Регулировка оборотов асинхронного двигателя 380 схема: Регулировка оборотов асинхронного двигателя своими руками (схема, видео)

Содержание

Регулировка оборотов асинхронного двигателя своими руками (схема, видео)

Достаточно часто режим работы вспомогательного механизированного оборудования требует понижения штатных частот вращения. Добиться такого эффекта позволяет регулировка оборотов асинхронного двигателя. Как это сделать своими руками (расчет и сборку), используя стандартные схемы управления или самодельные устройства, попробуем разобраться далее.

Что такое асинхронный двигатель?

Электродвигатели переменного тока нашли довольно широкое применение в различных сферах нашей жизнедеятельности, в подъемно транспортном, обрабатывающем, измерительном оборудовании. Они используются для превращения электрической энергии, которая поступает от сети, в механическую энергию вращающегося вала. Чаще всего используются именно асинхронные преобразователи переменного тока. В них частота вращения ротора и статора отличаются. Между этими активными элементами обеспечивается конструктивный воздушный зазор.

И статор, и ротор имеют жесткий сердечник из электротехнической стали (наборного типа, из пластин), выступающий в роли магнитопровода, а также обмотку, которая укладывается в конструктивные пазы сердечника. Именно способ организации или укладки обмотки ротора является ключевым критерием классификации этих машин.

Двигатели с короткозамкнутым ротором (АДКР)

Здесь используется обмотка в виде алюминиевых, медных или латунных стержней, которые вставляются в пазы сердечника и с обеих сторон замыкаются дисками (кольцами). Тип соединения этих элементов зависит от мощности двигателя: для малых значений используют метод совместной отливки дисков и стержней, а для больших – раздельное изготовление с последующей сваркой между собой. Обмотка статора подключается с использованием схем «треугольника» или «звезды».

Двигатели с фазным ротором

К сети подключается трехфазная обмотка ротора, посредством контактных колец на основном валу и щеток. За основу принимается схема «звезда». На рисунке внизу представлена типичная конструкция такого двигателя.

Принцип работы и число оборотов асинхронных двигателей

Данный вопрос рассмотрим на примере АДКР, как наиболее распространенного типа электродвигателей подъемно-транспортном и обрабатывающем оборудовании. Напряжение от сети подается на обмотку статора, каждая из трех фаз которой смещена геометрически на 120°. После подачи напряжения возникает магнитное поле, создающее путем индукции ЭДС и ток в обмотках ротора. Последнее вызывает электромагнитные силы, заставляющие ротор вращаться. Еще одна причина, по которой все это происходит, а именно, возникает ЭДС, является разность оборотов статора и ротора.

Одной из ключевых характеристик любого АДКР является частота вращения, расчет которой можно вести по следующей зависимости:

n = 60f / p, об/мин

где f – частота сетевого напряжения, Гц, р – число полюсных пар статора.

Все технические характеристики указываются на металлической табличке, закрепленной на корпусе. Но если она отсутствует по какой-то причине, то определить число оборотов нужно вручную по косвенным показателям. Как правило, используется три основных метода:

  • Расчет количества катушек. Полученное значение сопоставляется с действующими нормами для напряжения 220 и 380В (см. табл. ниже),

  • Расчет оборотов с учетом диаметрального шага обмотки. Для определения используется формула вида:

2p = Z1 / y,

где 2p – число полюсов, Z1 – количество пазов в сердечнике статора, y – собственно, шаг укладки обмотки.

Стандартные значения оборотов:

  • Расчет числа полюсов по сердечнику статора. Используются математические формулы, где учитываются геометрические параметры изделия:

2p = 0,35Z1b / h или 2p = 0,5Di / h,

где 2p – число полюсов, Z1 – количество пазов в статоре, b – ширина зубца, см, h – высота спинки, см, Di – внутренний диаметр, образованный зубцами сердечника, см.

После этого по полученным данным и магнитной индукции нужно определить количество витков, которое сверяется с паспортными данными двигателей.

Способы изменения оборотов двигателя

Регулировка оборотов любого трехфазного электродвигателя, используемого в подъемно-транспортной технике и оборудовании, позволяет добиться требуемых режимов работы точно и плавно, что далеко не всегда возможно, например, за счет механических редукторов. На практике используется семь основных методов коррекции скорости вращения, которые делятся на два ключевых направления:

  1. Изменение скорости магнитного поля в статоре. Достигается за счет частотного регулирования, переключения числа полюсных пар или коррекции напряжения. Следует добавить, что эти методы применимы для электродвигателей с короткозамкнутым ротором,
  2. Изменение величины скольжения. Этот параметр можно откорректировать за счет питающего напряжения, подключения дополнительного сопротивления в электрическую цепь ротора, применения вентильного каскада или двойного питания. Используется для моделей с фазным ротором.

Наиболее востребованными методами являются регулирование напряжения и частоты (за счет применения преобразователей), а также изменение количества полюсных пар (реализуется путем организации дополнительной обмотки с возможностью переключения).

Типичные схемы регуляторов оборотов

На рынке сегодня есть широкий выбор регуляторов и частотных преобразователей для асинхронных двигателей. Тем не менее, для бытовых нужд подъемного или обрабатывающего оборудования вполне можно сделать расчет и сборку на микросхеме самодельного прибора на базе тиристоров или мощных транзисторов.

Ниже представлен пример схемы достаточно мощного регулятора для асинхронного двигателя. За счет чего можно добиться плавного контроля параметров его работы, снижения энергопотребления до 50%, расходов на техническое обслуживание.

Данная схема является сложной. Для бытовых нужд ее можно значительно упростить, используя в качестве рабочего элемента симистор, например, ВТ138-600. В этом случае схема будет выглядеть следующим образом:

Обороты электродвигателя будут регулироваться за счет потенциометра, который определяет фазу входного импульса, открывающего симистор.

Как можно судить из информации, представленной выше, от оборотов асинхронного двигателя зависят не только параметры его работы, но и эффективность функционирования питаемого подъемного или обрабатывающего оборудования. В торговой сети сегодня можно приобрести самые разнообразные регуляторы, но также можно совершить расчет и собрать эффективное устройство своими руками.

Схемы регуляторов » Электродвигатели. Статьи по ремонту. Схемы включения

Принцип действия трехфазного асинхронного двигателя
Пуск звезда-треугольник трехфазного электродвигателя
Раздел: Схемы регуляторов

При использвании электродвигателей больших мощностей с высокими пусковыми токами, для снижения пускового тока применяется схема управления электродвигателя «звезда-треугольник», в которой запуск происходит с низкими пусковыми токами «схема подключения звезда» и через определенное время переключение в нормальный режим работы «схема подключения треугольник». Рассмотрим эту схему подробнее.
Раздел: Схемы регуляторов Продолжение тут
РЕГУЛИРОВКА ОБОРОТОВ ЭЛЕКТРОДВИГАТЕЛЕЙ
Раздел: Схемы регуляторов

С вопросом регулировки оборотов приходится сталкиваться при работе с электроинструментом, приводом швейных машин и прочих приборов в быту и на производстве. Регулировать обороты, просто понижая питающее напряжение, не имеет смысла — электродвигатель резко уменьшает обороты, теряет мощность и останавливается. Оптимальным вариантом регулировки оборотов является регулирование напряжения с обратной связью по току нагрузки двигателя
Раздел: Схемы регуляторов Продолжение тут
Регулятор оборотов электродрели своими руками
Раздел: Схемы регуляторов

Для высококачественного сверления отверстий в печатных платах необходима электродрель с регулятором частоты вращения и крутящего момента. Транзисторные регуляторы имеют, как правило, низкий КПД, что ведет к увеличению размеров и массы трансформатора питания и теплоотвода. В этом отношении более выгодны тринисторные устройства, поскольку потери энергии в тринисторе, работающем в ключевом режиме, незначительны. По этой причине отпадает необходимость в отводе от него тепла.
Раздел: Схемы регуляторов Продолжение тут
Ремонт и проверка работоспособности коллекторных электродвигателей стиральных машин.
Раздел: Схемы регуляторов

В современных стиральных машинах используются несколько типов приводных двигателей: коллекторные, асинхронные, а также с прямым приводом барабана — они отличаются по принципу работы и по конструкции. Для обеспечения работы асинхронного двигателя требуется фазосдвигающий конденсатор — подобная схема включения двигателя используется в большинстве старых моделей СМ. В современных машинках для управления асинхронным двигателем используется сложная электронная система управления, поэтому его проверка без специального стенда (или «тестовой» СМ) вызывает определенные затруднения. Еще большие проблемы вызывает проверка двигателей с прямым приводом (например, они используются в машинах LG DirectDrive). Их трудно проверить отдельно, так как они являются частью конструкции бака. К тому же, для этих двигателей также необходима сложная система управления.
Раздел: Схемы регуляторов Продолжение тут
Как должна происходить разборка электродвигателя
Раздел: Схемы регуляторов

Перед снятием шкивов, полумуфт, шестерен и других соединительных деталей с вала машины следует вывернуть стопорный винт или выбить шпонку, фиксирующие соединительную деталь с валом. Место посадки заливают керосином или антикоррозионной жидкостью для устранения коррозии в месте контакта. При снятии этих деталей используют двух- или трехлапчатые съемники (переносные ручные или гидравлические).
Раздел: Схемы регуляторов Продолжение тут
Системы плавного пуска высоковольтных электродвигателей на основе устройств серии УППВЭ
Раздел: Схемы регуляторов

Системы плавного пуска (СПП) предназначены для плавного пуска как одного, так и группы высоковольтных синхронных и асинхронных электродвигателей насосов, компрессоров, вентиляторов, воздуходувок и др. производственных механизмов.
Раздел: Схемы регуляторов Продолжение тут
Электрическая схема пуска трехфазного электродвигателя
Раздел: Схемы регуляторов

Трехфазный электродвигатель при пуске контактами магнитного пускателя подключается к трёхфазной сети переменного тока напряжением 380 вольт. На рис 1. показан вариант схемы пуска с питанием катушки магнитного пускателя переменным током напряжением 220 вольт. Напряжение снимается с двух проводов: любого фазного провода и нейтрального провода (на схеме рис.1 провода «C» и «N»).
Раздел: Схемы регуляторов Продолжение тут
Устройство асинхронного электродвигателя
Раздел: Схемы регуляторов

Асинхронный электродвигатель имеет две основные части – статор и ротор. Статором называется неподвижная часть машины. С внутренней стороны статора сделаны пазы, куда укладывается трехфазная обмотка, питаемая трехфазным током. Вращающаяся часть машины называется ротором, в пазах его тоже уложена обмотка. Статор и ротор собираются из отдельных штампованных листов электротехнической стали толщиной 0,35-0,5 мм. Отдельные листы стали изолируются один от другого слоем лака. Воздушный зазор между статором и ротором делается как можно меньше (0,3-0,35 мм в машинах малой мощности и 1-1,5 мм в машинах большой мощности).
Раздел: Схемы регуляторов Продолжение тут
ЭЛЕКТРОДВИГАТЕЛЬ БЕСКОНТАКТНЫЙ МОМЕНТНЫЙ ДБМ254-120-57
ШИМ-регуляторы оборотов маломощных коллекторных электродвигателей
Раздел: Схемы регуляторов

Регулировать частоту вращения маломощного коллекторного электродвигателя (ЭД) можно, включая последовательно с ним резистор. Однако такой вариант дает низкий КПД, не дает возможности делать плавную регулировку (переменные резисторы в несколько десятков Ом не распространены).
Раздел: Схемы регуляторов Продолжение тут

Частотный регулятор скорости. Принцип действия регулятора.

Хорошая вентиляция воздуха в жилом помещении играет большую роль в жизни человека. Микроклимат прямо зависит от вентиляционной установки. Основной по популярности сегодня системой вентиляции является приточно-вытяжная.

Регуляторы скорости асинхронных двигателей

Множество новых установок вытяжки оснащены электрическим двигателем с возможностью регулировки оборотов электродвигателя. Для регулирования оборотов применяют приборы специального типа, частотные схемы вращения двигателя. Такие моторы применяются не только в устройствах вытяжки, но и в быту дома.

Недавно регуляторы скорости вращения электродвигателей асинхронного типа имели в своем составе реле и простые разъединители, которыми производили запуск наибольших оборотах, останавливали привод мотора.

Все регуляторы скорости, как и частотные, служат для того, чтобы менять обороты двигателя. Главная опция регулятора – это изменение мощности системы вытяжки, различного оборудования. Кроме этого, частотные регуляторы имеют и другие функции:

  • снижение износа механизма в работе;
  • малый расход электроэнергии;
  • низкая шумность на большой скорости.

Многие приборы, которые имеют свойство изменения оборотов, применяются как единичные приборы, так и дополнительными блоками для управления приборами в быту с электрическими двигателями.

Способы изменения скорости

Для многих видов двигателей применяют такие варианты регулировки скорости:

  • регулирование напряжения питания;
  • схемы подключения обмоток моторов с несколькими скоростями;
  • частотный метод изменения токовых значений;
  • применение коммутатора электронного типа.

Регулятор напряжения позволяет применять простые устройства для мягкой регулировки ступенчатого типа скорости. Для асинхронных двигателей с внешним ротором целесообразно изменять сопротивление якоря, оптимизации оборотов мотора. В этом случае значение скорости будет изменяться в значительном интервале.

Виды и типы скоростных регуляторов

  • применение тиристоров;
  • схема с использованием симисторов;
  • частотные инверторы;
  • трансформаторные типы.

Регуляторы на тиристорах применяются для 1-фазных моторов, кроме изменения скорости, производят защиту механизмов от скачков напряжения и нагрева.

Симисторные регуляторы управляют многими моторами одновременно, если значение мощности не больше максимального. Это самый распространенный способ.

3-фазный регулятор точнее, имеет предохранитель тока, фильтр сглаживания шума на основе конденсатора.

Регулятор частотный для мотора асинхронного типа применяется при изменении напряжения входа в интервале 0-480 вольт, контроль скорости производится изменением электроэнергии. Он применяется в 3-фазных моторах, кондиционерах, вентиляторах с большой мощностью.

Для мощных двигателей применяют регулятор из трансформатора с тремя или с одной фазой. Этим устройством можно регулировать скорость мотора ступенями. Один трансформатор работает со многими моторами в одно время автоматически.

В эксплуатации электромотора кроме шума появляются помехи от электромагнитных волн, которые устраняются кабелем с экраном. Если применять 3-фазный регулятор скорости, то шума не бывает. Нужна установка фильтров сглаживания.

Для применения частотных регуляторов специалисты рекомендуют:

  • контролировать соединения проводов и заземления;
  • фильтр от помех;
  • размещение регулятора в защищенном от солнца месте;
  • вертикальное расположение регулятора для лучшего рассеивания тепла;
  • не использовать частое выключение и включение для долгого времени службы.

Частотный регулятор скорости РМТ

Эти частотные регуляторы служат для регулировки скорости вращения электродвигателя вентилятора короткозамкнутого асинхронного типа, на 380 вольт. Действие регулятора основывается на принципе регулировки частоты, в то время как регулировка скорости вращения осуществляется путем частотного изменения напряжения на трех фазах, которое подключается на двигатель вентиляторной установки (25-50 герц). Управлять вентилятором можно от пульта управления или сигналом снаружи от 0 до 10 вольт.

Принцип действия преобразователя частоты, или инвертора заключается в следующем. Напряжение питания переменного тока проходит через выпрямитель на диодах, фильтр батареи емкостей значительного размера для уменьшения пульсаций потенциала, получаемого двигателем. Далее, питающее напряжение поступает на сборку из 6-ти транзисторов (биполярных управляемых) с затвором, изолированным от прохождения тока с диодами.

Диоды защищают транзисторы от пробивания потенциала обратной полярности, которое образуется при действии с обмотками мотора. При закрывании и открывании перекрестных транзисторных пар образуются 3 смещенные на 120 градусов графика синуса управляемости обмоток мотора с частотой 25-50 герц.

Подключение регулятора производится зажимами с площадью сечения 6 мм2. Затягивать необходимо усилием 1,2 Н*м для основных контактов, 0,3 Н*м для управляющих контактов.

Схема подключения частотного преобразователя: звезда — треугольник

Перейти в каталог продукции: Частотные преобразователи

Для управления трехфазным асинхронным двигателем применяются частотные преобразователи (инверторы), рассчитанные на однофазное или трехфазное входное напряжение. Инверторы обеспечивают возможность мягкого запуска двигателя и регулировки частоты оборотов, защиту от перегрузок. Кроме этого, частотник позволяет подключать трехфазные двигатели к однофазным сетям без потерь мощности. Преобразователи частоты трансформируют напряжение электросети частотой 50 Гц в импульсное с частотой от 0 Гц до 1 кГц.

Внимание: представленная  схема является общей. При подключении используйте схему из инструкции по эксплуатации!

Однофазные преобразователи частоты рассчитаны на входное напряжение 1 фаза 220 В и на выходе формируют трехфазное напряжение 220 В заданной частоты. Иными словами, однофазный инвертор обеспечивает трехфазное питание асинхронного двигателя от бытовых электросетей. При использовании однофазных частотных преобразователей, в клеммной коробке двигателя, клеммы  подключают по схеме «треугольник» (Δ). При подключении трехфазного асинхронного двигателя к однофазной сети 220 В, при использовании конденсаторной схемы, неизбежна большая  потеря мощности. В то время как, при пользовании однофазного частотного преобразователя, подключаемого в двигателю по схеме «треугольник» (Δ), потерь мощности не происходит.

Более совершенные трехфазные преобразователи частоты работают от промышленных трехфазных сетей с напряжением 380 В, 50 Гц. Частота напряжения на выходе – от 0 Гц до 1кГц. Трехфазные инверторы подключают по схеме «звезда» (Y).

Трехфазный частотный преобразователь подключают асинхронному двигателю по схеме звезда:

Однофазный частотный преобразователь подключают асинхронному двигателю по схеме треугольник:

Для ограничения пускового тока и снижения пускового момента при пуске асинхронного двигателя мощностью более 5 кВт может применяться метод переключения «звезда-треугольник». В момент пуска напряжение на статор подключается по схеме «звезда», как только двигатель разгонится до номинальной скорости, производится переключение питания на схему «треугольник». Пусковой ток при переключении втрое меньше, чем при прямом пуске двигателя от сети. Этот метод пуска оптимально подходит для механизма с большой маховой массой, если нагрузка набрасывается после разгона.

Способ пуска переключением «звезда-треугольник» можно использовать только для двигателей, имеющих возможность подключения по обеим схемам. При пуске наблюдается уменьшение пускового момента на треть от номинального. Если переключение произойдет до того, как двигатель разгонится, ток увеличится до значений, соответствующих току прямого пуска.

При пуске переключением «звезда-треугольник» неизбежны резкие скачки токов, в отличие от плавного нарастания при прямом пуске. В момент переключения на «треугольник» на двигатель не подается напряжение и скорость вращения может резко снизится. Для восстановления частоты оборотов требуется увеличение тока.

Перейти в каталог продукции: Частотные преобразователи

Преобразователь частоты для асинхронного – схема

Асинхронный двигатель (машина) – это электрический двигатель, частота вращения которого не совпадает с частотой тока (ЭДС), прикладываемого к статору.

Рис. 1. Асинхронный двигатель

 

К преимуществам таких двигателей можно отнести их низкую стоимость, простоту изготовления и эксплуатации, а также возможность прямого включения (без регулирования или преобразования питающего тока). Есть у них и недостатки: высокие требования к пусковому току, сложная регулировка оборотов, низкий коэффициент мощности и др.

Здесь стоит отметить, что асинхронные двигатели рассчитаны на работу только с трехфазным напряжением, только в этом случае не требуются никакие преобразователи.

Однако, в быту часто требуется запитать асинхронный двигатель от обычной сети переменного тока с одной фазой, и именно здесь кроется основная проблема.

 

Необходимость использования частотного преобразователя

Есть несколько способов управления асинхронным двигателем, и один из них – регулировка частоты.

Изменяя частоту питающего тока, вы меняете частоту вращения двигателя, можете запустить его или наоборот – остановить.

В качестве преобразователя напряжения наибольшее распространение нашли инверторные схемы. Они обеспечивают широкий диапазон регулировки частот, обладают высоким КПД и другими отличными техническими характеристиками.

Схему работы инверторов можно изобразить следующим образом.

Рис. 2. Схема работы инверторов 

 

Однофазное переменное напряжение преобразуется в постоянное, подается в блок с импульсным инвертором, который формирует три независимых переменных напряжения (одинакового уровня, но со смещенной фазой) — ключа.

 

Схема инверторного преобразователя для асинхронного двигателя

Преобразователи можно приобрести в готовом виде, а можно изготовить своими руками.
Сложность проектирования и создания таких схем заключается в логике их работы. В настоящее время с приходом программируемых контроллеров Arduino и т.п. имеется возможность создавать сложные схемы с широким диапазоном регулировки частот всех трех питающих напряжений. Однако, для начала рассмотрим простые варианты.

Двигатель ДИД-0.5ТА (напряжение питания около 27 В, частота вращения – до 400 Гц) имеет небольшую мощность и широко применяется в системах автоматики. Чтобы привести его в движение и отрегулировать частоту вращения вала можно использовать следующую схему.

Рис. 3. Схема двигателя

 

По сути она представляет собой три разделенных генератора частоты (ключа) на базе логических элементов.

За регулировку отвечает резистор R2. Такая схема не подойдет для запуска асинхронных двигателей, работающих от трехфазного напряжения 380 В.

Для этих целей можно использовать адаптированную схему.

Рис. 4. Адаптированная схема

 

Здесь блоки выходных ключей A2 и А3 изображены схематично, так как полностью дублируют блок А1.

Программировать здесь ничего не нужно.

 

Более сложные реализации

Многие производители предлагают специальные контроллеры, на базе которых управление асинхронными двигателями существенно упрощается.

Один из таких вариантов – контроллер MC3PHAC.

Рекомендуемая производителем схема подключения.

Рис. 5. Схема подключения

 

Реализация платы частотного преобразователя может быть, например, такой.

Рис. 6. Реализация платы частотного преобразователя

 

Обмен данными по последовательному интерфейсу RS232 с персональным компьютером не обязателен. Схема может работать автономно.

Управляющие сигналы и процедуры инициализации можно уточнить в даташите производителя.

 

Еще один вариант с готовой прошивкой для микроконтроллера

Схема использовалась для питания трехфазного двигателя на пилораме (наверное, самый популярный способ использования трехфазных двигателей).

Рис. 7. Схема для питания трехфазного двигателя

 

Блок питания к ней.

Рис. 8. Схема блока питания

 

Вариант печатной платы.

Рис. 9. Печатная плата

 

Частота может регулироваться в диапазоне 2,5-50 Гц с шагом 1,25. ШИМ – 1700 – 3300 Гц. Мощность двигателя – не более 4 кВт.

После одиночного короткого нажатия на кнопку «пуск» подается пусковая частота – 10 Гц. А удерживание инициирует дальнейший разгон до 50 Гц (в течении приблизительно 2 секунд).

Прошивка для контроллера PIC16F628(A) здесь.

Автор: RadioRadar

Схема плавной регулировки оборотов электродвигателя

Плавная работа двигателя, без рывков и скачков мощности – это залог его долговечности. Для контроля этих показателей используется регулятор оборотов электродвигателя на 220В, 12 В и 24 В, все эти частотники можно изготовить своими руками или купить уже готовый агрегат.

Зачем нужен регулятор оборотов

Регулятор оборотов двигателя, частотный преобразователь – это прибор на мощном транзисторе, который необходим для того, чтобы инвертировать напряжение, а также обеспечить плавную остановку и пуск асинхронного двигателя при помощи ШИМ. ШИМ – широко-импульсное управление электрическими приспособлениями. Его применяют для создания определенной синусоиды переменного и постоянного тока.

Фото — мощный регулятор для асинхронного двигателя

Самый простой пример преобразователя – это обычный стабилизатор напряжения. Но у обсуждаемого прибора гораздо больший спектр работы и мощность.

Частотные преобразователи используются в любом устройстве, которое питается от электрической энергии. Регуляторы обеспечивают чрезвычайно точный электрический моторный контроль, так что скорость двигателя можно изменять в меньшую или большую сторону, поддерживать обороты на нужном уровне и защищать приборы от резких оборотов. При этом электродвигателем используется только энергия, необходимая для работы, вместо того, чтобы запускать его на полной мощности.

Фото — регулятор оборотов двигателя постоянного тока

Зачем нужен регулятор оборотов асинхронного электродвигателя:

  1. Для экономии электроэнергии. Контролируя скорость мотора, плавность его пуска и остановки, силы и частоты оборотов, можно добиться значительной экономии личных средств. В качестве примера, снижение скорости на 20% может дать экономию энергии в размере 50%.
  2. Преобразователь частоты может использоваться для контроля температуры процесса, давления или без использования отдельного контроллера;
  3. Не требуется дополнительного контроллера для плавного пуска;
  4. Значительно снижаются расходы на техническое обслуживание.

Устройство часто используется для сварочного аппарата (в основном для полуавтоматов), электрической печки, ряда бытовых приборов (пылесоса, швейной машинки, радио, стиральной машины), домашнего отопителя, различных судомоделей и т.д.

Фото — шим контроллер оборотов

Принцип работы регулятора оборотов

Регулятор оборотов представляет собой устройство, состоящее из следующих трех основных подсистем:

  1. Двигателя переменного тока;
  2. Главного контроллера привода;
  3. Привода и дополнительных деталей.

Когда двигатель переменного тока запускается на полную мощность, происходит передача тока с полной мощностью нагрузки, такое повторяется 7-8 раз. Этот ток сгибает обмотки двигателя и вырабатывает тепло, которое будет выделяться продолжительное время. Это может значительно снизить долговечность двигателя. Иными словами, преобразователь – это своеобразный ступенчатый инвертор, который обеспечивает двойное преобразование энергии.

Фото — схема регулятора для коллекторного двигателя

В зависимости от входящего напряжения, частотный регулятор числа оборотов трехфазного или однофазного электродвигателя, происходит выпрямление тока 220 или 380 вольт. Это действие осуществляется при помощи выпрямляющего диода, который расположен на входе энергии. Далее ток проходит фильтрацию при помощи конденсаторов. Далее формируется ШИМ, за это отвечает электросхема. Теперь обмотки асинхронного электродвигателя готовы к передаче импульсного сигнала и их интеграции к нужной синусоиде. Даже у микроэлектродвигателя эти сигналы выдаются, в прямом смысле слова, пачками.

Как выбрать регулятор

Существует несколько характеристик, по которым нужно выбирать регулятор оборотов для автомобиля, станочного электродвигателя, бытовых нужд:

  1. Тип управления. Для коллекторного электродвигателя бывают регуляторы с векторной или скалярной системой управления. Первые чаще применяются, но вторые считаются более надежными;
  2. Мощность. Это один из самых важных факторов для выбора электрического преобразователя частот. Нужно подбирать частотник с мощностью, которая соответствует максимально допустимой на предохраняемом приборе. Но для низковольтного двигатель лучше подобрать регулятор мощнее, чем допустимая величина Ватт;
  3. Напряжение. Естественно, здесь все индивидуально, но по возможности нужно купить регулятор оборотов для электродвигателя, у которого принципиальная схема имеет широкий диапазон допустимых напряжений;
  4. Диапазон частот. Преобразование частоты – это основная задача данного прибора, поэтому старайтесь выбрать модель, которая будет максимально соответствовать Вашим потребностям. Скажем, для ручного фрезера будет достаточно 1000 Герц;
  5. По прочим характеристикам. Это срок гарантии, количество входов, размер (для настольных станков и ручных инструментов есть специальная приставка).

Хорошо себя зарекомендовали приборы марки Sinus, E-Sky и Pic.

При этом также нужно понимать, что есть так называемый универсальный регулятор вращения. Это частотный преобразователь для бесколлекторных двигателей.

Фото — схема регулятора для бесколлекторных двигателей

В данной схеме есть две части – одна логическая, где на микросхеме расположен микроконтроллер, а вторая – силовая. В основном такая электрическая схема используется для мощного электрического двигателя.

Видео: регулятор оборотов электродвигателя с ШИро V2

Как сделать самодельный регулятор оборотов двигателя

Можно сделать простой симисторный регулятор оборотов электродвигателя, его схема представлена ниже, а цена состоит только из деталей, продающихся в любом магазине электротехники.

Для работы нам понадобится мощный симистор типа BT138-600, её советует журнал радиотехники.

Фото — схема регулятора оборотов своими руками

В описанной схеме, обороты будут регулироваться при помощи потенциометра P1. Параметром P1 определяется фаза входящего импульсного сигнала, который в свою очередь открывает симистор. Такая схема может применяться как в полевом хозяйстве, так и в домашнем. Можно использовать данный регулятор для швейных машинок, вентиляторов, настольных сверлильных станков.

Принцип работы прост: в момент, когда двигатель немного затормаживается, его индуктивность падает, и это увеличивает напряжение в R2-P1 и C3, то в свою очередь влечет более продолжительное открытие симистора.

Тиристорный регулятор с обратной связью работает немного по-другому. Он обеспечивает обратный ход энергии в энергетическую систему, что является очень экономным и выгодным. Данный электронный прибор подразумевает включение в электрическую схемы мощного тиристора. Его схема выглядит вот так:

Здесь для подачи постоянного тока и выпрямления требуется генератор управляющего сигнала, усилитель, тиристор, цепь стабилизации оборотов.

На простых механизмах удобно устанавливать аналоговые регуляторы тока. К примеру, они могут изменить скорость вращения вала мотора. С технической стороны выполнить такой регулятор просто (потребуется установка одного транзистора). Применим для регулировки независимой скорости моторов в робототехнике и источниках питания. Наиболее распространены два варианта регуляторов: одноканальные и двухканальные.

Видео №1 . Одноканальный регулятор в работе. Меняет скорость кручения вала мотора посредством вращения ручки переменного резистора.

Видео №2. Увеличение скорости кручения вала мотора при работе одноканального регулятора. Рост числа оборотов от минимального до максимального значения при вращении ручки переменного резистора.

Видео №3 . Двухканальный регулятор в работе. Независимая установка скорости кручения валов моторов на базе подстроечных резисторов.

Видео №4. Напряжение на выходе регулятора измерено цифровым мультиметром. Полученное значение равно напряжению батарейки, от которого отняли 0,6 вольт (разница возникает из-за падения напряжения на переходе транзистора). При использовании батарейки в 9,55 вольт, фиксируется изменение от 0 до 8,9 вольт.

Функции и основные характеристики

Ток нагрузки одноканального (фото. 1) и двухканального (фото. 2) регуляторов не превышает 1,5 А. Поэтому для повышения нагрузочной способности производят замену транзистора КТ815А на КТ972А. Нумерация выводов для этих транзисторов совпадает (э-к-б). Но модель КТ972А работоспособна с токами до 4А.

Одноканальный регулятор для мотора

Устройство управляет одним мотором, питание осуществляется от напряжения в диапазоне от 2 до 12 вольт.

Конструкция устройства

Основные элементы конструкции регулятора представлены на фото. 3. Устройство состоит из пяти компонентов: два резистор переменного сопротивления с сопротивлением 10 кОм (№1) и 1 кОм (№2), транзистор модели КТ815А (№3), пара двухсекционных винтовых клеммника на выход для подключения мотора (№4) и вход для подключения батарейки (№5).

Примечание 1. Установка винтовых клеммников не обязательна. С помощью тонкого монтажного многожильного провода можно подключить мотор и источник питания напрямую.

Принцип работы

Порядок работы регулятора мотора описывает электросхема (рис. 1). С учетом полярности на разъем ХТ1 подают постоянное напряжение. Лампочку или мотор подключают к разъему ХТ2. На входе включают переменный резистор R1, вращение его ручки изменяет потенциал на среднем выходе в противовес минусу батарейки. Через токоограничитель R2 произведено подключение среднего выхода к базовому выводу транзистора VT1. При этом транзистор включен по схеме регулярного тока. Положительный потенциал на базовом выходе увеличивается при перемещении вверх среднего вывода от плавного вращения ручки переменного резистора. Происходит увеличение тока, которое обусловлено снижением сопротивления перехода коллектор-эмитттер в транзисторе VT1. Потенциал будет уменьшаться, если ситуация будет обратной.

Принципиальная электрическая схема

    Материалы и детали

    Необходима печатная плата размером 20х30 мм, изготовленная из фольгированного с одной стороны листа стеклотекстолита (допустимая толщина 1-1,5 мм). В таблице 1 приведен список радиокомпонентов.

    Примечание 2. Необходимый для устройства переменный резистор может быть любого производства, важно соблюсти для него значения сопротивления тока указанные в таблице 1.

    Примечание 3. Для регулировки токов выше 1,5А транзистор КТ815Г заменяют на более мощный КТ972А (с максимальным током 4А). При этом рисунок печатной платы менять не требуется, так как распределение выводов у обоих транзисторов идентично.

    Процесс сборки

    Для дальнейшей работы нужно скачать архивный файл, размещенный в конце статьи, разархивировать его и распечатать. На глянцевой бумаге печатают чертеж регулятора (файл termo1), а монтажный чертеж (файл montag1) – на белом листе офисной (формат А4).

    Далее чертеж монтажной платы (№1 на фото. 4) наклеивают к токоведущим дорожкам на противоположной стороне печатной платы (№2 на фото. 4). Необходимо сделать отверстия (№3 на фото. 14) на монтажом чертеже в посадочных местах. Монтажный чертеж крепится к печатной плате сухим клеем, при этом отверстия должны совпадать. На фото.5 показана цоколёвка транзистора КТ815.

    Вход и выход клеммников-разъемов маркируют белым цветом . Через клипсу к клеммнику подключается источник напряжения. Полностью собранный одноканальный регулятор отображен на фото. Источник питания (батарея 9 вольт) подключается на финальном этапе сборки. Теперь можно регулировать скорость вращения вала с помощью мотора, для этого нужно плавно вращать ручку регулировки переменного резистора.

    Для тестирования устройства необходимо из архива распечатать чертеж диска. Далее нужно наклеить этот чертеж (№1) на плотную и тонкую картонную бумагу (№2 ). Затем с помощью ножниц вырезается диск (№3).

    Полученную заготовку переворачивают (№1 ) и к центру крепят квадрат черной изоленты (№2) для лучшего сцепления поверхности вала мотора с диском. Нужно сделать отверстие (№3) как указано на изображении. Затем диск устанавливают на вал мотора и можно приступать к испытаниям. Одноканальный регулятор мотора готов!

    Двухканальный регулятор для мотора

    Используется для независимого управления парой моторов одновременно. Питание осуществляется от напряжения в диапазоне от 2 до 12 вольт. Ток нагрузки рассчитан до 1,5А на каждый канал.

    Конструкция устройства

    Основные компоненты конструкции представлены на фото.10 и включают: два подстроечных резистора для регулировки 2-го канала (№1) и 1-го канала (№2), три двухсекционных винтовых клеммника для выхода на 2-ой мотор (№3), для выхода на 1-ый мотор (№4) и для входа (№5).

    Примечание.1 Установка винтовых клеммников не обязательна. С помощью тонкого монтажного многожильного провода можно подключить мотор и источник питания напрямую.

    Принцип работы

    Схема двухканального регулятора идентична электрической схеме одноканального регулятора. Состоит из двух частей (рис.2). Основное отличие: резистор переменного сопротивления замен на подстроечный резистор. Скорость вращения валов устанавливается заранее.

    Примечание.2. Для оперативной регулировки скорости кручения моторов подстроечные резисторы заменяют с помощью монтажного провода с резисторами переменного сопротивления с показателями сопротивлений, указанными на схеме.

    Материалы и детали

    Понадобится печатная плата размером 30х30 мм, изготовленная из фольгированного с одной стороны листа стеклотекстолита толщиной 1-1,5 мм. В таблице 2 приведен список радиокомпонентов.

    Процесс сборки

    После скачивания архивного файла, размещенного в конце статьи, нужно разархивировать его и распечатать. На глянцевой бумаге печатают чертеж регулятора для термоперевода (файл termo2), а монтажный чертеж (файл montag2) – на белом листе офисной (формат А4).

    Чертеж монтажной платы наклеивают к токоведущим дорожкам на противоположной стороне печатной платы . Формируют отверстия на монтажом чертеже в посадочных местах. Монтажный чертеж крепится к печатной плате сухим клеем, при этом отверстия должны совпасть. Производится цоколёвка транзистора КТ815. Для проверки нужно временно соединить монтажным проводом входы 1 и 2 .

    Любой из входов подключают к полюсу источника питания (в примере показана батарейка 9 вольт). Минус источника питания при этом крепят к центру клеммника. Важно помнить: черный провод «-», а красный «+».

    Моторы должны быть подключены к двум клеммникам, также необходимо установить нужную скорость. После успешных испытаний нужно удалить временное соединение входов и установить устройство на модель робота. Двухканальный регулятор мотора готов!

    В АРХИВЕ представленные необходимые схемы и чертежи для работы. Эмиттеры транзисторов помечены красными стрелками.

    Принципиальные электросхемы, подключение устройств и распиновка разъёмов

    Качественный и надёжный контроллер скорости вращения для однофазных коллекторных электродвигателей можно сделать на распространённых деталях буквально за 1 вечер. Эта схема имеет встроенный модуль обнаружения перегрузки, обеспечивает мягкий пуск управляемого двигателя и стабилизатор скорости вращения мотора. Работает такой блок с напряжением как 220, так и 110 вольт.

    Технические параметры регулятора

    • напряжение питания: 230 вольт переменного тока
    • диапазон регулирования: 5…99%
    • напряжение нагрузки: 230 В / 12 А (2,5 кВт с радиатором)
    • максимальная мощность без радиатора 300 Вт
    • низкий уровень шума
    • стабилизация оборотов
    • мягкий старт
    • размеры платы: 50×60 мм

    Принципиальная электросхема

    Схема модуля системы регулирования основана на генераторе ШИМ импульсов и симисторе управления мотором — классическая схемотехника для подобных устройств. Элементы D1 и R1 обеспечивают ограничение величины напряжения питания до значения безопасной для питания микросхемы генератора. Конденсатор C1 отвечает за фильтрацию напряжения питания. Элементы R3, R5 и P1 являются делителем напряжения с возможностью его регулирования, который используется для задания величины мощности, подаваемой в нагрузку. Благодаря применению резистора R2, непосредственно входящего в цепь поступления на м/с фазы, внутренние блоки синхронизированы с симистором ВТ139.

    На следующем рисунке показано расположение элементов на печатной плате. Во время монтажа и запуска следует обратить внимание на обеспечение условий безопасной работы — регулятор имеет питание от сети 220В и его элементы непосредственно подключены к фазе.

    Увеличение мощности регулятора

    В испытательном варианте был применен симистор BT138/800 с максимальным током 12 А, что дает возможность управления нагрузкой более 2 кВт. Если необходимо управление ещё большими токами нагрузки — советуем тиристор установить за пределами платы на большом радиаторе. Также следует помнить о правильном выборе предохранителя FUSE в зависимости от нагрузки.

    Кроме управления оборотами электромоторов, можно без каких-либо переделок использовать схему для регулировки яркости ламп.

    «>

    Регулировка оборотов коллекторного двигателя без потери мощности


    Не каждая современная дрель или болгарка оснащена заводским регулятором оборотов, и чаще всего регулировка оборотов не предусмотрена вовсе. Тем не менее, как болгарки, так и дрели построены на базе коллекторных двигателей, что позволяет каждому их владельцу, маломальски умеющему обращаться с паяльником, изготовить собственный регулятор оборотов из доступных электронных компонентов, хоть из отечественных, хоть из импортных.

    В данной статье мы рассмотрим схему и принцип работы простейшего регулятора оборотов двигателя электроинструмента, и единственное условие — двигатель должен быть коллекторным — с характерными ламелями на роторе и щетками (которые порой искрят).

    Приведенная схема содержит минимум деталей, и подойдет для электроинструмента мощностью до 1,8 кВт и выше, для дрели или болгарки. Похожая схема используется для регулировки оборотов в автоматических стиральных машинах, в которых стоят коллекторные высокоскоростные двигатели, а также в диммерах для ламп накаливания. Подобные схемы, в принципе, позволят регулировать температуру нагрева жала паяльника, электрического обогревателя на базе ТЭНов и т. д.

    Потребуются следующие радиоэлектронные компоненты:

    В основе схемы — тиристор. Тиристор представляет собой полупроводниковый элемент с тремя выводами: анод, катод, и управляющий электрод. После подачи на управляющий электрод тиристора короткого импульса положительной полярности, тиристор превращается в диод, и начинает проводить ток до тех пор, пока в его цепи этот ток не прервется или не сменит направление.

    После прекращения тока или при смене его направления, тиристор закроется и перестанет проводить ток, пока не будет подан следующий короткий импульс на управляющий электрод. Ну а поскольку напряжение в бытовой сети переменное синусоидальное, то каждый период сетевой синусоиды тиристор (в составе данной схемы) станет отрабатывать строго начиная с установленного момента (в установленной фазе), и чем меньше во время каждого периода тиристор будет открыт, тем ниже будут обороты электроинструмента, а чем, соответственно, дольше тиристор будет открыт, тем выше будут обороты.

    Как видите, принцип прост. Но применительно к электроинструменту с коллекторным двигателем, схема работает хитрее, и об этом мы расскажем далее.

    Итак, в сеть здесь включены параллельно: измерительная цепь управления и силовая цепь. Измерительная цепь состоит из постоянного и переменного резисторов R1 и R2, из конденсатора C1, и диода VD1. Для чего нужна эта цепь? Это делитель напряжения. Напряжение с делителя, и что важно, противо-ЭДС с ротора двигателя, складываются в противофазе, и формируют импульс для открывания тиристора. Когда нагрузка постоянна, то и время открытого состояния тиристора постоянно, следовательно обороты стабилизированы и постоянны.

    Как только нагрузка на инструмент, и следовательно на двигатель, увеличивается, то величина противо-ЭДС уменьшается, поскольку обороты снижаются, значит сигнал на управляющий электрод тиристора возрастает, и открывание происходит с меньшей задержкой, то есть мощность подводимая к двигателю возрастает, увеличивая упавшие обороты. Так обороты сохраняются постоянными даже под нагрузкой.

    В результате совместного действия сигналов от противо-ЭДС и с резистивного делителя, нагрузка не сильно влияет на обороты, а без регулятора это влияние было бы существенным. Таким образом при помощи данной схемы достижима устойчивая регулировка оборотов в каждом положительном полупериоде сетевой синусоиды. При средних и малых скоростях вращения этот эффект более выражен.

    Однако, при повышении оборотов, то есть при повышении напряжения, снимаемого с переменного резистора R2, стабильность поддержания скорости постоянной снижается.

    Лучше на этот случай предусмотреть шунтирующую кнопку SA1 параллельно тиристору. Функция диодов VD1 и VD2 — обеспечение однополупериодного режима работы регулятора, так как напряжения с делителя и с ротора сравниваются лишь в отсутствие тока через двигатель.

    Конденсатор C1 расширяет зону регулирования на малых скоростях, а конденсатор C2 снижает чувствительность к помехам от искрения щеток. Тиристор нужен высокочувствительный, чтобы ток менее 100 мкА смог бы его открыть.

    Это устройство, предназначенное для выполнения функции плавного увеличения или уменьшения скорости вращения вала электрического двигателя. Регулировку можно осуществлять методом широтно-импульсной модуляции и методом изменения фазного напряжения.

    Использование широтно-импульсной модуляции

    Для управления и регулировки числа оборотов вращения электродвигателя асинхронного типа, можно использовать импульсный регулятор-стабилизатор напряжения (инвертор). Он будет выполнять функцию источника питания. В его основу положено применение импульсного ШИМ-регулятора марки ТL494. Питающее напряжение электродвигателя, выходящее после ШИМ-регулятора, будет изменяться в соответствии с изменением частоты вращения. Используя этот способ, достигается больший экономический эффект, устройство достаточно простое и при этом увеличивает эффективность регулирования.

    На рисунке выше изображена схема использования ШИМ-регулятора для трехфазного асинхронного двигателя, подключенного через конденсатор к однофазной сети.

    Этот способ, несмотря на свою эффективность, имеет два существенных недостатка – это:

    • невозможность реверсивного управления двигателем без использования дополнительных коммутирующих аппаратов;
    • частотные преобразователи , использованные в регуляторе, отличаются высокой стоимостью и выпускаются ограниченным числом производителей.


    Блок управления и регулирования скорости вращения электродвигателей изменением фазного напряжения

    Существует несколько видов блоков управления, изготовленных промышленным способом. Они используются для однофазных асинхронных двигателей, границы регулирования составляют от 25 до 100% от значения мощности, и от 1000 до 4000 об/мин. Это устройства с маркировкой РВС207, РВ600/900.

    Работа блока регулировки происходит при изменении средней величины переменного напряжения на электродвигателе. Она производится с помощью метода фазового регулирования напряжения, при изменении угла открытия полупроводниковых приборов (тиристоров, симисторов и т. д.), при использовании которых осуществлена сборка схемы.

    Управление блоком осуществляется посредством использования внешнего переменного резистора. В том случае, когда мощность менее 25%, двигатель отключается и переходит в дежурный режим ожидания.

    Контроль за работой осуществляется при помощи светового индикатора. Отключенное состояние двигателя – изредка мигает красный цвет. Двигатель работает – скважность включения индикатора пропорциональна оборотам вращения (производительности) двигателя.

    На рисунке схема подключения блока регулятора РВС 207.




    Наконец, начали «доходить» руки до самодельного точильного станка. В наличии был универсальный коллекторный электродвигатель УВ 051-Ц. Скорость его 7000 об/мин, что в двое больше, чем нужно для электроточила. Вдобавок, хотелось иметь регулировку оборотов (желательно с обратной связью). Пришлось собирать схему, которая отвечала всем запросам.
    Итак, как я пришел к тому, что скорость нужно снизить вдвое. На точильных камнях, обычно, есть надпись на какой максимальной скорости они могут работать. Чаще всего – это 25-30 м/с. Чтобы рассчитать необходимое количество оборотов электродвигателя для точильного станка – есть формула. Количество оборотов = (допустимые обороты на камне / диаметр точильного круга (в метрах) *3,14 )*60 секунд. Итого, максимальное количество оборотов электродвигателя для камня, который я приобрел = (25/0.15+3.14)*60, что приблизительно равно 3185 об/мин. Вывод: скорость 7000 об/мин электродвигателя УВ 051-Ц нужно снизить вдвое.

    В результате поисков, наткнулся на простую схему регулятора оборотов коллекторного электродвигателя 220 вольт с обратной связью. Информации по ней было не много, т.к., возможно, мало кто ее собирал, сомневаясь в ее работоспособности, видя насколько она примитивна. Я же ее собрал на кусочке монтажной платы, произвел отладку, убедился в работоспособности.

    Теперь пересказ принципа действия схемы регулятора оборотов коллекторного электродвигателя с обратной связью. R1+R2+C1 – формирует опорное напряжение, задающее скорость вращения двигателя. В момент приложения нагрузки, скорость вращения падает, снижается крутящий момент. Возникающая в двигателе и приложенная между управляющим контактом и катодом тиристора противо-ЭДС уменьшается. Пропорционально уменьшению противо-ЭДС увеличивается напряжение на управляющем контакте тиристора. Такое увеличение напряжение заставляет тиристор срабатывать при меньшем фазовом угле, и в следствии, подавать на двигатель больший ток.

    Тиристор нужно подбирать в зависимости от мощности электродвигателя. Мне хватило MCR100-8, в оригинальной схеме – КУ202Н. Под тиристор подбирается сопротивление резистора R3. Если тиристор КУ202Н – R3 можно не ставить. Диоды можно заменить на любые с аналогичными параметрами Д226, 1N4007 и т.д. С1 может быть в пределах 0,1-2uF, им устраняются рывки двигателя на малых оборотах. Конденсаторы с рабочим напряжением 250 вольт.



    Регулятор скорости асинхронного двигателя

    Помимо образцов регуляторов, промышленных образцов регуляторов, существует возможность самостоятельного выполнения регуляторов скорости бесколлекторных двигателей, не уступающих промышленным образцам. За основу схемы берется пример регулятора промышленного производства, ее можно собрать своими силами.

    На рисунке выше электрическая схема регулятора скорости вращения бесколлекторного двигателя.

    Регулировать количество оборотов вращения вала бесколлекторного асинхронного электродвигателя допускается также при изменении значения переменного напряжения, подаваемого к двигателю.

    В состав регулятора входит задающий генератор, он служит для изменения частоты в границах значений 50 – 200 Гц. Генератор состоит из мультивибратора, работа которого строится на микросхеме К561ЛА7 и счетчика-дешифратора марки К561ИЕ8 с коэффициентом пересчета – 8, она отвечает за формирование сигналов управления силовыми полевыми транзисторами полумоста.

    В схеме присутствует выходной трансформатор Т-1. Он служит для развязки транзисторов полумоста.

    Выпрямитель включает в свою конструкцию диодный мост и удваивающие напряжение питания – конденсаторы с большой емкостью.

    Диодный мост подключен по нетрадиционной схеме. С4 и R7 выполняют роль демпфирующей цепи, она служит для сглаживания всплесков напряжения, которые представляют собой опасность для транзисторов VТ4.

    Рекомендация

    : для трансформатора управления транзисторными ключами, можно применить трансформатор от телевизионного блока питания. В этом случае, тип не играет большого значения, главное, чтобы первичная обмотка состояла из 120 витков провода 0,7 мм2, вторичная представляет собой 2 независимые друг от друга обмотки с количеством витков – 60, провод, применяемый во вторичной обмотке, аналогичен проводу первичной. Первичная обмотка имеет напряжение 2 х 12 В, вторичная обмотка – по 12 В каждая.

    Необходимо помнить, что обе вторичные обмотки должны обладать хорошей изоляцией друг от друга, между обмотками присутствует высокий потенциал, он составляет 640 В, они подключаются к затворам транзисторных ключей в противофазе.

    Такой регулятор может управлять вращением асинхронного двигателя с максимальным значением рабочей мощности – 500 Вт. Чтобы регулятор использовать для регулировки электродвигателей более высокой мощности, нужно применить большее количество силовых ключей, а также изменить в сторону увеличения емкость конденсаторов для питающего фильтра, это элементы схемы С3 и С4. Для регулятора достаточно использовать печатную плату размером 110 х 80 мм. Управляющий силовыми транзисторными ключами трансформатор монтируется отдельно от блока регулятора.

    Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.

    Со своих первых паек с кислотным флюсом я задумывался о вентиляторе для паяльных работ. После радиомонтажной практики (там доходчиво объяснили необходимость вытяжки при пайке любым

    флюсом/припоем) было принято решение: вытяжке быть! Очень вовремя под руку попался вентилятор ВН-2.

    Но оказалось, что при прямом включении в сеть вентилятор очень шумит, да и тягой будущей вытяжки хотелось бы управлять. Нужен регулятор!

    Схема регулятора оборотов однофазного асинхронного двигателя на транзисторе D209L

    Немного поискав в сети, выбрал схему так называемого «беспомехового» регулятора:
    Собрав схему, я убедился в её пригодности для регулировки оборотов однофазного асинхронного двигателя (как в ВН-2). Но после КЗ на выходе в страну вечной охоты отправляется мой единственный КТ840 и неоновая лампочка, которую я подключил без резистора. Цены на КТ840 меня совсем не обрадовали. Решив сэкономить стипендию, я подыскал транзистор-аналог из горелого компьютерного БП — D209L. С этим транзистором схему пришлось немного изменить:

    Я решил добавить немного индикации, и поставил по светодиоду на вход и выход регулятора. Новую схему сначала тоже протестировал на навесном монтаже, а потом решил собирать в нормальном корпусе, который и приобрёл на радиорынке:

    Сразу озаботился радиатором для транзистора. Радиатор пришлось немного подогнать с помощью ножовки и напильника: Для крепления радиатора к корпусу применил самодельные винты М3 с широкой шляпкой (припаял по шайбе к винту): Вот так это все будет выглядеть снаружи: Теперь органы управления: Примеряемся: Сверлим отверстия и вставляем детали: С диаметром отверстий для светодиодов немного промахнулся, пришлось упаковать в прозрачную термоусадку: P.S.: прозрачная термоусадка — самая лучшая из всех, что я видел на киевском радиорынке, она при усаживании не вспучивается и не подгорает, а при соединении двух слоёв они сплавляются, и получается монолитная трубка.

    Регулятор оборотов электродвигателя 220в

    Его можно изготовить совершенно самостоятельно, но для этого нужно будет изучить все возможные технические особенности прибора. По конструкции можно выделить сразу несколько разновидностей главных деталей. А именно:

    1. Сам электродвигатель.
    2. Микроконтроллерная система управления блока преобразования.
    3. Привод и механические детали, которые связаны с работой системы.

    Перед самым началом запуска устройства, после подачи определённого напряжения на обмотки, начинается процесс вращения двигателя с максимальным показателем мощности. Именно такая особенность и будет отличать асинхронные устройства от остальных видов. Ко всему прочему происходит прибавление нагрузки от механизмов, которые приводят прибор в движение. В конечном счёте на начальном этапе работы устройства мощность, а также потребляемый ток лишь возрастают до максимальной отметки.

    В это время происходит процесс выделения наибольшего количества тепла. Происходит перегрев в обмотках, а также в проводах. Использование частичного преобразования поможет не допустить этого. Если произвести установку плавного пуска, то до максимальной отметки скорости (которая также может регулироваться оборудованием и может быть не 1500 оборотов за минуту, а всего лишь 1000) двигатель начнёт разгоняться не в первый момент работы, а на протяжении последующих 10 секунд (при этом на каждую секунду устройство будет прибавлять по 100−150 оборотов). В это время процесс нагрузки на все механизмы и провода начинает уменьшаться в несколько раз.

    Как сделать регулятор своими руками

    Можно совершенно самостоятельно создать регулятор оборотов электродвигателя около 12 В. Для этого стоит использовать переключатель сразу нескольких положений, а также специальный проволочный резистор. При помощи последнего происходит изменение уровня напряжения питания (а вместе с этим и показателя частоты вращения). Такие же системы можно применять и для совершения асинхронных движений, но они будут менее эффективными.

    Ещё много лет назад широко использовались механические регуляторы — они были построены на основе шестеренчатых приводов или же их вариаторов. Но такие устройства считались не очень надёжными. Электронные средства показывали себя в несколько раз лучше, так как они были не такими большими и позволяли совершать настройку более тонкого привода.

    Для того чтобы создать регулятор вращения электродвигателя, стоит использовать сразу несколько устройств, которые можно либо купить в любом строительном магазине, либо снять со старых инвенторных устройств. Чтобы совершить процесс регулировки, стоит включить специальную схему переменного резистора. С его помощью происходит процесс изменения амплитуды входящего на резистор сигнала.

    Внедрение системы управления

    Чтобы значительно улучшить характеристику даже самого простого оборудования, стоит в схему регулятора оборотов двигателя подключить микроконтроллерное управление. Для этого стоит выбрать тот процессор, в котором есть подходящее количество входов и выходов соответственно: для совершения подключения датчиков, кнопок, а также специальных электронных ключей.

    Для осуществления экспериментов стоит использовать особенный микроконтроллер AtMega 128 — это наиболее простой в применении и широко используемый контроллер. В свободном использовании можно найти большое число схем с его применением. Чтобы устройство совершало правильную работу, в него стоит записать определённый алгоритм действий — отклики на определённые движения. К примеру, при достижении температуры в 60 градусов Цельсия (замер будет отмечаться на графике самого устройства), должно произойти автоматическое отключение работы устройства.

    Печатная плата

    Для изготовления платы сначала вырезал из картона шаблон, чтобы не ошибиться в размерах и не подгонять потом готовую плату напильником: По шаблону вырезаю ножницами по металлу плату из текстолита: Плату рисую вручную цапонлаком по трафарету, предварительно нанеся точки в местах будущих отверстий самодельным кернером из фрезы. Сами дорожки рисовал с помощью «рейсфедера» из вытянутого пипеткой стержня от ручки, очень удобно (не ломается, как стеклянная пипетка). Готовые дорожки «запекаю» газовой горелкой: экспериментально установил, что мой цапонлак от такой шоковой сушки становится вообще «дубовым», что подходит для моей методики травления, о которой ниже. Процесс «обжига»: Важно
    : если во время «обжига» на меди будут отпечатки пальцев/грязь, то они останутся и на вытравленной плате. Поэтому чистый текстолит я заклеиваю скотчем на время резки/кернения и отклеиваю его только когда рисую дорожки.

    Травление

    Недавно открыл для себя просто фантастический метод травления плат: лимонной кислотой!
    Рекомендуемый способ приготовления травильного раствора:

    В 100 мл аптечной 3% перекиси водорода растворяется 30 г лимонной кислоты и 5 г поваренной соли. Этого раствора должно хватить для травления 100 см2 меди, толщиной 35мкм.

    Соль при подготовке раствора можно не жалеть. Так как она играет роль катализатора, то в процессе травления практически не расходуется. Перекись 3% не стоит разбавлять дополнительно т.к. при добавлении остальных ингредиентов её концентрация снижается.

    Чем больше будет добавлено перекиси водорода (гидроперита) тем быстрее пойдёт процесс, но не переусердствуйте — раствор не хранится, т.е. повторно не используется, а значит и гидроперит будет просто перерасходован. Избыток перекиси легко определить по обильному «пузырению» во время травления. Однако добавление лимонной кислоты и перекиси вполне допустимо, но рациональнее приготовить свежий раствор.

    Свою плату я вытравил примерно за 12 минут! Дальше все без «самодеятельности»:

    Окончательная сборка регулятора

    Детали вне платы «получают» провода в термоусадке, некоторые из этих деталей приходится припаивать со стороны дорожек.
    Данный регулятор оборотов электродвигателя 220в

    позволяет изменять частоту либо электродвигателя, рассчитанных на работу от сети 220 вольт.

    Достаточно популярным регулятором оборотов для электродвигателей на 220 вольт переменного тока является схема на тиристорах. Типовой схемой является подключение электродвигателя или вентилятора в разрыв анодной цепи тиристора.

    Одно не маловажное условие при использовании подобных регуляторов, это надежный контакт во всей цепи. Что нельзя сказать про коллекторные электродвигатели, поскольку у них механизм щеток создает кратковременные обрывы электроцепи. Это существенно влияет на качество работы регулятора.

    Регулятор оборотов мощности

    Принципы работы

    Регулятор оборотов электродвигателя 220 В без потери мощности используется для поддержки первоначальной заданной частоты оборотов вала. Это один из основных принципов данного прибора, который называется частотным регулятором.

    С помощью него электроприбор работает в установленной частоте оборотов двигателя и не снижает ее. Также регулятор скорости двигателя влияет на охлаждение и вентиляцию мотора. C помощью мощности устанавливается скорость, которую можно как поднять, так и снизить.

    Вопросом о том, как уменьшить обороты электродвигателя 220 В, задавались многие люди. Но данная процедура довольно проста. Стоит только изменить частоту питающего напряжения, что существенно снизит производительность вала мотора. Также можно изменить питание двигателя, задействуя при этом его катушки. Управление электричеством тесно связано с магнитным полем и скольжением электродвигателя. Для таких действий используют в основном автотрансформатор, бытовые регуляторы, которые уменьшают обороты данного механизма. Но стоит также помнить о том, что будет уменьшаться мощность двигателя.

    Вращение вала

    Двигатели делят на:

    Регулятор скорости вращения асинхронного электродвигателя зависит от подключения тока к механизму. Суть работы асинхронного мотора зависит от магнитных катушек, через которые проходит рамка. Она поворачивается на скользящих контактах. И когда при повороте она развернется на 180 градусов, то по данным контактам связь потечет в обратном направлении. Таким образом, вращение останется неизменным. Но при этом действии нужный эффект не будет получен. Он войдет в силу после внесения в механизм пары десятков рамок данного типа.

    Коллекторный двигатель используется очень часто. Его работа проста, так как пропускаемый ток проходит напрямую — из-за этого не теряется мощность оборотов электродвигателя, и механизм потребляет меньше электричества.

    Двигатель стиральной машины также нуждается в регулировке мощности. Для этого были сделаны специальные платы, которые справляются со своей работой: плата регулировки оборотов двигателя от стиральной машины несет многофункциональное употребление, так как при ее применении снижается напряжение, но не теряется мощность вращения.

    Схема данной платы проверена. Стоит только поставить мосты из диодов, подобрав оптрон для светодиода. При этом еще нужно поставить симистор на радиатор. В основном регулировка двигателя начинается от 1000 оборотов.

    Если не устраивает регулятор мощности и не хватает его функциональности, можно сделать или усовершенствовать механизм. Для этого нужно учитывать силу тока, которая не должна превышать 70 А, и теплоотдачу при использовании. Поэтому можно установить амперметр для регулировки схемы. Частота будет небольшой и будет определена конденсатором С2.

    Далее стоит настроить регулятор и его частоту. При выходе данный импульс будет выходить через двухтактный усилитель на транзисторах. Также можно сделать 2 резистора, которые будут служить выходом для охладительной системы компьютера. Чтобы схема не сгорела, требуется специальный блокиратор, который будет служить удвоенным значением тока. Так данный механизм будет работать долго и в нужном объеме. Регулирующие приборы мощности обеспечат вашим электроприборам долгие годы службы без особых затрат.

    Источник: instrument.guru

    Описание работы схемы регулятора оборотов

    Приведенная ниже схема

    тиристорного
    регулятора оборотов
    , как раз разработана для изменения частоты вращения коллекторных
    электродвигателей
    (электродрель, фрезер,
    вентилятор
    ). Первое, что следует отметить, это то, что двигатель вместе с силовым тиристором VS2 подсоединен в одну из диагоналей диодного моста VD3, на другую же подается сетевое напряжение
    220 вольт
    .

    Помимо этого, данный тиристор контролируется достаточно широкими импульсами, благодаря которым, непродолжительные отключения активной нагрузки, которыми характеризуется работа коллекторного двигателя, не влияют на устойчивую работу данной схемы.

    Для управления тиристором VS1 на транзисторе VT1, собран генератор импульсов. Питание данного генератор осуществляется трапециевидным напряжением, создающимся в результате ограничения положительных полуволн стабилитроном VD1 имеющих частоту 100 Гц. Конденсатор С1 разряжается через сопротивления R1, R2, R3. Резистором R1 осуществляется скорость разряда данного конденсатора.

    При достижении на конденсаторе напряжения достаточного для открывания транзистора VT1, на управляющий вывод VS1 поступает положительный импульс. Тиристор открывается и теперь уже на управляющем выводе VS2 появляется длительный импульс управления. И уже с данного тиристора напряжение, которое фактически и влияет на величину оборотов, подается на двигатель.

    Частоту оборотов вращения электродвигателя регулируют резистором R1. Так как в цепь VS2 подключена индуктивная нагрузка, то возможно спонтанное отпирание тиристора, даже при отсутствии управляющего сигнала. Поэтому для предотвращения данного нежелательного эффекта, в схему добавлен диод VD2 который подключается параллельно обмотке возбуждения L1 электродвигателя.

    Настройка регулятора оборотов

    Во время наладки схемы регулятора желательно применить стробоскоп, который позволяет либо стрелочный вольтметр для переменного тока, который подсоединяют параллельно двигателю.

    Вращая ручку резистора R1, определяют диапазон изменения напряжения. Путем подбора сопротивления R3 устанавливают данный диапазон в районе от 90 до 220 вольт. В том случае если при минимальных оборотах двигатель вентилятора работает неустойчиво, то необходимо немного уменьшить сопротивление R2.

    С все более увеличивающимся ростом автоматизации в бытовой сфере появляется необходимость в современных системах и устройствах управления электродвигателями.

    Управление и преобразование частоты в небольших по мощности однофазных асинхронных двигателях, запускаемых в работу с помощью конденсаторов, позволяет экономить электроэнергию и активирует режим энергосбережения на новом, прогрессивном уровне.

    Зачем нужен регулятор оборотов

    Регулятор оборотов двигателя, частотный преобразователь – это прибор на мощном транзисторе, который необходим для того, чтобы инвертировать напряжение, а также обеспечить плавную остановку и пуск асинхронного двигателя при помощи ШИМ. ШИМ – широко-импульсное управление электрическими приспособлениями. Его применяют для создания определенной синусоиды переменного и постоянного тока.

    Фото — мощный регулятор для асинхронного двигателя

    Самый простой пример преобразователя – это обычный стабилизатор напряжения. Но у обсуждаемого прибора гораздо больший спектр работы и мощность.

    Частотные преобразователи используются в любом устройстве, которое питается от электрической энергии. Регуляторы обеспечивают чрезвычайно точный электрический моторный контроль, так что скорость двигателя можно изменять в меньшую или большую сторону, поддерживать обороты на нужном уровне и защищать приборы от резких оборотов. При этом электродвигателем используется только энергия, необходимая для работы, вместо того, чтобы запускать его на полной мощности.


    Фото — регулятор оборотов двигателя постоянного тока

    Зачем нужен регулятор оборотов асинхронного электродвигателя:

    1. Для экономии электроэнергии. Контролируя скорость мотора, плавность его пуска и остановки, силы и частоты оборотов, можно добиться значительной экономии личных средств. В качестве примера, снижение скорости на 20% может дать экономию энергии в размере 50%.
    2. Преобразователь частоты может использоваться для контроля температуры процесса, давления или без использования отдельного контроллера;
    3. Не требуется дополнительного контроллера для плавного пуска;
    4. Значительно снижаются расходы на техническое обслуживание.

    Принцип работы однофазной асинхронной машины

    В основе работы асинхронного двигателя лежит взаимодействие вращающегося магнитного поля статора и токов, наводимых им в роторе двигателя. При разности частоты вращения пульсирующих магнитных полей возникает вращающий момент. Именно этим принципом руководствуются при регулировании скорости вращения асинхронного двигателя с помощью .

    Пусковая обмотка занимает в конструкции статора 1/3 пазов, на главную обмотку приходится 23 паза статора.

    Ротор однофазного двигателя коротко замкнутый, помещенный в неподвижное магнитное поле статора, начинает вращаться.

    Рис.№1 Схематический рисунок двигателя, демонстрирующий принцип работы однофазного асинхронного двигателя.

    Методы настройки оборотов

    Для предотвращения отрицательного влияния во время пуска нужно уменьшить обороты электродвигателя 220 в или 380 в. Существует несколько способов достижения этой цели:

    1. Изменение значения R цепи ротора.
    2. Изменение U в обмотке статора.
    3. Изменение частоты U.
    4. Переключение полюсов.

    При изменении значения R роторной части при помощи дополнительных резисторов приводит к снижению частоты вращения, но в результате этого уменьшается мощность. Следовательно, получается значительная потеря электроэнергии. Этот тип регулирования следует применять для фазного ротора.

    При изменении значений U на статорной катушке возможно механическое или электрическое управление частотой вращения ротора. В этом случае используется регулятор U. Использование такого способа позволяет применять его только при вентиляторном характере нагрузки (например, регулятор оборотов вентилятора 220в). Для всех остальных случаев применяют трехфазные автоматические трансформаторы, позволяющие плавно изменять значения U, или тиристорные регуляторы.

    Исходя из формулы зависимости частоты вращения от частоты питающего U можно производить регулирование количества оборотов ротора. Частота вращающегося магнитного поля статора вычисляется по формуле: Nст = 60 * f /p (f — частота тока питающей сети, p — число пар полюсов). Этот способ обеспечивает возможность плавного регулирования частоты вращения роторной части. Для получения высокого коэффициента полезного действия нужно изменять частоту и U. Этот способ является оптимальным для двигателей с короткозамкнутым ротором, так как потери мощности минимальны. Существует два метода изменения количества пар полюсов:

    1. В статор (в пазы) нужно уложить 2 обмотки с различным числом p.
    2. Обмотка состоит из двух частей, соединенных параллельно или последовательно.

    Основным недостатком этого метода является поддержание ступенчатого характера изменения частоты электромотора с короткозамкнутым ротором.

    Управление скоростью вращения однофазных двигателей

    Существует несколько способов регулирования скорости вращения однофазного двигателя.

    1. Управление скольжением двигателя или изменением напряжения. Способ актуален для агрегатов с вентиляторной нагрузкой, для него рекомендуется использовать двигатели с повышенной мощностью. Недостаток способа – нагрев обмоток двигателя.
    2. Ступенчатое регулирование скорости вращения двигателя с помощью автотрансформатора.

    Рис.№2. Схема регулировки с помощью автотрансформатора.

    Достоинства схемы – напряжение выхода имеет чистую синусоиду. Способность трансформатора к перегрузкам имеет большой запас по мощности.

    Недостатки – автотрансформатор имеет большие габаритные размеры.

    Использование тиристорного . Применяются тиристорные ключи, подключенные встречно-параллельно.

    Рис. №3.Схема тиристорного регулирования однофазного асинхронного электродвигателя.

    При использовании для регулирования скорости вращения однофазных асинхронных двигателей, чтобы избежать негативного влияния индукционной нагрузки производят модификацию схемы. Добавляют LRC-цепи для защиты силовых ключей, для корректировки волны напряжения используют конденсатор, минимальная мощность двигателя ограничивается, так гарантируется старт двигателя. Тиристор должен иметь ток выше тока электродвигателя.

    Транзисторный регулятор напряжения

    В схеме используется широтно-импульсная модуляция (ШИМ) с применением выходного каскада, построенного на использовании полевых или биполярных IGBT транзисторах.

    Рис. №4. Схема использования ШИМ для регулирования однофазного асинхронного электродвигателя.

    Частотное регулирование асинхронного однофазного электродвигателя считается основным способом регулирования , мощности, эффективности использования, скорости и показателей энергосбережения.

    Рис. №5. Схема управления электродвигателем без исключения из конструкции конденсатора.

    Регулирование напряжением

    Регулирование скорости этим способом связано с изменением, так называемого, скольжения двигателя — разностью между скоростью вращения магнитного поля, создаваемого неподвижным статором двигателя и его движущимся ротором:

    n1 — скорость вращения магнитного поля

    n2— скорость вращения ротора

    При этом обязательно выделяется энергия скольжения — из-за чего сильнее нагреваются обмотки двигателя.

    Данный способ имеет небольшой диапазон регулирования, примерно 2:1, а также может осуществляться только вниз — то есть, снижением питающего напряжения.

    При регулировании скорости таким способом необходимо устанавливать двигатели завышенной мощности.

    Но несмотря на это, этот способ используется довольно часто для двигателей небольшой мощности с вентиляторной нагрузкой.

    На практике для этого применяют различные схемы регуляторов.

    Автотрансформаторное регулирование напряжения

    Автотрансформатор — это обычный трансформатор, но с одной обмоткой и с отводами от части витков. При этом нет гальванической развязки от сети, но она в данном случае и не нужна, поэтому получается экономия из-за отсутствия вторичной обмотки.

    На схеме изображён автотрансформатор T1, переключатель SW1, на который приходят отводы с разным напряжением, и двигатель М1.

    Регулировка получается ступенчатой, обычно используют не более 5 ступеней регулирования.

    Преимущества данной схемы:

    • неискажённая форма выходного напряжения (чистая синусоида)
    • хорошая перегрузочная способность трансформатора

    Недостатки:

    • большая масса и габариты трансформатора (зависят от мощности нагрузочного мотора)
    • все недостатки присущие регулировке напряжением

    Тиристорный регулятор оборотов двигателя

    В данной схеме используются ключи — два тиристора, включённых встречно-параллельно (напряжение переменное, поэтому каждый тиристор пропускает свою полуволну напряжения) или симистор.

    Схема управления регулирует момент открытия и закрытия тиристоров относительно фазового перехода через ноль, соответственно «отрезается» кусок вначале или, реже в конце волны напряжения.

    Таким образом изменяется среднеквадратичное значение напряжения.

    Данная схема довольно широко используется для регулирования активной нагрузки — ламп накаливания и всевозможных нагревательных приборов (так называемые диммеры).

    Ещё один способ регулирования — пропуск полупериодов волны напряжения, но при частоте в сети 50 Гц для двигателя это будет заметно — шумы и рывки при работе.

    Для управления двигателями регуляторы модифицируют из-за особенностей индуктивной нагрузки:

    • устанавливают защитные LRC-цепи для защиты силового ключа (конденсаторы, резисторы, дроссели)
    • добавляют на выходе конденсатор для корректировки формы волны напряжения
    • ограничивают минимальную мощность регулирования напряжения — для гарантированного старта двигателя
    • используют тиристоры с током в несколько раз превышающим ток электромотора

    Достоинства тиристорных регуляторов:

    Недостатки:

    • можно использовать для двигателей небольшой мощности
    • при работе возможен шум, треск, рывки двигателя
    • при использовании симисторов на двигатель попадает постоянное напряжение
    • все недостатки регулирования напряжением

    Частотный преобразователь: виды, принцип действия, схемы подключения

    Разрешает своему владельцу снизить энергопотребление и автоматизировать процессы в управлении оборудованием и производством.

    Основные компоненты : выпрямитель, конденсатор, IGBT-транзисторы, собранные в выходной каскад.

    Благодаря способности управлением параметрами выходной частоты и напряжения достигается хороший энергосберегающий эффект. Энергосбережение выражается в следующем:

    1. В двигателе поддерживается неизменный текущий момент ращения вала. Это обусловлено взаимодействием выходной частоты инверторного преобразователя с частотой вращения двигателя и соответственно, зависимостью напряжения и крутящего момента на валу двигателя. Значит, что преобразователь дает возможность автоматически регулировать напряжение на выходе при обнаружении превышающего норму значения напряжения с определенной рабочей частотой нужно для поддержания требуемого момента. Все инверторные преобразователи с векторным управлением имеют функцию поддержания постоянного вращающего момента на валу.
    2. Частотный преобразователь служит для регулировки действия насосных агрегатов (). При получении сигнала, поступающего с датчика давления, частотник снижает производительность насосной установки. При снижении оборотов вращения двигателя уменьшается потребление выходного напряжения. Так, стандартное потребление воды насосом требует 50Гц промышленной частоты и 400В напряжения. Руководствуясь формулой мощности можно высчитать соотношение потребляемых мощностей.

    Уменьшая частоту до 40Гц, уменьшается величина напряжения до 250В, означает, что уменьшается количество оборотов вращения насоса и потребление энергии снижается в 2,56 раз.

    Рис. №6. Использование частотного преобразователя Speedrive для регулирования насосных агрегатов по систем CKEA MULTI 35.

    Для повышения энергетической эффективности использования необходимо сделать следующее:

    • Частотный преобразователь должен соответствовать параметрам электродвигателя.
    • Частотник подбирается в соответствии с типом рабочего оборудования, для которого он предназначен. Так, частотник для насосов функционирует в соответствии с заложенными в программу параметрами для управления работой насоса.
    • Точные настройки параметров управления в ручном и автоматическом режиме.
    • Частотный преобразователь разрешает использовать режим энергосбережения.
    • Режим векторного регулирования позволяет произвести автоматическую настройку управления двигателем.

    Преобразователь частоты однофазный

    Компактное устройство преобразования частоты служит для управления однофазными электродвигателями для оборудования бытового предназначения. Большинство частотных преобразователей обладает следующими конструктивными возможностями:

    1. Большинство моделей использует в своей конструкции новейшие технологии векторного управления.
    2. Они обеспечивают улучшенный вращающий момент однофазного двигателя.
    3. Энергосбережение введено в автоматический режим.
    4. Некоторые модели частотных преобразователей используют съемный пульт управления.
    5. Встроенный PLC контроллер (он незаменим для создания устройств сбора и передачи данных, для создания систем телеметрии, объединяет устройства с различными протоколами и интерфейсами связи в общую сеть).
    6. Встроенный ПИД регулятор (контролирует и регулирует температуру, давление и технологические процессы).
    7. Напряжение выхода регулируется в автоматическом режиме.

    Рис.№7. Современный преобразователь Optidrive с основными функциональными особенностями.

    Важно: Однофазный преобразователь частоты, питаясь от однофазной сети напряжением 220В, выдает три линейных напряжения, величина каждого из них по 220В. То есть, линейное напряжение между 2 фазами находится в прямой зависимости от величины выходного напряжения самого частотника.

    Частотный преобразователь не служит для двойного преобразования напряжения, благодаря наличию в конструкции ШИМ-регулятора, он может поднять величину напряжения не более чем на 10%.

    Главная задача однофазного преобразователя частоты – обеспечить питание как одно- так и трехфазного электродвигателя. В этом случае ток двигателя будет соответствовать параметрам подключения от трехфазной сети, и оставаться постоянным

    Устройство системы

    Коллекторный тип двигателя состоит главным образом из ротора, статора, а также щёток и тахогенератора.

    1. Ротор — это часть вращения, статор — это внешний по типу магнит.
    2. Щётки, которые произведены из графита — это главная часть скользящего контакта, через которую на вращающийся якорь и стоит подавать напряжение.
    3. Тахогенератор —это устройство, которое производит слежку за характеристикой вращения прибора. Если происходит нарушение в размеренности процесса вращения, то он корректирует поступающий в двигатель уровень напряжения, тем самым делая его наиболее плавным и медленным.
    4. Статор. Такая деталь может включать в себя не один магнит, а, к примеру, две пары полюсов. Вместе с этим на месте статических магнитов здесь будут находиться катушки электромагнитов. Совершать работу такое устройство способно как от постоянного тока, так и от переменного.

    Схема регулятора оборотов коллекторного двигателя

    В виде регуляторов оборотов электродвигателей 220 В и 380 В применяются особые частотные преобразователи. Такие устройства относят к высокотехнологическим, они и помогают совершить кардинальное преобразование характеристики тока (форму сигнала, а также частоту). В их комплектации имеются мощные полупроводниковые транзисторы, а также широтно-импульсный модулятор. Весь процесс осуществления работы устройства происходит с помощью управления специальным блоком на микроконтроллере. Изменение скорости во вращении ротора двигателей происходит довольно медленно.
    Именно по этой причине частотные преобразователи применяются в нагруженных устройствах. Чем медленнее будет происходить процесс разгона, тем меньшая нагрузка будет совершена на редуктор, а также конвейер. Во всех частотниках можно найти несколько степеней защиты: по нагрузке, току, напряжению и другим показателям.

    Некоторые модели частотных преобразователей совершают питание от однофазового напряжения (оно будет доходить до 220 Вольт), создают из него трехфазовое. Это помогает совершить подключение асинхронного мотора в домашних условиях без применения особо сложных схем и конструкций. При этом потребитель сможет не потерять мощность во время работы с таким прибором.

    Зачем используют такой прибор-регулятор

    Если говорить про двигатели регуляторов, то обороты нужны:

    1. Для существенной экономии электроэнергии. Так, не любому механизму нужно много энергии для выполнения работы вращения мотора, в некоторых случаях можно уменьшить вращение на 20−30 процентов, что поможет значительно сократить расходы на электроэнергию сразу в несколько раз.
    2. Для защиты всех механизмов, а также электронных типов цепей. При помощи преобразовательной частоты можно осуществлять определённый контроль за общей температурой, давлением, а также другими показателями прибора. В случае когда двигатель работает в виде определённого насоса, то в ёмкости, в которую совершается накачка воздуха либо жидкости, стоит вводить определённый датчик давления. Во время достижения максимальной отметки мотор попросту автоматически закончит свою работу.
    3. Для процесса плавного запуска. Нет особой необходимости применять дополнительные электронные виды оборудования — все можно осуществить при помощи изменения в настройках частотного преобразователя.
    4. Для снижения уровня расходов на обслуживание устройств. С помощью таких регуляторов оборотов в двигателях 220 В можно значительно уменьшить возможность выхода из строя приборов, а также отдельных типов механизмов.

    Частотное регулирование однофазных асинхронных электродвигателей

    Первое на что обращаем внимание при выборе частотника для своего оборудования – это соответствие сетевого напряжения и номинального значения тока нагрузки, на который рассчитан двигатель. Способ подключения выбирается относительно рабочего тока.

    Главным в схеме подключения является наличие фазосдвигающего конденсатора, он служит для сдвига напряжения, поступающего на пусковую обмотку. Она служит для пускового включения двигателя, иногда после того, как двигатель заработал, пусковая обмотка вместе с конденсатором отключается, иногда остается включенной.

    (PDF) Сравнение различных резьбовых обмоток для регулировки потока в асинхронных двигателях

    FERREIRA et al .: СРАВНЕНИЕ РАЗЛИЧНЫХ НАПРАВЛЯЕМЫХ ОБМОТКОВ ДЛЯ ИНДУКЦИОННЫХ ДВИГАТЕЛЕЙ ДЛЯ РЕГУЛИРОВКИ ПОТОКА 391

    улучшение их эффективности при частичной нагрузке при

    и PF, и Требуется

    , обеспечивает номинальный крутящий момент, поэтому

    особенно интересен, если двигатель работает длительные периоды с нагрузкой ниже

    , чем 35–45%, и короткие периоды с нагрузкой, близкой к 100%.

    Решения на основе двух последовательно соединенных по фазе цепей с номиналом

    (случаи C и D) лучше, чем решения на основе

    (случаи A и B) для целей регулировки потока

    из-за того, что превосходная производительность в режиме высокого потока.Соотношение

    низкого / высокого потока можно легко установить путем правильного выбора

    баланса числа витков в обеих отдельных цепях. Решения

    , основанные на соединении звездой обмотки между двумя катушками

    набора каждой фазы (случаи E и E ∗) также представляют интерес, с характеристиками

    , аналогичными случаям C и D, но с немного более высоким значением

    .

    пространственных гармоник в ММП воздушного зазора. Для соединения с высоким потоком

    Case E ∗ предлагает немного более высокую эффективность, чем Case

    E.

    В режиме высокого потока обмотка случая D дает в √3 раза

    меньшие потери Джоулей, чем обмотка случая C, но в √3 раза

    более высокие потери Джоулей в обмотке, чем обычные Y / Dwinding.

    Обмотки с ответвлениями также могут применяться для двигателей с постоянным током

    с линейным пуском для повышения эффективности и повышения коэффициента мощности при малых нагрузках [17] и даже

    , когда запуск должен быть принудительным, чтобы компенсировать тормозной момент

    из-за магнитов. . Иногда это делается путем соединения

    последовательных цепей параллельно (количество витков фазы

    уменьшено вдвое) для увеличения потока воздушного зазора, для чего требуется более двух контакторов

    .

    БЛАГОДАРНОСТЬ

    Авторы хотели бы поблагодарить г-на Тьяго Л. Ф. Круза,

    M.Sc. Студент Политехнического института Коимбры, за

    выполнил

    экспериментальных моторных испытаний.

    ССЫЛКИ

    [1] ABB: «Решения для запуска двигателей — Руководство по применению», ABB Entrelec,

    1SBC101001C0202, Отпечатано во Франции, 2009 г.

    [2] Вращающиеся электрические машины — Часть 12: Пусковые характеристики одиночных —

    3-фазные асинхронные двигатели с короткозамкнутым ротором, скорость

    , IEC 60034–12 Ed.2.0, (2002) ,.

    [3] Низковольтные распределительные устройства — Часть 4–1: Контакторы и пускатели двигателей

    — Электромеханические контакторы и пускатели двигателей,

    IEC60947–4–1, Под ред. 3.1, (2002).

    [4] Ф. Дж. Т. Э. Феррейра и А. Т. де Алмейда, «Метод полевой оценки

    соединения обмотки статора трехфазных асинхронных двигателей для максимизации КПД и коэффициента мощности

    », IEEE Trans. Energy Convers., Т. 21, нет. 2,

    с.370–379, июнь 2006 г.

    [5] FJTE Ferreira и AT de Almeida, «Новый многопоточный, трехфазный,

    -фазный, с короткозамкнутым ротором, индукционный двигатель с короткозамкнутым ротором для повышения эффективности и максимального коэффициента мощности.

    imization», IEEE Trans . Energy Convers., Т. 23, нет. 1, стр. 101–109,

    март 2008 г.

    [6] М. Систелекан, FJTE Феррейра и М. Попеску, «Трехфазные машины переменного тока с регулируемым потоком

    с комбинированной многоступенчатой ​​обмоткой звезда-треугольник. соединения », IEEE Trans.Energy Convers., Т. 25, нет. 2, pp. 348–355, Jun.

    2010.

    [7] Д. Г. Доррелл и Ф. Дженсен, «Моделирование асинхронных двигателей с расщепленной фазой с обмотками

    с центральным отводом и падениями асинхронного момента», IEEE Trans. Инд.

    Заявление, т. 45, нет. 1. С. 168–177, янв. / Февр. 2009.

    [8] П. Л. Алджер, «Расчет производительности для пуска по частям обмотки трехфазных двигателей

    », AIEE Trans., Vol. 75, нет. 3, Часть III, стр. 1535–1543, февраль 1957.

    [9] J.Дж. Куртин, «Десять частичных обмоток в образце 4-полюсного асинхронного двигателя

    », AIEE Trans., Vol. 74, нет. 3, Часть. III, стр. 1248–1254, декабрь 1955.

    [10] К. К. Раджараман, «Теория и конструкция запуска частичной обмотки», IEEE

    Trans. Конв. Энергии, т. 14, вып. 1, стр. 31–36, март 1999 г.

    [11] М. В. Цистелекан, М. А. Сарбу и Б. Косан, «Оптимизация линии тягового двигателя серии IN-

    , запускаемой с использованием параллельных цепей с частичной обмоткой», в Proc.

    Inter.Конф. OPTIM, Брашов, Румыния, май 2004 г., стр. 334–339.

    [12] А. Стермецки, И. Тикар, И. Заградисник и П. Китак, «Конструкция

    части обмотки асинхронного двигателя на основе МКЭ для снижения пускового тока», IEEE

    Trans. Магн., Т. 42, нет. 4, pp. 1299–1302, Apr. 2006.

    [13] М. В. Цистелекан, Х. Б. Косан и М. Попеску, «Пуск с частичной обмоткой

    , усовершенствование трехфазного асинхронного двигателя с короткозамкнутым ротором», в Proc. 8-я

    Интер. Symp. Adv.Электромех. Motion Syst. Elect, Drives Joint Symp.,

    Conf., 2009, стр. 1–6.

    [14] М. Э. Эль-Хавари, Принципы электрических машин с силовой электроникой

    Приложения. Энглвуд Клиффс, Нью-Джерси, США: Прентис Холл-Рестон, 1986.

    [15] Э. Леви и М. Панцер, Электромеханическое преобразование энергии. Малабар,

    FL, США: Robert E Krieger Publishing Co., 1982.

    [16] М. Чирринсионе, М. Пуччи, К. Серпорта и А. Мирауи, «Эффекты прорезания ротора

    в асинхронных двигателях: космос -векторное моделирование, конечно-элементный анализ и эксперименты, Proc.IEEE Annu. Ind. Electron. Conf., Орландо,

    ,

    , Флорида, США, 10–13 ноября 2008 г., стр. 1361–1367.

    [17] Ф. Феррейра, Г. Баоминг и А. де Алмейда, «Управление режимом соединения обмотки статора

    в двигателях с постоянными магнитами с линейным пуском для повышения их эффективности и коэффициента мощности

    », IEEE Trans. Energy Convers., Т. 28, вып. 3,

    pp. 523–534, сентябрь 2013 г.

    [18] М. Райн, Г. Хан и Н. Юн, «Метод определения уровней напряжения

    относительно ALT с помощью оптического датчика температуры», Дж.Избрать. Англ.

    Технол., Т. 3, вып. 2, pp. 184–191, 2008.

    Фернандо Дж. Т. Э. Феррейра (SM’09) получил степень доктора философии

    . степень в области электротехники Университета

    Коимбры, Коимбра, Португалия.

    В настоящее время он является профессором кафедры электротехники

    Политехнического института

    Коимбры (IPC / ISEC), Коимбра, Португалия. С

    1998 он работал научным сотрудником в Институте

    систем и робототехники Университета Коимбры (ISR-

    UC), Коимбра, Португалия, работая в области двигателей и приводов

    .Он участвовал в нескольких проектах Европы

    , связанных с технологиями энергоэффективных двигателей

    . Он является соавтором более 50 статей, опубликованных в международных журналах, а также отчетов конференций и представленных на встречах.

    Проф. Феррейра был удостоен награды за лучшую работу на технической конференции IEEE / IAS

    в 2001 году по промышленным и коммерческим энергетическим системам и награды

    за лучшую презентацию (за техническую компетентность, продемонстрированную в стендовой презентации

    ). ) на выставке Inter.Конференция по электрическим машинам.

    Михаил В. Цистелекан (M’94) получил докторскую степень de-

    gree в области электрических машин и приводов в Университете «Политех-

    nica» Бухареста, Бухарест, Румыния,

    в 1990 году.

    Он работал старшим научным сотрудником в Исследовательском институте электрических машин

    (ICPE-

    ME) в Бухаресте, а сейчас на пенсии. Его основные области интересов

    включают оптимизацию конструкции индукционных машин

    , электрических машин с постоянными магнитами

    и электрических приводов, будучи автором или соавтором более 30 румынских патентов, около 50

    статьи, опубликованные в реферируемых журналах и на международных конференциях, и три учебника

    .

    Профессор Систелекан был удостоен награды за лучшую презентацию плаката (

    — техническая компетентность, показанная в постерной презентации) на выставке Inter 2010 года.

    Конференция по электрическим машинам.

    Анибал Т. де Алмейда (SM’03) получил докторскую степень.

    степень в области электротехники от Imperial Col-

    lege, Лондонский университет, Лондон, Великобритания

    В настоящее время он является профессором кафедры электротехники и компьютеров

    Университета

    Коимбры, Коимбра, Португалия.Он является соавтором

    шести книг по энергоэффективности и более 200

    статей, опубликованных в международных журналах, а также

    отчетов и представленных на встречах. Он координировал

    восьми европейских проектов, связанных с энергетикой

    эффективных моторных технологий.

    Проф. Де Алмейда был удостоен награды за лучшую работу на Технической конференции по промышленным и коммерческим системам электроснабжения в 2001 г.

    IEEE / IAS.

    Асинхронные двигатели — Руководство по устройству электроустановок

    Номинальная мощность двигателя в кВт (Pn) указывает на его номинальную эквивалентную выходную механическую мощность.{3}} {U \ times \ eta \ times cos \ varphi}}}

    где

    In = номинальная потребляемая мощность (в амперах)
    Pn = номинальная мощность (в кВт)
    U = напряжение между фазами для трехфазных двигателей и напряжение между выводами для однофазных двигателей (в вольтах) . Однофазный двигатель может быть подключен по схеме «фаза-нейтраль» или «фаза-фаза».
    η = КПД на единицу, т.е. выходная мощность кВт / потребляемая мощность
    cos φ = коэффициент мощности, т.е. потребляемая мощность в кВт / кВА потребляемая мощность

    Допустимый ток и уставка защиты

    • Пиковое значение непереходного тока может быть очень высоким; Типичное значение примерно в 12–15 раз больше номинального действующего значения In.Иногда это значение может достигать 25 раз.
    • Автоматические выключатели, контакторы и тепловые реле Schneider Electric спроектированы так, чтобы выдерживать пуск двигателя с очень высоким непереходным током (субпереходное пиковое значение может быть до 19 раз больше номинального действующего значения In).
    • Если во время пуска происходит непредвиденное срабатывание защиты от сверхтока, это означает, что пусковой ток превышает нормальные пределы. В результате может быть достигнута некоторая максимальная устойчивость распределительного устройства, может быть сокращен срок службы и даже некоторые устройства могут быть разрушены.Чтобы избежать такой ситуации, следует рассмотреть возможность увеличения размера распределительного устройства.
    • Распределительные устройства
    • Schneider Electric предназначены для защиты пускателей двигателей от коротких замыканий. В соответствии с риском в таблицах показано сочетание автоматического выключателя, контактора и теплового реле для получения координации типа 1 или типа 2 (см. Главу Характеристики конкретных источников и нагрузок).

    Пусковой ток двигателя

    Хотя на рынке можно найти высокоэффективные двигатели, на практике их пусковые токи примерно такие же, как у некоторых стандартных двигателей.Использование пускателя по схеме треугольник, устройства статического плавного пуска или привода с регулируемой скоростью позволяет снизить значение пускового тока (пример: 4 In вместо 7,5 In).

    См. Также «Асинхронные двигатели» для получения дополнительной информации.

    Компенсация реактивной мощности (квар), подаваемой на асинхронные двигатели

    Как правило, по техническим и финансовым причинам целесообразно снизить ток, подаваемый на асинхронные двигатели. Этого можно достичь, используя конденсаторы, не влияя на выходную мощность двигателей.

    Применение этого принципа к работе асинхронных двигателей обычно называется «улучшением коэффициента мощности» или «коррекцией коэффициента мощности». Как обсуждалось в главе «Коррекция коэффициента мощности», полная мощность (кВА), подаваемая на асинхронный двигатель, может быть значительно снижена за счет использования конденсаторов, подключенных параллельно. Снижение входной кВА означает соответствующее уменьшение входного тока (поскольку напряжение остается постоянным).

    Компенсация реактивной мощности особенно рекомендуется для двигателей, которые длительное время работают на пониженной мощности.{‘}}}}

    , где cos φ — коэффициент мощности до компенсации, а cos φ — коэффициент мощности после компенсации, In — исходный ток.

    На рисунке A4 ниже в зависимости от номинальной мощности двигателя показаны стандартные значения тока двигателя для нескольких источников напряжения (IEC 60947-4-1, приложение G).

    Рис. A4 — Номинальная рабочая мощность и токи

    кВт лс 230 В 380–415 В 400 В 440-480 В 500 В 690В
    А А А А А А
    0.18
    0,25
    0,37


    1,0
    1,5
    1,9


    0,6
    0,85
    1,1


    0,48
    0,68
    0,88
    0,35
    0,49
    0,64

    0,55
    1/2

    3/4

    2,6
    1,3

    1,8

    1,5
    1,1

    1.6

    1,2

    0,87

    0,75
    1,1
    1


    3,3
    4,7
    2,3


    1,9
    2,7
    2,1


    1,5
    2,2

    1,1
    1,6


    1,5
    1-1 / 2
    2


    6,3
    3.3
    4,3


    3,6
    3,0
    3,4


    2,9


    2,1
    2,2

    3,0

    3
    8,5

    11,3

    6,1
    4,9

    6,5

    4,8
    3,9

    5,2
    2,8

    3,8
    4

    5.5

    5
    15

    20
    9,7
    9,7
    8,5

    11,5
    7,6
    7,6
    6,8

    9,2
    4,9

    6,7


    7,5
    7-1 / 2
    10


    27
    14,0
    18,0


    15,5
    11,0
    14,0


    12.4


    8,9
    11


    15
    20
    38,0


    27,0
    34,0
    22,0


    21,0
    27,0
    17,6

    12,8

    15
    18,5


    25
    51
    61


    44
    39
    35


    34
    23
    28
    17
    21
    22


    30
    40
    72


    51
    66
    41


    40
    52
    33

    24

    30
    37


    50
    96
    115


    83
    55
    66


    65
    44
    53
    32
    39

    45
    55
    60


    140
    169
    103


    80
    97
    77


    64
    78

    47
    57


    75
    75
    100


    230
    128
    165


    132
    96
    124


    106


    77
    90

    110

    125
    278

    340

    208
    160

    195

    156
    128

    156
    93

    113

    132
    150
    — 90 287 200

    400
    240

    320

    230
    180

    240

    184

    134
    150
    160
    185



    487



    280



    224

    162

    200
    220
    250


    609
    403


    350
    302


    280

    203

    250
    280
    300


    748
    482


    430
    361


    344

    250


    300
    350
    400


    560
    636


    414
    474




    315

    335

    450
    940



    540


    515
    432

    313

    355

    375

    500
    1061


    786
    610


    590
    488

    354

    400
    425
    450


    1200



    690



    552

    400

    475
    500
    530



    1478



    850



    680

    493
    560
    600
    630


    1652

    1844


    950

    1060


    760

    848
    551

    615
    670
    710
    750



    2070



    1190



    952

    690
    800
    850
    900


    2340

    2640


    1346

    1518


    1076

    1214
    780

    880
    950
    1000


    2910


    1673


    1339

    970

    Что такое пусковой ток и как его ограничить?

    Пусковой ток — это максимальный ток, потребляемый электрической цепью в момент ее включения.Он появляется для нескольких циклов входного сигнала. Значение пускового тока намного выше, чем установившийся ток цепи, и этот высокий ток может повредить устройство или вызвать срабатывание автоматического выключателя. Пусковой ток обычно появляется во всех устройствах, где присутствует магнитный сердечник, таких как трансформаторы, промышленные двигатели и т. Д. Пусковой ток также известен как Входной импульсный ток или Импульсный ток при включении .

    Почему появляется бросок тока?

    Существует ряд факторов, вызывающих пусковой ток.Подобно некоторым устройствам или системам, которые состоят из развязывающего конденсатора или гладкого конденсатора, при запуске потребляется большой ток для их зарядки. Приведенная ниже диаграмма даст вам представление о разнице между пусковым, пиковым и установившимся током цепи:

    Пиковый ток: Это максимальное значение тока, достигаемое сигналом в положительной или отрицательной области.

    Устойчивый ток: Он определяется как постоянный ток в каждом временном интервале в цепи.Устойчивый ток достигается, когда di / dt = 0, что означает, что ток остается неизменным во времени.

    Характеристики пускового тока:

    • Возникает мгновенно при включении устройства
    • Появляется на короткое время пролета
    • Выше номинального значения цепи или устройства

    Некоторые примеры возникновения пускового тока:

    • Лампа накаливания
    • Запуск асинхронного двигателя
    • Трансформатор
    • Включение источников питания на базе SMPS

    Пусковой ток в трансформаторе

    Пусковой ток трансформатора определяется как максимальный мгновенный ток, потребляемый трансформатором, когда вторичная сторона разгружена или в состоянии разомкнутой цепи.Этот бросок тока вредит магнитным свойствам сердечника и вызывает нежелательное переключение выключателя трансформатора.

    Величина пускового тока зависит от точки переменного тока, в которой запускается трансформатор. Если трансформатор (без нагрузки) включается, когда напряжение переменного тока находится на пике, то при запуске не будет возникать пускового тока, а если трансформатор (без нагрузки) включится, когда напряжение переменного тока проходит через ноль, тогда значение пускового тока ток будет очень высоким, и он также превышает ток насыщения, как вы можете видеть на изображении ниже:

    Пусковой ток двигателей

    Асинхронный двигатель, как и трансформатор, не имеет непрерывного магнитного пути.У асинхронного двигателя высокое сопротивление из-за воздушного зазора между ротором и статором. Следовательно, из-за этого асинхронного двигателя с высоким сопротивлением требуется высокий ток намагничивания для создания вращающегося магнитного поля при запуске. На приведенной ниже диаграмме показаны пусковые характеристики двигателя при полном напряжении.

    Как вы можете видеть на диаграмме, пусковой ток и пусковой момент вначале очень высоки. Этот высокий пусковой ток, который также называется пусковым током, может повредить электрическую систему, а начальный высокий крутящий момент может повлиять на механическую систему двигателя.Если мы уменьшим начальное значение напряжения на 50%, то это может привести к снижению крутящего момента двигателя на 75%. Таким образом, для решения этих проблем используются схемы питания плавного пуска (в основном называемые устройствами плавного пуска).

    Следует ли нам заботиться о пусковом токе и как его ограничить?

    Да, мы всегда должны заботиться о пусковом токе в асинхронных двигателях, трансформаторах и в электронных схемах, которые состоят из катушек индуктивности, конденсаторов или сердечника. Как упоминалось ранее, пусковой ток — это максимальный пиковый ток, испытываемый системой, и он может в два или десять раз превышать нормальный номинальный ток.Этот нежелательный всплеск тока может повредить устройство, как в трансформаторе, пусковой ток может вызвать отключение автоматического выключателя при каждом его включении. Регулировка допуска выключателя может помочь нам, но компоненты должны выдерживать пиковое значение при пуске.

    Некоторые компоненты, находящиеся в электронной схеме, имеют характеристики, позволяющие выдерживать высокие значения пускового тока в течение короткого промежутка времени. Но некоторые компоненты сильно нагреваются или повреждаются, если значение рывка очень велико. Поэтому при проектировании электронной схемы или печатной платы лучше использовать схему защиты от пускового тока .

    Для защиты от пускового тока можно использовать активное или пассивное устройство . Выбор типа защиты зависит от частоты пускового тока, производительности, стоимости и надежности.

    Например, вы можете использовать термистор NTC (отрицательный температурный коэффициент), который представляет собой пассивное устройство . работает как электрический резистор, сопротивление которого очень велико при низких температурах. Термистор NTC последовательно соединяется с входной линией источника питания.Обладает высоким сопротивлением при температуре окружающей среды. Итак, когда мы включаем устройство, высокое сопротивление ограничивает пусковой ток, протекающий в системе. Поскольку ток течет непрерывно, температура термистора повышается, что значительно снижает сопротивление. Следовательно, термистор стабилизирует пусковой ток и позволяет постоянному току течь в цепь. Термистор NTC широко используется для ограничения тока из-за его простой конструкции и низкой стоимости. У него также есть некоторые недостатки, например, вы не можете полагаться на термистор в экстремальных погодных условиях.

    Активные устройства дороже, а также увеличивают размер системы или схемы. Он состоит из чувствительных компонентов, которые переключают большой входящий ток. Некоторые из активных устройств — это устройства плавного пуска, регуляторы напряжения и преобразователи постоянного / постоянного тока.

    Эти защиты используются для защиты как электрических, так и механических систем, ограничивая мгновенный пусковой ток. На приведенном ниже графике показано значение пускового тока со схемой защиты и без схемы защиты.Мы ясно видим, насколько эффективна защита от пускового тока.

    Как измерить пусковой ток?

    Вы все видели велосипедную тележку, чтобы заставить ее двигаться, всаднику нужно приложить большую силу. И, как только колесо начинает двигаться, требуемая сила уменьшается. Итак, эта начальная сила эквивалентна пусковому току. Точно так же в двигателях, как только ротор начинает движение, двигатель начинает достигать установившегося состояния, при котором для работы не требуется большой ток.

    Имеется ряд токоизмерительных клещей (мультиметров), которые обеспечивают измерение пускового тока . Как вы можете использовать токоизмерительные клещи Fluke 376 FC True-RMS для измерения пускового тока. Иногда пусковой ток показывает значение, превышающее номинальное значение автоматического выключателя, но, тем не менее, выключатель не срабатывает. Причина этого в том, что автоматический выключатель работает по графику зависимости тока от времени в секунду, как если бы вы использовали автоматический выключатель на 10 ампер, поэтому пусковой ток, превышающий 10 ампер, должен проходить через автоматический выключатель дольше номинального времени. из этого.

    Для измерения пускового тока выполните следующие шаги:

    • Тестируемое устройство необходимо сначала выключить
    • Поверните циферблат и установите знак Hz-Ã
    • Поместите токоведущий провод в зажим или используйте щуп, подключенный к токоизмерительным клещам
    • Нажмите кнопку пускового тока на токоизмерительных клещах, как показано на изображении выше
    • Включите прибор, на дисплее измерителя появится значение пускового тока.

    50 Гц v 60 Гц | КСБ

    Источники питания 50 Гц и 60 Гц наиболее часто используются в международных энергосистемах.В некоторых странах (регионах) обычно используется электросеть с частотой 50 Гц, в то время как в других странах используется электросеть с частотой 60 Гц.

    • Переменный ток (AC) периодически меняет направление тока.
    • Цикл — время циклического изменения тока.
    • Частота — это время изменения тока в секунду в герцах (Гц).
    • Направление переменного тока изменяется 50 или 60 циклов в секунду, в соответствии со 100 или 120 изменениями в секунду, тогда частота составляет 50 Гц или 60 Гц.

    ЧТО ТАКОЕ ГЕРЦ?

    Герц, или коротко Гц, — это основная единица измерения частоты в ознаменование открытия электромагнитных волн немецким физиком Генрихом Рудольфом Герцем. В 1888 году немецкий физик Генрих Рудольф Герц (22 февраля 1857 г. — 1 января 1894 г.) первым подтвердил существование радиоволн и внес большой вклад в электромагнетизм, поэтому единица измерения частоты в системе СИ названа в честь Герца. его.

    ДЛЯ ЧЕГО ИСПОЛЬЗУЕТСЯ Hz?

    Гц (Герцы) — это единица частоты времени цикла вибрации электрической, магнитной, акустической и механической вибрации, т.е.е. количество раз в секунду (цикл / сек).

    ЧТО ТАКОЕ 50 ГЕРЦ?

    50 Гц (Гц) означает, что ротор генератора вращается 50 циклов в секунду, ток изменяется 50 раз в секунду вперед и назад, направление изменяется 100 раз. Это означает, что напряжение изменяется с положительного на отрицательное и с отрицательного на положительное, этот процесс преобразуется 50 раз в секунду. Электричество 380 В переменного тока и 220 В переменного тока имеют частоты 50 Гц.

    Частота вращения двухполюсного синхронного генератора 50 Гц составляет 3000 об / мин.Частота переменного тока определяется числом полюсов генератора p и скоростью n , Гц = p * n /120. Стандартная частота сети составляет 50 Гц, что является постоянным значением. Для 2-полюсного двигателя частота вращения n = 50 * 120/2 = 3000 об / мин; для 4-х полюсного двигателя частота вращения n = 50 * 120/4 = 1500 об / мин.

    ПОЧЕМУ 50 ГЕРЦ?
    Когда частота увеличивается, потребление меди и стали в генераторе и трансформаторе уменьшается, а также уменьшается вес и стоимость, но при этом увеличиваются индуктивности электрического оборудования и линии передачи, уменьшаются емкости и увеличиваются потери, тем самым снижение эффективности передачи.Если частота слишком низкая, материалы электрического оборудования увеличатся, а также станут тяжелыми и дорогостоящими, и огни будут явно мигать. Практика доказала, что использование частот 50 Гц и 60 Гц является приемлемым.

    МОЖЕТ ЛИ МОТОР 50 ГЕРЦ РАБОТАТЬ НА 60 ГЕРЦ?

    Так как формула для управления синхронной скоростью трехфазного двигателя равна n = (120 * Гц ) / p , если это 4-полюсный двигатель, то при 50 Гц скорость будет 1500 Об / мин, тогда как при 60 Гц скорость будет 1800 об / мин.Поскольку двигатели являются машинами с постоянным крутящим моментом, то, применив формулу л.с. = ( крутящий момент * n ) / 5252, вы можете увидеть, что при увеличении скорости на 20% двигатель также сможет производить 20% больше лошадиных сил. Двигатель сможет создавать номинальный крутящий момент на обеих частотах 50/60 Гц. Применяется только в том случае, если соотношение В / Гц является постоянным, что означает, что при 50 Гц напряжение питания должно быть 380 В, а при 60 Гц напряжение питания потребуется. составлять 460 В. В обоих случаях отношение В / Гц равно 7.6 В / Гц.

    ЧТО ТАКОЕ 60 ГЕРЦ?

    При 60 Гц ротор генератора вращается 60 циклов в секунду, ток изменяется 60 раз в секунду вперед и назад, направление изменяется 100 раз. Это означает, что напряжение изменяется с положительного на отрицательное и с отрицательного на положительное, этот процесс преобразуется 60 раз в секунду. Электричество 480 В переменного тока и 110 В переменного тока имеют частоты 60 Гц.

    Скорость двухполюсного синхронного генератора 60 Гц составляет 3600 об / мин. Частота переменного тока определяется числом полюсов генератора p и скоростью n, частот.= р * п / 120. Стандартная частота сети составляет 60 Гц, что является постоянным значением. Для 2-полюсного двигателя частота вращения n = 60 * 120/2 = 3600 об / мин; для 4-полюсного двигателя частота вращения n = 60 * 120/4 = 1800 об / мин.

    КАК ИЗМЕНИТЬ 60 Гц НА 50 Гц

    Преобразователь частоты может преобразовывать мощность переменного тока фиксированной частоты (50 Гц или 60 Гц) в переменную частоту, мощность переменного напряжения через преобразование переменного тока → постоянного тока → переменного тока, выводить чистую синусоидальную волну, и регулируемая частота и напряжение. Это отличается от частотно-регулируемого привода, который предназначен только для управления скоростью двигателя, а также от обычного стабилизатора напряжения.Идеальный источник питания переменного тока — это стабильная частота, стабильное напряжение, сопротивление примерно равно нулю и форма волны напряжения — чистая синусоида (без искажений). Выходной сигнал преобразователя частоты очень близок к идеальному источнику питания, поэтому все больше и больше стран используют источник питания преобразователя частоты в качестве стандартного источника питания, чтобы обеспечить наилучшую среду электропитания для приборов для оценки их технических характеристик.

    50 Гц по сравнению с 60 Гц ПРИ РАБОЧЕЙ СКОРОСТИ

    Основная разница между 50 Гц (Герцы) и 60 Гц (Герцы) заключается в том, что частота 60 Гц на 20% выше.Для генератора или насоса с асинхронным двигателем (простыми словами) это означает 1500/3000 об / мин или 1800/3 600 об / мин (для 60 Гц). Чем ниже частота, тем меньше потери в стали и потери на вихревые токи. Уменьшите частоту, скорость асинхронного двигателя и генератора будет ниже. Например, при 50 Гц генератор будет работать со скоростью 3000 об / мин против 3600 об / мин при 60 Гц. Механические центробежные силы будут на 20% выше в случае 60 Гц (стопорное кольцо обмотки ротора должно выдерживать центробежную силу при проектировании).

    Но с более высокой частотой выходная мощность генератора и асинхронных двигателей будет выше для двигателя / генератора того же размера из-за более высокой скорости на 20%.

    50 Гц VS 60 Гц ПО КПД

    Конструкция таких магнитных машин такова, что они действительно одно или другое. В некоторых случаях это может сработать, но не всегда. Переключение между разными частотами источника питания, безусловно, повлияет на эффективность и может означать необходимость снижения номинальных значений. Между системами 50 Гц и 60 Гц существует небольшая реальная разница, если оборудование рассчитано на соответствующую частоту.

    Важнее иметь стандарт и придерживаться его. Более существенное различие состоит в том, что системы 60 Гц обычно используют 110 В (120 В) или около того для внутреннего источника питания, в то время как системы 50 Гц обычно используют 220 В, 230 В и т. Д. Для разных стран. Это приводит к тому, что домашняя проводка должна быть в два раза больше сечения для системы 110 В при той же мощности. Однако оптимальной считается система около 230 В (размер провода и требуемая мощность по сравнению с безопасностью).

    60 Гц ЛУЧШЕ, ЧЕМ 50 Гц?

    Нет большой разницы между 50 Гц и 60 Гц, в принципе ничего плохого или хорошего.Для независимого энергетического оборудования, такого как корабли, самолеты или изолированные области, такие как газовые / нефтяные установки, может быть разработана любая частота (например, 400 Гц) в зависимости от пригодности.

    Источник: http://www.gohz.com/difference-between-50hz-and-60hz-frequency

    РАБОТА ДВИГАТЕЛЕЙ 60 ГЦ, 50 ГЦ быть специально спроектированным и изготовленным для 50 Гц. Часто доставка продуктов с частотой 50 Гц такова, что желателен альтернативный курс действий с использованием продуктов с частотой 60 Гц.

    Общие правила эксплуатации двигателей 60 Гц в системах 50 Гц касаются того факта, что напряжение за цикл должно оставаться постоянным при любом изменении частоты. Кроме того, поскольку двигатель будет работать только на пяти шестых от скорости 60 Гц, выходная мощность в лошадиных силах при 50 Гц ограничена максимум пятью шестыми от номинальной мощности.

    Источник: U.S. Motors http://www.usmotors.com/TechDocs/ProFacts/50Hz-Operation-60Hz.aspx

    НАЧАЛО РАБОТЫ ОБОРУДОВАНИЯ 50 ГЦ ПРИ 60 ГЦ?

    Машины, импортируемые в США, часто рассчитаны на рабочую частоту 50 Гц, если только они не спроектированы для работы на частоте 60 Гц.. Это может быть проблематично для электродвигателей. Это особенно актуально при работе с насосом и вентилятором.

    Часто дистрибьюторы и покупатели этого оборудования предполагают, что производитель оригинального оборудования принял это во внимание. Это распознается, когда двигатели поступают в ремонт, разгоряченные от перегрузки.

    Преобразователь частоты (VFD) может использоваться для правильного решения проблем, связанных с работой оборудования с частотой 50 Гц и частотой 60 Гц.

    Скорость двигателя прямо пропорциональна рабочей частоте.Изменение рабочей частоты насоса или вентилятора увеличивает рабочую скорость и, следовательно, увеличивает нагрузку на двигатель. Нагрузка насоса или вентилятора — это нагрузка с переменным крутящим моментом. Нагрузка с переменным крутящим моментом зависит от куба скорости.

    Двигатель 50 Гц, работающий на частоте 60 Гц, будет пытаться вращаться с увеличением скорости на 20%. Нагрузка станет в 1,23 (1,2 x 1,2 x 1,2) или в 1,73 раза больше (173%), чем на исходной частоте. Переконструировать двигатель для такого увеличения мощности невозможно.

    Одним из решений может быть модификация приводного оборудования для уменьшения нагрузки. Это может включать подгонку диаметра крыльчатки вентилятора или крыльчатки для обеспечения такой же производительности при 60 Гц, как и у агрегата при 50 Гц. Для этого потребуется консультация с производителем оборудования. Есть и другие соображения, связанные с увеличением скорости помимо увеличения нагрузки. К ним относятся механические ограничения, пределы вибрации, рассеивание тепла и потери.

    Лучшее решение — использовать двигатель с той скоростью, для которой он был разработан.Если это 50 Гц, то можно установить частотно-регулируемый привод. Эти приводы преобразуют сетевую мощность 60 Гц в мощность 50 Гц на клеммах двигателя.

    Это решение дает множество других преимуществ. Эти преимущества включают в себя:

    • повышенный КПД
    • регулирование мощности (часто лучше, чем обеспечивает электроснабжение)
    • защита двигателя от перегрузки по току
    • улучшенное управление скоростью
    • программируемый выход для выполнения других задач
    • улучшенная производительность.

    Источник: Precision Electric, Inc., Автор Крейг Чемберлин , 25 ноября 2009 г.

    http://www.precision-elec.com/faq-vfds-are-there- вещи, которые следует учитывать при работе, оборудование с частотой 50 Гц и частотой 60 Гц /

    Simulink моделирование трехфазного двигателя (2)

    Simulink: моделирование торможения двигателем — торможение с потреблением энергии
    Маленькое деревце не ремонтирует, оно не идет прямо, люди этого не узнают! Подводя итоги предыдущих двух опытов моделирования трехфазного двигателя Simulink, на этот раз ученик начальной школы решил попробовать другой метод моделирования торможения трехфазного двигателя, а именно моделирование метода торможения с потреблением энергии, ознакомился с некоторой соответствующей информацией, непрерывно регулируя параметры моделирования и После настройки мы успешно реализовали моделирование торможения энергопотребления трехфазного асинхронного двигателя.Эта статья составлена ​​специально для того, чтобы отметить и с нетерпением ждать!
    Трехфазный асинхронный двигатель, энергопотребление, торможение
    Когда асинхронный двигатель работает, отключите трехфазный источник питания переменного тока и одновременно подключите источник постоянного тока к любым двум фазам статора. В это время двигатель переходит в режим торможения с потреблением энергии. Основной процесс заключается в следующем: при запуске торможения сначала выключите трехфазный переключатель питания, чтобы отключить питание двигателя переменным током.В это время из-за инерции ротора он все еще движется по инерции в исходном направлении; в то же время постоянный ток подается на двухфазные обмотки статора двигателя, так что в статоре создается постоянное статическое магнитное поле. В это время инерционный ротор генерирует индуцированный ток в обмотке ротора из-за перерезания силовых линий магнитного поля, а электромагнитный момент создается из-за действия статического магнитного поля, которое точно противоположно направлению мотор.Двигатель останавливается из-за торможения. Поскольку в этом методе используется постоянный ток в обмотках статора для использования кинетической энергии инерционного действия ротора для торможения двигателя, это называется торможением с потреблением энергии.
    Преимущество метода торможения с потреблением энергии заключается в том, что торможение является точным и плавным, а потребление энергии невелико. Недостаток заключается в необходимости увеличения источника питания постоянного тока, большая стоимость оборудования и слабое тормозное усилие. Поэтому торможение с потреблением энергии обычно используется в приложениях, требующих точного и стабильного торможения.
    Моделирование торможения с потреблением энергии трехфазным двигателем
    На основе анализа принципа торможения с потреблением энергии торможение с потреблением энергии сравнивается с торможением с обратным подключением, то есть при отключении трехфазного переменного тока подключаемая энергия к мотору при этом разные. . С точки зрения концепции моделирования, торможение энергопотребления основано на предыдущем обучении. Во-первых, моделирование торможения с потреблением энергии основано на моделировании прямого пуска.Основная схема аналогична моделированию обратного торможения, но добавлен трехфазный автоматический выключатель. Модуль действует как выключатель для отключения трехфазного питания. Добавлена ​​основная цепь ввода энергии, которая состоит из модуля питания постоянного тока, токоограничивающего резистора и устройства короткого замыкания и подключена к двухфазной цепи. Эффект программы моделирования показан на рисунке 1.

    Рисунок 1 Моделирование торможения энергопотребления
    (1) Трехфазный силовой модуль: 3 модуля источника переменного напряжения все еще выбраны, как показано на рисунке 2, настройки параметров три модуля показаны на рисунке 3, пиковое значение — 380 В, частота — 50 Гц, а разность фаз — 120 градусов.

    Рисунок 2 Модуль трехфазного питания

    Рисунок 3 Настройки параметров трехфазного питания
    (2) Модуль трехфазного автоматического выключателя: Трехфазный автоматический выключатель Модуль трехфазного выключателя, как показано на рисунке 4, представляет собой схему модуля , и его настройки параметров показаны на рисунке 5, в основном в двух, один — это параметр Initial Stauts (начальное состояние) Closed / Open (закрыто / открыто), здесь выберите начальное состояние как закрытое состояние. Второй — время переключения (время переключения), где расчетное время действия равно 0.Через 5 секунд, то есть 0,5 секунды, трехфазный выключатель переходит из начального замкнутого состояния в разомкнутое, отключая трехфазное питание.

    Рисунок 4 Трехфазный автоматический выключатель

    Рисунок 5 Настройки параметров трехфазного автоматического выключателя
    (3) Модуль трехфазного асинхронного двигателя: выберите модуль асинхронной машины, как показано на рисунке 6, который в основном совпадает с двигателем параметры при обратном торможении, за исключением того, что номинальная мощность двигателя немного изменена до 2238, как показано на рисунке 7.

    Рисунок 6 Модуль трехфазного асинхронного двигателя

    Рисунок 7 Настройки параметров двигателя
    (4) Шинный модуль: шина по-прежнему выбирает модуль селектора шины, как показано на рисунке 8, а его основные параметры разделения показаны на рисунке 9, который аналогичен прямому пуску и обратному торможению. Так устанавливается эффект контраста.

    Рисунок 8 Шинный модуль

    Рисунок 9 Настройки параметров шинного модуля
    (5) Модуль осциллографа: выберите модуль Scope, как показано на Рисунке 10, но есть новое открытие в настройке параметров, как показано на Рисунке 11, в середине Настройка параметров истории будет в процессе моделирования. Проблема неполного отображения формы сигнала, эффект будет отдельно сравниваться в следующих инструкциях по отладке моделирования.

    Рисунок 10 Модуль осциллографа

    Рисунок 11 Настройки параметров осциллографа
    (6) Модуль питания постоянного тока: выберите источник постоянного напряжения, как показано на рисунке 12, установите параметры источника питания, как показано на рисунке 13, и установите амплитуду источника питания постоянного тока до 100 В.

    Рисунок 12 Модуль питания постоянного тока

    Рисунок 13 Настройки параметров питания постоянного тока
    (7) Модуль короткого замыкания: с точки зрения использования модуля короткого замыкания он предназначен для разделения модуля трехфазного выключателя и использования он один, а автоматический выключатель модуля короткого замыкания показан на рисунке 14.В программе моделирования, поскольку к двигателю должен быть подключен двухфазный источник питания постоянного тока, выбраны два короткозамыкателя, а настройки параметров показаны на рисунке 15. В исходном состоянии выбрано размыкание, а время действия равно то же, что и трехфазный автоматический выключатель, составляет 0,5 секунды.

    Рисунок 14 Модуль короткого замыкания

    Рисунок 15 Настройка параметров короткого замыкания
    (8) Токоограничивающее сопротивление: Установите токоограничивающее сопротивление в качестве функции защиты.Сначала я просто набираю Resistor в строке поиска Simulink Library Browser, чтобы найти модуль сопротивления, но сопротивление, полученное в результате поиска, Ни один из модулей не может быть подключен к модулю питания постоянного тока. По какой-то причине проводка красная, когда она неисправна. Пытаясь выбрать последовательный RLC-ответвление (последовательный RLC-модуль), показанный на рисунке 16, установите параметры, показанные на рисунке 17, токоограничивающее сопротивление 1 Ом, и модуль питания постоянного тока может быть подключен через испытание.

    Рисунок 16 Модуль RLC серии

    Рисунок 17 Настройки параметров RLC серии
    Сравнение настроек и эффектов моделирования
    (1) Регулировка скорости моделирования: когда в программе моделирования присутствуют модули автоматического выключателя и короткого замыкания, выбранный решатель моделирование необходимо изменить, иначе моделирование будет очень медленным, и полученные данные измерений также неверны.Следовательно, вам необходимо настроить параметры моделирования, как показано на рисунке 18. Сначала щелкните параметр Simulation на панели инструментов, выберите второй элемент в раскрывающемся меню, Параметры конфигурации модели (или Ctrl + E) и в интерфейсе Как показано на рисунке 19, выберите параметр «Решатель». Чтобы изменить, по умолчанию используется Ode45, измените значение на Ode15 и нажмите кнопку «ОК» ниже.

    Рисунок 18 Операция настройки скорости моделирования (1)

    Рисунок 19 Операция настройки скорости моделирования (2)
    (2) Настройка параметров осциллографа: сначала та же настройка параметра, что и в предыдущем моделировании обратного торможения, как показано на рисунке 20, выберите Ограничьте данные до последней проверки после завершения осциллографа. Эффект показан на рисунке 21.По результатам проверки ученик начальной школы предположил, что для отображения будет выбрано 5000 баллов. После естественного выбора функции автоматического выключателя записи будут отображаться. Конечно, это всего лишь домыслы, которые требуют дальнейшего изучения и проверки.

    Рисунок 20 Настройки параметров осциллографа (только после отображения действий)

    Рисунок 21 Моделирование визуализации (1)
    Отрегулируйте параметры осциллографа, как показано на Рисунке 22, который совпадает с настройками параметров, показанными на Рисунке 11, без проверки предельных данных длиться.Запустите программу моделирования с вновь установленными параметрами осциллографа еще раз, чтобы получить эффект моделирования, как показано на рисунке 23. В той же системе координат полностью отображается полный процесс двигателя от запуска до торможения с потреблением энергии.

    Рис. 22 Настройки параметров осциллографа (полный экран)

    Рис. 23 Изображение эффекта моделирования 2
    Наконец, поделитесь файлами моделирования и изображениями этого проекта со всеми:
    Сетевой диск Baidu, постоянная действующая ссылка:
    ссылка: https: // Сковорода.baidu.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *