Самодельный трансформатор тока: Токовый трансформатор своими руками

Содержание

Токовый трансформатор своими руками

Иногда нужно узнать – какой ток течет в электрической цепи. Если ток небольшой, для этого можно использовать простой резистор. Если-же ток достигает неприличных величин (к примеру, как в трансформаторах Тесла), приходится искать другие методы измерения. Один из таких методов – использование трансформатора тока.

Что это такое?

Трансформатор тока, для краткости будем называть его ТТ, используется повсеместно. К примеру, в электросчетчиках и на подстанциях. Мы-же будем рассматривать то, как его можно использовать для измерения тока в импульсных источниках питания – сварочных аппаратах, трансформаторах Тесла итп. Стоит сразу обратить внимание, что с помощью ТТ можно измерять только переменный ток, но никак не постоянный!

Итак, ТТ позволяет нам измерять очень большой ток. Чем-же ТТ отличается от обычного трансформатора? А вот ничем! Название придумали из-за области применения и характерной конструкции – катушка на тороидальном сердечнике, через которую пропущен провод.

ТТ преобразует проходящий через него ток в пропорциональное напряжение. К примеру, если через трансформатор проходит 100А, то он выдает 1В, а если проходит 200А, то на выходе мы получим 2В.

Основные соотношения

Проделав нехитрые математические выкладки, можно убедиться, что для токов в обмотках ТТ с очень большим коэффициентом трансформации по напряжению и с короткозамкнутой вторичной обмоткой действует такой закон для тока в обмотках:

Для того, чтобы преобразовать ток в напряжение, используют обычный резистор. Типичная схема включения ТТ:

Напряжение, падающее на резисторе R, согласно закону Ома, равно E=IR. Таким образом, зависимость выходного напряжения ТТ от тока определяется простым выражением:

К примеру, рассмотрим трансформатор Тесла, где через ТТ течет ток в 500А. Если у нас 1 виток в первичной обмотке ( да, просто пропущенный через кольцо провод считается за один виток), а во вторичной обмотке — 1000 витков, то ток во вторичной обмотке окажется равным 0.5А. Если мы возьмем сопротивление R1 = 2ом, то при полном токе на нем будет падать 1вольт.

Применения

Раз мы уже знаем, что такое токовый трансформатор, давайте подумаем куда его можно всунуть. Кроме того, что можно измерять большие токи, можно еще строить автогенераторы с обратной связью по току. Практически все DRSSTC являются именно такими. Можно также организовывать защиту от превышения тока, без такой защиты большинство импульсных блоков питания являются ”живыми мертвецами”.

Запаздывание по фазе

Для автогенераторного применения важна еще одна характеристика ТТ – задержка сигнала.

Запаздывание сигнала может произойти из-за таких факторов

Для анализа обоих этих ситуация, я набросал простую модель в SWCad’е.

Для предыдущего примера с трансформатором Тесла, возьмем сердечник R25.3 из материала N87 фирмы Epcos. В качестве паразитной емкости, возьмем 1нФ. Не спрашивайте, откуда такая емкость. Мне она кажется значительно большей, чем может возникнуть в любой реальной ситуации. Модель выглядит так:

Результаты симуляции при к. связи = 1

Как видно, отличаются только амплитуды. Сигнала. Никакого запаздывания нет в обоих случаях. Такое поведение сохраняется вплоть до очень высоких частот и до очень маленьких коэффициентов связи. Таким образом, можно сделать вывод, что фаза сигнала практически не зависит от паразитных параметров.

Каскадирование токовых трансформаторов

Люди всегда были ленивыми. Некоторым лениво встать из-за компа, а некоторым – мотать тысячи витков в ТТ. Поэтому придумали соединять трансформаторы последовательно. Решение спорное, и поэтому попробуем его проанализировать при помощи того-же симулятора. Включим последовательно два трансформатора на том-же сердечнике с обмоткой по 33 витка на каждом. Замечу, что паразитная емкость в каждом из трансформаторов сильно уменьшилась, что не удивительно.

Результаты симуляции очень похожи на одиночный трансформатор. Никакого запаздывания нет. Только амплитуда становится немного менее предсказуемая – она определяется произведением коэффициентов связи в обоих трансформаторах.

Вывод – в подавляющем большинстве случаев можно применять несколько ТТ, включенных последовательно.

Прямоугольный выходной сигнал

Часто необходимо получить прямоугольный выходной сигнал из синусоиды, выдаваемой ТТ. Конечно, это можно сделать с помощью компаратора, однако быстродействующие компараторы дороги и требуют особых навыков от разработчика. Проще собрать следующую, уже почти ставшую стандартом, схему:

Для чего такие сложности? Стабилитроны – очень медленные устройства. Для повышения быстродействия ограничителя, к ним добавлены диоды Шоттки. Когда напряжение меняет полярность – диоды Шоттки быстро закрываются и не дают стабилитронам испортить сигнал. Такой ограничитель выдает сигнал +-5 вольт. Замечу, что сигнал нужно обязательно ограничивать симметрично, иначе произойдет сдвиг фазы.

Далее идет диодная “вилка” которая защищает вход последующей микросхемы от пробоя отрицательным напряжением.

Диодную вилку нельзя поставить сразу после ТТ, потому, как выбросы из силовой части преобразователя попадут в чувствительные цепи управляющей электроники.

Конструкция

Заметьте, что ТТ работает как источник тока, и чем больше витков вы намотаете, тем ближе ТТ будет к идеальному источнику тока и тем точнее будут показания. Также, чем больше витков, тем меньше ток течет через резистор, а значит, уменьшается рассеиваемая на нем мощность. Именно предельная мощность на резисторе обычно является определяющим факторов для количества витков в любительских конструкциях.

Для того, чтобы сделать коэффициент трансформации побольше, первичную обмотку обычно делают всего из одного витка, а во вторичной мотают порядка тысяч.

Проблема насыщения сердечника очень редко проявляется в токовых трансформаторах. Что такое насыщение и как с ним бороться, можно прочитать в статье о GDT.

Чем больше проницаемость сердечника, тем больше к. связи и точнее показания, однако больше становится и паразитная индуктивность, добавляемая в измеряемые цепи. Это часто нежелательно. На практике, в качестве сердечника для ТТ может использоваться практически любой феррит, работающий на необходимой частоте. Для низкочастотных применений используют обычное трансформаторное железо.

В качестве проволоки для вторичной обмотки стоит выбирать проволоку с наибольшим возможным сечением – так уменьшается погрешность измерения.

Промышленные ТТ

Естественно, промышленность выпускает громаднейший ассортимент токовых трансформаторов. Они хорошо настроены и могут быть использованы для точных измерений. Естественно, есть проблемы с доставабельностью в неэпических количествах. К примеру, в киеве, несколько ТТ я видел в магазине “радиомаг”

Еще почитать

К моему удивлению, материалов по ТТ очень мало. Но википедия, все-же, знает, что это такое.

Привенение ТТ в электросчетчиках. Там-же описывается немного теории.

Изготовить самодельный трансформатор – это стоящее дело, чтобы не тратить деньги на покупку трансформаторов.

Подбор материалов

Провод возьмем российский, у него прочнее изоляция. От старых катушек провод используется, если нет повреждения изоляции. Для изоляции подойдет бумага, пленка ФУМ. Для изоляции между обмотками лучше использовать лаковую ткань, несколько слоев изоляции. Для поверхностной наружной изоляции подходит кабельная бумага, лаковая ткань. А также можно мотать трансформатор, применяя изоленту ПВХ.

Пропитка нужна для повышения времени работы, но, она повышает паразитную емкость катушки. Для этой цели применяют лак. Для простого трансформатора можно использовать масляный лак. Покрывается каждый слой. Сразу все слои пропитать невозможно. Лак не должен быстро засохнуть до окончания намотки.

Каркас делают из стеклотекстолита или ему подобного материала.

Расчеты параметров самодельного трансформатора

На простом трансформаторе первичная обмотка имеет 440 витков для 220 вольт. Получается на каждые два витка по 1 вольту. Формула для подсчета витков по напряжению:

N = 40-60 / S, где S – площадь сечения сердечника в см 2 .

Константа 40-60 зависит от качества металла сердечника.

Сделаем расчет для установки обмоток на магнитопровод. В нашем случае у трансформатора окно 53 мм по высоте и 19 мм по ширине. Каркас будет текстолитовый. Две щеки внизу и вверху 53 – 1,5 х 2 = 50 мм, каркас 19 – 1,5 = 17,5 мм, окно размером 50 х 17,5 мм.

Рассчитываем необходимый диаметр проводов. Мощность сердечника трансформатора своими руками по габаритам 170 ватт. На обмотке сети ток 170 / 220 = 0,78 ампера. Плотность тока 2 ампера на мм 2 , стандартный диаметр провода по таблице 0,72 мм. Заводская обмотка из провода 0,5, завод сэкономил на этом.

  • Обмотка простого трансформатора высокого напряжения 2,18 х 450 = 981 виток.
  • Низковольтная для накала 2,18 х 5 = 11 витков.
  • Низкого напряжения накальная 2,18 х 6,3 = 14 витков.

Количество витков первичной обмотки:

берем провод 0,35 мм, 50 / 0,39 х 0,9 = 115 витков на один слой. Количество слоев 981 / 115 = 8,5. Из середины слоя не рекомендуется делать вывод для обеспечения надежности.

Рассчитаем высоту каркаса с обмотками. Первичная из восьми слоев с проводом 0,74 мм, изоляцией 0,1 мм: 8 х (0,74 + 0,1) = 6,7 мм. Высоковольтную обмотку лучше экранировать от других обмоток для предотвращения помех высоких частот. Для того, чтобы мотать трансформатор, делаем обмотку экрана из одного слоя провода 0,28 мм с изоляцией из двух слоев с каждой стороны: 0,1 х 2 + 0,28 = 0,1 х 2 = 0,32 мм.

Первичная обмотка будет занимать места: 0,1 х 2 + 6,7 + 0,32 = 7,22 мм.

Повышающая обмотка из 17 слоев, толщина 0,39, изоляция 0,1 мм: 17 х (0,39 + 0,1) = 6,8 мм. Поверх обмотки делаем слои изоляции 0,1 мм.

Получается: 6,8 + 2 х 0,1 = 7 мм. Высота обмоток вместе: 7,22 + 7 = 14,22 мм. 3 мм осталось для накальных обмоток.

Можно сделать расчет внутренних сопротивлений обмоток. Для этого рассчитывается длина витка, берется длина провода в обмотке, определяется сопротивление, зная удельное сопротивление по таблице для меди.

При расчете сопротивления секции первичной обмотки получается разница около 6-ти Ом. Такое сопротивление даст падение напряжения 0,84 вольта при токе номинала 140 миллиампер. Чтобы компенсировать это падение напряжения, добавим два витка. Теперь во время нагрузки секции равны по напряжению.

Изготовление каркаса катушки трансформатора своими руками

Важны углы на деталях, и точность в размерах, что повлияет на сборку простого трансформатора.

На щечках отводим места для крепления выводных контактов обмоток, сверлим отверстия по расчетам. Когда каркас собран, то теперь скругляем острые грани, к которым будет прикасаться провод обмотки. Используем для этой цели надфиль. Провода не должны резко перегибаться, так как эмаль изоляции потрескается. Теперь проверим, вставляется ли в окно каркаса пластина. Она не должна болтаться, или туго входить. Каркас ставим на специальный станок или готовимся мотать трансформатор вручную. Толстые провода всегда мотаются руками.

Намотка трансформатора своими руками

Укладываем изоляцию первого слоя. Вставляем конец провода в отверстие выводной клеммы. Начинаем мотать провод, не забывая о его натяжении. Проверить можно так: намотанная катушка не будет проминаться от пальца. Провод растягивать нельзя, так как нарушится изоляция. Готовую катушку рекомендуется пропитать парафином, чтобы не испортить провод. Если обмотка гудит во время работы трансформатора, то изоляция провода стирается, провод изгибается и разрушается. По этой причине натяжение провода во время намотки имеет большое значение.

Витки во время намотки придвигаем друг к другу, уплотняем. Первый слой самый важный.

На слое не нужно оставлять пустое место. Наибольшее напряжение на последних витках составляет для первичной 60 + 60 / 2, 18 + 55 В. Изоляция из лака выдержит напряжение, если провод будет проваливаться в пустоту слоя, то может нарушиться изоляция. Пропитываем первый слой, затем второй и так далее. К изоляции между обмотками необходимо отнестись добросовестно. Она должна выдерживать до 1000 вольт. Вверху на изоляции рекомендуется подписать количество витков и размер провода, это пригодится при ремонте.

Слои самодельного трансформатора должны иметь правильную форму. По мере намотки катушка будет изгибаться у краев. Для этого слои нужно равнять во время намотки, не повредив изоляцию.

Вынужденные стыки провода лучше на ребре каркаса за сердечником. Соединять провод скруткой с пайкой, внакладку с пайкой. Длина контакта при соединении делается более 12 диаметров провода. Стык нужно изолировать бумагой или лаковой тканью. Пайка должна быть без острых углов.

Выводные концы обмоток делаются по-разному. Главное, чтобы была надежность и качество.

Окончание изготовления трансформатора своими руками

Припаиваем выводные концы обмоток, изолируем поверхность простого трансформатора, подписываем на нем данные характеристики и производим сборку сердечника. После этого надо проверить этот простой трансформатор своими руками.

Замеряем ток самодельного трансформатора вхолостую, он должен быть минимальным. Смотрим на нагрев. Если греется сердечник, то неправильно подобрано железо. Если нагрелись обмотки, значит, есть короткое замыкание. Если нормально, то замыкаем ненадолго вторичную обмотку, треска и сильного гудения не должно быть.

Пример как сделать самодельный трансформатор

Перейдем к изготовлению самого трансформатора. По готовому сердечнику рассчитаем мощность трансформатора, витки и провод, намотаем первичную и вторичную обмотки, соберем трансформатор полностью.

Чтобы мотать трансформатор напряжением 220 на 12 вольт нам необходимо подобрать магнитный сердечник. Подбираем магнитный сердечник Ш-образный, и каркас от старого трансформатора. Чтобы определить мощность, выдаваемую простым трансформатором, необходимо произвести предварительный расчет.

Расчет трансформатора

Рассчитываем диаметр провода первичной обмотки. Мощность трансформатора Р1 = 108 Вт:

где: I1 – ток в первичной обмотке;

тогда ток в первичной обмотке:

Возьмем I1 = 0,5 ампера.

Из таблицы диаметр провода в зависимости от тока выбираем допустимый ток 0,56 А, диаметр 0,6 мм.

Самодельный трансформатор своими руками можно намотать без станка. На это уйдет два-три часа, не больше. Приготовим полоски бумаги для прокладки ее между слоями провода. Полоску вырезаем шириной равной расстоянию между щечками катушки трансформатора плюс еще пару миллиметров, чтобы бумага легла плотно, по краям витки не залезали друг на друга.

Длину полоски делаем с запасом два сантиметра для склеивания. По краям полоску слегка надрезаем ножницами, чтобы при изгибе бумага не рвалась.

Затем приклеиваем полоску бумаги на каркас, плотно пригладив ее.

Намотка первичной обмотки

Теперь берем провод от старой катушки, у которой провод с хорошей не потрескавшейся изоляцией. Конец провода вставляем в гибкую трубочку изоляции от старого использованного провода соответствующего подходящего диаметра. Просовываем конец обмотки в отверстие каркаса катушки (они уже имеются в старом каркасе).

Катушка мотается плотно, виток к витку. Намотав 3-4 витка, нужно прижать витки, друг к другу, чтобы намотка витков была плотной. Чтобы мотать трансформатор после намотки первого слоя, необходимо посчитать количество витков в ряду. У нас получилось 73 витка. Делаем прокладку полоской бумаги. Наматываем второй слой. Во время намотки нужно все время держать провод в натянутом состоянии, чтобы намотка получалась плотной. После второго слоя также делаем прокладку из бумаги. Если не хватает длины провода, то соединяем с ним другой провод путем спайки. Лудим лакированный провод, нагрев конец паяльником на таблетке аспирина. При этом лак хорошо снимается.

Когда намотка первичной обмотки закончена, то конец провода изолируем в трубочку и выводим наружу катушки. Между первичной и вторичной обмотками делаем обмоточную изоляцию. Можно мотать трансформатор дальше.

Вторичная обмотка

Рассчитаем диаметр провода вторичной обмотки самодельного трансформатора. Мощность вторичной обмотки примем:

Допустимый ток во вторичной обмотке будет равен:

Из таблицы диаметр в зависимости от тока: диаметр для тока 5,55 А – ближайшее значение в таблице 6,28 ампера. Для такого тока необходим диаметр провода 2 мм.

Берем провод, который мы получили при сматывании старого трансформатора. Наматываем провод вторичной обмотки по такому же принципу, как и первичную обмотку. Провод вторичной обмотки намного жестче, поэтому, чтобы он ровно ложился при намотке, периодически его необходимо осаживать ударами молотка через деревянный брусок, чтобы не повредить изоляцию. У нас получилось 3 слоя вторичной обмотки. Получился готовый намотанный каркас простого трансформатора.

Сборка трансформатора своими руками

Для ускорения сборки берем по две Ш-образные пластины. Вставляем их внутрь каркаса поочередно с двух сторон по две штуки.

Перекрывающие пластины пока не ставим. Они будут установлены позже. Если вставлять все пластины сразу всем пакетом, то между пластинами появляются зазоры и индуктивность всего сердечника падает. После сборки Ш-образных пластин самодельного трансформатора вставляем перекрывающие пластины, также по две штуки.

После сборки сердечника аккуратно обстукиваем его плоскости молотком для выравнивания пластин. При помощи стоек и шпилек будем стягивать сердечник. По правилам на шпильки надеваются бумажные гильзы для снижения потерь в сердечнике.

Концы обмоток зачищаем и лудим. Затем припаиваем к выводным планкам, которые можно прикрепить к каркасу трансформатора. Получился готовый трансформатор своими руками.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта , буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Самоделки из двигателя от стиральной машины:

1. Как подключить двигатель от старой стиральной машины через конденсатор или без него
2. Самодельный наждак из двигателя стиральной машинки
3. Самодельный генератор из двигателя от стиральной машины
4. Подключение и регулировка оборотов коллекторного двигателя от стиральной машины-автомат
5. Гончарный круг из стиральной машины
6. Токарный станок из стиральной машины автомат
7. Дровокол с двигателем от стиральной машины
8. Самодельная бетономешалка

Индукционный нагрев своими руками. Техника съема энергии с трансформатора тока

Целью является практическая реализации обогрева дома с использованием техники индукционной плавки металлов. Идея, не обладает новизной и состоит в том, чтобы индуктор разместить вокруг трубы отопления. Нагревая трубу, тем самым мы нагреваем воду которая циркулирует в системе отопления. Базовой предпосылкой, которая может значительно снизить затраты на электроэнергию является колебательный контур (индуктор->конденсаторы) который работает в резонансе. Возникает повышение напряжения примерно в десятки раз, которым и осуществляется нагрев металла.

Классические индукционные схемы, как показала практика замены выходящих из строя транзисторов, требует дорогой элементной базы. За основу была взята схема индукционного нагрева использующая ZVS (zero voltage switching) метод переключения транзисторов. Схема взята с сайта http://www.rmcybernetics.com/projects/DIY_Devices/diy-induction-heater.htm.

В собранной схеме, были использованы транзисторыы STP40N10, диоды шоттки 50SQ100 5A,100В; резисторы 240 ОМ, измереенная ёмкость батареи конденсаторов CBB81/224/2000V – 2,3 мкф. Магнитная проницаемость ферритового кольца – L2, по заявлению продавца 10000, но схема запускается с ферритовым кольцом. Источниеи питания – два аккумулятора замененны на трансформатор ОСМ1-1.6 c переменным напряжением 24 вольта и постоянным на конденсаторе порядка 27 Вольт. Схема заработала сразу, каких либо настроек не протребовалось. Более или менее интересный результат при данном размере индуктора начинается от 20 вольт.

Напряжение на каждом из транзисторов относительно корпуса по 800 Вольт, не важно где мерять. Частота работы схемы без металлической трубы в индукторе, 321 Кгц, ток потребления 1,7 Ампера. При добавлении металлической трубы частота понижается до 138 Кгц, ток потребления вырастает до 5А. Труба 0,5 дюйма, индуктором с внутренним диаметром 85 мм нагревается в районе средней точки до вишневого цвета.

Лучше всего в таких схемах использовать плёночные конденсаторы фирм Evox Rifa,Faratronic,Pilcor. КПД поднимется,да и количество кондёров потребуется в разы меньше.

Ток потребления определяется заполнением индуктора металлом. Стоит использовать под бесшовную трубу с максимальной толщиной стенок. При токе потребления более 12 ампер, транзисторы STP40N10 долго не живут. Рекомендованное на сайте водяное охлаждение не используется. Греются радиатор и индуктор, конденсаторы холодные. Для охлаждения транзисторных радиаторов я использовал вентилятор от компьютера. При необходимости отвод тепла можно организовать на тот же стояк отопления.

Трансформатор тока.

Вторым, не менее, если не более интересным способом нагрева теплоносителя является трансформатор тока. Трансформатор тока представляет из себя ферритовое кольцо, установленное на проводе идущем от блока конденсаторов к индуктору. Подойдут ферритовые кольца, любой магнитопроницаемости. В том числе и кольцо из трансформаторного железа. Чем ниже магнитная проницаемость магнитопровода, тем меньший радиус кольца допустим, тем ниже частота тока на выходе, тем сильнее греется магнитопровод. В случае использования трансформаторного железа эффективность нагрева максималена. Ферритовые кольца с внутренним диаметром менее 60мм для длительной работы схемы не использовать. При малом, внутреннем, диаметре ферритового кольца, менее 50мм , резко растает ток потребления, необходимый для поддержания резонанса, транзисторы выходят из строя. В случае использования сердечника от ТВС необходим зазор, это не по феншую. В случае встречной намотки обмоток, как показано на фотографии, эдс отсутсвует.

Ниже представлена схема подключения нагрузки. Лампу 220В 95W включать без диодного моста можно, но при этом следует уменьшить число витков трансформатора тока примерно до пяти, иначе лампа эффектоно сгорит. На сдвоенную пару витков, используемых в намотке обращать внимание не стоит. Так же следует поступить с парой проводов черный и красный, на транзисторных радиаторах к ним подключались высоковольтные конденсаторы от СВЧ печей. Конденсаторы сильно грелись, пришлось их заменить, провода пусть пока будут.

Ферритовые кольца размещенные в индукторе увеличивают частоту до 400 кГц, токовый трансформатор ее понижает до 100 кГц. Яркость свечения лампы регулируется частотой за счет увеличения либо уменьшения сердечника из ферритовых колец в индукторе.

На тестере видно, что при подключении нагрузки ток вырос на два ампера. (В первом случае ток необходимо умножить на 100) Это примерно равно мощности используемой лампы. Безвомездного съема энергии с токового трансформатора нет. Подключение активной нагрузки увеличивает ток потребляемый устройством. А вот использовать ферритовые кольца для нагрева теплоносителя в дополнение к индуктору – очень интересный вариант.

Дуговой разряд.

На каждые три-четыре витка токового трансформатора приходится 1000 вольт. Попытка замера напряжения на большем числе витков закончилась неудачей по причине выхода из строя тестера. Можно предположить, что напряжение на токовом рансформаторе около пяти-шести тысяч вольт, поэтому третьим источником тепла, в предлагаемой схеме является дуговой разряд. Как его еспользовать для нагрева теплоносителя, я пока не решил. Плавится все с чем дуговой разряд находится в тесном контакте.

Промежуточный итог.

1. Осуществлять нагрев трубы отопления токами фуко.
2. Дополнительная тепловая мощность за счет охлаждения радиаторов, на которых установлены транзисторы.
3. Охлаждения феррита токового трансформатора теплоносителем (водой).
4. Использование дугового разряда – проблематично. Очень высокая температура. Но очень перспективно. Наличие дуги не увеличивает потребление тока устройством.

Пример страниц руководства:

Скачать руководство полностью:

Расчет трансформатора тока | Все своими руками

Бывают такие ситуации когда нужно контролировать большие токи в цепях переменного напряжения, например как контролировать ток в цепи сварочного аппарата, где ток достигает 150-250А. Для такого контроля отлично подходит трансформатор тока. Этот трансформатор нечем не отличается от обычного трансформатора, по сути это и есть обычный трансформатор с известным отношением витков первичной и вторичной обмотки.

На схеме представлен пример трансформатора тока с током в первичной обмотке 6А, на выходе этого трансформатора напряжение 6В

Принцип работы такого трансформатора прост и рассчитывается все довольно просто
1. Берется за основу абсолютно любой каркас трансформатора. Для простоты возьму колечко любого размера и намотаю на него 100 витков, это количество витков может быть абсолютно любое, но для простоты расчета пусть будет 100. Эта обмотка вторичка, с которой будет сниматься измеряемое напряжение. Первичная обмотка должна быть один виток, а точнее кабель пропущенный через кольцо. Отсюда известно, что отношение тока между первичной и вторичкой 1:100.

2. Теперь через первичную обмотку в один виток пропущу ток в 6А, зная отношение в витках можно узнать ток в вторичной обмотке трансформатора 6А/100=0,06А. Когда ток вторички известен вспомню закон Ома R=V/I, исходя из него узнаю на сколько Ом нужно нагрузить вторичку, чтобы при токе в 0,06А напряжение на выходе было 6В. R=V/I, R=6(В)/0,06(А)=100 (Ом), то есть если вторичку нагрузить на 100 Ом, напряжение на вторичке будет 6В при токе в первичке 6А
При максимальном токе на резисторе R2 будет рассеиваться некоторая мощность, поэтому нужно еще рассчитать рассеиваемую мощность на резисторе P=U*I,  P=6(В)*0,06(А)=0,36(Вт) минимальный резистор рассеиваемой мощностью о,5Вт

Вот таким простым способом можно измерять любые токи, главное правильно рассчитать трансформатор и балластный резистор.
Как смог рассказал о принципе работы, добавить тут нечего. Если вам интересны и полезны мои статьи, подписывайтесь на обновления в Контакте и Одноклассниках, что бы всегда быть в курсе новых тем.
С ув. Эдуард

 

Похожие материалы: Загрузка...

Трансформатор своими руками: инструкция + фото

Принцип действия трансформатора

От устройства трансформатора перейдём к принципу его работы. Для этого рассмотрим трансформатор изображённый на рисунке ниже.

Данный трансформатор состоит из двух катушек (обмоток) I и II, находящихся на стержневом магнитопроводе. К катушке I подводится переменное напряжение u1; это катушка называется первичной обмоткой. На выводах катушки II, называемой вторичной обмоткой, формируется напряжение u2, которое передается приёмникам электрической энергии.

Работа трансформатора заключается в следующем. При протекании переменного тока i1 в первичной обмотке I создаётся магнитное поле, магнитный поток, которого пронизывает не только создавшую его обмотку (магнитный поток Ф1), но и частично вторичную обмотку (магнитный поток Ф). То есть обмотки трансформатора являются магнитно связанными, при этом степень связи зависит от взаимного расположения обмоток: чем дальше обмотки друг от друга, тем меньше магнитная связь между ними и меньше магнитный поток Ф.

Так как через первичную обмотку протекает переменный ток, то и создаваемый им магнитный поток непрерывно изменяет свою величину и свое направление. Согласно закону электромагнитной индукции, при изменении пронизывающего катушку магнитного потока, в катушке индуцируется переменная электродвижущая сила. Таким образом, в первичной обмотке индуцируется электродвижущая сила самоиндукции, а во вторичной обмотке – электродвижущая сила взаимноиндукции.

Если присоединить концы вторичной обмотки к приемнику электрической энергии (нагрузке), то через неё потечёт ток i2. В тоже время в первичную обмотку будет поступать ток i1 от источника энергии (генератора). Таким образом энергия от первичной обмотки во вторичную будет передаваться при помощи переменного магнитного потока Ф.

На рисунке видно, что часть магнитного потока первичной  Ф1 и вторичной Ф2 обмотки не замыкается через магнитопровод. Они не участвуют в передаче энергии, а образуют так называемое магнитное поле рассеяния.

Одной из задач проектирования трансформаторов является сведение магнитного потока рассеяния к минимуму.

Трансформатор тока

Кроме стандартного типа трансформаторов напряжения существует особый вид, называемый трансформатором тока. Основное его назначение — изменять значение тока относительно своего входа. Другое название такого вида устройства — токовый.

Токовое устройство по виду ничем не отличается от трансформатора напряжения, его отличия — в подключении и количестве витков в обмотке. Первичка выполняется с помощью одного или пары витков. Эти витки пропускаются через тороидальный магнитопровод, и именно через них измеряется ток. Токовые устройства выполняются не только тороидального типа, но и могут быть выполнены и на других видах сердечниках. Главным условием является то, чтобы измеряемый провод совершил полный виток.

Вторичная обмотка при таком исполнении шунтируется низкоомным сопротивлением. При этом величина напряжения на этой обмотке не должна быть большого значения, так как во время прохождения наибольших токов сердечник будет находиться в режиме насыщения.

В некоторых случаях измерения проводятся на нескольких проводниках которые пропущены через тор. Тогда величина тока будет пропорциональна силе суммы токов.

Как изготовить самостоятельно

Понижающий трансформатор можно выполнить как отдельное устройство либо расположить в блоке питания техники. По сути, это радиоэлектронный элемент и его под силу смастерить своими руками.

Сначала стоит подготовить инструменты и материал, произвести предварительный расчет. Для работы потребуется:

  • ленточная изоляция высокого качества;
  • сердечник, снятый со старого телевизора;
  • провода с эмалевой изоляцией;
  • простой станок для намотки, например, из доски (ширина – 10 см, длина – 40 см).

Пошаговые действия:

  1. Изготовить каркас, вырезав из картона внутреннюю часть, немного большую в отличие от стержня сердечника. Если используется сердечник в виде буквы “О”, то потребуется 2 катушки. При сердечнике буквой “Ш” хватит одной катушки.
  2. На круглый сердечник предварительно намотать изоляцию в 3 слоя после первичной обмотки.
  3. Накрутить второй слой с и выведением наружу концов обмотки. Вторичная, равно как и первичная обмотка, прокладываются в идентичном направлении. Главное, не забывать выводить провода.
  4. Вставить железные полоски в готовую катушку, обогнуть ими каркас с одной стороны, соединить внизу. Оставить между каркасом и сердечником воздушный зазор.
  5. Сделать основание для трансформатора. На дощечку (толщина 5 см) прикрепить металлическими скобами 2 бруска (50х50 см) на расстоянии в 30 см друг от друга. Согнуть скобы так, чтобы огибали нижнюю часть сердечника.
  6. Вывести на каркас концы обмоток, прикрепить к контактам.

На каждый Вольт должно прийтись по 10 витков. Рассчитать их нужное количество несложно. Сердечник можно вынуть из ненужного трансформатора любого типа или изготовить из жести. Подойдет консервная банка, из которой вырезается 80 полосок в длину 30 см, ширину – 2 см от. Отжигаются полоски их в печи, остужаются, очищаются от окалины и покрываются лаком. Можно с одной стороны оклеить тонкой бумагой.

Заметка! Все разметки и линии нельзя делать графитом.

Расчет конструкции производится по формуле P = U * I,. Из нее исчисляется мощность, которая выдержит вторичную обмотку.

Как организуется внеочередная проверка знаний?

Организует внеочередную проверку знаний:

  • служба ОТ;
  • непосредственный руководитель работ;
  • инспектор ГИТ или другой проверяющий;
  • специализированный центр по договору с компанией, сотрудники которой будут экзаменоваться. Нужно учитывать, что в центре можно проверять знания только тех сотрудников, которые там обучались. Например, по Положению 1/29 нельзя провести обучение силами предприятия, а на проверку знаний придти в специализированный центр.

Обучение по охране труда в специализированном центре имеет преимущество – в их комиссии по проверке знаний включаются представители надзорных органов. Поэтому к таким проверкам все готовятся особенно тщательно. Во время проверки состояния безопасности на предприятии удостоверение с подписью инспектора – дополнительный «+». В собственные комиссии предприятий их можно не включать – здесь достаточно руководителей и главных специалистов подразделений, специалистов по ОТ, представителей трудящихся. Минимальная численность комиссии – 3 человека. Включая должностных лиц в комиссию, нужно понимать сферу их деятельности и ответственности. Соответственно комплектуются группы. Например, включать в одну группу обучающихся грузчиков и электрослесарей нецелесообразно.

Перед экзаменом трудящимся можно и нужно раздавать билеты, списки контрольных вопросов, чтобы они могли лучше подготовиться к экзамену и не тратить время на изучение ненужного материала. А вот ответы на билеты раздавать нельзя. Эту информацию трудящиеся должны получить во время обучения. Можно проводить пробные проверки знаний, если есть время. Главная ценность такой подготовки – возможность проработать ошибочные ответы, детально разъяснить неправильно понятые положения

Нужно обращать внимание, чтобы трудящиеся не только знали требования правил, инструкций и норм, но и четко понимали, как реализовать их на практике. В этом помогает моделирование ситуаций в аудитории или при помощи автоматизированных обучающих комплексов

Как будет проводиться проверка, какой материал будет проверяться, решает ее инициатор. Поэтому, когда во внеплановую проверку вовлекается большое количество трудящихся, а срок плановой проверки знаний уже близок, можно совместить 2 вида обучения. При этом все вопросы можно проверить в рамках 1 экзамена с заполнением соответствующей документации. Называть мероприятие лучше плановой проверкой, потому что проведение внеплановой проверки ее не отменяет. Чтобы отметить расширенный формат мероприятия, можно назвать его, например «расширенной плановой проверкой знаний».

Материал, по которому проводилась внеплановая проверка знаний, включается в программы последующих обучений и инструктажей. Соответственно, устаревшие нормы из них убираются. Внесенные изменения утверждаются приказом или распоряжением.

Поскольку оперативно корректировать периодичность проверки знаний по охране труда в крупных организациях – дело не одного дня, при вводе новых нормативных документов государство дает специалистам по обучению время на адаптацию учебных программ. Например, документ утверждается и выкладывается в общий доступ в январе, а вступает в силу только в июле. За это время можно успеть организовать обучение трудящихся и избежать нарушений. Возможен другой путь, как это было сделано в ФЗ о спецоценке условий труда – документ был утвержден и сразу же введен в действие, но чтобы перестроиться под требования его положений, компаниям был дан определенный срок.

Как повысить силу тока в цепи?

Бывают ситуации, когда требуется повысить I, который протекает в цепи, но при этом важно понимать, что нужно принять меры по защите электроприборов, сделать это можно с помощью специальных устройств. Рассмотрим, как повысить силу тока с помощью простых приборов

Рассмотрим, как повысить силу тока с помощью простых приборов.

Для выполнения работы потребуется амперметр.

По закону Ома ток равен напряжению (U), деленному на сопротивление (R). Простейший путь повышения силы I, который напрашивается сам собой — увеличение напряжения, которое подается на вход цепи, или же снижение сопротивления. При этом I будет увеличиваться прямо пропорционально U.

К примеру, при подключении цепи в 20 Ом к источнику питания c U = 3 Вольта, величина тока будет равна 0,15 А.

Если добавить к цепи еще один источник питания на 3В, общую величину U удается повысить до 6 Вольт. Соответственно, ток также вырастет в два раза и достигнет предела в 0,3 Ампера.

Подключение источников питания должно осуществляться последовательно, то есть плюс одного элемента подключается к минусу первого.

Для получения требуемого напряжения достаточно соединить в одну группу несколько источников питания.

В быту источники постоянного U, объединенные в одну группу, называются батарейками.

Несмотря на очевидность формулы, практические результаты могут отличаться от теоретических расчетов, что связано с дополнительными факторами — нагревом проводника, его сечением, применяемым материалом и так далее.

В итоге R меняется в сторону увеличения, что приводит и к снижению силы I.

Повышение нагрузки в электрической цепи может стать причиной перегрева проводников, перегорания или даже пожара.

Вот почему важно быть внимательным при эксплуатации приборов и учитывать их мощность при выборе сечения. Величину I можно повысить и другим путем, уменьшив сопротивление

К примеру, если напряжение на входе равно 3 Вольта, а R 30 Ом, то по цепи проходит ток, равный 0,1 Ампер

Величину I можно повысить и другим путем, уменьшив сопротивление. К примеру, если напряжение на входе равно 3 Вольта, а R 30 Ом, то по цепи проходит ток, равный 0,1 Ампер.

Если уменьшить сопротивление до 15 Ом, сила тока, наоборот, возрастет в два раза и достигнет 0,2 Ампер. Нагрузка снижается почти к нулю при КЗ возле источника питания, в этом случае I возрастают до максимально возможной величины (с учетом мощности изделия).

Дополнительное снизить сопротивление можно путем охлаждения провода. Такой эффект сверхпроводимости давно известен и активно применяется на практике.

Чтобы повысить силу тока в цепи часто применяются электронные приборы, например, трансформаторы тока (как в сварочниках). Сила переменного I в этом случае возрастает при снижении частоты.

Если в цепи переменного тока имеется активное сопротивление, I увеличивается при росте емкости конденсатора и снижении индуктивности катушки.

В ситуации, когда нагрузка имеет чисто емкостной характер, сила тока возрастает при повышении частоты. Если же в цепь входят катушки индуктивности, сила I будет увеличиваться одновременно со снижением частоты.

Чтобы повысить силу тока, можно ориентироваться на еще одну формулу, которая выглядит следующим образом:

I = U*S/(ρ*l). Здесь нам неизвестно только три параметра:

  • S — сечение провода;
  • l — его длина;
  • ρ — удельное электрическое сопротивление проводника.

Чтобы повысить ток, соберите цепочку, в которой будет источник тока, потребитель и провода.

Роль источника тока будет выполнять выпрямитель, позволяющий регулировать ЭДС.

Подключайте цепочку к источнику, а тестер к потребителю (предварительно настройте прибор на измерение силы тока). Повышайте ЭДС и контролируйте показатели на приборе.

Как отмечалось выше, при росте U удается повысить и ток. Аналогичный эксперимент можно сделать и для сопротивления.

Для этого выясните, из какого материала сделаны провода и установите изделия, имеющие меньшее удельное сопротивление. Если найти другие проводники не удается, укоротите те, что уже установлены.

Еще один путь — увеличение поперечного сечения, для чего параллельно установленным проводам стоит смонтировать аналогичные проводники. В этом случае возрастает площадь сечения провода и увеличивается ток.

Если же укоротить проводники, интересующий нас параметр (I) возрастет. При желании варианты увеличения силы тока разрешается комбинировать. Например, если на 50% укоротить проводники в цепи, а U поднять на 300%, то сила I возрастет в 9 раз.

Выбор инструментов

Чтобы сделать намотку для трансформатора максимально правильно, следует приобрести нужные для работы приспособления:

Часто для подобных целей применяют колодку из натурального массива, в которой делают отверстие для необходимой оси, а также подгоняют под требуемые каркасные размеры. Легче сделать всё это посредством дрели.

Её следует укрепить таким образом, чтобы размещение было параллельно настольной поверхности, в патрон вставляется непосредственно прут, на который заблаговременно нужно надеть колодку с трансформаторным каркасом. Желательно выбрать прут, который имеет резьбу. В данном варианте колодка просто фиксируется посредством гаек.

Также к элементу, без которого невозможно составить схему для собственноручного создания трансформатора, считается приспособление для размотки. Как правило, подобного типа устройства функционируют, как и приспособления для размотки, разница состоит в том, что в этом варианте можно не использовать ручку вращения.

Чтобы определиться с количеством требуемых витков, потребуется специальный прибор, к примеру, водяной счётчик. Для бесперебойной работы прибора необходимо соединить его со станком наматывающего типа посредством гибкого валика. При отсутствии данного приспособления можно подсчитать витки в уме.

Принцип функционирования

Провод, а также катушку необходимо закрепить в приборе намотке, при этом основу прибора – в приспособлении намотки. Следует проводить спокойные без срывов движения. Опустить провод на каркасную часть.

Между поверхностью, а также проводом должно оставаться 20 сантиметров, чтобы разместить руку на столе для удержания провода. Помимо этого на настольной поверхности должны располагаться дополнительные материалы, без которых невозможно создать собственными руками повышающий трансформатор.

Правой рукой нужно умеренно вращать устройство для намотки, а другой – держать провод

Важно ровная укладка провода. Далее нужно провести изоляцию каркаса, при этом имеющийся на проводе конец следует продеть через отверстие, чтобы быть зафиксированным в области оси прибора намотки.

Начало намотки следует проводить не спеша, максимально аккуратно: важно уметь навыки, чтобы обороты ложились максимально ровно.

Установить счётный прибор на ноль. Склеить изолирующий элемент, либо плотно прижать резиновым кольцом

Все обороты важно делать на пару витков уже в сравнении с предыдущими.

Конструкция и схема трансформатора тока

Обычно трансформаторы тока и амперметры используются вместе как согласованная пара, в которой конструкция трансформатора тока такова, чтобы обеспечить максимальный вторичный ток, соответствующий полномасштабному отклонению амперметра. В большинстве трансформаторов тока существует приблизительное соотношение обратных витков между двумя токами в первичной и вторичной обмотках. Вот почему калибровка трансформатора тока обычно для определенного типа амперметра.

Большинство трансформаторов тока имеют стандартную вторичную номинальную мощность 5 А, при этом первичные и вторичные токи выражаются в таком соотношении, как 100/5. Это означает, что ток первичной обмотки в 20 раз больше, чем ток вторичной обмотки, поэтому, когда в первичном проводнике протекает 100 ампер, во вторичной обмотке будет протекать 5 ампер. Трансформатор тока, скажем, 500/5, будет производить 5 А во вторичной обмотке при 500 А в первичной обмотке, что в 100 раз больше.

Увеличивая количество вторичных обмоток Ns, ток вторичной обмотки можно сделать намного меньшим, чем ток в измеряемой первичной цепи, потому что, когда Ns увеличивается, Is уменьшается пропорционально. Другими словами, число витков и ток в первичной и вторичной обмотках связаны обратно пропорционально.

Трансформатор тока, как и любой другой трансформатор, должен удовлетворять уравнению ампер-виток, и мы знаем из нашего учебника по трансформаторам напряжения с двойной обмоткой, что это отношение витков равно:

из которого мы получаем:

Коэффициент тока устанавливает коэффициент витков, и, поскольку первичный обычно состоит из одного или двух витков, тогда как вторичный может иметь несколько сотен витков, соотношение между первичным и вторичным может быть довольно большим. Например, предположим, что номинальный ток первичной обмотки составляет 100А. Вторичная обмотка имеет стандартный рейтинг 5А. Тогда соотношение между первичным и вторичным токами составляет 100А-5А или 20: 1. Другими словами, первичный ток в 20 раз больше вторичного тока.

Однако следует отметить, что трансформатор тока с номиналом 100/5 не совпадает с трансформатором с номиналом 20/1 или подразделениями 100/5. Это связано с тем, что отношение 100/5 выражает «номинальный ток на входе / выходе», а не фактическое соотношение первичных и вторичных токов. Также обратите внимание, что число витков и ток в первичной и вторичной обмотках связаны обратно пропорционально. Но относительно большие изменения в соотношении витков трансформаторов тока могут быть достигнуты путем изменения первичных витков через окно трансформатора ток, где один первичный виток равен одному проходу, а более одного прохода через окно приводит к изменению электрического соотношения

Но относительно большие изменения в соотношении витков трансформаторов тока могут быть достигнуты путем изменения первичных витков через окно трансформатора ток, где один первичный виток равен одному проходу, а более одного прохода через окно приводит к изменению электрического соотношения.

Так, например, трансформатор тока с отношением, скажем, 300 / 5А можно преобразовать в другой из 150 / 5А или даже 100 / 5А, пропустив основной первичный проводник через его внутреннее окно два или три раза, как показано ниже. Это позволяет более высокому значению трансформатора тока обеспечивать максимальный выходной ток для амперметра, когда используется на меньших первичных линиях тока.

Ссылки по теме

  • Правила технической эксплуатации электроустановок потребителей
    / Нормативный документ от 9 февраля 2007 г. в 02:14
  • Библия электрика
    / Нормативный документ от 14 января 2014 г. в 12:32
  • Справочник по электрическим сетям 0,4-35 кВ и 110-1150 кВ. Том 10 
    / Нормативный документ от 2 марта 2009 г. в 18:12
  • Кабышев А.В., Тарасов Е.В. Низковольтные автоматические выключатели
    / Нормативный документ от 1 октября 2019 г. в 09:22
  • Правила устройства воздушных линий электропередачи напряжением до 1 кВ с самонесущими изолированными проводами
    / Нормативный документ от 30 апреля 2008 г. в 15:00
  • Маньков В.Д. Заграничный С.Ф. Защитное заземление и зануление электроустановок
    / Нормативный документ от 27 марта 2020 г. в 09:05
  • Князевский Б.А. Трунковский Л.Е. Монтаж и эксплуатация промышленных электроустановок
    / Нормативный документ от 17 октября 2019 г. в 12:36

Монтаж составных частей, требующих разгерметизации бака трансформатора

После выполнения подготовительных работ трансформатор подается по рельсовому пути либо в мастерскую ТМХ, либо в машзал на фундамент или монтажную крестовину.
Монтаж составных частей силового трансформатора ведут без ревизии активной части и подъема «колокола», если не было нарушений условий транспортировки, выгрузки с повреждениями внутри бака трансформатора и хранения их.
Разгерметизацию силового трансформатора для установки составных частей (вводов, цилиндров, ТТ) следует производить в ясную сухую погоду. До этого следует подготовить рабочее место: установить подмости, стеллажи, ограждения. При разгерметизации принимаются меры к предохранению изоляции от увлажнения в процессе монтажа.
Очень эффективным устройством, значительно замедляющим процесс увлажнения изоляции при разгерметизации, является установка осушки воздуха «Суховей». Установка «Суховей» служит для глубокой осушки и очистки от механических примесей воздуха, используемого для подачи в бак трансформатора при его вскрытии, и производстве ревизии активной части. Опыт применения такой установки показывает, что воздух, прошедший через установку «Суховей», во много раз меньше увлажняет твердую изоляцию активной части трансформатора

Время разгерметизации в этом случае может быть значительно увеличено, но при этом не должно превышать 100 ч, а допустимое время разгерметизации больших люков под трансформаторы тока и вводы – 3 ч на каждый.
Работы во время разгерметизации силового трансформатора следует вести по разработанному часовому графику и выполнять с большой осторожностью и аккуратностью во избежание загрязнения внутреннего объема бака и падения внутрь инструментов и посторонних предметов. Монтаж составных частей силового трансформатора производят в следующем порядке

Удаляют из бака бакелитовые цилиндры вводов и крепеж к ним. Снимают транспортные детали и детали крепления отводов Проводят внешний осмотр креплений активной части и состояния механизма и контактов устройства РПН. Устанавливают патрубки вводов, встроенные ТТ. При установке вводов 110 кВ силовых трансформаторов мощностью до 100 МВА масло сливать не требуется.
Для установки ввод следует застропить, поднять, произвести центровку над патрубком, опустить, закрепить его и присоединить токоведущий стержень к отводу обмотки

При монтаже герметичных вводов перед установкой необходимо проверить и отрегулировать давление масла во вводе, обратить особое внимание на правильное размещение и установку соединительных трубок, а также контрольных манометров.
При монтаже наклонных вводов строповка, подъем и установка вводов выполняются с помощью специальной траверсы, полиспаста или талрепов.
После окончания монтажа внутренних частей остатки трансформаторного масла сливают (у трансформаторов, транспортируемых без масла) через донную пробку и герметизируют бак для последующего вакуумирования и заливки или доливки масла в трансформатор

Типы устройств

В зависимости от мощности, конструкции и сферы их применения, существуют такие виды трансформаторов:

  • Автотрансформатор конструктивно выполнен как одна обмотка с двумя концевыми клеммами, а также в промежуточных точках устройства имеются несколько терминалов, в которых располагаются первичные и вторичные катушки.
  • Трансформатор тока включает в себя первичную и вторичную обмотку, сердечник из магнитного материала, а также оптические датчики, специальные резисторы, позволяющие ускорять способы регулировки напряжения.
  • Силовой трансформатор — это устройство, передающее ток, при помощи индукции электромагнитного поля, между двумя контурами. Такие трансформаторы могут быть повышающими или понижающими, сухими или масляными.
  • Антирезонансные трансформаторы могут быть как однофазными, так и трёхфазными. Принцип работы такого устройства мало чем отличается от трансформаторов силового типа. Конструктивно представляет собой устройство литого типа с хорошей теплозащитой и полузакрытой структурой. Трансформаторы антирезонансного типа применяются при передаче сигнала на большие расстояния и в условиях больших нагрузок. Идеально подходят для работы в любых климатических условиях.
  • Заземляемые трансформаторы (догрузочные). Особенностью этого типа является расположение обмоток в форме звезды или зигзага. Часто заземляемые приборы применяют для подключения счётчика электрической энергии.
  • Пик — трансформаторы используются в устройствах радиосвязи и технологиях компьютерного производства, по принципу отделения постоянного и переменного тока. Конструкция такого трансформатора является упрощённой: обмотка с определённым количеством витков расположена вокруг сердечника из ферромагнитного материала.
  • Разделительный домашний трансформатор применяется при передаче энергии переменного тока к другому устройству или оборудованию, блокируя при этом способности источника энергии. В бытовых условиях такие приборы обеспечивают регулирование напряжения и гальваническую развязку. Чаще всего применяются для подавления электрических помех в чувствительных приборах и защиты от вредного воздействия электрического тока.

Сборка повышающего трансформатора

Разбирают сердечник. Так как использован О-образный его тип из трансформаторного железа от телевизора, то это легко сделать, так как он состоит из двух половин. Надевают на «рога» обе катушки и соединяют обе части аппарата, зажимают крепежные детали.

Схема устройства однофазного трансформатора.

При использовании отдельных пластин для сборки вначале по мощности трансформатора определяют толщину его пакета и, соответственно, нужное число Ш-образных или О-образных листов (по справочнику). Затем их поочередно вставляют в отверстие на гильзе катушки и стягивают шпильками и гайками (в пластинах есть для этого специальные отверстия).

Если при включении трансформатора слышен шум или дребезг, то надо поплотнее закрутить крепеж. Это делают до тех пор, пока «жужжание» не прекратится. Производят испытание: включают трансформатор в сеть вторичной обмоткой – на первичной стороне должно появиться напряжение 12 В.

Если это условие выполнено, то трансформатор собран правильно.

Расчетная часть

Итак, начнем. Для начала необходимо разобраться, что представляет из себя такое устройство. Трансформатор состоит из двух или более электрических катушек (первичной и вторичной) и металлического сердечника, выполненного из отдельных железных пластин. Первичная обмотка создает магнитный поток в магнитопроводе, а тот в свою очередь индуцирует электрический ток во второй катушке, что показано на схеме ниже. Исходя из соотношения числа витков в первичной и вторичной катушки, трансформатор либо повышает, либо понижает напряжение, пропорционально ему меняется и ток.

От размеров сердечника зависит максимальная мощность, которую трансформатор сможет отдать, поэтому при проектировании отталкиваются от наличия подходящего сердечника. Расчет всех параметров начинается с определения габаритной мощности трансформатора и подключаемой к нему нагрузки. Поэтому сначала нам необходимо найти мощность вторичной цепи. Если вторичная катушка не одна, то их мощность нужно суммировать. Расчетная формула будет иметь вид:

P2=U2*I2

Где:

  • U2 — это напряжение на вторичной обмотке;
  • I2 — ток вторичной обмотки.

Получив значение, нужно сделать расчет первичной обмотки, учитывая потери на трансформации, предполагаемый КПД около 80%.

P1=P2/0.8=1.25*P2

От значения мощности Р1 подбирается сердечник, его площадь сечения S.

S=√Р1

Где:

  • S в сантиметрах;
  • Р1 в ватт.

Теперь мы можем узнать коэффициент эффективной передачи и трансформации энергии:

w’=50/S

Где:

  • 50 — это частота сети;
  • S — сечение железа.

Эта формула дает приблизительное значение, но для простоты расчета вполне подойдет, так как мы изготавливаем деталь в домашних условиях. Далее можно приступить к расчету количества витков, сделать это можно по формуле:

w1=w’*U1

w2=w’*U2

w3=w’*U3

Так как расчет у нас упрощенный и возможна небольшая просадка напряжения под нагрузкой, увеличьте число витков на 10 % от расчетного значения. Далее нужно правильно определить ток наших обмоток, сделать это нужно для каждой обмотки в отдельности по этой формуле:

I1=P1/U1

Определяем диаметр необходимого провода по формуле:

d = 0.8*√I

Исходя из таблицы 1 выбираем провод с искомым сечением. Если подходящего значения нет, нужно сделать округление в большую сторону до табличного диаметра.

Если посчитанного диаметра нет в таблице, или слишком большое заполнение окна получается, то можно взять несколько проводов меньшего сечения и получить в сумме искомое.

Чтобы узнать поместятся ли катушки на нашем самодельном трансформаторе, требуется посчитать площадь окна тр-ра, это образованное сердечником пространство, в которое помещаются катушки. Уже известное число витков умножаем на сечение провода и коэффициент заполнения:

s= w*d²*0.8

Данный расчет производим для всех обмоток, первичной и вторичной, после чего нужно суммировать площадь катушек и сделать сравнение с площадью окна магнитопровода. Окно сердечника должно быть больше площади сечения катушек.

Оцените статью:

Трансформатор своими руками: пошаговая инструкция

Несмотря на многообразие электрооборудования на рынке, далеко не во всех ситуациях можно найти подходящий преобразовательный агрегат для решения конкретной задачи. Поэтому многие обыватели пытаются изготовить  трансформатор своими руками для получения определенных параметров работы. Стоит отметить, что намотать трансформатор может каждый, даже без специализированного оборудования и особых навыков, но этот процесс довольно трудоемкий и кропотливый. Поэтому изначально вам придется определиться с типом и характеристиками прибора.

Что понадобится для сборки?

Все преобразователи подразделяются на две основные категории – повышающие и понижающие трансформаторы.

В зависимости от предназначения, конструктивных особенностей и места установки их можно разделить на такие категории:

Практически каждое из вышеперечисленных устройств вы можете воссоздать в домашних условиях. Наиболее простым вариантом является перемотка трансформатора из заводского изделия, так как он уже содержит необходимые элементы. Главное, чтобы первичная обмотка подходила по номиналу питающего напряжения и мощности. Куда хуже, если перематывать нужно обе обмотки, к примеру, если и первичная, и вторичная обмотка пробиты или получили механическое повреждение.

Для изготовления трансформатора своими руками вам понадобятся:

  • Магнитопровод – служит в качестве проводника магнитного потока, лучше взять из старого трансформатора, так как он изготовлен из электротехнической стали и обеспечивает необходимые параметры работы, характеризуется малыми потерями в железе.
  • Провода нужного вам сечения в лаковой, полимерной или стеклотканевой изоляции. Чем тоньше этот слой, тем плотнее прилягут витки к каркасу и друг к другу.
  • Каркас – служит в качестве основания для обмоток трансформатора, устанавливает габариты по ширине. Можно взять из старого трансформатора, а можно изготовить своими руками. Материалом для каркаса может послужить электротехнический картон, гетинакс или текстолит, важно чтобы он не занимал много места в зазоре между сердечником и проводом.
  • Изоляция – предназначена для электрического отделения токоведущих элементов друг от друга и от конструктивных элементов трансформатора. В промышленном производстве используется лакотканевая лента, фторопласт, парафиновая пропитка, но при самостоятельном изготовлении подойдет любой имеющийся у вас материал, главное, чтобы его диэлектрической прочности хватало для напряжения сети.
  • Намоточный станок – позволяет упростить процесс и обеспечить постоянное натяжение. Можно изготовить своими руками из ручной дрели или по принципу вертела на двух шарнирах. Важно, чтобы изготовленный станок имел как можно меньший люфт.

Помимо этого вам могут пригодиться: молоток с деревянной пресс-планкой, паяльник для соединения проводов, ножницы, пассатижи. Но перед изготовлением, обязательно рассчитайте параметры трансформатора.

Расчеты

Рис. 1: принципиальная схема трансформатора

Наиболее сложный вариант, если вы будете изготавливать трансформатор своими руками с нуля. В таком случае расчет электрической машины производится в зависимости от выходной мощности. Исходя из этого параметра, рассчитывается мощность первичной обмотки. Если вы используете заводской сердечник, то можно считать эти величины одинаковыми, если вы соберете его самостоятельно, то P2 = 0,9 * P1

Это приблизительный расчет с учетом потерь в сердечнике. В зависимости от качества шихтовки своими руками, разница мощностей может находиться в пределах от 5 до 20%.

В зависимости от мощности первички определяется сечение магнитопровода, которое вычисляется по формуле: S = √P1

Следует отметить, что мощность для вычислений берется в Ваттах, а размеры сердечника получаем в квадратных сантиметрах.

Далее определяется коэффициент передачи электромагнитной энергии: k = f/S, 

Где k – коэффициент передачи, f – частота сетевого напряжения переменного тока, S – площадь сечения магнитопровода.

Исходя из полученного коэффициента, определяется число витков в обмотках по величине входных и выходных напряжений: N1 = k*U1, N2 = k*U2

Это приблизительные вычисления, предназначенные для бытового применения радиолюбителями. Заводские трансформаторы имеют более сложную процедуру расчета, которая производится по справочникам и зависит от их типа и назначения (силовые, измерительные, трехобмоточные, тороидальные устройства и т.д.)

Далее рассчитывается сила тока в первичной обмотке трансформатора: I1 = P/ U1

Соответственно, ток, протекающий по вторичной обмотке трансформатора, вычисляется по  формуле: : I2 = P/ U2

Исходя из величины тока в каждой обмотке, выбирается сечение жилы. Но заметьте, что проводник в обмотке значительно хуже охлаждается, поэтому запас сечения делается на 20 – 30%. Проще выполнять данную работу медными проводами, но это требование не критично.

Таблица: выбор сечения, в зависимости от протекающего тока

Медный проводник Алюминиевый проводник
Сечение жил, мм2 Ток, А Сечение  жил. мм2 Ток, А
0,5 11
0,75 15
1 17
1.5 19 2,5 22
2.5 27 4 28
4 38 6 36
6 46 10 50
10 70 16 60
16 80 25 85
25 115 35 100
35 135 50 135
50 175 70 165
70 215 95 200
95 265 120 230
120 300    

Сборка повышающего трансформатора

Особенностью повышающего трансформатора является большее сечение жил первичной обмотки трансформатора по отношению к вторичной. Ярким примером может служить любой агрегат, повышающий напряжение питания 220 Вольт до 400, 500, 1000 В и т.д., соответственно класс изоляции трансформатора выбирается по номиналу вторичной обмотки, как в сетевых трансформаторах.

Заметьте, что проводник большого сечения не получится намотать самодельным станком, поскольку вы не сможете выдать достаточное усилие. Определить это довольно просто – если первые витки свободно двигаются по каркасу катушки или хуже того, вы видите явный зазор между жилой и каркасом, переходите к ручной намотке.

Для сборки вам потребуется выполнить такую последовательность действий:

  • Соберите основание из диэлектрического материала, для этого можно вырезать его по лекалу из картона. Сборка каркаса производится внахлест при помощи клея. Рис. 2: изготовьте каркас для трансформатора

Если у вас имеется готовый образец, можете переходить к следующему этапу.

  • Сделайте отверстия в щеке катушки под выводы в электрическую сеть и к потребителю. Проденьте в них выводы. Рис. 3: проденьте вывод первичной обмотки
  • Уложите первый слой изоляции под первичку. Рис. 4: нанесите слой изоляции на катушку
  • Намотайте первичную обмотку трансформатора – если позволяет толщина, используйте станок, в противном случае, сделайте это руками. При намотке каждые 4 -5 витков проверяйте жесткость фиксации и плотность прилегания. Рис. 5: намотайте первичку

В случае наличия видимых зазоров рекомендуется придавливать витки деревянной пресс-плашкой или прибивать их через плашку молотком.

  • Посчитайте количество витков, оно должно соответствовать расчетному, выводы проденьте в отверстия. Уложите слой изоляции на первичку.
  • После слоя изоляции намотайте вторичку, так как здесь будет использоваться более тонкий провод, эту процедуру проще выполнять на станке. Рис. 6: намотайте вторичную обмотку

Периодически проверяйте плотность витков и их фиксацию на стержне. Хорошая фиксация не должна прогибаться и деформироваться при нажатии пальцами.

  • Если все витки не помещаются в один слой, их выкладывают в несколько, тогда важно соблюдать одно и то же количество витков в каждом из них. Слои перекладываются диэлектрическим материалом, заметьте, что толщина изоляции не должна существенно влиять на общие габариты катушек. Рис. 7: заизолируйте первый слой
  • Выведете концы вторичной обмотки на щечку каркаса.
  • Поместите магнитопровод в окно каркаса, сборка сердечника выполняется поочередно с каждой стороны, иначе потери окажутся слишком большими. Затем сердечник распирается для плотности фиксации. Рис. 8: поместите катушки на сердечник

Мощные трансформаторы на большой номинал напряжения дополнительно пропитывается парафиновой изоляцией. Такая процедура приводит к повышению емкостных потерь, но создает дополнительную защиту от электрического тока.

Сборка понижающего трансформатора

Понижающий трансформатор будет отличаться большим количеством витков на первичке. В быту их можно часто встретить в блоках питания, сварочных аппаратах и прочем оборудовании. Правда, в импульсных блоках используется другая технология, поэтому ремонт таких устройств производится без трансформаторов.

Так как изготовление сварочного трансформатора своими руками довольно актуально для домашних самоделок, рассмотрим на примере этот вариант. Требования к процессу сборки соответствует предыдущему. Отличительной особенностью такого агрегата является большое сечение провода во вторичной обмотке, так как сварочный ток может достигать сотен ампер.

Процесс изготовления заключается в следующем:

  1. Возьмите старое или изготовьте основание для катушки.
  2. Зафиксируйте на трансформаторном каркасе слой изоляции.
  3. Намотайте первичную обмотку с попеременной изоляцией слоев.
  4. Заизолируйте первичку и намотайте вторичную обмотку, так как большой диаметр проводов не позволит сделать это вручную, используйте слесарный инструмент.
  5. Зафиксируйте выводы обеих катушек.
  6. Установите пластины сердечника.

Испытание

Для проверки работоспособности П-образных или тороидальных трансформаторов в домашних условиях можно воспользоваться обычным мультиметром. Для этого переведите измерительный прибор в режим прозвона и проверьте целостность каждой из обмоток. Затем  проверьте изоляцию между каждой из обмоток и магнитопроводом и сопротивление между обеими обмотками. Это наиболее простой комплекс испытаний, который даст общее представление об исправности самодельного агрегата.

Для проверки отсутствия короткозамкнутых витков используется лампа, включающаяся последовательно к первичной обмотке.

Помимо этого электрические машины испытываются в режиме холостого хода и короткого замыкания. Такие проверки показывают, насколько качественно собран преобразователь, но выполнять их в домашних условиях не обязательно.

Список использованной литературы

  • Подъяпольский А.Н. «Как намотать трансформатор» 1953
  • Кислицын А.Л. «Трансформаторы» 2001
  • Родштейн Л.П. «Электрические аппараты» 1989
  • Бартош А.И. «Электрика для любознательных» 2019

КАК РАСЧИТАТЬ И ИЗГОТОВИТЬ ТРАНСФОРМАТОР ТОКА

КАК РАСЧИТАТЬ И ИЗГОТОВИТЬ ТРАНСФОРМАТОР ТОКА

Виктор Хрипченко пос. Октябрьский Белгородской обл.

      Занимаясь расчетами мощного источника питания, я столкнулся с проблемой - мне понадобился трансформатор тока, который бы точно измерял ток. Литературы по этой теме не много. А в Интернете только просьбы - где найти такой расчет. Прочитал статью [1 ]; зная, что ошибки могут присутствовать, я детально разобрался с данной темой. Ошибки, конечно, присутствовали: нет согласующего резистора Rc (см. рис. 2) для согласования на выходе вторичной обмотки трансформатора (он и не был рассчитан) по току. Вторичная цепь трансформатора тока рассчитана как обычно у трансформатора напряжения (задался нужным напряжением на вторичной обмотке и произвел расчет).

Немного теории

      Итак, прежде всего немного теории [4]. Трансформатор тока работает как источник тока с заданным первичным током, представляющим ток защищаемого участка цепи. Величина этого тока практически не зависит от нагрузки вторичной цепи трансформатора тока, поскольку его сопротивление с нагрузкой, приведенное к числу витков первичной обмотки, ничтожно мало по сравнению с сопротивлениями элементов электрической схемы. Это обстоятельство делает работу трансформатора тока отличной от работы силовых трансформаторов и трансформаторов напряжения.

      На рис. 1 показана маркировка концов первичной и вторичной обмоток трансформатора тока, навитых на маг-нитопровод в одном и том же направлении (I1 - ток первичной обмотки, I2 -ток вторичной обмотки). Ток вторичной обмотки I2 пренебрегая малым током намагничивания, всегда направлен так, чтобы размагничивать магнитопровод.

      Стрелками показано направление токов. Поэтому если принять верхний конец первичной обмотки за начало то началом вторичной обмотки н также является ее верхний конец. Принятому правилу маркировки соответствует такое же направление токов, учитывая знак. И самое главное правило: условие равенства магнитных потоков.

      Алгебраическая сумма произведений I1 x W1 - I2 x W2 = 0 (пренебрегая малым током намагничивания), где W1 - количество витков первичной обмотки трансформатора тока, W2 - количество витков вторичной обмотки трансформатора тока.

      Пример. Пусть вы, задавшись током первичной обмотки в 16 А, произвели расчет и в первичной обмотке 5 витков - рассчитано. Вы задаетесь током вторичной обмотки, например, 0,1 А и согласно вышеупомянутой формулы I1 x W1 = I2 x W2 рассчитаем количество витков вторичной обмотки трансформатора.

W2 = I1 x W1 / I2

      Далее произведя вычисления L2 -индуктивности вторичной обмотки, ее сопротивление XL1, мы вычислим U2 и потом Rc. Но это чуть позже. То есть вы видите, что задавшись током во вторичной обмотке трансформатора I2, вы только тогда вычисляете количество витков. Ток вторичной обмотки трансформатора тока I2 можно задать любой - отсюда будет вычисляться Rc. И еще -I2 должен быть больше тех нагрузок, которые вы будете подключать

Трансформатор тока должен работать только на согласованную по току нагрузку (речь идет о Rc).

      Если пользователю требуется трансформатор тока для применения в схемах защиты, то такими тонкостями как направление намоток, точность резистивной нагрузки Rc можно пренебречь, но это уже будет не трансформатор тока, а датчик тока с большой погрешностью. И эту погрешность можно будет устранить, только создав нагрузку на устройстве (я и имею в виду источник питания, где пользователь собирается ставить защиту, применяя трансформатор тока), и схемой защиты установить порог ее срабатывания по току. Если пользователю требуется схема измерения тока, то как раз эти тонкости должны быть обязательно соблюдены.

      На рис. 2 (точки - начало намоток) показан резистор Rc, который является неотьемлимой частью трансформатора тока для согласования токов первичной и вторичной обмотки. То есть Rc задает ток во вторичной обмотке. В качестве Rc не обязательно применять резистор, можно поставить амперметр, реле, но при этом должно соблюдаться обязательное условие - внутреннее сопротивление нагрузки должно быть равным рассчитанному Rc.

      Если нагрузка не согласованная по току - это будет генератор повышенного напряжения. Поясняю, почему так. Как уже было ранее сказано, ток вторичной обмотки трансформатора направлен в противоположную сторону от направления тока первичной обмотки. И вторичная обмотка трансформатора работает как размагничивающая. Если нагрузка во вторичной обмотке трансформатора не согласованная по току или будет отсутствовать, первичная обмотка будет работать как намагничивающая. Индукция резко возрастает, вызывая сильный нагрев магнито-провода за счет повышенных потерь в стали. Индуктируемая в обмотке ЭДС будет определяться скоростью изменениями потока во времени, имеющей наибольшее значение при прохождении трапецеидального (за счет насыщения магнитопровода) потока через нулевые значения. Индуктивность обмоток резко уменьшается, что вызывает еще больший нагрев трансформатора и в конечном итоге - выход его из строя.

      Типы магнитных сердечников приведены на рис. 3 [3].

      Витой или ленточный магнитопровод - одно и то же понятие, также как и выражение кольцевой или тороидальный магнитопровод: в литературе встречаются и то, и другое.

      Это может быть ферритовый сердечник или Ш-образное трансформаторное железо, или ленточные сердечники. Ферритовые сердечники обычно применяется при повышенных частотах - 400 Гц и выше из-за того, что они работают в слабых и средних магнитных полях (Вт = 0,3 Тл максимум). И так как у ферритов, как правило, высокое значение магнитной проницаемости µ и узкая петля гистерезиса, то они быстро заходят в область насыщения. Выходное напряжение, при f = 50 Гц, на вторичной обмотке составляет единицы вольт либо меньше. На ферритовых сердечниках наносится, как правило, маркировка об их магнитных свойствах (пример М2000 означает магнитную проницаемость сердечника µ, равную 2000 единиц).

      На ленточных магнитопроводах или из Ш-образных пластин такой маркировки нет, и поэтому приходится определять их магнитные свойства экспериментально, и они работают в средних и сильных магнитных полях [4] (в зависимости от применяемой марки электротехнической стали - 1,5.. .2 Тл и более) и применяются на частотах 50 Гц.. .400 Гц. Кольцевые или тороидальные витые (ленточные) магнитопроводы работают и на частоте 5 кГц (а из пермаллоя даже до 25 кГц). При расчете S - площади сечения ленточного тороидального магнитопровода, рекомендуется результат умножить на коэффициент к = 0,7...0,75 для большей точности. Это объясняется конструктивной особенностью ленточных магнитопроводов.

      Что такое ленточный разрезной магнитопровод (рис. 3)? Стальную лента, толщиной 0,08 мм или толще, наматывают на оправку, а затем отжигают на воздухе при температуре 400.. .500 °С для улучшения их магнитных свойств. Потом эти формы разрезаются, шлифуются края, и собирается магнитопровод. Кольцевые (неразрезные) витые магнитопроводы из тонких ленточных материалов (пермаллоев толщиной 0,01.. .0,05 мм) во время навивки покрывают электроизолирующим материалом, а затем отжигают в вакууме при 1000.. .1100 °С.

      Для определения магнитных свойств таких магнитопроводов надо намотать 20...30 витков провода (чем больше витков, тем точнее будет значение магнитной проницаемости сердечника) на сердечник магнитопровода и измерить L-индуктивность этой обмотки (мкГн). Вычислить S - площадь сечения сердечника трансформатора (мм2), lm-среднюю длину магнитной силовой линии (мм). И по формуле рассчитать jll - магнитную проницаемость сердечника [5]:

(1) µ = (800 x L x lm) / (N2 x S) - для ленточного и Ш-образного сердечника.

(2) µ = 2500*L(D + d) / W2 x C(D - d) - для кольцевого (тороидильного) сердечника.

      При расчете трансформатора на более высокие токи применяется провод большого диаметра в первичной обмотке, и здесь вам понадобится витой стержневой магнитопровод (П-образный), витой кольцевой сердечник или ферритовый тороид.

      Если кто держал в руках трансформатор тока промышленного изготовления на большие токи, то видел, что первичной обмотки, навитой на магнитопровод, нет, а имеется широкая алюминиевая шина, проходящая сквозь магнитопровод.

      Я напомнил об этом затем, что расчет трансформатора тока можно производить, либо задавшись Вт - магнитной индукцией в сердечнике, при этом первичная обмотка будет состоять из нескольких витков и придется мучиться, наматывая эти витки на сердечник трансформатора. Либо надо рассчитать магнитную индукцию Вт поля, создаваемую проводником с током, в сердечнике.

      А теперь приступим к расчету трансформатора тока, применяя законы [6].

      Вы задаетесь током первичной обмотки трансформатора тока, то есть тем током, который вы будете контролировать в цепи.

      Пусть будет I1 = 20 А, частота, на которой будет работать трансформатор тока, f = 50 Гц.

Возьмем ленточный кольцевой сердечник OJ125/40-10 или (40x25x10 мм), схематично представленный на рис. 4.

Размеры: D = 40 мм, d = 25 мм, С = 10 мм.

      Далее идет два расчета с подробными пояснениями как именно расчитывается трансформатор тока, но слишком большое количество формул затрудняет выложить расчеты на странице сайта. По этой причине полная версия статьи о том как расчитать трансформатор тока была конвертирована в PDF и ее можно скачать воспользовавшись ССЫЛКОЙ.    
   


Адрес администрации сайта: [email protected]
   

 

Страничка эмбеддера » Трансформатор тока

Иногда нужно узнать – какой ток течет в электрической цепи. Если ток небольшой, для этого можно использовать простой резистор. Если-же ток достигает неприличных величин (к примеру, как в трансформаторах Тесла), приходится искать другие методы измерения. Один из таких методов – использование трансформатора тока.

 

Что это такое?

Трансформатор тока, для краткости будем называть его ТТ, используется повсеместно. К примеру, в электросчетчиках и на подстанциях. Мы-же будем рассматривать то, как его можно использовать для измерения тока в импульсных источниках питания – сварочных аппаратах, трансформаторах Тесла итп. Стоит сразу обратить внимание, что с помощью ТТ можно измерять только переменный ток, но никак не постоянный!

Итак, ТТ позволяет нам измерять очень большой ток. Чем-же ТТ отличается от обычного трансформатора? А вот ничем! Название придумали из-за области применения и характерной конструкции – катушка на тороидальном сердечнике, через которую пропущен провод.

ТТ преобразует проходящий через него ток в пропорциональное напряжение. К примеру, если через трансформатор проходит 100А, то он выдает 1В, а если проходит 200А, то на выходе мы получим 2В.

 

Основные соотношения

Проделав нехитрые математические выкладки, можно убедиться, что для токов в обмотках ТТ с очень большим коэффициентом трансформации по напряжению и  с короткозамкнутой вторичной обмоткой действует такой закон для тока в обмотках:

Для того, чтобы преобразовать ток в напряжение, используют обычный резистор. Типичная схема включения ТТ:

Напряжение, падающее на резисторе R, согласно закону Ома, равно E=IR. Таким образом, зависимость выходного напряжения ТТ от тока определяется простым выражением:

К примеру, рассмотрим трансформатор Тесла, где через ТТ течет ток в 500А. Если у нас 1 виток в первичной обмотке ( да, просто пропущенный через кольцо провод считается за один виток), а во вторичной обмотке — 1000 витков, то ток во вторичной обмотке окажется равным 0.5А. Если мы возьмем сопротивление R1 = 2ом, то при полном токе на нем будет падать 1вольт.

Просто? Еще-бы!

 

Применения

Раз мы уже знаем, что такое токовый трансформатор, давайте подумаем куда его можно всунуть. Кроме того, что можно измерять большие токи, можно еще строить автогенераторы с обратной связью по току. Практически все DRSSTC являются именно такими. Можно также организовывать защиту от превышения тока, без такой защиты большинство импульсных блоков питания являются ”живыми мертвецами”.

 

Запаздывание по фазе

Для автогенераторного применения важна еще одна характеристика ТТ – задержка сигнала.

Запаздывание сигнала может произойти из-за таких факторов

  • Индукция рассеяния ТТ вместе с выходным резистором образует ФНЧ.

  • Межвитковая емкость в ТТ может стать причиной сдвига фазы.

Для анализа обоих этих ситуация, я набросал простую модель в SWCad’е.

Для предыдущего примера с трансформатором Тесла, возьмем сердечник R25.3 из материала N87 фирмы Epcos. В качестве паразитной емкости, возьмем 1нФ. Не спрашивайте, откуда такая емкость. Мне она кажется значительно большей, чем может возникнуть в любой реальной ситуации. Модель выглядит так:

Результаты симуляции при к. связи = 1

К. связи = 0.5

 

Как видно, отличаются только амплитуды. Сигнала. Никакого запаздывания нет в обоих случаях. Такое поведение сохраняется вплоть до очень высоких частот и до очень маленьких коэффициентов связи. Таким образом, можно сделать вывод, что фаза сигнала практически не зависит от паразитных параметров.

 

Каскадирование токовых трансформаторов

Люди всегда были ленивыми. Некоторым лениво встать из-за компа, а некоторым – мотать тысячи витков в ТТ. Поэтому придумали соединять трансформаторы последовательно. Решение спорное, и поэтому попробуем его проанализировать при помощи того-же симулятора. Включим последовательно два трансформатора на том-же сердечнике с обмоткой по 33 витка на каждом. Замечу, что паразитная емкость в каждом из трансформаторов сильно уменьшилась, что не удивительно.

Результаты симуляции очень похожи на одиночный трансформатор. Никакого запаздывания нет. Только амплитуда становится немного менее предсказуемая – она определяется произведением коэффициентов связи в обоих трансформаторах.

Вывод – в подавляющем большинстве случаев можно применять несколько ТТ, включенных последовательно.

 

Прямоугольный выходной сигнал

Часто необходимо получить прямоугольный выходной сигнал из синусоиды, выдаваемой ТТ. Конечно, это можно сделать с помощью компаратора, однако быстродействующие компараторы дороги и требуют особых навыков от разработчика. Проще собрать следующую, уже почти ставшую стандартом, схему:

 

 

Для чего такие сложности? Стабилитроны – очень медленные устройства. Для повышения быстродействия ограничителя, к ним добавлены диоды Шоттки. Когда напряжение меняет полярность – диоды Шоттки быстро закрываются и не дают стабилитронам испортить сигнал. Такой ограничитель выдает сигнал +-5 вольт. Замечу, что сигнал нужно обязательно ограничивать симметрично, иначе произойдет сдвиг фазы.

Далее идет диодная “вилка” которая защищает вход последующей микросхемы от пробоя отрицательным напряжением.

Диодную вилку нельзя поставить сразу после ТТ, потому, как выбросы из силовой части преобразователя попадут в чувствительные цепи управляющей электроники.

 

Конструкция

Заметьте, что ТТ работает как источник тока, и чем больше витков вы намотаете, тем ближе ТТ будет к идеальному источнику тока и тем точнее будут показания. Также, чем больше витков, тем меньше ток течет через резистор, а значит, уменьшается рассеиваемая на нем мощность. Именно предельная мощность на резисторе обычно является определяющим факторов для количества витков в любительских конструкциях.

Для того, чтобы сделать коэффициент трансформации побольше, первичную обмотку обычно делают всего из одного витка, а во вторичной мотают порядка тысяч.

Проблема насыщения сердечника очень редко проявляется в токовых трансформаторах. Что такое насыщение и как с ним бороться, можно прочитать в статье о GDT.

Чем больше проницаемость сердечника, тем больше к. связи и точнее показания, однако больше становится и паразитная индуктивность, добавляемая в измеряемые цепи. Это часто нежелательно. На практике, в качестве сердечника для ТТ может использоваться практически любой феррит, работающий на необходимой частоте. Для низкочастотных применений используют обычное трансформаторное железо.

В качестве проволоки для вторичной обмотки стоит выбирать проволоку с наибольшим возможным сечением – так уменьшается погрешность измерения.

 

Промышленные ТТ

Естественно, промышленность выпускает громаднейший ассортимент токовых трансформаторов. Они хорошо настроены и могут быть использованы для точных измерений.  Естественно, есть проблемы с доставабельностью в неэпических количествах. К примеру, в киеве, несколько ТТ я видел в магазине “радиомаг”

https://www.rcscomponents.kiev.ua/modules.php?name=Asers_Shop&s_op=viewproduct&cid=236

 

Еще почитать

К моему удивлению, материалов по ТТ очень мало. Но википедия, все-же, знает, что это такое.

https://ru.wikipedia.org/wiki/Трансформатор_тока

Привенение ТТ в электросчетчиках. Там-же описывается немного теории.

https://www.eltranstech.ru/aspect.php

суть работы, как сделать самодельное понижающее устройство на 10 ампер

Для того чтобы понизить напряжение промышленной сети, используются трансформаторы 220 на 12 вольт. Такое значение амплитуды необходимо для питания различной техники, в том числе и осветительных приборов. Понижающий трансформатор может располагаться непосредственно в блоке питания или быть выполнен как отдельное устройство. Этот радиоэлектронный элемент можно приобрести в специализированных магазинах, но при желании несложно изготовить и своими руками.

Суть работы устройства

Трансформатор — это электронное устройство, использующееся для преобразования переменного сигнала одной амплитуды в другую без изменения частоты. Сложно найти электротехническое оборудование, которое бы не содержало в своей схеме такое изделие. Оно является ключевым звеном в передаче энергии от одной части цепи к другой.

Появление трансформатора стало возможным после изобретения индукционной катушки в 1852 году механиком из Германии Румкорфом. Его устройство было похоже на катушку для наматывания ниток, но вместо последних использовалась проволока. Внутри катушки располагалась другая такая же конструкция. При подаче тока на нижнюю катушку фиксировалось напряжение и на верхней. Объяснялось это явлением, названным индуктивностью.

Кто точно изобрёл трансформатор, доподлинно неизвестно. В 1831 году Фарадей, проводя эксперименты, обнаружил, что в замкнутом контуре при изменении магнитного поля возникает электричество. Он также нарисовал примерную схему, как должен выглядеть трансформатор. Используя в 1876 году стальной сердечник и две катушки, русский учёный Яблочков фактически изготовил прообраз современного устройства. При подаче тока на одну из них он наблюдал возникновение магнитной индукции, приводящей к появлению тока на другой. При этом напряжение на катушках было разным из-за отличающегося количества витков.

Появление такой конструкции подтолкнуло других учёных к исследованиям, в результате которых появилась технология изготовления современного трансформатора.

Принцип действия

Современная промышленность выпускает трансформаторы, отличающиеся как по внешнему виду, так и по характеристикам. Но их всех объединяет принцип действия и пять элементов конструкции. Чтобы понять, как работает понижающий трансформатор с 220 на 12 вольт, необходимо знать эти основные части изделия. К ним относятся:

  1. Сердечник. По-другому его называют магнитопровод. Его назначение проводить магнитный поток. По виду исполнения сердечники делятся на три группы: плоскостные, ленточные, формованные. Изготавливают из электротехнической стали, феррита или пермаллоя, то есть материалов, имеющих способность к высокой намагниченности и обладающих проводящими свойствами.
  2. Обмотки. Представляют собой токопроводящую проволоку, намотанную витками. В качестве материала для её изготовления используется медь или алюминий.
  3. Каркас. Служит для намотки на него обмоток, изготавливается из изоляционного материала.
  4. Изоляция. Защищает катушки от межвиткового замыкания, а также их непосредственного контакта с токопроводящими частями конструкции. Чаще всего используется лак, клипперная лента, лакоткань.
  5. Монтажные выводы. Для предотвращения обрыва обмоток во время монтажа в конструкции делаются специальные выводы, позволяющие подключать к трансформатору источник питания и нагрузку.

Основной частью обмотки является виток. Именно из-за него и создаётся магнитная сила, впоследствии приводящая к появлению электродвижущей (ЭДС).

Таким образом, трансформатор представляет собой замкнутый контур (сердечник) на котором располагаются катушки (обмотки). Их количество может составлять от двух и более штук (исключение автотрансформатор). Катушка, подключаемая к источнику питания, называется первичной, а которая соединяется с нагрузкой — вторичной.

При подключении к источнику переменной энергии через первичную обмотку устройства начинает протекать изменяющийся во времени ток (синусоидальный). Он создаёт переменное электромагнитное поле. Линии магнитной индукции начинают пронизывать сердечник, в котором происходит их замыкание. В результате на намотанных витках вторичной катушки индуцируется ЭДС, создающая ток при подключении выводов к нагрузке.

Характеристики и виды изделия

Разность потенциалов, возникающая между выводами вторичной обмотки, зависит от коэффициента трансформации, определяющегося отношением количества витков вторичной и первичной катушки. Математически это можно описать формулой: U2/U1 = n2/n1 = I1/I2, где:

  • U1, U2 — соответственно разность потенциалов на первичной и вторичной обмотке.
  • N1, N2 — количество витков первичной и вторичной катушки.
  • I1, I2 — сила тока в обмотках.

По виду сердечника трансформаторы на 12 В разделяются на кольцевые, Ш-образные и П-образные. По конструктивному же исполнению они бывают: броневыми, стержневыми и тороидальными (кольцевыми). Стержневой тип собирается из П-образных пластин. На броневом виде используются боковые стержни без обмоток. Этот вид самый распространённый, так как обмотки надёжно защищены от механических повреждений, хотя при этом эффективность охлаждения уменьшается.

Тороидальный же трансформатор обладает самыми лучшими характеристиками. Его конструкция способствует хорошему охлаждению. Эффективное распределение магнитного поля увеличивает КПД изделия. Этот тип является самым популярным среди радиолюбителей, так как простота конструкции позволяет быстро его разбирать и собирать. Например, очень часто, именно на базе тора делают самодельные мощные сварочные аппараты.

К основным параметрам изделия относят:

  1. Мощность. Обозначает величину энергии, передающуюся через устройство, не приводя к его повреждению. Определяется толщиной провода, используемого при намотке катушек, а также размеров магнитопровода и частоты сигнала.
  2. КПД. Определяется отношением мощности, затрачиваемой на полезную работу к потребляемой.
  3. Коэффициент трансформации. Определяет способ преобразования.
  4. Количество обмоток.
  5. Ток короткого замыкания. Определяет максимальную силу тока, которую может выдержать устройство без перегорания обмоток.

Самостоятельное изготовление

Конструкция трансформатора довольно простая, поэтому его несложно сделать своими руками. Но перед тем как приступить непосредственно к его изготовлению необходимо не только подготовить материал и инструменты, но и выполнить предварительный расчёт.

Как сделать понижающий трансформатор своими руками можно рассмотреть на конкретном примере. Пускай стоит задача изготовить преобразователь с 220 В до 12 в с выходным током 10 А.

Сердечник самостоятельно вряд ли получится сделать, поэтому лучше воспользоваться ненужным трансформатором любого типа. Его понадобится аккуратно разобрать и извлечь оттуда «железо».

На следующем этапе стоит изготовить каркас. Можно использовать различные материалы, например, стеклотекстолит. Для его расчёта можно воспользоваться программой Power Trans. При этом стоит отметить, что хотя это приложение умеет рассчитывать также и количество витков, для этих целей лучше её не использовать, из-за не совсем корректных результатов.

В программе можно выбрать тип сердечника, а также задать сечение сердечника, окна и мощность изделия. Затем нажать расчёт и получить готовый чертёж с размерами. Далее, останется перенести рисунок на текстолит и вырезать нужное количество деталей. После того как все элементы подготовлены они собираются в каркас.

Теперь можно переходить к заготовке изолирующих прокладок. Они будут необходимы для изолирования слоёв друг от друга. Вырезаются они полосками из лакоткани, фторопласта, майлара или даже плотной бумаги, например, которую используют для выпечки. Важно отметить, что ширина полоски делается на пару миллиметров больше, при этом размечать линии реза графитовым карандашом не рекомендуется (графит проводит ток).

На последнем этапе готовится провод. Так как будет необходимо намотать трансформатор 220 В 12 В 10а, то есть понижающий, вторичная катушка будет выполняться толстым проводом, а первичная тонким.

Расчёт конструкции

Расчёт конструкции начинают с нахождения мощности, которую должна выдерживать вторичная обмотка. Подставив в формулу: P = U * I, заданные условиям b значения для вторичной катушки, получится: P 2 = 12*10 = 120 Вт. Приняв, что КПД изделия будет около 80% (среднее значение для всех трансформаторов) можно определить первичную мощность: P = P 2/0,8 = 120/0,8 = 150 Вт.

Исходя из того, что мощность передаётся через сердечник, то величины P1 будет зависеть сечение магнитопровода. Находится сечение сердечника из выражения: S = (P 1)½ = 150 = 12.2 см2. Теперь можно найти и необходимое количество витков в первичной обмотке для получения одного вольта: W =50/ S = 4.1. То есть для напряжения 220 вольт потребуется намотать 917 витков, а для вторичной — 48 витков.

Ток, протекающий через первичную катушку, будет равен: I = P / U = 150/220 = 0,68 А. Отсюда диаметр провода первичной обмотки вычисляемый по формуле: d = 0,8*(I)½ будет 0,66 мм, а для вторичной — 2,5 мм. Площадь же поперечного сечения можно взять из справочных таблиц или рассчитать по формуле: S = 0,8* d 2. Она соответственно составит — 0,3 мм2 и 5 мм2.

Если вдруг провод такого сечения трудно достать, то можно использовать несколько проводников соединённых друг с другом параллельно. При этом их суммарная площадь сечения должна быть немного больше расчётной.

Техника намотки

Для намотки изделия сделанный каркас необходимо зажать на оси и отцентровать. Проволку предварительно лучше намотать на какой-либо цилиндрический предмет. Например, катушку ниток или отрезок трубы. Напротив зажатого каркаса ставится катушка с проволокой. Проволока заводится на основание и выполняется несколько оборотов вокруг него. Затем начинают вращать корпус каркаса. При этом следует внимательно следить, чтобы каждый виток ложился рядом с другим, а не пересекал его. После каждого слоя наносится два витка изоляции.

Как только первична обмотка будет намотана, проволоку необходимо вывести в сторону для формирования вывода. Остаток проволоки отрезается. Перед нанесением вторичной обмотки прокладывается несколько слоёв изоляции и повторяется весь процесс, но уже с проводом более толстого сечения. По окончании работ свободные концы катушек распаиваются к клеммам. С помощью тестера катушки проверяются на разрыв.

Существуют некоторые нюансы при намотке которые желательно знать. Во время намотки может случайно порваться провод. В этом случае понадобится зачистить оборванные концы, скрутить их и спаять. Место пайки тщательно заизолировать, например, подложив два слоя изоляционной бумаги. При намотке для увеличения электрической прочности изделия рекомендуется выполнять пропитку каждого слоя. Это предотвращает вибрацию провода. В качестве пропитки используются лаки на эпоксидной основе или акриле.

Теперь останется только подключить трансформатор с 220 на 12 к источнику питания. Соединение с ним происходит по параллельной схеме. С помощью мультиметра можно проконтролировать выходное напряжение. Для этого он переключается в режим измерения переменного сигнала.

Если в дальнейшем необходимо получить постоянный сигнал, то к вторичной обмотке трансформатора подключается диодный мост (выпрямитель) с электролитическим конденсатором (сглаживающий фильтр). Но при этом следует учесть, что для тока 10 ампер понадобится соответственный и выпрямительный блок, способный выдержать такую силу тока с запасом порядка 15%.

Таким образом, самостоятельно изготовить понижающий трансформатор сможет даже начинающий радиолюбитель. Главное при этом выполнить правильный расчёт. А изготовленное изделие наверняка найдёт своё применение.

Микроконтроллер

- Как построить трансформатор тока по очень низкой цене?

Найдите самые дешевые трансформаторы с железным сердечником, в которых достаточно места внутри ламинированного «окна», чтобы вы могли пропустить через него провод. Еще лучше место для двух проводов, но достаточно места для одного.

Вставьте изолированный провод через отверстие так, чтобы получилась 1-витковая обмотка.
Оберните концы (изолированные) друг вокруг друга, чтобы они образовали плотную петлю вокруг сердечника.
Два сквозных провода (фактически два витка) МОГУТ сделать его немного менее восприимчивым к помехам из-за движения провода.Май.

Теперь у вас есть трансформатор тока.

Поместите небольшой резистор поперек обмотки.
Пропустите переменный ток через провод.
Измерьте напряжение с помощью измерителя.
Отрегулируйте резистор в соответствии с требованиями.

Небольшой силовой трансформатор должен работать хорошо, но подойдет почти любой трансформатор со стальным сердечником. Небольшие транзисторы межкаскадной связи звука со стальным сердечником должны работать, но большее количество витков обычно дает больше вольт на ампер.

Сообщите об этом.

NB Я НИКОГДА не пробовал эту особую схему, но уверен, что она сработает.
Вы сможете откалибровать ряд трансформаторов, отрегулировав номинал резистора.


Добавлено

Проектирование трансформатора тока:

Короткий:

Для трансформатора с одним витком первичной обмотки, вторичной обмотки N витков и желаемой выходной мощности K вольт на ампер-дюйм. Резистор R на вторичной обмотке равен

R = k x N

Обратите внимание, что намагничивание и насыщение сердечника являются проблемами в реальных случаях.Для входного тока ампер и 1 витка первичной обмотки сердечник должен поддерживать намагничивание в ампер-витках без насыщения.


Более длинный

Трансформаторы тока могут показаться волшебными, но на самом деле они работают по очень стандартным правилам для трансформаторов.

«Нормальный» (идеальный) трансформатор обычно имеет фиксированное приложенное напряжение, которое отражается на выходе, но умножается на отношение витков N (Vout = Vin x N), а выходной ток умножается на 1 / N, так что Iout = Iin / Н.

Трансформатор тока работает не иначе, НО вместо того, чтобы ограничивать Vin и позволять Iin принимать соответствующее значение, мы вместо этого ограничиваем Iin и позволяем Vin принимать любое значение, которое произойдет.На самом деле, обычно нас не волнует ценность Vin - мы заботимся о Vout. Итак, мы устанавливаем Iin - это ток, который «измеряется», это дает Iout = Iin / N, мы выбираем выходной резистор для потока Iout, чтобы Vout было некоторым желаемым значением для данного Iin, и затем мы измеряем Vout до установить, что такое Ion. Vin - это Vo / N, но почти никогда не измеряется.

Дан трансформатор с 1 витком первичной обмотки и N витками вторичной обмотки.
R = резистор, подключенный к вторичной обмотке, через который проходит Iout Is = Isecondary
p = Iprimary.
N = передаточное число оборотов (Turns_in / Turns_out). k = желаемое выходное напряжение на R на ампер первичной обмотки. R = резистор во вторичной обмотке.

Затем

Is = Ip / N (стандартное действие трансформатора)
R = Vs / Is
, но Is = Ip / N
Vs = K.Ip, где мы выбираем R, чтобы сделать K = Vout / Iin, чтобы принять значение по нашему выбору.

Установить Ip = 1 А
Is = Ip / N Vs = k
R = Vs / Is = k / (Ip / N) = KN / Ip
As Ip = 1

R = кН !!! Удивительно просто.т.е. выберите K = Выходное напряжение на входной усилитель. Выберите или используйте доступное передаточное число N.

Установить R = k.N = Вольт / А x коэффициент передачи

Чтобы найти резистор на выходе, чтобы получить К вольт на ампер. V = iR, поэтому R = V / I. Для Iprim = 1 V sec = k. R = V / isec = VN / Iprim = кН / 1 = кН. | R = Вольт на ампер x коэффициент трансформации.

Самодельные электрические трансформаторы | Sciencing

Электрический трансформатор изменяет уровни тока и напряжения в цепи переменного тока с помощью магнитной индукции.Сделать самодельный трансформер можно несложными инструментами. Нет необходимости иметь какой-то причудливый железный сердечник в форме коробки, показанный в учебниках естествознания. Вместо этого вам просто нужен переменный ток для создания магнитного поля в намагничиваемом материале между первичной и вторичной цепями. Первичная цепь обеспечивает переменный ток вторичной цепи через намагничивающийся материал между ними.

Общая конструкция

Трансформатор состоит из трех частей. Есть две цепи, между которыми есть какой-то магнитный материал, который их соединяет.Цепь, подключенная к источнику переменного тока, называется первичной цепью. Цепь на другой стороне магнитного материала называется вторичной цепью. Ток во вторичной цепи индуцируется первичной цепью через магнитный материал.

Две цепи подключаются к магнитному материалу путем намотки на разные его части (см. Схему). Первичный контур индуцирует магнитное поле в своей катушке, которое магнитный материал передает вторичной катушке.Это, в свою очередь, создает переменный ток во вторичной катушке.

Резистор должен быть вставлен где-нибудь в цепи, чтобы токи не протекали так быстро, что электрическая система вашего дома будет повреждена. (Здесь мы используем лампочку в качестве резистора.) И детям не следует делать это без присмотра взрослых.

Первичная цепь

Для первичной цепи необходим переменный ток. Достаточно розетки. Для доступа к ее току можно использовать старый шнур лампы.Чтобы сделать круговую схему, вам нужно разделить два провода шнура лампы. Затем один из свободных концов наматывается на намагничивающийся материал. Можно использовать большой болт или отвертку. Чтобы убедиться, что металл поддается намагничиванию, проверьте, не прилипает ли к нему кухонный магнит.

Когда один конец намотан на отвертку или болт, его можно прикрепить к другому проводу шнура, чтобы завершить петлю (см. Схему). Фактически, если вы подключите его сейчас, отвертка / болт должны работать как электромагнит.

Предупреждение. Убедитесь, что провод имеет покрытие по всей цепи. Оголенный провод следует закрыть изолентой. Вы не хотите рисковать коротким замыканием или шоком. Кроме того, катушка не будет работать правильно, если она намотана оголенным проводом.

Вторичная цепь

Используйте другой провод для вторичной цепи. Покрытие провода должно быть таким же, как и у первичной обмотки. Оберните вторичный провод вокруг болта или отвертки. Затем присоедините оголенные концы провода к двум клеммам лампочки.(Две клеммы лампочки - это металлический винт с резьбой и металлический наконечник.)

Может потребоваться изолента, чтобы избежать пересечения оголенных проводов.

Трансформатор готов. Вы можете вставить вилку первичной цепи в розетку после последней проверки на перекрытие оголенной проводки. Если вы почувствуете запах гари, немедленно выньте вилку из розетки. Либо оголенные провода скрещены, либо нужно вставить другой резистор, например, лампочку в первичную цепь.

Изменение яркости лампы

Изменение количества витков на катушку изменит соотношение напряжений между цепями. Чем больше обмоток вторичной цепи по сравнению с первичной, тем больше напряжение и меньше ток вторичной цепи. Поскольку мощность, потерянная через резистор, равна квадрату тока, умноженному на сопротивление, лампу можно сделать ярче, снизив напряжение и увеличив ток, то есть увеличив счетчик вторичной обмотки.

Токоизмерительные клещи постоянного тока для осциллографа DIY

0.0 Базовое введение

Иметь осциллограф - это очень хорошо. Это очень полезный инструмент. Но с помощью базовых пробников вы могли наблюдать только значения напряжения. Что, если мы хотим наблюдать за током ???

Существует много типов пробников осциллографов, каждый со своей областью применения. Пробник обеспечивает очень важную связь между измеряемым объектом и осциллографом. В этом видео мы поговорим о токовых пробниках, а точнее о неинвазивных токовых пробниках, что означает, что нам не нужно напрямую подключать их к разомкнутой цепи, чтобы проводить измерения.Токи можно измерить, измерив напряжение на известном сопротивлении. Основным недостатком является то, что для установки этого шунтирующего резистора необходимо разомкнуть цепь. Мы видели такой измеритель тока в одном из моих прошлых руководств по мультиметру на базе Arduino. У вас есть ссылка на этот учебник ниже.

См. Руководство по мультиметру Arduino здесь:

В этом видео мы сделаем что-то другое, потому что это дополнительное сопротивление также может повлиять на измерение своим напряжением нагрузки.Токи также можно измерять с помощью токового пробника, также известного как токовые клещи. У этих пробников нет недостатков шунтирующих резисторов, как мы только что описали. Токовый зонд просто зажимается над токоведущим проводом, и цепь не нужно размыкать, что является огромным преимуществом.
Токовые пробники примерно делятся на два типа: токовые клещи переменного и постоянного тока. Я попытаюсь объяснить, как работают оба этих типа. Чтобы понять это, давайте сначала взглянем на мои токовые клещи hantek, которые я только что получил.Это очень полезный инструмент.


Чем как доза это работает? Для этого я сначала открою корпус и осмотрю его компоненты. Как я догадался, схема довольно простая. На наконечнике у нас есть металлический магнитный сердечник, который пропускает через него магнитный поток. Тут тоже должен быть какой-то датчик и все. Затем у нас есть основная схема, в которой мы, вероятно, найдем усилитель и схему селектора шкалы, поскольку у нас есть две разные шкалы на выбор. Вот выходной сигнал осциллографа.Итак, зная эти компоненты, позвольте мне теперь немного объяснить, как все это работает.

Купите зажим hanteck здесь:

1.0 Токовые клещи переменного тока

Как я уже сказал, токовые пробники делятся на два типа: токовые клещи переменного и постоянного тока. Токовые клещи переменного тока в основном представляют собой трансформатор. Первичная обмотка - это проводник, по которому проходит измеряемый ток, в данном случае простой провод, а вторая обмотка закреплена на сердечнике и подключена к осциллографу. Это пассивный пробник, который может работать только с переменными токами.Обычный трансформатор не справляется с постоянным током. Таким образом, принцип действия датчиков постоянного тока сильно отличается от датчиков переменного тока. Давайте сначала посмотрим, как создать собственный пробник переменного тока. Все, что нам нужно, это сердечник трансформатора и немного медной проволоки для создания обмоток.


Все, что нам нужно, это сердечник трансформатора и немного медной проволоки для создания наших обмоток. Ток, проходящий через измеряемый провод, создаст вокруг него магнитное поле, как говорит нам закон электромагнитного поля. Благодаря ферритовому сердечнику зажима это магнитное поле будет направлено через этот ферритовый сердечник.Поскольку ток является переменным, магнитный поток изменится, и это приведет к току, индуцированному во вторичной обмотке, как мы можем видеть на фотографии выше. Если индуцируется ток, между двумя концами обмотки будет падение напряжения. Затем мы могли бы измерить это падение напряжения с помощью нашего осциллографа.


Напряжение на выходе вторичной обмотки равно напряжению на первичной обмотке, умноженному на соотношение между током первичной обмотки и током вторичной обмотки.Допустим, мы не знаем ни одного из этих значений. Но с помощью мультиметра переменного тока мы контролируем ток через измеряемый провод и одновременно выходное напряжение на осциллографе. Мы делаем несколько измерений и строим график, чтобы узнать шкалу зажима.



Вы можете купить такой модуль напрямую за несколько долларов, как это (фото ниже). Этот модуль уже дает нам тогда шкалу выходного напряжения 15А на вольт. Итак, у нас должно быть 100 мВ для тока 1,5 А, проходящего через этот провод.Я подключаю этот трансформатор к осциллографу и подаю сигнал переменного тока через свой провод. Вот и все, вот и у меня на осциллографе есть переменный ток. Довольно просто, верно.


Если мы построим собственный трансформатор, мы должны быть осторожны при вычислении масштаба в зависимости от количества сделанных нами обмоток и зная, что первичная обмотка будет только одна, поскольку через сердечник будет проходить только один провод. Но если я приложу к этой цепи постоянный ток, то на моем осциллографе будет отметка.Это потому, что ток в трансформаторе индуцируется только при изменении магнитного потока. Таким образом, постоянное магнитное поле не будет индуцировать ток в обмотке, поэтому на выходе будет 0.


1.1 Соберите токовые клещи переменного тока


Нам понадобится

Гнездовой разъем BNC LINK eBay
Зажим трансформатора LINK eBay
Конденсатор 10 пФ LINK eBay
Резистор 9 м LINK eBay


Загрузите схему здесь:

2.0 Токовые клещи постоянного тока

Итак, постоянное магнитное поле не наводит ток в обмотку, поэтому на выходе будет 0.Так как же нам измерить и наблюдать постоянный ток? В этом типе зонда мы также будем использовать ферритовый сердечник, который будет переносить магнитное поле. Сердечник снабжен воздушным зазором, в котором будет находиться датчик, в данном случае датчик Холла, который измеряет магнитный поток в сердечнике. Так что теперь нам больше не нужен переменный ток, поскольку мы можем напрямую измерить значение магнитного потока. Ток в первичном проводе, который является измеряемым проводом, намагнитит сердечник. Это магнитное поле измеряется датчиком.

Как спроектировать свой собственный инверторный трансформатор

Проектирование инверторного трансформатора может быть сложной задачей. Однако с помощью различных формул и одного практического примера, показанного здесь, необходимые операции, наконец, становятся очень простыми.

В данной статье на практическом примере объясняется процесс применения различных формул для создания инверторного трансформатора. Различные формулы, необходимые для проектирования трансформатора, уже обсуждались в одной из моих предыдущих статей.

Обновление: подробное объяснение можно также изучить в этой статье: Как сделать трансформаторы

Проектирование инверторного трансформатора

Инвертор - это ваша личная электростанция, которая может преобразовать любой сильный источник постоянного тока в легко используемый Мощность переменного тока очень похожа на мощность, получаемую от розеток переменного тока в вашем доме.

Хотя инверторы сегодня широко доступны на рынке, разработка собственного индивидуального инверторного блока может доставить вам огромное удовлетворение и, более того, это очень весело.

В Bright Hub я уже опубликовал множество схем инверторов, от простых до сложных синусоидальных и модифицированных синусоидальных схем.

Однако люди продолжают спрашивать меня о формулах, которые можно легко использовать для проектирования инверторного трансформатора.

Популярный спрос побудил меня опубликовать одну такую ​​статью, в которой подробно рассматриваются расчеты конструкции трансформатора. Хотя объяснение и содержание были на должном уровне, к большому сожалению, многие из вас просто не смогли понять процедуру.

Это побудило меня написать эту статью, которая включает в себя один пример, подробно иллюстрирующий, как использовать и применять различные шаги и формулы при разработке собственного трансформатора.

Давайте быстро рассмотрим следующий прилагаемый пример: Предположим, вы хотите спроектировать инверторный трансформатор для инвертора на 120 ВА, используя автомобильный аккумулятор 12 В в качестве входа и требуя 230 В в качестве выхода. Теперь, если просто разделить 120 на 12, получится 10 ампер, это станет требуемым вторичным током.

Хотите узнать, как спроектировать основные схемы инвертора?

В следующем пояснении первичная сторона называется стороной трансформатора, которая может быть подключена к стороне батареи постоянного тока, а вторичная сторона означает выходную сторону 220 В переменного тока.

Имеющиеся данные:

  • Вторичное напряжение = 230 Вольт,
  • Первичный ток (выходной ток) = 10 Ампер.
  • Первичное напряжение (выходное напряжение) = 12-0-12 вольт, что равно 24 вольт.
  • Выходная частота = 50 Гц

Расчет напряжения инверторного трансформатора, тока, количества витков

Шаг 1 : Сначала нам нужно найти площадь сердечника CA = 1,152 × √ 24 × 10 = 18 кв. См, где 1,152 - постоянная величина.

Мы выбираем CRGO в качестве материала сердечника.

Шаг № 2 : Расчет оборотов на вольт TPV = 1 / (4,44 × 10 –4 × 18 × 1,3 × 50) = 1,96, за исключением 18 и 50, все являются константами.

Шаг № 3 : Расчет вторичного тока = 24 × 10/230 × 0,9 (предполагаемая эффективность) = 1,15 А,

Сопоставив вышеуказанный ток в таблице A, мы получаем приблизительное значение вторичного медного провода. толщина = 21 SWG.

Следовательно, количество витков для вторичной обмотки рассчитывается как = 1,96 × 230 = 450

Шаг 4: Затем Площадь вторичной обмотки становится = 450/137 (из таблицы A) = 3 .27 кв. См.

Теперь требуемый ток в первичной обмотке составляет 10 ампер, поэтому из таблицы A мы подбираем эквивалентную толщину медного провода = 12 SWG.

Шаг № 5 : Расчет первичного числа витков = 1,04 (1,96 × 24) = 49. Значение 1,04 включено, чтобы обеспечить добавление нескольких дополнительных витков к общей сумме, чтобы компенсировать потери в обмотке.

Шаг № 6 : Расчет площади первичной обмотки = 49/12.8 (из таблицы A) = 3,8 кв. См.

Таким образом, общая площадь обмотки составляет = (3,27 + 3,8) × 1,3 (площадь изоляции добавлена ​​на 30%) = 9 кв. См.

Шаг № 7 : Расчет общей площади получаем = 18 / 0,9 = 20 кв. См.

Шаг 8: Далее ширина языка становится = √20 = 4,47 см.

Снова сверяясь с таблицей B, мы окончательно определяем тип сердечника примерно на 6 (E / I) , используя указанное выше значение.

Шаг # 9 : Наконец рассчитывается стек as = 20 / 4,47 = 4,47 см

Таблица A

SWG ------- (AMP) ------- Обороты за кв. см.
10 ----------- 16,6 ---------- 8,7
11 ----------- 13,638 ------- 10,4
12- ---------- 10,961 ------- 12,8
13 ----------- 8,579 --------- 16,1
14 ----- ------ 6,487 --------- 21,5
15 ----------- 5,254 --------- 26,8
16 ------- ---- 4,151 --------- 35,2
17 ----------- 3,178 --------- 45.4
18 ----------- 2,335 --------- 60,8
19 ----------- 1,622 --------- 87,4
20 ----------- 1,313 --------- 106
21 ----------- 1,0377 -------- 137
22-- --------- 0,7945 -------- 176
23 ----------- 0,5838 --------- 42
24 ----- ------ 0,4906 --------- 286
25 ----------- 0,4054 --------- 341
26 ------- ---- 0,3284 --------- 415
27 ----------- 0,2726 --------- 504
28 --------- - 0,2219 --------- 609
29 ----------- 0,1874 --------- 711
30 ----------- 0,1558 --------- 881
31 ----------- 0.1364 --------- 997
32 ----------- 0,1182 --------- 1137
33 ----------- 0,1013- -------- 1308
34 ----------- 0,0858 --------- 1608
35 ----------- 0,0715 --- ------ 1902
36 ----------- 0,0586 ---------- 2286
37 ----------- 0,0469 ---- ------ 2800
38 ----------- 0,0365 ---------- 3507
39 ----------- 0,0274 ---- ------ 4838
40 ----------- 0,0233 ---------- 5595
41 ----------- 0,0197 ---- ------ 6543
42 ----------- 0,0162 ---------- 7755
43 ----------- 0,0131 ---- ------ 9337
44 ----------- 0.0104 --------- 11457
45 ----------- 0,0079 --------- 14392
46 ----------- 0,0059- -------- 20223
47 ----------- 0,0041 --------- 27546
48 ----------- 0,0026 --- ------ 39706
49 ----------- 0,0015 --------- 62134
50 ----------- 0,0010 ----- ---- 81242

Таблица B

Тип ------------------- Язык ---------- Обмотка
№---- ----------------- Ширина ------------- Площадь
17 (E / I) ----------- --------- 1,270 ------------ 1,213
12A (E / 12I) --------------- 1,588 ---- ------- 1.897
74 (E / I) -------------------- 1.748 ----------- 2.284
23 (E / I) - ------------------ 1.905 ----------- 2.723
30 (E / I) ------------ -------- 2.000 ----------- 3.000
21 (E / I) -------------------- 1.588- ---------- 3.329
31 (E / I) -------------------- 2.223 ----------- 3.703
10 (E / I) -------------------- 1.588 ----------- 4.439
15 (E / I) - ------------------- 2.540 ----------- 4.839
33 (E / I) ----------- ---------- 2,800 ---------- 5,880
1 (E / I) --------------------- --2.461 ---------- 6.555
14 (E / I) --------------------- 2.540 ---------- 6.555
11 (E / I) --------------------- 1.905 --------- 7.259
34 (U / T) -------------------- 1/588 --------- 7.259
3 (E / I) - --------------------- 3,175 --------- 7,562
9 (Ед. / Т.) ----------- ----------- 2.223 ---------- 7.865
9А (U / T) -------------------- 2,223 ---------- 7,865
11A (E / I) ------------------- 1,905 ----------- 9.072
4A (E / I) --------------------- 3.335 ----------- 10.284
2 (E / I) - ---------------------- 1.905 ----------- 10.891
16 (E / I) -------- ------------- 3.810 ----------- 10.891
5 (E / I) ---------------------- 3.810 ----------- 12.704
4AX (U / T) ---------------- 2.383 ----------- 13.039
13 (E / I) -------------- ------ 3,175 ----------- 14,117
75 (U / T) ------------------- 2,540 ---- ------- 15.324
4 (E / I) ---------------------- 2.540 ---------- 15.865
7 (E / I) ---------------------- 5.080 ----------- 18.969
6 (E / I) - -------------------- 3.810 ---------- 19.356
35A (U / T) ----------- ------ 3.810 ---------- 39.316
8 (E / I) --------------------- 5.080 --- ------- 49.803

Простой ВЧ трансформатор тока для исследования ЭМС / ЭМИ

Этот пост содержит некоторую справочную информацию, связанную с видео, которое я разместил на YouTube, о том, как сделать простой ВЧ трансформатор тока, отличный инструмент для отладки Проблемы EMC / EMI, такие как излучение от кабелей или отслеживание трактов помехоустойчивости к кондуктивным помехам.

ВЧ трансформаторы тока (или датчики)

являются коммерчески доступными продуктами таких компаний, как Fischer CC или Solar Electronics, и они работают очень хорошо, имеют заданную полосу пропускания и характеристики управления мощностью, имеют встроенное экранирование, прочный корпус и т. Д.

Они также стоят несколько сотен фунтов стерлингов за штуку, что при ограниченном бюджете, как и большинство людей, представляет собой значительные вложения для отдельной или небольшой лаборатории. Однако его можно построить очень дешево; в большинстве лабораторий есть комплекты для разработки с зажимами на ферритовых сердечниках, в противном случае сердечник, который я использовал, стоит всего 5 фунтов стерлингов от RS.

Токовый пробник для самостоятельного изготовления

Я большой поклонник создания собственных тестовых адаптеров и оборудования, поскольку это отличный способ по-настоящему понять, как все работает, и компромиссы в любом дизайне. Поэтому я решил рассказать, как я делаю этот действительно полезный инструмент.

В основном используется для сравнения A-B; измерение тока, выполнение модификации, а затем измерение тока, чтобы увидеть улучшение.

Следует подчеркнуть, что моя версия - грубая, но эффективная часть оборудования и не заменяет хорошо спроектированный коммерческий продукт.Есть время и место для инвестиций в качественное оборудование, и когда это возможно, нужно использовать инженерные решения. Например, точное измерение ВЧ-тока определенно является задачей для правильно спроектированного и охарактеризованного устройства.

Если вы хотите изучить ВЧ трансформаторы тока более подробно, в Google есть много информации, но эти ссылки - полезные места для начала.

Некоторые конструктивные компромиссы, связанные с этим недорогим подходом, включают:

Потери в сердечнике / Вносимые потери

Ферритовый материал в этих сердечниках специально разработан с учетом потерь на частотах, представляющих интерес, что приведет к более низким показаниям, чем сердечник с более широкой полосой пропускания, и уменьшению уровня шума в кабеле после источника шума.В некоторых случаях это может замаскировать эффект, который вы пытаетесь измерить. В коммерчески доступных продуктах используются ферритовые сердечники с малыми потерями и большой полосой пропускания.

Высокие вносимые потери также делают эти детали более непригодными для внесения шума в цепи для тестирования помехоустойчивости. они могут быть откалиброваны для этой задачи с помощью простой испытательной установки (будет рассмотрено позже)

Вторичные витки

Число витков вторичной обмотки контролирует чувствительность, но чем больше вы добавляете, тем увеличивается межобмоточная емкость, уменьшая полосу пропускания инструмента.Я обычно использую 5 или 6 витков для начала, но у меня есть 20-витковая деталь, сделанная с помощью микрокоаксиального кабеля на твердом сердечнике, который также помогает справиться с…

Емкостной датчик

От испытуемого кабеля до вторичной обмотки. Обычно в коммерческие продукты встроен разделенный экран (чтобы он не выглядел как закороченный виток). Угадайте, что это легко сделать с помощью кусочка медной ленты или фольги.

Не такой прочный

Пластиковые петли и зажимы на сердечниках, хотя и хорошо спроектированы, не предназначены для многократного открывания и закрывания.Система специального ключа для открытия и закрытия сердечника Wurth Elektronik намного более надежна за счет необходимости держать несколько ключей под рукой, когда они неизбежно пропадают. Однако эти детали настолько дешевы и производятся быстро, что сломанный зажим на сердечнике не является настоящим препятствием.

Видео будущего

Я буду следить за этим видео с некоторыми советами и подсказками о том, как эффективно использовать эти устройства для поиска проблем с излучаемыми помехами и для изучения проблем с помехоустойчивостью наведенных радиочастот.Оставайтесь в курсе.

Видео и строительные ошибки

Внимательный из вас наверняка заметит, что я изначально собирал разъем BNC на сердечнике так, чтобы он перекрывал паз для открытия зажима. Я исправил это, но не снимал изменения.

Кроме того, вы можете обернуть провод вокруг сердечника, не вынимая его из корпуса, но это означает, что у вас нет хорошей плоской поверхности для крепления разъема BNC. Тем не менее, это облегчает закрытие зажима, поэтому сделайте свой выбор.

Трансформатор тока

Почти все защитные реле переменного тока в различных системах защиты срабатывают током, подаваемым трансформаторами тока. Это непростой способ измерить переменный ток большой величины амперметрами с малым диапазоном. А также реле должны быть рассчитаны на высокие токи, чтобы срабатывать при этих высоких переменных токах. Следовательно, трансформатор тока выполняет преобразование тока из сильных токов в измеримый диапазон токов. Конкретное применение трансформаторов тока связано с различными соображениями, такими как тип механической конструкции, соотношение первичного и вторичного токов, тип изоляции (масляная или сухая), тепловые условия, точность, тип обслуживания и т. Д.

Трансформаторы тока (CT)

Это тип преобразователя тока, который выдает ток во вторичной обмотке, пропорциональный по величине току, протекающему через первичную обмотку. Они используются для преобразования высоких токов от силовой цепи в измеримый диапазон токов приборов и устройств управления. Кроме того, они обеспечивают изоляцию амперметров, других измерительных приборов и устройств управления от силовых цепей высокого напряжения. Это самый дешевый и простой метод измерения тока, превышающий диапазон цифровых измерителей и лопастных измерителей с подвижной катушкой.

Первичная обмотка трансформатора тока состоит из одного или нескольких витков с большой площадью поперечного сечения и соединена последовательно с цепью, в которой должен измеряться ток. В трансформаторах тока стержневого типа первичная обмотка имеет только один виток, что означает, что сам проводник действует как первичная обмотка. Вторичная обмотка выполнена из большого количества витков тонкой проволоки с малой площадью поперечного сечения. Эта обмотка подключена либо к рабочей катушке реле, либо к катушке тока инструментов, как показано на рисунке.Очень часто трансформаторы тока конструируются таким образом, что вторичные клеммы выдают ток 5 А или 1 А при полном или номинальном первичном токе.

В начало

Принцип работы трансформаторов тока

Трансформатор тока работает аналогично обычному силовому трансформатору. ТТ в основном представляют собой повышающие трансформаторы напряжения, с другой стороны, это понижающие трансформаторы с учетом тока. Это связано с тем, что на стороне высокого напряжения ниже будет ток, а на стороне низкого напряжения ток выше.Когда первичная обмотка трансформатора тока находится под напряжением, амперные витки первичной стороны создают магнитное поле в сердечнике. Эта связь магнитного потока с вторичной обмоткой индуцирует ЭДС, и эта ЭДС управляет током во вторичной обмотке трансформатора тока. Ток во вторичной обмотке пытается сбалансировать ампер-витки первичной обмотки. Следовательно, соотношение между первичной и вторичной обмоткой задается как

I1N1 = I2N2

I1 / I2 = N2 / N1

I1 / I2 = n

Это называется коэффициентом трансформации трансформатора тока.

Где I1 и I2 - первичный ток и вторичный ток соответственно.

N1 и N2 - первичные витки и вторичные витки соответственно, а

n - отношение витков вторичной обмотки к первичной.

Трансформатор тока

В качестве примера типичный трансформатор тока от 100 до 5 А имеет номинальное отношение одного первичного витка к 20 вторичным виткам или 1:20. Из приведенного выше уравнения, зная вторичный ток амперметра и соотношения тока, мы можем легко определить ток, протекающий через первичную обмотку, которая подключена к основной линии.В силовом трансформаторе первичный ток зависит от вторичного тока. В отличие от этого, первичная обмотка трансформатора тока подключена непосредственно последовательно с силовой цепью, а падение напряжения на ней намного меньше, и, следовательно, первичный ток не зависит от вторичного тока.

Следует отметить, что вторичная обмотка ТТ не должна оставаться открытой, пока первичная обмотка находится под напряжением. Если вторичная обмотка остается открытой, вторичный ток становится равным нулю, но практически витки вторичной обмотки противоположны виткам первичной обмотки.Следовательно, не встречный первичный mmf создает большой магнитный поток в сердечнике, поскольку нет встречного вторичного mmf. Это приводит к большим потерям в сердечнике и, таким образом, увеличивает нагрев сердечника. Кроме того, это вызывает высокие ЭДС как на первичной, так и на вторичной стороне, что приводит к повреждению изоляции. Следовательно, очень важно, чтобы вторичная обмотка была подключена последовательно к токовым катушкам с низким сопротивлением прибора или просто закорочена. А также, чтобы избежать опасности поражения электрическим током, вторичная сторона должна быть заземлена.На практике трансформаторы тока снабжены переключателем короткого замыкания на клеммах вторичной обмотки.

В начало

Конструкция трансформаторов тока

Конструкция трансформатора тока может быть намотанной или стержневой. ТТ с обмоткой аналогичен обычному двухобмоточному трансформатору. Первичная обмотка состоит из более чем одного полного витка или нескольких витков, намотанных на сердечник. Для трансформаторов тока низкого напряжения с обмоткой вторичные витки намотаны на бакелитовый каркас и с соответствующей изоляцией между ними, первичная обмотка непосредственно намотана на вершину вторичной обмотки.В зависимости от конструкции сердечника это могут быть ТТ кольцевого, прямоугольного или оконного типа. В трансформаторе тока стержневого типа первичная обмотка представляет собой не что иное, как одиночный стержень, который проходит через центр сердечника и образует одновитковую первичную обмотку.

Плотность магнитного потока, используемая в трансформаторах тока, намного меньше, чем у силовых трансформаторов. Поэтому материалы сердечника выбираются таким образом, чтобы они обеспечивали низкое сопротивление, низкие потери в сердечнике, а также работали с низкими плотностями магнитного потока. Поскольку кольцевые сердечники имеют меньше стыков и прочны, они обладают низким сопротивлением.Обычные материалы, используемые для сердечников, включают горячекатаную кремнистую сталь, холоднокатаную кремнистую сталь с ориентированным зерном и никелевые сплавы железа. Для высокоточного измерения сердечник CT изготовлен из легированной стали очень высокого качества, называемой мукомольной мукой. Для обеспечения изоляции используются лак и ленточные материалы для малых линейных напряжений. Но для высоких линейных напряжений используются трансформаторы тока с компаундом или маслом. В случае трансформаторов тока, используемых при передаче более высоких напряжений, для изоляции между вторичными обмотками и проводниками высокого напряжения используется бумага, пропитанная маслом.Опять же, такие CT могут быть построены в форме живых и мертвых резервуаров.

Вернуться к началу

Типы трансформаторов тока

Трансформаторы тока подразделяются на различные типы в зависимости от таких факторов, как тип использования, напряжение в цепи, метод монтажа и т. Д. Некоторые из этих типов включают

Трансформаторы тока для помещений

Они обычно используются для цепей низкого напряжения и далее подразделяются на трансформаторы с обмоткой, стержневые и оконные трансформаторы.Как и обычный трансформатор, трансформатор с обмоткой имеет как первичную, так и вторичную обмотки. Они используются при очень низких отношениях тока, например, в суммирующих приложениях. Из-за более высоких значений ампер-витков первичной обмотки с помощью этих трансформаторов тока можно достичь высокой точности. ТТ стержневого типа состоит из первичного стержня, который является неотъемлемой частью ТТ с вторичными сердечниками. Точность трансформатора тока стержневого типа снижается из-за намагничивания сердечника, для которого требуется большая часть общего числа ампер-витков при низких номинальных токах.ТТ оконного типа устанавливаются вокруг первичного проводника (или линейного проводника), поскольку они не имеют первичной обмотки. Это наиболее распространенные трансформаторы тока, доступные в конструкциях со сплошным и разъемным сердечником. Перед установкой ТТ со сплошным окном первичный провод должен быть отключен, в то время как в случае разъемного сердечника его можно установить непосредственно вокруг проводника, не отсоединяя его.

трансформаторы тока

Вернуться к началу

Трансформаторы тока наружной установки

Они обычно используются для цепей с более высоким напряжением, таких как распределительные станции и подстанции.Эти трансформаторы тока снабжены изоляцией из масла или элегаза. По сравнению с маслонаполненными трансформаторами тока трансформаторы тока с элегазовой изоляцией легче по весу. Верхний бак подключен к первичному проводу, и поэтому они называются трансформаторами тока под напряжением. Втулки малого диаметра используются, поскольку первичный проводник и резервуар имеют одинаковый потенциал. Этот бак установлен на изолирующей конструкции, как показано на рисунке. В основании вторичные клеммы расположены в клеммной коробке. Также в основании предусмотрена клемма заземления.

OutdoorCurrentTransformer

Для трансформаторов тока с несколькими коэффициентами передачи первичная обмотка имеет разъемный тип. Таким образом, на баке предусмотрены отводы для первичной обмотки. Используя эти трансформаторы, можно получить переменный коэффициент тока с ответвлениями на первичной или вторичной обмотке. Когда применяется ко вторичной обмотке, рабочие ампер-витки меняются, когда прикладываются к первичной обмотке, большая часть медного пространства остается неиспользованной, за исключением самого нижнего диапазона.

В начало

Изолирующие трансформаторы тока

Трансформаторы тока проходного типа также аналогичны трансформатору тока стержневого типа, в котором сердечник и вторичная обмотка установлены вокруг первичного проводника.Вторичная обмотка намотана на сердечник круглой или кольцевой формы, который устанавливается в высоковольтный ввод силовых трансформаторов, выключателей, генераторов или распределительных устройств. Проводник проходит через втулку, действующую как первичную обмотку, а сердечник расположен так, чтобы окружать изолирующую втулку. Из-за меньшей стоимости трансформаторы тока с вводом в основном используются для реле в цепях высокого напряжения.

Вводные трансформаторы тока

В начало

Переносные трансформаторы тока

Это трансформаторы тока с высокой прецессией, используемые для высокоточных амперметров и анализаторов мощности.Это могут быть переносные трансформаторы тока с разъемным сердечником, гибкие и с фиксатором. Типичный диапазон измерения тока портативного трансформатора тока составляет от 1000 до 1500 А, а также эти трансформаторы тока обеспечивают изоляцию измерительных приборов от цепей высокого напряжения.

Переносные трансформаторы тока

В начало

Ошибки в трансформаторе тока

В идеальном трансформаторе тока соотношение первичного и вторичного тока точно равно отношению вторичного и первичного витков, а также токи в каждой обмотке дают равные ммс в точном анти- фаза.Однако на практике коэффициент тока отличается от коэффициента передачи, а также существует определенный фазовый угол между ними от противостояния. Они называются ошибками соотношения и ошибками фазового угла. В случае трансформаторов тока, которые используются для высокоточного измерения и измерения, эти ошибки должны быть как можно меньше.

Рассмотрим векторную диаграмму трансформатора тока, показанную ниже,

, где

Io = ток холостого хода

Im = намагничивающая составляющая тока холостого хода

Ie = Ваттная составляющая тока холостого хода

Es и Ep = индуцированные напряжения во вторичной и первичной обмотках соответственно

Np и Ns = Количество витков в первичной и вторичной обмотках соответственно

Ip и Is = Первичный ток и вторичный ток

Rs = Сопротивления вторичной обмотки

Xs = Реактивное сопротивление вторичной обмотки

β = фазовая погрешность

n = коэффициент трансформации = N2 / N1

Для поддержания возбуждения железного сердечника трансформатор тока потребляет первичный ток.Этот ток возбуждения состоит из двух компонентов, то есть компонента намагничивания и компонента мощности, как показано на рисунке. ЭДС, индуцированная во вторичной обмотке, передает вторичный ток через нагрузку и из-за собственного сопротивления и реактивного сопротивления вторичной обмотки вызывает падение напряжения во вторичной обмотке. В приведенном выше векторном изображении I2 относится к первичной обмотке (показано пунктирной линией), поэтому существует угол бета между первичным и вторичным токами.

Ratio Error

В приведенном выше векторе I1 или первичный ток состоит из составляющей тока возбуждения.Следовательно, рассматривая треугольник OBC, мы можем получить фактическую ошибку соотношения в терминах компонентов вектора I2, Io (в свою очередь, это зависит от компонентов намагничивания и мощности) и I1. Кроме того, вторичный ток зависит от сопротивления и реактивного сопротивления обмотки, а также от коэффициента мощности нагрузки. Но номинальный или номинальный ток в точности равен отношению вторичного к первичному виткам. Следовательно, погрешность коэффициента трансформации трансформатора тока определяется как отклонение фактического коэффициента преобразования от номинального.

Погрешность тока или коэффициента = (Номинальное отношение - Фактическое отношение) / Фактическое отношение

= (Kn - R) / R × 100%

Погрешность фазового угла

В идеальном трансформаторе тока вторичный ток должен смещаться точно на 180 градусов от первичного тока. Другими словами, между первичным током и обратным вторичным током должен быть нулевой фазовый угол. На приведенной выше векторной диаграмме обратный вторичный ток опережает первичный ток на определенный угол, следовательно, вносит фазовую ошибку.Если обратный вторичный ток отстает от первичного тока, сдвиг фаз отрицательный, тогда как он опережает, фазовый угол положительный.

Чтобы уменьшить эти ошибки в ТТ, ток возбуждения или ток холостого хода должен быть небольшим, а также малым должен быть угол нагрузки вторичной нагрузки. Для выполнения этих требований сердечник должен иметь низкие потери в сердечнике и низкое сопротивление, чтобы минимизировать ваттные и намагничивающие компоненты возбуждающего тока. Кроме того, уменьшение количества витков во вторичной обмотке и уменьшение импеданса вторичной обмотки приводит к минимуму этих ошибок.

В начало

Применения трансформаторов тока

Трансформаторы тока используются в широком спектре приложений, начиная от управления энергосистемой и заканчивая точным измерением тока в промышленных, медицинских, автомобильных и телекоммуникационных системах. Некоторые из приложений включают

  • Расширение диапазона измерительных приборов, таких как амперметр, счетчик энергии, счетчики кВА, ваттметр и т. Д.
  • Дифференциальные системы защиты от циркулирующего тока.
  • Дистанционная защита в системах передачи электроэнергии.
  • Защита от перегрузки по току.

Вернуться к началу

Создание и калибровка измерителя ВЧ тока малой емкости

Для измерения силы тока нужен специальный счетчик аккуратно в присутствии сильных электрических полей и не мешать системы с низким сопротивлением и высоким сопротивлением. Описанный ниже счетчик подходит для точного измерения ВЧ-тока в высоковольтных приложениях, таких как короткие антенны.Он также точен в обычных приложениях

Другая ссылка на проект измерителя тока ( не подходит для измерения мобильной антенны, однако!)

http://www.ifwtech.co.uk/g3sek/clip-on/clip-on.htm

Измеритель ВЧ тока с низкой емкостью, невосприимчив к напряжению

Счетчик построен на 100 мкА полностью в пластиковом корпусе. Шкала метра пластик. Механизм и все металлические поверхности маленькие.Отсутствие большого металлические компоненты минимизируют паразитную емкость добавляется к тестируемой цепи близостью измерителя тока.

Низкая емкость гарантирует, что измеритель минимально влияет на цепь тестируется.

У этого счетчика есть тороидальный трансформатор тока 1,5 дюйма на задней панели. Сразу за измеритель - это калибровочный горшок и вся схема. Тороид и схема приклеивается к счетчику-расплаву только с помощью калибровочного бака отвертки незащищенный.

Я не добавил щит Фарадея, потому что он увеличивает емкость. Поскольку весь этот счетчик плавает над землей, нет необходимости в щит. Баланс не критичен когда нагрузка физически очень маленький и плавает с земли, потому что общий режим сопротивление очень высокая.

Измеритель имеет низкопороговый диодный детектор Шоттки, последовательный резистор для калибровка и эталон.Шунтирующие конденсаторы емкостью 1 мкФ.

T1 - трансформатор тока. Я использовал порошкообразный железный сердечник Т150-2. Когда однооборотный первичный элемент (хлыст или мачта) имеет 1 ампер, вторичная обмотка будет иметь 0,05 ампера (инверсия витков соотношение). R1 выравнивает отклик и ограничивает напряжение.

Оказалось что 100 Ом дали самый плоский ответ от 1.8 до 30 МГц, что является частотный диапазон I намерены использовать метр на.При 100 Ом мы иметь 0,05 * 100 = 5 вольт RMS. Пиковое напряжение постоянного тока составляет 1,414 умножить на 5 = ~ 7 вольт. C1 - это конденсатор фильтра для RF-импульсов, R2 и R3 устанавливают диапазон FS. С 100 мкА измерителя сопротивление 10 000 Ом / Вольт. 7 вольт требует 70 кОм, что быть примерно на полпути на R2.

Обратите внимание на выбор слабого тока метр и> 50к множитель сопротивление. Низкий текущий и высокий напряжение улучшается линейность детектора.

Рассеивание в R1 составляет 0,25 Вт от 0,05 ампера (ток T1), умноженного на 5-В (среднеквадратичное значение). (вторичное напряжение 5 В с током 0,05 А через 100 Ом).

Калибровка

Измеритель отслеживается в тестовом приборе на предмет линейности. Фактическое используемое приспособление показано ниже.

Испытательное приспособление состоит из двух UHF-розеток, припаянных к листу Печатная плата. Между центральными штифтами проходит одиночный тефлоновый провод №16.

Обратите внимание на цифры «2» и «B3» на счетчиках. Мои элементы и измерители имеют калибровочные диаграммы, которые исправляют ошибки линейности при отслеживании и чтения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *