Расчетный ток для трехфазной сети: Онлайн калькулятор расчета тока трехфазной сети

Содержание

Таблица для выбора автоматических выключателей для однофазной и трехфазной сети

Расчет автоматического выключателя.

Автоматический выключатель можно рассчитывать двумя методами: по силе тока потребителей или по сечению используемой проводки.

Рассмотрим первый способ — расчет автомата по силе тока.

Первым шагом, нужно подсчитать общую мощность, которую нужно повесить на автомат. Для этого суммируем мощность каждого электроприбора. Например, нужно рассчитать автомат на жилую комнату в квартире. В комнате находится компьютер (300 Вт), телевизор (50 Вт), обогреватель (2000 Вт), 3 лампочки (180 Вт) и еще периодически будет включаться пылесос (1500 Вт). Плюсуем все эти мощности и получаем 4030 Вт.

Вторым шагом рассчитываем силу тока по формуле I=P/U P — общая мощность U — напряжение в сети

Рассчитываем I=4030/220=18,31 А

Выбираем автомат, округляя значение силы тока в большую сторону. В нашем расчете это автоматический выключатель на 20 А.  

Рассмотрим второй метод — подбор автомата по сечению проводки.

Этот метод намного проще предыдущего, так как не нужно производить никаких расчетов, а значения силы тока брать из таблицы (ПУЭ табл.1.3.4 и 1.3.5.)

Допустимый длительный ток для проводов и кабелей с медными жилами
Сечение токопроводящей жилы, мм2 Ток, А, для проводов, проложенных
открыто в одной трубе
двух одножильных трех одножильных четырех одножильных одного двухжильного одного трехжильного
0,5 11
0,75 15
1 17 16 15 14 15 14
1,5 23 19 17 16
18
15
2 26 24 22 20 23 19
2,5 30 27 25 25 25 21
3 34 32 28 26 28 24
4 41 38 35 30 32 27
5 46 42 39 34 37 31
6 50 46 42 40 40 34
8 62 54 51 46 48 43
10 80 70 60 50 55 50
Допустимый длительный ток для проводов и кабелей с алюминиевыми жилами
Сечение токопроводящей жилы, мм2 Ток, А, для проводов, проложенных
открыто в одной трубе
двух одножильных трех одножильных четырех одножильных одного двухжильного одного трехжильного
2 21 19 18 15 17 14
2,5 24 20 19 19 19 16
3 27 24 22 21 22 18
4 32 28 28 23 25 21
5 36 32 30 27 28 24
6 39 36 32 30 31 26
8 46 43 40 37 38 32
10 60 50 47 39 42 38

Допустим, у нас двухжильный медный провод с сечением 4 мм. кв. уложенный в стену, смотрим по первой таблице силу тока, она равна 32 А. Но при выборе автоматического выключателя эту силу тока нужно уменьшать до ближайшего нижнего значения, для того чтобы провод не работал на пределе. Получается, что нам нужен автомат на 25 А.

Так же нужно помнить, если нужен автомат на розеточную группу, то брать выше 16 А нет смысла, так как розетки больше 16 А выдержать не могут, они просто начинают гореть. На освещение самый оптимальный на 10 А.

  • Предыдущая запись: Установка встраиваемой раковины в мраморную столешницу.
  • Следующая запись: Замена вводного переключателя на двухполюсный автомат.

Плюсы и минусы

Преимуществом дифавтомата в его компактности, многофункциональности, 100% защита цепи от внезапных перегрузок или иной опасности. Ну а главный «козырь» — стоимость, которая ниже, нежели суммарная стоимость УЗО и выключателя автоматического типа.

Если учитывать единичный случай, то разница не слишком ощутима, но при покупке на весь дом выгода существенная. Впрочем, многое зависит от марки изделия. Монтаж занимает мало времени, на рейке дифавтомат также помещается довольно компактно.

Есть и свои недостатки у дифавтоматов. При выходе со строя придётся приобретать изделие в комплекте, а не по отдельности.

Возникновение короткого замыкания приведёт к трудностям в поиске его причины. При разделенной установке идентификация намного проще: выключился УЗО – утечка, автомат – короткое замыкание.

Какой выбрать вид защитного устройства, вопрос не из лёгких. Как делают многие электрики: если речь идёт о небольшой квартире, тогда используйте дифавтомат.

Теперь опредилемся,как выбрать сечения кабеля для электропроводки

По приведенным выше формулам можно рассчитать мощность электросети и значение рабочего тока в сети.

Остаяется по полученным значениям выбрать сечение электрического кабеля, который можно использовать для рассчитываемой проводки в квартире.

Это совсем просто. В настольной книги электрика, ПУЭ-правила устройства электрустановок, все сделано за нас. По таблице ниже ищете значение расчитаного тока нагрузки или расчетную мощность сети и выбираете сечение электрического кабеля.Таблица приводится для медных жил кабелей или проще, медного кабеля ,потому что использование аллюминевых кабелей в электропроводке жилых помещений запрещено.(читайте ПУЭ изд.7) 

Проложенные открыто

   

Сечение жил кабеля

Медные жилы

  

мм2

Ток нагрузки

Мощн.кВт

 
 

А

220 В

380 В

0,5

11

2,4

 

0,75

15

3,3

 

1

17

3,7

6,4

1,5

23

5

8,7

2

26

5,7

9,8

2,5

30

6,6

11

4

41

9

15

5

50

11

19

10

80

17

30

16

100

22

38

25

140

30

53

35

170

37

64

Проложенные в трубе

   

Сечение жил кабеля

Медные жилы

  

мм2

Ток накрузки

Мощн. кВт

 
 

А

220 В

380 В

0,5

   

0,75

   

1

14

3

5,3

1,5

15

3,3

5,7

2

19

4,1

7,2

2,5

21

4,6

7,9

4

27

5,9

10

5

34

7,4

12

10

50

11

19

16

80

17

30

25

100

22

38

35

135

29

51

Две расчетные таблицы для расчета и правильного выбора сечения кабеля и автоматов защиты 

ТАБЛИЦА 1.

из нормативов для определения расчетных электрических нагрузок зданий (квартир), коттеджей, микрорайонов (кварталов) застройки и элементов городской распределительной сети

NN пп

Наименование

Установленная мощность, Вт

1

Осветительные приборы

1800-3700

2

Телевизоры

120-140

3

Радио и пр. аппаратура

70-100

4

Холодильники

165-300

5

Морозильники

140

6

Стиральные машины без подогрева воды

600

 

с подогревом воды

2000-2500

7

Джакузи

2000-2500

8

Электропылесосы

650-1400

9

Электроутюги

900-1700

10

Электрочайники

1850-2000

11

Посудомоечная машина с подогревом воды

2200-2500

12

Электрокофеварки

650-1000

13

Электромясорубки

1100

14

Соковыжималки

200-300

15

Тостеры

650-1050

16

Миксеры

250-400

17

Электрофены

400-1600

18

СВЧ

900-1300

19

Надплитные фильтры

250

20

Вентиляторы

1000-2000

21

Печи-гриль

650-1350

22

Стационарные электрические плиты

8500-10500

23

Электрические сауны

12000

ТАБЛИЦА2.

2. ИСХОДНЫЕ ДАННЫЕ для расчетов электрических нагрузок жилых зданий (квартир) и коттеджей на перспективу 

1. Средняя площадь квартиры (общая), м:

 

— типовых зданий массовой застройки

— 70

— здания с квартирами повышенной комфортности (элитные) по индивидуальным проектам

— 150

2. Площадь (общая) коттеджа, м

— 150-600

3. Средняя семья

— 3,1 чел.

4. Установленная мощность, кВт:

 

— квартир с газовыми плитами

— 21,4

— квартир с электрическими плитами в типовых зданиях

— 32,6

— квартир с электрическими плитами в элитных зданиях

— 39,6

— коттеджей с газовыми плитами

-35,7

— коттеджей с газовыми плитами и электрическими саунами

-48,7

— коттеджей с электрическими плитами

— 47,9

— коттеджей с электрическими плитами и электрическими саунами

— 59,9

Elesant. ru

  • Выбор светильника для спальни
  • Групповые линии освещения: общие норма и правила
  • Как и когда вызывать электрика?
  • Как подобрать кабель в электросети 0,4кВ: сечение и длина кабеля
  • Осветительные сети промышленных предприятий
  • Отличие групповых сетей от питающих и распределительных сетей электропроводки
  • Получение разрешений для дополнительных мощностей
  • Ремонт старой электропроводки
  • Силовые цепи квартиры
  • Скрытая электропроводка

Подбираем номинал автоматического выключателя

Применив формулу I = P/209, получим, что при нагрузке с мощностью 1 кВт ток в однофазной сети будет 4,78 А. Напряжение в наших сетях не всегда равно в точности 220 В, поэтому не будет большой ошибкой силу тока считать с небольшим запасом как 5 А на каждый киловатт нагрузки. Сразу же видно, что в удлинитель, промаркированный «5 А», утюг мощностью 1,5 кВт включать не рекомендуется, так как ток будет в полтора раза превышать паспортную величину. А еще сразу можно «проградуировать» стандартные номиналы автоматов и определить, на какую нагрузку они рассчитаны:

  • 6 А – 1,2 кВт;
  • 8 А – 1,6 кВт;
  • 10 А – 2 кВт;
  • 16 А – 3,2 кВт;
  • 20 А – 4 кВт;
  • 25 А – 5 кВт;
  • 32 А – 6,4 кВт;
  • 40 А – 8 кВт;
  • 50 А – 10 кВт;
  • 63 А – 12,6 кВт;
  • 80 А – 16 кВт;
  • 100 А – 20 кВт.

С помощью методики «5 ампер на киловатт» можно оценить силу тока, возникающую в сети при подключении бытовых устройств. Интересуют пиковые нагрузки на сеть, поэтому для расчета следует использовать максимальную потребляемую мощность, а не среднюю. Эта информация содержится в документации на изделия. Вряд ли стоит самому рассчитывать этот показатель, суммируя паспортные мощности компрессоров, электродвигателей и нагревательных элементов, входящих в устройство, так как есть еще такой показатель, как коэффициент полезного действия, который придется оценивать умозрительно с риском сильно ошибиться.

При проектировании электропроводки в квартире или загородном доме не всегда доподлинно известны состав и паспортные данные электрооборудования, которое будет подключаться, но можно воспользоваться ориентировочными данными обычных для нашего быта электроприборов:

  • электросауна (12 кВт) — 60 А;
  • электроплита (10 кВт) — 50 А;
  • варочная панель (8 кВт) — 40 А;
  • электроводонагреватель проточный (6 кВт) — 30 А;
  • посудомоечная машина (2,5 кВт) — 12,5 А;
  • стиральная машина (2,5 кВт) — 12,5 А;
  • джакузи (2,5 кВт) — 12,5 А;
  • кондиционер (2,4 кВт) — 12 А;
  • СВЧ-печь (2,2 кВт) — 11 А;
  • электроводонагреватель накопительный (2 кВт) — 10 А;
  • электрочайник (1,8 кВт) — 9 А;
  • утюг (1,6 кВт) — 8 А;
  • солярий (1,5 кВт) — 7,5 А;
  • пылесос (1,4 кВт) — 7 А;
  • мясорубка (1,1 кВт) — 5,5 А;
  • тостер (1 кВт) — 5 А;
  • кофеварка (1 кВт) — 5 А;
  • фен (1 кВт) — 5 А;
  • настольный компьютер (0,5 кВт) — 2,5 А;
  • холодильник (0,4 кВт) — 2 А.


Как подключить проходной выключатель: схемы подключения


Расчет сечения кабеля по мощности: практические советы от профессионалов

Потребляемая мощность осветительных приборов и бытовой электроники невелика, в целом суммарную мощность осветительных приборов можно оценить в 1,5 кВт и автомата на 10 А на группу освещения достаточно. Бытовая электроника подключается к тем же розеткам, что и утюги, дополнительные мощности резервировать для нее нецелесообразно.

Если просуммировать все эти токи, цифра получается внушительная. На практике, возможности подключения нагрузки ограничивает величина выделенной электрической мощности, для квартир с электрической плитой в современных домах она составляет 10 -12 кВт и на квартирном вводе стоит автомат номиналом 50 А. И эти 12 кВт надо распределить, учитывая то, что самые мощные потребители сосредоточены на кухне и в ванной комнате. Проводка будет доставлять меньше поводов для беспокойства, если разбить ее на достаточное количество групп, каждая со своим автоматом. Для электроплиты (варочной панели) делается отдельный ввод с автоматом на 40 А и устанавливается силовая розетка с номинальным током 40 А, ничего больше туда подключать не надо. Для стиральной машины и другого оборудования ванной комнаты делается отдельная группа, с автоматом соответствующего номинала. Эту группу обычно защищают УЗО с номинальным током на 15% большим, чем номинал автоматического выключателя. Отдельные группы выделяют для освещения и для настенных розеток в каждой комнате.

На расчет мощностей и токов придется потратить некоторое время, но можно быть уверенным, что труды не пропадут даром. Грамотно спроектированная и качественно смонтированная электропроводка – залог комфорта и безопасности вашего жилища.

Вычисление показателей

Расчет мощности при выборе автомата проводится так. Например, все монтажные работы выполнены электрическим кабелем с сечением 3,0 и максимальной силой 25А.

Общая мощность приборов равна: микроволновая печь 1,5 kW, электрочайник 2,1 kW, холодильник 0. 7 kW, телевизор 0.5 kW. Суммарная мощность получается равной 4,7 kW или же 4.7 * 1000 W.

Чтобы мощность в каждой цепи было проще рассчитать, нагрузку разделяют на группы. Оборудование наибольшей мощности подключают отдельно. Не стоит пренебрегать нагрузкой малой мощности, поскольку при расчетах в сумме может получиться существенный результат.

Для вычисления используем формулу: мощность / напряжение. Итого 21,3 А. Потребуется УЗО или дифавтомат с граничным потреблением 25А, не более. Если количество потребителей более двух, то суммарную мощность следует умножать на 0,7, для корректировки данных. При нагрузке три и более – на 1,0.

Понижающие коэффициенты для некоторых приборов:

  • холодильное оборудование от 0,7 до 0,9, в зависимости от характеристик мотора;
  • подъёмные устройства и лифты 0,7;
  • оргтехника 0,6;
  • люминесцентные лампы 0,95;
  • лампы накаливания 1,1;
  • тип ламп ДРЛ 0,95;
  • неоновые газовые установки 0,4.

Понижение мощности обусловлено тем, что не все приборы могут быть включены одновременно.

По значению рабочего тока нагрузки подбирается автомат. Номинал автомата должен быть чуть меньше рассчитанного значения тока, но допускается выбирать и немного большие значения.

Какие еще параметры важны при выборе

Количество полюсов

Для простоты восприятия, вынесем за скобки трехфазные выключатели. Выбираем между 1 и 2 полюсными конструкциями. С точки зрения Правил устройства электроустановок (ПУЭ), разницы нет. Но те же правила подразумевают качественную организацию заземления или зануления. А если возникнет проблема с появлением фазы на нуле (к сожалению, в старом жилом фонде это реально), то лучше будет полностью отключить вашу квартиру от линий электропередач. Поэтому, если вы можете выбрать какой вводной автомат устанавливать — возьмите двухполюсный.

Время — токовая характеристика

Существуют разные типы кривых времятоковых характеристик, обозначаются они латинскими буквами: A, B, C, D… Начиная с A и далее происходит постепенное загрубление чувствительности устройства. Например, тип «B» означает срабатывание электромагнитного расцепителя при 3–4 кратном превышении тока, тип «C» при 5–7 кратном, «D» при 10-ти кратном. Тепловой расцепитель будет срабатывать одинаковым образом у разных типов времятоковых характеристик.

Более точные данные всегда необходимо получать из документации производителя на каждое конкретное изделие, например, для вводных автоматов BA47-29 характеристики срабатывания следующие:

Пример графиков для BA47-29 с характеристиками (типами) B, C, D приведены ниже на картинке, зависимости для других типов можно найти на официальных сайтах производителей. Выбор того или иного типа обусловлен видом подключаемой нагрузки, а точнее ее способностью потреблять ток скачкообразно. Например, у двигателей пусковой ток превышает номинальный в несколько раз, и в зависимости от их разновидностей могут применяться устройства типа «C» или «D». Тип «B» рекомендован при нагрузках, не имеющих значительных пусковых токов.

Также, использование типов с уменьшенной чувствительностью срабатывания имеет смысл для увеличения вероятности срабатывания нижестоящих групп автоматических выключателей.

Номинальный ток

Основная характеристика, по которой и происходит, в основном, выбор устройства. Тем не менее, как мы убедились в предыдущем разделе, необходимо учитывать и времятоковую характеристику, так как реальный ток срабатывания зависит одновременно как от номинального тока, так и от типа характеристики. В ранее приведенных таблицах номинальный ток обозначен как In. Теоретически, при отсутствии пусковых токов, нагрузка, потребляющая ток, равный номинальному не должна приводить к срабатыванию (отключению) устройства.

Способ крепления

На сегодняшний день, альтернативы нет. Это выключатели, которые устанавливаются на DIN рейку. Никакого прямого прикручивания на стену или корпус щитка. Только монтаж на DIN фиксаторы. Однако, при использовании специальных аксессуаров возможны и другие типы крепления.

Прибор может быть в отдельном корпусе, или установлен в общий щит — это неважно. Главное, обеспечить свободный доступ для владельца

Важный момент: опломбировка вводного автомата. Есть множество способов ограничить доступ к контактам (для исключения несанкционированного подключения). Можно установить заглушки на отверстия для затяжки винтов на контактах.Или просто поставить пломбы на крышки, закрывающие контактные группы.Главное, чтобы после опломбирования можно было беспрепятственно включать и выключать энергоснабжения.

Номиналы автоматов по току таблица

Необходимость выбора автоматических выключателей возникает во время проектирования электрических сетей в новых домах, а также при подключении приборов и оборудования с более высокой мощностью. Таким образом, в процессе дальнейшей эксплуатации обеспечивается надежная электрическая безопасность объектов.

Халатное отношение к выбору устройства с необходимыми параметрами приводит к серьезным негативным последствиям. Поэтому перед выбором автоматического защитного устройства нужно обязательно убедиться, что установленная проводка выдержит запланированную нагрузку. В соответствии с ПУЭ автоматический выключатель должен обеспечивать защиту от перегрузки наиболее слабого участка цепи. Его номинальный ток должен соответствовать току подключаемого устройства. Соответственно и проводники выбираются с требуемым сечением.

Чтобы рассчитать мощность автомата по току, необходимо воспользоваться формулой: I=P/U, где Р является суммарной мощностью всех электрических приборов, имеющихся в квартире. Вычислив необходимый ток, можно выбрать наиболее подходящий автомат. Существенно упрощает проведение расчетов таблица, с помощью которой можно выбрать автоматический выключатель в зависимости от конкретных условий эксплуатации. Расчет автомата по мощности тока осуществляется в основном для электроустановок – электродвигателей, трансформаторов и других устройств, имеющих реактивную нагрузку.

Особенности защиты электрических двигателей в производственных условиях

Нередко при включении устройств, мощность которых превышает 100 кВт, напряжение в общей сети падает ниже минимального. При этом отключения рабочих силовых агрегатов не происходит, но количество их оборотов снижается. Когда напряжение восстанавливается до нормального уровня, мотор начинает заново набирать обороты. При этом его работа происходит в режиме перегрузки. Это называется самозапуском.

Самозапуск иногда становится причиной ложного срабатывания АВ. Это может произойти, когда до временного падения напряжения установка в течение длительного времени работала в обычном режиме, и биметаллическая пластина успела прогреться. В этом случае тепловой расцепитель иногда срабатывает раньше, чем напряжение нормализуется. Пример падения напряжения в электросети автомобиля на следующем видео:

Чтобы предотвратить отключение мощных заводских электромоторов при самозапуске, используется релейная защита, при которой в общую сеть включаются токовые трансформаторы. К их вторичным обмоткам подключаются защитные реле. Эти системы подбираются методом сложных расчетов. Приводить здесь мы их не будем, поскольку на производстве эту задачу выполняют штатные энергетики.

Подробные данные об ошибке IIS 8.5 — 404.11

Ошибка HTTP 404.11 — Not Found

Модуль фильтрации запросов настроен для блокировки запросов, содержащих последовательности двойного преобразования символов.

Наиболее вероятные причины:
  • Этот запрос содержал последовательность двойного преобразования символов, тогда как средства фильтрации запросов настроены на веб-сервере для блокировки таких последовательностей.
Возможные решения:
  • Проверьте настройку configuration/system.webServer/security/requestFiltering@allowDoubleEscaping в файлах applicationhost.config или web.config
Подробные сведения об ошибке:
Модуль   RequestFilteringModule
Уведомление   BeginRequest
Обработчик   StaticFile
Код ошибки   0x00000000
Запрошенный URL-адрес   https://www. tpk-tver.ru:443/attachments/article/32/%d0%9c%d0%b5%d1%82%d0%be%d0%b4%d0%b8%d1%87%d0%b5%d1%81%d0%ba%d0%b8%d0%b5%20%d1%80%d0%b5%d0%ba%d0%be%d0%bc%d0%b5%d0%bd%d0%b4%d0%b0%d1%86%d0%b8%d0%b8%20%d0%a1%d0%ba%d0%bb%d1%8f%d1%80%d0%be%d0%b2%20%d1%81%20%d0%9f%d1%80%d0%b8%d0%bc%d0%b5%d1%80%d0%be%d0%bc.pdf
Физический путь   C:\inetpub\wwwroot\tpk-tver\attachments\article\32\%d0%9c%d0%b5%d1%82%d0%be%d0%b4%d0%b8%d1%87%d0%b5%d1%81%d0%ba%d0%b8%d0%b5%20%d1%80%d0%b5%d0%ba%d0%be%d0%bc%d0%b5%d0%bd%d0%b4%d0%b0%d1%86%d0%b8%d0%b8%20%d0%a1%d0%ba%d0%bb%d1%8f%d1%80%d0%be%d0%b2%20%d1%81%20%d0%9f%d1%80%d0%b8%d0%bc%d0%b5%d1%80%d0%be%d0%bc.pdf
Метод входа   Пока не определено
Пользователь, выполнивший вход   Пока не определено
Дополнительные сведения:
Это средство безопасности. Изменять его параметры можно лишь в том случае, если вы до конца понимаете последствия своих действий. Перед тем как изменить это значение, вам следует провести трассировку в сети, дабы удостовериться в том, что данный запрос не является злонамеренным. Если сервер допускает последовательности двойного преобразования символов, измените настройку configuration/system.webServer/security/requestFiltering@allowDoubleEscaping. Причиной этого может быть неверный URL-адрес, направленный на сервер злонамеренным пользователем.

Просмотреть дополнительные сведения »

Как перевести амперы в киловатты и обратно: правила и примеры


Амперы и киловатты – характеристики электроэнергии, потребляемой устройствами, подключенными к сети. Первую называют еще нагрузкой, а вторую – мощностью. Необходимость перевода возникает на стадии подбора защитных устройств, в маркировке которых чаще всего указывается лишь сила тока.

Все о том, как перевести Амперы в Киловатты, вы узнаете из предложенной нами статьи. Мы рассмотрим теорию, разберемся с основными принципами перевода, а затем поясним смысл этих действий на практических примерах. Следуя нашим советам, вы сможете самостоятельно выполнять такие вычисления.

Содержание статьи:

Причины для выполнения перевода

Мощность и сила тока — ключевые характеристики, необходимые для грамотного подбора защитных устройств для оборудования, питающегося электроэнергией. Защита нужна для предотвращения оплавления изоляции проводки и поломки агрегатов.

Электропроводка, питающая освещение, электроплиту, кофе-машину должна защищаться индивидуально подобранными устройствами. Ведь каждый потребитель создает «свою» нагрузку – другими словами, потребляет определенный ток.

Кстати, кабели, провода, питающие перечисленные бытовые устройства, обладают определенной токонесущей способностью. Последняя диктуется сечением жил.

Каждое защитное устройство обязано срабатывать в момент скачка напряжения, опасного для защищаемого типа техники или группы технических устройств. Значит, подбирать и автоматы следует так, чтобы во время угрозы для маломощного прибора не отключалась полностью сеть, а только ветка, для которой этот скачек является критичным.

На корпусах предложенных торговой сетью проставлена цифра, обозначающая величину предельно допустимого тока. Естественно, указана она в Амперах.

А вот на электроприборах, которые обязаны защищать эти автоматы, обозначена потребляемая ими мощность. Тут и возникает необходимость в переводе. Несмотря на то, что разбираемые нами единицы принадлежат разным токовым характеристикам, связь между ними прямая и довольно тесная.

Правильно подобрать защиту помогают амперы и киловатты, характеризующие электропотребление бытовых устройств

Напряжением именуют разность потенциалов, проще говоря, работу, вложенную в перемещение заряда от одной точки к другой. Выражается оно в Вольтах. Потенциал – это и есть энергия в каждой из точек, в которой находится/находился заряд.

Под силой тока подразумевается число Ампер, проходящих по проводнику в конкретную единицу времени. Суть мощности заключается в отражении скорости, с которой происходило перемещение заряда.

Мощность обозначают в Ваттах и Киловаттах. Ясно, что второй вариант используется, когда слишком внушительную четырех- или пятизначную цифру нужно сократить для простоты восприятия. Для этого ее значение просто делят на тысячу, а остаток округляют как обычно в большую сторону.

Для питания мощного оборудования нужна более высокая скорость потока энергии. Предельно допустимое напряжение для него больше, чем для маломощной техники. У подбираемых для него автоматов предел срабатывания должен быть выше. Следовательно, точный подбор по нагрузке с грамотно выполненным переводом единиц просто необходим.

Правила проведения перевода

Часто изучая инструкцию, прилагаемую к некоторым приборам, можно увидеть обозначение мощности в вольт-амперах. Специалисты знают разницу между ваттами (Вт) и вольт-амперами (ВА), но практически эти величины обозначают одно и то же, поэтому преобразовывать здесь ничего не нужно. А вот кВт/час и киловатты — понятия разные и путать их нельзя ни в коем случае.

Чтобы продемонстрировать, как выразить электрическую мощность через ток, нужно воспользоваться следующими инструментами:

  • тестером;
  • токоизмерительными клещами;
  • электротехническим справочником;
  • калькулятором.

При перерасчете ампер в кВт используют следующий алгоритм:

  1. Берут тестер напряжения и измеряют напряжение в электроцепи.
  2. Используя токоизмерительные ключи, замеряют силу тока.
  3. Производят перерасчет, используя формулу для постоянного напряжения в сети или переменного.

В результате мощность получают в ваттах. Чтобы преобразить их в киловатты, делят получившееся на 1000.

У нас на сайте также есть материал о правилах перевода Амперов в Ватты. Чтобы с ним ознакомиться, переходите, пожалуйста, по .

Однофазная электрическая цепь

На однофазную цепь (220 В) рассчитано большинство бытовых приборов. Нагрузка здесь измеряется в киловаттах, а маркировка АВ содержит амперы.

Чтобы не заниматься вычислениями, при выборе автомата можно воспользоваться ампер-ватт таблицей. Здесь уже есть готовые параметры, полученные путем выполнения перевода при соблюдении всех правил

Ключевым при переводе в этом случае является закон Ома, который гласит, что P, т.е. мощность, равна I (силе тока) умноженной на U (напряжение). Подробнее о расчете мощности, силы тока и напряжения, а также о взаимосвязи этих величин мы говорили в .

Отсюда вытекает:

кВт = (1А х 1 В) / 1 0ᶾ

А как же это выглядит на практике? Чтобы разобраться, рассмотрим конкретный пример.

Допустим, автоматический предохранитель на счетчике старого типа рассчитан на 16 А. С целью определения мощности приборов, которые можно безболезненно включить в сеть одновременно, нужно осуществить перевод ампер в киловатты с применением вышеприведенной формулы.

Получим:

220 х 16 х 1 = 3520 Вт = 3,5КВт

Как для постоянного, так и переменного тока применяется одна формула перевода, но справедлива она только для активных потребителей, таких как нагреватели лампы накаливания. При емкостной нагрузке обязательно возникает сдвиг фаз между током и напряжением.

Это и есть коэффициент мощности или cos φ. Тогда как при наличии только активной нагрузки этот параметр принимают за единицу, то при реактивной нагрузке его нужно принимать во внимание.

Если нагрузка смешанная, значение параметра колеблется в диапазоне 0,85. Чем меньше приходится на реактивную составляющую мощности, тем незначительней потери и тем выше коэффициент мощности. По этой причине последний параметр стремятся повысить. Обычно производители указывают значение коэффициента мощности на этикетке.

Трехфазная электрическая цепь

В случае переменного тока в трехфазной сети берут значение электрического тока одной фазы, затем умножают на напряжение этой же фазы. То, что получили, умножают на косинус фи.

Подключение потребителей может быть выполнено в одном из двух вариантов — звездой и треугольником. В первом случае это 4 провода, из которых 3 являются фазными, а один — нулевым. Во втором применяют три провода

После подсчета напряжения во всех фазах, полученные данные складывают. Сумма, полученная в результате этих действий, является мощностью электроустановки, подсоединенной к трехфазной сети.

Основные формулы имеют следующий вид:

Ватт = √3 Ампер х Вольт или P = √3 х U х I

Ампер = √3 х Вольт либо I= P/√3 х U

Следует иметь понятие о разнице между напряжением фазным и линейным, а также между токами линейными и фазными. Перевод ампер в киловатты в любом случае выполняют по одной и той же формуле. Исключение — соединение треугольником при расчете нагрузок, подключенных индивидуально.

На корпусах или упаковке последних моделей электроприборов указана и сила тока, и мощность. Обладая этими данными, можно считать вопрос, как быстро перевести амперы в киловатты, решенным.

Специалисты применяют для цепей с переменным током конфиденциальное правило: силу тока делят на два, если нужно примерно вычислить мощность в процессе подбора пускорегулирующей аппаратуры. Также поступают и при расчете диаметра проводников для таких цепей.

Примеры перевода ампер в киловатты

Преобразование ампер в киловатты — довольно простая математическая операция.

Бывает так, что на этикетке электроприбора присутствует значение мощности в кВт. В этом случае придется киловатты переводить в амперы. При этом I = P : U = 1000 : 220 = 4,54 А. Справедливо и обратное — P = I х U = 1 х 220 = 220 Вт = 0,22 кВт

Существует также много онлайн – программ, где нужно всего-навсего ввести известные параметры и нажать соответствующую кнопку.

Пример №1 — перевод А в кВт в однофазной сети 220В

Перед нами стоит задача: определить предельную мощность, допустимую для автоматического выключателя однополюсного с номинальным током 25 А.

Применим формулу:

P = U х I

Подставив значения, которые известны, получим: P = 220 В х 25 А = 5 500 Вт = 5,5 кВт.

Это обозначает, что к этому автомату могут быть подключены потребители, общая мощность которых не выходит за пределы 5,5 кВт.

По такой же схеме можно решить вопрос подбора сечения провода для электрочайника, потребляющего 2 кВт.

В этом случае I = P : U= 2000 : 220 = 9 А.

Это совсем маленькое значение. Нужно серьезно подойти к выбору сечения провода и материалу. Если отдать предпочтение алюминиевому, он выдержит только слабые нагрузки, медный с такого же диаметра будет мощнее в два раза.

Подробнее о выборе нужного сечения провода для устройства домашней проводки, а также правила вычисления сечения кабеля по мощности и по диаметру мы разбирали в следующих статьях:

Пример №2 — обратный перевод в однофазной сети

Усложним задачу — продемонстрируем процесс перевода киловатт в амперы. Имеем какое-то число потребителей.

Среди них:

  • четыре лампы накаливания каждая по 100 Вт;
  • один обогреватель мощностью 3 кВт;
  • один ПК мощностью 0,5 кВт.

Определению суммарной мощности предшествует приведение величин всех потребителей к одному показателю, точнее — киловатты следует перевести в ватты.

Розетки, АВ в своей маркировке содержат амперы. Для непосвященного человека сложно понять, отвечает ли нагрузка по факту расчетной, а без этого невозможно правильно выбрать предохранитель

Мощность обогревателя равна 3 кВт х 1000 = 3000 Вт. Мощность компьютера — 0,5 кВт х 1000 = 500 Вт. Лампы — 100 Вт х 4 шт. = 400 Вт.

Тогда обобщенная мощность: 400 Вт + 3000 Вт + 500 Вт = 3 900 Вт или 3,9 кВт.

Такой мощности соответствует сила тока I = P : U = 3900Вт : 220В = 17,7 А.

Из этого вытекает, что приобрести следует автомат, рассчитанный на номинальный ток не меньше, чем 17,7 А.

Наиболее соответствующим нагрузке мощностью 2,9 кВт является автомат стандартный однофазный 20 А.

Пример №3 — перевод ампер в кВт в трехфазной сети

Алгоритм перевода ампер в киловатты и в обратном направлении в трехфазной сети отличается от сети однофазной только формулой. Допустим, нужно высчитать, какую же наибольшую мощность выдержит АВ, номинальный ток которого 40 А.

В формулу подставляют известные данные и получают:

P = √3 х 380 В х 40 А = 26 296 Вт = 26,3кВт

Трехфазный АБ на 40 А гарантировано выдержит нагрузку 26,3 кВт.

Пример №4 — обратный перевод в трехфазной сети

Если мощность потребителя, подключаемого к трехфазной сети, известна, ток автомата вычислить легко. Допустим, имеется трехфазный потребитель мощностью 13,2 кВт.

В ваттах это будет: 13,2 кт х 1000 = 13 200 Вт

Далее, сила тока: I = 13200Вт : (√3 х 380) = 20,0 А

Получается, что этому электропотребителю нужен автомат номиналом 20 А.

Для однофазных аппаратов существует следующее правило: один киловатт соответствует 4,54 А. Один ампер — это 0,22 кВт или 220 В. Это утверждение — прямой результат, вытекающий из формул для напряжения 220 В.

Выводы и полезное видео по теме

О связи ватт, ампер и вольт:

Зависимость между амперами и киловольтами описывает закон Ома. Здесь наблюдается обратная пропорциональность силы электротока по отношению к сопротивлению. Что касается напряжения, то прослеживается прямая зависимость силы тока от этого параметра.

У вас остались вопросы по принципу перевода Амперов в Киловатты или хотите уточнить нюансы практического расчета? Задавайте свои вопросы нашим экспертам в блоке комментариев, расположенном ниже под статьей.

Если у вас есть полезная информация, дополняющая изложенный выше материал, или уточнения, поправки, пишите свои замечания и дополнения ниже.

2.8 Расчет сети освещения

Расчет заключается в определении сечения проводов и кабелей и проверке их по допустимой потере напряжения. При этом учитывается минимально допустимое сечение, которое можно выбрать по условиям механической прочности (Smin(Al)=2,5 мм2 Smin(Cu)=1,5 мм2 ). В случае аварии на ТП предусмотрено аварийное освещение, которое составляет 10% от номинального.

Расчет ЩО1 ведем по потере напряжения, которая учитывает минимальный расход цветного металла.

Сечение провода или кабеля, S, мм2

[9,162] (2.101)

где М- момент мощности данного и всех последующих участков с

одинаковым числом проводов, М=Р·l, кВт·м;

т- сумма моментов мощности всех ответвлений, которые

питаются от данного участка, но имеют другое число проводов, кВт·м;

α— коэффициент приведения моментов, зависит от числа проводов на участке и в ответвлении, α=1,85 ; [13,274]

с- коэффициент зависящий от напряжения сети, системы

распределения электроэнергии и материала токоведущей жилы провода или кабеля;[17,348]

Uдоп— допустимая потеря напряжения от шин РУ 0,4 кВ до наиболее удаленного светильника, зависит от мощности цехового

трансформатора, его загрузки и коэффициента мощности,

Uдоп= 4,2% (Sнт =1000 кВА; cos φосв = 0,8; Кз=0,7) [17,344]

Действительная потеря на участке, U, %

U [9,162] (2. 102)

Допустимая потеря напряжения на следующем участке, U*доп ,%

U*доп=Uдоп U [9,162] (2.103)

Производим поверку выбранного сечения по допустимому току, согласно условию

Iр Iдоп , А [9,163] (2.104)

где Iр— расчетный ток для однофазной сети и соответственно трехфазной сети с нулем, Iр, А

[9,163] (2.105)

[9,163] (2.106)

где Uф— фазное напряжение, кВ;

Uл — линейное напряжение, кВ

Рр— расчетная мощность для люминисцентных ламп со стартерной схемой включения

Ррс·1,2·Ру , кВт [9,163] (2. 107)

где Кс — коэффициент спроса, для линий питающих отдельные щитки Кс=1;

Ру — установленная мощность, кВт.

1,2- коэффициент пускорегулирующей аппаратуры для люминесцентных ламп

Производим пример расчета для щитка освещения ЩО1

1 участок 2 участок

ЩО1

Выбираем щиток освещения марки ЩО41 с автоматическими выключателями на отходящих линиях ВА5125, количество отходящих линий — 3, с=44 линия трехфазная с нулем, медные проводники.[17,348]

Сечение первого участка (2.101)

мм2

Выбираем кабель ВВГ-660-5х1,5 Iдоп=27 А.

Действительная потеря напряжения на первом участке с выбранным сечением (2.102)

U1 %

Производим поверку выбранного сечения по допустимому току, согласно условию (2. 107)

Расчетная мощность (2.107)

Рр=1·1,2·8=9,6 кВт

Расчетный ток для трехфазной сети с нулем (2.105)

А

Условие (2.104) выполняется

27 > 18,4 А

Допустимая потеря напряжения на втором участке (2.103)

Uдоп2=4,2-0,7=3,5 %

Сечение второго участка (2.101), при расчете берем самую длинную нитку l6=48м и с=72- линия однофазная, медные проводники

мм2

Выбираем провод 2ПВ-380-1х1,5 Iдоп=19 А

Действительная потеря напряжения на первом участке с выбранным сечением (2.102)

U2 %

Производим поверку выбранного сечения по допустимому току, согласно условию (2. 106)

Расчетная мощность (2.107)

Рр=1·1,2·2,1=2,5 кВт

Расчетный ток однофазной сети (2.106)

, А

Условие (2.104) выполняется

28 > 14,8 А

Для остальных щитов освещения расчет производим аналогично и результаты его занесены в таблицу 2.7

Таблица 2.7 Расчет сети освещения

Наименование

Р1 ,

кВт

L1,

м

P2 ,

кВт

Lтах.2 ,

м

Uдоп 1

%

S1(Sст)

мм2

U1

%

Uдоп 2

%

S2(Sст)

мм2

U2

%

ЩО1 (ЩО41)

8

16

2,1

48

4,2

1,5

(1,5)

0,7

3,5

0,4

(1,5)

0,92

ЩО2 (ЩО41)

10

22

1,4

38

4,2

3,9

(4)

1,25

2,95

2,4

(2,5)

2,8

ЩО3 (ЩО41)

21

55

1,4

45

4,2

14

(16)

1,6

2,6

3,2

(4)

2,1

ЩО4 (ЩО41)

1,5

57

1,5

27

4,2

0,86

(2,5)

0,8

3,4

1,6

(2,5)

2,1

Изм.

Лист

N oдокумента

Подпись

Дата

Лист

Объяснение электрической мощности — Часть 3: Сбалансированное трехфазное питание переменного тока

Большие трехфазные двигатели и оборудование, которым они управляют, должны одинаково потреблять мощность от каждой из трех фаз сети. Однако этого часто не происходит. Дисбаланс и гармоники могут вызвать нестабильность, а вибрация двигателя снижает как эффективность, так и срок службы. Дисбаланс также может вызвать сбои в работе однофазных нагрузок. Все это может снизить качество вашей электроэнергии, что приведет к штрафным санкциям со стороны вашей электросети.

В этом блоге мы опишем сбалансированные трехфазные системы питания, в которых каждая из фаз потребляет одинаковый ток. В следующих статьях блога, опубликованных позже, мы расскажем о несбалансированной мощности.

В нашем предыдущем блоге было показано, как бесступенчатые мгновенные формы сигналов тока и мощности могут быть просто представлены одними числами: параметрами. Возможно, наиболее полезными являются активная, реактивная и полная мощности.

Активная мощность выполняет полезную работу, протекает через резистивную часть сети и имеет то же среднее значение, что и мгновенная мощность.Реактивная мощность проходит через индуктивную часть цепи на 90 ° позже и имеет среднее значение, равное нулю. Полная мощность — это общая мощность, которую видит коммунальное предприятие. Коэффициент мощности — это активная полная мощность.

Сбалансированные индуктивные / резистивные нагрузки

Трехфазные резистивные нагрузки просты, поэтому мы сразу перейдем к индуктивным нагрузкам (которые также включают резистивную составляющую).

В сбалансированной системе полная активная / реактивная / полная мощности — это просто сумма их соответствующих фазных мощностей.

Базовая трехфазная система питания с тремя индуктивными нагрузками по 600 ВА. (Красный, зеленый и синий цвета фаз предназначены только для демонстрации и не соответствуют никаким стандартам)

Сумма каждого из напряжений (и токов) в нейтральной точке всегда равна нулю. В сбалансированной системе ток нейтрали и мощность нейтрали равны нулю. Вы можете думать о сбалансированной трехфазной системе как о трех однофазных системах, подключенных к нейтральной линии.

Формы сигналов напряжения и тока в сбалансированной системе

Формы сигналов трехфазного напряжения и тока

Каждое напряжение отстает от предыдущего на 120 ° (посмотрите на пересечения нуля).Двигатель также снова вносит свой собственный фазовый сдвиг на 30 ° между напряжением и током.

Векторная диаграмма (векторная диаграмма) показывает ту же информацию, что и осциллограммы.

На этой векторной диаграмме показаны только основные значения. Длины линий представляют собой среднеквадратичные значения, а их высота над исходной точкой показывает мгновенные значения. Все вращается со скоростью 60 раз в секунду против часовой стрелки. Опять же, напряжения фаз B и C отстают на 120 ° и 240 °, а фазные токи A, B и C отстают на 30 °, 150 ° и 270 °.

Вы также можете нарисовать векторную диаграмму для каждой гармонической составляющей (но только основная составляющая обычно переносит полезную энергию).

Система Y и треугольник

Различия между системами Y и Δ

Существуют различия между 4-проводной системой WYE (Y) и 3-проводной системой треугольника (Δ). Несбалансированность легче всего продемонстрировать в системах Y, поэтому с этого момента мы снова будем в основном их рассматривать. Процедуры расчета дисбаланса в основном одинаковы для Y и Δ, но разница заключается в используемых уравнениях.

Почему мы используем трехфазное питание?

Большинство электроприборов, используемых в домах и на предприятиях, работают с переменным током (AC), что означает, что подаваемое напряжение является пульсирующим, в отличие от постоянной выходной мощности батареи (постоянный ток, DC). В США напряжение, подаваемое коммунальными предприятиями, имеет частоту 60 Гц, что означает, что оно переключается между положительной и отрицательной полярностью 60 раз в секунду.

Большинство источников питания переменного тока можно разделить на однофазные или трехфазные, в зависимости от характеристик подаваемого напряжения.Как следует из названия, трехфазная система имеет три отдельных напряжения переменного тока, каждое с частотой 60 Гц. Однако эти напряжения чередуются между положительным и отрицательным в последовательности, а не одновременно, обеспечивая постоянный источник питания, который невозможен в однофазной системе.


Планируете строительный проект? Получите профессиональный электротехнический дизайн.


Как трехфазное питание снижает стоимость электроустановок

Емкость систем питания переменного тока измеряется в вольт-амперах (ВА) и рассчитывается путем умножения напряжения и тока.

  • Например, цепь 120 В с проводкой 20 А может выдерживать 2400 ВА.
  • Трехфазная цепь с проводкой 20 А может выдерживать 7200 ВА.

Учтите, что в обоих случаях вам потребуются нейтральный провод и заземляющий провод в дополнение к одному токоведущему проводнику для каждого выхода напряжения. Это означает, что вам нужно три провода для однофазной системы и пять проводов для трехфазной системы. Другими словами, трехфазная система имеет 300% мощности однофазной системы, при этом используются только два дополнительных провода (всего на 67% больше меди).Если учесть сокращение проводки за счет использования трехфазного источника питания в большом коммерческом или промышленном объекте, экономия будет значительной.

Однофазное питание обычно используется в жилых помещениях, где нагрузка слишком мала, чтобы оправдать сложность трехфазной системы. Однако однофазные источники питания для индивидуальных жилых домов обычно поступают от трехфазной системы большего размера.

  • Дома на одну семью и другие небольшие постройки получают однофазное питание от трехфазной распределительной системы, принадлежащей коммунальной компании.
  • Более крупные многоквартирные дома обычно имеют собственный трехфазный служебный вход.

Преимущества трехфазного оборудования в производительности

Помимо экономии на электропроводке, трехфазные системы имеют заметные преимущества в производительности по сравнению с однофазными аналогами. Особенно это касается электродвигателей:

  • Для данной номинальной мощности трехфазные двигатели имеют более высокий КПД, чем однофазные. Учитывая высокие цены на киловатт-час в Нью-Йорке, это значительное преимущество.
  • Трехфазные двигатели также имеют более высокий коэффициент мощности, что означает, что они потребляют меньше вольт-ампер при заданной нагрузке и КПД. Некоторые тарифы на электроэнергию включают плату за недостаточный коэффициент мощности, и трехфазные двигатели могут помочь снизить их.
  • Поскольку однофазные системы выдают пульсирующую мощность, двигатели, как правило, испытывают большую вибрацию, в то время как постоянное питание трехфазных систем обеспечивает более стабильную работу.
  • Однофазные двигатели не могут запуститься сами по себе, требуются внешние устройства.С другой стороны, трехфазные двигатели могут запускаться только от источника питания, и он может даже изменить направление, если вы переключите два проводника друг с другом.

Трехфазная система также более универсальна, чем однофазная. Если вам нужно запустить однофазное устройство с трехфазным питанием, вы можете использовать только один из трех проводов. Однако обратное не действует: трехфазные приборы не могут работать от однофазного источника питания. Исключение составляют двигатели: трехфазный двигатель может работать от однофазного источника питания, но его механическая мощность резко снижается, а срок его службы резко сокращается.

Требования к цвету проводки

Национальный электротехнический кодекс устанавливает требования к цвету проводки для электрических систем. Это упрощает идентификацию проводников, снижает вероятность человеческой ошибки и повышает безопасность. Требования кратко изложены в следующей таблице.

Проводник
Описание

Трехфазные системы,
Номинальное напряжение 120/208/240 В

Трехфазные системы,
Номинальное напряжение 277/480 В

Токоведущий провод № 1

Черный

Коричневый

Токоведущий провод № 2

Красный

Оранжевый

Токоведущий провод № 3

Синий

Желтый

Нейтральный провод

Белый

Серый

Заземляющий провод

Зеленый, голый или зеленый и желтый

Зеленый, голый или зеленый и желтый

Когда трехфазная система питает как трехфазные, так и однофазные нагрузки, рекомендуется уравновешивать однофазные нагрузки между тремя фазами.Несбалансированное напряжение питания может быть вредным для некоторых типов оборудования. Нейтральный проводник также несет более высокий ток, когда система плохо сбалансирована, и это вызывает потерю мощности в виде рассеивания тепла.

Обратите внимание, что проводка — не единственный элемент схемы, который меняется между однофазными и трехфазными установками. Такие компоненты, как защитные устройства, распределительные щиты и трансформаторы, также построены по-другому. В случае трансформаторов вы можете использовать три однофазных блока для повышения или понижения трехфазного напряжения, но трехфазный трансформатор в большинстве случаев дешевле и компактнее.

Понимание основ вычислений дельта-трансформатора

Благодарим вас за посещение одной из наших самых популярных классических статей. Если вы хотите получить обновленную информацию по этой теме, ознакомьтесь с недавно опубликованной статьей «Расчеты трансформатора
».

Названия конфигураций трансформатора, такие как «треугольник» и «звезда», происходят от способа соединения обмоток внутри трансформатора.Эти соединения определяют поведение трансформатора, а также определяют методы расчета, необходимые для правильного применения данного трансформатора.

Трансформаторы, соединенные треугольником, имеют обмотки трех однофазных трансформаторов, соединенных последовательно друг с другом для образования замкнутой цепи. Линейные провода подключаются к блоку, где встречаются два однофазных трансформатора. Эта конфигурация получила свое название, потому что на электрическом чертеже она выглядит как треугольник (греческий символ Δ для буквы «дельта»).Многие называют это системой с высокой ветвью, потому что напряжение между линией 2 и землей выше, чем на других ветвях. Например, трансформатор дельта 120 В будет иметь ножку 208 В.

Рис. 1. Важно отметить, что линейный ток от дельта-трансформатора не равен фазному току. В этом примере линейный ток составляет 87 А, а фазный ток — 50 А.

Токовый трансформатор треугольника. В трансформаторе треугольником линейный ток не равен фазному току (как в трансформаторе звезды).Поскольку каждая линия трансформатора с конфигурацией треугольником подключена к двум фазам трансформатора, линейный ток от трехфазной нагрузки будет больше, чем фазный ток, на квадратный корень из 3. Обратите внимание на следующие формулы:

I Строка = I Фаза × √3

I Строка = VA Строка ÷ (E Строка × √3)

I Фаза = I Линия ÷ √3

I Фаза = VA Фаза ÷ E Фаза

Инжир.2. Вы можете использовать ту же формулу, чтобы найти как первичный, так и вторичный ток линии.

Если вы вставите несколько цифр, вы сможете более четко увидеть влияние дельта-конфигурации на токи. Давайте попробуем это с трехфазной нагрузкой 240 В, 36 кВА (, рис. 1, выше).

Сначала давайте решим линейный ток (общая мощность сети = 36 кВА).

I Строка = VA Строка ÷ (E Строка × √3)

I Линия = 36000 ВА ÷ (240 В × √3)

I Строка = 87A

Теперь давайте решим фазный ток (фазная мощность = 12 кВА на обмотку).

I Фаза = VA Фаза ÷ E Фаза

I Фаза = 12000 ВА ÷ 240 В = 50 А

Вы также можете найти линейный и фазный токи, используя две другие формулы, показанные выше.

I Строка = I Фаза × √3

I Линия = 50A × 1,732 = 87A

I Фаза = I Линия ÷ √3

I Фаза = 87A ÷ 1,732 = 50A

Мы также можем использовать формулу: I Строка = VA Строка ÷ (E Строка × √3).Например, каков ток вторичной обмотки для трехфазного дельта-трансформатора от 480 В до 240/120 В, 150 кВА (, рис. 2, )? Ответ найден следующим образом:

I Строка = VA Строка ÷ (E Строка × √3)

I Строка = 150,000 ВА ÷ (240 В × 1,732) = 360 А

Рис. 3. При вычислении фазного тока не забудьте разделить общую мощность трансформатора в кВА на 3.

Вы можете рассчитать фазный ток обмотки трансформатора, соединенного треугольником, разделив фазу VA на фазное напряжение: I Phase = VA Phase ÷ E Phase .Фазная нагрузка в ВА трехфазной нагрузки 240 В — это линейная нагрузка, деленная на три (одна треть нагрузки на каждую обмотку). Фазная нагрузка в ВА однофазной нагрузки 240 В — это линейная нагрузка (все на одной обмотке). Фазная нагрузка в ВА однофазной нагрузки 120 В — это линейная нагрузка (все на одной обмотке).

Давайте посмотрим на другой пример проблемы. Каков ток вторичной фазы для трехфазного дельта-трансформатора от 480 В до 240/120 В, 150 кВА (, рис. 3, выше)?

Мощность фаз = 150,000 ВА ÷ 3 на фазу

Фазная мощность = 50 000 ВА на фазу

I Фаза = 50,000 ВА ÷ 240 В

I Фаза = 208A

Чтобы лучше понять, что происходит в дельта-системе, попробуйте запустить эти числа с нагрузкой 10 А, а затем с нагрузкой 75 А.

Рис. 4. На этой схеме показана балансировка трансформатора. Для простоты максимальная токовая защита для этих цепей не показана.

Балансировка трансформатора треугольником. Для правильного выбора трансформатора треугольник / треугольник фазы (обмотки) трансформатора должны быть сбалансированы. Вы можете сделать это в два этапа:

Шаг 1 . Определите номинальную мощность в ВА всех нагрузок.

Шаг 2 . Разбалансируйте нагрузки на обмотках трансформатора следующим образом:

  • Трехфазные нагрузки: одна треть нагрузки на каждой из фаз.

  • Однофазные нагрузки 240 В: 100% нагрузки на фазе A или B. Вы можете поместить часть однофазной нагрузки 240 В на фазу C, когда это необходимо для баланса.

  • Нагрузки 120 В: 100% нагрузки на C1 или C2.

Для определения размеров щитка и его проводов необходимо уравновесить нагрузки в амперах. Зачем балансировать панель в амперах? Почему бы не взять ВА по фазе и не разделить на фазное напряжение? Поскольку линейный ток трехфазной нагрузки рассчитывается по следующей формуле:

I Строка = VA ÷ (E Строка × √3)

I Строка = 150,000 ВА ÷ (240 В × 1.732) = 208 А на строку.

Если вы возьмете мощность линии 50 000 ВА и разделите ее на одно линейное напряжение 120 В, вы получите неверный линейный ток 50 000 ВА ÷ 120 В = 417 А.

Расчет трансформатора треугольником. Рассмотрите этот метод в следующий раз, когда вы будете определять параметры трансформаторов, подключенных по схеме треугольника, где большинство нагрузок являются линейными. После того, как вы сбалансируете трансформатор, подберите его в соответствии с нагрузкой каждой фазы. Измерьте трансформатор «C», используя в два раза большее значение из «C1» или «C2».Трансформатор «C» на самом деле представляет собой единый блок. Если одна сторона имеет большую нагрузку, эта сторона определяет размер трансформатора.

Обратитесь к этой разбивке нагрузки по фазам для решения практической задачи ниже.

Давайте попробуем еще одну практическую задачу, чтобы закрепить эти концепции. Какой типоразмер трансформатора от 480 В до 240/120 В требуется для следующих нагрузок: одна трехфазная тепловая пластина 240 В, 36 кВА; две трехфазные нагрузки 240 В, 10 кВА; три нагрузки 120 В, 3 кВА, однофазные ( Рис. 4 )?

(а) три однофазных трансформатора по 25 кВА

(b) один трехфазный трансформатор 75 кВА

(c) a или b

(d) ничего из вышеперечисленного

Фазная обмотка A = 22кВА

Фазная обмотка B = 22кВА

Фазная обмотка C = (12 кВА C1 × 2) = 24 кВА

Ответ: (c), a или b.Для этой нагрузки можно использовать один однофазный трансформатор 75 кВА или три трансформатора по 25 кВА.

Теперь, когда вы понимаете основы расчета трансформаторов и особенности расчетов дельта-трансформаторов, вы сможете правильно рассчитать дельта-трансформаторы, когда большинство нагрузок являются линейными. Трансформаторы дельта-дельта чаще всего встречаются в специальных приложениях. Наиболее распространенная конфигурация — треугольник-звезда. В случае трансформатора треугольник-звезда теперь вы знаете, как определить размер первичной обмотки.После выхода статьи в следующем месяце, в которой будут рассмотрены расчеты трансформатора со звездой, вы сможете определить размер любой комбинации трансформаторов с треугольником и звездой.

Боковая панель: знайте свои термины

Чтобы избежать путаницы с расчетами трансформатора, важно иметь твердое представление о некоторых основных концепциях ( Рис. 5 ниже). Как только вы освоите эти термины, вы должны быть готовы взяться за все типы расчетов трансформатора.

Рис. 5. Знание параметров трансформатора является ключом к правильным расчетам.

Линия — Незаземленный (токоведущий) провод (и).

Линейный ток — Ток на незаземленных проводниках (B1 и B2 в рис. 6 ). В системе треугольника линейный ток больше фазного тока на квадратный корень из 3, что составляет примерно 1,732). В звездообразной системе линейный ток равен фазному току.

Линейное напряжение — Напряжение между любыми двумя линейными (незаземленными) проводниками (A1 и A2 в рис. 6 ).В схеме треугольника линейное напряжение равно фазному напряжению. Но у дельта-системы есть и высокая ножка.

Рис. 6. Основные показания напряжения и тока в системе треугольник / треугольник.

Фазный ток — Ток, протекающий через обмотку трансформатора (D1 и D2 в рис. 6 ). В треугольной системе фазный ток меньше линейного тока на квадратный корень из 3. В звездообразной системе фазный ток равен линейному току.

Фазная нагрузка — Нагрузка на обмотку трансформатора.

Напряжение фаз — внутреннее напряжение трансформатора, генерируемое на одной обмотке трансформатора. Для вторичной обмотки треугольником фазное напряжение равно линейному напряжению. В звездообразной системе фазное напряжение меньше линейного напряжения на квадратный корень из 3 (A2 и C2 в рис. 6 ).

Коэффициент — количество витков первичной обмотки, деленное на количество витков вторичной обмотки.

Несимметричная нагрузка (ток нейтрали) — Нагрузка на вторичных заземленных (нейтральных) проводниках.

Асимметричный / трехфазный поток мощности — документация pandapower 2.4.0

алгоритм (str, «nr») — алгоритм, который используется для определения мощности проблема с потоком.

Доступны следующие алгоритмы:

ускорений)

Используется только для сети прямой последовательности

В сетях нулевой и обратной последовательности используется метод ввода тока

Vnew = Y.inv * Ispecified (из s_abc / v_abc old)

Icalculated = Y * Vnew

calculate_voltage_angles (bool, «авто») — учитывать углы напряжения в расчете расхода

Если True, углы напряжения ext_grids и сдвиги трансформатора равны учитывается при расчете потока нагрузки.Учитывая напряжение углов требуется только в ячеистых сетях, которые обычно найдено в более высоких уровнях напряжения. Calcul_voltage_angles в автоматическом режиме по умолчанию:

Уровень сетевого напряжения определяется как максимальное номинальное напряжение. любой шины в сети, подключенной к линии.

max_iteration (int, «auto») — максимальное количество переносимых итераций в алгоритме потока мощности.

В «автоматическом» режиме значение по умолчанию зависит от решателя потока мощности:

Для трехфазных вычислений расширено до 3 * max_iteration

толерантность_mva (float, 1e-8) — условие прекращения потока нагрузки относится к несоответствию P / Q мощности узла в MVA

trafo_model — трансформаторный аналог модели

  • «t» — трансформатор смоделирован как эквивалент Т-модели.

  • «пи» — не рекомендуется, так как он менее точен, чем Т-модель.

Итак, для трехфазного потока нагрузки это не

реализовано

trafo_loading (str, «текущий») — режим расчета для трансформатор нагрузки

Нагрузка трансформатора может быть рассчитана относительно номинальной ток или номинальная мощность. В обоих случаях общий трансформатор нагрузка определяется как максимальная нагрузка с двух сторон трансформатор.

расход и номинальный ток трансформатора. Это рекомендуемый настройки, так как тепловые, а также магнитные эффекты в трансформатор зависит от тока. — «мощность» — нагрузка трансформатора дана как отношение полной мощность потока к номинальной полной мощности трансформатора.

enforce_q_lims (bool, False)

(не тестировался с трехфазным потоком нагрузки) — учитывать реактивную мощность генератора лимиты

Если True, ограничивает реактивную мощность в сети.gen.max_q_mvar / min_q_mvar соблюдаются в потоке загрузки. Это делается путем запуска второго расход нагрузки при нарушении пределов реактивной мощности на любом генераторе, так что время выполнения для потока нагрузки увеличится, если реактивная власть должна быть сокращена.

Примечание: enforce_q_lims работает, только если алгоритм = «nr»!

check_connectivity (bool, True) — выполнить дополнительное подключение тест после перехода с pandapower на PYPOWER

Если True, дополнительный тест подключения на основе SciPy Compressed Выполняются подпрограммы разреженных графиков.Если проверка обнаружит неподтвержденные автобусы, они выведены из эксплуатации в ппк

Voltage_depend_loads (bool, True)

(не тестировался с трехфазным потоком нагрузки) — рассмотрение нагрузки, зависящие от напряжения. Если False, net.load.const_z_percent и net.load.const_i_percent не учитываются, т.е. net.load.p_mw и net.load.q_mvar считаются нагрузками с постоянной мощностью.

рассмотреть_линию_температуру (булево, ложь)

(не тестировался с трехфазным потоком нагрузки) — регулировка линии полное сопротивление зависит от температуры в линии.Если True, net.line должен содержат столбец «temperature_degree_celsius». Температура коэффициент зависимости альфа должен быть указан в net.line.alpha

столбец, в противном случае используется значение по умолчанию 0,004

** КВАРГ:

numba (bool, True) — Активация JIT-компилятора numba в решатель ньютона

Если установлено значение True, JIT-компилятор numba используется для генерации матрицы для потока мощности, что приводит к значительному быстродействию улучшения.

switch_rx_ratio (поплавок, 2)

(не тестировался с трехфазным потоком нагрузки) — rx_ratio переключателей шины. Если импеданс равен нулю, шины, подключенные замкнутым переключателем шина-шина сплавлены, чтобы смоделировать идеальный автобус. В противном случае они моделируются как ветви с сопротивлением, определенным как столбец z_ohm в переключателе таблица и этот параметр

delta_q

(Не тестировался с трехфазным потоком нагрузки) — Допуск реактивной мощности для опции «enforce_q_lims» в квар — помогает сходимости в некоторых случаях.

trafo3w_losses

(Не тестировался с 3-фазным потоком нагрузки) — определяет, где потери разомкнутого контура трехобмоточного трансформаторы рассмотрены. Допустимые варианты: «hv», «mv», «lv». для стороны ВН / СН / НН или «звезда» для точки звезды.

v_debug (bool, Ложь)

(не тестировался с 3-фазным потоком нагрузки) — если True, значения напряжения в каждом итерация Ньютона-Рэфсона регистрируется в ppc

init_vm_pu (строка / с плавающей точкой / массив / серия, нет)

(не тестировался с трехфазным потоком нагрузки) — позволяет определить инициализация специально для значений напряжения.Работает только с init == «auto»!

элемента управления напряжением в сети — «flat» для плоского старта от 1.0 — «результаты»: вектор величины напряжения берется из таблицы результатов. — поплавок, которым инициализируются все величины напряжения — итерация со значением величины напряжения для каждой шины (длина и порядок должны соответствовать автобусам в net.bus) — серия панд со значением величины напряжения для каждой шины (индексы должны совпадать с индексами в net.bus)

init_va_degree (строка / с плавающей точкой / массив / серия, нет)

(не тестировался с трехфазным потоком нагрузки) —

Позволяет определить инициализацию специально для углов напряжения.Работает только с init == «auto»!

, если углы вычисляются, или 0 в противном случае — «dc»: углы напряжения инициализируются из потока мощности постоянного тока. — «flat» для плоского старта от 0 — «результаты»: вектор угла напряжения берется из таблицы результатов. — поплавок, которым инициализируются все углы напряжения — итерация со значением угла напряжения для каждой шины (длина и заказ должен соответствовать автобусам в net.bus) — серия панд со значением угла напряжения для каждой шины (индексы должны соответствовать индексам в сети.автобус)

переработка (dict, none)

(не тестировался с трехфазным потоком нагрузки) — повторное использование внутренних переменных потока мощности для расчет временных рядов

Содержит dict со следующими параметрами: _is_elements: если True в сервисных элементах снова не фильтруется и берутся из последнего результата в net [«_ is_elements»] ppc: Если True, ppc берется из сети [«_ ppc»] и обновляется. вместо того, чтобы полностью реконструировать Ybus: Если True, матрица проводимости (Ybus, Yf, Yt) берется из ppc [«внутренний»] и без реконструкции

neglect_open_switch_branches (bool, Ложь)

(не тестировался с 3-фазным потоком нагрузки) — Если True, то вспомогательный автобусы создаются для филиалов, когда в филиале открываются переключатели.Вместо филиалов выведены из строя

Коэффициент мощности — индуктивная нагрузка

Коэффициент мощности системы электроснабжения переменного тока определяется как отношение активной (истинной или реальной) мощности к полной мощности , где

  • Активная (действительная или истинная) мощность измеряется в ваттах ( Вт, ) и представляет собой мощность, потребляемую электрическим сопротивлением системы, выполняющей полезную работу
  • Полная мощность измеряется в вольт-амперах (ВА) и представляет собой напряжение в системе переменного тока, умноженное на всем током, который в нем течет.Это векторная сумма активной и реактивной мощности
  • Реактивная мощность измеряется в вольт-амперах, реактивная ( VAR ). Реактивная мощность — это энергия, накапливаемая и разряжаемая асинхронными двигателями, трансформаторами и соленоидами.

Реактивная мощность требуется для намагничивания электродвигателя, но не выполняет никакой работы. Реактивная мощность, необходимая для индуктивных нагрузок, увеличивает количество полной мощности — и требуемую подачу в сеть от поставщика энергии к распределительной системе.

Увеличение реактивной и полной мощности приведет к уменьшению коэффициента мощности — PF .

Коэффициент мощности

Обычно коэффициент мощности — PF — определяют как косинус фазового угла между напряжением и током — или « cosφ »:

PF = cos φ

где

PF = коэффициент мощности

φ = фазовый угол между напряжением и током

Коэффициент мощности, определенный IEEE и IEC, представляет собой соотношение между приложенной активной (истинной) мощностью — и полная мощность , и в общем случае может быть выражена как:

PF = P / S (1)

где

PF = коэффициент мощности

03

03

903 P = активная (истинная или действительная) мощность (Вт)

S = полная мощность (ВА, вольт-амперы)

Низкий коэффициент мощности lt индуктивных нагрузок, таких как трансформаторы и электродвигатели.В отличие от резистивных нагрузок, создающих тепло за счет потребления киловатт, индуктивные нагрузки требуют протекания тока для создания магнитных полей для выполнения желаемой работы.

Коэффициент мощности является важным измерением в электрических системах переменного тока, потому что

  • общий коэффициент мощности меньше 1 указывает на то, что поставщик электроэнергии должен обеспечить большую генерирующую мощность, чем фактически требуется
  • искажение формы сигнала тока, которое способствует снижению коэффициента мощности, составляет вызванные искажением формы сигнала напряжения и перегревом в нейтральных кабелях трехфазных систем

Международные стандарты, такие как IEC 61000-3-2, были установлены для управления искажением формы сигнала тока путем введения ограничений на амплитуду гармоник тока.

Пример — коэффициент мощности

Промышленное предприятие потребляет 200 А при 400 В , а трансформатор питания и резервный ИБП рассчитаны на 400 В x 200 A = 80 кВА .

Если коэффициент мощности — PF — нагрузки составляет 0,7 — только

80 кВА × 0,7

= 56 кВт

Система потребляет

реальной мощности. Если коэффициент мощности близок к 1 (чисто резистивная цепь), система питания с трансформаторами, кабелями, распределительным устройством и ИБП может быть значительно меньше.

  • Любой коэффициент мощности меньше 1 означает, что проводка схемы должна пропускать больший ток, чем тот, который был бы необходим при нулевом реактивном сопротивлении в цепи для передачи того же количества (истинной) мощности на резистивную нагрузку.
Зависимость поперечного сечения проводника от коэффициента мощности

Требуемая площадь поперечного сечения проводника с более низким коэффициентом мощности:

900
Коэффициент мощности 1 0,9 0.8 0,7 0,6 0,5 0,4 0,3
Поперечное сечение 1 1,2 1,6 2,04 2,8 4,0 6,3

Низкий коэффициент мощности дорог и неэффективен, и некоторые коммунальные предприятия могут взимать дополнительную плату, если коэффициент мощности меньше 0,95 . Низкий коэффициент мощности снизит распределительную способность электрической системы из-за увеличения тока и падения напряжения.

«Опережающий» или «запаздывающий» коэффициенты мощности

Коэффициент мощности обычно указывается как «опережающий» или «запаздывающий», чтобы показать знак фазового угла.

  • При чисто резистивной нагрузке полярность тока и напряжения изменяется ступенчато, а коэффициент мощности будет 1 . Электрическая энергия течет в одном направлении по сети в каждом цикле.
  • Индуктивные нагрузки — трансформаторы, двигатели и обмотки — потребляют реактивную мощность, форма кривой тока которой отстает от напряжения.
  • Емкостные нагрузки — батареи конденсаторов или проложенные кабели — генерируют реактивную мощность с фазой тока, опережающей напряжение.

Индуктивные и емкостные нагрузки накапливают энергию в магнитных или электрических полях в устройствах во время частей циклов переменного тока. В течение остальных циклов энергия возвращается обратно в источник питания.

В системах с преимущественно индуктивными нагрузками — как правило, на промышленных предприятиях с большим количеством электродвигателей — запаздывающее напряжение компенсируется конденсаторными батареями.

Коэффициент мощности трехфазного двигателя

Общая мощность, необходимая индуктивному устройству, например, двигателю или аналогичному, состоит из

  • Активная (истинная или действительная) мощность (измеряется в киловаттах, кВт)
  • Реактивная мощность — Нерабочая мощность, вызванная током намагничивания, необходимая для работы устройства (измеряется в киловарах, кВАр)

Коэффициент мощности трехфазного электродвигателя может быть выражен как:

PF = P / [(3) 1/2 UI] (2)

, где

PF = коэффициент мощности

P = приложенная мощность (Вт, Вт)

U = напряжение (В)

I = ток (А, амперы)

— или альтернативно:

P = (3) 1/2 UI PF

= (3) 1/2 U I cos φ (2b)

U, l и cos φ обычно указаны на паспортной табличке двигателя.

Типичный коэффициент мощности двигателя

9001 900 100-300
Мощность
(л.с.)
Скорость
(об / мин)
Коэффициент мощности (cos φ )
Без нагрузки нагрузка 1/4 1/2 нагрузки 3/4 нагрузки полная нагрузка
0-5 1800 0,15 — 0,20 0,5 — 0,6 0,72 0,82 0,84
5 — 20 1800 0.15 — 0,20 0,5 — 0,6 0,74 0,84 0,86
20-100 1800 0,15 — 0,20 0,5 — 0,6 0,79 0,86 0,89 1800 0,15 — 0,20 0,5 — 0,6 0,81 0,88 0,91

Коэффициент мощности по отраслям

Типичные неулучшенные коэффициенты мощности:

Промышленность Коэффициент мощности
Пивоваренный завод 75-80
Цемент 75-80
Химический 65-75
Электрохимический 65-75 Литейное производство 75-80
Ковка 70-80
Хоспи tal 75-80
Производство, станки 60-65
Производство, краска 65-70
Металлообработка 65-70
Шахта, уголь 65 — 80
Офис 80-90
Масляный насос 40-60
Производство пластмасс 75-80
Штамповка 60-70
Металлургический завод 65-80
Текстиль 35-60

Преимущества коррекции коэффициента мощности

  • Снижение счетов за электроэнергию — отсутствие штрафа за низкий коэффициент мощности от энергокомпании
  • Повышенная мощность системы — дополнительные нагрузки может быть добавлен без перегрузки системы
  • улучшенная рабочая характеристика системы s за счет уменьшения потерь в линии — из-за меньшего тока
  • Улучшенные рабочие характеристики системы за счет увеличения напряжения — предотвращаются чрезмерные падения напряжения

Коррекция коэффициента мощности с помощью конденсатора

9001

1

1

9001

1

1

9

0,08 993 0,12

0,04

    9101
Поправочный коэффициент конденсатора
Коэффициент мощности до улучшения (cosΦ) Коэффициент мощности после улучшения (cosΦ)
1.0 0,99 0,98 0,97 0,96 0,95 0,94 0,93 0,92 0,91 0,90
1,44 1,40 1,37 1,34 1,30 1,28 1,25
0,55 1,52 1.38 1,32 1,28 1,23 1,19 1,16 1,12 1,09 1,06 1,04
0,60 1,33 1,19 1,19 1,19 1,19 1,01 0,97 0,94 0,91 0,88 0,85
0,65 1,17 1,03 0.97 0,92 0,88 0,84 0,81 0,77 0,74 0,71 0,69
0,70 1,02 0,893 0,83 0,83 0,66 0,62 0,59 0,56 0,54
0,75 0,88 0,74 0,67 0.63 0,58 0,55 0,52 0,49 0,45 0,43 0,40
0,80 0,75 0,61 0,593 0,50 0,49 0,35 0,32 0,29 0,27
0,85 0,62 0,48 0,42 0,37 0.33 0,29 0,26 0,22 0,19 0,16 0,14
0,90 0,48 0,34 0,28 0,23 0,19 0,19 0,06 0,02
0,91 0,45 0,31 0,25 0,21 0,16 0,13 0.09 0,06 0,02
0,92 0,43 0,28 0,22 0,18 0,13 0,10 0,06 0,03 0,03 0,25 0,19 0,15 0,10 0,07 0,03
0,94 0.36 0,22 0,16 0,11 0,07 0,04
0,95 0,33 0,18 0,12 0,96 0,29 0,15 0,09 0,04
0.97 0,25 0,11 0,05
0,98 0,20 0,06

Пример — Повышение коэффициента мощности с помощью конденсатора

Электродвигатель мощностью 150 кВт имеет коэффициент мощности до улучшения cosΦ = 0.75 .

При требуемом коэффициенте мощности после улучшения cosΦ = 0,96 — коэффициент коррекции конденсатора составляет 0,58 .

Требуемая мощность KVAR может быть рассчитана как

C = (150 кВт) 0,58

= 87 KVAR

Рекомендуемые характеристики конденсаторов для двигателей T-образной рамы NEMA класса B

Рекомендуемые размеры блоков KVAR, необходимых для коррекция асинхронных двигателей до коэффициента мощности примерно 95%.

60 900 500
Номинальная мощность асинхронного двигателя
(л.с.)
Номинальная скорость двигателя (об / мин)
3600 1800 1200
Номинальная мощность конденсатора
80 Линия редукции 9068 (KVAR 9) Ток
(%)
Номинал конденсатора
(кВАр)
Снижение линейного тока
(%)
Номинал конденсатора
(кВАр)
Снижение линейного тока
3 1.5 14 1,5 23 2,5 28
5 2 14 2,5 22 3 26
7,5 2,5
7,5 2,5 3 20 4 21
10 4 14 4 18 5 21
15 5 12 12 18 6 20
20 6 12 6 17 7.5 19
25 7,5 12 7,5 17 8 19
30 8 11 8 16 10 16 10
40 12 12 13 15 16 19
50 15 12 18 15 2020 19 15 2020 19
18 12 21 14 22.5 17
75 20 12 23 14 25 15
100 22,5 11 30 14 12
125 25 10 36 12 35 12
150 30 10 42 12 4020 12 4020 12 4020 12 200 35 10 50 11 50 10
250 40 11 60 10 62.5 10
300 45 11 68 10 75 12
350 50 12 75 8 12 75 8 12
400 75 10 80 8100 12
450 80 8 90 8 12020 10
100 8 120 9 150 12

Инструкции — Измерение трехфазной мощности — Существующие системы

Модуль измерения трехфазной мощности WAGO (750-495) измеряет электрические данные в трехфазной сети питания.Напряжение измеряется через сетевое соединение с L1, L2, L3 и N. Ток трех фаз подается на зажимные устройства IL1, IL2, IL3 и IN (по два зажимных блока каждый +, -) через трансформаторы тока. Модуль 3-фазного измерения мощности передает все показатели (например, реактивную / полную / эффективную мощность, потребление энергии, коэффициент мощности, фазовый угол, частоту, повышенное / пониженное напряжение) непосредственно в образ процесса, не требуя высокой вычислительной мощности от контроллера. .

Как комплексные показатели, так и анализ гармоник до 41-й гармоники позволяют проводить обширный анализ сети через полевую шину.Эти показатели позволяют оператору оптимизировать подачу на привод или машину, защищая систему от повреждений и сбоев.

Нарушения изоляции можно обнаружить и предотвратить с помощью измерения тока в нейтральном проводе. Четырехквадрантный дисплей показывает тип нагрузки (индуктивную, емкостную) и то, является ли она потребителем или производителем энергии.

Предварительно собранный узел клеммной колодки (2007-8874) монтируется в шкафу управления для обеспечения четко структурированной проводки от 3-фазного модуля измерения мощности до трансформаторов тока с разъемным сердечником (измерение тока) и ответвлений питания ( измерение напряжения).Этот узел клеммной колодки предлагает возможность подключения тока и напряжения.

Измерение тока
Трансформаторы тока с разъемным сердечником WAGO идеально подходят для модернизации существующих систем, в которых путь тока не должен прерываться. Их можно открывать с одной или с обеих сторон — незаменимый элемент при установке в ограниченном пространстве. Трансформаторы тока с разъемным сердечником серии 855 преобразуют номинальные первичные токи до 1000 A в электрически изолированные вторичные токи 1 или 5 A.Высокий уровень точности трансформатора тока с разъемным сердечником до 0,5% обеспечивает чрезвычайно точное измерение тока. Все трансформаторы поставляются с кабелями с цветовой кодировкой. В комплект также входят две устойчивые к ультрафиолетовому излучению кабельные стяжки для безопасного и легкого монтажа.

Измерение напряжения
Только в редких случаях в существующих системах для измерения напряжения обеспечивается гарантированное напряжение. С помощью этого уникального отводного модуля измерительное напряжение, защищенное плавкими предохранителями, может быть снято с изолированного проводника всего за один поворот вручную и без использования каких-либо инструментов.Предохранитель воздействует непосредственно на первичный проводник, обеспечивая оптимальную безопасность — это абсолютно уникальный продукт, который представляет собой прорыв в области быстрых и безопасных измерений в существующих системах.

Программное обеспечение WAGO-I / O- PRO требуется для ввода в эксплуатацию узла ввода-вывода.

Глоссарий — MGM Transformer Company

Параллельная работа : Трансформаторы или обмотки трансформаторов могут быть соединены параллельно при условии, что электрические характеристики подходят для такой работы.

Процентное сопротивление IR (% IR) Процентное сопротивление : Падение напряжения из-за сопротивления проводника при номинальном токе, выраженное в процентах от номинального напряжения.

Percent IX (% IX) Percent Reactance : Падение напряжения из-за реактивного сопротивления при номинальном токе, выраженное в процентах от номинального напряжения.

Percent IZ (% IZ) Percent Impedance : Падение напряжения из-за импеданса при номинальном токе, выраженное в процентах от номинального напряжения.

Фаза : Классификация цепи переменного тока.Обычно схемы рассчитаны на однофазные двухпроводные или трехпроводные или трехфазные трехпроводные или четырехпроводные. Однофазные трансформаторы могут использоваться на трехфазном источнике, когда два провода трехфазной системы подключены к первичной обмотке однофазного трансформатора. Вторичный будет однофазным.

Полярность : обозначение относительного мгновенного направления тока во вторичном проводе по сравнению с первичным проводом. Говорят, что два провода имеют одинаковую полярность, когда в любой момент токи в двух выводах протекают в одном направлении, как если бы выводы были одним куском провода.Полярность однофазного трансформатора классифицируется как аддитивная или вычитающая.

Многофазный : более одной фазы.

Трансформатор потенциала : Трансформатор, первичная обмотка которого соединена параллельно цепи и используется для преобразования напряжения до значения, подходящего для измерения или управления.

Коэффициент мощности : Отношение ватт к вольт-амперам в цепи. Выражается в% Вт / ВА.

Устройство сброса давления : Используется для сброса избыточного давления внутри резервуара.Обычно работает при давлении 71/2 фунта на квадратный дюйм. Самостоятельное запечатывание с целевым индикатором, чтобы показать работу. Контакты сигнализации не являются обязательными.

Давление Вакуумный выпускной клапан : Автоматический клапан, который открывается и закрывается для поддержания внутреннего давления в заданных пределах.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *