 50 и 70 мм2 в 3 раза больше числа сечений; допустимая нагрузка на провода 95 и 120 мм2 — 2 шт.В 5 раз больше площади поперечного сечения и так далее.
(4) «Условия изменились, плюс преобразование, высокотемпературное обновление 10% меди». Приведенная выше формула определяется изолированным проводом с алюминиевым сердечником и открытым покрытием при температуре окружающей среды 25 ° C. Если изолированный провод с алюминиевым сердечником подвергается длительному воздействию в области, где температура окружающей среды выше 25 ℃, допустимая нагрузка по току провода может быть рассчитана в соответствии с приведенным выше методом расчета формулы, а затем предоставляется скидка 10%. достаточно; когда изолированный провод с медным сердечником не используется, его допустимая нагрузка по току немного больше, чем у алюминиевого провода той же спецификации.В соответствии с приведенным выше методом формулы можно рассчитать допустимую нагрузку по току для одного провода, большего, чем для алюминиевого провода. Например, допустимая нагрузка на медный провод 16 мм2 может быть рассчитана как на алюминиевый провод 25 мм2.
Калькулятор падения напряжения
Калькулятор падения напряжения на проводе / кабеле и способ его расчета.
Калькулятор падения напряжения
* при 68 ° F или 20 ° C
** Результаты могут отличаться для реальных проволок: различное удельное сопротивление материала и количество жил в проволоке.
*** Для провода длиной 2×10 футов длина провода должна составлять 10 футов.
Калькулятор калибра провода ►
Расчет падения напряжения
Расчет постоянного тока / однофазный
Падение напряжения V в вольтах (В) равно току провода I в амперах (А), умноженному на 2 умноженной на длину одностороннего провода L в футах (футах), умноженного на сопротивление провода на 1000 футов R в омах (Ом / kft), деленное на 1000:
V падение (V) = I провод (A) × R провод (Ω)
= I провод (A) × (2 × L (фут) × R провод (Ω / kft) /1000 (ft / kft) )
Падение напряжения V в вольтах (В) равно току провода I в амперах (А), умноженному на 2. длина одностороннего провода L в метрах (м), умноженная на сопротивление провода на 1000 метров R в омах (Ом / км), деленное на 1000:
V падение (V) = I провод (A) × R провод (Ω)
= I провод (A) × (2 × L (м) × R провод (Ом / км) /1000 (м / км) )
3-фазный расчет
Падение межфазного напряжения V в вольтах (В) равно квадратному корню из 3-кратного значения тока провода I в амперах (A), умноженного на односторонняя длина провода L в футах (футах), умноженная на сопротивление провода на 1000 футов R в омах (Ω / kft), деленное на 1000:
V drop (V) = √3 × I провод (A) × R провод (Ом)
= 1.732 × I провод (A) × ( L (фут) × R провод (Ом / кВт) /1000 (фут / кВт) )
Падение межфазного напряжения V в вольтах (В) равно квадратному корню из 3-кратного значения тока провода I в амперах (A), умноженного на односторонняя длина провода L в метрах (м), умноженная на сопротивление провода на 1000 метры R в омах (Ом / км) разделить на 1000:
V drop (V) = √3 × I провод (A) × R провод (Ом)
= 1.732 × I провод (A) × ( L (м) × R провод (Ом / км) /1000 (м / км) )
Расчет диаметра проволоки
Диаметр проволоки n калибра d n дюймов (дюймов) равен 0,005 дюйма, умноженному на 92 в степени 36 минус калибр n, деленное на 39:
d n (дюйм) = 0,005 дюйма × 92 (36- n ) / 39
Диаметр проволоки n-го калибра d n в миллиметрах (мм) равен 0.127 мм умножить на 92 в степени 36 минус число n, разделенное на 39:
d n (мм) = 0,127 мм × 92 (36- n ) / 39
Расчет площади поперечного сечения провода
Площадь поперечного сечения провода калибра n A n в килокруглых милах (kcmil) равна 1000 диаметрам квадратного провода d в дюймах (дюймах):
A n (kcmil) = 1000 × d n 2 = 0.025 дюйм 2 × 92 (36- n ) / 19,5
Площадь поперечного сечения провода калибра n A n в квадратных дюймах (в дюймах 2 ) равно пи, деленному на 4 диаметра квадратной проволоки d в дюймах (дюймах):
A n (в 2 ) = (π / 4) × d n 2 = 0,000019635 дюйм 2 × 92 (36- n ) / 19,5
Площадь поперечного сечения провода калибра n A n в квадратных миллиметрах (мм 2 ) равно pi, деленному на 4, умноженное на диаметр квадратной проволоки d в миллиметрах (мм):
A n (мм 2 ) = (π / 4) × d n 2 = 0.012668 мм 2 × 92 (36- n ) /19,5
Расчет сопротивления проводов
Сопротивление провода калибра n R в омах на килофит (Ом / кфут) равно 0,3048 × 1000000000 удельному сопротивлению провода ρ дюймов Ом-метр (Ом · м), разделенное на 25,4 2 , умноженное на площадь поперечного сечения A n в квадратных дюймах (в 2 ):
R n (Ом / kft) = 0,3048 × 10 9 × ρ (Ом · м) / (25.4 2 × A n (в 2 ) )
Сопротивление провода N калибра R в Ом на километр (Ом / км) равно 1000000000 удельному сопротивлению провода ρ дюйм ом-метры (Ом · м), разделенные на площадь поперечного сечения A n в квадратных миллиметрах (мм 2 ):
R n (Ом / км) = 10 9 × ρ (Ом · м) / A n (мм 2 )
Диаграмма AWG
AWG # | Диаметр (дюйм) | Диаметр (мм) | Площадь (тыс. Км) | Площадь (мм 2 ) |
---|---|---|---|---|
0000 (4/0) | 0.4600 | 11,6840 | 211,6000 | 107.2193 |
000 (3/0) | 0,4096 | 10,4049 | 167.8064 | 85.0288 |
00 (2/0) | 0,3648 | 9,2658 | 133.0765 | 67.4309 |
0 (1/0) | 0,3249 | 8,2515 | 105,5345 | 53,4751 |
1 | 0,2893 | 7.3481 | 83,6927 | 42,4077 |
2 | 0,2576 | 6.5437 | 66,3713 | 33,6308 |
3 | 0,2294 | 5,8273 | 52,6348 | 26.6705 |
4 | 0,2043 | 5,1894 | 41.7413 | 21.1506 |
5 | 0,1819 | 4.6213 | 33.1024 | 16.7732 |
6 | 0,1620 | 4,1154 | 26,2514 | 13,3018 |
7 | 0,1443 | 3,6649 | 20,8183 | 10,5488 |
8 | 0,1285 | 3,2636 | 16,5097 | 8,3656 |
9 | 0,1144 | 2,9064 | 13,0927 | 6,6342 |
10 | 0.1019 | 2,5882 | 10,3830 | 5,2612 |
11 | 0,0907 | 2.3048 | 8,2341 | 4,1723 |
12 | 0,0808 | 2,0525 | 6.5299 | 3,3088 |
13 | 0,0720 | 1,8278 | 5,1785 | 2.6240 |
14 | 0,0641 | 1,6277 | 4.1067 | 2,0809 |
15 | 0,0571 | 1.4495 | 3,2568 | 1,6502 |
16 | 0,0508 | 1,2908 | 2,5827 | 1,3087 |
17 | 0,0453 | 1,1495 | 2,0482 | 1,0378 |
18 | 0,0403 | 1.0237 | 1,6243 | 0,8230 |
19 | 0.0359 | 0,9116 | 1,2881 | 0,6527 |
20 | 0,0320 | 0,8118 | 1.0215 | 0,5176 |
21 | 0,0285 | 0,7229 | 0,8101 | 0,4105 |
22 | 0,0253 | 0,6438 | 0,6424 | 0,3255 |
23 | 0,0226 | 0,5733 | 0.5095 | 0,2582 |
24 | 0,0201 | 0,5106 | 0,4040 | 0,2047 |
25 | 0,0179 | 0,4547 | 0,3204 | 0,1624 |
26 | 0,0159 | 0,4049 | 0,2541 | 0,128 |
27 | 0,0142 | 0,3606 | 0.2015 | 0,1021 |
28 | 0.0126 | 0,3211 | 0,1598 | 0,0810 |
29 | 0,0113 | 0,2859 | 0,1267 | 0,0642 |
30 | 0,0100 | 0,2546 | 0,1005 | 0,0509 |
31 | 0,0089 | 0,2268 | 0,0797 | 0,0404 |
32 | 0,0080 | 0,2019 | 0.0632 | 0,0320 |
33 | 0,0071 | 0,1798 | 0,0501 | 0,0254 |
34 | 0,0063 | 0,1601 | 0,0398 | 0,0201 |
35 | 0,0056 | 0,1426 | 0,0315 | 0,0160 |
36 | 0,0050 | 0,1270 | 0,0250 | 0,0127 |
37 | 0.0045 | 0,1131 | 0,0198 | 0,0100 |
38 | 0,0040 | 0,1007 | 0,0157 | 0,0080 |
39 | 0,0035 | 0,0897 | 0,0125 | 0,0063 |
40 | 0,0031 | 0,0799 | 0,0099 | 0,0050 |
См. Также
myCableEngineering.com> Уравнение адиабаты
При расчете рейтингов неисправностей кабеля обычно предполагается, что продолжительность достаточно короткая, чтобы кабель не отводил тепло в окружающую среду. Принятие этого подхода упрощает расчет и дает возможность ошибиться.
Обычно используемым уравнением является так называемое адиабатическое уравнение. Для данной неисправности I , которая длится в течение времени t , минимальная требуемая площадь поперечного сечения кабеля определяется по формуле:
А = I2tk
где: A — номинальное сечение, мм 2
I — ток короткого замыкания, А
t — длительность тока короткого замыкания, с
k — коэффициент, зависящий от типа кабеля (см. Ниже )
В качестве альтернативы, учитывая сечение кабеля и ток короткого замыкания, максимальное время, допустимое для срабатывания защитного устройства, можно найти по адресу:
т = k2A2I2
Коэффициент k зависит от изоляции кабеля, допустимого повышения температуры в условиях повреждения, удельного сопротивления проводника и теплоемкости.Типичные значения k :
Температура | Материал проводника | ||||
---|---|---|---|---|---|
Начальная ° C | Конечная ° C | Медь | Алюминий | Сталь | |
Термопласт 70 ° C (ПВХ) | 70 | 160/140 | 115/103 | 76/78 | 42/37 |
Термопласт 90 ° C (ПВХ) | 90 | 160/140 | 100/86 | 66/57 | 36/31 |
Термореактивный, 90 ° C (XLPE, EDR) | 90 | 250 | 143 | 94 | 52 |
Термореактивная, 60 ° C (резина) | 60 | 200 | 141 | 93 | 51 |
Термореактивная, 85 ° C (резина) | 85 | 220 | 134 | 89 | 48 |
Термореактивность, 185 ° C (силиконовая резина) | 180 | 350 | 132 | 87 | 47 |
* где два значения; меньшее значение применяется к проводнику CSA> 300 мм 2
* эти значения подходят для продолжительности до 5 секунд, источник: BS 7671, IEC 60364-5-54
Пример
Считайте максимальный ток короткого замыкания 13.6 кА, и защитное устройство срабатывает за 2,6 с. Минимальная безопасная площадь поперечного сечения медного термореактивного кабеля 90 ° C ( k = 143) составляет:
S = 136002 × 2,6143 = 154 мм2
Любой выбранный кабель большего размера выдержит отказ.
Вывод — адиабатическое уравнение и kТермин адиабатический применяется к процессу, в котором отсутствует теплопередача. Что касается повреждений кабеля, мы предполагаем, что все тепло, генерируемое во время повреждения, содержится внутри кабеля (а не передается от него).Очевидно, это не совсем так, но это на всякий случай.
Из физики, тепло Q , необходимое для подъема материала ΔT , определяется по формуле:
Q = см ΔT
где Q — добавленное тепло, Дж
c — удельная теплоемкость материала, Jg -1 .K -1
м — масса материала, г
ΔT — превышение температуры, К
Энергия, поступающая в кабель во время короткого замыкания, определяется по формуле:
Q = I2Rt
где R — сопротивление кабеля, Ом
Исходя из физических свойств кабеля, мы можем рассчитать м, и R как:
m = ρcAl и R = ρrlA
где ρ c — плотность материала в г.мм -3
ρ r — удельное сопротивление жилы, Ом.мм
l — длина кабеля, мм
Комбинируя и заменяя, получаем:
I2Rt = см ΔT
I2tρrlA = cρcAlΔT
и перестановка для A дает:
S = I2tk, положив k = cρcΔTρr
Примечание: ΔT — максимально допустимое превышение температуры для кабеля:
ΔT = θf − θi
где θ f — конечная (максимальная) температура изоляции кабеля, ° C
θ i — начальная (рабочая) температура изоляции кабеля, ° C
Единицы: выражаются в г (граммах) и мм. 2 , а не в кг и м.Это широко используется разработчиками кабелей. При необходимости уравнения можно легко изменить в кг и м.
Пропускная способность по току — обзор
2.3 Транспорт с высоким смещением
При высоких смещениях на пропускную способность углеродных нанотрубок по току существенно влияет электрон-фононное рассеяние. На рис. 2.8 показаны экспериментально измеренные вольт-амперные характеристики нанотрубки малого диаметра. Проводимость максимальна при нулевом смещении и уменьшается с увеличением смещения, что свидетельствует об увеличении электрон-фононного рассеяния.Для рассмотрения режима переноса с большим смещением в металлических нанотрубках был предложен подход, основанный на уравнении Больцмана [25]. Подход с использованием уравнения Больцмана описывает временную эволюцию и пространственную зависимость функций распределения электронов
Рис. 2.8. Зависимость тока от приложенного смещения металлической нанотрубки при разных температурах. Дифференциальная проводимость максимальна при нулевом смещении и достигает гораздо более низких значений при высоких смещениях. Рисунок после Ref. [25].
fL (E, x)
и
fR (E, x)
, которые представляют движущиеся влево и вправо электроны.При наличии процессов рассеяния и однородного электрического поля эти уравнения имеют вид
(2.36) ∂fL∂t + vF∂fL∂x + 1ħeVL∂fL∂k = [∂fL∂t] рассеяние
∂fR∂t− vF∂fR∂x − 1ħeVL∂fR∂k = [∂fR∂t] рассеяние.
Три источника рассеяния включены для описания переноса большого смещения в металлических углеродных нанотрубках: упругое рассеяние на дефектах, обратное рассеяние на фононах и прямое рассеяние на фононах. Упругое рассеяние определяется выражением
(2.37) [∂fL∂t] elastic = vFle (fL − fR)
, где
le
— упругая длина свободного пробега.Столкновения обратного рассеяния с фононами приводят к скорости изменения функции заполнения
(2.38) [∂fL (E) ∂t] bp = vFlbp {[1 − fL (E)] fR (E + ħΩ) — [1 −fR (E − ħΩ)] fL (E)}
, тогда как рассеяние вперед на фононах равно
(2.39) [∂fL (E) ∂t] fp = vFlfp {[1 − fL (E)] fL ( E + Ω) — [1 − fL (E − ħΩ)] fL (E)}.
Эти уравнения дополняются граничными условиями на контактах
(2.40) fR (E) | x = 0 = tL2f0 (E − μL) + (1 − tL2) fL (E) | x = 0
fL ( E) | x = L = tR2f0 (E − μR) + (1 − tR2) fR (E) | x = L
, где
f0
— равновесное распределение Ферми, а
tL, R
— коэффициенты передачи на контактах.После определения функций распределения путем решения уравнений Больцмана с граничными условиями, ток вычисляется из
(2.41) I = 4e2h∫ (fL − fR) dE
, где функции распределения могут быть вычислены при любом (кроме то же самое) точка
x
в установившемся режиме. На рис. 2.9 показан численно рассчитанный [25] ток в зависимости от напряжения для металлической углеродной нанотрубки длиной один микрон, включая электрон-фононное рассеяние с фононами 150 мэВ, и с параметрами
Рис. 2.9. Расчет зависимости тока от напряжения для металлической углеродной нанотрубки с использованием уравнения переноса Больцмана и электрон-фононного рассеяния. На вставке показан процесс электрон-фононного рассеяния, при котором электроны с энергией, превышающей энергию фонона, испускают фонон и рассеиваются обратно. Рисунок после Ref. [25].
tL, R2 = 0,5
,
le = 300 нм, lpb = 10 нм
и
lpf = ∞
. Превосходное согласие с экспериментом показывает, что длина свободного пробега для рассеяния оптических фононов составляет около 10 нм, и преобладает рассеяние на фононах в диапазоне 150 мэВ.
Поскольку длина свободного пробега для рассеяния на оптических фононах мала, проводимость при большом смещении заметно уменьшается в нанотрубках, которые намного длиннее этой длины свободного пробега. Если предположить, что все электроны, падающие из левого контакта с энергией на 160 мэВ, превышающей энергию Ферми на стороне стока, отражаются эмиссией фононов, то максимальный ток, протекающий в длинной нанотрубке (много длин свободного пробега) при больших смещениях, составляет примерно
(2,42) I = 4e2h260 мВ = 25 мкА.
В ряде экспериментов сообщалось о токах, сравнимых с 25 мкА в длинных нанотрубках [20, 25, 26]. Недавнее моделирование вольт-амперных характеристик в баллистическом пределе и с электрон-фононными взаимодействиями также показало, что рассеяние на оптических фононах происходит в масштабе нескольких десятков нанометров, как показано на рис. 2.10. При малых смещениях проводимость
Рисунок 2.10. Расчетные вольт-амперные характеристики в баллистическом пределе (штриховая линия) и при электрон-фононном рассеянии для различных длин.Для самой длинной рассматриваемой нанотрубки (213 нм) ток близок к 25 мкА, как предполагает формула. (2.42). По мере уменьшения длины нанотрубки ток приближается к баллистическому пределу. Рисунок после Ref. [27].
dI / dV
почти
4e2 / h
, независимо от длины нанотрубки, что указывает на перенос баллистического заряда в пересекающихся поддиапазонах. По мере увеличения смещения допустимая нагрузка по току и дифференциальная проводимость зависят от длины. Самая длинная из рассматриваемых нанотрубок (длина 213 нм) значительно превышает длину свободного пробега около 10 нм.Расчетный ток для этой нанотрубки составляет около 25 мкА при смещении 1 В, что согласуется с формулой. (2.42). По мере уменьшения длины нанотрубки пропускная способность по току увеличивается и приближается к баллистическому пределу (пунктирная линия) на рис. 2.8.
Следует отметить, что экспериментально измеренные длины свободного пробега для рассеяния оптических фононов почти в пять раз меньше теоретических предсказаний. В [20] теоретически средняя длина свободного пробега из-за оптического и зонного рассеяния на границах оценивается примерно в 50 нм, но было обнаружено, что экспериментальные данные могут быть объяснены только при условии, что чистая длина свободного пробега составляет 10 нм.Причина этого несоответствия неясна. Одна из возможностей состоит в том, что испускаемые фононы не могут легко рассеяться в окружающую среду, что приводит к избытку горячих фононов и меньшей экспериментально наблюдаемой длине свободного пробега.
В отличие от нанотрубок малого диаметра, многослойные нанотрубки большого диаметра демонстрируют увеличение дифференциальной проводимости при приложении смещения [8, 28, 29]. На рис. 2.11 показаны экспериментально измеренные ток и проводимость в зависимости от смещения для нанотрубки диаметром 15.6 нм [28]. Низкая проводимость смещения составляет
Рисунок 2.11. Наблюдаемая кривая
I
—V
одиночной многослойной углеродной нанотрубки в диапазоне смещения от -8 до 8 В (правая ось). Проводимость около нулевого смещения составляет0,4G0
и линейно увеличивается до приложенного смещения 5,8 В, где она уменьшается. Многослойная нанотрубка имеет более 15 оболочек и имеет диаметр и длину примерно 15,6 и 500 нм соответственно. Рисунок из Ref. [28].0,4G0
вместо максимального
2G0
.Что еще более важно, проводимость увеличивается с приложенным смещением, что также замечено в [5]. [8]. Это качественно отличается от описанного выше случая нанотрубок малого диаметра, где проводимость уменьшается с увеличением смещения (рис. 2.8). Существует множество потенциальных причин увеличения проводимости со смещением, наблюдаемого в этих многостенных нанотрубках большого диаметра. Одна из возможностей состоит в том, что внутренние стенки многослойной нанотрубки начинают проводить ток по мере увеличения смещения. Однако недавние теоретические работы показали, что этот механизм маловероятен [30].Наиболее вероятным объяснением увеличения проводимости при приложении смещения является туннелирование Зинера между непересекающимися валентными зонами и зоной проводимости [31]. Этот процесс показан на рис. 2.12. Рассмотрим электрон, падающий в непересекающуюся валентную подзону нанотрубки из левого контакта. Этот электрон может либо туннелировать в подзону непересекающейся проводимости с той же симметрией (пунктирная стрелка), либо отражаться по Брэггу обратно в левый контакт (пунктирная стрелка). Барьер для туннелирования Зенера в непересекающейся поддиапазоне составляет
Рисунок 2.12. Каждый прямоугольный прямоугольник представляет собой график зависимости энергии от волнового вектора, нижняя часть поддиапазона которого равна электростатическому потенциалу. Для ясности показаны только несколько поддиапазонов. Показаны три процесса: прямая передача (сплошная линия), брэгговское отражение (пунктирная линия) и межподзонное туннелирование (пунктирная линия). Рисунок после Ref. [31].
ΔENC
, а ширина туннельного барьера зависит от профиля потенциала в нанотрубке. Поскольку высота барьера
ΔENC
увеличивается с уменьшением диаметра нанотрубок, оказывается, что непересекающиеся подзоны металлических нанотрубок малого диаметра не проводят значительного тока [27, 31].С другой стороны, для нанотрубок большого диаметра барьер для туннелирования
ΔENC
намного меньше, и в результате вероятность туннелирования увеличивается с увеличением диаметра нанотрубки. Самосогласованные расчеты вольт-амперных характеристик коротких нанотрубок действительно показывают существенную зависимость проводимости от диаметра, возникающую из-за туннелирования в непересекающиеся / полупроводниковые подзоны [27, 31].
Наконец, мы обсудим падение электростатического потенциала в углеродных нанотрубках при низком и высоком смещении.Мы ограничимся обсуждением идеальной связи между нанотрубкой и контактами. В этом случае проводимость нанотрубки определяется количеством подзон, по которым проходит ток и происходит рассеяние из-за электрон-фононного взаимодействия внутри нанотрубки. Обратите внимание, что дополнительное сопротивление на границе контакта нанотрубки приведет к падению приложенного смещения на этом сопротивлении в дополнение к падению на нанотрубке.
При низком смещении, меньшем, чем энергия оптических и зонных граничных фононов (160 мэВ), электрон-фононное рассеяние подавляется, и, следовательно, бездефектные нанотрубки являются существенно баллистическими.В этом пределе низкого смещения приложенное смещение в основном падает на двух концах нанотрубки, как показано на рис. 2.13 (а). Интересно, что даже несмотря на то, что нанотрубка является баллистической, электрическое поле вблизи контакта зависит от диаметра трубки. Электрическое поле в центре нанотрубки увеличивается с увеличением диаметра, потому что плотность состояний на атом уменьшается с увеличением диаметра, как показано, например, в уравнении. (1.41). Это делает экранирование в нанотрубках большего диаметра менее эффективным.Когда приложенное смещение увеличивается, позволяя излучать оптические и граничные фононы зоны, электростатический потенциал равномерно падает по длине нанотрубки при условии, что длина нанотрубки во много раз превышает длину свободного пробега. Падение потенциала на рис. 2.13 (б) соответствует этому случаю.
Рисунок 2.13. Расчетный электростатический потенциал вдоль оси нанотрубки. (а) Низкий потенциал смещения для (12,0) и (240,0) нанотрубок, которые имеют диаметры 0,94 и 18,8 нм соответственно. Приложенное смещение составляет 100 мВ.Экранирование нанотрубок большого диаметра значительно хуже. Длина нанотрубки составляет 213 нм. (b) Потенциал как функция положения показан для (12,0) нанотрубок длиной 42,6 и 213 нм в присутствии рассеяния (сплошная линия), с профилем потенциала в баллистическом пределе (пунктирная линия), показанным для сравнения. . Рисунок после Ref. [27].
Как выбрать наиболее экономичный размер и тип кабеля?
Выбор кабеля заключается в выборе подходящего типа проводника и выборе подходящего размера / площади поперечного сечения / диаметра проводника в соответствии с областью применения.Во-первых, необходимо понять важность определения размеров и выбора кабеля. Затем будут обсуждены критерии выбора с учетом всех факторов снижения номинальных характеристик, которые могут снизить допустимую нагрузку на кабель. Закон, называемый законом Кельвина, играет жизненно важную роль в экономическом определении размеров проводников, поэтому он также будет объяснен здесь. Помимо размера проводника, будут изучены различные типы проводника. Также в конце будет обсуждаться экранирование и изоляция кабеля.
Размеры кабеля обычно определяются в терминах площади поперечного сечения, Kcmil (килограммы круговых милов) или AWG (американский калибр проводов).
Мы только что запустили нашу серию Power Systems Engineering Vlog , и в этой серии мы поговорим о всевозможных различных исследованиях и комментариях по проектированию энергосистем. Мы рассмотрим различные блоги, написанные AllumiaX. Это весело, это весело, по сути, это видеоблог, и мы надеемся, что вы, , присоединитесь к нам, , и получите от этого пользу. Доступные стандарты для выбора и размера кабеля:- IEC (Международная электротехническая комиссия)
- NEC (Национальный электротехнический кодекс)
- BS (Британские стандарты)
Важность выбора правильного размера и типа кабеля:
Выбор правильного размера и типа кабеля важен по следующим причинам:
- Если размер кабеля очень мал, когда ток превышает допустимую нагрузку кабеля, кабель нагревается и повреждается.Таким образом, необходимо выбрать размер кабеля, при котором он способен выдержать полный ток нагрузки и ток короткого замыкания, который может протекать по кабелю.
- Увеличение площади поперечного сечения кабеля потребует использования большего количества материала в его конструкции, что приведет к его удорожанию. Следовательно, будет сложно поддерживать хороший баланс между стоимостью кабеля и требованиями к его использованию. Таким образом, диаметр кабеля должен соответствовать требованиям.
- Необходимо обеспечить нагрузку подходящим напряжением, т. Е. С минимальным падением напряжения. Кабель с маленьким диаметром будет иметь более высокое сопротивление. Кроме того, это приведет к большему падению напряжения на кабеле. Поэтому необходимо выбирать такой кабель, который не вызывает падения напряжения или вызывает меньшее падение напряжения.
- Необходимо выбрать лучший тип кабеля в соответствии с требованиями применения, поскольку каждый тип проводника имеет собственное сопротивление, теплопроводность и т. Д.
Критерии выбора кабелей:
Размер кабеля определяется на основе следующих факторов:
Пропускная способность по току: Определяется путем оценки величины тока, потребляемого оборудованием или нагрузкой, подключенными на приемном конце кабеля. В нем также предусмотрен запас прочности по току перегрузки.
Падение напряжения: Из-за сопротивления кабеля возникают потери мощности, в результате чего напряжение падает на определенную величину.В дополнение к этому, падение напряжения также зависит от температуры, поскольку температура влияет на сопротивление. Если нам известны значения сопротивления кабеля и тока, протекающего по кабелю, то мы можем определить падение напряжения на этом кабеле по формуле V = I * R.
Рейтинг короткого замыкания: Это способность кабеля выдерживать ток короткого замыкания в течение определенного времени повреждения, прежде чем он будет устранен без каких-либо повреждений.
Коэффициенты снижения мощности:
Существуют некоторые внешние помехи, которые влияют на номинальный ток кабеля i.е. токовая нагрузка кабеля. В таких сценариях текущие рейтинги должны быть улучшены путем применения некоторых подходящих факторов, известных как коэффициенты снижения номинальных характеристик. Поскольку у нас есть несколько типов коэффициентов снижения, поэтому значения всех коэффициентов снижения умножаются, чтобы получить среднее значение. Ниже приведены основные факторы снижения номинальных характеристик, которые следует учитывать при выборе сечения кабеля.
Температурный коэффициент снижения номинальных характеристик (C T ): Температурный коэффициент снижения номинальных характеристик (CT): кабели должны быть расположены таким образом, чтобы у них было минимальное пространство для рассеивания тепла в окружающей среде.Этот коэффициент используется при расчетах размеров кабеля, чтобы учесть расположение кабеля для минимизации тепловых потерь и, таким образом, повышения допустимой нагрузки кабеля.
Фактор группировки проводников (C G ): Электромагнитное поле вокруг проводников в группе создается, когда протекает ток, что приводит к уменьшению допустимой нагрузки кабеля. По этой причине учитывается фактор группировки проводников.
Термическое сопротивление почвы (C R ): Стандартная температура окружающей кабели составляет 40 ° C.Но если кабели должны быть закопаны в почву, температура вокруг кабелей повышается, и это влияет на допустимую нагрузку кабеля. Поэтому в расчетах учитывается коэффициент термического сопротивления грунта, чтобы компенсировать повышение температуры.
Коэффициент снижения глубины залегания (C D ): Этот коэффициент зависит от глубины грунта, на которую должен быть заложен проводник. Более глубокое проникновение в заземляющий кабель приведет к увеличению коэффициента снижения мощности.
Как рассчитать сечение кабеля для заданной нагрузки?
Где,
P = Действительная мощность (кВт) S = Полная мощность (кВА) V L = Напряжение сети I L = Линейный ток или допустимая нагрузка кабеля
С учетом факторов снижения номинальных характеристик:
Теперь выберите размер кабеля в зависимости от указанного выше тока из стандартных таблиц размеров кабеля e.грамм. «Каталоги МЭК».
Закон Кельвина для экономичного сечения кабеля:
Закон Кельвина гласит, что:
Самый экономичный размер проводника — это размер, для которого годовые проценты и амортизация капитальных затрат на него равны годовым эксплуатационным расходам
Скажем,
Размер (площадь поперечного сечения) проводника = a Годовая процентная и амортизационная стоимость кондуктора = P Годовые эксплуатационные расходы кондуктора = PP.
Поскольку годовые проценты и амортизационная стоимость кондуктора прямо пропорциональны размеру кондуктора (поскольку увеличение размера кондуктора увеличит его капитальные затраты и, следовательно, процентные и амортизационные расходы) i.е.
П 1 ∝ аИтак, P 1 = k 1 .a ———————— уравнение (i)
Кроме того, годовые эксплуатационные расходы на проводник обратно пропорциональны размеру проводника (так как увеличение размера проводника уменьшит потери энергии плюс повреждения из-за нагрева и, следовательно, эксплуатационные расходы), то есть
Итак, P 2 =к 2 к
———————— уравнение (ii)Здесь k 1 и k 2 — константы.
Общая годовая стоимость проводника (скажем, P) может быть получена путем сложения уравнений (i) и (ii):
Чтобы общая стоимость была минимальной, дифференциал «P» по отношению к «a» должен быть равен нулю:
дП / да
знак равнод / да (к 1 .а + к 2 / а)
0 = k 1 + k 2 (- 1 / a 2 )
0 = к 1 — (к 2 / а 2 )
к 2 / а 2 = к 1
k 2 / a = k 1 .a
P 2 = P 1
Экономический размер проводника (при котором годовые проценты и амортизационные расходы равны годовым эксплуатационным расходам на проводника) можно рассчитать из приведенного выше вывода:
к 2 / а 2 = к 1
а = к 1 / к 2
а = √ (к 1 / к 2 )
Пример:
Рассмотрим кабель длиной 1 км с допустимой нагрузкой 150 А в течение года (8760 часов).Стоимость прокладки кабеля составляет 0,1 доллара США за метр, где a — размер жилы в см 2 . Стоимость энергии составляет 0,001 доллара США / кВтч, а 12% составляют проценты и амортизационные отчисления. Удельное сопротивление проводника составляет 1,91 мкОм · см, поэтому определите экономичный размер проводника.
Автор: EagleRJOCC BY-SA 4.0, ссылка
Сопротивление проводника =ρL / а
знак равно(1,91×10 -6 ) (10 5 ) / Ом
Потери энергии / год
знак равно2I 2 Rt / 1000 кВт · ч
Потери энергии / год
знак равно2x (150) 2 x (0.191 / а) (8760) / 1000
Потери энергии / год
знак равно75292.2 / а
) кВтч Годовые текущие расходы =Стоимость / кВтч
ИксПотери энергии / год
Годовые текущие расходы = 0,1 x (75292.2 / а
) Годовые текущие расходы = $ (75292.2 / а
) Капитальные затраты = $16a / метр
Капитальные затраты = 16 долларов США × 1000 = 16000 долларов США
Ежегодные фиксированные платежи = Проценты и амортизация капитальных затрат
Ежегодная фиксированная плата = 12% от 16000 долларов США = 1920 долларов СШАa
Согласно закону Кельвина,
Годовые текущие платежи = Ежегодные фиксированные платежи
7529.22 / а
= 1920aa = 3,92 см 2
Итак, экономичный размер жилы 3,92 см. 2 .
Ограничения:
- Точные проценты и амортизация капитальных затрат не могут быть определены.
- Некоторые факторы, такие как допустимая нагрузка кабеля, эффект коронного разряда и т. Д., Не рассматриваются в этом законе.
- По закону Кельвина может иметь место чрезмерное падение напряжения в размере проводника.
Типы проводников:
В зависимости от физической структуры проводники могут быть скрученными (несколько тонких проводов) или сплошными (сплошная металлическая проволока). Типы кабелей (жилы), которые используются в линиях электропередачи:
ACSR (алюминиевый проводник, армированный сталью): Он состоит из стальных нитей, окруженных алюминиевыми нитями. Это наиболее рекомендуемый проводник для линий электропередачи и используется для более протяженных участков.
ACAR (алюминиевый проводник, армированный сплавом): Он состоит из алюминиево-магниевого кремниевого сплава, окруженного алюминиевым проводником. Он имеет более высокую механическую прочность и проводимость, чем ACSR, поэтому его можно использовать для распределения и передачи в больших масштабах, но он более дорогой.
AAC (полностью алюминиевый проводник): Он также известен как ASC (алюминиевый многожильный проводник) и имеет проводимость 61% IACS. Несмотря на то, что он обладает хорошей проводимостью, он все же ограничен в применении из-за низкой прочности.
AAAC (проводник из алюминиевого сплава): Он состоит из сплава алюминия-магния-кремния и имеет проводимость 52,5% IACS. Из-за большей прочности его можно использовать для распространения, но не рекомендуется для передачи. Подходит для использования в помещениях с повышенным содержанием влаги.
⁘ IACS (Международный стандарт отожженной меди) — это стандарт, введенный США.
Это стандарт, с которым сравнивается проводимость любого проводника.
Это значение проводимости коммерчески доступной меди.
Экранирование и изоляция кабеля:
Существуют различные слои из различных материалов, которые должны быть наложены на проводник, чтобы обеспечить изоляцию и экран кабеля с целью защиты проводника. Каждый слой имеет свою особую функцию, и ее требования зависят от применения кабелей. Например, для воздушных линий нам не нужна изоляция или экранирование, поскольку там используются неизолированные провода, но для подземных кабелей они должны быть изолированы и экранированы.
Изоляция: Изоляция кабеля выполняется с помощью любого диэлектрика, например ПВХ, чтобы предотвратить утечку тока из проводника.
Оболочка: Кабель снабжен оболочкой для защиты кабеля от влаги. Это должен быть какой-нибудь немагнитный материал, например, свинцовый сплав.
Подкладка: Предназначение подстилки — защитить оболочку кабеля от повреждений, вызванных броней.
Армирование: Армирование — это еще один слой оцинкованной стали поверх кабеля, защищающий его от любых механических повреждений.
Обслуживания: Повышает механическую прочность кабеля. Обеспечивает общую защиту от влаги, пыли и т. Д.
Подведение итогов:
Систему передачи электроэнергии можно сделать эффективной и экономичной, если следовать надлежащей методологии определения размеров и выбора кабеля.