Реле твердотельные: MD-xx44.ZD3 однофазные компактные твердотельные реле для коммутации слаботочной нагрузки

Содержание

Твердотельные реле | OMRON, Россия

Сила тока 100 мA () 2 A () 3 A () 5 A () 20 A () 25 A () 35 A () 45 A () 60 A () 90 A () 150 A () Зависит от применяемого твердотельного реле () 2 А (240 В перем. тока, резистивная нагрузка) 3 A (24 В пост. Тока, резистивная нагрузка) 100 мA 2 A 2 A 3 A 3 A 3 A 5 A 90 A 20 A 60 A 25 A 45 A 150 A 35 A 60 A Зависит от применяемого твердотельного реле Напряжение нагрузки (В перем. тока) 24 — 240 В перем. тока () 100 — 240 В перем. тока () 100 — 480 В перем. тока () 200 — 480 В перем. тока () 100 — 240 ~В (-A(L)) 100 -240 ~В (-F) 100 — 240 ~В (-H) 100 -240 ~В (-B) 24 — 240 В перем. тока 200 — 480 В перем. тока 100 … 240 В~ 24 — 240 В перем. тока 200 — 480 В перем.
тока
100 — 480 В перем. тока 100 … 240 В~ 200 — 480 В перем. тока 100 … 240 В~ 180 — 480 В перем. тока 100 … 240 В~ 200 — 480 В перем. тока 100 … 240 В~ 100 … 240 В~ 400 — 480 В перем. тока Напряжение нагрузки (В пост. тока) 4 — 48 В пост. тока () 5 — 24 В пост. тока () 5 — 110 В пост. тока () 5 — 200 В пост. тока () 5 — 24 =В (-D) 4 — 48 В пост. тока (-O) 5 — 24 =В (-I) 4 — 48 В пост. тока (-FD) 5 — 110 В пост. тока (-FD) 4 — 48 В пост. тока (-HD) 5 -110 В пост. тока (-BD) 5 — 200 В пост. тока Особенности Светодиодный индикатор работы () Варистор () Заменяемый силовой модуль () Защитная крышка () Контроль перехода фазы через ноль () Радиатор () Схема подавления перенапряжений () Трансформатор тока () Светодиодный индикатор работы Контроль перехода фазы через ноль Светодиодный индикатор работы Контроль перехода фазы через ноль Контроль перехода фазы через ноль Контроль перехода фазы через ноль Контроль перехода фазы через ноль Светодиодный индикатор работы Варистор Защитная крышка Контроль перехода фазы через ноль Варистор Контроль перехода фазы через ноль Светодиодный индикатор работы Варистор Заменяемый силовой модуль Защитная крышка Контроль перехода фазы через ноль Радиатор Светодиодный индикатор работы Защитная крышка Контроль перехода фазы через ноль Радиатор Светодиодный индикатор работы Контроль перехода фазы через ноль Радиатор Схема подавления перенапряжений Светодиодный индикатор работы Защитная крышка Контроль перехода фазы через ноль Радиатор Схема подавления перенапряжений Светодиодный индикатор работы Защитная крышка Контроль перехода фазы через ноль Радиатор Трансформатор тока Контроль перехода фазы через ноль Радиатор

Твердотельные реле принцип работы, разновидности, достоинства и недостатки

Обычные промежуточные реле – это электромеханическое устройство. На его катушку подается напряжение, она притягивает к себе подвижную планку с контактами, которые замыкаются или переключаются.

Само наличие движущихся деталей в этом устройстве снижает его надежность. Контакты не только подгорают и окисляются. Со временем они теряют способность прижиматься друг к другу с подпружиниванием, что приводит к появлению переходного сопротивления или полному исчезновению контакта.

Электромеханические реле чувствительны к пыли и влаге. Существуют герметичные модели, но у них нет возможности для ревизии контактов. Это значит, что при их ухудшении реле придется выбросить.

Ресурс любого из современных реле, хоть и исчисляется в десятках тысяч включений, все же ограничен. А если реле должно срабатывать по сотне раз в сутки? Его ресурс быстро выработается, и устройство превратится в расходный материал, требуя постоянной замены. А если сбои в работе недопустимы?

Вот тут на помощь и приходит реле, называемое твердотельным.

Устройство твердотельного реле

Название «твердотельное реле» на русском языке может быть сокращено до аббревиатуры ТТР. По-английски же это звучит Solid State Relay или SSR.

Это – полностью полупроводниковое устройство, из механики имеющее только контактную систему для подключения внешних проводников. Пайку ТТР не переносят, так как при работе нагреваются, поэтому все присоединения проводов выполняются на винтовых клеммах.

Все элементы ТТР расположены внутри герметически закрытого и не разборного корпуса. Поэтому оно и носит такое название, поскольку представляет собой единое «твердое тело», и не предполагает выполнения ремонта или обслуживания.

Функционально само реле можно разделить на несколько подряд расположенных блоков или цепей.


Первая цепь: входная. Она преобразует входное управляющее напряжение к величине, приемлемой для выполнения переключений. Попутно она дополнительно может выполнять функцию защиты от импульсных помех, защиты от изменения полярности (при выпрямленном управляющем сигнале).

Минимально входная цепь содержит резистор для подавления лишнего напряжения постоянного тока, плюс – выпрямительный мост для выпрямления переменного тока.

Вторая цепь: оптическая развязка. У электромеханического реле входная и выходная цепь разделены конструктивно, так как катушка управления никак не связана с контактной системой. Для гальванического развязывания цепей управления с коммутируемыми цепями, которые могут питаться от разных источников, используется электронный прибор – оптрон. В нем этот процесс происходит за счет использования света для передачи команды управления.

Третья цепь, принимая сигнал от оптрона, запоминает его. Она представляет собой электронный ключ – триггер.

И, наконец, последняя – переключающая цепь. Она подает напряжение на выход реле, для чего рассчитывается на номинальное напряжение нагрузки.

Для разного характера нагрузки используются принципиально разные электронные компоненты для передачи напряжения управления. Для цепей постоянного тока достаточно транзисторного ключа. Но на переменном токе он работать не будет, для этих цепей применяют симисторы.

Поскольку выходной элемент переключающей цепи при работе реле пропускает ток нагрузки и от этого греется, он установлен на теплоотводе, являющемся частью корпуса реле.

Разновидности твердотельных реле

 В первую очередь, эти реле, как и электромеханические, различаются по величине напряжения управления. А также, переменное (АС) оно или постоянное (DC). Величина напряжения, в отличие от электромеханики, может изменяться в некоторых пределах, а не иметь фиксированное значение.

От этих же реле оно унаследовало и другой параметр: величина выходного тока. Род тока зависит от того, что используется в реле в качестве ключевого элемента: транзистор или симистор. В этом их отличие от электромеханики, контакты которой могут быть всеядными. В качестве рабочего напряжения для выхода, управляющего нагрузкой, также указывается его диапазон.

Твердотельные реле могут управлять как однофазной, так и трехфазной нагрузками. То есть, манипулировать работой электродвигателей. Конечно, до коммутации токов мощных моторов им далеко, но маломощных электродвигатель задвижки вполне по силам. А чтобы иметь возможность эту задвижку как открывать, так и закрывать, используется твердотельное реле с реверсом. При этом одна фаза проходит всегда напрямую, а две другие меняются местами в зависимости от того, на каком из двух входов появился сигнал управления.

Достоинства и недостатки твердотельных реле

Основным недостатком ТТР можно назвать их стоимость, превышающую цену электромеханических аналогов. А также – обеспечение соответствующего теплового режима. Перегрев приводит к выходу из строя.

Достоинств больше:

— Повышение надежности работы (поставил и забыл).

— В десятки раз больший срок службы.

— Способность без вреда для себя переносить перегрузки до 200% по номинальному току. То, что у электромеханического реле приводит к подгоранию или выходу из строя контактов, у твердотельного вызывает срабатывание защиты от перегрузки.

— Возможность массового применения в бытовой аппаратуре.

— Способность работать в любом положении в пространстве, что для некоторых реле нежелательно или даже недопустимо.

— Встроенная защита от импульсных помех, которых с каждым днем становится все больше. Само же реле создает меньше помех при коммутации, так как искрение между контактами отсутствует по принципу работы.

— Высокое быстродействие, что позволят выполнять цикл включение/отключение на очень короткий период.

И, самое главное, учитывая темпы развития промышленной электроники: за этими реле – будущее. Поэтому не за горами тот день, когда все электромеханические реле станут твердотельными.

Твердотельные реле. Устройство и работа. Виды и особенности

Для обеспечения подключения различных электрических устройств бесконтактным способом применяют твердотельные реле, которые стали популярными в промышленности. Они используются для создания надежного оборудования с малыми габаритами. Основным недостатком таких устройств называют их высокую стоимость.

Твердотельное реле обеспечивает связь между электрическими цепями высокого и низкого напряжения с помощью полупроводниковых элементов.

Принцип действия и особенности конструкции

Имеется множество исполнений моделей таких устройств, но по своей структуре они мало чем отличаются.

Эти незначительные отличия не оказывают влияния на их принцип действия, так как он по сути дела один и тот же.

Разберемся в особенностях управления электроприборами с помощью твердотельного реле. От обычных реле они отличаются отсутствием механических замыкаемых и размыкаемых контактов. Вместо них в твердотельном реле используются полупроводниковые элементы, такие как транзистор, либо симистор.

Принцип работы реле состоит в размыкании и замыкании цепи, передающей напряжение. Это осуществляется активатором, то есть, твердотельным устройством. Вид силового элемента зависит от свойства тока, который может быть, как переменным, так и постоянным. Для постоянного тока применяются транзисторы, для переменного тока – тиристоры и симисторы.

Через транзистор проходит ток. Симистор может пропускать ток в обоих направлениях, так же, как и тиристор.

На вход подается электрический сигнал, далее он идет на оптическую развязку на основе светодиода. Оптическая развязка позволяет изолировать входную цепь от промежуточной и выходной цепи. Далее в действие вступает цепь триггера, которая обеспечивает управление переключением выхода твердотельного реле.

Цепь переключения подает напряжение на нагрузку, представленную транзистором, либо симистором. Цепь защиты необходима для надежности работы реле при разных нагрузках.

Виды твердотельных реле
Имеется множество разных видов таких реле, отличающихся своими особенностями напряжения коммутации и контроля:
  • Реле постоянного тока применяются в сети постоянного напряжения в интервале 3-32 ватта, характерны повышенными удельными свойствами, индикаторами на светодиодах, повышенной надежностью. Многие модели способны работать в широком интервале рабочих температур: -30 +70 градусов.
  • Реле переменного тока, имеют особенность в пониженном уровне электромагнитных помех, не создают шума при эксплуатации, малый расход электроэнергии, и высокое быстродействие. Диапазон мощности составляет от 90 до 250 ватт.
  • Реле с управлением вручную, дают возможность самостоятельной настройки типа действия.
По виду нагрузки реле разделяют на:
  • Однофазные.
  • 3-фазные.

Однофазное исполнение дает возможность подключать электрический ток в интервале от 10 до 120 ампер, либо от 100 до 500 ампер. Управление производится аналоговым сигналом и сопротивлением переменного типа.

3-фазные исполнения используют для подключения тока одновременно на трех фазах. Они могут работать в диапазоне 10-120 ампер. Среди них есть устройства реверсивного вида, отличающиеся обозначением и бесконтактной коммутацией. Их задача заключается в осуществлении надежного подключения всех цепей по-отдельности.

Чтобы защитить реле от ложных срабатываний, применяют специальные устройства.

Они применяются при запуске и эксплуатации асинхронного электромотора. При выборе такого устройства нужно сделать необходимый запас мощности. Для защиты реле от перенапряжений также применяется предохранитель быстрого действия, либо варистор.

Реле трехфазного исполнения имеют срок службы больше, чем 1-фазные реле. Коммутация осуществляется после перехода тока через нулевую границу.

По методам коммутации реле делятся:
  • Реле для емкостных и индуктивных нагрузок.
  • Реле для мгновенных срабатываний, применяются при необходимости быстрого подключения.
  • С фазным управлением, дающим возможность регулировки освещения, нагревательных элементов.
По конструктивным особенностям реле делятся:
  • С возможностью монтажа на рейку DIN.
  • Для переходных планок, универсальные.
Достоинства и недостатки

Благодаря такому принципу действия мы получаем ряд преимуществ и недостатков.

Преимущества
  • Отсутствие каких-либо щелчков при переключении. Хотя отсутствие звуковой индикации для кого-то может быть и минусом.
  • Полупроводниковые твердотельные реле не искрят, не дребезжат и механически не изнашиваются, благодаря чему получается срок службы как минимум десятки лет без какого-либо обслуживания.
  • Благодаря свойствам полупроводниковых элементов, возможна коммутация с минимумом помех.
  • Высокое быстродействие позволяет производить включение при переходе напряжения через ноль. А при выключении симистор закрывается не сразу, а ровно тогда, когда через ноль переходит ток, что тоже снижает уровень помех.
  • Малый расход электрической энергии благодаря тому, что нет электромагнитной связи. Использование полупроводников позволяет снизить потребление электрической энергии на 90%.
  • Твердотельные реле имеют небольшие габариты, что позволяет упростить его установку и транспортировку.
  • Длительный срок работы, не требующий технического обслуживания устройства.
  • Широкая сфера применения для различных типов устройств и приборов.
  • Возможность осуществления большого количества срабатываний (более одного миллиарда).
  • Обеспечивает надежную изоляцию цепей входа и силовых цепей между собой.
  • Повышает производительность устройства.
  • Механическая прочность выражается в герметичной конструкции, вибрационной и ударной стойкости.
Недостатки

Казалось бы, пора везде и всюду менять механические реле на твердотельные. Но не стоит торопиться. Есть здесь один подвох. На открытом полупроводниковом элементе падает на порядки большее напряжение, чем на замкнутых контактах обычного реле, а именно, около двух вольт. Казалось бы, ерунда, всего один процент от напряжения в розетке. Но, предположим, что мы управляем двухкиловаттным обогревателем, который потребляет ток около 10 ампер.

Какая же мощность тогда будет выделяться на хваленом твердотельном реле? Умножаем 10 на 2, и получаем целых 20 ватт. Без хорошего радиатора здесь, к сожалению, не обойтись. А какая мощность будет выделяться при коротком замыкании – вообще страшно представить. Полупроводники расплавятся моментально, намного быстрее, чем сработает обычный автоматический выключатель в распределительном щитке.

Спасти твердотельные реле от губительного влияния короткого замыкания смогут только быстродействующие предохранители. Кроме большого выделения тепла есть у твердотельного реле еще один недостаток. Помех оно излучает меньше, но при этом само боится помех. И для защиты от них параллельно полупроводниковому элементу подключается цепочка из резистора и конденсатора.

И даже когда полупроводниковый элемент закрыт, реле все равно пропускает ток в несколько миллиампер. Для электрообогревателя это конечно не страшно, а вот, например, компактная люминесцентная лампа может начать вспыхивать. Практически можно увидеть, как нагрев мешает применяемости твердотельного реле.

Сфера применения
Твердотельные реле применяются очень широко. Они работают там, где необходимо подключать индуктивную нагрузку. Основные области использования рассматриваемых реле:
  • Системы с регулированием температуры нагревательными элементами.
  • Поддержание одной температуры в процессах и технологиях промышленного производства.
  • Подключение цепей управления.
  • Заменяют магнитные пускатели реверсивного действия.
  • Управление электродвигателями.
  • Контроль температуры трансформаторов и других устройств.
  • Регулировка уровня света.
Как выбрать твердотельные реле

Чтобы приобрести такой вид реле, рекомендуется посетить специализированный магазин электронных товаров. Там квалифицированные специалисты окажут помощь в подборе подходящего реле по всем параметрам.

При выборе рекомендуется учитывать такие свойства реле:
  • Тип реле.
  • Наличие креплений.
  • Материал корпуса.
  • Скорость работы.
  • Наличие вспомогательных функций.
  • Фирма изготовитель.
  • Мощность.
  • Расход электричества.
  • Габаритные размеры.

Есть важный совет при покупке реле. Твердотельные реле рекомендуется устанавливать с запасом по мощности в несколько раз. В противном случае, даже небольшое превышение мощности выведет из строя реле.

Для защиты реле от неисправностей рекомендуется применять специальные предохранители. Имеется несколько видов предохранителей для защиты твердотельных реле:
  • g R – применяются в широком интервале мощностей, имеют повышенное быстродействие.
  • g S – применяются для любого тока, осуществляют защиту полупроводников от высоких нагрузок сети.
  • a R – осуществляют защиту полупроводников от короткого замыкания.

Такие предохранители стоят недешево, их стоимость примерно равна цене самого реле. Однако это стоит того, так как они создают эффективную защиту реле от выхода из строя. Бывают и другие виды предохранителей, относящиеся к классам В, С, D. Они имеют отличия в том, что осуществляют защиту низкого качества, и меньшей ценой.

Во время работы твердотельные реле быстро нагреваются. При чрезмерном нагреве коммутация происходит с отклонением от нормального режима, ток снижается. При достижении 65 градусов, реле сгорает. Поэтому, для нормальной работы реле необходим радиатор охлаждения, а также запас по току в 3-4 раза больше номинала. При применении реле для регулирования скорости электродвигателей, запас по току следует повысить до 8-10 раз.

Похожие темы:

Твёрдотельное реле SSR (Полупроводниковое) на DIP8 купите недорого в Москве с доставкой

Производитель: RELPOL

Код товара: RSR30D24D1020401

Код произв-ля: RSR30-D24-D1-02-040-1

Реле полупроводниковое, Uупр 18-32ВDC, Iупр. макс 7, 7мА, 2А, 4г