Резонансный: Как извлекать энергию из вакуума через резонанс

Содержание

Как извлекать энергию из вакуума через резонанс

Возможно, резонансный механизм извлечения энергии из физвакуума окажется наиболее эффективным из всех существующих. Дело в том, что любое колебание характеризуется очень высокой степенью неравномерности. Здесь постоянно меняется как численное значение скорости движения колеблющегося тела, так и направление вектора скорости. А чем больше неравномерность, тем лучше должен быть результат. Вспомните, что я писал о разрушении моста под сапогами марширующих солдат в статье «Парадоксы энергии». Если суммировать энергию, сообщаемую мосту солдатами, и сравнить её с энергией, необходимой для разрушения моста, то вторая окажется в миллионы раз больше первой.

Неизвестно точно, кто был первым в разработке резонансных генераторов. Имеются сведения, что американский физик Генри Мюррей ещё в середине 20-х годов прошедшего века осуществил первый успешный опыт по извлечению энергии из физвакуума в достаточно больших объёмах. А в конце 20-х годов он построил 30-ступенчатый агрегат мощностью 50 кВт, который работал беспрерывно несколько месяцев. Мюррей не делал секрета из своих экспериментов и демонстрировал работающий генератор всем желающим. Это его и погубило. Однажды какой-то безумец принёс с собой бомбу и взорвал лабораторию. А вскоре внезапно умер и сам изобретатель. После его смерти все уцелевшие бумаги и чертежи установки исчезли. И потому точно не известно, как именно выглядел аппарат этого изобретателя.

Вторым был сербский физик Никола Тесла. Он тоже построил генератор, работающий на резонансном принципе, и его лаборатория в Колорадо-Спрингс также была взорвана. К счастью, Тесла был намного более известен по сравнению с Мюрреем и потому его самого не тронули. Но перекрыли все каналы получения денег для дальнейшей разработки. Тесловский аппарат состоял из электродвигателя и соединённого с ним через механическую муфту электрогенератора, а также искровика. Двигатель вращал генератор, а тот вырабатывал нужный для работы двигателя ток. При этом из-за наличия в цепи резонанса ток вырабатывался в таких количествах, что его хватало и для работы самого двигателя, и для питания многочисленных внешних потребителей. Когда между электродами в искровике проскакивает искра, в ней присутствуют колебания очень широкого спектра частот. И какая-нибудь из них обязательно совпадёт с резонансным значением. Если нагрузка изменится, резонанс будет осуществляться на другой частоте. Такая система очень удобна тем, что в ней не нужен блок управления и она автоматически подстраивается в резонансный режим. Но искра обладает двумя недостатками, из-за которых Тесла отверг данную схему. Во-первых, искра испускает жесткое рентгеновское излучение, вредное для организма. Именно по этой причине преждевременно ушли из жизни те наши современники, которые работали с искровой схемой: Арсений Меделяновский, Владилен Докучаев, Александр Чернетский. Во-вторых, искра порождает мощные радиоволны, от которых глохнут все телевизоры и радиоприёмники в округе.

Тесла быстро разобрался в недостатках искры и отказался от такого способа, разработав иной более безопасный и даже испробовав его на практике. Он использовал обычный колебательный контур, имеющийся во всех радиоприёмниках, и содержащий по меньшей мере, одну индукционную катушку и электрический конденсатор переменной ёмкости. На Земле постоянно бушуют грозы с молниями, которые порождают электромагнитные волны широкого спектра частот. Антенна улавливает эти волны и возбуждает в контуре слабый переменный ток. А постоянно поддерживаемый в контуре режим резонанса усиливает ток до такой степени, что находящийся там электромотор начинает работать. Когда в Далласе (штат Техас) происходила промышленная выставка, Тесла заручился поддержкой фирм «Pierce-Arrow» и «General Electric», снял бензиновый мотор с демонстрируемого автомобиля «Arrow» и установил на него электрический двигатель переменного тока мощностью 80 л.с. и скоростью вращения 1800 об/мин. После этого пошёл в местный магазин, купил там несколько электронных ламп, кучу проводов, резисторы, и из всего этого барахла соорудил небольшую коробочку размерами 60×30×15см с двумя антеннами. Установил коробочку за сиденьем, подсоединил её к электромотору и поехал. Гонял он автомобиль целую неделю, развивая скорость до 150 км/час. А на все вопросы об источнике энергии отвечал, что энергия поступает из эфира. Но неграмотные обыватели сочли, что Тесла связался с дьяволом, который и толкает автомобиль. Разгневанный такими инсинуациями, Тесла снял коробочку с автомобиля и отказался рассказывать, как она работает.

Некоторые современные физики, работающие в этой области, видят источник энергии тесловской коробочки в электромагнитных полях. В принципе, если настроить частоту аппарата на частоту земного электромагнитного поля (от 7 до 7.5 герц, так называемый резонанс Шумана), извлекать энергию из магнитного поля окажется возможным. Но это противоречит тому, что говорил сам Тесла. Ведь он прекрасно разбирался в магнитных полях, но говорил всегда об эфире, а не о поле. Одного я только не понимаю: зачем Тесла установил в своей коробочке две антенны, когда можно было бы обойтись одной?

В настоящее время подобные схемы исследуют Андрей Мельниченко в России, Дон Мартин (Don Martin) в США и Паоло Кореа в Канаде. Точная схема установки Дон Мартина не известна, т.к. американцы держат её в секрете. Но мой личный разговор с директором International Tesla Institute Джонном МакГиннисом (John McGinnis), который продвигает эту разработку, привёл меня к выводу, что американская установка почти в точности идентична установке Мельниченко. Начинал Андрей с самого простого устройства, куда входили только генератор, электродвигатель и конденсатор. Вот его рассказ, взятый мною из журнала «Свет», 6, 1997: «…я зарабывал деньги на строительстве дач. И работал с циркуляркой, у которой был двигатель на 1.5 кВт. Всё шло прекрасно, пока не отключили энергию. Я пошёл к соседу, у него был бензиновый генератор на 127 вольт. Но у циркулярки двигатель рассчитан на 220 вольт. От такого генератора циркулярка работала еле-еле, диск можно было остановить ладонью. Тогда я взял пару обычных конденсаторов и поставил их последовательно с двигателем. Напряжение подскочило до 500 вольт. Я снял один конденсатор, и получилась напруга как раз на двигатель. Пришёл местный электрик, померил и чуть не упал в обморок: бензиновый генератор имел 100 вольт и 0. 5 кВт, а электродвигатель — 270 вольт и 1.5 кВт при одинаковой силе тока 0.5 ампер. То есть двигатель имел напряжение на входе в 2 раза меньше номинального, а на выходе на 20% больше. Пила работала как зверь — доски только отлетали. Он ничего понять не мог. Тут я вытащил из-под двигателя конденсатор величиной со спичечный коробок, который он не заметил, и объяснил суть эксперимента. Любой специалист может его воспроизвести за несколько секунд и убедиться в реальности дополнительной мощности».

В этой установке вся энергия, выбрасываемая из физвакуума при его переходе из возбуждённого состояния в нейтральное, отдавалась потребителю. Поэтому для следующего цикла возбуждения требовался посторонний источник энергии. В схеме Мельниченко им был бензиновый генератор. А в коробочке Теслы это были далёкие молнии. Но если часть получаемой энергии пускать на повторное возбуждение вакуума, посторонний источник энергии можно убрать. Поэтому Мельниченко изменил установку. Модернизированный аппарат кроме двигателя с генератором включал также конденсатор переменной ёмкости, нагрузку, блок управления и батареи. Двигатель и генератор соединялись механически через муфту и электрически. Конденсатор находился в цепи нагрузки. Цепь нагрузки и цепь двигателя подсоединялись к генератору параллельно. Блок управления менял емкость конденсатора так, чтобы в цепи всегда поддерживался резонанс. Батареи были нужны лишь для запуска установки, а после выхода на стационарный режим они отключались.

А Паоло Кореа, похоже, повторяет работы Мюррея. Потому что внешний вид установки канадца очень напоминает то, что в своё время показывал американец и как об этом рассказывали посетители его лаборатории. Кореа использует акустический резонанс в плазме. В стеклянной трубе по всей её длине тянутся два плоских электрода, на которые подаётся переменное напряжение с частотой, равной резонансной частоте акустических колебаний плазмы (а у Мюррея было 30 таких труб, установленных последовательно в батарею). Сама же плазма создаётся посредством ионизации газа заряженными частицами, вылетающими из тонкого слоя радиоактивного вещества, покрывающего внутреннюю сторону электродов. Конечно, степень ионизации и температура такой плазмы довольно низки, но для получения хорошего результата этого оказывается достаточным. Как сообщает Кореа в своих статьях, на одну единицу вкладываемой энергии он получает от 6 до 18 единиц энергии из плазмы. К сожалению, у такой схемы имеется существенный недостаток: положительная обратная связь между вкладываемой и получаемой энергиями. Поэтому установка канадца работает неустойчиво, вырабатываемые ток и напряжение скачут в слишком широком интервале значений. А это ведёт к перенапряжению оборудования и его быстрому выходу из строя. Как решить эту проблему, исследователь пока не знает.

И вот что интересно. Оказывается, нечто подобное уже давно используется на всех электростанциях, правда с совершенно иной целью. Явление резонанса в электрической сети прекрасно известно всем электротехникам. Когда он возникает, в сети выделяется громадное количество дополнительной энергии (выброс энергии может в 5-10 раз превышать норму), и многие потребители перегорают. От их выхода из работы ёмкость и индуктивность сети меняются и резонанс исчезает. Но для уже перегоревших устройств от этого легче не становится. Чтобы избежать такого оборота, на выходе из станции устанавливают специальные антирезонирующие вставки. Как только сеть окажется слишком близко к условиям резонанса, вставки автоматически изменяют свою ёмкость и уводят сеть из опасной зоны. Но если бы мы стали специально подерживать резонанс в сети с соответствующим уменьшением силы тока на выходе из станции, тогда потребление топлива станциями упало бы в десятки раз. И во столько же раз упала бы себестоимость производимой энергии.

Также имеются сведения, что резонанс позволяет добиться многократного снижения энергозатрат при разложении воды на водород и кислород. Если электролиз производить током с частотой, равной частоте собственных колебаний атомов водорода и кислорода в молекуле воды, тогда затраты энергии на разложение падают в десятки раз. Но при последующем сгорании этих газов один в другом выделится такая же энергия, как раньше. Разлагая повторно полученную воду током резонансной частоты и снова сжигая полученные газы, можно добиться того, что при достаточно малых затратах электричества из розетки или от батарей мы получим громадные количества тепла. К сожалению, я не нашёл достаточно подробной информации на эту тему, поэтому ничего более конкретного сказать не могу.

причины, виды, борьба с резонансом, природа возникновения

Главными факторами, вызывающими феррорезонансные явления в электросетях, являются ёмкостные и индуктивные элементы, способные образовывать колебательные контуры в моменты переключений. Особенно заметно данный эффект проявляется в силовых трансформаторах, линейных вольтодобавочных трансформаторах, трансформаторах напряжения, шунтирующих контурах и в подобном оборудовании, оснащённом массивной обмоткой.

Виды и возникновение резонанса

Всего выделяют два различных типа таких явлений: резонанс напряжений и токов.

Первые обычно проявляются в контурах, использующих последовательное соединение реактивных элементов. Резонанс токов, в свою очередь, характерен для систем с параллельным соединением ёмкостного и индуктивного элемента. Подобных цепей (LC-контуров) в каждой электрической сети огромное множество, поэтому и переходные процессы для каждой отдельной сети при аварийных и плановых отключениях носят индивидуальный и весьма сложный смешанный характер.

Феррорезонанс возникает при наличии в сети индуктивности, характеризующуюся нелинейной вольт-амперной характеристикой.

Данной особенностью обладают катушки индуктивности, сердечник которых выполнен из ферромагнитного материала. В частности, это относится к широко распространённым сейчас трансформаторам напряжения серии НКФ. Такой негативный эффект обусловлен малой величиной индуктивного и омического сопротивления относительно реакторов и силовых трансформаторов.

Причины возникновения резонансных явлений

При подключении трансформаторов напряжения, в сети образуются последовательно соединённые LC-цепочки, представляющие собой резонансный контур. В таком сочетании, когда индуктивный элемент с нелинейной вольт-амперной характеристикой подключается последовательно к ёмкостному элементу, напряжение на данном участке цепи можно охарактеризовать как активно-индуктивное.

Такое положение дел обусловлено тем, что в индуктивных компонентах амплитуда напряжения опережает амплитуду тока на угол в 90 градусов, в то время как в ёмкостных компонентах, напротив, отстаёт на 90 градусов от тока.

По истечении некоторого промежутка времени напряжение на индуктивном компоненте достигает пикового значения, магнитопровод насыщается, в то же время на ёмкостном компоненте напряжение продолжает возрастать. Резонанс напряжений наступает в тот момент, когда напряжение на индуктивности равно таковому на ёмкостном компоненте.

Дальнейшее увеличение приложенного к контуру напряжения приводит к изменению его характера на активно-ёмкостной.

Явление быстрого перехода активно-индуктивного типа приложенного напряжения в активно-ёмкостной получило название «опрокидывание фазы». Данный эффект положен в основу работы ряда специальных электронных приборов, но в то же время незапланированное возникновение подобных процессов в сетях таит в себе опасность для электрического оборудования.

Резонанс токов может вызывать те же последствия, что и резонанс напряжений, только он возникает в цепях, в которых LC-цепочки соединены параллельно.

Интересное видео о феррорезонансе в электросетях:

Последствия и борьба с резонансными явлениями

На силовых трансформаторах с рабочим напряжением 220 кВ в результате резонанса напряжение может скачкообразно увеличиться до 300 кВ, а ток мгновенно поднимается до такой силы, при которой обмотки разрушаются в результате теплового воздействия (электродинамический удар).

Чтобы подобных явлений не возникало, в программах переключений обычно планируют специальные операции, исключающие протекание процессов резонанса, а в систему шин нередко специально устанавливают элементы, сопротивление которых призвано бороться с явлением резонанса.

Резонансный трансформатор Тесла — больше не секрет

Знакомство с трансформатором Н. Тесла.

Новомодный феномен резонансного трансформатора Николы Тесла возник не давно, а Интернет забит фотографиями и интригующими видеосъемками молний и коронарных разрядов.

Вспомним, что трансформатор первоначально был предназначен не для показательного выступления в цирке, а для передачи радиосигналов на далекие расстояния. В связи с этим предлагаю ознакомиться с его принципом работы и найти ему практическое применение.

Трансформатор Тесла состоит из двух основных частей, см. рис.1а;

1. Генерирующей части, состоящей из высоковольтного источника питания, накопительного конденсатора С1, разрядника и катушки связи L1. Частота генерации зависит от напряжения питания, емкости конденсатора С1, характеризующее время разряда, а так же промежутком между электродами разрядника;

2. Резонансной катушки индуктивности L2, заземления и сферы, см.

рис. 1а.

Если вглядеться в схему этого трансформатора внимательнее, то мы увидим известную схему последовательного колебательного контура, состоящего из катушки индуктивности L2 с открытой емкостью С, образованной между сферой и землей. Это открытый колебательный контур, который был открыт Дж. К. Максвеллом.

Обратимся к классической теории принципа действия открытого колебательного контура:

Как известно колебательный контур состоит из катушки индуктивности и конденсатора. Исследуем простейший колебательный контур, катушка которого состоит из одного витка, а конденсатор представляет собой две рядом расположенные металлические пластины. Подадим в разрыв индуктивности контура 1 переменное напряжение от генератора, см. рис.2а. В витке потечет переменный ток и создаст вокруг проводника магнитное поле. Это сможет подтвердить магнитный индикатор в виде витка, нагруженного лампочкой. Для того, что бы получить открытый колебательный контур, раздвинем пластины конденсатора.

Мы наблюдаем, что лампа индикатора магнитного поля продолжает гореть. Чтобы лучше понять, что происходит в данном опыте, смотри рис. 2а. По витку контура 1 течёт ток проводимости, который вокруг себя создает магнитное поле Н, а между пластинами конденсатора – равный ему, так называемый, ток смещения. Несмотря на то, что между пластинами конденсатора нет тока проводимости, опыт показывает, что ток смещения создаёт такое же магнитное поле, как и ток проводимости. Первым, кто об этом догадался, был великий английский физик Дж. К. Максвелл.

В 60-х годах 19-го столетия, формулируя систему уравнений для описания электромагнитных явлений, Дж. К. Максвелл столкнулся с тем, что уравнение для магнитного поля постоянного тока и уравнение сохранения электрических зарядов переменных полей (уравнение непрерывности) несовместимы. Чтобы устранить противоречие, Максвелл, не имея на то никаких экспериментальных данных, постулировал, что 

магнитное поле порождается не только движением зарядов, но и изменением электрического поля, подобно тому, как электрическое поле порождается не только зарядами, но и изменением магнитного поля. Величину где — электрическая индукция, которую он добавил к плотности тока проводимости, Максвелл назвал током смещения. У электромагнитной индукции появился магнитоэлектрический аналог, а уравнения поля обрели замечательную симметрию. Так, умозрительно был открыт один из фундаментальнейших законов природы, следствием которого является существование электромагнитных волн. В последствии Г.Герц опираясь на эту теорию доказал, что электромагнитное поле излучаемое электрическим вибратором равно полю излучаемое емкостным излучателем.

Раз так, убедимся еще раз, что происходит, когда закрытый колебательный контур превращается в открытый и как можно обнаружить электрическое поле Е ? Для этого рядом с колебательным контуром поместим индикатор электрического поля, это вибратор, в разрыв которого включена лампа накаливания, она пока не горит. Постепенно раскрываем контур, и мы наблюдаем, что лампа индикатора электрического поля загорается, рис. 2б. Электрическое поле теперь не сосредоточено между пластинами конденсатора, его силовые линии идут от одной пластины к другой через открытое пространство. Таким образом, мы имеем экспериментальное подтверждение утверждения Дж. К. Максвелла, что емкостной излучатель порождает электромагнитную волну. Никола Тесла обратил на этот факт внимание, что при помощи совсем не больших излучателей можно создать достаточно эффективный прибор для излучения электромагнитной волны. Так родился резонансный трансформатор Н. Тесла. Проверим и этот факт, для чего вновь рассмотрим назначение деталей трансформатора.

И так, сфера и заземление выполняют роль пластин открытого конденсатора. Геометрические размеры сферы и технические данные катушки индуктивности определяют частоту последовательного резонанса, которая должна совпадать с частотой генерации разрядника.

Иными словами, режим последовательного резонанса позволяет трансформатору Тесла достигать таких величин напряжений, что на поверхности сферы появляется коронарный разряд и даже молнии. Весь фокус состоит в том, что коэффициент трансформации резонансного трансформатора выше соотношения витков катушек L1/L2 и значительно выше, чем в трансформаторах с ферро сердечниками. Здесь индуктивность L2, сфера и заземление, представляют из себя открытый резонансный колебательный контур. Именно по этому трансформатор Тесла называется резонансным.

Рассмотрим работу трансформатора Тесла, как последовательный колебательный контур:

— Этот контур необходимо рассматривать как обычный LC – элемент, рис. 1а.б, а так же рис. 2а, где включены последовательно индуктивность L, открытый конденсатор С и сопротивление среды Rср. Угол сдвига фаз в последовательном колебательном контуре между напряжением и током равен нулю (φ=0), если ХL = — Хс, т.е. изменения тока и напряжения в нем происходят синфазно. Это явление называется резонансом напряжений (последовательным резонансом). Следует отметить, что при понижении частоты от резонанса, ток в контуре уменьшается, а резонанс тока несет емкостной характер. При дальнейшей расстройке контура и понижении тока на 0,707, его фаза смещается на 45 градусов. При расстройке контура вверх по частоте, он приобретает индуктивный характер.

Это явление часто используют в фазоинверторах.

Если мы рассмотрим схему изображенную на рис. 3, то мы сможем предоставить простые расчеты, из которых видно, что напряжение на пластинах излучателя вычисляется исходя из добротности контура Q, которая реально может находиться в пределах 20 – 50 и много выше.

Где полоса пропускания определяется добротностью контура:

Δf=fo/Q;

Тогда напряжение на пластинах излучателя будет выглядеть согласно следующей формуле:

U2= Q * U1.

В таблице 1 расчетные данные приведены для частоты 7.0 МГц не случайно, это дает возможность любому желающему коротковолновику провести радиолюбительский эксперимент в эфире. Здесь входное напряжение U1 условно взято за 100 Вольт, а добротность за 26.

Таблица 1.

f ( МГц)

L (мкГн)

ХL (Ом)

C (пФ)

— Xc (Ом)

Δf (кГц)

Q

U 1/U 2 (В. )

7

30,4

1360

17

1340

270

26

100/2600

Напряжение U2 согласно расчетам составляет 2600В, что подтверждается практической работой трансформатора Тесла. Данное утверждение приемлемо в тех случаях, когда отсутствует изменение частоты или сопротивления нагрузки данного контура. В трансформаторе Н. Тесла оба фактора постоянны.

Полоса пропускания трансформатора Тесла зависит от нагрузки, т. е., чем выше связь открытого конденсатора С (сфера-земля) со средой, тем больше нагружен контур, тем шире его полоса пропускания. Тоже происходит с контуром, нагруженным активной нагрузкой. Таким образом, площадь пластин излучателя антенны определяет его емкость С и соответственно диктует ширину полосы пропускания. Тем не менее, здесь нужно понимать, что чрезмерное увеличение полосы пропускания за счет увеличения объема излучателей приведет к снижению добротности контура и соответственно приведет к уменьшению эффективности резонансного трансформатора и всего устройства в целом.

Подводя итог, мы приходим к выводу, что излучает не индуктивность трансформатора Тесла L2, а элементы открытого конденсатора (сфера-земля рис. 1а.) являющегося частью резонансной системы. Это емкостной излучатель с двумя полюсами, который создает вокруг себя мощное и концентрированное электромагнитное излучение. Трансформатор Тесла обладает особенностью накопления энергии, что характерно только последовательному LC – контуру, где суммарное выходное напряжение значительно превосходит входное, что наглядно видно из результатов таблицы. Данное свойство давно практикуют в промышленных радиоустройствах для повышения напряжения в устройствах с большим входным сопротивлением.

Таким образом, мы можем сделать следующий вывод:

Трансформатор Теслаэто высокодобротный последовательный колебательный контур, где сфера является открытым элементом, осуществляющим связь со средой. Индуктивность L является лишь закрытым элементом и резонансным трансформатором напряжения не участвующим в излучении.

Далее в тексте, будет удобно называть емкостной излучатель диполем Тесла. Это вполне справедливо, ведь «диполь» означает di(s) дважды +polos полюс, что исключительно применимо к двухполюсным конструкциям, каковым и является резонансный трансформатор Николы Тесла с емкостной двухполюсной нагрузкой.

Внимательно изучив цели построения резонансного трансформатора Николы Тесла, невольно приходишь к выводу, что он был предназначен для передачи энергии на расстояние, но эксперимент был прерван, а потомкам остается догадываться о истинной цели этого чуда, конца 19 и начала 20 века. Не случайно Никола Тесла в своих записях оставил следующее изречение: — «Пусть будущее рассудит и оценит каждого по его трудам и достижениям. Настоящее принадлежит им, будущее, ради которого я работаю, принадлежит мне».

Резонансные элементы любого контура можно изменять в разных пределах и как с ними поступишь, так они и поведут себя. Можно увеличить индуктивность в этой конструкции и получить на поверхности сферы стримеры, коронарные разряды и даже молнии. Можно увеличить емкость и в режиме резонанса напряжений добиться максимальной отдачи сбалансированного электромагнитного поля. И все же Тесла был прав, когда отказался от металлического сердечника внутри повышающей катушки, ведь он вносил потери в том месте, где зарождалась электромагнитная волна.

Автор статьи повторил конструкцию трансформатора Тесла на частоте 7МГц. Параметры индуктивности и емкости сильно разнились, но результаты экспериментов привели к единственно правильному условию, когда ХL= -Хс стали соответствовать табличным данным (табл. 1). Интересно то, что если уменьшать излучающую емкость, то для получения резонанса приходится увеличивать индуктивность. При этом, на краях излучателя и других неровностях, появляются стримеры (от англ. Streamer). Streamer, это тускло видимая, ионизация воздуха (свечение ионов), создаваемая полем диполя. Это и есть резонансный трансформатор Тесла, каким мы его привыкли видеть на просторах Интернета.

Проверка принципа действия диполя Тесла на практике.

Для проведения экспериментов с трансформатором Тесла над конструкцией не пришлось долго думать, здесь помог радиолюбительский опыт. В качестве излучателей вместо сферы и земли были взяты две гофрированные алюминиевые (вентиляционные) трубы диаметром 120мм и длиной по 250 мм. Удобство применения заключалось в том, что их можно растягивать или сжимать как витки катушки, тем самым, меняя емкость контура в целом и соответственно соотношение L/С. «Трубы – емкости» располагались горизонтально на бамбуковой палке с расстоянием 100мм. Катушка индуктивности L2 (30 мкГн) проводом 2 мм, была вынесена ниже оси цилиндров на 50 см. с тем, что бы не создавать вихревых токов в сфере излучателей. Еще лучше будет, если катушку вынести за один из излучателей, располагая ее на одной оси с ними, где эл. магнитное поле минимально и имеет форму «пустой воронки». Катушка связи L1 (1 виток, 2мм), обеспечивала связь с трансивером мощностью 40 вт. Образованный, этими элементами колебательный контур был настроен в режиме последовательного резонанса, где было соблюдено правило, а именно ХL = -Хс. Катушкой L1, соответственно было настроено согласование импровизированного диполя Тесла с фидером 50 Ом. Фидер длиной 5 метров для чистоты эксперимента был обеспечен с обоих сторон ферритовыми фильтрами.

Для сравнения испытывалось три антенны:

  1. диполь Тесла (L= 0.7м, КСВ=1,1),
  2. разрезной укороченный диполь Герца (L = 2х0,7м, удлинительная катушка, фидер 5 метров защищенный ферритовыми фильтрами КСВ=1,0),
  3. горизонтальный полуволновой диполь Герца (L = 19,3м, фидер защищен ферритовыми фильтрами КСВ=1,05).

На расстоянии 3 км. в черте города был включен передатчик с постоянной несущей сигнала.

Диполь Тесла (7 МГц) и укороченный диполь с удлиняющей катушкой, по очереди размещались возле кирпичного здания на расстоянии всего 2 метра, и на момент эксперимента находились в равных условиях на высоте (10-11м).

В режиме приема диполь Тесла превосходил укороченный диполь Герца на 2-3 балла (12-20 дБ) по шкале S-метра трансивера и более.

За тем вывешивался, за ранее настроенный, полуволновый диполь Герца. Высота подвеса 10-11 м. на расстоянии от стен в 15-20м.

По усилению диполь Тесла уступал полуволновому диполю Герца примерно на 1 балл (6-8дБ). Диаграммы направленности всех антенн совпадали. Стоит отметить, что полуволновый диполь был размещен не в идеальных условиях, а практика построения диполя Тесла требует новых навыков. Все антенны находились внутри двора (четыре здания), как в экранированном котле.

Общие выводы.

Рассматриваемый диполь Тесла на практике работает почти как полноценный полуволновый диполь Герца, он подчиняется принципам двойственности, что не идет в разрез с теорией антенн. Не смотря на свои сверх — малые размеры (0,01- 0,02λ), диполь Тесла осуществляет связь с пространством в виде емкостных пластин, сферы, цилиндров и пр.. Напряжение и ток в момент последовательного резонанса синфазны. Соответственно создают в пространстве, вокруг излучателя, синфазное поле Е и поле Н, что приводит к размышлению о том, что поле диполя Тесла в пределах излучателей уже сформировано и имеет «мини-сферу». Следует вспомнить, что у диполя Герца сферой считается то место, где поле Е и поле Н находятся в фазе, а именно на расстоянии 2-3 длины волны. Таким образом, диполь Тесла имеет все основания для практических экспериментов в радиолюбительской службе в диапазонах коротких, средних и особенно длинных волн. Думаю, что любителям длинноволновой связи (137кГц) стоит обратить на этот эксперимент особое внимание. Здесь имеется огромный потенциал проявить свою смекалку в усовершенствовании емкостного излучателя и подтвердить высказывание Г. Герца в том, что уровень излучения емкостного излучателя равен уровню излучения электрического диполя.

Примечание: Диполь Тесла относится к емкостным излучателям, не путать с полуволновым диполем Герца. Принципы их действия разнятся как, «водоплавающие от наземных», как катер от автомобиля, — мотор один, а движители разные.

UA9LBG. Сушко С.А.


Комментарии

Отзывы читателей — Скажите свое мнение!

Оставьте свое мнение


Отзывы читателей — Скажите свое мнение!

Резонанс — Википедия

Эффект резонанса для разных частот внешнего воздействия и коэффициентов затухания

Резона́нс (фр. resonance, от лат. resono «откликаюсь») — частотно-избирательный отклик колебательной системы на периодическое внешнее воздействие, который проявляется в резком увеличении амплитуды стационарных колебаний при совпадении частоты внешнего воздействия с определёнными значениями, характерными для данной системы[1]. Для линейных колебательных систем значения частот резонанса совпадает с частотами собственных колебаний, а их число соответствует числу степеней свободы[1].

Под действием резонанса, колебательная система оказывается особенно отзывчивой на действие внешней силы. Степень отзывчивости в теории колебаний описывается величиной, называемой добротностью. При помощи резонанса можно выделить и/или усилить даже весьма слабые периодические колебания.

Явление резонанса впервые было описано Галилео Галилеем в 1602 г. в работах, посвященных исследованию маятников и музыкальных струн.[2][3]

Механика

Наиболее известная большинству людей механическая резонансная система — это обычные качели. Если подталкивать качели в соответствии с их резонансной частотой, размах движения будет увеличиваться, в противном случае движения будут затухать. Резонансную частоту такого маятника с достаточной точностью в диапазоне малых смещений от равновесного состояния можно найти по формуле:

f=12πgL{\displaystyle f={1 \over 2\pi }{\sqrt {g \over L}}},

где g — это ускорение свободного падения (9,8 м/с² для поверхности Земли), а L — длина от точки подвешивания маятника до центра его масс. (Более точная формула довольно сложна и включает эллиптический интеграл.) Важно, что резонансная частота не зависит от массы маятника. Также важно, что раскачивать маятник нельзя на кратных частотах (высших гармониках), зато это можно делать на частотах, равных долям от основной (низших гармониках).

Резонансные явления могут приводить как к разрушению, так и к усилению устойчивости механических систем.

В основе работы механических резонаторов лежит преобразование потенциальной энергии в кинетическую и наоборот. В случае простого маятника, вся его энергия содержится в потенциальной форме, когда он неподвижен и находится в верхних точках траектории, а при прохождении нижней точки на максимальной скорости, она преобразуется в кинетическую. Потенциальная энергия пропорциональна массе маятника и высоте подъёма относительно нижней точки, кинетическая — массе и квадрату скорости в точке измерения.

Другие механические системы могут использовать запас потенциальной энергии в различных формах. Например, пружина запасает энергию сжатия, которая, фактически, является энергией связи её атомов.

Струна

Струны таких инструментов, как лютня, гитара, скрипка или пианино, имеют основную резонансную частоту, напрямую зависящую от длины, массы и силы натяжения струны. Длина волны первого резонанса струны равна её удвоенной длине. При этом, её частота зависит от скорости v, с которой волна распространяется по струне:

f=v2L{\displaystyle f={v \over 2L}}

где L — длина струны (в случае, если она закреплена с обоих концов). Скорость распространения волны по струне зависит от её натяжения T и массы на единицу длины ρ:

v=Tρ{\displaystyle v={\sqrt {T \over \rho }}}

Таким образом, частота главного резонанса зависит от свойств струны и выражается следующим отношением:

f=Tρ2L=Tm/L2L=T4mL{\displaystyle f={{\sqrt {T \over \rho }} \over 2L}={{\sqrt {T \over m/L}} \over 2L}={\sqrt {T \over 4mL}}},

где T — сила натяжения, ρ — масса единицы длины струны, а m — полная масса струны.

Увеличение натяжения струны и уменьшение её массы (толщины) и длины увеличивает её резонансную частоту. Помимо основного резонанса, струны также имеют резонансы на высших гармониках основной частоты f, например, 2f, 3f, 4f[4], и т. д. Если струне придать колебание коротким воздействием (щипком пальцев или ударом молоточка), струна начнёт колебания на всех частотах, присутствующих в воздействующем импульсе (теоретически, короткий импульс содержит все частоты). Однако частоты, не совпадающие с резонансными, быстро затухнут, и мы услышим только гармонические колебания, которые и воспринимаются как музыкальные ноты.

Электроника

В электрических цепях резонансом называется такой режим пассивной цепи, содержащий катушки индуктивности и конденсаторы, при котором ее входное реактивное сопротивление или ее входная реактивная проводимость равны нулю. При резонансе ток на входе цепи, если он отличен от нуля, совпадает по фазе с напряжением.

В электрических цепях резонанс возникает на определённой частоте, когда индуктивная и ёмкостная составляющие реакции системы уравновешены, что позволяет энергии циркулировать между магнитным полем индуктивного элемента и электрическим полем конденсатора.

Механизм резонанса заключается в том, что магнитное поле индуктивности генерирует электрический ток, заряжающий конденсатор, а разрядка конденсатора создаёт магнитное поле в индуктивности — процесс, который повторяется многократно, по аналогии с механическим маятником.

Электрическое устройство, состоящее из ёмкости и индуктивности, называется колебательным контуром. Элементы колебательного контура могут быть включены как последовательно (тогда возникает резонанс напряжений), так и параллельно (резонанс токов). При достижении резонанса, импеданс последовательно соединённых индуктивности и ёмкости минимален, а при параллельном включении — максимален. Резонансные процессы в колебательных контурах используются в элементах настройки, электрических фильтрах. Частота, на которой происходит резонанс, определяется величинами (номиналами) используемых элементов. В то же время, резонанс может быть и вреден, если он возникает в неожиданном месте по причине повреждения, недостаточно качественного проектирования или производства электронного устройства. Такой резонанс может вызывать паразитный шум, искажения сигнала, и даже повреждение компонентов.

Приняв, что в момент резонанса индуктивная и ёмкостная составляющие импеданса равны, резонансную частоту можно найти из выражения

ωL=1ωC⇒ω=1LC{\displaystyle \omega L={\frac {1}{\omega C}}\Rightarrow \omega ={\frac {1}{\sqrt {LC}}}},

где ω=2πf{\displaystyle \omega =2\pi f} ; f — резонансная частота в герцах; L — индуктивность в генри; C — ёмкость в фарадах. Важно, что в реальных системах понятие резонансной частоты неразрывно связано с полосой пропускания, то есть диапазоном частот, в котором реакция системы мало отличается от реакции на резонансной частоте. Ширина полосы пропускания определяется добротностью системы.

В электронных устройствах также применяются различные электромеханические резонансные системы.

СВЧ

В СВЧ электронике широко используются объёмные резонаторы, чаще всего цилиндрической или тороидальной геометрии с размерами порядка длины волны, в которых возможны добротные колебания электромагнитного поля на отдельных частотах, определяемых граничными условиями. Наивысшей добротностью обладают сверхпроводящие резонаторы, стенки которых изготовлены из сверхпроводника и диэлектрические резонаторы с модами шепчущей галереи.

Оптика

В оптическом диапазоне самым распространенным типом резонатора является резонатор Фабри-Перо, образованный парой зеркал, между которыми в резонансе устанавливается стоячая волна. Применяются также кольцевые резонаторы с бегущей волной и оптические микрорезонаторы с модами шепчущей галереи.

Акустика

Резонанс — один из важнейших физических процессов, используемых при проектировании звуковых устройств, большинство из которых содержат резонаторы, например, струны и корпус скрипки, трубка у флейты, корпус у барабанов.

Для акустических систем и громкоговорителей резонанс отдельных элементов (корпуса, диффузора) является нежелательным явлением, так как ухудшает равномерность амплитудно-частотной характеристики устройства и верность звуковоспроизведения. Исключением являются акустические системы с фазоинвертором, в которых намеренно создаётся резонанс для улучшения воспроизведения низких частот.

Астрофизика

Орбитальный резонанс в небесной механике — это ситуация, при которой два (или более) небесных тела имеют периоды обращения, которые относятся как небольшие натуральные числа. В результате эти небесные тела оказывают регулярное гравитационное влияние друг на друга, которое может стабилизировать их орбиты.

См. также

Видео-урок: резонанс

Примечания

Литература

  • Richardson LF (1922), Weather prediction by numerical process, Cambridge.
  • Bretherton FP (1964), Resonant interactions between waves. J. Fluid Mech., 20, 457—472.
  • Бломберген Н. Нелинейная оптика, М.: Мир, 1965. — 424 с.
  • Захаров В. Е. (1974), Гамильтонов формализм для волн в нелинейных средах с дисперсией, Изв. вузов СССР. Радиофизика, 17(4), 431—453.
  • Арнольд В. И. Потеря устойчивости автоколебаний вблизи резонансов, Нелинейные волны / Ред. А. В. Гапонов-Грехов. — М.: Наука, 1979. С. 116—131.
  • Kaup PJ, Reiman A and Bers A (1979), Space-time evolution of nonlinear three-wave interactions. Interactions in a homogeneous medium, Rev. of Modern Phys, 51(2), 275—309.
  • Haken H (1983), Advanced Synergetics. Instability Hierarchies of Self-Organizing Systems and devices, Berlin, Springer-Verlag.
  • Филлипс O.М. Взаимодействие волн. Эволюция идей, Современная гидродинамика. Успехи и проблемы. — М.: Мир, 1984. — С. 297—314.
  • Журавлёв В. Ф., Климов Д. М. Прикладные методы в теории колебаний. — М.: Наука, 1988.
  • Сухоруков А. П.. Нелинейные волновые взаимодействия в оптике и радиофизике. — Москва: Наука, 1988. — 230 с. — ISBN 5-02-013842-8. Архивировано 13 апреля 2014 года.
  • Брюно А. Д. Ограниченная задача трёх тел. — М.: Наука, 1990.
  • Широносов В. Г. Резонанс в физике, химии и биологии. — Ижевск: Издательский дом «Удмуртский университет», 2000. — 92 с.
  • Резонанс // Музыкальная энциклопедия. — М.: Советская энциклопедия, 1978. — Т. 4. — С. 585—586. — 976 с.

Ссылки

Резонанс — как источник энергии

В данной статье узнаем про резонанс — как источник энергии.

В средствах массовой информации с огромным «резонансом» говорят о РЕЗОНАНСЕ – как источнике энергии. Предлагаю разобраться с Вами, что такое электрический резонанс? Далеко ходить не будем, рассмотрим происходящие процессы в классическом LC резонансном контуре. Собственно других резонансных систем в электронике не существует. Прежде стоит отметить: бывают последовательный и параллельный колебательный (резонансный) контур. Процессы в обоих видах контуров протекают одинаково, отличие только в принципах питания.

Наиболее привлекателен, как источник энергии — параллельный колебательный контур, который все известные личности (в том числе Н. Тесла) использовали и используют в своих изобретениях и разработках. На его примере, проще рассматривать протекание тока питания и контурного тока.

Любой колебательный контур состоит из двух элементов — ёмкости С и индуктивности L. Общая ёмкость контура состоит из собственной ёмкости конденсатора входящего в состав контура, и паразитных емкостей подключенных к контуру цепей — ёмкости входной цепи, межвитковой ёмкости катушки индуктивности, ёмкости цепи нагрузки. Общая индуктивность контура состоит из собственной индуктивности катушки входящей в состав контура, и паразитных индуктивностей подключенных к контуру цепей — образуемых, как правило, длинами выводов конденсатора, транзистора, проводников цепи нагрузки. На частотах, до десятков мегагерц, паразитные ёмкости и паразитные индуктивности не значительно влияют на потери энергии резонансного контура, поэтому ими можно с достаточной уверенностью пренебречь, произведя подстройку частоты собственными элементами контура — катушкой индуктивности L , или конденсатором С.

 

Но колебательный контур обладает ещё одним параметром, оказывающим значительное влияние на потери энергии контуром — резистивным сопротивлением R , которое складывается из сопротивлений потерь в конденсаторе и катушке индуктивности, сопротивления выходного транзисторного каскада (в закрытом состоянии), и самое главное — сопротивления цепи нагрузки. Полная схема параллельного колебательного контура с резистивным сопротивлением изображена на рисунке, где C , L и R — суммарные значения ёмкостей, индуктивностей и резистивного сопротивления контура. Вообще, есть понятие – импеданс, но я не буду забивать вам голову этим понятием, а буду объяснять по простому.

Для того, чтобы понять, как C , L и R «работают» совместно, нам необходимо рассмотреть Амплитудно-частотную характеристику контура. Но сделаем мы это не на традиционном графике АЧХ, как упрощённо сделано в статье Колебательный контур. Резонанс. Изображённые ниже формулы и частотная характеристика, объясняют состояние и зависимость реактивных сопротивлений конденсатора XC и катушки индуктивности XL от частоты f.

На графике изображена линия зависимости реактивного сопротивления конденсатора XC от частоты f, которая указывает, что на низких частотах реактивное сопротивление конденсатора максимально, а с повышением частоты уменьшается по экспоненте — конденсатор превращается в «проводник». Линия зависимости реактивного сопротивления катушки индуктивности XL от частоты f, указывает, что катушка индуктивности ведёт себя наоборот, на низких частотах реактивное сопротивление катушки минимально — катушка индуктивности — «проводник», а с повышением частоты увеличивается, но не по экспоненте, а по прямой. Резистивное сопротивление контура R, никак от изменения частоты не зависит. Так как элементы контура соединены параллельно, то и складывать сопротивления конденсатора ХC, катушки индуктивности ХL и резистивное сопротивление контура R мы будем по формуле параллельного соединения резисторов, (подробнее в статье:Резистор).

По результирующему графику суммарного сопротивления резонансного контура мы видим, что имеется определённая частота, на которой значения сопротивления конденсатора ХC и катушки индуктивности ХL одинаковы, это и есть резонансная частота. Этот график фактически (но не совсем) является амплитудно-частотной характеристикой (АЧХ) контура.

Таким образом, можно сделать вывод, что элементы колебательного контура являются нагрузкой для электрического тока, могут поглощать подводимую энергию. Для подъёма АЧХ контура, необходимо увеличить общее сопротивление контура. Это можно сделать путём увеличения его составляющих — сопротивления конденсатора ХC, катушки индуктивности ХL и резистивного сопротивления контура R. Для повышения характеристики АЧХ и для того, чтобы частота не «уходила», необходимо одновременно увеличивая индуктивность катушки, уменьшать ёмкость конденсатора. Это следует из правила, согласно которому, на резонансной частоте величины ХC = ХL. Приведём формулу Томсона, получаемую из выражений зависимости ХC и ХL от частоты и подтверждающую это утверждение:

Из формулы Томсона следует, что на одной и той же частоте может работать множество контуров с разными величинами L и С, но с одинаковым произведением . Если же мы уменьшим сопротивление R , то и общее сопротивление колебательной системы так же снизится, что приведёт к потерям энергии.
Когда мы говорим о возможности получения энергии из колебательного контура, мы говорим об уменьшении сопротивления R , а это по известному закону Ома «не знаешь Ома, сиди дома», или I=U/R приводит к снижению амплитуды резонансных колебаний.

Отношение энергии, запасенной реактивными элементами контура, к энергии омических (резистивных) потерь за период, принято называть добротностью Q. Она то и зависит от вышеописанных физических величин:

Где, же дополнительная энергия резонансного контура? Всё вышеописанное ранее в этой статье, проводилось без учёта главного явления любого электрического резонансного контура – контурного тока.

 


 

Контурный ток

 

В связи с тем, что конденсатор и катушка индуктивности обладают реактивными свойствами, в колебательном контуре протекает контурный ток. Путь протекания этого тока проходит через конденсатор и катушку индуктивности. Направление этого тока меняется два раза за период колебаний. Этот процесс, наглядно изображён на примере простейшего транзисторного каскада на иллюстрации ниже:

Для упрощения, считаем, что транзистор работает без дополнительного смещения базы. Все переходные процессы протекания тока питания и контурного тока происходят в течение одного периода колебания, а в последующих периодах повторяются.

•Участок «0» временной характеристики, можно назвать первоначальным, когда процессы заряда и перезаряда ёмкости и индуктивности ещё не «устоялись», так как в начальный момент они разряжены. На этом этапе происходит заряд ёмкости от источника питания через открытый транзистор, при этом ток заряда сначала максимальный, а по окончании 1/4 периода падает до нуля. Ток в катушке индуктивности, обладающей инерционностью минимален. По окончании отрезка «0», контур переходит в резонансный «устоявшийся» режим.

•На участке «В» временной характеристики, когда конденсатор заряжен до напряжения источника питания, ток протекающий по пути «источник питания – катушка — открытый транзистор — источник питания» постепенно увеличивается. Когда в результате закрытия транзистора, напряжение на конденсаторе превысит потенциал, прикладываемый от источника тока, конденсатор начинает разряжаться через катушку индуктивности, к концу 1/2 периода разрядившись на неё полностью. Таким образом, в этот промежуток времени «В» через катушку индуктивности течёт два тока – ток источника питания и контурный ток разряда ёмкости.

•На участке «С» временной характеристики, когда переход транзистора закрыт, по причине инерционности катушки индуктивности происходит перезаряд конденсатора от катушки индуктивности. Катушка индуктивности полностью разряжается, а конденсатор оказывается заряженным противоположным потенциалом. Ток источника питания в этот момент «С» через элементы контура не течёт.

•На участке «D» временной характеристики, когда переход транзистора закрыт, происходит обратный разряд конденсатора на катушку индуктивности. Конденсатор полностью разряжается, а индуктивность наоборот, оказывается заряженной потенциалом противоположным источнику питания. Ток источника питания в этот момент «D» через элементы контура, по-прежнему, не течёт.

•На участке «А» временной характеристики, происходит заряд конденсатора от катушки индуктивности, а при разряде катушки до значения меньше напряжения источника питания подаваемого через открытый транзистор, конденсатор заряжается от источника питания. При этом ток заряда конденсатора сначала максимальный, а по окончании периода сигнала падает до нуля. Ток в катушке индуктивности, сначала — максимальный, а в конце временного интервала «А» становится равным нулю. В промежуток времени «А» через конденсатор течёт два тока – ток источника питания и контурный ток разряда ёмкости.

Процесс работы резонансного контура циклически повторяется по схеме: А – В – С – D – А.

Таким образом, в резонансном контуре ровно половину периода гармонического сигнала на участках А и В происходит сложение двух токов – тока источника питания и контурного тока, что в свою очередь с каждым периодом (процесса перезаряда) повышает энергию контура. Повышение энергии резонансного контура происходит только за счёт источника питания. Сколько в резонансный контур попадает энергии, столько энергии и тратится на нагрузку и потери в элементах схемы.

Почему то бытует мнение, что из электрического резонанса возможно получение «дополнительной», или «свободной» энергии, что для этого в контуре достаточно поддерживать резонанс. Выше описанные процессы, происходящие в электрическом резонансном контуре, полностью это опровергают, доказывая черезпериодное накопление энергии.

В интернете была статья, про то, что на каком-то заводе, какой-то электрик начитался статей про резонанс, и доработав понижающие трансформаторы на заводе снизил потребление энергии заводом на целый порядок.

Для учёта расхода энергии бывают счётчики активной энергии, которые стоят у нас в домах, и счётчики реактивной энергии, которые устанавливают на заводах. В чём разница? На предприятиях, как правило, имеется большое количество оборудования и станков, работающих на трёхфазных двигателях. Двигатель – это индуктивность, а наличие мощного двигателя подразумевает огромные токи. Для равномерности нагрузки мощных двигателей на трёхфазную сеть в каждый временной момент трёхфазного напряжения, в цепи питания устанавливают конденсаторы, которые совместно с обмотками двигателя образуют колебательные контура. Действие этих конденсаторов такое же, как было описано на участках А и В – во время действия сразу двух токов – тока источника питания и контурного тока. Счётчики активной энергии построены так, что заранее накопленная у потребителя энергия вносит ошибку в измерение. Как правило, это связано с «неправильным» подмагничиванием «токовой катушки». Счётчики активной энергии показывают энергию, расходованную двигателями, использующими «блоки конденсаторов», где то на одну треть меньше реально расходованной энергии. А вот счётчики реактивной энергии отлично с этим справляются. Этот «горе-электрик» не мог сделать никакой резонанс, хотя бы потому, что нагрузка потребителей на заводе в разгар дня – стабильна, а утром, в обед и вечером — величина не постоянная и скачет в широких пределах. Как было описано в этой статье, сопротивление нагрузки сильно влияет на выходную амплитуду резонансного контура. Стоило, кому ни будь на заводе, перед обеденным перерывом выключить мощный станок, то напряжение подскочило — бы и сожгло пару других станков, которые ещё не успели выключить другие рабочие. Я предполагаю, что он «химичил» со счётчиками, за что и был уволен.

 

В заключении статьи, хочу добавить для тех посетителей сайта, кто плохо учился в школе и поэтому в силу своего невежества искренне верит волшебникам:

Закон сохранения энергии никто не отменял! Вечного двигателя основанного на резонансе не бывает, и не может быть! При работе колебательного контура, происходит черезпериодное накопление энергии источника тока, поэтому в результате накопления, в определённый момент времени энергия контура может превышать подводимую к нему энергию. Энергия из «пустоты» не может появиться. «Свободная энергия» — это миф, порождённый малограмотными людьми, для людей себе подобных. Энергия присутствует во всём, что нас окружает, её только нужно правильно извлечь. Это различные химические соединения и элементы, природные явления, но не «Чудо», подобное тому, которое приписывают Тесле! И чем глупее сам «приписчик», тем «чуднее» в его голове выглядит этот выдающийся учёный. В помощь к получению энергии можно привлечь и электрический резонанс, но как вспомогательное явление, помогающее влиять на изменения свойств материалов. Не забивайте себе голову антинаучными идеями! Все, ныне существующие физические законы, никто в ближайшее время не опровергал, их только дополняли и корректировали, что с развитием техники было и всегда будет. Меньше обращайте внимание на малограмотные высказывания людей завлекающих к себе выдуманной сенсацией. Не верьте во всю чепуху, а сначала проводите анализ того, что написано в различных статьях, и что Вам излагают различные средства массовой информации.

резонансный — γγλοελληνικό Λεξικό WordReference.com

ριες μεταφράσεις
резонансный « имя существительное или местоимение , например, слово« рост », имя существительное или местоимение , например, слово« девушка »или местоимение , имя существительное : описывает местоимение прилагательное или местоимение интересная книга , «большой дом «. (звук: вторя) που αντηχεί περίφρ περίφραση : Συνδυασμός λέξεων που αποδίδει το νόημα του μεταφραζόμενου όρου, ο οποίος στον λόγο μπορεί να τροποποιηθεί κατάλληλα, π.χ. από την Αθήνα, που ακολουθεί κλπ.
αντηχών μτχ ενεστ μετοχή ενεστώτα : ρησιμοποιείται ως επίθετοχαεετοχαεετοχαεετοχαεετοχαεετοχαεετοχαεαετοχ.ουόυκικι υπογράφων, υπογράφουσα, υπογράφον κλπ .
Громкие звуки выстрелов напугали семью.
резонансный прил. прилагательное : Описывает существительное или местоимение — например, «девушка ростом », «интересная книга », «большой дом ».» (голос: глубокий) ( φωνή: βαθιά ) ηχηρός επίθ επίθετο : Περιγράφει το ουσιαστικό που συνοδεύει, π.χ. ψηλός άντρας, καλός καιρός κλπ, και αλλάζει ανάλογα με το γένος, π.χ. καλός, καλή, καλό
Резонансный голос Тони удивителен, потому что он такой маленький.
резонирующий прилагательное — например, « высокая девушка из », « интересная книга », « большой дом ».» образное (отношение, значимые) ( μεταφορικά ) ηχηρός επίθ επίθετο : Περιγράφει το ουσιαστικό που συνοδεύει, π.χ. ψηλός άντρας, καλός καιρός κλπ, και αλλάζει ανάλογα με το γένος, π. χ. καλός, καλή, καλό
σημαντικός επίθ επίθετο : Περιγράφει το ουσιαστικό που συνοδεύει, π.χ. ψηλός άντρας, καλός καιρός κλπ, και αλλάζει ανάλογα με το γένος, π.χ. καλός, καλή, καλό
( ανεπίσημο ) βαρύγδουπος επίθ επίθετουυαεαεαιεαιεαιεαιειιοιριοτγοιριο ψηλός ντρας, καλός καιρός κλπ, και αλλάζει ανάλογα με το γένος, π.χ. καλός, καλή, καλό
Религиозные обычаи находят отклик в моей семье.

Лучшая в мире частотная машина Rife

Получите до 2354 долларов в виде бесплатных бонусов!

Только ограниченное время…

¹ Отказ от ответственности: Никакая информация, представленная на этом сайте или на этой странице, включая информацию, содержащуюся в любых видео или обзорах, выраженных отдельными лицами или другими третьими сторонами, не предназначена для передачи какой-либо медицинской информации, и никакие продукты или устройства описываются натуральные продукты для здоровья или медицинские устройства. Для получения полного описания предполагаемого использования любых продуктов, продаваемых на этом сайте, а также более ясного понимания того, почему ни один из наших продуктов не может использоваться в медицинских или медицинских целях (особенно в качестве медицинских устройств или товаров для здоровья), пожалуйста, внимательно прочтите все перечисленные заявления об отказе от ответственности.Чтобы прочитать все наши полные заявления об отказе от ответственности, щелкните здесь.

Заявление об ограничении ответственности за видео : Спасибо за просмотр нашего видео. Обратите внимание, что вся информация и просмотры, представленные в этом видео, не должны рассматриваться как советы, и такая информация представляет собой только мнение докладчика или лица, выражающего или сообщающего информацию. Мы (будучи Resonant Wave TEchnology) не поддерживаем, не ручаемся и не поощряем какие-либо мнения или взгляды тех, кто представляет информацию в этом видео, и такие взгляды принадлежат только тем, кто их делает. Кроме того, мы не подтверждаем и не утверждаем надежность, точность, пригодность для каких-либо целей или правдивость любой информации, продуктов, услуг или заявлений, показанных в нашем видео, и мы ожидаем, что вы, зритель, проведете исследование, личное информирование и независимая оценка правдивости любой информации, представленной в этом видео. Также обратите внимание, что любое устройство, описанное в этом видео, не является медицинским устройством ни при каких обстоятельствах, если явно не указано иное. Поэтому любые такие устройства, показанные в нашем видео, не отображаются для лечения, лечения или исправления каких-либо состояний здоровья или болезней.По любым вопросам, связанным с вашим здоровьем, обязательно проконсультируйтесь с врачом для правильной диагностики и лечения. Любые расходные материалы, показанные в этом видео, также не регулируются и не одобрены каким-либо регулирующим органом, поэтому вам следует полностью изучить характер и состав таких продуктов, а также их регулируемый статус в регионе, в котором вы проживаете, прежде чем принимать какое-либо решение о получении , использовать или покупать такие продукты.

10 передовых инноваций, о которых вы не знали

Резонансный звук с лучшим соотношением цены и качества — Лучшие предложения на резонансный звук от мировых продавцов резонансного звука

Отличные новости !!! Вы находитесь в нужном месте для резонансного звука.К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы найдете новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку этот самый резонансный звук в кратчайшие сроки станет одним из самых популярных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что получили свой резонансный звук на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в резонансном звуке и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам разобраться, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

И, если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести резонансный звук по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *